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Abstract. In a large monitored information system, analysts are con-
fronted with a huge number of heterogeneous events or alerts produced
by audit mechanisms or Intrusion Detection Systems. Even though they
can use SIEM software to collect and analyse these events (In this paper
we call events all events or alerts produced by the monitoring processes),
detecting previously unknown threats is tedious. Event prioritization
tools can help the analyst focus on potentially anomalous events. To
compute a measure of priority among events, we propose in this paper
to define the notion of an anomaly score for each attribute of the analyzed
events and a method for regrouping events in clusters to reduce the num-
ber of alerts the analysts have to qualify. The anomaly score is computed
using neural networks (i.e., auto-encoders) trained on a normal dataset
of events, and then used to provide the analyst with the information
of the difference between normal learned events and the events actually
produced by the monitoring system. Additionally, the auto-encoders also
provide a way to regroup similar events via clustering.

Keywords: Heterogeneous logs · Anomaly detection · Anomaly
score · Cybersecurity · Intrusion detection · Machine learning

1 Introduction

Security monitoring of information systems requires to log events happening
during the execution of processes at system level, the exchange of data via the
network or the application warnings. In addition to event logging, Intrusion
Detection Systems can produce alerts that are likely to be the consequence of
an attack. Due to the huge number of events produced, even if a monitoring
strategy has been clearly defined, it is difficult for the analysts to detect what
are important events from the security point view, i.e., what are the events that
are symptomatic of an intrusion inside the system.

The current practices consist in collecting all security events in a SIEM (Secu-
rity Information and Event Management) solution. This solution is able to corre-
late information included in multiple events in order to recognize known attack
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patterns. Despite the definition of highly accurate correlation processes [14],
this treatment still requires to manually write static correlation rules. Thus,
the effectiveness of the detection relies on the ability of the analysts to write
a complete set of correct correlation rules for known attacks. Furthermore, this
set of rules should be updated continuously to take into account the newly dis-
covered threats. As a consequence this tremendous task is clearly insufficient to
emphasize all attack steps, and a lot of anomalous events stay hidden to the
analyst.

During the threat hunting process, analysts rely on prioritization tools to
highlight the most anomalous events and identify misbehaving entities in the
system. If necessary, a more thorough forensic analysis of these entities can be
performed. After this analysis, they should be able to produce a set of Indica-
tors of Compromise (IoC) and eventual correlation rules. As a way of prioritizing
events, in this paper, we propose an approach which associates an anomaly score
to each attribute of an event1. These per attribute scores are then combined to
provide a global anomaly score to the event. The higher this score is, the lower
the probability of it being a consequence of a normal behavior is. This app-
roach relies on the use of Artificial Intelligence mechanisms, more specifically,
neural networks auto-encoders. The originality of the approach is that the com-
putation is applied to any type of events (i.e., network, system and application
events). While other related methods require complex feature engineering to
transform attributes into compliant inputs for the chosen algorithms (e.g., for
strings, choice between feature hashing, one-hot encoding, TF-IDF, etc.), our
method only requires analysts to identify events attributes as being a numerical,
categorical or string variable. This makes it easier to adapt to new category of
security event. A major contribution of our approach is the introduction of a
way for auto-encoders to provide a cluster identifier to each event. The identifier
is used to easily and accurately regroup similar events. This clustering lowers
the volume of redundant information presented to analysts which lead to almost
three orders of magnitude reduction for our test dataset. The main advantage of
our method is the possibility to rapidly adapt it to new security event sources,
providing as output a cluster identifier and an anomaly score to the analyzed
events. This paper is organized as follows: Sect. 2 presents the state of the art
in anomaly detection using Artificial Intelligence techniques. Section 3 explains
how the anomaly score is computed. In Sect. 4 we describe how the approach
is implemented. Finally Sect. 5 presents the results obtained on a data set pro-
duced using an environment of heterogeneous Operating Systems on an internal
network.

1 Attributes are the fields of an event. Connection duration, source IP address, number
of bytes received are examples of attributes for a network event.
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2 State of the Art in AI Applied to Security Monitoring

Our approach permits to categorize attributes of events as being normal or
abnormal. A lot of work uses Artificial Intelligence approaches to attain a sim-
ilar objective (i.e., detecting anomalies), mainly machine learning techniques.
Kriegel et al. [3] computes the anomaly score based on the distance with the
nearest neighbours, with a high distance to the other points indicating a poten-
tial anomaly. Pang et al. [19] proposed a nearest neighbours based method, that
scales to larger datasets (several millions of events) by computing the pairwise
distance between random samples of point instead of the whole dataset. Ester
et al. [9] proposed DBSCAN, an approach that identifies high density of points as
clusters and classify points inside low density region as anomalies. However, these
approaches are sensible to a high dimensional data (the “curse of dimensionality”
described by Bellman et al. [2]). As a consequence Kriegel et al. [13] proposed
a work that scales to large number of attributes in data. All the methods men-
tioned above rely on a notion of distance that needs to be defined specifically
for the problem at hand, which can prove difficult, especially for complex data
structures (e.g., the distance between two strings, two events with heterogeneous
attributes types, etc.)

A variant of Principal Component Analysis has been also used by Pascoal
et al. [20] to propose an approach that is robust to noise in the training dataset
(e.g., a few attack traces in the normal data). Scholkopf et al. [23] proposed one
of the most used algorithm for anomaly detection by training SVM (Support
Vector Machines). Data Mining techniques have been used by He et al. [11] to
measure the level of anomaly of a transaction. This type of approach have been
extended by Akoglu et al. [1] to limit the number of frequent pattern used to
compute the anomaly score. Pattern mining algorithm requires categorical data
as input, and therefore a suitable transformation of the input data should be
found for numerical data.

The use of Bayesian Networks [22] has been tested by Wong et al. [27] to
perform anomaly detection. This type of approach permits also to diagnose and
explain a detected anomaly. However, Bayesian methods requires to identify the
most likely probability distribution for the events, which can be challenging.

The algorithm Isolation Forest proposed by Liu et al. [15] was applied to
security by Ding et al. [7]. This permits to classify quickly the abnormal activ-
ities. This technique does not require any kind of normalization on numerical
variables, but it requires categorical values to be transformed into numerical
values and cannot handle text values without specific transformation methods.

Similarly to our approach Hawkins et al. [10] propose a method based on
neural networks to compute anomaly score. This approach is called Replicator
Neural Networks (RNN). With the rise of Deep Learning and more specifically
Deep Neural Networks (DNN), RNN have regain interest in the form of deep
auto-encoders and a robust variant of the algorithm has been proposed by Zhou
et al. [28]. Mirsky et al. [18] relies on an ensemble of auto-encoder to improve
the robustness and accuracy. Due to recent advancements in deep learning, auto-
encoders can be adapted to various kind of data (e.g., text, time-series, images,
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categorical, numerical, etc.). However, such a network is computationally inten-
sive to train and is best suited for high volume of training data. Veeramachaneni
et al. propose an active learning based approach for large scale security mon-
itoring [26]. The authors combine a Principal Component Analysis approach,
auto-encoders and a distance-based approach for anomaly detection, but they
still require complex feature selection and transformation for each event sources.
In [8], a deep learning method is used to spot anomalous patterns inside log
files. However, the considered threat model is mainly focused on Denial of Ser-
vice and workflow interruption, and the method has therefore not been assessed
on broader range of hostile behaviors.

Shen et al. [24] and Liu et al. [16] propose methods that rely on embedding
of security-related information, like our method. The former’s objective is to
model the evolution of exploitation methodology for known vulnerability, and
is therefore more related to cyber threat intelligence than security monitoring.
The latter aims at detecting complete attack (i.e., not anomalous events) and
relies on complex sets of rules to build graphs, which is hard to adapt to new
types of security events and threat models.

Our approach draws inspiration from state-of-the art deep learning tech-
niques to take as input numerical (e.g., connection duration, file size, etc.), cat-
egorical (e.g., port number, user identifier, hostname, etc.) and string (e.g., a
command and its arguments) attributes. Doing so permits the use of simple and
generic methodology for input transformation. In addition, we exploit the latent
representation of the auto-encoder in a novel way to provide clustering capabil-
ities. This is used to regroup similar event and lower the volume of information
that is presented to the analysts.

3 Computing Anomaly Score on Heterogeneous Events

3.1 Basics on Neural Networks Auto-encoders for Anomaly
Detection

Fig. 1. Overview of an autoencoder

Auto-encoders (Fig. 1) are by definition a particular structure of neural networks
that are trained in an unsupervised way (i.e., without the expected output value
in the training dataset) and composed of an encoder, which maps input vectors
to a low dimension representation (also called latent space), and a decoder which
tries to reconstruct the original input vector from the latent space.
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The input vectors are vectors containing numerical values (integers, floats
or vectors of integers or floats). For anomaly scoring, the auto-encoder is first
trained on normal data to compress and decompress the input vectors with
as little loss of information as possible (i.e., an approximation of the identity
function). Then, an inference phase that takes as inputs events produced during
the monitoring process, to which we apply the auto-encoders estimated identity
function. As output we obtain a result that can slightly differ from the input. We
name this difference “reproduction error”, and we use this difference to estimate
the deviation of the input from learnt normal known inputs. More specifically, the
auto-encoder is biased towards normal events, and therefore, the reproduction
error is higher for anomalous events.

During the security monitoring process, an information system produces a
huge number of heterogeneous events. These events can be for example extracted
from the operating system (e.g., system calls), from network (e.g., connections,
protocols, network IDS alerts, etc.), or from specific monitored applications (e.g.,
web server requests logs). Moreover, different types of operating systems can be
used (e.g., Windows and Linux systems), generating different formats of events.
Also, an event that is the consequence of a normal behaviour on one system,
might be a sign of an intruder in another one. Our objective is to create normal
behaviour models from all these heterogeneous events in order to compute, for
each event, an anomaly score, and do so with a minimal configuration step.

Due to their ability to handle heterogeneous attributes, we chose to adapt
neural network auto-encoders to compute an anomaly score (Sect. 3.5) for secu-
rity events. We also exploit the latent space of these auto-encoders to provide a
cluster identifier to each event, later used to regroup similar events in clusters
(Sect. 3.4). In this section, the structure of the auto-encoders is provided (Sect.
3.3), as well as the transformations that are applied on the events before being
processed by the auto-encoder (Sect. 3.2).

3.2 Input Transformation

As explained in Subsect. 3.1, the auto-encoder takes as input a vector of numeri-
cal values. The goal of the input transformation process is to transform the vector
containing the value of the attributes of an event into a vector suitable as input
for the auto-encoder. This transformation process is presented in Algorithm 1.

There are three possible types of variables that can be taken as input to our
auto-encoders. The first type, like any machine learning algorithm, is numerical
variables. The second one, the categorical variables, are variables whose values
belong to a finite set and cannot be mathematically ordered (e.g., username
‘Bob” is neither superior or inferior to username “Alice”). Finally, raw strings
are considered as sequences of categorical values.

Normalizing Numerical Attributes. For numerical variables (integers and
floats) taking raw values as input is not the most efficient way of learning the
normal distribution of numerical attributes [12]. This paper proposes as a reme-
diation to normalize the numerical values from a set of floats into a reduced
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Algorithm 1. Event Attribute Vector Transformation
function TransformCategory(attribute)

for all pattern in KnownPatterns do
if matchPattern(pattern, attribute) then

attribute ← pattern
break

end if
end for
if attribute in KnownCategories then

return value ← KnownCategories[attribute]
else

return value ← KnownCategories[DefaultV alue]
end if
return value

end function
function Transform(event)

V ector ← ∅
for all SelectedAttribute in event do

switch SelectedAttribute.type do
case categorical

V ector[i] ← TransformCategory(SelectedAttribute)
case string

V ector[i] ← StringToIntegerArray(SelectedAttribute)
case number

V ector[i] ← ScaleValue(SelectedAttribute)
end for
return Vector

end function

interval (e.g., the set [0, 1]). This transformation is produced by the ScaleValue
function in Algorithm 1.

In the context of anomaly detection, outliers with extreme values can reside
in normal data. To limit their impact on the normalization process, we find the
90th percentile Q90 inside the training dataset (i.e., 90% of the normal values
are below Q90). The transformation then consists in dividing the input by Q90.
In case the value of the attribute grows exponentially, as suggested by Kaastra
et al. [12], the result of the transformation will be the logarithm of the initial
value divided by the logarithm of Q90.

Normalizing Categorical Attributes. To handle categorical variables in the
auto-encoder, we draw inspiration from word2vec [17]. The goal of this technique
is to map each word in a continuous vector space (i.e., vectors of floats) based
on its context (other words appearing in the same sentences). This mapping is
generally called an embedding. This permits to treat natural language, such as
the recognition of semantics of words in sentences. We use the following analogy:
an event is a sentence and its attributes are the words composing it.

The neural network will optimize the embedding function based on the other
attributes of the given event, that will represent the context of the transformed
attribute. This context allows us to determine if a category of an attribute is
normal in a given context.

In practice, a categorical embedding layer of a neural network takes as input
a category identifier (i.e., an integer) that represents a vector filled with as much
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0 as the total number of categories, except for a 1 at the corresponding identifier.
When the total number of categories is large, a proportionally large number of
parameters needs to be optimized. To reduce the induced computational com-
plexity, we propose the use of regular expressions (regex) to map every string
matching the same pattern to the same category identifier. For example, if we
consider all HTML files in a web server repository as being of the same category,
we can map them to the same identifier using the regular expression *.html. How-
ever, as with any security tools relying on regex, the regex should be carefully
chosen to prevent an attacker from bypassing them.

For a given value of an attribute, if the category is known (or if it matches
a predefined regex), it returns the corresponding identifier. In case the category
was never encountered before (frequent in the context of anomaly detection), it
returns an integer corresponding to the category “Unknown”. This corresponds
to the function TransformCategory in Algorithm 1.

Normalizing Raw String Attributes. Strings, as found in security events,
have their own syntax and semantic. As such, it is possible to apply Natural
Language Processing (NLP) techniques to handle them [8]. The approach cho-
sen for our auto-encoders requires that a sentence is represented as a raw array
of integers, and this transformation is performed by the function StringToIn-
tegerArray in Algorithm 1. In NLP, the interpretation is the following: every
character of a string (the UTF-8 code of the character) is a word, and the string
is a sentence.

3.3 Neural Network Structure

Fig. 2. Our proposed neural network structure
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Given the diversity of inputs, each attribute needs to be processed differently
by the auto-encoder. For the embedding part, the first layers are organized into
independent blocks, one block for each input attribute. The output of each block
is then horizontally concatenated before being processed by the shared layers of
the encoder. Symmetrically, for the decoding part, the encoder outputs first pass
through shared layers, and the last shared layer output is used as input to every
reconstruction blocks.

We implemented three types of blocks (Embedding Blocks - Fig. 2), one
for each type of variable (i.e., categorical, numerical or strings). For numerical
values, the transformation corresponds to a one neuron layer. For categorical
values, the input layer is composed of as much neurons as possible categories.
The input block for strings is more complex. The structure chosen is inspired by
state of the art NLP techniques: a combination of Gated Recurrent Units (GRU)
neural networks [4] and multi-head self attention [25]. GRU are designed to
learn long term dependencies between steps of a sequence. Attention mechanism
highlights the most relevant steps inside a sequence. When combined together,
they can compute pertinent low dimension representation of long sequences.
However, these techniques have a high computational cost. Therefore, when the
number of different strings is limited or when it is possible to find regex that
reduces this number, strings should be handle as categorical variables.

3.4 Event Clustering

In the cybersecurity domain, regrouping similar events can ease the analysis
process (i.e., analyzing a few groups of events instead of all events one by one).
In addition to its interesting properties for anomaly detection, the auto-encoder
can also provide a low dimension representation of its inputs thanks to its latent
layer. This latent layer can be used for event clustering. Recent work [6] obtained
good clustering performance by combining auto-encoders with Gaussian mixture
model. In the case of security events, we found that the dominance of categorical
variables leads to many clusters with a standard deviation close to 0, which is not
an ideal case for Gaussian models (due to the division by the standard deviation
in the Gaussian equation). By outputting vectors of bits (either 0 or 1), the
approach we propose better fits the discrete nature of the variables found in
security events (Fig. 3).

Fig. 3. Soft-ArgMax for binary variables. β controls the steepness

The latent layer is divided into 2 blocks of N components. For each of the
component if the value of the first block is higher than the value of the sec-
ond block, the corresponding component in the latent space will be close to 0.
Otherwise, the component value in the latent space will be 1. We need to use
the Soft-ArgMax function (Eq. 1) so that the output of the latent layer is either
close to 0 or close to 1, while still being able to compute a gradient (required for
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neural networks). The output of the latent layer is therefore a vector of N bits.
These N bits define a cluster identifier, that is later used to regroup the events
with equal identifier (Subsect. 5.2) (Fig. 4).

3.5 Anomaly Score Computation

Fig. 4. Loss functions: x is the input value and x̂ the output one. N is the total number
of categories and xi the probability of being the ith category

Per Attribute Score. Different types of variables also means different ways of
computing the reproduction error. For numerical values, we use the logarithm of
the hyperbolic cosine (Eq. 2). It behaves like x2/2 for small value of x (i.e., fits
more gradually when loss is close to 0) while behaving close to x − ln(2) when
x is large, which avoids giving more importance to extreme values. As output
for categorical variables, the auto-encoder expresses a probability of being every
possible category. As a measure of the error, we use the categorical cross entropy
(Eq. 3). Similarly to categorical variables, for each character of a string, the auto-
encoder outputs a probability distribution over possible characters. We use the
average categorical crossentropy across every character as the error function.

Due to the diversity of attributes and types of attributes, the reproduction
error for one attribute is not directly comparable with the reproduction error of
another attribute. As an example, if error E0 for attribute a0 ranges from 0 to 1
and error E1 for attribute a1 ranges from 1 to 1.5, E0 < E1 is not indicative of
anything. To be able to provide hindsight of what attribute might have caused
the anomaly, we need to be able to compare anomaly score between attributes
(Fig. 5).

Fig. 5. Cumulative Distribution Function at value x for as Gaussian distribution
parametrized by (μ, σ). The error function is denoted erf

During our experiments on multiple datasets and types of security events, we
have found that for most attributes, a Gaussian mixture model is an appropri-
ate approximation of the true distribution of the reproduction error on normal
data. The Expectation-Maximization algorithm [5] is used to find the parameters
(mean μ, standard deviation σ and probability φ for each Gaussian). We take
the parameters (μ0, σ0) of the Gaussian with the highest μ (i.e., the distribution
of the least normal events). The anomaly scoring function for a single attribute
is defined as the Cumulative Distribution Function (CDF) of the Gaussian dis-
tribution parametrized by (μ0, σ0), which provide a score between 0 and 1 to
each attribute of an input vector. A score close to 0 implies that the value of
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the attribute is considered normal, and a score close to 1 means that the value
is likely anomalous.

Global Anomaly Score. At this point, we have a score between 0 and 1 for
each attribute of the events. However, different types of event (e.g., network and
system events) may have different number of attributes. As a simple way of pro-
viding a final anomaly score for an event, we use the metric (6), which essentially
computes the frequency of anomalous attributes inside an event. (Fig. 6)

Fig. 6. Anomaly score S for an event with ne attributes with a score of (a1, a2, ..., ane).
(T1, T2, ..., Tne) is a threshold vector whose attribute can be configured individually

Finding Suitable Per Attribute Thresholds. In our approach, before com-
puting the anomaly score for an event (Eq. 6), we need to determine a set
of thresholds (T1, T2, ..., Tne

) (with ne the number of attributes) above which
attributes will be considered abnormal. To this end, we link the cluster identi-
fier and the threshold. For a given cluster, we compute the 99th percentile of
the score for each attribute on normal data and use it as the threshold. During
inference, it is possible to encounter never-before-seen cluster identifier, and in
this case the threshold for each attribute will be the global average score of the
attribute on normal data (i.e., independent from cluster identifier).

4 Implementation

4.1 Heterogeneous Events

The monitored system produces events by observing different layers: system
layer, network layer and application layer. The observation at system layer con-
sists in recorded system calls. These system calls can vary from an operating
system to another (e.g., Linux or Windows). The system call level observation
consists in executed processes and write access to files. This information is logged
using the tool auditd for Linux. On Windows machine, we use Sysmon to log
the executed commands and created files. At network layer we produce network
events by inspecting network flow from OSI layer 2 (link) to Layer 5 (application
level protocols). At network level, we use the Zeek tool [21] (the new name of the
Bro tool). For application events, HTTP requests in the Apache HTTP server
and Squid HTTP proxy logs are collected.

Formally, a logged event is an array of attributes whose values can be either
a string, an integer or a float. Strings can be either handled as raw strings (e.g.,
a command and its arguments) or as categorical variables (e.g., the executable
path), and integer as either numerical values (e.g., number of bytes) or cate-
gorical values (e.g., port number). Therefore, instead of string, integer or float,



174 A. Dey et al.

we will consider that the type of an attribute of an event can be either cate-
gorical, numerical or string. Occasionally, attributes of an event might be miss-
ing (e.g., transport error, logging failure, etc.), and in that case, the event will
not be analyzed. We will denote a type of event as a set of retained attribute
and their corresponding type. For example the zeek DNS log event type can
be defined as {source.ip : categorical, destination.ip : categorical, dns.query :
string, dns.answers : string}. We need to create one auto-encoder model per
event type. The complete list of event types is given in Subsect. 4.3.

4.2 The Monitored System Architecture

Fig. 7. Overview of the monitored system

For assessing our approach, we used virtual machines to deploy an Information
System architecture reproducing the behavior of a small to medium sized com-
pany (Fig. 7). The monitored part of the system is composed of 20 machines that
are distributed across 6 different VLAN separated by 3 firewalls. The Zeek IDS
tool analyzes the Ethernet traffic of each of these VLAN and logs the connection
and the DNS requests. Linux machines are based on CentOS 7. The Microsoft
machines run on Windows Server 2016 for the servers and Windows 10 for the
workstations. To simulate the activity of internal users connecting to the Inter-
net, we use the tool InetSim to mimic a few external services (e.g., web, DNS).
Multiple clients are also deployed outside the network and are browsing the com-
pany’s public website. To generate the attack behaviour, we have intentionally
introduced vulnerabilities inside the public website to facilitate exploitation.
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4.3 Considered Event Types

There are four different sources of events that are used to monitor the security
from the OS (Auditd, Sysmon), network (Zeek) and application (HTTP server
and proxy logs) point of view. From each of these point of view, different aspects
are considered (e.g., process and file monitoring by the OS) and require different
sets of attributes, which we call event types. We organize the collected events
into seven different event types and we describe them in the following list.

Auditd (Linux)

– Executed process: {command line: str., process working directory: cat., executable:
cat., hostname: cat., effective id: cat., effective group id: cat., user id: cat., user
group id: cat.}

– Write access to files: {hostname: cat., process working directory: cat., executable:
cat., outcome: cat., syscall: cat., effective id: cat., effective group id: cat., user id:
cat., group id: cat., file path: cat.}

Sysmon (Windows)

– Executed commands: {process args: str., process working directory: cat., executable:
cat., parent executable: cat., hostname: cat., user id: cat., group id: cat.}

– File creation: {hostname: cat., process working directory: cat., executable: cat., file
path: cat., user id: cat., group id: cat.}

Zeek

– DNS : {source IP: cat., destination IP: cat., dns query: str., dns answers: str.}
– Network connection: {source IP: cat., destination IP: cat., destination port: cat.,

network transport: cat., duration: num., total response bytes: num., total origin
bytes: num.}

Apache and Squid Logs

– HTTP requests: {hostname: cat., method: cat., status code: cat., source address:
cat., url: str., user agent: str.}

5 Approach Assessment

5.1 Collecting Data

To perform the learning phase of the auto-encoders, we must collect logs corre-
sponding to the normal activity of the monitored system. The recorded activity
is composed of users of the company regularly browsing both the internal and the
public website of the company (available from the external network). They also
exchange emails inside and outside the company. Users create, edit and delete
documents and share some of these documents with other users through the com-
pany’s shared directories. Additionally, administrators regularly perform actions
(e.g., configuration changes). Finally, multiple clients from the simulated Inter-
net zone browse the public server. User and client actions have been automated
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using tools that directly manipulate the user interface so that they effectively
generate events that can be seen in system logs. The administrative tasks have
been performed manually.

Training Dataset. The generated dataset is composed of 8 738 080 normal
events and correspond to a month of activity. 1 017 682 (11.6%) are generated by
auditd, 29 992 (0.3%) by Sysmon, 7 013 337 (80.3%) by Zeek and 677 069 (7.7%)
are HTTP requets. As these different types of events have different attributes,
a model has to be learnt for each of these types, thus, we separate the dataset
in 7 sub-datasets. Each of these sub-datasets is randomly divided in 3 parts.
60% of the data is used for training the model. 20% to periodically evaluate
the performances of the model on unknown data and stop the training once
the performances degrade (early stopping), which help combat over-fitting and
reduce the number of false positives. The remaining 20% are used to adapt the
different parameters (Sect. 3.5) and finalize the model on never-before-seen data.
This separation in three sub-datasets is common for neural network training. We
train one model for each of the 7 event types.

Attack dataset. During a business day, the following attack is performed:

1. The attacker crawls the public web server of the company in order to find a
potential vulnerability;

2. He exploits a vulnerability on the public web server of the company;
3. Then, he can modify a page restricted to the moderators of the web site;
4. A moderator visits the page from inside the company network, CVE-2018-

8495 is exploited and the user unwisely accepts the execution of the script;
5. The script deploys a remote access trojan on the machine and contacts the

command and control server;
6. The attacker stealthily scans a few hosts and finds the file server;
7. A file is downloaded from the file server and uploaded to the attacker’s server;
8. The attacker erases its tracks and leaves the company’s network.

The resulting dataset contains 298 302 events with both normal and abnormal
activities. In total, around 1500 events are related to the attack (0.5%).

5.2 Assessing Clustering Capabilities

The proposed auto-encoder provides a cluster identifier for each event. We can
use this identifier to regroup events together to lower the total number of alerts
an analyst has to investigate. On the attack dataset, we obtain a total of 191 dif-
ferent cluster identifiers. By design, the auto-encoder tends to project unknown
data points closer to normal points in the latent space. Therefore, a normal
event and an anomaly can share the same cluster identifier. To avoid mixing
normal and anomalous events inside a group, events are regrouped if they have
the same cluster identifier as well as the same anomaly score (Eq. 6). With these
conditions, we regroup the 298 302 events of our attack dataset into 293 groups.
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In a typical IT system, a significant change to the system (e.g., new user)
can lead to repeated and similar false positives. Inside our attack dataset, we
identified approximately 10500 of these false positives and they are regrouped
into 84 different clusters (125 events per cluster on average). For our attack
scenario, we identified 1500 events related to the attack, and they are regrouped
into 28 different clusters (54 events per cluster on average). This confirms that
the chosen clustering approach helps reduce the number of false positives to be
analyzed without diluting relevant attack information inside large clusters.

5.3 Anomaly Detection Results

The size reduction, detailed in the previous section, allowed us to manually
annotate the dataset and we found that the original 0.5% of anomaly in the
attack dataset are now distributed in 28 groups (9.56%). From there we can
compute metrics relative to the performance of our approach (Fig. 8).

Fig. 8. Precision (P), Recall (R) and F1 score

Due to the imbalance in class distribution (only 9.56% of positives), we chose
to use precision (7) that correspond to the ratio of true positives among all the
events classified as anomalies, the recall (8), also known as the true positive
rate, and F1 score (9) metrics, which is the harmonic mean of the recall and the
precision. For all these metrics, a value of 1 implies a perfect classifier, and a
value of 0 a useless one. In a context of a prioritisation tool, analysts will define
a maximum number of alerts that they can handle in a day. For this reason,
we provide the recall (i.e., proportion of anomalies accurately identified) when
considering the top 100, 50 and 10 groups (with regard to their anomaly score).
We provide the results in Table 1. We also found a false positive rate of 0.12%
on normal data with the threshold set as the minimum score of attack related
events (i.e., 100% true positive rate).

Table 1. F1 score, precision and recall for the top 10, 50 and 100

Top N groups F1 Precision Recall

10 0.162 0.333 0.107
50 0.5 0.342 0.929

100 0.44 0.28 1

More specifically, from a threat hunter perspective, analyzing the top 10
groups of events would be enough to determine that arbitrary code have been
executed on the web server and on the infected Windows machine. Analyzing
the top 50 events is enough to reconstruct the major steps of the attack and
identify the attacker IP address as an Indicator of Compromise (IoC).
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6 Conclusion

In this paper, we proposed a method that relies on neural networks auto-encoders
to compute anomaly scores for heterogeneous events prioritisation. We propose
an original approach to exploit the latent space of the auto-encoders to provide
clustering capabilities. This is used to reduce the volume of information that is
presented to the analysts by regrouping similar events together.

We drew inspiration from state-of-the-art deep learning techniques to han-
dle the most common attribute types found inside security events (numerical,
categorical and string attributes). These techniques simplify the design of the fea-
ture extraction and transformation processes that are required by any machine
learning-based approach. This allowed us to quickly create a specific model for
each event types inside our dataset. While other machine learning methods for
anomaly detection have already been proposed, they need specific feature engi-
neering for each new type of events, which requires knowledge in data science
that is rarely available among Security Operation Center (SOC) analysts.

Using our method, we regrouped the 298 302 events of our test dataset in 293
groups. When manually analyzing these groups, we found all the attack-related
events within the 100 groups with the highest anomaly scores.

The ability to prioritize heterogeneous events is the first step towards
behavioural anomaly-based attack detection tools for SOC. Future work will
focus on anomaly contextualisation using automated correlation techniques, as
well as visualization techniques to further simplify the investigation process for
analysts.
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