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Abstract. Harn has introduced a (t, n) threshold secret sharing scheme
recently, in which shareholders’ shares are not disclosed in the secret
reconstruction phase. The benefit is that the outside adversary cannot
learn the secret even if it is recovered by more than t shareholders. More-
over, Harn has further extended this scheme into a multi-secret sharing
scheme so that multiple secrets can be recovered individually at differ-
ent stagies. Both schemes are claimed to achieve the perfectness prop-
erty using heuristic arguments. However, in this paper, we show that
the above claim is false and these schemes are not perfect. In the first
scheme, the coalition of t−1 shareholders can conclude that the secret is
not uniformly distributed. And in the multi-secret sharing scheme, when
the public parameters satisfy some special conditions, the coalition of
t − 1 shareholders can even use the recovered secrets to preclude some
possible values for the unrecovered secrets.

Keywords: Threat analysis · Multi-secret sharing · Unconditional
security

1 Introduction

Secret sharing is an fundamental building block in information security and
cryptography. Over the last few decades, great efforts have devoted to designing
various secret sharing schemes [1,3,14].

In traditional (t, n) threshold secret sharing schemes [4,5,11–13], the dealer
first generates the shares and sends each share to a shareholder. Afterwards,
the secret can be recovered if t or more than t of these shareholders reveal
their shares. However, one drawback of these schemes is that when there are
more than t shareholders in the secret reconstruction, the outside adversary
may impersonate to be a shareholder, contribute an invalid share or even do
not contribute any share, and learn the secret after the other shareholders have
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revealed their shares. Obviously, this is not ideal for many applications where the
secret should only be recovered among the legitimate shareholders. The problem
can be solved if some proper authentication mechanism is added on top of the
secret sharing scheme, but this will introduce additional complexity, because
most of the user authentication schemes authenticate one user at a time.

In order to solve the above problem, Harn has proposed an interesting solu-
tion in [10]. To recover the secret in Harn’s scheme, each shareholder uses her
share as well as a value u (where t ≤ u ≤ n) to compute a shadow, where u
is the expected number of shareholders participated in the secret reconstruc-
tion. Afterwards, each shareholder reveals this shadow instead of her share. The
secret can be reconstructed if and only if there are exactly u shadows and all
these shadows are correctly computed. Therefore, the outside adversary cannot
use the same strategy to learn the secret, because she cannot compute a shadow
without the knowledge of a valid share. Another appealing feature of this scheme
is that the shadow will not disclose the corresponding share. And Harn has used
this property to further extend the scheme into a multi-secret sharing scheme,
in which the shareholders can reuse their shares to recover multiple secrets indi-
vidually at different stagies. Note that both these schemes are not relying on
any computational assumption, and the shareholders or the outside adversary
are allowed to have unlimited computational power.

It was claimed in [10] that these two schemes both satisfy the perfectness
property. Informally, this means that in the single secret sharing scheme, the
coalition of t − 1 shareholders cannot learn any information of the secret, and
in the multi-secret sharing scheme, t − 1 colluded shareholders cannot learn any
information of the unrecovered secret even if some secrets have already been
recovered. The above claims are argued based on the following reasons. Because
the number of equations obtained by the t − 1 shareholders and the outside
adversary is less than the number of unknown values, the system of equations
cannot be solved and the unkonwn values cannot be retrieved. Therefore, no
information about the secret can be learned either by the colluding shareholders
or by the outside adversary1.

Our Contributions. In this paper, we demonstrate that Harn’s schemes in [10]
are not perfect. Firstly, we extend Ghodosi’s results [8] to prove that Harn’s sin-
gle secret sharing scheme is not perfect. Although t−1 colluded shareholders can
neither recover the secret nor preclude some possible values for the secret, they
are able to conclude that the secret is not uniformly distributed. Secondly, we
introduce a new method to analyse secret sharing schemes based on hyperplane
geometry, and we use it to illustrate that in Harn’s multi-secret sharing scheme,
the coalition of t − 1 shareholders can conclude that the secret is not uniformly
distributed as well. Our method is more versatile than Ghodosi’s one [8] and it
may have some independent interests. Moreover, we show that when the public
parameters satisfy some special conditions, these colluding shareholders also can

1 Note that similar technique has been used in [9] and this scheme was attacked by a
novel cryptanalysis, called linear subspace attack [2]. But our work is different from
the existing attack and it illustrates some other weaknesses of Harn’s work.
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use the recovered secrets to preclude some possible values for the unrecovered
secrets. Because both Harn’s schemes have been claimed to achieve the perfect-
ness property using heuristic arguments, our results provide some evidences that
heuristic arguments may not be adequate to analyse the perfectness properties
of secret sharing schemes. In order to carry out proper security analysis, formal
methods should be used instead.

Outline of the Paper. The rest of this paper is organised as follows: some
prelimilaries are outlined in Sect. 2. Harn’s proposed secret sharing schemes are
reviewed in Sect. 3. And in Sect. 4, we describe why both Harn’s schemes fail
to achieve the perfectness property, and how to make them perfect. Finally, we
conclude in Sect. 5.

2 Prelimilaries

In this section, we describe some prelimilaries relate to the perfectness property
of secret sharing schemes, including its definitions, the necessary conditions for
lower bounds on the length of each share, and Ghodosi’s results on perfectness.

2.1 Perfectness in Single Secret Sharing Schemes

Let P = {P1, P2, . . . , Pn} be the set of n shareholders, and let K,S be the secret
set and the share set respectively. Let Γ be a collection of authorised subsets of
2P , called the access structure. In the share distribution phase, to share a secret
s ∈ K, each shareholder Pi ∈ P receives a share shi ∈ S from the dealer. In the
secret reconstruction phase, any authorised subset A ∈ Γ of shareholders can
use their shares to recover the secret. But any non-authorised subset B �∈ Γ of
shareholders can learn no information about the secret.

The above two requirements can be formalised using the entropy H(·) of ran-
dom variables in information theory. Denote S as the random variable associated
to the secret, SHi as the random variable associated to Pi’s share, and SHA as
the vector of random variables associated to the shares belonging to the share-
holders in the subset A ⊂ P. The perfect secret sharing scheme should satisfy
the following two requirements:

– Correctness: Given the subset of shares {shi}Pi∈A, we have H(S|SHA) = 0 for
any subset A ∈ Γ .

– Secrecy: Given the subset of shares {shi}Pi∈B, we have H(S|SHB) = H(S) for
any subset B /∈ Γ .

For any threshold secret sharing scheme that achieves the perfectness prop-
erty, Brickell [7] has given the lower bounds on the length of each share: the
equation H(SHi) ≥ H(S) needs to be hold for every shareholder Pi ∈ P. In other
words, the length of each share has to be equal or larger than the length of the
secret.
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2.2 Perfectness in Multi-secret Sharing Schemes

Let s1, s2, . . . , sh ∈ K be h secrets shared at the same time, and Γ1, Γ2, . . . , Γh ⊂
2P be the corresponding access structures. In the share distribution phase, the
dealer distributes the secrets according to their access structures. Each share-
holder Pi ∈ P receives a share shi ∈ S. In the secret reconstruction phase, given
a subset of shares and an index j ∈ {1, 2, . . . , h}, the expected output is the j-th
secret sj . Denote Sj as the random variable associated to the secret sj . The per-
fect multi-secret sharing scheme should satisfy the following two requirements:

– Correctness: Given the subset of shares {shi}Pi∈A and an index j, we have
H(Sj |SHA) = 0 for any subset A ∈ Γj .

– Secrecy: Denote T ⊂ {s1, s2, . . . sh}\{sj} as the set of recovered secrets in
the previous stagies. Given the subset of shares {shi}Pi∈B and an index j, we
have H(Sj |SHB,T) = H(Sj |T) for any subset B /∈ Γj .

For any threshold multi-secret sharing scheme that satisfies the perfectness
property, Blundo et al. [6] have given the lower bounds on the length of each
share: the equation H(SHi) ≥ ∑h

j=1 H(Sj) needs to be hold for every shareholder
Pi ∈ P. In other words, the length of each share has to be equal or larger than
the total length of the secrets.

2.3 Ghodosi’s Results on Perfectness

In [13], Shamir has proposed a perfect (t, n) threshold secret sharing schemes, in
which at least t shareholders can recover the secret. In other words, the access
structure is Γ = {A ⊂ P : |A| ≥ t}. The secret set K is a finite field. To
share a secret s ∈ K, a random polynomial f(x) ∈ K[x] with degree at most
t − 1 is generated by the dealer, such that f(0) = s. Then every shareholder
Pi ∈ P receives the share shi = f(xi), where xi ∈ K\{0} are publicly known
and pairwise different values. In the secret reconstruction phase, any subset of t
or more shares can recover the secret through polynomial interpolation, but less
than t shares can derive no information of the secret.

Note that many papers in the literature have misused Shamir’s secret sharing
by requiring the dealer to randomly select the polynomial f(x) of degree t − 1.
In this case, although the length of each shareholder’s share still satisfies the
lower bounds given by Brickell, Ghodosi et al. [8] have pointed out that if the
degree of f(x) was known to be t−1, then Shamir’s secret sharing scheme is not
perfect. The consequence is that any coalition of t− 1 shareholders can preclude
a possible value for the secret using the following strategy.

Denote f(x) = a0 + a1x + · · · + at−1x
t−1 with at−1 �= 0. Then, t − 1 colluded

shareholders can interpolate a t − 2 degree polynomial g(x) = b0 + b1x + · · · +
bt−2x

t−2, such that f(xi) = g(xi) for 1 ≤ i ≤ t − 1. This leads the system of
equations:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a0 − b0) + (a1 − b1)x1 + · · · + (at−2 − bt−2)x1
t−2 + at−1x1

t−1 = 0
(a0 − b0) + (a1 − b1)x2 + · · · + (at−2 − bt−2)x2

t−2 + at−1x2
t−1 = 0

...
(a0 − b0) + (a1 − b1)xt−1 + · · · + (at−2 − bt−2)xt−1

t−2 + at−1xt−1
t−1 = 0

By contradiction, if we assume that a0 = b0, then the above system of equations
with t − 1 equations and t − 1 unknown values {a1, a2, . . . , at−1} will have a
unique solution. This is because the determinant of a Vandermonde matrix is
not 0. Hence, the solution must be a1 = b1, a2 = b2, . . . , at−2 = bt−2, and
at−1 = 0. This contradicts the assumption that at−1 �= 0. Therefore, any t − 1
shareholders can preclude b0 as a possible value of the secret.

3 Review of Harn’s Schemes

In this section, we review Harn’s secret sharing schemes [10] and briefly explain
why it is claimed that they can satisfy the perfectness property.

3.1 Models

The system model, communication model and adversary model used in Harn’s
schemes are as follows:

System Model. The players include a trusted dealer D, n shareholders P =
{P1, P2, . . . , Pn} and some insider or outsider adversaries. It is assumed that all
these players have unlimited computational resources. Among these sharehold-
ers, it is assumed that at least t of them are honest, where t > n/2. Note that
this setting prevents the dishonest shareholders from learning the secret even if
they all collude. Here, the word “dishonest” means honest-but-curious. That is,
these dishonest shareholders will follow the protocol, but they may try to learn
information that should remain private.

Communication Model. It is assumed that there exists a secure channel
between the dealer and every shareholder, so that the shares can be securely
distributed to the shareholders. Moreover, it is assumed that every player is
connected to a common authenticated broadcast channel C. Any message sent
through C can be heard by the other players. The adversary can neither modify
messages sent by an honest player through C, nor she can prevent honest play-
ers from receiving messages from C. Note that these are standard assumptions
widely used in existing secret sharing schemes.

Adversary Model. Two types of adversaries are considered in Harn’s secret
sharing schemes:

– Inside adversary is a legitimate shareholder who owns a valid share generated
by the dealer. An insider adversary may work alone or collude with some other
inside adversaries in order to learn the secrets before they are reconstructed.
The restriction is that the maximum number of colluded inside adversaries is
t − 1.
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– Outside adversary is an attacker who does not own any valid share. But
she may participate in the secret reconstruction phase, impersonate to be a
shareholder, and learn the secret after the other shareholders have revealed
their shares.

3.2 The Single Secret Sharing Scheme

– Share distribution phase.
1. The dealer D selects k random polynomials fl(x) over Fp for l =

1, 2, . . . , k, having degree t − 1 each. Here, p is a prime that satisfies
p > n.

2. Then, D generates the shares shi = fl(xi) (mod p) for i = 1, 2, . . . , n,
and sends each share to the corresponding shareholder through the secure
channel. The values xi ∈ Fp\{0} are publicly known and pairwise differ-
ent. In the rest of this paper, we assume that all equations are modulo p
unless otherwise stated.

3. To share the secret s ∈ Fp, the dealer finds integers wl, dl ∈ Fp for
l = 1, 2, . . . , k, such that s =

∑k
l=1 dlfl(wl). The values wl need to be

pairwise different, and the intersection of the two sets {x1, x2, . . . , xn}
and {w1, w2, . . . , wk} needs to be empty. The dealer D makes these inte-
gers wl, dl publicly known for l = 1, 2, . . . , k.

– Secret reconstruction phase.
1. Suppose u shareholders participate in the secret reconstruction phase,

where t ≤ u ≤ n. Each shareholder Pi uses her share shi and the value u
to compute the shadow ci as:

ci =
k∑

l=1

dlfl(xi)
u∏

v=1,v �=i

wl − xv

xi − xv

And then, Pi sends the shadow ci to the authenticated broadcast channel.
2. After receiving all the shadows ci for i = 1, 2, . . . , u, every shareholder

can compute the secret as s =
∑u

i=1 ci.

To prove that the above scheme is perfect, it needs to show that both the
correctness and secrecy requirements (introduced in Sect. 2) are satisfied. It is
easy to see that the correctness requirement holds, because we have

s =
u∑

i=1

ci =
u∑

i=1

k∑

l=1

(dlfl(xi)
u∏

v=1,v �=i

wl − xv

xi − xv
)

=
k∑

l=1

(dl
u∑

i=1

(fl(xi)
u∏

v=1,v �=i

wl − xv

xi − xv
))

=
k∑

l=1

dlfl(wl)
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Harn has claimed that if kt > n−1, then the secrecy requirement also holds. Con-
sidering the worst case that n players are involved to recover the secret and the
outside adversary is the last one to reveal her shadow. Then, the outside adver-
sary can obtain at most n − 1 equations. But because the number of unkonwn
values kt is larger than the number of equations, the outside adversary cannot
learn any information of the secret. Moreover, the coalition of t− 1 shareholders
can obtain at most k(t − 1) equations, which is smaller than the number kt of
unkonwn values. Hence, the inside adversaries cannot learn any information of
the secret neither. Therefore, it is concluded that the secrecy requirement holds,
and this scheme is perfect with unconditional security.

3.3 The Multi-secret Sharing Scheme

– Share distribution phase.
1. To share h secrets {s1, s2, . . . , sh}, the dealer D first selects k random

polynomials fl(x) over Fp for l = 1, 2, . . . , k, having degree t − 1 each.
2. Then, D generates the shares shi = fl(xi) for i = 1, 2, . . . , n, and dis-

tributes them to the corresponding shareholders through the secure chan-
nel. Similarly, the values xi ∈ Fp\{0} need to be publicly known and
pairwise different.

3. The dealer D finds some integers wl ∈ Fp for l = 1, 2, . . . , k, such that
they are pairwise different and wl /∈ {x1, x2, . . . , xn}. For every secret sj ,
where j ∈ {1, 2, . . . , h}, the dealer D also finds some integers dj,l ∈ Fp

for l = 1, 2, . . . , k, such that sj =
∑k

l=1 dj,lfl(wl). Moreover, it is required
that all the vectors < dj,1, dj,2, . . . , dj,k > are linearly independent. The
dealer D makes these integers wl, dj,l publicly known.

– Secret reconstruction phase.
1. Suppose u shareholders participate to recover the secret sj , where t ≤

u ≤ n and j ∈ {1, 2, . . . , h}. Each shareholder Pi uses her share shi as
well as the values u and j to compute the shadow cj,i as:

cj,i =
k∑

l=1

dj,lfl(xi)
u∏

v=1,v �=i

wl − xv

xi − xv

Then, Pi sends this shadow cj,i to the authenticated broadcast channel.
2. After receiving all the shadows cj,i for i = 1, 2, . . . , u, every shareholder

can calculate the secret as sj =
∑u

i=1 cj,i.

Similar as in the above secret sharing scheme, the multi-secret sharing scheme
also satisfies the correctness requirement. In order to achieve the secrecy require-
ment, Harn has imposed the restriction that all the vectors < dj,1, dj,2, . . . , dj,k >
are linearly independent. Because these vectors are public parameters, and they
satisfy the following condition:

⎡

⎢
⎢
⎢
⎣

d1,1 d1,2 . . . d1,k
d2,1 d2,2 . . . d2,k

...
...

dh,1 dh,2 . . . dh,k

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

f1(w1)
f2(w2)

...
fk(wk)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

s1
s2
...

sh

⎤

⎥
⎥
⎥
⎦
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If there exists some linear relationship among these vectors, anyone may learn
some uncovered secret using the linear combination of previously recovered
secrets. Moreover, the parameters need to satisfy kt > h(n + 1) − 2 and
k > (h − 1)(n − t + 2) as well. This ensures that even in the worst case, neither
the outside adversary nor the coalition of t − 1 shareholders can obtain enough
equations to learn the polynomials’ coefficients. Therefore, Harn has also claimed
that this multi-secret sharing scheme is perfect with unconditional security.

4 Threat Analysis of Harn’s Schemes

In this section, we revisit Harn’s schemes in [10], demonstrating that both his
schemes fail to achieve the perfectness property. Because we have already shown
in Sect. 3 that the correctness requirement holds, our focus is only to prove that
Harn’s schemes fail to satisfy the secrecy requirement. Then, we explain how to
modify Harn’s schemes to be perfect.

4.1 Analysis of the Single Secret Sharing Scheme

We first analyse whether Brickell’s lower bounds on the length of each share are
satisfied in Harn’s single secret sharing scheme. If not, it can be simply concluded
that this scheme is not perfect. Recall that in the threshold secret sharing scheme,
the threshold value t has to be in the range n/2 < t ≤ n. Then, kt > n−1 implies
that k ≥ 1. Hence, each shareholder’s share is at least one value fl(xi) in Fp.
Moreover, since the dealer D is assumed to be trusted, she will randomly generate
the polynomial fl(x) over Fp. The value fl(xi) is randomly distributed in Fp.
Therefore, we have H(SHi) ≥ H(S) for every shareholder Pi ∈ P, and Brickell’s
lower bounds on the length of each share are satisfied.

Now, we extend Ghodosi’s results [8] to prove that Harn’s single secret shar-
ing scheme fails to satisfy the secrecy requirement. Without loss of generality,
suppose the first t − 1 shareholders {P1, P2, . . . , Pt−1} are colluding.

1. Firstly, based on Harn’s description that “the dealer D selects k random
polynomials fl(x) = al,0 + al,1x + . . . + al,t−1x

t−1 over Fp for l = 1, 2, . . . , k,
having degree t − 1 each”, these colluded shareholders can apply Ghodosi’s
results (introduced in Sect. 2.3) to preclude one possible value for every al,0.

2. Secondly, we show that these shareholders also can preclude one possible value
for every fl(wl):

fl(wl) = al,0λl,0 +
t−1∑

i=1

fl(xi)λl,i

where

λl,0 =
t−1∏

j=1

xj − wl

xj
, and λl,i =

t−1∏

j=0,j �=i

wl − xj

xi − xj

Because the values xi ∈ Fp\{0} and wl /∈ {x1, x2, . . . , xn} for l = 1, 2, . . . , k,
we have gcd(λl,0, p) = 1. The function fl(wl) is bijective when treating al,0
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as the unknown value. Hence, every different value of al,0 will result a unique
value of fl(wl).

3. Finally, recall that the secret is s =
∑k

l=1 dlfl(wl). Since one possible value
for every fl(wl) have been precluded, every dlfl(wl) ∈ Fp can have only p− 1
possible values if dl �= 0, and dlfl(wl) = 0 if dl = 0. Denote k′ as the number of
dl values that equal to 0. Obviously, k′ = k is meaningless, because the secret
s will be fixed as 0 in this case. Before the modulo p operation, the secret s
will have (p−1)k−k′

possible values. Since p does not divide (p−1)k−k′
, after

the modulo p operation, the secret s cannot be uniformly distributed within
Fp. Therefore, for the subset of shares {shi}Pi∈B, we have H(S|SHB) < H(S)
for any set |B| = t−1. In other words, the secrecy requirement does not hold,
and this secret sharing scheme is not perfect.

4.2 Analysis of the Multi-secret Sharing Scheme

We first analyse whether Blundo’s lower bounds on the length of each share
are satisfied in Harn’s multi-secret sharing scheme. When they are not satisfied,
we can easily conclude that the scheme is not perfect. Since n/2 < t ≤ n, and
Harn has required that kt > h(n + 1) − 2 and k > (h − 1)(n − t + 2), we have
k ≥ h. Each shareholder’s share is k values of fl(xi) for l = 1, 2, . . . , k that are
randomly distributed in Fp. Therefore, we have H(SHi) ≥ ∑h

j=1 H(Sj) for every
shareholder Pi ∈ P, and Blundo’s lower bounds on the length of each share are
satisfied.

Now, we introduce a new method to analyse secret sharing schemes based
on hyperplane geometry, and we use it to illustrate that Harn’s multi-secret
sharing scheme fails to satisfy the secrecy requirement. For each polynomial
fl(x) = al,0 +al,1x+ · · ·+al,t−1x

t−1 randomly selected by the dealer D, we have
⎡

⎢
⎢
⎢
⎣

1 x1 . . . x1
t−1

1 x2 . . . x2
t−1

...
...

1 xn . . . xn
t−1

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

al,0

al,1

...
al,t−1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

fl(x1)
fl(x2)

...
fl(xn)

⎤

⎥
⎥
⎥
⎦

Hence, the vector < al,0, al,1, . . . , al,t−1 > can be considered as the coordinates
of some point P in the t dimensional space S. Each shareholder’s share fl(xi)
can be considered as a t dimensional plane in S that passes through the point
P. The Vandermonde matrix ensures that all these n planes intersect uniquely
at the point P. The coalition of t − 1 shareholders can use their planes to derive
a line L in the space S. Based on Harn’s description, the polynomial fl(x) is
konwn to have degree t − 1, so that al,t−1 �= 0. Now, all the points with the
coordinate al,t−1 = 0 will form another plane in the space S, and this plane will
intersect the line L by a point P

′. Then, we can conclude that P and P
′ are not

the same point. Note that this method is very versatile. For example, in one
hand, if we know that the coordinates satisfy some linear relationship, we can
use this relationship to form a plane to derive the point P. In the other hand,
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if we can exclude some linear relationship for these coordinates, we can also use
this relationship to form a plane to derive a point P

′ and conclude that P and
P

′ are not the same point.
Using this new method, the t−1 colluded shareholders can also preclude one

possible value for every al,0 in the polynomials fl(x) for l = 1, 2, . . . , k. Then,
they can adapt the same strategy in Sect. 4.1 to preclude one possible value
for every fl(wl). Hence, they can conclude that the secret are not uniformly
distributed within Fp. This proves that the multi-secret sharing scheme fails to
be perfect.

Moreover, we further show that compared with the single version of secret
sharing, its multiple version may leak more information about the secret. In
some special circumstances, when the public parameters satisfy some conditions,
the colluded shareholders can even use the recovered secrets to preclude some
possible values for the unrecovered secrets. Assume that two secrets si and sj
are recovered in different stagies. Without loss of generality, we assume si is
already recovered but sj is yet to be recovered. The vectors < di,1, di,2, . . . , di,k >
and < dj,1, dj,2, . . . , dj,k > are their corresponding public vectors, respectively.
Moreover, we assume that the colluding shareholders already know that fv(wv) �=
0 for some v ∈ {1, 2, . . . , k}, and these two vectors happen to satisfy the following
conditions:

– For all u ∈ {1, 2, . . . , k}\{v}, we have dj,u = α · dj,u.
– But for v, we have dj,v = αdi,v + β.

where α, β ∈ Fp\{0}. Note that in this case, the two vectors are linearly inde-
pendent, and all the h vectors could still be linearly independent. However, if
the secret si is recovered, the value of the unrecovered secret sj cannot be α · si,
and this is because β �= 0. Therefore, the colluding shareholders can preclude
one possible values for sj .

4.3 Making Harn’s Schemes Perfect

Harn’s two secret sharing schemes can be easily modified to be perfect. The
only required change is that the dealer D selects k random polynomials fl(x) =
al,0 + al,1x + . . . + al,t−1x

t−1 over Fq with degree at most t − 1. Here, we only
describe why such change can make the single secret sharing scheme to be perfect.
And similar reasons also can be applied to the multi-secret sharing scheme.

If the polynomial is randomly generated with degree at most t − 1, for every
polynomial fl(x), the colluded shareholders only have t−1 points (xi, fl(xi)) for
i = 1, 2, . . . , t − 1. Because the colluded shareholders’ view of al,0 is uniformly
distributed in Fp, every additional point (0, al,0) can interpolate fl(x) into a
different polynomial with equal probability. Hence, every value fl(wl) will be
uniformly distributed in Fp. This also implies that these shareholders’ view of
the secret s =

∑k
l=1 dlfl(wl) will be uniformly distributed in Fp. Therefore, the

secrecy requirement will hold, since for any subset of shares {shi}Pi∈B, we have
H(S|SHB) = H(S) for any set |B| ≤ t − 1.
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5 Conclusion

In this paper, we have revisited Harn’s secret sharing schemes introduced in [10].
We have demonstrated that both Harn’s schemes fail to achieve the perfectness
property. In the single secret sharing scheme, if it was known that all the random
polynomials are with degree t−1, the coalition of t−1 shareholders can conclude
that the secret is not uniformly distributed. In the multi-secret sharing scheme,
when the public parameters satisfy some special conditions, the colluding t − 1
shareholders may use the recovered secrets to preclude some possible values for
the unrecovered secrets. We have also introduced a new method to analyse secret
shairng schemes. Compared with Ghodosi’s method in the literature, this new
method is more versatile and it could be used in more circumstances. Moreover,
this paper is another demonstration that formal security analyses [15,16] are
crucial for secret sharing schemes.
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