
Study of Transparent File Encryption
Technology on Android Platform

Yongzhong Li(&), Shipeng Zhang, and Yi Li

School of Computer, Jiangsu University of Science and Technology,
Zhenjiang 212003, China

liyongzhong61@163.com

Abstract. Aiming at the data security problem of Android platform, a trans-
parent encryption system based on file filter driver is designed and implemented,
according to the technology of file transparent encryption and decryption system
based on hook transparent encryption technology and file filtering driven
transparent encryption technology used on windows platform. This system is
different from the traditional APP development method of Android system. By
intercepting the system call function and using the secret-key converted from the
host MAC address, the encryption and decryption algorithm is written into the
kernel, which fundamentally guarantees the security of user information. At the
same time, the user's security experience is improved by putting authentication
on the screen unlocking. The system design and implementation are described in
this paper from system requirement analysis to overall design and detailed
design of each module. Android application development technology and cross-
compiling principle are used in the coding process. The system test results show
that the system can effectively transparently encrypt files and protect the privacy
of mobile files.

Keywords: Android � Data security � Transparent encryption � Privacy
preservation

1 Introduction

As an open source mobile development platform, Android has been supported by
mobile phone users and developers all over the world. In May 2017, at the 2017Google
Developers Conference, Google announced that the number of smartphones using
Android has reached 2 billion, close to one third of the world's population. However,
while people enjoy the convenience brought by mobile phones, as an important data
carrier of daily life and work, their security problems are becoming increasingly
prominent.

At present, file transparent encryption technology has become increasingly mature.
However, it is mostly used in Windows platform, and the application market for
Android mobile phone file encryption software is uneven, and users are required to
enter passwords to verify every time they encrypt and decrypt files, which greatly
reduce the encryption efficiency and user experience. A transparent encryption system
based on Android file filter driver is designed in this paper. In the kernel layer, the

© Springer Nature Switzerland AG 2021
G. Wang et al. (Eds.): SpaCCS 2020, LNCS 12383, pp. 137–145, 2021.
https://doi.org/10.1007/978-3-030-68884-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68884-4_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68884-4_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68884-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-68884-4_11

encryption and decryption algorithm are written into the kernel by intercepting system
calls, so as to improve user experience and encryption efficiency. The system's
authentication is placed in the screen lock.

2 Android System Architecture

Android system architecture is based on the Linux kernel and is bottom-up structure
[1]. It is mainly divided into four layers, as shown in Fig. 1, the Linux Kernel layer, the
Library layer, the Application Framework layers and the Application layer. The Linux
kernel layer provides the underlying drivers for various hardware of Android devices,
such as display driver, audio driver, etc. The system runtime layer mainly provides the
main features support for Android system through some C/C++ libraries, such as
SQLite library, etc. The application framework layer mainly provides various APIs that
may be used to build applications. Application Programming Interface (API); the
application layer includes all applications installed on mobile phones [2].

3 Principle of Transparent Encryption Technology

Transparent encryption refers to the process of encrypting and decrypting files without
changing the user's operating habits. It is a passive compulsory encryption technology
[3], which is insensitive to users. When the user opens or edits the specified file, the
system will automatically encrypt the unencrypted file and decrypt the encrypted file.
Encrypted files leave the current usage environment, which can not automatically
decrypt and protect the contents of files.

Transparent encryption technology can be divided into user-mode implementation
and kernel-mode implementation according to the location of implementation. They
correspond to the two main transparent encryption technologies, namely hook trans-
parent encryption and file filter-driven transparent encryption. According to encryption
efficiency, hook encryption technology encrypts the whole file in the application layer,
and encrypts and decrypts the file relatively slowly. Driving transparency technology
encrypts and decrypts the file dynamically in the driver layer, which has high effi-
ciency. So file filter-driven transparent encryption is used in this paper.

Fig. 1. Android system architecture Fig. 2. Transparent encryption

138 Y. Li et al.

3.1 File Filter Driven Transparent Encryption Technology

File Driver Encryption (IFS) technology is based on Windows File System Filter
Driver (IFS) technology [5], which works in the kernel layer of Windows. Without
affecting the upper and lower interfaces, it can intercept all file system requests, so that
new functions can be added without modifying the upper software or the lower driver,
as shown in Fig. 2 [4]. It is characterized by high encryption efficiency and security,
but the technical threshold is high. It is necessary to understand the Windows system
kernel in depth and difficult to develop. All tables and figures with text only should be
boxed in; i.e., a box should be drawn around the table or figure either by hand with a
ruler or with a draw facility on.

4 Design and Implementation of Transparent File
Encryption System

4.1 Overall Design

This system is a transparent file encryption system based on Android platform. It
mainly completes the encryption and decryption of specified files, and takes into
account the user's good experience, so as to ensure the personal information security of
Android users.

The frame design of the whole system is shown in Fig. 3.

The system uses MVP (Model, View, Presenter) framework. Model (model)
receives the control information from the controller, completes the operation of reading
and writing files and encryption and decryption. View (user interface) mainly realizes
the interaction with users and updates the user's encryption policy customization to
relevant database items. Presenter is responsible for logical processing, customizing
and updating the monitoring list according to the user's encryption strategy, monitoring
and accepting the data read and write operations applied in the list, and passing the

Fig. 3. System overall design framework

Study of Transparent File Encryption Technology on Android Platform 139

information to Model. MVP is evolved from MVC framework [6]. It cuts off the
connection between View and Model, makes View interact only with Presenter,
increases readability and reusability, and reduces the cost of later testing and mainte-
nance [7].

In the choice of encryption algorithm, we chose the currently popular encryption
algorithm AES and the encryption algorithm SM4 independently developed by China.
The reason for making these two choices is mainly considering the following reasons:

1) The reason why AES is selected as the encryption algorithm is because AES
encryption algorithm is one of the most popular algorithms in symmetric encryp-
tion, and it replaced the original DES encryption algorithm. For now, AES is still a
primary consideration in some encryption scenarios. At least for now, the AES
encryption algorithm does not show a decline, nor does it show obvious problems in
security;

2) The reason why I chose AES as the encryption algorithm for this design made in
this article and developed a similar function using SM4, mainly considering that
SM4 is an encryption algorithm independently developed by China. The emergence
of encryption algorithms such as SM4 independently developed by China is an
essential measure to ensure the security of encryption algorithms.

The system authenticates the user through screen lock when the mobile phone
starts. When the system intercepts the user to read the file, it calls the function module
of the kernel to decrypt the ciphertext, and then transmits the decrypted plaintext to the
application layer for the user to read. When the system intercepts the user to write the
file, it stores the plaintext encryption on the storage device to improve the user
experience and security performance.

4.2 Design and Implementation of Encryption and Decryption Module

The performance of the encryption module affects the security of the transparent
encrypted file system [8]. For the encryption algorithm, we have made the following
two choices.

AES. AES is known as the advanced encryption standard. The AES algorithm requires
a 128-bit or 16-byte length of plaintext, and the length of the secret key can be divided
into 128-bit, 192-bit, or 256-bit (16, 24, or 32 bytes) [9]. The AES encryption process
involves four operations: AddRoundKey, SubBytes, ShiftRows, and MixColumns. The
decryption process is the corresponding inverse operation of the encryption [10].
Figure 4 shows the working flow chart of the encryption module.

SM4. Similar to DES and AES algorithms, the SM4 algorithm is a block cipher
algorithm. The packet length is 128 bits, and the key length is also 128 bits. The
encryption algorithm and the key expansion algorithm both use 32 rounds of non-linear
iterative structure, and encrypt operations are performed in units of words (32 bits).
Each iteration operation is a round of transformation function F. In SM4, the structure
of the encryption algorithm and the decryption algorithm are the same, except that the

140 Y. Li et al.

round key used is opposite, where the decryption round key is the reverse order of the
encryption round key.

Regardless of whether AES encryption algorithm or SM4 encryption algorithm is
used, the functions we want to achieve are consistent. Figure 4 shows the workflow
diagram of the encryption module.

The mac address is unique to a terminal device, so the mac address is used as the
encryption and decryption key. By reading the MAC address of the Android terminal,
after a series of replacement transformations and other operations, it is transmitted to
the encryption algorithm of the kernel module as the encryption key of the current
device. Among them, accessing the MAC address of the Android terminal requires
reading the address under / sys / class / net / wlan0. Therefore, each terminal has its
own unique key. If the terminal is changed, the files of the local terminal will not be
able to view. The function plays a vital role in protecting the privacy of mobile files.

4.3 Design and Implementation of the Whole System

The whole design module of the system is divided into application layer module and
kernel module. The application layer module mainly completes the function of cus-
tomizing encryption strategy and interacting with users; the kernel module completes
the functions of monitoring, encryption and decryption, data reading and writing
according to the setting of application module.

The overall design flow chart of the system is shown in Fig. 5. After the system
starts to run, the user carries out the ‘‘policy customization’’ operation at the user level,
enters the kernel layer after the policy formulation, and monitors the reading and
writing operations of the files. In order to read a file, the first step is to determine
whether the file is an open encrypted protected file. If it is, it decrypts and passes the
data to the user; if it is to write a file, it is still necessary to determine whether the file is
an open encrypted file, and if it is, it is encrypted and writes the data to the database or
SD card. If the read-write operation file is not the file protected by the policy, then the
normal read-write operation can be carried out.

Enable
encryption
protection

Read the mac
address of
machine

Generate the
key

Use algorithms
for encryption
and decryption

Fig. 4. Workflow of encryption module

Study of Transparent File Encryption Technology on Android Platform 141

4.4 Design and Implementation of Kernel Module

System calls under Linux are implemented with soft interrupts. The interrupt program
handles different system calls according to the system call number. Through the soft
interrupt program, the program will be trapped in the kernel space for system call
processing. In addition, Linux provides a program that can load kernel modules,
namely LKM (Loadable Kernel Module), which is mainly used to dynamically extend
the functions of the Linux kernel [11]. Figure 6 shows the workflow diagram of the
kernel module.

When run the process of writing files, the encryption process, is executed, the
interception system calls write. At this run point, the kernel module gets the file name
and structure. Comparing with the file name and file structure in the encryption strategy
formulated by the application layer, if the file name and file structure match, the data
will be copied to the kernel space, and AES symmetric encryption operation is per-
formed on the data through the pre-written encryption function. The key is obtained
from the application layer and encrypted. Then the file is copied to the user space, and
the data is written into the storage medium by calling the original system function
write. If the current operation of the file is not specified in the encryption policy, the
normal file write operation is run.

When the read file operation is performed, the interception system calls read. Get
the file name and structure of the file currently operating in the kernel module.

Policy design

Read and write
monitoring

Read file Write file

decryption encryption

Send data to
users

Write data to database
or SD card

User layer

Kernel layer

Is enable
encryption
protection?

Is enable
encryption
protection?

Y Y

Y Y

N
N

Fig. 5. The overall design flow of the system

Read file

Process calls read
through the system

Perform a system call
after replacement

Read data using the original
system function read

Copy data into
kernel space

Determine if
the file needs to be

decrypted？

Return

Decrypt the
data

Copy data to
user space

Write file

Process calls write
through the system

Perform a system call
after replacement

Determine if
the file needs to be

encrypted？

Write data using the original
system function write

Copy data into
kernel space

Encrypt the data

Copy data to user
space

N

Y

N

Y

Fig. 6. The Design flow of kernel module

142 Y. Li et al.

Comparing with the file name and file structure in the encryption strategy formulated
by the application layer, if the file name and file structure match, the file will be copied
to the kernel space and decrypted. After the plaintext data is transferred to the kernel
space, if the current operation file is not specified in the encryption policy, the file
reading operation will be performed normally.

5 System Testing

The system is installed on API18 simulator and successfully implements the trans-
parent encryption function of txt and doc file format on SD card. After the encryption is
successful, the files can be viewed normally at the local terminal. Replacing the ter-
minal and viewing it on the PC and another mobile phone is random code, thus
completing the privacy protection of Android mobile phone files, as shown in Fig. 7, 8,
9, 10, 11 and 12.

Fig. 7. The encrypted TXT on local terminal Fig. 8. The encrypted TXT file on PC

Study of Transparent File Encryption Technology on Android Platform 143

Fig. 9. The encrypted TXT file on another
terminal

Fig. 10. The encrypted doc file on local
terminal

Fig. 11. The encrypted doc files on PC Fig. 12. The encrypted doc files on
another terminal

144 Y. Li et al.

6 Conclusion

According to the test results, when the encryption is completed, the files can be viewed
normally on the local mobile phone after the authentication of screen lock, but not in
other environments. The transparent encryption function of files under Android plat-
form has been successfully implemented. The system uses file filtering to drive
transparent encryption technology. By intercepting system calls and using keys con-
verted from MAC address of host computer, the encryption and decryption algorithm is
written into the kernel. In the process of encryption, the plaintext of files only appears
in the kernel layer, which has the characteristics of security, stability and efficiency.
However, the software user interface for this system can also be beautified, and the type
of file data for encryption protection can also be increased, which will become the next
research content.

References

1. Ma, L., Gu, L., Wang, J.: Research and development of mobile application for android
platform. Int. J. Multimedia Ubiq. Eng. 9(4), 187–198 (2014)

2. Enck, W., Ongtang, M., McDaniel, P.: Understanding android security. IEEE Secur. Priv. 7
(1), 50–57 (2009)

3. Yang, D., Peng, Y., Fang, Z.: The application of transparent decryption in trusted storage of
electronic documents. Electron. Sci. Technol. 4(04), 147–150 (2017)

4. Wang, Q., Zhou, Q., Liu, Y.: Research on file system transparent encryption techniques.
Comput. Technol. Dev. 20, 147–150 (2010)

5. Liu, W., Li, D.: A file protection scheme based on the transparent encryption technology. In:
2018 IEEE International Conference of Safety Produce Informatization (IICSPI), pp. 793–
795 (2018)

6. Lin, Y.: Application of MVVM design pattern and MVP design pattern based on ZK.
J. Chongqing Univ. Arts Sci. (Nat. Sci. Ed.) 72–74, 78 (2010)

7. Zeng, L.: Application research of MVP for android. Comput. Eng. Softw. 2016(06), 75–78
(2016)

8. Fu, C.: Design of transparent encryption system for documents based on windows kernel.
J. Chongqing Univ. Educ. 28, 171–173 (2015)

9. Nawaz, Y., Wang, L., Ammour, K.: Processing analysis of confidential modes of operation.
In: International Conference on Security, Privacy and Anonymity in Computation,
Communication and Storage (SpaCCS), pp. 98–110 (2018)

10. Qiu, P., Wang, D., Lv, Y., et al.: Voltjockey: breaching trustzone by software-controlled
voltage manipulation over multi-core frequencies. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 195–
209 (2019)

11. Salman, H., Uddin, M.N., Acheampong, S., et al.: Design and implementation of IoT based
class attendance monitoring system using computer vision and embedded linux platform. In:
Workshops of the International Conference on Advanced Information Networking and
Applications (AINA), pp. 25–34 (2019)

Study of Transparent File Encryption Technology on Android Platform 145

	Study of Transparent File Encryption Technology on Android Platform
	Abstract
	1 Introduction
	2 Android System Architecture
	3 Principle of Transparent Encryption Technology
	3.1 File Filter Driven Transparent Encryption Technology

	4 Design and Implementation of Transparent File Encryption System
	4.1 Overall Design
	4.2 Design and Implementation of Encryption and Decryption Module
	4.3 Design and Implementation of the Whole System
	4.4 Design and Implementation of Kernel Module

	5 System Testing
	6 Conclusion
	References

