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Abstract. Multiplication is an expensive arithmetic operation, there-
fore there has been extensive research to find Karatsuba-like formulae
reducing the number of multiplications involved when computing a bilin-
ear map. The minimal number of multiplications in such formulae is
called the bilinear complexity, and it is also of theoretical interest to
asymptotically understand it. Moreover, when the bilinear maps admit
some kind of invariance, it is also desirable to find formulae keeping the
same invariance. In this work, we study trisymmetric, hypersymmetric,
and Galois invariant multiplication formulae over finite fields, and we
give an algorithm to find such formulae. We also generalize the result
that the bilinear complexity and symmetric bilinear complexity of the
two-variable multiplication in an extension field are linear in the degree
of the extension, to trisymmetric bilinear complexity, and to the com-
plexity of t-variable multiplication for any t ≥ 3.

1 Introduction

Given an algorithm that computes a polynomial map over a field k (or a family
of such polynomial maps, with entries of length going to infinity), one is usually
interested in the (asymptotic) cost of the algorithm. In order to understand this
cost, one studies the complexity of the algorithm, i.e. the number of operations
needed by the algorithm. We can for example count the number of bit opera-
tions, or the number of algebraic operations (+,×) in k. The latter is called the
algebraic complexity and in this model it is supposed that all algebraic opera-
tions have the same cost. Nevertheless, multiplication of two variable quantities
in k is arguably more expensive than addition, or than multiplication of a vari-
able by a fixed constant. In the context of the computation of bilinear maps,
extensive work has been done to reduce the number of two-variable multiplica-
tions involved. Notable examples are Karatsuba’s algorithm [11] and Strassen’s
algorithm [19]. Karatsuba’s algorithm is based on the fact that the bilinear map
associated to the product of two polynomials of degree 1

A = a1X + a0 and B = b1X + b0

c© Springer Nature Switzerland AG 2021
J. C. Bajard and A. Topuzoğlu (Eds.): WAIFI 2020, LNCS 12542, pp. 92–111, 2021.
https://doi.org/10.1007/978-3-030-68869-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68869-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-68869-1_5


Trisymmetric Multiplication Formulae in Finite Fields 93

can be computed with three products a0b0, (a0 + a1)(b0 + b1), a1b1 instead of
the four classic ones a0b0, a0b1, a1b0, a1b1. Strassen’s algorithm exploits a similar
idea in the case of 2 × 2 matrices: only 7 products are used instead of 8 in
order to compute a matrix product. Both these algorithms have very practical
consequences. The bilinear complexity μ(Φ) of a bilinear map Φ over k represents
the minimum number of two-variable multiplications in a formula that computes
Φ, discarding the cost of other operations such as addition or multiplication by a
constant. In particular when A is a finite dimensional algebra over k, we define
the bilinear complexity of A as μ(A/k) = μ(mA) where mA : A × A → A is the
multiplication map in A seen as a k-bilinear map.

Let k2×2 be the algebra of 2×2 matrices over k. We know thanks to Strassen’s
algorithm that

μ(k2×2/k) ≤ 7.

In fact, this is optimal, so we have exactly μ(k2×2/k) = 7 [20, Thm. 3.1]. In
general, it seems to be hard to find the bilinear complexity of a given algebra,
for example the bilinear complexity of k3×3 is not known. In the literature,
work has been done both to algorithmically find the bilinear complexity of small
algebras [5,10] and to understand how the bilinear complexity asymptotically
grows [2,9]. Chudnovsky and Chudnovsky proved in 1988 that the bilinear com-
plexity of an extension field Fqk/Fq is linear in the degree k of the extension,
using an evaluation-interpolation method on curves. As the main contribution of
this article, we investigate both questions for trisymmetric bilinear complexity,
and solve a certain number of the open problems stated in [2, §5.2].

When a bilinear map admits certain invariance properties, it can be inter-
esting, both for theoretical and for practical reasons, to find formulae for it that
exhibit these same properties. For symmetric bilinear maps, and in particular for
commutative algebras, this leads to the notion of symmetric bilinear complexity.
A further refinement, the trisymmetric bilinear complexity of Fqk over Fq, was
first introduced in [16], and rediscovered independently in [14, App. A].

In Sect. 2 we recall the definition of symmetric and trisymmetric formu-
lae, and discuss further generalizations such as hypersymmetric formulae for
higher multilinear maps, and Galois-invariant formulae. In Sect. 3 we describe
algorithms to compute trisymmetric decompositions in small dimension. In all
examples we were able to compute, the trisymmetric bilinear complexity is equal
to the symmetric bilinear complexity. However we found an example where the
Galois-invariant trisymmetric bilinear complexity is strictly larger. Finally, in
Sect. 4, we prove that for all q ≥ 3, the trisymmetric bilinear complexity of an
extension of Fq is again linear in the degree, as well as similar results for higher
multiplication maps.

2 Multiplication Formulae with Symmetries

Although we are mainly interested in bilinear multiplication formulae, the
notions we will consider naturally involve higher multilinear maps.
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Multilinear Complexity. Let Φ : V1 × · · · × Vt → W be a t-multilinear map
between finite dimensional vector spaces over k. A multilinear algorithm, or
multilinear decomposition, or multilinear formula of length n for Φ is a collection
of linear forms (ϕ(j)

i )1≤i≤n
1≤j≤t

, where ϕ
(j)
i is in V ∨

j , the dual vector space of Vj , and

elements (wi)1≤i≤n in W , such that for all v1, . . . , vt we have

Φ(v1, . . . , vt) =
n∑

i=1

ϕ
(1)
i (v1) · · · ϕ(t)

i (vt)wi.

The multilinear complexity μ(Φ) is then defined as the smallest length n of such
a decomposition. Equivalently, it is the rank of the tensor in V ∨

1 ⊗· · ·⊗V ∨
t ⊗W

corresponding to Φ.

Symmetric Multilinear Complexity. When V1 = · · · = Vt = V and Φ is
a symmetric multilinear map, it is natural to search for symmetric multilinear
decompositions, i.e. formulae of the form

Φ(v1, . . . , vt) =
n∑

i=1

ϕi(v1) · · · ϕi(vt)wi

with ϕ
(1)
i = · · · = ϕ

(t)
i = ϕi ∈ V ∨ for all i. It is more space-efficient, since

symmetric formulae admit a shorter description. From an algorithmic point of
view, it should also be simpler to find symmetric formulae, because the search
space is smaller. We define μsym(Φ), the symmetric multilinear complexity of Φ,
as the minimal length n of such a symmetric decomposition, if it exists (otherwise
we set μsym(Φ) = ∞).

In the case t = 2, a symmetric bilinear map always admits a symmetric
decomposition. However, when t ≥ 3 and k = Fq is a finite field, this can fail.
When t = 3 and q > 2, it is shown in [16, Lemma 7] that a symmetric trilinear
map Φ over Fq always admits a symmetric algorithm, while in the remaining
case t = 3 and q = 2, as observed by Cascudo, a necessary condition is that Φ
should satisfy Φ(x, x, y) = Φ(x, y, y) for all entries x, y. These results were then
combined and generalized into the following necessary and sufficient criterion:

Theorem 1 ([[14], Thm. A.7]). Let Φ : V t → W be a t-multilinear map
between finite dimensional vector spaces over Fq. Then Φ admits a symmetric
decomposition if and only if Φ is Frobenius-symmetric, i.e. if and only if it is
symmetric and one of the following two conditions holds:

– t ≤ q
– t ≥ q + 1 and for all u, v, z1, . . . , zt−q−1 in V ,

Φ(u, . . . , u︸ ︷︷ ︸
q times

, v, z1, . . . , zt−q−1) = Φ(u, v, . . . , v︸ ︷︷ ︸
q times

, z1, . . . , zt−q−1).
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Observe that this criterion involves the cardinality of the field, not its charac-
teristic.

Trisymmetric and Hypersymmetric Complexity. Now suppose further-
more that V = W , and that this space is equipped with a non-degenerate sym-
metric bilinear form, written as a scalar product

V × V → k
(v, w) �→ 〈v, w〉 .

This allows to identify V and V ∨, i.e. any linear form ϕ ∈ V ∨ is of the form
ϕ(x) = 〈a, x〉 for a uniquely determined a ∈ V . As a consequence, a symmet-
ric decomposition for Φ : V t → V can also be described as the data of ele-
ments (ai)1≤i≤n and (bi)1≤i≤n in V such that for all v1, . . . , vt in V , we have
Φ(v1, . . . , vt) =

∑n
i=1 〈ai, v1〉 · · · 〈ai, vt〉 bi. In order to have an even more com-

pact description, one could ask for bi to be proportional to ai, leading to the
following:

Definition 1. Let V be a finite dimensional k-vector space equipped with a
scalar product, and Φ : V t → V a symmetric t-multilinear map. Then a hyper-
symmetric formula for Φ is the data of elements (ai)1≤i≤n in V and scalars
(λi)1≤i≤n in k such that, for all v1, . . . , vt ∈ V ,

Φ(v1, . . . , vt) =
n∑

i=1

λi 〈ai, v1〉 · · · 〈ai, vt〉 ai.

The hypersymmetric complexity μhyp(Φ) is then the minimal length n of such a
hypersymmetric decomposition, if it exists. Obviously we always have μsym(Φ) ≤
μhyp(Φ).

When t = 2, we will say trisymmetric for hypersymmetric, and write μtri(Φ)
for μhyp(Φ).

As a further motivation, observe that to any t-multilinear map Φ : V t → V one
can associate a (t + 1)-multilinear form Φ̃ : V t+1 → k, defined by

Φ̃(v1, . . . , vt, vt+1) = 〈Φ(v1, . . . , vt), vt+1〉 .

We then say that Φ is hypersymmetric (as a t-multilinear map) if Φ̃ is symmetric
(as a (t + 1)-multilinear form). It is easily seen that Φ hypersymmetric is a
necessary condition for it to admit a hypersymmetric decomposition, and more
precisely:

Lemma 1. Elements (ai)1≤i≤n in V and scalars (λi)1≤i≤n in k define a hyper-
symmetric formula for the t-multilinear map Φ,

Φ(v1, . . . , vt) =
n∑

i=1

λi 〈ai, v1〉 · · · 〈ai, vt〉 ai,
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if and only if they define a symmetric formula for the (t + 1)-multilinear form
Φ̃,

Φ̃(v1, . . . , vs, vt+1) =
n∑

i=1

λi 〈ai, v1〉 · · · 〈ai, vt〉 〈ai, vt+1〉 .

Thus, Φ admits a hypersymmetric formula if and only if Φ̃ is Frobenius-
symmetric (in the sense of Theorem 1), and we have

μhyp(Φ) = μsym
(
Φ̃

)
.

In particular, if q ≥ t + 1, then any hypersymmetric t-multilinear map over
Fq admits a hypersymmetric formula.

Proof. For the only if part in the first assertion, take scalar product with vt+1.
For the if part, use the fact that the scalar product is non-degenerate. The other
assertions follow. ��

Galois Invariance. Last we consider another type of symmetry. Let σ : v �→ vσ

be a k-linear automorphism of V that respects the scalar product: 〈vσ, wσ〉 =
〈v, w〉 for all v, w in V .

Lemma 2. Let Φ : V t → V be a symmetric t-multilinear map that is compatible
with σ, i.e.

Φ(vσ
1 , . . . , vσ

t ) = Φ(v1, . . . , vt)σ

for all v1, . . . , vt in V , and let (ai)1≤i≤n and (bi)1≤i≤n in V define a symmetric
formula for Φ,

Φ(v1, . . . , vt) =
n∑

i=1

〈ai, v1〉 · · · 〈ai, vt〉 bi.

Then (aσ
i )1≤i≤n and (bσ

i )1≤i≤n also define a symmetric formula for Φ,

Φ(v1, . . . , vt) =
n∑

i=1

〈aσ
i , v1〉 · · · 〈aσ

i , vt〉 bσ
i .

Proof. Write Φ(v1, . . . , vt) = Φ(vσ−1

1 , . . . , vσ−1

t )σ and apply the formula. ��
We then say that the symmetric formula given by (ai)1≤i≤n and (bi)1≤i≤n is
σ-invariant if it is the same as the formula given by (aσ

i )1≤i≤n and (bσ
i )1≤i≤n,

i.e. if there is a permutation π of {1, . . . , n} such that (aσ
i , bσ

i ) = (aπ(i), bπ(i)) for
all i. This applies also to hypersymmetric formulae, setting bi = λiai.

If G is a group of k-linear automorphisms of V that respect the scalar prod-
uct, and if Φ : V t → V is a symmetric t-multilinear map that is compatible with
all elements in G, we then define μsym,G(Φ) (resp. μhyp,G(Φ)), the G-invariant
symmetric (resp. hypersymmetric) multilinear complexity of Φ, as the minimal
length n of a symmetric (resp. hypersymmetric) multilinear formula for Φ that
is G-invariant, i.e. σ-invariant for all σ in G.
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Multiplication Formulae in Algebras. Let A be a finite dimensional com-
mutative algebra over k. We say a linear form τ : A → k is trace-like if the
symmetric bilinear form A × A → k, (x, y) �→ τ(xy) is non-degenerate. If so,
we set 〈x, y〉 = τ(xy), which defines a scalar product on A. In this work we will
take k = Fq, and either:

– A = Fqk a finite field extension, and τ = TrF
qk /Fq

the usual trace map;
indeed it is well known that the trace bilinear form 〈x, y〉 = TrF

qk /Fq
(xy) is

non-degenerate
– A = Fq[T ]/(T k) an algebra of truncated polynomials, and τ defined by τ(x) =

xk−1 for x = x0 + x1T + · · · + xk−1T
k−1 in A; indeed, observe that for

x = x0+x1T + · · ·+xk−1T
k−1, y = y0+ y1T + · · ·+ yk−1T

k−1, we then have
〈x, y〉 = τ(xy) = x0yk−1 + x1yk−2 + · · · + xk−1y0, which is non-degenerate.

Let Φ : A × A → A be the multiplication map, Φ(x, y) = xy. It is easily seen
that Φ is trisymmetric. Indeed Φ̃ is the trilinear form x, y, z �→ τ(xyz), which is
symmetric. A symmetric bilinear multiplication formula for A is thus the data
of (ai)1≤i≤n in A and (ϕi)1≤i≤n in A∨ such that

∀x, y ∈ A, xy =
n∑

i=1

ϕi(x)ϕi(y)ai, (1)

and a trisymmetric formula is the data of (ai)1≤i≤n in A and (λi)1≤i≤n in Fq

such that

∀x, y ∈ A, xy =
n∑

i=1

λi 〈ai, x〉 〈ai, y〉 ai. (2)

We will write μq(k) (resp. μ̂q(k)) for the bilinear complexity of multiplication in
Fqk (resp. in Fq[T ]/(T k)) over Fq, and we will write likewise μsym

q (k), μ̂sym
q (k),

μtri
q (k), μ̂tri

q (k), μsym,G
q (k), μ̂sym,G

q (k), μtri,G
q (k), μ̂tri,G

q (k), etc. for the similar
quantities with the corresponding symmetry conditions.

For q ≥ 3 we have μtri
q (k) < ∞ and μ̂tri

q (k) < ∞ for all k, while for q = 2
we have μtri

2 (1) = μ̂tri
2 (1) = 1 and μtri

2 (2) = 3, but μtri
2 (k) = ∞ for k ≥ 3 and

μ̂tri
2 (k) = ∞ for k ≥ 2. This follows essentially from Theorem 1 and Lemma 1

(see also [14, Prop. A.14]).
Obviously we have μq(k) ≤ μsym

q (k) ≤ μtri
q (k) and μ̂q(k) ≤ μ̂sym

q (k) ≤ μ̂tri
q (k)

for all q and k. But when all these quantities are finite, e.g. when q ≥ 3, no
example of strict inequality is known.

In the other direction, when q ≥ 4 is not divisible by 3, [16, Thm. 2] gives
μtri

q (k) ≤ 4μsym
q (k) and μ̂tri

q (k) ≤ 4μ̂sym
q (k). This allows to translate the many

known upper bounds on symmetric complexity [2] into upper bounds on trisym-
metric complexity. However the resulting upper bounds do not seem to be tight,
so it would be desirable to have better estimates, and especially upper bounds
that work also for q divisible by 3.
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3 Finding Trisymmetric Decompositions

Algorithmic Search. Barbulescu et al. [5] and later Covanov [10] found clever
ways of exhaustively searching for formulae for (symmetric) bilinear maps. Their
method eliminates redundancy in the search but strongly relies on the fact that
the vectors ai ∈ A in the symmetric formulae (1) can be chosen independently
of the linear forms ϕi ∈ A∨, which is no longer the case when searching for
trisymmetric decompositions. For this reason, we use another method that is
once again a variant of an exhaustive search and thus still leads to an exponential
complexity algorithm. Let Φ be the two-variable product in A. Recall that we
are looking for a trisymmetric decomposition:

∀x, y ∈ A, Φ(x, y) = xy =
n∑

i=1

λi 〈x, ai〉 〈y, ai〉 ai,

with ai ∈ A and λi ∈ k for all 1 ≤ i ≤ n. Because we are allowed to use scalars
λi ∈ k, we can limit our search to “normalized” elements in A, as follows. Choose
a basis of A, which gives an identification A � kk as vector spaces. Then for all
1 ≤ i ≤ k, let

Ei =
{
x = (x1, . . . , xk) ∈ A � kk | ∀j ≤ i − 1, xj = 0 and xi = 1

}

and

E =
k⋃

i=1

Ei.

We search for elements ai in E instead of A. We further use the vector space
structure of A by searching for solutions on each coordinate. Let

xy = (π1(x, y), . . . , πk(x, y)) ∈ A � kk,

where, for all 1 ≤ i ≤ k, πi is the bilinear form corresponding to the i-th
coordinate of the product in Fpk . In other words,

Φ = (π1, . . . , πk).

We let B be the space of bilinear forms on A and we let f be the application
mapping an element in A to its associated bilinear symmetric form:

f : A → B
a �→ (x, y) �→ 〈x, a〉 〈y, a〉 .

We then search for elements a1, . . . , an1 in E1 and λ1, . . . , λn1 in k such that

π1 =
n1∑

j=1

λjf(aj), (3)
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and we obtain

Φ −
n1∑

j=1

λjf(aj)aj = (0, π′
2, . . . , π

′
k),

where for 2 ≤ i ≤ k, π′
i is some other bilinear form. We then continue the

operation with π′
2 and elements an1+1, . . . , an2 in E2, then with π′′

3 and elements
in E3, and so on. In the end, we have n elements a1, . . . , an ∈ E and λ1, . . . , λn ∈ k
such that

Φ =
n∑

j=1

λjf(aj)aj .

Now, there is left to see how we compute the elements a1, . . . , an1 ∈ E1 and
λ1, . . . , λn1 ∈ k in order to obtain (3). Let r1 be the rank of π1. We know
that the number n1 of elements in E1 such that we have (3) is at least r1, but
there also exist some trisymmetric decompositions where we need more than r1
elements. To find these elements, we search through elements a1 ∈ E1 such that
there exists λ1 ∈ k with

rank(π1 − λ1f(a1)) < rank(π1),

then, for each such a1 ∈ E1, we search through elements a2 ∈ E1 such that there
exists λ2 with

rank(π1 − λ1f(a1) − λ2f(a2)) < rank(π1 − λ1f(a1)),

and so on, eliminating a lot of unsuitable elements along the way. This method
allows us to find decompositions of π1 into a sum of exactly r1 bilinear forms of
rank 1. In order to find decompositions containing r1 + m1 bilinear forms, we
repeat the same process, except that we allow the rank not to decrease m1 times.
Let mj be the number of times we allow the rank not to decrease when dealing
with the j-th coordinate in the algorithm. We let M = (m1, . . . ,mk) and we call
margin this k-tuple. This strategy was implemented in the Julia programming
language [1] and a package searching for trisymmetric decompositions is available
online1, along with the source code.

This allowed us to compute μtri
3 (3) = 6, μtri

p (3) = 5 for all primes 5 ≤ p ≤ 257,
μtri
3 (4) = 9, μtri

5 (4) = 8, and μtri
p (4) = 7 for all primes 7 ≤ p ≤ 23. Details about

the computation can be found in Table 1, while examples of formulae obtained
via our algorithm are given in Table 2 (actually the formulae in this table are
normalized in the sense of [14, Def. A.16], i.e. they satisfy all λi = 1).

Galois Invariant Formulae. Let A = Fqk and G be the cyclic group generated
by σ, the Frobenius automorphism over Fq. In order to find G-invariant decom-
positions, we exhaustively search through orbits in Fqk , which is fast because
the search space is smaller. This allows us to find Galois invariant trisymmet-
ric formulae of length 11 for F35 , and of length 10 for F55 and F75 . Joint with
the obvious inequalities μq(k) ≤ μsym

q (k) ≤ μtri
q (k) ≤ μtri,G

q (k) and with known

1 https://github.com/erou/TriSym.jl.

https://github.com/erou/TriSym.jl
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Table 1. Algorithmic results with various degrees, base fields and margins.

Field Margin Solutions Length Time (s) Field Margin Solutions Length Time (s)

F32 (0, 0) 1 3 1.8 · 10−4
F73 (0, 0, 0) 8 5 7.0 · 10−3

F33 (0, 0, 0) 1 6 4.4 · 10−4
F133 (0, 0, 0) 100 5 2.9 · 10−1

F34 (0, 0, 0, 0) 2 9 5.3 · 10−3
F193 (0, 0, 0) 415 5 1.8

F34 (2, 1, 0, 0) 18 9 3.8 · 10−1
F313 (0, 0, 0) 2031 5 29

F34 (3, 2, 1, 1) 25 9 1.1 F473 (0, 0, 0) 7590 5 360

lower bounds from [2, Thm. 2.2] and [5], this gives 10 ≤ μ3(5) ≤ μsym
3 (5) =

μtri
3 (5) = μtri,G

3 (5) = 11, μ5(5) = μsym
5 (5) = μtri

5 (5) = μtri,G
5 (5) = 10, and

μ7(5) = μsym
7 (5) = μtri

7 (5) = μtri,G
7 (5) = 10. Some examples of Galois invariant

formulae can be found in Table 2.
For q ≥ 3 we know no example where one of the inequalities in μq(k) ≤

μsym
q (k) ≤ μtri

q (k) is strict. However, it turns out that the inequality with
μtri,G

q (k) can be strict. Indeed, let q = 3 and k = 7. In this setting our exhaustive
search found no G-invariant decomposition of length up to 15. Since all orbits
are of length 7, except the trivial orbit of length 1, the minimal length for a
G-invariant decomposition is congruent to 0 or 1 modulo 7, so we deduce that it
is at least 21. Furthermore, we know [2, table 2] that μsym

3 (7) ≤ 19, so we have

μ3(7) ≤ μsym
3 (7) ≤ 19 < 21 ≤ μtri,G

3 (7).

Table 2. Examples of trisymmetric multiplication formulae (the first three are Galois
invariant).

Field n Field elements a1, . . . , an such that xy =
∑n

i=1 〈ai, x〉 〈ai, y〉 ai

F33 = F3[α]/(α3−α+1) 6 a1 = α, a2 = aσ
1 , a3 = aσ

2 , a4 = 1−α2, a5 = aσ
4 , a6 = aσ

5

F34 = F3[α]/(α4−α3−1) 9 a1 = −1, a2 = −α, a3 = aσ
2 , a4 = aσ

3 , a5 = aσ
4 ,

a6 = α2+α+1, a7 = aσ
6 , a8 = aσ

7 , a9 = aσ
8

F35 = F3[α]/(α5−α+1) 11a1 = 1, a2 = α−1, a3 = aσ
2 , a4 = aσ

3 , a5 = aσ
4 , a6 = aσ

5 ,

a7 = 1−α−α2, a8 = aσ
7 , a9 = aσ

8 , a10 = aσ
9 , a11 = aσ

10

F53 = F5[α]/(α3+3α+3) 5 a1=3α+2, a2=−α2−α−1, a3=3α2+2α+2, a4=−α, a5=3α2+2α

F54 = F5[α]/(α4−α2−α+2)8 a1 = −1, a2 = 3α2+3α+3, a3 = 3α3−α2+2α−1, a4 = 2α3−α2−α+1,

a5 = α, a6 = −α2+α, a7 = α3+α2+α, a8 = α3+α2

Universal Formulae. As mentioned in Sect. 2, for q ≥ 3, we do not know any
example of algebra A = Fqk or A = Fq[T ]/(T k) where the bilinear complexity
and the trisymmetric bilinear complexity are different. We can even prove that
these quantities are the same in small dimension, by exhibiting trisymmetric
universal formulae, i.e. trisymmetric decompositions that are true for (almost)
any choice of q ≥ 3. In order to obtain such formulae, it is useful to change
our point of view on the problem. Assume we want to compute a trisymmetric
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decomposition of the product Φ in A, a commutative algebra of degree k. After
the choice of a basis of A and a basis of the space B of the bilinear forms on A,
we can represent

Φ = (π1, . . . , πk)

as a column vector B of length k3. The first k2 coordinates corresponding to π1,
the next k2 coordinates corresponding to π2 and so on up to πk. Now, for each
a ∈ E , we note

f(a) = a ⊗ f(a),

where a is the column vector of length k corresponding to a in the basis of A,
f(a) is the column vector of length k2 corresponding to f(a) ∈ B, and ⊗ is
the Kronecker product. With these notations, finding a trisymmetric decompo-
sition of the product in A is the same as finding elements a1 . . . , an ∈ E and
λ1, . . . , λn ∈ k with

B =
n∑

j=1

λjf(a).

Let A be the matrix which columns are the f(a) for all a ∈ E , then the problem
is to find a solution X of

AX = B

with the smallest possible number of nonzero entries in X.
We first consider the case A = Fq2 over k = Fq, where the characteristic of

k is not 2.

Proposition 1. For any odd q we have

μq(2) = μtri
q (2) = 3.

Proof. That μq(2) = 3 follows e.g. from [2, Thm. 2.2]. In order to prove that
μtri

q (2) = 3, we find an universal trisymmetric formula of length 3. We know
that we can find a non-square element ζ in Fq, we can then define

Fq2 ∼= Fq[T ]/(T 2 − ζ) = Fq(α),

where α = T̄ is the canonical generator of Fq2 . Let x = x0+x1α and y = y0+y1α
be two elements of Fq2 , we have

xy = (x0 + x1α)(y0 + y1α) = x0y0 + ζx1y1 + (x0y1 + x1y0)α.

We can lift the matrix B coming from the multiplication formula, that has coef-
ficients in Fq, to a matrix with coefficients in Q(ζ), where ζ is an indeterminate.
We can also lift the matrix A, because the map f (and therefore f) has the same
expression for all q not divisible by 2. Indeed, one can check that the map f is
given by

f(x0 + x1α) =
(

S

[
x0

x1

]) (
S

[
x0

x1

])ᵀ
= 4

[
x2
0 ζx0x1

ζx0x1 ζ2x2
1

]
.
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where
S =

[〈
αi, αj

〉]
0≤i,j≤1

=
[
Tr(αi+j)

]
0≤i,j≤1

=
[
2 0
0 2ζ

]
.

We can then solve AX = B over Q(ζ) and finally check that

B = (1 − ζ−1)4−1f(1) + (8ζ)−1f(1 + α) + (8ζ)−1f(1 − α),

so that the trisymmetric bilinear complexity of Fq2/Fq is 3. ��
Using the same strategy, we can also find universal formulae for another type of
algebra A = Fq[T ]/(T k), namely the truncated polynomials. In that context, we
first observe that we have

μ̂tri
q (k) ≥ μ̂q(k) ≥ 2k − 1

for all q and k. Indeed this is a special case of [21, Thm. 4], which holds for any
polynomial that is a power of an irreducible polynomial. Conversely we are able
to find formulae for 2 ≤ k ≤ 4 that match this lower bound.

Proposition 2. For any odd q we have

μ̂tri
q (2) = 3.

Proof. Let A = Fq[T ]/(T 2) = Fq[α] with α = T̄ , so α2 = 0. If x = x0 + x1α and
y = y0 + y1α are two elements of A, we have

xy = (x0 + x1α)(y0 + y1α) = x0y0 + (x0y1 + x1y0)α.

We can again construct the matrix B and A, and solve AX = B, this time
simply over Q. We obtain

B = −f(1) + 2−1f(1 + α) + 2−1f(1 − α)

so that the trisymmetric bilinear complexity of A = Fq[T ]/(T 2) is at least 3,
which concludes. ��
Proposition 3. For any q not divisible by 2 nor 3 we have

μ̂tri
q (3) = 5 and μ̂tri

q (4) = 7.

Proof. We use the same notations as before. For A = Fq[T ]/(T 3), we obtain

B = −f(1−α−α2)+3−1f(α+2α2)+2−1f(1−α−2α2)−3−1f(α−α2)+2−1f(1−α).

Therefore the trisymmetric bilinear complexity of A = Fq[T ]/(T 3) is 5.
Finally, for A = Fq[T ]/(T 4), we obtain

B = 2−1f(1− α2 + α3)− f(1− α2) + 12−1f(α + 2α2 + 2α3)− 12−1f(α − 2α2 + 2α3)

− 6−1f(α + α2 − α3) + 6−1f(α − α2 − α3) + 2−1f(1− α2 − α3) · (1− α2 − α3).

The trisymmetric bilinear complexity of A = Fq[T ]/(T 4) is then 7. ��
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4 Asymptotic Bounds

In this section, we work with A = Fqk or Fq[T ]/(T k), seen as an algebra over
k = Fq, and equipped with the trace-like linear form τ introduced at the end of
Sect. 2. Our aim is to show that the trisymmetric bilinear complexities μtri

q (k)
and μ̂tri

q (k) grow linearly as k → ∞. Our proof will involve higher multilinear
maps, and in turn, give results for them as well.

For any t we define the t-multilinear multiplication map in A over k

mt : At → A
(x1, . . . , xt) �→ x1 · · · xt

and the t-multilinear trace form

τt = τ ◦ mt : At → A
(x1, . . . , xt) �→ τ(x1 · · · xt).

If needed, we will write mt
A/k or τt

A/k to keep A and k explicit.
The (symmetric) multilinear complexity of mt has been considered in [7] in

relation with the theory of testers.

Lemma 3. The map mt is hypersymmetric, and we have

μhyp(mt) = μsym(τt+1) ≤ μsym(mt+1).

Proof. Indeed we have m̃t = τt+1, and the equality on the left is a special case
of Lemma 1. For the inequality on the right, take a symmetric formula for mt+1

and apply τ . ��
When studying the variation with the degree of the extension field Fqk over

Fq, we will write μsym
q (k,mt) for μsym

(
mt

F
qk /Fq

)
, and we will also use the similar

notations μhyp
q (k,mt), μsym

q (k, τt), etc. In particular for t = 2 we have

μtri
q (k) = μtri

q (k,m2) = μsym
q (k, τ3).

When working in Fq[T ]/(T k) over Fq, we will write likewise μ̂sym
q (k,mt),

μ̂hyp
q (k,mt), etc.

Our aim is, for fixed q and t with q ≥ t + 1, to show that μhyp
q (k,mt)

and μ̂hyp
q (k,mt) grow linearly with k → ∞. Thanks to Lemma 3, it suffices to

show that μsym
q (k,mt+1) and μ̂sym

q (k,mt+1) grow linearly with k → ∞. To ease
notations we will set

M sym
q,t = lim sup

k→∞

1
k

μsym
q (k,mt), Mhyp

q,t = lim sup
k→∞

1
k

μhyp
q (k,mt),

M tri
q = lim sup

k→∞

1
k

μtri
q (k) = Mhyp

q,2 ,

and likewise for M̂ sym
q,t , M̂hyp

q,t , M̂ tri
q , etc.
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Evaluation-Interpolation Method. We use the function field terminology
and notations presented in [18]. Let F/Fq be an algebraic function field of one
variable over Fq and let PF be the set of places of F . Let DF the set of divisors
on F , and if D ∈ DF is a divisor on F , we denote by L(D) its Riemann-Roch
space and 
(D) = dimL(D).

Proposition 4. Assume there exist a place Q ∈ PF of F of degree k,
P1, . . . , Pn ∈ PF places of F of degree 1, and a divisor D ∈ DF of F such
that the places Q and P1, . . . , Pn are not in the support of D and such that the
following conditions hold.

(i) The evaluation map
evQ,D : L(D) → Fqk

f �→ f(Q)

is surjective.
(ii) The evaluation map

evP,tD : L(tD) → (Fq)n

h �→ (h(P1), . . . , h(Pn))

is injective.

Then mt
F

qk /Fq admits a symmetric formula of length n, i.e. we have
μsym

q (k,mt) ≤ n.

Proof. Since the map evQ,D is surjective, it admits a right inverse, i.e. a linear
map s : Fqk → L(D) such that evQ,D ◦ s = IdF

qk
. For all x ∈ Fqk , we denote

s(x) ∈ L(D) by fx, so the map x �→ fx is linear, and fx(Q) = x. We also let

a : Fqk → (Fq)n

x �→ (fx(P1), . . . , fx(Pn))

be the composite map a = evP,D ◦ s. The situation is sumed up in the following
drawing.

L(D)

Fqk (Fq)n

s

evQ,D

evP,D

a

Observe that a is linear, so we can write

a(x) = (ϕ1(x), . . . , ϕn(x))

where ϕi : Fqk → Fq is a linear form, namely ϕi(x) = fx(Pi).
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Similarly, since the map evP,tD is injective, it admits a left inverse, i.e. a
linear map r : (Fq)n → L(tD) such that r ◦ evP,tD = IdL(tD). We also let
b : (Fq)n → Fqk be the composite map b = evQ,tD ◦ r. The situation is sumed up
in the following drawing.

L(tD)

Fqk (Fq)n

evP,tD

r

evQ,tD

b

The map b is linear, so there are b1, . . . , bn in Fqk such that, for all y =
(y1, . . . , yn) ∈ (Fq)n,

b(y) =
n∑

i=1

yibi.

Now for x, . . . , xt ∈ Fqk , let

p = (p1, . . . , pn) = ((
t∏

j=1

fxj
)(P1), . . . , (

t∏

j=1

fxj
)(Pn))

in (Fq)n be the coordinatewise product of the vectors a(x1), ..., a(xt). Then

h = r(p)

is an element of L(tD) such that h(Pi) = pi = (
∏t

j=1 fxj
)(Pi) for all i. Since the

map evP,tD is injective, this forces

h =
t∏

j=1

fxj
.

Then, we have

b(p) = evQ,tD(r(p)) = evQ,tD(h) = h(Q) =
t∏

j=1

fxj
(Q) =

t∏

j=1

xj .

But we also have

b(p) =
n∑

i=1

pibi =
n∑

i=1

(
t∏

j=1

fxj
(Pi))bi =

n∑

i=1

(
t∏

j=1

ϕi(xj))bi

and finally we get a symmetric formula for mt:
t∏

j=1

xj =
n∑

i=1

(
t∏

j=1

ϕi(xj))bi.

��
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Proposition 5. Let F/Fq be an algebraic function field of genus g. Assume that
F admits a place Q of degree k, and a set S of places of degree 1 of cardinality

|S| ≥ (k + g − 1)t + 1.

Then we have
μsym

q (k,mt) ≤ kt + (g − 1)(t − 1).

Proof. Set n = kt+(g − 1)(t− 1). We will show that there are places P1, . . . , Pn

in S, and a divisor D on F , such that Proposition 4 applies, which gives
μsym

q (k,mt) ≤ n as desired.
Using e.g. [3, Lemma 2.1] we know F admits a non-special divisor R of degree

g − 1. By the strong approximation theorem [18, Thm. 1.6.5] we can then find a
divisor D linearly equivalent to R + Q and of support disjoint from Q and S.

Then D − Q and D are non-special, with 
(D − Q) = 0 and 
(D) = k. We
thus find

Ker(evQ,D : L(D) → Fqk) = L(D − Q) = 0,

so evQ,D is injective, hence also surjective by equality of dimensions, i.e. the
surjectivity condition (i) in Proposition 4 is satisfied.

Likewise, tD is non-special, with deg(tD) = (k + g − 1)t and 
(tD) = kt +
(g − 1)(t − 1). Then the evaluation map

evS,tD : L(tD) → (Fq)|S|

h �→ (h(P ))P∈S

has kernel L(tD−∑
P∈S P ) = 0, because deg(tD−∑

P∈S P ) = (k+g−1)t−|S| <
0. So evS,tD is injective, with image of dimension dim Im(evS,tD) = 
(tD) = n.
Then we can find a subset P = {P1, . . . , Pn} ⊂ S of cardinality n, such that
evP,tD : L(tD) → (Fq)n is an isomorphism, and the injectivity condition (ii) in
Proposition 4 is also satisfied. ��

Choice of the Curves for q a Large Enough Square

Proposition 6. Let t be given, and assume q is a square, q ≥ (t + 2)2. Then
we have

M sym
q,t ≤ (1 + εt(q))t

with εt(q) = t−1√
q−t−1 .

Proof. We know [17] that there exists a family of function fields Fi/Fq of genus
gi → ∞ such that

(i) gi+1
gi

→ 1
(ii) Ni ∼ (

√
q − 1)gi
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where Ni = Card {P ∈ PFi
| degP = 1} is the number of places of degree 1 of

Fi. We can also assume that the sequence gi is increasing.
For any k let i(k) be the smallest index such that

Ni(k) ≥ (k + gi(k) − 1)t + 1.

Such an i(k) always exists since by (ii) we have Ni ∼ (
√

q−1)gi, with √
q−1 > t.

By definition we thus have

Ni(k) ≥ (k + gi(k) − 1)t + 1 > (k + gi(k)−1 − 1)t + 1 > Ni(k)−1.

As k → ∞ we have i(k) → ∞, and by (i) we get gi(k) ∼ gi(k)−1, so by (ii) we
also get Ni(k) ∼ Ni(k)−1. This then gives

Ni(k) ∼ (k + gi(k) − 1)t + 1
∼ (k + gi(k))t

while by (ii),
Ni(k) ∼ (

√
q − 1)gi(k).

From these two relations we deduce

gi(k) ∼ t√
q − 1 − t

k.

For k large enough this implies in particular 2gi(k) + 1 ≤ q(k−1)/2(
√

q − 1), so
Fi(k) admits a place of degree k by [18, Cor. 5.2.10].

From this we are allowed to apply Proposition 5 to Fi(k), which gives

μsym
q (k,mt) ≤ kt + (gi(k) − 1)(t − 1) ∼ kt + gi(k)(t − 1) ∼ kt(1 + εt(q))

as desired. ��
Corollary 1. For q a square, q ≥ (t + 3)2 we have

Mhyp
q,t ≤ (1 + εt+1(q))(t + 1),

and in particular we have

M tri
q ≤ 3

(
1 +

2√
q − 4

)

for q a square, q ≥ 25.

Conclusion for Arbitrary q

Lemma 4. Let q be a prime power. Then for any integers t, d, k we have

μsym
q (k,mt) ≤ μsym

q (dk,mt) ≤ μsym
q (d,mt)μ

sym
qd (k,mt).
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Proof. For the inequality on the left, there is nothing to prove if μsym
q (dk,mt) =

∞. So let us assume m
F

qdk /Fq

t admits a symmetric multiplication formula of
length n = μsym

q (dk,mt), i.e.

∀x1, . . . , xt ∈ Fqdk , x1 · · · xt =
n∑

i=1

ϕi(x1) · · · ϕi(xt)ai

for linear forms ϕi : Fqdk → Fq and elements ai ∈ Fqdk . Choose a linear projection

p : Fqdk → Fqk

left inverse for the inclusion Fqk ⊆ Fqdk . Then we get

∀x1, . . . , xt ∈ Fqk , x1 · · · xt = p(x1, . . . , xt) =
n∑

i=1

ϕi(x1) · · · ϕi(xt)p(ai)

which is a symmetric multiplication formula of length n for m
F

qk /Fq

t .
Likewise, for the inequality on the right, there is nothing to prove if

μsym
q (d,mt) = ∞ or μsym

qd (k,mt) = ∞. So let us assume m
F

qd/Fq

t and m
F

qdk /F
qd

t

admit symmetric multiplication formulae of length r = μsym
q (d,mt) and s =

μsym
qd (k,mt) respectively, so

∀y1, . . . , yt ∈ Fqd , y1 · · · yt =
r∑

u=1

ψu(y1) · · · ψu(yt)bu

∀z1, . . . , zt ∈ Fqdk , z1 · · · zt =
s∑

v=1

χv(z1) · · · χv(zt)cv

for linear forms ψu : Fqd → Fq, χv : Fqdk → Fqd and elements bu ∈ Fqd , cv ∈ Fqdk .
Then setting y1 = χv(z1), ..., yt = χv(zt) we find

∀z1, . . . , zt ∈ Fqdk , z1 · · · zt =
s∑

v=1

r∑

u=1

(ψu ◦ χv)(z1) · · · (ψu ◦ χv)(zt) · (bucv)

which is a symmetric multiplication formula of length rs for m
F

qdk /Fq

t . ��
Theorem 2. Let t ≥ 2 be an integer and q a prime power. If q < t, then
μsym

q (k,mt) = ∞ for all k ≥ 2.
On the other hand, if q ≥ t, then μsym

q (k,mt) grows at most linearly with k,
i.e. we have

M sym
q,t ≤ Ct(q)

for some real constant Ct(q) < ∞.

Proof. If q < t and k ≥ 2, then μsym
q (k,mt) = ∞ follows from Theorem 1.

On the other hand, for q ≥ t, we have μsym
q (d,mt) < ∞ for any integer

d. Choose d such that qd is a square, qd ≥ (t + 2)2. Then Proposition 6 shows
μsym

qd (k,mt) grows linearly with k. The Theorem then follows thanks to Lemma 4,
with Ct(q) = μsym

q (d,mt)(1 + εt(qd))t. ��
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Corollary 2. For q ≥ t + 1 we have

Mhyp
q,t ≤ Ct+1(q)

and in particular for q ≥ 3 we have

M tri
q ≤ C3(q).

Further Remarks and Possible Improvements

1. When q ≥ 4 is not divisible by 3, [16, Thm. 2] gives μtri
q (k) ≤ 4μsym

q (k). On
the other hand, [9] shows that μsym

q (k) grows linearly with k (the result is
stated for μq(k), but it is easily seen that the proof works for μsym

q (k)). Taken
together, these results show that μtri

q (k) grows linearly with k when q ≥ 4 is
not divisible by 3. One advantage of our method is that it works for all q ≥ 3.
Moreover it gives sharper bounds. For instance, when q is a square and large
enough, joining [16, Thm. 2] with the best asymptotic upper bound known
on μsym

q (k) [12, Thm. 6.4] gives M tri
q ≤ 8

(
1 + 1√

q−2

)
, which is not as good

as M tri
q ≤ 3

(
1 + 2√

q−4

)
from Corollary 1.

2. Open question: Lemma 3 reduces (upper) bounds on μhyp(mt) to bounds
on μsym(mt+1), and in particular it reduces bounds on M tri

q to bounds on
Mhyp

q,3 , which does not seem optimal. Indeed we know no example where the
inequality μsym

q (k) ≤ μtri
q (k) is strict. So, for instance for q square, q → ∞,

our method gives M tri
q ≤ 3(1+ o(1)), but one could ask whether it is possible

to get a bound of the form M tri
q ≤ 2(1 + o(1)), as given by [12, Thm. 6.4] for

M sym
q .

3. Open question: The condition |S| ≥ (k+ g −1)t+1 in Proposition 5 does not
seem optimal since in the end we do evaluation-interpolation at only kt+(g−
1)(t−1) places. If one could relax this condition to |S| ≥ kt+(g−1)(t−1), this
would improve Proposition 6 to M sym

q,t ≤ (1+ε′
t(q))t for q square, q ≥ (t+1)2,

with ε′
t(q) = t−1√

q−t . For t = 2 this is done in [12,15] using techniques from
[13]. However, as observed at the end of [13], a generalization to t ≥ 3 would
require new arguments.

4. Lemma 4, which generalizes [17, Lemma 1.2], is clearly not optimal. When
deriving upper bounds on μsym

q (k,mt) for non-square q, it might be better
to use evaluation-interpolation at places of higher degree, as first introduced
in [4], and further developped e.g. in [8,12]. To do this in an optimal way one
needs function fields Fi defined over Fq, of genus gi → ∞, with gi+1

gi
→ 1 and

N
(d)
i ∼ qd/2−1

d gi where N
(d)
i is the number of places of degree d in Fi, for a

convenient d. This improves the bound on M sym
q,t by a factor 1

d . The existence
of these function fields was first claimed in [8], but unfortunately with an
incorrect proof. A corrected construction, based on Drinfeld modular curves,
will be found in [6].
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5. All our bounds for multiplication in extension fields also hold for truncated
polynomials. For instance we have M̂ sym

q,t ≤ (1 + εt(q))t for q square, q ≥
(t + 2)2, and M̂ sym

q,t ≤ Ct(q) for all q ≥ t. This requires only minor changes
in our constructions. In Proposition 4, instead of evaluation at a place Q of
degree k, one uses evaluation at order k at an extra place P0 of degree 1.
Likewise in Proposition 5, one needs one more place of degree 1, but one does
not need Q (then the proof of Proposition 6 is slightly simplified since one
does not need to invoke [18, Cor. 5.2.10] anymore).
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