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Abstract. In this paper we propose a HDL generator for finite-field mul-
tipliers on FPGAs. The generated multipliers are based on the CIOS vari-
ant of Montgomery multiplication. They are designed to exploit finely the
DSPs available on most FPGAs, interleaving independent computations
to maximize throughput and DSP’s workload. Beside their throughput-
efficiency, these operators can dynamically adapt to different finite-fields
by changing both operand width and precomputed elements.

From this flexible and efficient operator base, our HDL generator
allows the exploration of a wide range of configurations. This is a valuable
asset for specialized circuit designers who wish to tune state-of-the-art
IPs and explore design space for their applications.

Keywords: Finite-field multiplier · FPGA design · Design space
exploration

1 Introduction

In hardware design, when considering specific fields of application, FPGA tar-
gets are particularly attractive today and found in many hardware acceleration
solutions. A classical step in the development of specialized hardware is the
exploration of design space to make architectural choices [1,13]. This explo-
ration may be necessary both at system’s level and at IP’s level. Exploration
tools that allow different IP configurations to be tested are therefore valuable
assets for digital circuit designers. This is also true for cryptography which is
more and more present in our digital applications.

Modern cryptography is often build upon finite-field arithmetic. As in clas-
sical arithmetic, multiplication is an expensive operation and optimizations of
multipliers are often the subject of researches and explorations [9,11,12].

In 2017 and 2018 Gallin and Tisserand [5,7] proposed a FPGA implemen-
tation of a Finely-Pipelined Modular Multiplier (FPMM) based on the CIOS
variant [8] of the Montgomery modular multiplication [10]. It makes fine use of
hardware resources present in FPGAs while exploiting in depth the characteris-
tics of the chosen algorithm. Their operator has a good throughput per area ratio

c© Springer Nature Switzerland AG 2021
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compared to the state of the art due to a pipeline interleaving several indepen-
dent computations. Their approach is quite parametrizable but the developed
generator [6] is restricted to the parameters that were suitable for embedded
elliptic and hyperelliptic curve cryptography.

This paper presents our work of building up an extended generator for mod-
ular multiplier based on the FPMM’s approach. Our main scientific contribution
consists in the practical generalization of this operator. Another contribution is
a new functionality: the ability to dynamically change, to a certain extent, the
width of the finite-field elements handled by the operator. When enabled, this
feature increases the flexibility of the original operator for dynamically reconfig-
uring the finite-field over which the multiplier is operating. This feature could
be interesting in different contexts. For instance, a crypto-processor that imple-
ments several primitives requiring finite-fields of different widths (e.g. RSA,
ECC, HECC, etc.). Another example may be the implementation of modulus
switching homomorphic encryption schemes (e.g. BGV [2]), which leads to a
regular decrease in the width of underlying finite-field arithmetic.

2 Preliminaries

2.1 Notations

Throughout this paper we will use the following notations. An element of a large
finite field, as well as the prime number that defines it, are in upper case and bold
(e.g. A ∈ ZP). The width in bits of these elements is noted N . The Montgomery
constant is M -bit wide and noted as R.

The radix considered for Montgomery multiplication algorithm is 2Ω . The
Ω-bit elements are just in upper-case, not bold. Hence, a finite field element is
decomposed into s elements of width Ω-bit (i.e. A = {A0, ..., As−1}).

The width of the basic arithmetic considered in this paper is constrained by
the hardware resources available on a FPGA. We note here ω the width of a DSP
slice’s input words. These “basic words” are written in lower-case, and k denotes
the number of them needed to write a Ω-bit word (i.e A = {a0, ..., ak−1}).

2.2 DSP Slices

FPGAs are chips made of a grid of configurable basic hardware blocks, along
with a configurable interconnection network. Within these basic hardware blocks
are elementary resources allowing among other things: combinatorial logic (e.g.
Look-Up-Tables), data storage (e.g. Flip-Flops), and clock generation for syn-
chronous circuits [4]. With the growth of size and performance required for cir-
cuits to be programmed, more complex hardware blocks have been added to
the bestiary (e.g. BRAM, DSP, μP core, ...). In this work we are particularly
interested in DSP slices.

A DSP is a basic hardware block that embedded a small multiplier, accu-
mulators and cascading capabilities. They were historically designed for digital
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Fig. 1. DSP slice’s characteristics used for our finite-fields multipliers. (Color figure
online)

signal processing but could be efficiently used for finely-tuned arithmetic. They
can achieve interesting running frequencies (up 700 MHz for last FPGAs).

Figure 1 presents the main DSP characteristics that have been exploited for
our contributions. DSP are usually grouped in columns of half a dozen to a few
hundred. This grouping facilitates cascading of operations and propagation of
intermediate results within columns.

A single slice can be configured to perform one or several instructions mul-
tiplexed in time. In the latter, an operation code op is used to specify which
instruction is issued. In this paper we are interested in three types of instruc-
tions : a × b (red) for a simple ω-bit multiplication, a × b + p (green) for a ω-bit
multiplication followed by an accumulation, and a × b + (p � ω) (blue) where
the accumulated value is previously right-shifted by ω bits. For DSP slices that
do not have this right-shift capability (like DSP48A slices in some Xilinx FPGA
families), it is still possible to do so with external wires to the DSP. This makes
use of the c port designed for a×b+c instructions (brown). It may require extra
cycles in cascading operations to achieve the maximal running frequencies.

3 Previous Works on Finely-Pipelined Modular
Multiplier

The main ideas behind the Finely-Pipelined Modular Multiplier (FPMM) are
brought by Gallin and Tisserand’s works [5,7]. They are introduced in this
section but the details of the FPMM design comes in Sect. 4 along with our
generalization of this approach.

Latency Optimized CIOS Algorithm Without Final Subtraction. The FPMM
operator is based on the Coarsely Integrated Operand Scanning (CIOS) version
of Montgomery multiplication [8], without final subtraction [14]. It is designed as
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a pipelined interleaving several independent computations. The resulting algo-
rithm is presented in Algorithm1.

As a remainder, Montgomery multiplication computes the product modulo
P of two elements A and B in Montgomery form (i.e. scaled by R = 2M ), and
return the result T in Montgomery form. For FPMM, P is taken less than R/4 to
avoid the final subtraction of the original Montgomery algorithm (consequently
N ≤ M − 2). In practice, the operands are considered to be M -bit integers
decomposed into s > 1 words of Ω-bit.

Algorithm 1: Latency optimized CIOS algorithm

Require: P = {P0, ..., Ps−1} ; P ′ = −P−1 mod 2Ω ; 4P < R(= 2M ).
Input: A = {A0, ..., As−1} ; B = {B0, ..., Bs−1}.
Output: T = {T0, ..., Ts−1} with T = (AB · R−1) mod P and 0 ≤ T < 2P.

1 begin
2 for i = 0 to s − 1 do

3 for j = 0 to s − 1 do /* L1 stage */
4 (D, Uj) ← Ai × Bj + Tj + D
5 end

6 Qi ← (V0 × P ′) mod 2Ω /* L2 stage: V0 = (Ai × B0 + T0) mod 2Ω */

7 for j = 0 to s − 1 do /* L3 stage */
8 (C, Tj−1) ← Qi × Pj + Uj + C
9 end

10 Ts−1 ← T
(n)
−1 /* i.e. C + D */

11 end
12 return T = {T0, ..., Ts−1}
13 end

The particularities of the proposed implementation are visible at line 6 and
10, and comes from the proposed pipeline. For line 6, the original CIOS algorithm
computes Qi from U0, but also resets D for each new upper-loop’s iteration. The
equivalent behaviour is achieved with V0 that is extracted from the L1 stage com-
putation. For line 10, the authors have demonstrated in [5] that the summation
of remaining upper-words from L1 and L3 stages (i.e. C and D) is actually prop-
agated in the immediately successive computation. In different terms, the upper
word Ts−1 is actually the lower word in the immediately successive (and inde-
pendent) computation T

(n)
−1 . We do not go into the details of the demonstration

and invite the reader to take a look at the original paper.

Interleaving Independent Computations. The latency of an outer-loop iteration
is noted α. It is defined from the input of T in L1 stage to its retro-propagation
at the end of L3 stage. This latency depends on the choice of Ω w.r.t. the
decomposition of multiplications onto DSP slices. For typical applications α is
larger than s, leaving room for interleaving σ = �α/s� independent computations
in the outer-loop’s pipeline, while increasing its latency by lT = σ · s − α. Thus,
increasing by s · lT cycles a single modular multiplication. We note “slot” the
space taken by a single computation in the pipeline.

Figure 2 presents the interleaving principle. When a slot is unused, a new
computation can be requested. The storage of A and B in local memories and
to start their sub-word’s read routine takes lin cycles. Then, each outer-loop
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Fig. 2. Interleaving principle of the Finely-Pipelined Modular Multiplier.

iteration takes α + lT cycles. While waiting for intermediate results, iterations
of the other slots are performed.

Motivations for Extended Works. In [5], the authors explored FPMM imple-
mentations on different FPGAs from Xilinx. They varied several implementation
parameters such as the number of slots σ or the type of memory used (BRAM
or LUT based). However, their FPMM generator [6] is restricted to Ω being 2ω,
which reduces FPMM’s application ranges.

Therefore, our motivations are to generalize the FPMM principles to a wider
range of configurations. In particular, we look to aim for larger finite fields, which
require to choose Ω = kω with k ≥ 2.

When studying the FPMM operator, we realized that it should be able to
dynamically change the width of handled finite fields. Indeed, once parameter
Ω = kω is chosen, FPMM’s data-path is mainly fixed. The handled operands’
width (M) drives s, σ and lT parameters, which mainly impact control path.
Thus, control path may be somehow duplicated for different width and a mode
signal may select the current one.

4 FPMM’s Model for HDL Generation

This section presents the generalized FPMM operator. It includes design modi-
fications made to implement the multi-width feature.

Fig. 3. FPMM top module.
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4.1 FPMM Top Module

At top level, the FPMM operator is composed of five sub-modules: CTRL, MEM
and the L1, L2 and L3 stages (Fig. 3). It has two operating phases: setup and
run. A setup phase allows width mode and precomputed elements to be changed.
When in run phase, FPMM handles up to σ independent multiplications, with
σ depending on the current width mode.

MEM sub-module consists of two dual-port memories. Each of them can store
up to max(s · σ) Ω-bit words. Memory accesses are managed by CTRL while it
is orchestrating the computations of the σ slots.

4.2 L1 and L3 Sub-modules

Regarding Algorithm 1, L1 and L3 stages are very close from each others. They
both realize, in a i-indexed upper-loop, a j-indexed lower-loop of s iterations
performing a multiply-accumulate operation of the form (Hj , Lj) ← Ei × Fj +
Gj +Hj−1. Hj and Lj are respectively the upper and lower resulting words, and
Ei is constant for a whole lower loop.

Similarities of L1 and L3 Sub-modules. In practice, the multiply-accumulate
operation is decomposed in three computation’s sub-parts:

(H ′
j , L

′
j) ← Ei × Fj (1)

(c(1), Vj) ← L′
j + Gj (2)

(c(2), Lj) ← Vj + Hj−1 (3)

The result Lj is the resulting lower word at the end of all sub-parts. The most
significant word Hj is composed of H ′

j and two carry bits c(1) and c(2) (i.e.
Hj = H ′

j + c(1) + c(2)).
To illustrate the following discussion on hardware implementation, we rely

on Fig. 4. Equation 1 is broken down into ω-bit operations to be mapped onto
DSP slices. It results in k2 DSPs cascaded in space to fully pipeline the multi-
plication. Multiplexing in time with fewer DSPs would have reduced hardware
utilization, but would have increased latency and impacted the whole operator’s
performances.

Due to this cascading, the sub-results of Eq. 1 are produced with some delay
from each others. Each sub-result is used in further computation as soon as
possible. Consequently, Eq. 2 is also broken down into k sub-additions with carry
propagations (Fig. 4).

Given the Ω-bit multiplication algorithm, the mapping of sub-operations onto
DSP slices is only dependent on k and DSP characteristics. All latencies resulting
from the DSP cascade are known, and from them the hardware models of L1
and L3 stages are derived. To point out our contributions here: we managed to
express hardware’s models of each computation sub-parts depending on k and
DSP characteristics. The automatic generation of HDL code is then possible
from this modelisation.
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Fig. 4. Multiply-accumulate’s pipeline in L1 and L3 sub-modules with Ω = 2ω.

L1 Stage Specificities. For the L1 stage, (Hj , Lj , Ei, Fj , Gj) are identified with
(D, Uj , Ai, Bj , Tj) from Algorithm 1. There are three specificities for L1 stage:
handling the Tj ’s retro-propagated from L3 stage, reset D after a setup phase,
and early propagation of V0 to the L2 stage.

Fig. 5. Specificities of L1 stage.

Figure 5 illustrates design solutions for the first two specificities. In a multi-
width context, different width mode may require different latencies lT . The mode
signal selects the shift register’s depth according to current one (Fig. 5a). In
addition, the Tj ’s are reset by the CTRL module (rst T signal) whenever a new
finite-field multiplication starts.

After a setup phase, the propagations of intermediate results through imme-
diatly successive slots is mixed up. To restart a proper propagation, D is reset
for the first slot going through the L1 stage after a setup phase (Fig. 5b).

Finally, the early propagation of V0 is acheived by picking appropriately its
sub-words from their delay lines. More details are given in Sect. 4.3.

L3 Stage Specificities. For the L3 stage, (Hj , Lj , Ei, Fj , Gj) are identified with
(C, Tj−1, Qi, Pj , Uj) from Algorithm 1. There are four specificities for the L3
stage. The first three are in the management of operands Qi, Pj ’s and Uj ’s. The
fourth one is the handling of outputs.
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Fig. 6. Specificities of L3 stage.

Figure 6a presents the shift register step. It is fed by a L3 en signal coming
from CTRL module to restart L3 operations at each new slot.

Due to L2 sub-module’s architecture (presented in the next section), the Qi

input is received with delays between its sub-words. These delays are known
and depend on the decomposition of Ω-bit multiplication onto DSPs. A write
enable signal extracted from step (not shown) is generated for each sub-word
to register them at appropriate time.

Figure 6b presents the storage module for P. It is composed of max(s) regis-
ters of Ω-bit that are reprogrammed whenever the prime P is changed (set P ).
The depth used corresponds to the current width mode.

To synchronize the Uj ’s from L1 with Qi input, an artificial latency lU may
be required depending on the FPMM configuration (not shown).

Finally, two L3 stage’s outputs are differentiated (Fig. 6c): Tj feeds L1 stage
for further iteration, and Rj feeds the final result port.

4.3 L2 Sub-module

L2 stage performs Qi = V0 ×P ′ mod 2Ω , with V0 coming from L1, and P ′ being
precomputed. For convenience, V0 and Qi are noted V and Q.

Given Ω-bit multiplication’s decomposition, result modulo 2Ω requires only
k(k+1)/2 sub-multiplications. Moreover, L2 stage has s cycles to reuse the hard-
ware before the next slot’s data arrive. Consequently, only

⌈
k(k+1)

2s

⌉
DSPs are

Fig. 7. Example of L2 stage for Ω = 3ω and s = 3.
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instantiated (minimum s in that case of multi-width mode). Figure 7 illustrates
L2 stage for k = 3 and s = 3. The L2 en signal issued by CTRL restarts the
sequence of operations each time a new slot arrives. Each DSP is configured with
up to s different instructions, depending on the sub-multiplications it is taking
care of.

As introduced earlier, V sub-words are extracted from L1 stage’s data-path
with appropriate delay. For instance, vi[d] is the d-th register delaying the result
of the i-th sub-addition in Eq. 2’s data-path (Fig. 4).

Outputs (q0, ..., qk−1) are progressively generated by appropriate DSPs, and
stored in L3 stage as seen in L3 stage’s specificities. Depending on the configu-
ration, a latency lQ may be required to synchronise L1 and L2’s data-paths.

4.4 CTRL Sub-module

As FPMM’s data-path handles slot-wise computations, CTRL module is
ryhtmed over s cycles, depending on the current width mode (Fig. 8).

During a setup phase, CTRL updates precomputed values P ′ and P stored in
L2 and L3 stages. It propagates set P ′ (Fig. 7) and set P (Fig. 6) appropriately
(not shown for convenience).

Fig. 8. Control FSM and slot cadencing generation.

During run phase, CTRL handles the succession of slots with the help of a
control pipeline presented in Fig. 9. Whenever a last wd is triggered, a verifica-
tion is made of whether the next slot is free or already in use. This information
is gathered from a shift register slot occ presented latter.

Fig. 9. Control pipeline orchestrated by last wd signal.
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From this, the FPMM signals any free slot (slot avail) allowing a new
computation to be required (start), in that case the storage of computation
operands is issued (write en). The other signals are used to handle slot and
address managements.

Figure 10 presents the four shift registers for management of slots and
addresses. They are all of depth max(σ), and the portion currently used depends
on current width mode.

To the left, the shift register slot occ memories the current slot occupancy.
It is paired with iter count that memories the current upper-loop’s iteration of
each slot (i-indexed). At a slot’s last iteration the corresponding elements are
reset in both shift registers (slot end signal).

To the right, base addrs stores for each slot the base address where operands
are stored in MEM. It is reset with appropriate precomputed values during a
setup phases (not shown here). A addrs stores the address where Ai element
is read for each slot current upper-loop’s iteration. Read address for the Bj ’s is
incremented at each cycle from the current slot’s base address.

Fig. 10. Control shift registers for slot and address managements.

Finally, the different data path’s control signals are delayed from the control
signals shown in Fig. 9:

• rst T : write en delayed by lMEM + 4 cycles.
• rst D: s start delayed by 1+ lMEM + lL1 cycles, only for the first slot after

a setup phase, there is no reset otherwise.
• L2 en: comp en delayed by lMEM + 4 cycles.
• L3 en: L2 en delayed by lQ + 4 cycles.
• data avail: (comp en & last iter) delayed by lMEM + 3 + α cycles.

With lMEM being the read latency of MEM, and lL1 the latency of L1 stage.

5 Implementation and Exploration Results

Some concrete implementation results are presented in this section. Each gener-
ated design has been tested with tens of random stimuli for each possible width
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mode. Regarding FPGA implementations, a first “place and route” while target-
ing the theoretically possible maximum frequency (limited by BRAM or DSP)
was done for each design. If the timings are not met, performance optimizers
from FPGA manufacturer are run. If a design still fails to meet propagation
delays, we lower its targeted clock frequency and repeat the previous steps.

We named designs after their k parameter and the FPGA resource used to
implement its internal memories - B for BRAM and D for LUT. The operand
widths M for which the different designs are generated are made explicit in the
different discussions.

5.1 Outlines for FPMM Design Space Exploration

This section gives the FPMM’s practical limitations, as well as general obser-
vations on its performances and its FPGA utilization as a function of sizing
parameters.

Parameter Ranges. The generator imposes by design s and σ to be greater
than or equal to two. Thus, a given parameter k implies boundaries on operand
widths (i.e. M). Given a FPGA target, the choice of k implies Ω and α, and M
is restricted to the range from Ω + 1 (for s > 1) to (α − 1) · Ω (for σ > 1).

Table 1. (M , s, σ)’s ranges and number of cascaded DSP depending on k. Considering
DSP48E2 from Xilinx Ultrascale+, with ω = 17 (unsigned) and internal right-shifting
operation.

k Ω α lQ/lU M range s range σ range Cascaded DSP

2 34 14 0/4 35–442 2–13 7–2 4

3 51 18 0/0 52–867 2–17 9–2 9

4 68 32 7/0 69–2108 2–31 16–2 16

5 85 50 16/0 86–4165 2–49 25–2 25

6 102 72 27/0 103–7242 2–71 36–2 36

7 119 98 40/0 120–11543 2–97 49–2 49

8 136 128 55/0 137–17272 2–127 64–2 64

In addition, an FPGA target provides a limit to the depth of DSP cascades,
depending on the size of the DSP columns. Thus, k must be less than the square
root of the deepest possible cascade. This limitation can be somehow circum-
vented by cascading across DSP columns, but our generator does not handle this
limitation case at the moment. An example of parameter ranges for various k is
given in Table 1.
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Fig. 11. Theoretical performance exploration for M ∈ [64; 512].

Fig. 12. Xilinx’s Ultrascale+’s usage for M ∈ [64; 512].

Theoretical Performances. Regarding latency, it takes lFPMM = lin+(s−1)(α+
lT )+α cycles for a modular multiplication to be performed. For a given operand
width M , a larger parameter k increases α but reduces s, thus an appropriate
k may be found to reduce latency. Regarding throughput, the interleaving of
independent computations allows the operator to output up to one operation
every s2 cycles1. A larger k always improves throughput by lowering s.

Figure 11 plots latency and throughput as a function of the operand width
M for k ∈ [2; 8]. These are theoretical performances as it does not consider the
running frequency achieved on a specific FPGA target. The stepped shapes are
due to FPMM designs being actually dependent on (s, σ) pairs that are constants
for M in ](s − 1)Ω; sΩ]. Nevertheless, these plots suggest that increasing k is a
valid approach to improve both latency and throughput for larger M .

1 When fully loaded with instructions, σ operations are outputed every s2σ cycles.
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Resource Utilization. To give an overview of resource usage as a function of the
parameter k, we implemented all designs possible with M ∈ [64; 512] for each
k ∈ [2; 8]. The targeted FPGA is an Ultrascale+ from Xilinx.

Figure 12 displays for each k averages of resource usage and running fre-
quency, as well as deviations around these averages across designs (i.e. same
k and different M). Designs are relatively small, and are able to reach impor-
tant running frequency. The DSP are the limiting resources and their utilization
is quadratic with the growth of k. The impact of M is rather insignificant on
resource utilizations. For k < 5 the running frequency reach the upper limit
imposed by BRAMs. The complexity of the design increasing for larger k, the
maximum frequency achievable drops to 600 MHz (for k = 8).

5.2 Exploration’s Examples for (H)ECC

In this section, we consider the use case of elliptic and hyper-elliptic curve cryp-
tography to compare with previous works, and in particular [5] and [9]. For the
sake of comparison, the FPGA target is now a Virtex-7 and the operand widths
are 128-bit and 256-bit.

Table 2. Comparison of our generated FPMMs with [5] and [9].

M Work Name CLB/LUT/FF BRAM DSP Freq. MHz Lat. ns Thr. μs−1

128 [9] MA16 455/1182/1305 6 21 350 77.0 17.5

[5] F44B 325/545/725 2 9 528 141.8 33.1

Our 2-B 305/406/1074 1 9 558 125.5 34.9

Our 3-B 448/866/1785 2 20 396 156.4 44.0

Our 4-B 839/1803/2823 2 37 373 193.2 93.2

[5] F44D 306/600/758 – 9 633 118.5 39.6

Our 2-D 261/448/1218 – 9 539 129.8 33.7

Our 3-D 497/921/1921 – 20 406 152.7 45.1

Our 4-D 858/1902/2958 – 37 385 187.1 96.2

256 [9] MA16 661/1770/2172 10 37 372 99.5 13.3

[5] F28B 296/556/743 2 9 528 270.3 8.3

Our 2-B 481/578/1315 1 9 548 244.7 8.6

Our 3-B 500/898/1732 2 19 414 280.3 11.5

Our 4-B 860/1821/2829 2 35 367 370.9 22.9

[5] F28D 291/674/787 – 9 598 238.8 9.4

Our 2-D 372/629/1401 – 9 527 254.3 8.2

Our 3-D 466/956/1866 – 19 395 293.7 11.0

Our 4-D 853/1913/2965 – 35 362 375.6 22.6

In Table 2 comparisons are regrouped according to M and the type of
resources used to memorize input operands. Note that designs 2-[B/D] for
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Fig. 13. TPAR comparisons on a Virtex-7 from Xilinx for M ∈ {128, 256}.

M = 128 (resp. M = 256) are actually our FPMM versions of F44[B/D] (resp.
F28[B/D]), and are suppose to be very similar.

General Observations. A first observation is that increasing k makes the FPMM
reach higher possible throughputs than the state of the art - more than twice the
throughput of F44[D/B] and F28[B/D] with our 4-[B/D]. A second observation is
that compared to the equivalent designs from [5] our FPMMs use more flip-flops
and have a lower running frequency for designs with LUT based memories (e.g.
F44D Vs 2-D). This is certainly due to specific optimizations for the case k = 2
that we given up to facilitate the generalization to larger k. A final observation
concerns the operating frequency which seems to not be as stable with k growth
as for Ultrascale+ target. One possible explanation could be the improvement of
the configurable logic block carry-chains of the 7 Series for the Ultrascales (from
4-bit to 8-bit long). It may help to maintain the speed of the arithmetic as the
operands’ width grows. We did not investigate deeper this observation.

Throughput per Area Ratio. We then compare the different configurations
through a typical metric that merges the information of throughput and hard-
ware cost. This metric is called Throughput Per Area Ratio (TPAR) and gives
a number of operations per second and per unit of utilized resources.

Figure 13 displays TPAR on Virtex-7 for 128 and 256 bits operators. Accord-
ing to the limiting resource (DSP) our best implementations are with k = 2. We
believe that the the higher operating frequencies mainly explains this result.

From the flip-flops point of view, we find the consequence of the increased
usage compared to the original works F44[D/B] and F28[D/B]. Nevertheless, all
our different implementations remain relevant compared to Ma et al. [9] (MA16)
approach. It has the closest performances to the FPMM’s ones among the works
to which [5] compared itself.
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5.3 Multi-width FPMM

The multi-width feature allows an architect to implement a single operator to
handle different operand widths. Among others, applications could be encryption
circuits delivering several types of cryptographic primitives (e.g. RSA, DH, ECC,
HECC,...), or different level of security.

To illustrate the gain brought by multi-width FPMM in such context, let’s
consider an application of elliptic and hyper elliptic curve cryptography with two
different security levels, namely 128 and 256 bits. We further add the reason-
able assumption that multiplication is the application’s bottleneck and that the
operator is working full time. We note p the fraction of time spent performing
128-bit multiplications and (1 − p) the 256-bit one. We now compare a multi-
width FPMM against two other implementation choices: a 256-bit single-width
FPMM used for both operand widths, and two different single-width FPMMs,
one for each operand width.

Table 3. Comparison between single-width and multi-width FPMMs for k = 2 and
M = 128, 256 on Virtex-7 (V7) and Ultrascale+ (US+).

Parameters Single-width Multi-width

k M/s/σ CLB/LUT/FF BRAM DSP f CLB/LUT/FF BRAM DSP f#

V7 2 128/4/4 305/406/1074 1 9 557.7 372/547/1234 1 9 515.2

256/8/2 481/578/1315 1 9 547.6

US+ 2 128/4/4 116/383/1074 1 9 714.3 135/532/1229 1 9 714.3

256/8/2 152/552/1332 1 9 714.3

Table 3 shows implementation results of single-widths and multi-width FPMM
on Virtex-7 and Ultrascale+. Compared to the first implementation choice, the
multi-width FPMM improves throughput of 128-bit operations. The applica-
tion speedup is then derived from the fraction of time p spent on these small
operands2. For instance, with p equals to 0.25, 0.5 and 0.75 the respective
speedups are ×1.65, ×2.35 and ×3.06 on Virtex-7 and ×1.75, ×2.5 and ×3.25
on Ultrascale+. These improvements require no increase of resource utilization.

Compared to the second implementation choice, the multi-width FPMM does
not improve performances on Ultrascale+, and is 6% slower on Virtex-7 due
to the loss in running frequency. Nonetheless, it reduces by roughly half the
utilization of FPGA’s ressources.

In conclusion, the benefits of the multi-width option are case-critical when
several operand widths must coexist in the same application.

6 Conclusion

This paper presented our realization of an extended FPMM generator. Its main
scientific contributions are the generalization of the FPMM operator presented

2 Speedup =
f#

(
p

42
+ 1−p

82

)

f

82
.
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by Gallin and Tisserand [5] and the addition of a multi-width feature. The
generator is provided as a python package under GPL3 licence [3]. The purpose is
to propose a design space exploration tool for FPGA implementation of modular
arithmetic.

Although the core principles of the FPMM are implemented, our generator
is currently limited to Xillinx FPGA families. We have good reason to believe
that extension to other types of FPGAs should not be a major problem. Indeed,
the FPMM pre-requisites on DSP are typical characteristics of these arithmetic
units, non-specific to Xilinx’s ones.

A direct improvement of our generator would be the integration of design
optimizations for k = 2 from [5]. Another area for improvement could be the
mapping of Ω-bit multiplication onto DSPs. Karatsuba’s algorithm would cer-
tainly reduce the number of DSPs for large k. Nevertheless, it remains to identify
the impact on α and the differential in utilization of other hardware resources.

Ackowledgments. We would like to thank Arnaud Tisserand for our interesting
exchanges and his encouragement to publish these results; as well as the anonymous
reviewers for their pertinent and welcome remarks and suggestions.
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