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For a q-linearized polynomial function L on a finite field, we give a new short
proof of a known result, that L(x)/x and L∗(x)/x have the same image, where
L∗(x) denotes the adjoint of L. We give some consequences for semifields, recov-
ering results first proved by Lavrauw and Sheekey. We also give a characterization
of planar functions.

1 Introduction

Throughout this paper we let p be a prime number, let q = pr and let Fqn denote
a finite field with qn elements, where n is a positive integer.

Any function Fqn −→ Fqn can be expressed uniquely as a polynomial function
(with coefficients in Fqn) of degree less than qn. This is because there are (qn)qn

such polynomials, they are distinct as functions, and this is also the total number
of functions. We call this polynomial the reduced form of the function.

A polynomial in Fqn [x] is called a permutation polynomial (PP) if it its
reduced form induces a bijective function Fqn −→ Fqn .

Thinking of Fqn as an n-dimensional vector space over Fq, a polynomial of
the form

a0x + a1x
q + a2x

q2
+ · · · + an−1x

qn−1
(1)

with ai ∈ Fqn induces an Fq-linear function Fqn −→ Fqn . Conversely, any Fq-
linear function Fqn −→ Fqn can be written in this form, because there are (qn)n

such polynomials, they are distinct as functions, and this is also the total num-
ber of Fq-linear functions. A polynomial of the form (1) is called a q-linearized
polynomial. This is already in reduced form. In this paper, when we use the term
q-linearized polynomial, we mean the function Fqn −→ Fqn that is induced by
the polynomial.

Let Tr denote the absolute trace map Fqn −→ Fp defined by

Tr(x) = x + xp + xp2
+ · · · + xprn−1

.

Let tr denote the relative trace map Fqn −→ Fq defined by

tr(x) = x + xq + xq2
+ · · · + xqn−1

.
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The adjoint of L(x) = a0x + a1x
q + a2x

q2
+ · · · + an−1x

qn−1
is defined to be

L∗(x) = a0x + aqn−1

1 xqn−1
+ aqn−2

2 xqn−2
+ · · · + aq

n−1x
q.

The adjoint has the property that tr(L(u)v) = tr(uL∗(v)) for all u, v ∈ Fqn .
This property implies that Tr(L(u)v) = Tr(uL∗(v)) for all u, v ∈ Fqn .

We introduce some notation. Let

V (L) =
{−a ∈ Fqn : L(x) + ax is a PP

}

and let

I(L) =
{L(z)

z
: z ∈ Fqn , z �= 0

}
.

The following theorem was first proved in Lemma 2.6 of [2].

Theorem 1. Let L(x) be a q-linearized polynomial. Then I(L) = I(L∗) and
V (L) = V (L∗).

In this paper we will provide a new proof of this fact. In addition to giving
an alternative viewpoint on this result, this approach may be of use towards
studying the following problem.

Open Question. Let L(x) be a q-linearized polynomial. For what other q-
linearized polynomials M(x) does it hold that I(L) = I(M) and V (L) = V (M)?

This question has been addressed in [3]; in particular it has been shown
that for n ≤ 5, and L(x) not a monomial, then I(L) = I(M) if and only if
L(x) = M(λx)/λ or L∗(x) = M(λx)/λ for some λ ∈ F

×
qn . If L(x) = xqi

and
M(x) = xqj

then I(L) = I(M) if and only if (i, n) = (j, n). The general case
remains an open problem.

Motivation for this question stems from the study of linear sets, which are
sets of points on a projective line PG(1, qn). The set UL = {(x,L(x)) : x ∈ F

×
qn}

defines a set LL of points on the projective line PG(1, qn) in a natural way.
Then it is straightforward to see that LL = LM if and only if I(L) = I(M). This
problem, which has been studied in [4,5], has applications in the study of MRD
codes, as well as for semifields, which we will see in Sect. 3.

2 Alternative Proof of Main Theorem

Let ζ be a primitive complex p-th root of unity. The additive characters of Fqn

may be written
χα(x) = ζTr(αx),

one character for each α ∈ Fqn .
The following is a well known characterization of PPs based on additive

characters (Theorem 7.7 in [8]).
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Theorem 2. A polynomial P (x) ∈ Fqn [x] is a permutation polynomial if and
only if ∑

x∈Fqn

χ(P (x)) = 0

for every nontrivial additive character χ of Fqn .

We will use the following well known fact (Theorem 7.9 in [8]).

Lemma 1. If L(x) ∈ Fqn [x] is a q-linearized polynomial, then L(x) is a PP on
Fqn if and only if the only solution in Fqn of L(x) = 0 is x = 0.

We use this characterisation in order to provide a new proof of the Main
Theorem.

Theorem 3. Let L(x) be a q-linearized polynomial. Then I(L) = I(L∗) and
V (L) = V (L∗).

Proof. We will show that both I(L) and I(L∗) are equal to the complement of
V (L). In part (i) we show that −a ∈ I(L) if and only if L(x) + ax is not a PP,
and in part (ii) we will show that −a ∈ I(L∗) if and only if L(x) + ax is not a
PP.

(i) Note that L(x) + ax maps 0 to 0, and so L(x) + ax is a PP if and only if
−a /∈ Im(L(x)/x) by Lemma 1. This proves that

I(L) =
{

−a ∈ Fqn : L(x) + ax is not a PP
}

which shows that I(L) is equal to the complement of V (L).
(ii) By Theorem 2, L(x) + ax is a PP if and only if

∑

x∈Fqn

χ(L(x) + ax) = 0

for all nontrivial additive characters χ, or equivalently, if and only if
∑

x∈Fqn

ζTr(α(L(x)+ax)) = 0

for all nonzero α ∈ Fq. But
∑

x∈Fqn

ζTr(α(L(x)+ax)) =
∑

x∈Fqn

ζTr(L
∗(α)x+αax) =

∑

x∈Fqn

ζTr((L
∗(α)+αa)x)

which is 0 if and only if L∗(α)+αa �= 0. In other words, L(x)+ax is a PP if and
only if L∗(α) + αa �= 0 for all nonzero α ∈ Fqn . Thus L(x) + ax is a PP if and
only if −a /∈ Im(L∗(x)/x). This proves that I(L∗) is equal to the complement
of V (L).

We have shown that both I(L) and I(L∗) are equal to the complement of
V (L), and it follows that I(L) = I(L∗). Applying this to L∗ instead of L shows
that both I(L) and I(L∗) are equal to the complement of V (L∗). Therefore
V (L) = V (L∗), and L(x) + ax is a PP if and only if L∗(x) + ax is a PP.
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3 Application to Semifields

We now present an alternative proof of a result of Lavrauw and Sheekey [6].
A finite semifield is a nonassociative division algebra of finite dimension over

Fq. There are many constructions for semifields, many of which use q-linearized
polynomials. In [6] a particular class of semifields were studied, namely those of
BEL-rank two. These are those semifields whose multiplication can be written
in the form

x ◦ y = xL(y) − M(x)y

for some q-linearized polynomials L(x) and M(x). As noted and studied in [7,9],
the condition for the pair (L,M) to defines a semifield is equivalent to the
condition I(L) ∩ I(M) = ∅, and equivalent to the condition that the sets of
points LL and LM in PG(1, qn) are disjoint. In [6] it was shown that if the pair
(L,M) define a semifield, then so do the pairs (L∗,M), (L,M∗), and (L∗,M∗) (as
well as the obvious fact that (M,L) also defines a semifield, the dual or opposite
semifield). The proof of this was an application of the switching operation defined
in [1]. In fact we can now see that this is an immediate consequence of the main
theorem.

Corollary 1. Let L(x) and M(x) be q-linearized polynomials. Suppose I(L) and
I(M) are disjoint, so that xL(y)−M(x)y defines a semifield multiplication law.
Then

1. xL∗(y) − M(x)y defines a semifield,
2. xL∗(y) − M∗(x)y defines a semifield,
3. xL(y) − M∗(x)y defines a semifield.

Proof. If I(L) ∩ I(M) = ∅ then x ∗ y = xL(y) − M(x)y defines a semifield
multiplication law. By Theorem 3 we have I(L) = I(L∗) and I(M) = I(M∗).
Since I(L) ∩ I(M) = ∅ we also get I(L∗) ∩ I(M) = ∅ and I(L∗) ∩ I(M∗) = ∅
and I(L) ∩ I(M∗) = ∅. The result follows.

Note that the main theorem is in fact stronger than the result of [6], in which
it was shown that if I(L) and I(M) are disjoint, then (for example) I(L∗) and
I(M) are disjoint, which does not necessarily imply that I(L) = I(L∗).

4 A Criterion for Planarity

Assume q is odd. A function f : Fqn −→ Fqn is said to be planar if the functions
x 
→ f(x + a) − f(x) are bijective for all nonzero a ∈ Fqn . The term PN (perfect
nonlinear) is also used instead of the word ‘planar’.

Sometimes a polynomial xL(x) will be planar, where L(x) is a q-linearized
polynomial. For example, x2 is planar. We present a criterion for the planarity
of xL(x).

Theorem 4. Let L(x) be a q-linearized polynomial. The polynomial xL(x) is
planar if and only if L∗(bx) + bL(x) is a PP for all nonzero b ∈ Fqn .
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Proof. First,

xL(x) is PN ⇐⇒ (x + u)L(x + u) − xL(x) is a PP for all nonzero u

⇐⇒ uL(x) + xL(u) + uL(u) is a PP for all nonzero u

⇐⇒ uL(x) + xL(u) is a PP for all nonzero u.

By Theorem 2, uL(x) + xL(u) is a PP if and only if
∑

x∈Fqn

ζTr(b(uL(x)+xL(u))) = 0

for all nonzero b ∈ Fqn . However
∑

x∈Fqn

ζTr(buL(x)+bxL(u)) =
∑

x∈Fqn

ζTr(L
∗(bu)x+bxL(u))

so uL(x) + xL(u) is a PP if and only if L∗(bu) + bL(u) �= 0 for all nonzero b. By
Lemma 1 we are done.
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