

# Linearized Polynomials and Their Adjoints, and Some Connections to Linear Sets and Semifields

Gary McGuire<sup>D</sup> and John Sheekey<sup>(⊠)</sup><sup>D</sup>

#### UCD School of Mathematics and Statistics, University College Dublin, Dublin, Ireland {gary.mcguire,john.sheekey}@ucd.ie

For a q-linearized polynomial function L on a finite field, we give a new short proof of a known result, that L(x)/x and  $L^*(x)/x$  have the same image, where  $L^*(x)$  denotes the adjoint of L. We give some consequences for semifields, recovering results first proved by Lavrauw and Sheekey. We also give a characterization of planar functions.

## 1 Introduction

Throughout this paper we let p be a prime number, let  $q = p^r$  and let  $\mathbb{F}_{q^n}$  denote a finite field with  $q^n$  elements, where n is a positive integer.

Any function  $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$  can be expressed uniquely as a polynomial function (with coefficients in  $\mathbb{F}_{q^n}$ ) of degree less than  $q^n$ . This is because there are  $(q^n)^{q^n}$  such polynomials, they are distinct as functions, and this is also the total number of functions. We call this polynomial the reduced form of the function.

A polynomial in  $\mathbb{F}_{q^n}[x]$  is called a permutation polynomial (PP) if it its reduced form induces a bijective function  $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$ .

Thinking of  $\mathbb{F}_{q^n}$  as an *n*-dimensional vector space over  $\mathbb{F}_q$ , a polynomial of the form

$$a_0x + a_1x^q + a_2x^{q^2} + \dots + a_{n-1}x^{q^{n-1}}$$
(1)

with  $a_i \in \mathbb{F}_{q^n}$  induces an  $\mathbb{F}_q$ -linear function  $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$ . Conversely, any  $\mathbb{F}_q$ -linear function  $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$  can be written in this form, because there are  $(q^n)^n$  such polynomials, they are distinct as functions, and this is also the total number of  $\mathbb{F}_q$ -linear functions. A polynomial of the form (1) is called a *q*-linearized polynomial. This is already in reduced form. In this paper, when we use the term *q*-linearized polynomial, we mean the function  $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$  that is induced by the polynomial.

Let Tr denote the absolute trace map  $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_p$  defined by

$$\operatorname{Tr}(x) = x + x^{p} + x^{p^{2}} + \dots + x^{p^{rn-1}}.$$

Let tr denote the relative trace map  $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_q$  defined by

$$tr(x) = x + x^{q} + x^{q^{2}} + \dots + x^{q^{n-1}}.$$

<sup>©</sup> Springer Nature Switzerland AG 2021

J. C. Bajard and A. Topuzoğlu (Eds.): WAIFI 2020, LNCS 12542, pp. 37–41, 2021. https://doi.org/10.1007/978-3-030-68869-1\_2

The *adjoint* of  $L(x) = a_0 x + a_1 x^q + a_2 x^{q^2} + \dots + a_{n-1} x^{q^{n-1}}$  is defined to be

$$L^*(x) = a_0 x + a_1^{q^{n-1}} x^{q^{n-1}} + a_2^{q^{n-2}} x^{q^{n-2}} + \dots + a_{n-1}^q x^q.$$

The adjoint has the property that  $tr(L(u)v) = tr(uL^*(v))$  for all  $u, v \in \mathbb{F}_{q^n}$ . This property implies that  $Tr(L(u)v) = Tr(uL^*(v))$  for all  $u, v \in \mathbb{F}_{q^n}$ .

We introduce some notation. Let

$$V(L) = \left\{ -a \in \mathbb{F}_{q^n} : L(x) + ax \text{ is a PP } \right\}$$

and let

$$I(L) = \left\{ \frac{L(z)}{z} : z \in \mathbb{F}_{q^n}, z \neq 0 \right\}.$$

The following theorem was first proved in Lemma 2.6 of [2].

**Theorem 1.** Let L(x) be a q-linearized polynomial. Then  $I(L) = I(L^*)$  and  $V(L) = V(L^*)$ .

In this paper we will provide a new proof of this fact. In addition to giving an alternative viewpoint on this result, this approach may be of use towards studying the following problem.

**Open Question.** Let L(x) be a q-linearized polynomial. For what other q-linearized polynomials M(x) does it hold that I(L) = I(M) and V(L) = V(M)?

This question has been addressed in [3]; in particular it has been shown that for  $n \leq 5$ , and L(x) not a monomial, then I(L) = I(M) if and only if  $L(x) = M(\lambda x)/\lambda$  or  $L^*(x) = M(\lambda x)/\lambda$  for some  $\lambda \in \mathbb{F}_{q^n}^{\times}$ . If  $L(x) = x^{q^i}$  and  $M(x) = x^{q^j}$  then I(L) = I(M) if and only if (i, n) = (j, n). The general case remains an open problem.

Motivation for this question stems from the study of *linear sets*, which are sets of points on a projective line  $PG(1, q^n)$ . The set  $U_L = \{(x, L(x)) : x \in \mathbb{F}_{q^n}^{\times}\}$  defines a set  $\mathcal{L}_L$  of points on the projective line  $PG(1, q^n)$  in a natural way. Then it is straightforward to see that  $\mathcal{L}_L = \mathcal{L}_M$  if and only if I(L) = I(M). This problem, which has been studied in [4,5], has applications in the study of MRD codes, as well as for semifields, which we will see in Sect. 3.

#### 2 Alternative Proof of Main Theorem

Let  $\zeta$  be a primitive complex p-th root of unity. The additive characters of  $\mathbb{F}_{q^n}$  may be written

$$\chi_{\alpha}(x) = \zeta^{\mathrm{Tr}(\alpha x)}$$

one character for each  $\alpha \in \mathbb{F}_{q^n}$ .

The following is a well known characterization of PPs based on additive characters (Theorem 7.7 in [8]).

**Theorem 2.** A polynomial  $P(x) \in \mathbb{F}_{q^n}[x]$  is a permutation polynomial if and only if

$$\sum_{x\in \mathbb{F}_{q^n}}\chi(P(x))=0$$

for every nontrivial additive character  $\chi$  of  $\mathbb{F}_{q^n}$ .

We will use the following well known fact (Theorem 7.9 in [8]).

**Lemma 1.** If  $L(x) \in \mathbb{F}_{q^n}[x]$  is a q-linearized polynomial, then L(x) is a PP on  $\mathbb{F}_{q^n}$  if and only if the only solution in  $\mathbb{F}_{q^n}$  of L(x) = 0 is x = 0.

We use this characterisation in order to provide a new proof of the Main Theorem.

**Theorem 3.** Let L(x) be a q-linearized polynomial. Then  $I(L) = I(L^*)$  and  $V(L) = V(L^*)$ .

*Proof.* We will show that both I(L) and  $I(L^*)$  are equal to the complement of V(L). In part (i) we show that  $-a \in I(L)$  if and only if L(x) + ax is not a PP, and in part (ii) we will show that  $-a \in I(L^*)$  if and only if L(x) + ax is not a PP.

(i) Note that L(x) + ax maps 0 to 0, and so L(x) + ax is a PP if and only if  $-a \notin Im(L(x)/x)$  by Lemma 1. This proves that

$$I(L) = \left\{ -a \in \mathbb{F}_{q^n} : L(x) + ax \text{ is not a PP } \right\}$$

which shows that I(L) is equal to the complement of V(L).

(ii) By Theorem 2, L(x) + ax is a PP if and only if

$$\sum_{x\in \mathbb{F}_{q^n}}\chi(L(x)+ax)=0$$

for all nontrivial additive characters  $\chi$ , or equivalently, if and only if

$$\sum_{x \in \mathbb{F}_{q^n}} \zeta^{\operatorname{Tr}(\alpha(L(x) + ax))} = 0$$

for all nonzero  $\alpha \in \mathbb{F}_q$ . But

$$\sum_{x \in \mathbb{F}_{q^n}} \zeta^{\operatorname{Tr}(\alpha(L(x) + ax))} = \sum_{x \in \mathbb{F}_{q^n}} \zeta^{\operatorname{Tr}(L^*(\alpha)x + \alpha ax)} = \sum_{x \in \mathbb{F}_{q^n}} \zeta^{\operatorname{Tr}((L^*(\alpha) + \alpha a)x)}$$

which is 0 if and only if  $L^*(\alpha) + \alpha a \neq 0$ . In other words, L(x) + ax is a PP if and only if  $L^*(\alpha) + \alpha a \neq 0$  for all nonzero  $\alpha \in \mathbb{F}_{q^n}$ . Thus L(x) + ax is a PP if and only if  $-a \notin Im(L^*(x)/x)$ . This proves that  $I(L^*)$  is equal to the complement of V(L).

We have shown that both I(L) and  $I(L^*)$  are equal to the complement of V(L), and it follows that  $I(L) = I(L^*)$ . Applying this to  $L^*$  instead of L shows that both I(L) and  $I(L^*)$  are equal to the complement of  $V(L^*)$ . Therefore  $V(L) = V(L^*)$ , and L(x) + ax is a PP if and only if  $L^*(x) + ax$  is a PP.

### 3 Application to Semifields

We now present an alternative proof of a result of Lavrauw and Sheekey [6].

A finite semifield is a nonassociative division algebra of finite dimension over  $\mathbb{F}_q$ . There are many constructions for semifields, many of which use q-linearized polynomials. In [6] a particular class of semifields were studied, namely those of *BEL-rank two*. These are those semifields whose multiplication can be written in the form

$$x \circ y = xL(y) - M(x)y$$

for some q-linearized polynomials L(x) and M(x). As noted and studied in [7,9], the condition for the pair (L, M) to defines a semifield is equivalent to the condition  $I(L) \cap I(M) = \emptyset$ , and equivalent to the condition that the sets of points  $\mathcal{L}_L$  and  $\mathcal{L}_M$  in PG(1,  $q^n$ ) are disjoint. In [6] it was shown that if the pair (L, M) define a semifield, then so do the pairs  $(L^*, M), (L, M^*)$ , and  $(L^*, M^*)$  (as well as the obvious fact that (M, L) also defines a semifield, the dual or opposite semifield). The proof of this was an application of the *switching* operation defined in [1]. In fact we can now see that this is an immediate consequence of the main theorem.

**Corollary 1.** Let L(x) and M(x) be q-linearized polynomials. Suppose I(L) and I(M) are disjoint, so that xL(y) - M(x)y defines a semifield multiplication law. Then

xL\*(y) - M(x)y defines a semifield,
xL\*(y) - M\*(x)y defines a semifield,
xL(y) - M\*(x)y defines a semifield.

*Proof.* If  $I(L) \cap I(M) = \emptyset$  then x \* y = xL(y) - M(x)y defines a semifield multiplication law. By Theorem 3 we have  $I(L) = I(L^*)$  and  $I(M) = I(M^*)$ . Since  $I(L) \cap I(M) = \emptyset$  we also get  $I(L^*) \cap I(M) = \emptyset$  and  $I(L^*) \cap I(M^*) = \emptyset$  and  $I(L) \cap I(M^*) = \emptyset$ . The result follows.

Note that the main theorem is in fact stronger than the result of [6], in which it was shown that if I(L) and I(M) are disjoint, then (for example)  $I(L^*)$  and I(M) are disjoint, which does not necessarily imply that  $I(L) = I(L^*)$ .

## 4 A Criterion for Planarity

Assume q is odd. A function  $f : \mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$  is said to be *planar* if the functions  $x \mapsto f(x+a) - f(x)$  are bijective for all nonzero  $a \in \mathbb{F}_{q^n}$ . The term PN (perfect nonlinear) is also used instead of the word 'planar'.

Sometimes a polynomial xL(x) will be planar, where L(x) is a q-linearized polynomial. For example,  $x^2$  is planar. We present a criterion for the planarity of xL(x).

**Theorem 4.** Let L(x) be a q-linearized polynomial. The polynomial xL(x) is planar if and only if  $L^*(bx) + bL(x)$  is a PP for all nonzero  $b \in \mathbb{F}_{q^n}$ .

Proof. First,

$$xL(x)$$
 is PN  $\iff (x+u)L(x+u) - xL(x)$  is a PP for all nonzero  $u$   
 $\iff uL(x) + xL(u) + uL(u)$  is a PP for all nonzero  $u$   
 $\iff uL(x) + xL(u)$  is a PP for all nonzero  $u$ .

By Theorem 2, uL(x) + xL(u) is a PP if and only if

$$\sum_{x \in \mathbb{F}_{q^n}} \zeta^{\operatorname{Tr}(b(uL(x) + xL(u)))} = 0$$

for all nonzero  $b \in \mathbb{F}_{q^n}$ . However

$$\sum_{x \in \mathbb{F}_{q^n}} \zeta^{\operatorname{Tr}(buL(x) + bxL(u))} = \sum_{x \in \mathbb{F}_{q^n}} \zeta^{\operatorname{Tr}(L^*(bu)x + bxL(u))}$$

so uL(x) + xL(u) is a PP if and only if  $L^*(bu) + bL(u) \neq 0$  for all nonzero b. By Lemma 1 we are done.

#### References

- Ball, S., Ebert, G., Lavrauw, M.: A geometric construction of finite semifields. J. Algebra **311**, 117–129 (2007)
- Bartoli, D., Giulietti, M., Marino, G., Polverino, O.: Maximum scattered linear sets and complete caps in Galois spaces. Combinatorica 38, 255–278 (2018)
- Csajbók, B., Marino, G., Polverino, O.: A Carlitz type result for linearized polynomials. Ars Math. Contemp. 16(2), 585–608 (2019)
- 4. Csajbók, B., Marino, G., Polverino, O.: Classes and equivalence of linear sets in  $PG(1,q^n)$ . J. Comb. Theory Ser. A **157**, 402–426 (2018)
- Csajbók, B., Zanella, C.: On the equivalence of linear sets. Des. Codes Cryptogr. 81, 269–281 (2016)
- Lavrauw, M., Sheekey, J.: The BEL-rank of finite semifields. Des. Codes Cryptogr. 84, 345–358 (2017)
- Sheekey, J., Van de Voorde, G.: Rank-metric codes, linear sets, and their duality. Des. Codes Cryptogr. 88, 655–675 (2020)
- 8. Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley (1983)
- 9. Zini, G., Zullo, F.: On the intersection problem for linear sets in the projective line. arXiv:2004.09441