

Linearized Polynomials and Their Adjoints, and Some Connections to Linear Sets and Semifields

Gary McGuir[e](http://orcid.org/0000-0003-2105-9792) and John Sheekey^{(\boxtimes [\)](http://orcid.org/0000-0002-8590-0301)}

UCD School of Mathematics and Statistics, University College Dublin, Dublin, Ireland *{*gary.mcguire,john.sheekey*}*@ucd.ie

For a q -linearized polynomial function L on a finite field, we give a new short proof of a known result, that $L(x)/x$ and $L^*(x)/x$ have the same image, where $L^*(x)$ denotes the adjoint of L. We give some consequences for semifields, recovering results first proved by Lavrauw and Sheekey. We also give a characterization of planar functions.

1 Introduction

Throughout this paper we let p be a prime number, let $q = p^r$ and let \mathbb{F}_{q^n} denote a finite field with q^n elements, where n is a positive integer.

Any function $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$ can be expressed uniquely as a polynomial function (with coefficients in \mathbb{F}_{q^n}) of degree less than q^n . This is because there are $(q^n)^{q^n}$ such polynomials, they are distinct as functions, and this is also the total number of functions. We call this polynomial the reduced form of the function.

A polynomial in $\mathbb{F}_{q^n}[x]$ is called a permutation polynomial (PP) if it its reduced form induces a bijective function $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$.

Thinking of \mathbb{F}_{q^n} as an *n*-dimensional vector space over \mathbb{F}_q , a polynomial of the form

$$
a_0x + a_1x^q + a_2x^{q^2} + \dots + a_{n-1}x^{q^{n-1}}
$$
\n(1)

with $a_i \in \mathbb{F}_{q^n}$ induces an \mathbb{F}_{q} -linear function $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$. Conversely, any \mathbb{F}_{q} linear function $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$ can be written in this form, because there are $(q^n)^n$ such polynomials, they are distinct as functions, and this is also the total number of \mathbb{F}_q -linear functions. A polynomial of the form [\(1\)](#page-0-0) is called a q-linearized polynomial. This is already in reduced form. In this paper, when we use the term q-linearized polynomial, we mean the function $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$ that is induced by the polynomial.

Let Tr denote the absolute trace map $\mathbb{F}_{q^n}\longrightarrow \mathbb{F}_p$ defined by

$$
\text{Tr}(x) = x + x^p + x^{p^2} + \dots + x^{p^{rn-1}}.
$$

Let tr denote the relative trace map $\mathbb{F}_{q^n} \longrightarrow \mathbb{F}_q$ defined by

$$
tr(x) = x + xq + xq2 + \dots + xqn-1.
$$

c Springer Nature Switzerland AG 2021

J. C. Bajard and A. Topuzoğlu (Eds.): WAIFI 2020, LNCS 12542, pp. 37-41, 2021. [https://doi.org/10.1007/978-3-030-68869-1](https://doi.org/10.1007/978-3-030-68869-1_2)_2

The *adjoint* of $L(x) = a_0x + a_1x^q + a_2x^{q^2} + \cdots + a_{n-1}x^{q^{n-1}}$ is defined to be

$$
L^*(x) = a_0x + a_1^{q^{n-1}}x^{q^{n-1}} + a_2^{q^{n-2}}x^{q^{n-2}} + \dots + a_{n-1}^qx^q.
$$

The adjoint has the property that $tr(L(u)v) = tr(uL^*(v))$ for all $u, v \in \mathbb{F}_{q^n}$. This property implies that $\text{Tr}(L(u)v) = \text{Tr}(uL^*(v))$ for all $u, v \in \mathbb{F}_{q^n}$.

We introduce some notation. Let

$$
V(L) = \left\{-a \in \mathbb{F}_{q^n} : L(x) + ax \text{ is a PP }\right\}
$$

and let

$$
I(L) = \Big\{ \frac{L(z)}{z} : z \in \mathbb{F}_{q^n}, z \neq 0 \Big\}.
$$

The following theorem was first proved in Lemma 2.6 of [\[2](#page-4-0)].

Theorem 1. Let $L(x)$ be a q-linearized polynomial. Then $I(L) = I(L^*)$ and $V(L) = V(L^*).$

In this paper we will provide a new proof of this fact. In addition to giving an alternative viewpoint on this result, this approach may be of use towards studying the following problem.

Open Question. Let $L(x)$ be a q-linearized polynomial. For what other qlinearized polynomials $M(x)$ does it hold that $I(L) = I(M)$ and $V(L) = V(M)$?

This question has been addressed in [\[3\]](#page-4-1); in particular it has been shown that for $n \leq 5$, and $L(x)$ *not* a monomial, then $I(L) = I(M)$ if and only if $L(x) = M(\lambda x)/\lambda$ or $L^*(x) = M(\lambda x)/\lambda$ for some $\lambda \in \mathbb{F}_{q^n}^{\times}$. If $L(x) = x^{q^i}$ and $M(x) = x^{q^j}$ then $I(L) = I(M)$ if and only if $(i, n) = (j, n)$. The general case remains an open problem.

Motivation for this question stems from the study of *linear sets*, which are sets of points on a projective line PG(1, q^n). The set $U_L = \{(x, L(x)) : x \in \mathbb{F}_{q^n}^{\times}\}$ defines a set \mathcal{L}_L of points on the projective line PG(1, q^n) in a natural way. Then it is straightforward to see that $\mathcal{L}_L = \mathcal{L}_M$ if and only if $I(L) = I(M)$. This problem, which has been studied in $[4,5]$ $[4,5]$ $[4,5]$, has applications in the study of MRD codes, as well as for semifields, which we will see in Sect. [3.](#page-3-0)

2 Alternative Proof of Main Theorem

Let ζ be a primitive complex p-th root of unity. The additive characters of \mathbb{F}_{q^n} may be written

$$
\chi_{\alpha}(x) = \zeta^{\text{Tr}(\alpha x)},
$$

one character for each $\alpha \in \mathbb{F}_{q^n}$.

The following is a well known characterization of PPs based on additive characters (Theorem 7.7 in [\[8](#page-4-4)]).

Theorem 2. *A polynomial* $P(x) \in \mathbb{F}_{q^n}[x]$ *is a permutation polynomial if and only if*

$$
\sum_{x \in \mathbb{F}_{q^n}} \chi(P(x)) = 0
$$

for every nontrivial additive character χ *of* \mathbb{F}_{q^n} *.*

We will use the following well known fact (Theorem 7.9 in [\[8\]](#page-4-4)).

Lemma 1. *If* $L(x) \in \mathbb{F}_{q^n}[x]$ *is a q-linearized polynomial, then* $L(x)$ *is a PP on* \mathbb{F}_{q^n} *if and only if the only solution in* \mathbb{F}_{q^n} *of* $L(x) = 0$ *is* $x = 0$ *.*

We use this characterisation in order to provide a new proof of the Main Theorem.

Theorem 3. Let $L(x)$ be a q-linearized polynomial. Then $I(L) = I(L^*)$ and $V(L) = V(L^*).$

Proof. We will show that both $I(L)$ and $I(L^*)$ are equal to the complement of $V(L)$. In part (i) we show that $-a \in I(L)$ if and only if $L(x) + ax$ is not a PP, and in part (ii) we will show that $-a \in I(L^*)$ if and only if $L(x) + ax$ is not a PP.

(i) Note that $L(x) + ax$ maps 0 to 0, and so $L(x) + ax$ is a PP if and only if $-a \notin Im(L(x)/x)$ by Lemma [1.](#page-2-0) This proves that

$$
I(L) = \left\{-a \in \mathbb{F}_{q^n} : L(x) + ax \text{ is not a PP }\right\}
$$

which shows that $I(L)$ is equal to the complement of $V(L)$.

(ii) By Theorem [2,](#page-1-0) $L(x) + ax$ is a PP if and only if

$$
\sum_{x \in \mathbb{F}_{q^n}} \chi(L(x) + ax) = 0
$$

for all nontrivial additive characters χ , or equivalently, if and only if

$$
\sum_{x \in \mathbb{F}_{q^n}} \zeta^{\text{Tr}(\alpha(L(x) + ax))} = 0
$$

for all nonzero $\alpha \in \mathbb{F}_q$. But

$$
\sum_{x\in \mathbb{F}_{q^n}}\zeta^{{\rm Tr}(\alpha(L(x)+ax))}=\sum_{x\in \mathbb{F}_{q^n}}\zeta^{{\rm Tr}(L^*(\alpha)x+\alpha ax)}=\sum_{x\in \mathbb{F}_{q^n}}\zeta^{{\rm Tr}((L^*(\alpha)+\alpha a)x)}
$$

which is 0 if and only if $L^*(\alpha) + \alpha a \neq 0$. In other words, $L(x) + ax$ is a PP if and only if $L^*(\alpha) + \alpha a \neq 0$ for all nonzero $\alpha \in \mathbb{F}_{q^n}$. Thus $L(x) + ax$ is a PP if and only if $-a \notin Im(L^*(x)/x)$. This proves that $I(L^*)$ is equal to the complement of $V(L)$.

We have shown that both $I(L)$ and $I(L^*)$ are equal to the complement of $V(L)$, and it follows that $I(L) = I(L^*)$. Applying this to L^* instead of L shows that both $I(L)$ and $I(L^*)$ are equal to the complement of $V(L^*)$. Therefore $V(L) = V(L^*),$ and $L(x) + ax$ is a PP if and only if $L^*(x) + ax$ is a PP.

3 Application to Semifields

We now present an alternative proof of a result of Lavrauw and Sheekey [\[6](#page-4-5)].

A finite *semifield* is a nonassociative division algebra of finite dimension over \mathbb{F}_q . There are many constructions for semifields, many of which use q-linearized polynomials. In [\[6](#page-4-5)] a particular class of semifields were studied, namely those of *BEL-rank two*. These are those semifields whose multiplication can be written in the form

$$
x \circ y = xL(y) - M(x)y
$$

for some q-linearized polynomials $L(x)$ and $M(x)$. As noted and studied in [\[7,](#page-4-6)[9\]](#page-4-7), the condition for the pair (L, M) to defines a semifield is equivalent to the condition $I(L) \cap I(M) = \emptyset$, and equivalent to the condition that the sets of points \mathcal{L}_L and \mathcal{L}_M in PG(1, q^n) are disjoint. In [\[6](#page-4-5)] it was shown that if the pair (L, M) define a semifield, then so do the pairs (L^*, M) , (L, M^*) , and (L^*, M^*) (as well as the obvious fact that (M, L) also defines a semifield, the dual or opposite semifield). The proof of this was an application of the *switching* operation defined in [\[1](#page-4-8)]. In fact we can now see that this is an immediate consequence of the main theorem.

Corollary 1. Let $L(x)$ and $M(x)$ be q-linearized polynomials. Suppose $I(L)$ and $I(M)$ are disjoint, so that $xL(y) - M(x)y$ defines a semifield multiplication law. *Then*

1. $xL^*(y) - M(x)y$ *defines a semifield.* 2. $xL^*(y) - M^*(x)y$ *defines a semifield, 3.* $xL(y) - M^*(x)y$ defines a semifield.

Proof. If $I(L) \cap I(M) = \emptyset$ then $x * y = xL(y) - M(x)y$ defines a semifield multiplication law. By Theorem [3](#page-2-1) we have $I(L) = I(L^*)$ and $I(M) = I(M^*)$. Since $I(L) \cap I(M) = \emptyset$ we also get $I(L^*) \cap I(M) = \emptyset$ and $I(L^*) \cap I(M^*) = \emptyset$ and $I(L) \cap I(M^*) = \emptyset$. The result follows.

Note that the main theorem is in fact stronger than the result of $[6]$, in which it was shown that if $I(L)$ and $I(M)$ are disjoint, then (for example) $I(L^*)$ and $I(M)$ are disjoint, which does not necessarily imply that $I(L) = I(L^*)$.

4 A Criterion for Planarity

Assume q is odd. A function $f : \mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$ is said to be *planar* if the functions $x \mapsto f(x+a) - f(x)$ are bijective for all nonzero $a \in \mathbb{F}_{q^n}$. The term PN (perfect nonlinear) is also used instead of the word 'planar'.

Sometimes a polynomial $xL(x)$ will be planar, where $L(x)$ is a q-linearized polynomial. For example, x^2 is planar. We present a criterion for the planarity of $xL(x)$.

Theorem 4. Let $L(x)$ be a q-linearized polynomial. The polynomial $xL(x)$ is *planar if and only if* $L^*(bx) + bL(x)$ *is a PP for all nonzero* $b \in \mathbb{F}_{q^n}$ *.*

Proof. First,

$$
xL(x) \text{ is PN} \iff (x+u)L(x+u) - xL(x) \text{ is a PP for all nonzero } u
$$

$$
\iff uL(x) + xL(u) + uL(u) \text{ is a PP for all nonzero } u
$$

$$
\iff uL(x) + xL(u) \text{ is a PP for all nonzero } u.
$$

By Theorem [2,](#page-1-0) $uL(x) + xL(u)$ is a PP if and only if

$$
\sum_{x \in \mathbb{F}_{q^n}} \zeta^{\text{Tr}(b(uL(x) + xL(u)))} = 0
$$

for all nonzero $b \in \mathbb{F}_{q^n}$. However

$$
\sum_{x \in \mathbb{F}_{q^n}} \zeta^{\text{Tr}(b u L(x) + b x L(u))} = \sum_{x \in \mathbb{F}_{q^n}} \zeta^{\text{Tr}(L^*(bu)x + bx L(u))}
$$

so $uL(x) + xL(u)$ is a PP if and only if $L^*(bu) + bL(u) \neq 0$ for all nonzero b. By Lemma [1](#page-2-0) we are done.

References

- 1. Ball, S., Ebert, G., Lavrauw, M.: A geometric construction of finite semifields. J. Algebra **311**, 117–129 (2007)
- 2. Bartoli, D., Giulietti, M., Marino, G., Polverino, O.: Maximum scattered linear sets and complete caps in Galois spaces. Combinatorica **38**, 255–278 (2018)
- 3. Csajbók, B., Marino, G., Polverino, O.: A Carlitz type result for linearized polynomials. Ars Math. Contemp. **16**(2), 585–608 (2019)
- 4. Csajbók, B., Marino, G., Polverino, O.: Classes and equivalence of linear sets in PG(1*, qⁿ*). J. Comb. Theory Ser. A **157**, 402–426 (2018)
- 5. Csajbók, B., Zanella, C.: On the equivalence of linear sets. Des. Codes Cryptogr. **81**, 269–281 (2016)
- 6. Lavrauw, M., Sheekey, J.: The BEL-rank of finite semifields. Des. Codes Cryptogr. **84**, 345–358 (2017)
- 7. Sheekey, J., Van de Voorde, G.: Rank-metric codes, linear sets, and their duality. Des. Codes Cryptogr. **88**, 655–675 (2020)
- 8. Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley (1983)
- 9. Zini, G., Zullo, F.: On the intersection problem for linear sets in the projective line. [arXiv:2004.09441](http://arxiv.org/abs/2004.09441)