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Abstract. We consider rational functions of the form V (x)/U(x), where
both V (x) and U(x) are relatively prime polynomials over the finite field
Fq. Polynomials that permute the elements of a field, called permuta-
tion polynomials (PPs), have been the subject of research for decades.
Let P1(Fq) denote Fq ∪ {∞}. If the rational function, V (x)/U(x), per-
mutes the elements of P1(Fq), it is called a permutation rational function
(PRF). Let Nd(q) denote the number of PPs of degree d over Fq, and let
Nv,u(q) denote the number of PRFs with a numerator of degree v and a
denominator of degree u. It follows that Nd,0(q) = Nd(q), so PRFs are
a generalization of PPs. The number of monic degree 3 PRFs is known
[11]. We develop efficient computational techniques for Nv,u(q), and use
them to show N4,3(q) = (q+1)q2(q−1)2/3, for all prime powers q ≤ 307,
N5,4(q) > (q+1)q3(q−1)2/2, for all prime powers q ≤ 97, and give a for-
mula for N4,4(q). We conjecture that these are true for all prime powers q.
Let M(n, D) denote the maximum number of permutations on n symbols
with pairwise Hamming distance D. Computing improved lower bounds
for M(n, D) is the subject of much current research with applications
in error correcting codes. Using PRFs, we obtain significantly improved
lower bounds on M(q, q − d) and M(q + 1, q − d), for d ∈ {5, 7, 9}.

Keywords: Hamming distance · Permutation array · Rational
functions · Permutation polynomials

1 Introduction

Permutation arrays (PAs) with large Hamming distance have been the subject
of many recent papers with applications in the design of error correcting codes.
New lower bounds for the size of such permutation arrays are given, for example
[1–7,12,14,15,19,20,22].

Let X be a set of n symbols, and let π and σ be permutations over X.
The Hamming distance between π and σ, denoted by hd(π, σ), is the number
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of positions x ∈ X such that π(x) �= σ(x). Define the Hamming distance of a
PA A, by hd(A) = min{hd(π, σ) | π, σ ∈ A, π �= σ}. Let M(n,D) denote the
maximum number of permutations in any PA A on n symbols with Hamming
distance D.

Let Fq denote the finite field with q = pm elements, where p is prime and
m ≥ 1. The prime p is called the characteristic of the field. A polynomial V (x)
over Fq is a permutation polynomial (PP ) if it permutes the elements of Fq.
Permutation polynomials have been studied for many decades, for example [2,8–
10,13,16,17,21].

In this paper, we focus on permutation rational functions (PRFs), defined
as follows:

Definition 1. Let V (x) and U(x) be polynomials over Fq, such that gcd(V (x),
U(x)) = 1. Let P1(Fq) denote Fq ∪ {∞}. If the rational function V (x)/U(x)
permutes the elements of P1(Fq), then it is called a permutation rational
function (PRF).

Yang et al. [23] used PRFs to compute, for example, an improved lower bound
for M(19, 14). Ferraguti and Micheli [11] enumerated all PRFs of degree 3.

Let a ∈ Fq and a′ ∈ Fq\{0}. We use these conventions to evaluate expressions
involving ∞:

a/∞ = 0, a′/0 = ∞. (1)

Let W (x) = V (x)
U(x) be a PRF , where V (x) has degree v, U(x) has degree u, and

their high order coefficients are av and bu, respectively. We use Eq. 1 to evaluate
W (x) at ∞:

W (∞) = W (1/x) when x = 0. (2)

Specifically, Eq. 2 implies that

W (∞) =

⎧
⎪⎨

⎪⎩

∞, when v > u

0, when v < u

av/bv, when v = u.

(3)

Observe that when v > u, PRFs over P1(Fq) can be viewed as permutations of
Fq by eliminating ∞ from the domain.

Example. Let V (x) = x3 + x and U(x) = x2 + 5 be polynomials over F7, where
our computations are based on the primitive polynomial x + 4. Observe that
V (0) = 0, V (1) = 3, V (2) = 3, V (3) = 2, V (4) = 6, V (5) = 6, V (6) = 5 and
U(0) = 5, U(1) = 6, U(2) = 4, U(3) = 1, U(4) = 6, U(5) = 4, U(6) = 1. Let
W (x) be the rational function defined by W (x) = V (x)/U(x) = (x3+x)/(x2+5).
Then

W (x) =
(

0 1 2 3 4 5 6 ∞
0
5

3
6

3
4

2
1

6
6

6
4

5
1

1
0

)

=
(

0 1 2 3 4 5 6 ∞
0 4 6 2 1 3 5 ∞

)

.

Clearly W (x) is a permutation of the elements of P1(F7). Hence W (x) is a PRF .
Observe also that when W (x) is restricted to F7, the result is a permutation of
the elements of F7. Also observe that W (1/x) is a PRF :
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W (1/x) =
(

0 1 2 3 4 5 6 ∞
∞ 4 5 3 1 2 6 0

)

In general, many of the same concepts and techniques discussed for polyno-
mials over finite fields apply to PRFs. Let Nd(q) be the number of PPs of degree
d over Fq [17]. We generalize this notion by defining Nv,u(q) for PRFs.

Definition 2. Nv,u(q) is the number of PRFs V (x)/U(x), where V (x) has
degree v, and U(x) has degree u.

Note that Nd(q) is the same as Nd,0(q). Note also that Nu,v(q) = Nv,u(q),
because V (x)

U(x) is a PRF if and only if U(x)
V (x) is also a PRF . That is, if (a0, a1, . . . , aq)

is a permutation of P 1(Fq), then (a−1
0 , a−1

1 , . . . , a−1
q ) is also a permutation of

P 1(Fq).
We compute values of Nv,u(q), for many values of v, u and q, and use the

computed values to give significantly improved lower bounds for M(q,D) and
M(q+1,D). We show that the Hamming distance between permutations defined
by PRFs, V (x)

U(x) and R(x)
S(x) , where V (x) is of degree v, U(x) is of degree u, R(x)

is of degree r, and S(x) is of degree s, is at least q − max{v + s, u + r}. In
this paper we focus on PRFs with numerators of degree v and denominators of
degree either v or v −1; however, Nv,u(q) is computed also for other pairs of v, u
for the sake of computing M(q,D).

Definition 3. Define Td(q) =
∑

v,u Nv,u(q), for all v, u ≤ (d + 1)/2.

We obtain improved lower bounds for M(q, q−d) and M(q+1, q−d) by showing
that M(q + 1, q − d) ≥ Td(q). In addition, by computation, we show that:

N4,3(q) = (q + 1)q2(q − 1)2/3, q ≤ 307,
N5,4(q) > (q + 1)q3(q − 1)2/2, q ≤ 97, and
N4,4(q) = (q + 1)q2(q − 1)3/3, for odd q ≤ 307.

Based on our experimental evidence, we conjecture that these formulas are valid
for all prime powers q. We have also computed N3,2(q) and N3,3(q), not included
in the above list as Ferraguti et al. [11], described all PRFs of degree 3. However,
we do use the results for degree 3 PRFs to give improved lower bounds for
M(q, q − d) and M(q + 1, q − d) for d ∈ {5, 7, 9}.

Our paper is organized as follows. In Sect. 2 we discuss Hamming distance
properties of PRFs, and give proofs of our new lower bounds for M(q, q−d) and
M(q + 1, q − d). In Sect. 3 we consider various forms of normalization that are
useful for speeding up the search for PRFs. In Sect. 4 we discuss functions that
map PRFs into PRFs that are also useful for speeding up our computations. In
Sect. 5 we give formulas and compute values for N4,3(q), N4,4(q), and N5,4(q).
The formulas are verified computationally and conjectured to be valid for all
prime powers q. In Tables 3 and 5, we list new results, derived from PRFs, for
M(q,D), for various q and D. Table 3 shows new results for M(q, q − 5) and
M(q, q − 7), for 16 ≤ q ≤ 149. Table 4 shows new results for N5,4(q) and values
obtained by our formula given in Conjecture 2 (our 5/4 conjecture). Table 5
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shows new results for M(q, q − 9), for 13 ≤ q ≤ 97. Tables 6 and 7 give new
results for M(q + 1, q − 5) and M(q + 1, q − 7), respectively. We have improved
lower bounds for M(q,D) for several other values of q and D, but they are not
included here due to space restrictions.

Notation. We use the following notation throughout this paper. Fq is a finite
field where q = pm for some m ≥ 1. We use the convention that t denotes
a generator of the group of non-zero elements of Fq. Using this notation, the
elements of Fq are 0, t0 = 1, t1 = 2, . . . , tq−2 = q − 1. Lidl and Niederreiter
[18] give this as one way to represent the elements of a finite field. Another
representation lists the elements of Fpm by degree m polynomials with coefficients
from Fp. PRFs can easily be converted from one notation to the other. As a
primitive polynomial is needed to do the appropriate arithmetic, we give explicit
primitive polynomials for our computations and results. For notational clarity, we
let V, U, R and S denote polynomials of degree v, u, r and s, with coefficients
ai, bi, ci and di respectively, That is, V (x) =

∑v
i=0 aix

i, U(x) =
∑u

i=0 bix
i,

R(x) =
∑r

i=0 cix
i, and S(x) =

∑s
i=0 dix

i, Lastly, we let W , Y , and Z denote
PRFs. So if W (x) = V (x)

U(x) , then W (x) =
∑v

i=0 aix
i/

∑u
i=0 bix

i.

2 Hamming Distance of PRFs

Recall that by Definition 1, gcd(V (x), U(x)) = 1 for any PRF . This property is
implicit in our counting arguments for PRFs. For example, see Corollary 5 and
Corollary 7.

We now discuss properties of PRFs that are useful for improving lower
bounds for M(q,D) and M(q + 1,D). Some similar ideas were given in [23]. For
the proofs in this section, we consider the PRFs W (x) = V (x)

U(x) and Y (x) = R(x)
S(x)

that permute the elements of P1(Fq) such that V (x)S(x) − U(x)R(x) is not a
constant. For this discussion, the degrees of the PRFs need be not be the same.

Theorem 4. Let v+s ≤ d and u+r ≤ d, for some d. Let π and σ be the permuta-
tions of P1(Fq) generated by W (x) and Y (x) respectively. Then hd(π, σ) ≥ q−d.

Proof. We consider the values of the PRFs for elements of Fq, and simultaneously
note that V (∞)

U(∞) and R(∞)
S(∞) may be the same. Assume that for some a ∈ Fq,

V (a)
U(a)

= R(a)
S(a) . Then V (a)S(a) = U(a)R(a), so V (a)S(a)−U(a)R(a) = 0. Observe that

V (x)S(x) and U(x)R(x) are polynomials of degree v + s ≤ d and u + r ≤ d,
respectively. Hence, V (x)S(x) − U(x)R(x) is a polynomial of degree at most
d and has at most d roots. That is, there are at most d values a ∈ Fq such
that V (a)S(a) − U(a)R(a) = 0. Note also that if V (a)

U(a) = R(a)
S(a) = ∞, then

U(a) = S(a) = 0. So, V (a)S(a) − U(a)R(a) = 0, and a is a root. This means
that V (a)

U(a) = R(a)
S(a) for at most d values a ∈ Fq. By including the values of the PRFs

at ∞, there may be d+1 agreements. Thus, there are at least q+1−(d+1) = q−d
disagreements. Hence, hd(π, σ) ≥ q − d. �	
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It follows also that the permutations corresponding to different PRFs are
different, because the permutations have non-trivial Hamming distance.

Corollary 5. M(q + 1, q − d) ≥ Td(q).

Proof. Let v, u, r, s ≤ (d + 1)/2, and consider any pair of distinct PRFs W (x) =
V (x)
U(x) and Y (x) = R(x)

S(x) . Observe that, by Eq. 3, W (∞) = av

bu
∈ Fq \ {0} if and

only if v = u, and Y (∞) = cr
ds

∈ Fq\{0} if and only if r = s.

Case 1. v = u = r = s.
For Case 1, observe that W (∞) = Y (∞) if and only if the ratios of the high order
coefficients in the numerator and denominator are the same in W (x) and Y (x).
That is, W (∞) = Y (∞) if and only if av/bu = cr/ds. Call this property (=).
Observe that the coefficients of the high order terms in the polynomials V (x)S(x)
and U(x)R(x) are avdsx

v+s and bucrx
u+r, respectively, where v + s = u + r. So

the high order term of the polynomial V (x)S(x)−U(x)R(x) is (avds−bucr)xv+s.
If (=) is true, then the polynomial V (x)S(x) − U(x)R(x) is of degree at most d,
not d + 1, since the high order terms, if they are of the same degree, disappear
through subtraction. It follows that, if W (x) and Y (x) have the same value at
∞, then there are at most d agreements when x ∈ Fq, hence, at most d + 1
agreements counting the agreement at infinity. On the other hand, if (=) is not
true, then the polynomial V (x)S(x) − U(x)R(x) is of degree at most at d + 1,
so it too has at most d + 1 agreements. Either way, the permutations defined by
these PRFs have Hamming distance at least q + 1 − (d + 1) = q − d.

Case 2. v = u and r > s.
It follows that W (∞) ∈ Fq \ {0} and Y (∞) = ∞, so W (∞) �= Y (∞). Further-
more, V (x)S(x) − U(x)R(x) is of degree at most d + 1, so it has at most d + 1
roots. That is, there are at most d+1 values a ∈ Fq such that W (a) = Y (a). Con-
sequently, there are at least q+1−(d+1) = q−d positions b where W (b) �= Y (b).
So, the permutations defined by these PRFs have Hamming distance at least
q − d.

Case 3. v = u and r < s.
This is similar to Case 2. The difference is that Y (∞) = 0.

Case 4. v < u and r > s.
This is similar to Case 2. The difference is that W (∞) = 0.

Case 5. v < u and r < s.
It follows that W (∞) = Y (∞) = 0. Since, V (x)S(x) − U(x)R(x) is of degree
at most d, it has at most d roots. Hence, there are at most d values a ∈ Fq

such that W (a) = Y (a), and counting the agreement at infinity, the result is a
total of d + 1 agreements. That is, at least q + 1 − (d + 1) = q − d positions b
where W (b) �= Y (b). So, the permutations defined by these PRFs have Hamming
distance at least q − d. �	
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Definition 6. Define Sd(q) = Nt,t(q)/(q − 1) +
∑

v,u Nv,u(q), where t = (d −
3)/2, and in the sum, v and u are evaluated as

v, u =

⎧
⎪⎨

⎪⎩

v ≤ (d + 1)/2, u ≤ (d − 1)/2 when v > u,

v ≤ (d − 1)/2, u ≤ (d − 3)/2 when v < u,

u, v ≤ (d − 5)/2 when v = u.

Corollary 7. M(q, q − d) ≥ Sd(q).

Proof. Consider the PRFs W (x) = V (x)
U(x) and Y (x) = R(x)

S(x) . Observe that by the
definition of Sd(q), the largest values for v and s are (d + 1)/2 and (d − 1)/2,
respectively, and similarly for u and r. Let v, r ≤ (d + 1)/2 and u, s ≤ (d − 1)/2.
It follows that V (x)S(x) − U(x)R(x) is of degree ≤ d. As seen in the proof of
Theorem 4, this means that permutations defined by W (x) and Y (x) have at
most d agreements.

As we want to consider permutations on Fq (not P1(Fq)) we need to eliminate
occurrences of the symbol ∞ in the permutations corresponding to W (x) and
Y (x) using an operation called contraction [1]. If W (∞) = ∞, then we can simply
eliminate the symbol ∞ in the corresponding permutation, which of course makes
no new agreements. If W (∞) = a, with a ∈ Fq, then we exchange the symbol
∞ wherever it occurs in the permutation with a. This moves the symbol ∞ to
the last position in the permutation, so it can be eliminated. One, or at most
two, new agreements could be created, the latter situation arising when v = u.
Consequently, if W (∞) �= ∞ (so an exchange with ∞ is required), stronger
conditions are needed to ensure that there are a total of at most d agreements.
The terms in the sum Sd(q) are calculated to ensure that the Hamming distance
between permutations (after all needed contractions are performed) is at least
q − d.

We do a proof by cases based on the values of v, u, r, s and t.

Case 1. v = u = t = (d − 3)/2.
Suppose that U(x) and V (x) are monic polynomials. Then the related permu-
tations always end with the same symbol, namely 1. Contraction applied to the
permutation associated with W (x) creates at most one new agreement with any
other permutation that already has the symbol 1 in the exchanged position.
The number of such permutations produced by PRFs with U(x) and V (x) both
monic and both of degree t is Nt,t(q)/(q − 1).

Case 2. v and u have their maximum values, and r = s ≤ (d − 5)/2.
It follows that the polynomial V (x)S(x) − U(x)R(x) has degree at most d − 2.
Then permutations defined by W (x) and Y (x) have at most d − 2 agreements.
Since contraction creates at most 2 new agreements, it follows that there are
at most d agreements. Therefore, the permutations have Hamming distance at
least q − d.

Case 3. r ≤ v ≤ (d + 1)/2 and s ≤ u ≤ (d − 1)/2, v > u and r > s.
It follows that the polynomial V (x)S(x)−U(x)R(x) has degree at most d, so

permutations defined by W (x) and Y (x) have at most d agreements. Note that
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W (∞) = ∞ and Y (∞) = ∞. Hence the permutations defined by W (x) and Y (x)
make no new agreements through contraction, i.e., the ∞ simply disappears in
each permutation. Therefore, the permutations have Hamming distance at least
q − d.

Case 4. u < v ≤ (d + 1)/2, and r < s ≤ (d − 3)/2.
It follows that the polynomial V (x)S(x) − U(x)R(x) has degree ≤ d − 1, so
permutations defined by W (x) and Y (x) have at most d − 1 agreements. Since
W (∞) = ∞ and Y (∞) = 0, at most one new agreement is created through con-
traction. Therefore, the total number of agreements is d, and the permutations
have Hamming distance at least q − d.

Case 5. v < u ≤ (d − 3)/2 and r < s ≤ (d − 3)/2.
It follows that the polynomial V (x)S(x) − U(x)R(x) has degree at most

d − 4, so permutations defined by W (x) and Y (x) have at most d−4 agreements.
Contraction of these permutations makes at most 2 new agreements. Therefore,
the permutations have Hamming distance at least q − d.

Hence the Hamming distance between permutations defined by W (x) and
Y (x), with the stated numerator/denominator degree bounds given in the sum
in the definition of Sd(q), is at most q − d. It follows that total number of
permutations on q symbols with pairwise Hamming distance q − d is at least as
large as Sd(q). �	

Examples. (Note: Some of the terms in the sums are not shown because they
are zero. Also, some terms are written as 2Nu,v to denote Nu,v + Nv,u when
applicable).
(a) M(q, q−5) : S5(q) = N3,2(q)+N3,0(q)+N2,0(q)+N1,1(q)/(q−1)+2N1,0(q).
(b) M(q, q − 7) : S7(q) = N4,3(q) + N3,2(q) + N4,0(q) + N3,0(q) + 2N2,0(q) +
N2,2(q)/(q − 1) + N1,1(q) + 2N1,0(q).
(c) M(q, q − 9) : S9(q) = N5,4(q) + N5,3(q) + N5,0(q) + N4,3(q) + N4,0(q) +
N3,3(q)/(q − 1) + 2N3,2(q) + 2N3,0(q) + N2,2(q) + 2N2,0(q) + N1,1(q) + 2N1,0(q).

3 Normalization of PRFs

The goal of normalization is to enable a more efficient search for PRFs. That is,
normalization indicates that certain coefficients can be fixed at a specified value
and a search algorithm need not try all possibilities. Normalization has been
discussed previously in the context of PPs [2,17,21]. Equivalence relations based
on normalization [2] allow partitioning of PPs of degree d in Fq into equivalence
classes, each represented by a normalized permutation polynomial (nPP).

We use normalization to map PRFs to normalized PRFs (nPRFs). Nor-
malization operations [18], listed in Table 1, are essentially the same for PPs
and PRFs. We point out a few subtleties that arise due to the presence of a
denominator in PRFs. Let a, b, c, r, y, z ∈ Fq. Multiplying a PRF W (x) = V (x)

U(x)

by a nonzero constant a is equivalent to multiplying by a = y/z, for y, z �= 0.
Addition of a constant b to the variable is accomplished by replacing x by x + b
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Table 1. Normalization operations for PPs and PRFs in Fq.

Normalization operation For PPs V (x) For PRFs W (x) = V (x)
U(x)

Multiplication by a nonzero
constant

aV (x) : a ∈ Fq
yV (x)
zU(x)

: y, z ∈ Fq

Addition to the variable V (x + b) : b ∈ Fq
V (x+b)
U(x+b)

: b ∈ Fq

Addition of a constant V (x) + c : c ∈ Fq
V (x)+c U(x)

U(x)
: c ∈ Fq

Multiplication of the variable
by a constant

V (rx) : r ∈ Fq
V (rx)
U(rx)

: r ∈ Fq

in both numerator and denominator. Adding a constant c to W (x) equates to
computing V (x)

U(x) + c = V (x)+c U(x)
U(x) . Multiplication of the variable by a constant

is accomplished by replacing the argument x by rx, for some constant r �= 0.
Note that if W (x) permutes the elements of P1(Fq), then so does W (rx). That
is, if W (x) is a PRF , then W (rx) is also a PRF . In fact, all of the normalization
operations in Table 1 map PRFs to PRFs.

We now discuss the usage of these operations to map PRFs to nPRFs. In
Table 2 we define define three types of normalized PRFs and list the restrictions
on each. The definitions are modeled after the definitions of normalization of
PPs which are described in [2]. Note that normalization of PRFs fixes four
coefficients: av and bu both have the value 1, a0 is 0, and an additional coefficient,
determined by the type of normalization, is zero. In the sections that follow, we
prove that almost all PRFs can be normalized. As explained earlier, this is
useful for an efficient search for PRFs. We use the following in our proofs for
normalization. Let a, b, c ∈ Fq, a �= 0, let x, y ∈ Fq\{0} such that y/z = a. Let
Y (x) = aW (x + b) + c. Then

Y (x) = aW (x + b) + c =
yV (x + b)
zU(x + b)

+
czU(x + b)
zU(x + b)

=
yV (x + b) + czU(x + b)

zU(x + b)
=

V ′(x)
U ′(x)

, where

V ′(x) = yV (x + b) + cU ′(x)

= (yav(x + b)v + yav−1(x + b)v−1 + · · · + ya1(x + b) + ya0)

+ (czbu(x + b)u + czbu−1(x + b)u−1 + · · · + czb1(x + b) + czb0),

(4)

and

U ′(x) = zU(x + b) = zbu(x + b)u + zbu−1(x + b)u−1 + · · · + zb0. (5)

3.1 C-Normalization

As seen in Table 2, c-normalization applies to PRFs when the field characteristic
p does not divide the degree of the denominator. We use nPRFs to define an
equivalence relation on PRFs as follows:
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Table 2. Types of normalization for PRFs W (x) = V (x)
U(x)

, where V (x) =
∑v

i=0 aix
i

and U(x) =
∑u

i=0 bix
i, with field characteristic p. The degrees of V (x) and U(x) are v

and u, respectively.

Normalization type Degree restriction nPRF properties

c-normalization p � u V (x) and U(x) are monic, V (0) = 0, and

v > u bu−1 = 0

m-normalization p | u and p > 2 V (x) and U(x) are monic, V (0) = 0, and

v > u in U(x), either bu−1 = 0 or bu−2 = 0

b-normalization p | u and p = 2 V (x) and U(x) are monic, V (0) = 0, and

v > u if 2i ≤ u ≤ 2i+1 − 3 for some i, then either

br = 0 or br−1 = 0, where r = 2i − 1

Definition 8. Let W (x) = V (x)
U(x) and Y (x) = R(x)

S(x) be PRFs. We say that W (x)
and Y (x) are related by Rc if there is a sequence of the first three normalization
operations in Table 1 that converts W (x) into Y (x).

It is easily seen that Rc is an equivalence relation on PRFs. That is, observe
that each of the three operations has an inverse. For example, the inverse of
multiplying by a is multiplying by the inverse of a. So, W (x) is related to itself
by the empty sequence of operations. If W (x) and Y (x) are Rc related, then there
is some sequence that transforms W (x) into Y (x). A sequence formed by taking
the inverse of each operation in backwards order transforms Y (x) into W (x). So,
Y (x) and W (x) are also Rc related. That is, Rc is symmetric. Finally, if there
is a sequence of operations that transforms W (x) into Y (x) and a sequence that
transforms Y (x) into P (x)

Q(x) , then a concatenation of these sequences transforms

W (x) into P (x)
Q(x) . So, Rc is transitive.

The equivalence class under the relation Rc containing W (x), denoted by
[W ], is the set

[W ] = {aW (x + b) + c | a, b, c ∈ Fq and a �= 0}

= {a
V (x + b)
U(x + b)

+ c | a, b, c ∈ Fq and a �= 0}.

We show that [W ] contains exactly q2(q − 1) PRFs. Theorem 9 below is nearly
identical to one proved (for PPs) in [2].

Theorem 9 [2]. Let W (x) = V (x)
U(x) be a PRF with v > u. Then there is a unique

triple (a, b, c) such that Y (x) = aW (x + b) + c = V ′(x)
U ′(x) is c-normalized.

Lemma 10. All q2(q − 1) PRFs in [W ] are different.

Proof. Let Y (x) ∈ [W ] be a PRF that is not normalized, and let W (x) be the
nPRF that represents [W ]. That is, let Y (x) = aW (x + b) + c. We compute the
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triple (a′, b′, c′) such that Y ′(x) = a′Y (x + b′) + c′ is normalized as follows.

Y ′(x) = a′Y (x + b′) + c′ = a′(aW (x + b) + b′) + c) + c′

= a′aW (x + (b + b′)) + a′c + c′ = W (x),

where the last equality is achieved by letting a′ = a−1, b′ = −b, and c′ = −(a′c).
By Theorem 9, the triple (a′, b′, c′) is unique for normalizing the specific PRF
Y (x). By the uniqueness properties of inverses in a field, a, b and c are are
unique as well. Thus each triple in the set {(a, b, c) | a, b, c ∈ Fq and a �= 0} is
unique. Since there are q2(q − 1) such triples, the claim follows. �	

Note that Theorem 9 implies that each equivalence class of Rc contains one
and only one nPRF . By Lemma 10, each equivalence class contains exactly
q2(q − 1) members (including the representative nPRF ). Equivalence classes by
definition are disjoint, so, if the number of nPRFs is k, there are kq2(q−1) PRFs.
Note that c-normalization indicates that we can fix four coefficients, namely the
first coefficient of both V (x) and U(x), the second coefficient of U(x), and the
last coefficient of V (x). There are, in general, q possible values for each coeffi-
cient. Furthermore, V (x) and U(x) are of degrees v and u, respectively, so there
are v + u + 2 coefficients altogether. This means a naive search program (which
exhaustively tries all combinations of coefficients) needs to examine qu+v+2 ratio-
nal functions. Normalization allows the number to be reduced to qu+v−2.

3.2 M-Normalization

As seen in Table 2, m-normalization is used when p | u and p �= 2. See Eqs. 4 and
5 for the definitions of V ′(x) and U ′(x).

Theorem 11. Let v, u ∈ Fpm , where v > u and p | u and p �= 2. Any PRF
W (x) = V (x)

U(x) can be transformed to an m-normalized PRF Y (x) = V ′(x)
U ′(x) by the

normalization operations.

Proof. For m-normalization, we need to show that

(A) either the coefficient of xu−1, or the coefficient of xu−2 in U ′(x) is zero,
(B) U ′(x) is monic,
(C) V ′(x) is monic, and
(D) V ′(0), the constant term of V ′(x), is zero.

To show that (A) holds, we must show that either zbu−1 = 0 or zbu−2 = 0.

Case 1. bu−1 = 0. So, zbu−1 = 0.

Case 2. bu−1 �= 0. Consider zbu−2 in U ′(x). Since u is a multiple of p, the
expansion of (x+b)u will derive nonzero coefficients only for terms whose degrees
are multiples of p. Since p > 2, this means that p � (u − 2), so (x + b)u will have
a coefficient of 0 for the degree u − 2 term. Hence bu−2 is calculated solely by
the expansion of (x + b)u−1 and (x + b)u−2.
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The expansion of (x+b)u−1 will produce a term of degree u−2 with coefficient
zbu−1b

′ where b′ =
∑u−1

1 b. The expansion of (x + b)u−2 will produce a term of
degree u − 2 with coefficient zbu−2. Therefore the coefficient of xu−2 in U ′(x)
is zbu−1b

′ + zbu−2 = z(bu−1b
′ + bu−2), which is zero if bu−1b

′ + bu−2 = 0. Since
bu−1 �= 0, and u − 1 is not a multiple of p, we can choose b such that b′ is the
additive inverse of bu−2/bu−1, making the coefficient of xu−2 in U ′(x) equal to
zero.

It follows that, in U ′(x), either bu−1 = 0 or bu−2 = 0, so (A) holds.
To show that (B) holds, observe that the degree u term of U ′(x) has the

coefficient zbu. If we choose z to be the multiplicative inverse of bu, then U ′(x)
will be monic. To show that (C) holds, observe that every term in U ′(x) has
smaller degree than v. Hence none of them affect the coefficient of degree v term
in V ′(x). This means that the coefficient of xv term of V ′(x) is yav. Since av �= 0,
we choose y = a−1

v , making V ′(x) monic. To show that (D) holds, observe that
the coefficient of x0 in V ′(x) is y

∑v
j=0 ajb

j + cz
∑u

j=0 bjb
j . We choose c to be

(−y
∑v

j=0 ajb
j)/(z

∑u
j=0 bjb

j), making the coefficient of x0 in V ′(x) equal to
zero.

It follows that Y (x) is m-normalized. �	

3.3 B-Normalization

In this section, we consider the remaining case, namely, p | u and p = 2, and
show that b-normalization can be achieved except when u = 2i − 2, for some
i ≥ 2.

We begin with a brief description of the Gap Lemma for polynomials (Lemma
12 below), and its application for normalization of polynomials (Lemma 13
below). Both were proven in [2]. We use these lemmas in the proof of Theo-
rem 14 which describes b-normalization for PRFs.

We say that the integer interval [r, s] has a [t, w] gap, if for all d ∈ [r, s],
the expansion of (x + b)d, does not include any nonzero xe monomials, where
e ∈ [t, w].

Lemma 12 [Gap Lemma [2]]. For all i > 1, the expansion of (x + b)d, for
d ∈ [2i, 2i+1 − 3], has a [2i − 2, 2i − 1] gap.

Lemma 13 [2]. Let i > 1, m > 2 and let d ∈ [2i, 2i+1 − 3] be even. For any
PP P (x) over F2m , there is a constant b in F2m such that in the PP P (x + b),
either the x2i−1 term or the x2i−2 term is zero.

For example, let d = 23, and let P (x) = a8x
8 + a7x

7 + a6x
6 + · · · + a1x + a0.

Adding b to the argument gives:

P (x + b) = a8(x + b)8 + a7(x + b)7 + a6(x + b)6 + · · · + a1x + a0

= a8(x8 + b8) + a7(x7 + bx6 + b2x5 + . . . ) + a6(x6 + b2x4 + . . . ) + . . .

= a8x
8 + a8b

8 + (a7x
7 + a7bx

6 + . . . ) + (a6x
6 + a6b

2x4 + . . . ) + . . .
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We want to solve for the value of b that makes the coefficient of the x6 term of
P (x + b) zero. So a7bx

6 + a6x
6 = 0 is satisfied by b = −a7/a6.

We now use Lemma 13 in our proof that certain PRFs can be b-normalized.

Theorem 14. Any PRF V (x)
U(x) in F2m with v > u,m > 2, and 2 | u, can be

transformed to a b-normalized PRF V ′(x)
U ′(x) by the normalization operations, except

when u = 2i − 2, for some i ≥ 2.

Proof. See Eqs. 4 and 5 for the definitions of V ′(x) and U ′(x). Observe first that
the degree u term of U ′(x) has the coefficient zbu. Noting that bu �= 0, we choose
z = b−1

u , making U ′(x) monic. Observe further that every term in U ′(x) has
smaller degree than v. Hence none of them affect the coefficient of degree v term
in V ′(x). This means that the coefficient of xv term of V ′(x) is yav. Noting that
av �= 0, we choose y = a−1

v , making V ′(x) monic. To see that V ′(0) = 0, observe
that the coefficient of x0 in V ′(x) is y

∑v
j=0 ajb

j + cz
∑u

j=0 bjb
j . We choose c

to be (−y
∑v

j=0 ajb
j)/(z

∑u
j=0 bjb

j), making the coefficient of x0 in V ′(x) equal
to zero. Finally, by Lemma 13, there is a b such that in U ′(x), the coefficient
of either the degree 2i − 1 term or degree 2i − 2 term equal to 0, except when
u = 2i − 2, for some i ≥ 2. Hence V ′(x)

U ′(x) is b-normalized. �	

4 Mapping nPRFs to nPRFs

We are interested in methods to optimize the search for PRFs. In [2] we described
several operations on permutation polynomials that allow certain coefficients
of PPs to be fixed, making the search space smaller. These operations include
normalization and the F -map and the G-map. The F -map allows an additional
coefficient to be fixed. The G-map partitions nPRFs into disjoint cycles, and each
cycle can be described by a representative nPRF . We show that the F -map and
the G-map can be extended to nPRFs, allowing again faster searches.

Definition 15. Define the F -map on a polynomial V (x) over Fq [2] by

F (V (x)) = t0avx
v + t1av−1x

v−1 + · · · + tv−1a1x + tva0.

Define the F -map on a PRF W (x) = V (x)/U(x) over Fq by

F (W (x)) =
F (V (x))
F (U(x))

=
t0avx

v + t1av−1x
v−1 + · · · + tv−1a1x + tva0

t0buxu + t1bu−1xu−1 + · · · + tu−1b1x + tub0
. (6)

It is shown in [2] that F (V (x)) = tvV (x/t). So for a PRF W (x), we have

F (W (x)) = W ′(x) =
tvV (x/t)
tuU(x/t)

=
tv−uV (x/t)

U(x/t)
= tv−uW (x/t).

Thus, if W (x) is a PRF , then so is W ′(x) = tv−uW (x/t). That is, if W (x)
permutes the elements of P1(Fq), then so does W ′(x). Consequently, the F -map
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maps PRFs to PRFs. In fact, referring to Eq. 6, we see that the F -map maps
nPRFs to nPRFs , as the first coefficients of both numerator and denominator
map to themselves, and any zero coefficient is mapped to itself.

We use the F -map to fix an additional coefficient in a PRF , resulting in
a total of 5 fixed coefficients for each nPRF . For example, consider search-
ing for nPRFs of the form W (x) = V (x)

U(x) . By the definition of normaliza-
tion, V (x) and U(x) are monic, the coefficient of x0 in V (x) is zero, and one
other coefficient in U(x) is zero, as determined by the type of normalization.
Using the F -map, the coefficient of xv−1 in V (x) can also be fixed to either
0 or 1. That is, if the coefficient of xv−1 is not zero, then consider the cycle,
V (x), F (V (x)), F 2(V (x)), . . . , F i(V (x)), . . . . By the definition of the F -map,
the coefficient of xv−1 in F i(V (x)) is tiav−1, and for some i, tiav−1 = 1. Thus,
if V (x)

U(x) is an nPRF and the coefficient of xv−1 in V (x) is nonzero and is not
equal to 1, then there is also an nPRF where the coefficient of xv−1 in V (x) is
equal to 1. We now discuss the G-map [2] and how it can be applied to PRFs.
The G-map raises each coefficient in a polynomial to the p-th power, where p is
the field characteristic.

Definition 16. Define the G-map on polynomials [2] over Fq by

G(V (x)) = ap
vx

v + ap
v−1x

v−1 + · · · + ap
1x + ap

0

Define the G-map on PRFs over Fq by

G(W (x)) =
G(V (x))
G(U(x))

=
ap
vx

v + ap
v−1x

v−1 + · · · + ap
1x + ap

0

bpuxu + bpu−1x
u−1 + · · · + bp1x + bp0

.

It is shown in [2] that, if V (x) is a PP (nPP), then G(V (x)) is a PP (nPP), and
that G(V (xp)) = V (x)p. Similarly,

G(W (xp)) =
G(V (xp))
G(U(xp))

=
V (x)p

U(x)p
= W (x)p.

Consequently, if W (x) is a PRF , then G(W (x)) is a PRF . That is,
(0p, 1p, . . . , (q − 1)p,∞p) is a permutation of P 1(Fq), and, if W (x) is a PRF ,
then W (x)p is a PRF . This follows from the fact that (x + y)p = xp + yp, when
p is the characteristic of the field.

Iterating the G-map gives a cycle based on orbits of elements in Fq. For exam-
ple, consider the field F23 , when defined by the primitive polynomial x3 +x2 +1,
and the PRF W (x) = x3+x2+2x

x2+4x+1 . We have G(W (x)) = x3+x2+3x
x2+7x+1 , G2(W (x)) =

x3+x2+5x
x2+6x+1 , G3(W (x)) = W (x). Consequently, it is not necessary to search sepa-

rately for cases when the coefficient of x in the numerator is either 3 or 5. It is
sufficient to search with the coefficient 2. In general, cycles partition the elements
of Fq into disjoint sets, so for a chosen coefficient, the search can be limited to
one value in each set.
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5 Results

A basic computational strategy computes Nv,u by considering all possible ratio-
nal functions, V (x)

U(x) , where V (x) and U(x) are polynomials of degree v and u,
respectively. This entails evaluating qu+v+2 different rational functions. We use
a more efficient strategy that implements the normalization theorems in Table 1,
and the F -map and the G-map described in Sect. 4. This fixes five coefficients,
thus requiring at most qu+v−3 different rational functions to be evaluated. This
computational strategy yields equivalence class representatives, which in turn
yield the total number of PRFs, as indicated in Sects. 3 and 4. Our results are
presented in Tables 3 through 7.

We have found several interesting classes of PRFs. Specifically, there are
good classes with degree ratios 3/2, 4/3, and 5/4 for PRFs of Fq, and with
degree ratios 3/3, 4/4, and 5/5 for PRFs of P1(Fq). Note that when the degree
of the numerator is larger than the degree of the denominator, the permutations
of P 1(Fq) end with ∞, and ∞ can just be deleted giving a permutation of Fq.

Theorem 17 below justifies substantial improvements on lower bounds for
M(q, q − 5) and M(q + 1, q − 5), for many prime powers q, as shown in Table 3
and Table 6. As mentioned earlier, Ferraguti et al. [11] have recently given a
complete characterization of monic degree 3 PRFs, which subsumes our results
for degree ratios 3/2 and 3/3. They gave essentially Theorem 17 based on monic
PRFs, hence we omit a proof.

Theorem 17. For all q,

N3,2(q) = q2(q − 1)2/2,

N3,3(q) = q2(q − 1)2(q + 1)/2, if q ≡ 2 (mod 3),

N3,3(q) = q2(q − 1)3/2, if q ≡ 1 (mod 3),

N3,3(q) = (q4 − q3 + q2 − q)/2, if q ≡ 0 (mod 3).

For degree ratios 4/3, 4/4, and 5/4, the number of nPRFs is also predictable.
Formulas for the number of PRFs for ratios 4/3, 4/4, and 5/4 are given in Conjec-
tures 1, 2 and Theorem 18 below. Experimentally, we have verified that N4,3(q)
is exactly (q + 1)q2(q − 1)2/3, for all q ≤ 307. Again, this justifies substantial
improvements on previous lower bounds for M(q, q − 7) for many prime powers
q, as shown in Table 3.
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Table 3. Lower bounds for M(q, q − 5) and M(q, q − 7) using S5(q) and S7(q), respec-
tively. Improved bounds are shown in bold. (* see [23]).

q M(q, q − 5) ≥ Previous M(q, q − 7) ≥ Previous

16 29,792 40,320 381,120 1,377,360

17 42,466 83,504 490,960 1,240,320

19 59,546 65,322∗ 845,766 1,221,624

23 141,220 291,456 2,201,100 10,200,960

25 181,850 192,000 3,316,800 867,000

27 248,562 522,288 4,866,966 1,280,448

29 355,656 58,968 6,971,020 42,033,992

31 435,240 58,968 9,687,810 3,056,919

32 496,000 1,388,800 11,691,712 3,420,416

37 891,108 1,824,480 23,411,232 3,648,348

41 1,416,960 68,880 39,135,320 1,720,944

43 1,636,236 3,341,100 49,547,610 413,280

47 2,445,232 4,879,634 77,330,416 9,655,492

49 2,773,008 117,600 95,081,952 9,433,872

53 3,952,104 7,887,928 140,812,308 15,632,032

59 6,067,206 407,218 240,463,940 12,319,200

61 6,708,780 226,920 283,767,120 13,622,520

64 8,144,640 5,773,824 360,991,078 13,622,032

67 9,790,308 19,854,780 453,303,642 39,705,138

71 12,718,230 357,840 605,882,760 12,355,419

73 13,828,536 28,014,480 695,631,600 56,023,704

79 19,003,608 492,960 1,032,017,922 38,950,002

81 21,280,320 571,704 1,169,529,840 42,787,440

83 23,746,134 47,858,238 1,321,303,228 48,423,136

89 31,390,656 1,401,920 1,872,278,760 63,439,192

97 43,384,604 87,625,920 2,876,904,792 88,529,184

101 52,045,300 1,030,200 3,520,385,300 104,060,300

103 55,209,030 111,458,154 3,881,578,278 222,926,814

107 65,556,760 129,854,358 4,696,631,464 260,934,052

109 69,313,536 1,294,920 5,150,579,616 141,158,052

113 80,112,480 161,604,464 6,166,737,248 163,047,248

121 105,444,240 1,771,440 8,679,213,840 212,601,840

125 122,093,500 123,935,000 10,212,593,500 125,472,500

127 128,064,006 258,112,260 11,053,461,510 258,112,260

128 132,161,280 90,903,592 11,495,251,584 95,861,632

131 145,044,510 2,247,960 12,905,964,110 294,409,790

137 173,612,976 349,704,008 16,142,578,480 701,979,232

139 184,012,926 370,634,604 17,354,972,046 741,250,026

149 243,189,456 6,593,548 24,557,724,656 496,170,000
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Conjecture 1. (4/3 - conjecture) For all q, N4,3(q) = (q + 1)q2(q − 1)2/3.

Conjecture 2. (5/4 - conjecture) N5,4(q) > (q + 1)q3(q − 1)2/2.

The 5/4-conjecture is true for all q ≤ 97. N5,4(q) for q ≤ 97 is shown in
Table 4. This justifies substantial improvements on previous lower bounds on
M(q, q − 9), which are shown in Table 5. We can show the following.

Table 4. Computed results for N5,4(q) and 5/4-conjectured lower bound.

q N5,4(q) (q + 1)q3(q − 1)2/2 q N5,4(q) (q + 1)q3(q − 1)2/2

17 16,189,440 11,319,552 53 11,074,291,488 10,869,212,016

19 24,503,958 22,223,160 59 21,084,006,242 20,726,848,680

23 74,762,512 70,665,936 61 25,753,041,000 25,331,079,600

25 125,820,000 117,000,000 64 34,351,091,712 33,814,609,920

27 193,179,168 86,279,912 67 45,315,700,848 44,544,203,352

29 297,858,652 286,814,640 71 64,037,083,250 63,135,500,400

31 444,126,150 428,990,400 73 75,638,717,568 74,616,572,736

32 553,107,456 519,585,792 79 121,523,765,922 119,985,971,040

37 1,280,989,728 1,247,279,472 81 141,192,720,000 139,450,118,400

41 2,373,572,000 2,315,745,600 83 163,422,731,808 161,477,223,096

43 3,157,263,648 3,085,507,656 89 248,458,577,312 245,667,597,120

47 5,384,729,088 5,272,547,232 97 416,397,477,888 412,148,524,032

49 6,917,645,952 6,776,582,400

Table 5. Lower bounds for M(q, q−9) using S9(q). Improved bounds are shown in bold.
Previous values are obtained by permutation polynomials, except where indicated:
(a, b) = Mathieu group M24 and contraction [3], (a, d) = Mathieu group M24 and
M(n + 1, d) ≥ M(n, d), (c) coset search [5].

n M(q, q − 9) ≥ Previous q M(q, n − 9) ≥ Previous

13 4,926,480 60,635,520(c) 49 6,877,311,504 20,497,680

16 12,629,280 70,804,800(c) 53 11,025,653,600 23,373,636

17 12,342,272 75,176,640(c) 59 20,979,628,398 35,941,256

19 23,218,380 12,421,152 61 25,628,242,320 13,622,520

23 73,414,022 244,823,040(a,b) 64 34,192,366,054 332,236,800

25 121,108,200 244,823,040(a,d) 67 45,036,911,436 39,705,686

27 191,914,893 28,928,802 71 63,766,789,800 605,529,877

29 294,515,648 42,033,992 73 75,367,839,096 56,023,418

31 439,831,410 22,084,310 79 121,056,446,004 38,930,002

32 533,338,880 32,759,808 81 140,641,174,881 3,100,641,122

37 1,274,288,436 3,648,348 83 162,892,864,290 94,909,620

41 2,357,705,000 22,392,560 89 247,603,307,248 125,475,872

43 3,141,656,196 10,125,360 97 415,199,758,776 88,529,184

47 5,359,530,978 42,883,412



250 S. Bereg et al.

Table 6. Lower bounds for M(q + 1, q − 5) using T5(q).

q + 1 M(q + 1, q − 5) ≥ Previous q + 1 M(q + 1, q − 5) ≥ Previous

14 172,536 380,160 50 138,415,200 2,768,309

17 497,730 187,600 54 213,115,968 7,890,428

18 753,984 83,504 60 363,621,720 821,240

20 1,176,480 177,840 62 415,490,520 13,622,520

24 3,363,888 291,456 65 528,877,440 5,515,776

26 4,695,600 218,418 68 665,139,552 19,854,780

28 788,346 522,288 72 914,996,880 28,014,480

30 10,620,960 170,520 74 1,022,533,776 28,014,480

32 13,868,160 1,388,810 80 1,519,302,720 38,930,002

33 17,320,320 1,388,810 82 64,314,000 21,001,679

38 33,760,872 1,824,800 84 1,993,531,848 47,458,238

42 59,374,560 1,419,680 90 2,823,749,280 125,475,872

44 71,835,456 1,632,624 98 4,249,866,432 87,625,920

48 117,163,104 4,879,634

Table 7. Lower bounds for M(q + 1, q − 7) using T7(q).

q + 1 M(q + 1, q − 7) ≥ Previous q + 1 M(q + 1, q − 7) ≥ Previous

14 1,762,488 10,834,560 30 208,424,160 14,326,150

17 6,087,810 6,617,760 32 309,087,360 22,887,424

18 8,744,256 12,421,152 33 375,214,080 14,076,480

20 16,771,680 10,745,640 38 887,754,024 6,529,464

24 52,522,800 244,823,040 42 1,640,859,360 10,125,360

26 85,815,600 9,313,200 44 2,176,677,888 3,341,100

28 129,574,458 10,511,196 48 3,706,982,496 143,116,896

Theorem 18. For any v > 1, Nv,v(q) = (q − 1)
∑

u<v Nv,u(q).

We use the N4,4(q) results to obtain improved lower bounds for M(q+1, q−7)
as shown in Table 7.

Examples of overall results:
(a) S5(23) = N3,2(23) + N3,0(23) + N1,1(23)/22 + 2N1,0(23) = 140, 688. So,
M(23, 18) ≥ 140, 688.
(b) S7(23) = N4,3(23)+N3,2(23)+N3,0(23)+N2,2(23)/22+2N2,0(23)+N1,1(23)+
2N1,0(23) = 2, 201, 100, since N4,3(23) = 2, 048, 288, N3,2(23) = 128, 018,
N3,0(23) = 11, 638, N1,1(23) = 12, 144, and N1,0(23) = 506. So, M(23, 16) ≥
2, 201, 100.
(c) N5,5(19) = 446, 802, 480. This yields M(20, 10) ≥ N5,5(19) + 2N5,4(19) +
2N5,0(19)+N4,4(19)+2N4,3(19)+N3,3(19)+2N3,2(19)+N1,1(19)+2N1,0(19) =
508, 177, 876.
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(d) N5,5(23) = 1, 650, 664, 092. This yields M(24, 14) ≥ N5,5(23) + 2N5,4(23) +
2N5,0(23)+N4,4(23)+2N4,3(23)+N3,3(23)+2N3,2(23)+2N3,0(23)+N1,1(23)+
2N1,0(23) = 1, 845, 054, 112.

6 Conclusions, Acknowledgments, and Future Work

We have substantially improved many lower bounds for M(n,D). We conjecture
that many of our bounds represent formulas that are true for all powers of a prime
q. We wish to thank Dr. Carlos Arreche in the Department of Mathematical
Sciences at the University of Texas at Dallas for many helpful discussions.
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