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Abstract. The complexity of computing the solutions of a system of
multivariate polynomial equations by means of Grébner bases compu-
tations is upper bounded by a function of the solving degree. In this
paper, we discuss how to rigorously estimate the solving degree of a
system, focusing on systems arising within public-key cryptography. In
particular, we show that it is upper bounded by, and often equal to, the
Castelnuovo-Mumford regularity of the ideal generated by the homoge-
nization of the equations of the system, or by the equations themselves
in case they are homogeneous. We discuss the underlying commutative
algebra and clarify under which assumptions the commonly used results
hold. In particular, we discuss the assumption of being in generic coor-
dinates (often required for bounds obtained following this type of app-
roach) and prove that systems that contain the field equations or their
fake Weil descent are in generic coordinates. We also compare the notion
of solving degree with that of degree of regularity, which is commonly
used in the literature. We complement the paper with some examples of
bounds obtained following the strategy that we describe.

Keywords: Grobner basis - Solving degree - Degree of regularity -
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Introduction

Polynomial system solving plays an important role in many areas of mathemat-
ics. In this paper, we discuss how to solve a system of multivariate polynomial
equations by means of Grébner bases techniques and estimate the complexity of
polynomial system solving. Our motivation comes from public-key cryptography,
where the computational problem of solving polynomial systems of equations
plays a major role.

© Springer Nature Switzerland AG 2021
J. C. Bajard and A. Topuzoglu (Eds.): WAIFI 2020, LNCS 12542, pp. 3-36, 2021.
https://doi.org/10.1007/978-3-030-68869-1_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68869-1_1&domain=pdf
http://orcid.org/0000-0001-5227-807X
https://doi.org/10.1007/978-3-030-68869-1_1

4 A. Caminata and E. Gorla

In multivariate cryptography, the security relies on the computational hard-
ness of finding the solutions of a system of polynomial equations over a finite
field. One can use similar strategies in order to produce public-key encryption
schemes and digital signature algorithms, whose security relies on this problem.
For signature schemes, e.g., the public key takes the form of a polynomial map

P.Fy; — Fy
(a1,...,an) — (filar,... an), ..., fr(a1, ... an))
where f1,...,fr € Fy[z1,...,2,] are multivariate polynomials with coefficients

in a finite field ;. The secret key allows Alice to easily invert the system P. In
order to sign the hash b of a message, Alice computes a € P~1(b) and sends it
to Bob. Bob can readily verify the validity of the signature by checking whether
P(a) = b. An illegitimate user Eve who wants to produce a valid signature
without knowing Alice’s secret key is faced with the problem of solving the
polynomial system of r equations in n variables

fl(xlw"azn) :bl

fr(.’I}l,. ..,LI}n) = br

Even without knowing Alice’s secret key, Eve may be able to exploit the struc-
ture of P in order to solve the system. Such an approach is largely used and the
adopted strategies vary significantly from one cryptographic scheme to another.
Moreover a direct attack is always possible, i.e., Eve may try to solve the sys-
tem by computing a Grobner basis of it. Therefore, being able to estimate the
computational complexity of solving a multivariate polynomial system gives an
upper bound of the security of the corresponding cryptographic scheme, and is
therefore highly relevant. In this context, the complexity of solving a polyno-
mial system is typically large enough to make the computation unfeasible, since
being able to compute a solution would enable the attacker to forge a digital
signature or to decrypt an encrypted message. We emphasize that the secu-
rity of multivariate cryptographic schemes is a theme of high current interest.
For example, the National Institute of Standards (NIST) is in the process of
selecting post-quantum cryptographic schemes for standardization. Three digi-
tal signature algorithms were selected as finalists in Round 3 by NIST in July
2020 [NIST], one of which is a multivariate scheme.

Multivariate polynomial systems also appear in connection with the Discrete
Logarithm Problem (DLP) on an elliptic or hyperelliptic curve. An index calcu-
lus algorithm for solving the DLP on an abelian variety was proposed in [Gau09).
The relation-collection phase of the algorithm relies on Grébner bases computa-
tions to solve a large number of polynomial systems. These systems usually do
not have any solutions, but, whenever they have one, they produce a decompo-
sition of a point of the abelian variety over the chosen factor base. In contrast
with polynomial systems arising within multivariate cryptography, it is feasi-
ble to solve the polynomial systems arising within index calculus algorithms.
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Nevertheless, it is important to be able to accurately estimate the complexity
of solving them. In fact, the complexity of solving these systems has a direct
impact on the complexity of the corresponding index calculus algorithm to solve
the DLP.

Estimating the complexity of solving multivariate polynomial systems is rele-
vant within public-key cryptography. In this context, we usually wish to compute
the solutions over a finite field of a system of multivariate polynomial equations.
Typically, the systems have one, or few, or no solutions, not only over the cho-
sen finite field, but also over its algebraic closure. Moreover, the equations are
usually not homogeneous. The degrees of the equations are often small for sys-
tems coming from multivariate cryptography, but they can be large for systems
arising within index calculus algorithms. Similarly, the number of equations and
of variables can vary. Therefore, in this paper we concentrate on finite fields
and on non homogeneous systems, which have a finite number of solutions over
the algebraic closure. We however do not make assumptions on the number of
variables, the number of equations and their degrees.

This paper is devoted to an in-depth discussion of how to estimate the com-
plexity of computing a Grobner basis for a system of multivariate polynomial
equations. As said before, our focus is on finite fields and on systems that have
a finite number of solutions over the algebraic closure. At the same time, we try
to keep the discussion more general, whenever possible. We often concentrate on
systems which are not homogeneous, not only because this is the relevant case
for cryptographic applications, but also because it is the most difficult case to
treat.

After recalling in Sect. 1 the commutative algebras preliminaries that will be
needed throughout the paper, in Sect. 2 we discuss in detail the relation between
computing Grobner bases and solving polynomial systems. This connection is
often taken for granted within the cryptographic community, as are the neces-
sary technical assumptions. In Sect. 2 we discuss in detail what these technical
assumptions are and what can be done when they are not satisfied. We also show
in Theorem 3 that, under the usual assumptions, solving a polynomial system of
equations is polynomial-time-equivalent to computing a Grobner basis of it. We
conclude with Subsect. 2.1, where we discuss the feasibility of adding the field
equations to a system.

Section 3 is the core of the paper. After establishing the setup that we
will be adopting, we prove some results on Grobner bases and homogeniza-
tion/dehomogenization. They allow us to compare, in Theorem 7, the solving
degree of a system, the solving degree of its homogenization, and the solving
degree of the homogenization of the ideal generated by its equations. Combining
these results with a classical theorem by Bayer and Stillman [BS87], we obtain
Theorem 9 and Theorem 10, where we show that the Castelnuovo-Mumford reg-
ularity upper bounds the solving degree of a system, and recover Macaulay’s
Bound in Corollary 2. These results hold under the assumption that the homog-
enized system of equations is in generic coordinates, an assumption that is
often overlooked in the cryptographic literature and that we discuss in Sect. 1.
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In Theorem 11 we prove that any system that contains the field equations or
their fake Weil descent is in generic coordinates.

In Sect. 4 we discuss the relation between solving degree and degree of regu-
larity. The latter concept is commonly used in the cryptographic literature and
often used as a proxy for the solving degree. In Sect. 4 we discuss the limitations
of this approach. In particular, Example 11 and Example 12 are examples of sys-
tems coming from index calculus for which, respectively, the degree of regularity
is strictly smaller than the solving degree and the degree of regularity is not
defined.

Finally, Sect.5 is meant as an example of how the results from Sect.3, in
combination with known commutative algebra results, easily provide estimates
for the solving degree. In particular, Theorem 13 and Theorem 14 give bounds for
the solving degree of polynomial systems coming from the MinRank Problem.

1 Preliminaries

In this section we introduce the basic notations and terminology from commu-
tative algebra that we need in the rest of the paper. All the definitions and the
proofs of the results that we quote here are extensively covered in the books
[KR00,KR05,KR16,CLO0T7].

1.1 Polynomial Rings and Term Orders

We work in a polynomial ring R = k[x1, ..., 2,] in n variables over a field k. An
element f € R is a polynomial, and may be written as a finite sum f =" a,z",
where v € N, q,, € k, and ¥ = 27" ---a¥». A polynomial of the form a,x" is
called a monomial of degree |v| = vy + -+ + v,. In particular, every polynomial
f is a sum of monomials. The degree of f, denoted by deg(f), is the maximum
of the degrees of the monomials appearing in f. If all these monomials have the
same degree, say d, then f is homogeneous of degree d. A monomial a,z" with
a, = 1 is monic. A monic monomial is also called a term.

Notation. Given a system of polynomials F = {f1,..., f-} € R we denote by
(F) = (f1,-..., fr) the ideal that they generate, that is (f1,..., fr) = {>i_  pifi :
pi € R}

The list F = {fi1,..., f-} is called a system of generators of the ideal I = (F).
F is a minimal system of generators for I if the ideal generated by any non-empty
proper subset of F is strictly contained in I. If the polynomials fi,..., f,. are
homogeneous, then we say that the system Fand the ideal I are homogeneous.

Remark 1. Let I be an ideal of R minimally generated by homogeneous poly-
nomials f1,..., f. Then every homogeneous minimal system of generators of I
consists of r polynomials of the same degrees as f1,..., f,.
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For any degree d € Z,, denote by Ry the d-th homogeneous component of
R. R, is generated as a k-vector space by the monomials of R of degree d. If
I C R is homogeneous, we let I; = I N Ry be the k-vector space of homogenous
polynomials of degree d in I.

We denote by T the set of terms of R. A term order on R is a total order 7
on the set T, which satisfies the following additional properties:

1. m <; nimplies p-m <, p-n for all p,m,n € T,
2. 1<, mforallmeT.

If in addition m <, n whenever deg(m) < deg(n), we say that the term order 7
is degree-compatible.

Ezample 1 (Lexicographic order). Let x* and z® be two terms in R. We say
that % >ppx 2? if the leftmost non-zero entry in the vector a — 3 € Z" is
positive. This term order is called lexicographic and it is not degree-compatible.
We denote it by LEX.

Ezample 2 (Degree reverse lexicographic order). Let x® and 2° be two terms in
R. We say that 2% >pgrr, 27 if |a| > |8, or |a| = |3] and the rightmost non-
zero entry in o — 3 € Z™ is negative. This term order is called degree reverse
lezicographic (DRL for short) and it is degree-compatible.

Let f =) _,c7 aim; € R\{0} be a polynomial, where a; € k\{0}, and m; € T
are distinct terms. We fix a term order 7 on R. The initial term or leading term
of f with respect to 7 is the largest term appearing in f, that is in.(f) = m;,
where m; > m; for all i € T\ {j}. The support of f is supp(f) = {m,;: i € I}.
Given an ideal I of R, the initial ideal of I is

in, (1) = (in,(f) : feI\{0}).

Definition 1. Let I be an ideal of R. A set of polynomials G C I is a Grobner
basis of I with respect to 7 if in,(I) = (in-(g) : g € G). A Grobner basis is
reduced if m & (in,(h) : h € G\ {g}) for all g € G and m € supp(g).

Sometimes we will need to consider a field extension. At the level of the
ideal, this corresponds to looking at the ideal generated by the equations in a
polynomial ring over the desired field extension.

Definition 2. Let I = (f1,...,fr) C R = k[z1,...,z,], let K D k be a field
extension. We denote by IK|[x,...,x,] the extension of I to K[x1,...,x,], i.e.,
the ideal of K[x1,...,x,] generated by f1,..., fr. In symbols, IK|x1,...,x,] =
(f17~~~7fr) Q K[xl,...,xn].
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1.2 Zero Loci of Ideals
We are mostly interested in ideals, whose zero locus is finite.

Definition 3. The affine zero locus of an ideal I = (f1,...,fr) C R over the
algebraic closure k of k is

Z()={Pck™: f(P)=0 forallfcI}={Pck": fi(P)=...= f.(P)=0}.
We also denote it by Z(f1,..., fr).

Definition 4. The projective zero locus of a homogeneous ideal I =
(f1,---, fr) € R over the algebraic closure k of k is

Z.(I)={P e P(k)
={PeP(k)

f(P)=0 forall fel}
fl(P):---:fr(P):O}'

We also denote it by Z, (f1,..., fr).
Remark 2. The following are equivalent for a homogeneous ideal I C R:
|Z(I)] < ocoe Z(I)={(0,...,0)} & Z,.(I) = 0.

These conditions are equivalent to the fact that the Krull dimension of R/I is
zero. This is in turn equivalent to R/I being a finite dimensional k-vector space.

In Definition 3 and Definition 4 it is important to look at the zero locus of I
or F over the algebraic closure of the base field. For cryptographic applications,
often the base field k is a finite field. In this case the condition that the zero
locus is finite over k is trivially satisfied by any ideal or system of equations.

1.3 Infinite Fields and the Zariski Topology

Let k be a field. The Zariski topology on the affine space k™ is the set of com-
plements of solution sets of systems of polynomial equations over R, that is
{k"\ Z(f1,.- - fr) | f1,---, fr € R}. If k is an algebraically closed field, or at
least an infinite field, then every non-empty open set in the Zariski topology is
dense, i.e., its closure is equal to the entire space. A non-empty open subset of
k™ is often called a generic set and a property which holds on a non-empty open
set is gemeric. Intuitively, a generic set is almost the whole space and a generic
property holds almost everywhere in k™.

If k is a finite field, on the other side, the Zariski topology is the discrete
topology on k™. In other words, any subset of k™ is both open and closed, and
the algebraic-geometric intuition of genericity fails. In particular, one can no
longer say that a non-empty open subset of £™ is almost the whole space, as the
closure of any subset of k™ is the subset itself. Therefore, as genericity loses its
meaning over a finite field, we always will need to assume that the ground field
is infinite when dealing with generic sets or properties.
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1.4 Generic Changes of Coordinates

Fix a term order 7 on R = k[x1,...,x,]. We denote by GL(n, k) the general
linear group of n x n invertible matrices with entries in k. This group acts on R
via linear changes of coordinates. Namely, a matrix g = (¢, ;) € GL(n, k) acts
on the variable z; as g(z;) = >, gi jx;. We refer to g also as a linear change
of coordinates. We observe that GL(n, k) C k" is an open subset with respect
to the Zariski topology.

It is easy to find examples of g € GL(n, k) such that in(gI) # in,(I), that
is, initial ideals are not independent of coordinate changes. However, a famous
theorem by Galligo states that, applying a generic change of coordinates to an
ideal I, the initial ideal stays the same.

Theorem 1. [Gal74] Assume that k is infinite. Let I be a homogeneous ideal of
R, then there exist a non-empty Zariski-open set U C GL(n, k) and a monomial
ideal J such that in.(gI) = J for allg e U.

This motivates the following definition.

Definition 5. Let k be an infinite field. An ideal I C R is in generic coordinates
if1eU, ie., if
in,(gI) = in(I)

forallge U.
Let k be any field and let K O k with K infinite. I is in generic coordinates
over K if IK[xy,...,2,] C K[21,...,2,] is in generic coordinates.

Notice that, over an infinite field k, gI is by definition in generic coordinates
for any ideal I and g € U, that is, for any ideal I and for a generic g. Informally,
any homogeneous ideal can be put in generic coordinates by applying a random
change of coordinates to it. If k is finite, it suffices to apply to I a random change
of coordinates over a field extension of sufficiently large cardinality.

1.5 Homogeneous Ideals Associated to a System

Let R = k[z1,...,2,] and let S = RJt]. Given a polynomial f € R, we denote
by f* € S the homogenization of f with respect to the new variable ¢. For
F={f1,...,fr} € R, we let F* C S denote the system obtained from F by
homogenizing each f; with respect to ¢, that is F* = {ff, ..., f*}.

For an ideal I C R, the homogenization of I with respect to t, or simply the
homogenization of I, is the ideal

I"=(f": fencs.

If I = (F) C R, then I" is a homogeneous ideal of S which contains (F"). It is
easy to produce examples where the containment is strict.
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Remark 3. Let G be a Grobner basis of I with respect to a degree-compatible
term order on R. It can be shown that G" = {¢g" : ¢ € G} is a Grobner basis
of I with respect to a suitable term order on S, see e.g. [KR05, Section 4.3]. In
particular I" = (g" : g € G), hence the degrees of a minimal system of generators
of I" are usually different from those of a minimal system of generators of I.
Instead, the degrees of a minimal system of generators of (F"*) coincide with the
degrees of fi1,..., fr.

The dehomogenization map ¢ is the standard projection on the quotient
¢:S— R>=S/(t—1). For any system of equations F C R generating an ideal
I = (F) we have ¢(I") = (¢(F")) = I. Notice that one also has ¢((F")) =
((F") = 1.

For a polynomial f € R, we denote by f'°P its homogeneous part of highest
degree. For a system of equations F = {f1,..., f} we denote by

FUP = {1, [},

Both the ideal (F) and the ideal (F*°P) depend on JF, and not only on the
ideal I = (F).

2 The Importance of Being LEX

The main goal of this section is clarifying the relation between solving a system of
polynomial equations F and computing a Grobner basis of the ideal I generated
by the system. In the cryptographic literature it is often stated that, thanks to
the Shape Lemma, the problem of finding the solutions of F can be reduced to
that of computing a lexicographic Grobner basis of I. This statement is however
not rigorous, since the Shape Lemma only holds under certain assumptions,
which are not always verified for cryptographic systems.

We start by stating the assumptions under which the Shape Lemma holds
and showing that, when they are satisfied, the problem of solving the system F is
polynomial-time-equivalent to that of computing a lexicographic Grébner basis
of I. Then we discuss what can be done in the case when the assumptions of the
Shape Lemma are not satisfied. We come to the conclusion that, in all situations,
one can easily compute the solutions of F from a lexicographic Grobner basis
of I. We stress that we are not stating that directly computing the reduced
lexicographic Grobner basis is the most efficient way to solve a system (see also
Sect. 3). We conclude the section with a brief discussion of when it is feasible to
add the field equations to a system F and how that affects the computation of
a Grobner basis of it.

Throughout the section we focus on systems of equations which have a finite
number of solutions over the algebraic closure of the field of definition, since
systems that arise in public key cryptography are usually of this kind. Moreover,
we always assume that our systems have at least one solution. In fact, if the
system has no solutions, the corresponding ideal is equal to the polynomial ring,
that is the reduced Grobner basis with respect to any term order is equal to
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{1}. In this case, therefore, computing the reduced lexicographic Groébner basis
allows us to decide that the system has no solutions, without any additional
work.

We start by recalling the Shape Lemma.

Theorem 2 (Shape Lemma - [KR00], Theorem 3.7.25). Let k be a field
and let fi,...,fr € R be such that the corresponding ideal I = (f1,..., fr) is
radical, in normal x,-position, and |Z(I)| = d < co. The reduced lexicographic
Grobner basis of I is of the form

{gn(xn)a Tn—1 — gnfl(xn)v o1 — g1 (-Tn)}7

where g1, ..., gn are univariate polynomials in x,, and deg(g1),...,deg(gn-1) <
deg(gn) = d.

The Shape Lemma assumes that the ideal I is radical and in normal x,,-
position. An ideal I is radical if f¢ € I for some £ > 0 implies f € I. This
assumption is not always verified for ideals generated by systems arising in cryp-
tography. Later in the section, we will show how one can use a more general
version of the Shape Lemma in order to overcome this problem.

Being in normal x,,-position means that any two distinct zeros (a1, ..., an),
(b1,...,bn) € Z(I) satisfy a,, # by,. Notice that every ideal I with finite affine
zero locus can be brought into normal x,-position by a suitable linear change
of coordinates, passing to a field extension if needed (see [KR00, Proposition
3.7.22]). A field extension may indeed be needed, as the next example shows.

Example 3. Let F = {a? + x1,2122,75 + 22} C R = Fa[z1,22]. Then I =
(22 + 1, 2179, 73 + 32) is a radical ideal and Z(I) = {(0,0), (0,1), (1,0)}. We
claim that I cannot be brought in normal xs-position by a linear change of
coordinates over Fy. In fact, a linear change of coordinates over Fy sends x5 to
either xq, o, 1 + 9, x1 + 1, 22 + 1, or 1 + x5 + 1. However, all these linear
forms take the same value on at least two of the elements of Z(I).

Finally, the Shape Lemma assumes that |Z(I)| < oo. If k is a finite field,
then one can add the field equations to I and obtain an ideal J which is radical
and such that Z(J) = Z(I) N k™, in particular | Z(J)| < co. This is however not
always advantageous or even feasible, as we discuss in Sect. 2.1.

Whenever the assumptions of the Shape Lemma are satisfied, computing the
solutions of a system of equations has the same complexity as computing the
reduced lexicographic Grobner basis of the ideal generated by the system.

Theorem 3. Let F = {f1,..., fr} C R be a polynomial system such that the
corresponding ideal I = (f1,. .., fr) is radical and in normal xz,,-position. Assume
that |Z(I)| = d < oo and Z(I) C Fy. Consider the LEX order. The set of solu-
tions of F can be computed from the reduced Grébner basis of I probabilistically
in time polynomial in log q,n and d. Conversely, the reduced Grébner basis of I
can be computed from the set of solutions of F deterministically in time polyno-
mial in logq,n and d.
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Proof. By the Shape Lemma, the reduced lexicographic Grobner basis of I has
the form:

{gn(xn)axn—l 7gn—1(xn)a"'axl 791(1'77.)}7 (1)

d

where g;(z,) are polynomials in the variable x,, only, and deg(g;) < deg(g,) =
for 1 <j<n.

If we know the reduced lexicographic Grobner basis of I, then we can factor
the polynomial g, (z,) to find its roots. Each root « of g,(x,) corresponds to
a solution (g1(a),...,gn-1(a),a) of f1 = ... = f. = 0. Notice that the only
operation required, apart from the arithmetic over Iy, is factoring univariate
polynomials, which can be done in probabilistic polynomial time over a finite
field.

Vice versa, assume that we know Z(I) = { P\, ..., Py} C Fy of . Write P; =
(@ia,...,a;y,) for i =1,...,d. We wish to compute the reduced lexicographic

Grobner basis of I, knowing that it is of the form (1). Since the roots of g,

d
are exactly aip,...,aq,, we can compute g,(z,) = [[;_;(zn — a;n). Now fix

je{l,...,n—1}. Since gj(ain) = a;; for i =1,...,d and deg(g;) < d, we can
compute g;(x,) by using Lagrange interpolation:

d
gj(mn)zz H m ai ;.

a —a
i=1 | 1<a<q B T A

AAi
O

We now discuss the situation in which the assumptions of the Shape Lemma
do not hold. In particular, we consider the case when I is not radical. Some
authors state that, since I + (2] — z1,...,2% — x,) C Fylz1,...,2,] is always
radical, up to adding the field equations one may assume without loss of gen-
erality that I is radical. However, adding the field equations to the system is
not always computationally feasible, even in the case of systems coming from
cryptography. Therefore, being able to deal with the situation when the ideal I
is not radical is relevant for cryptographic applications. We discuss this issue in
more detail in Sect. 2.1.

Before continuing our discussion, we give an example of system coming
from multivariate cryptography for which the corresponding ideal is not rad-
ical, adding the field equations to the system is not feasible, and one ends up
with a reduced lexicographic Grobner basis which does not have the shape pre-
dicted by the Shape Lemma. Indeed, this was the case for most of the instances
of the ABC cryptosystem [TDTD13, TXPD15] that we computed. Since the field
sizes proposed in [TXPD15] for achieving 80-bits security are 28, 216, and 232
adding the field equations to the system is not feasible. In our next example we
disregard the linear transformations used in the ABC cryptosystem to disguise
the private key, since they do not affect the property of the system to generate
a radical ideal.
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Ezample 4. We consider R = Fa[x1, T2, 3, 4] with the LEX term order and a
toy instance of an ABC cryptosystem with

A (:vl 962) B (z1 + @2 + 33 71 +:Jc2) o (:m + @2 + 23 + 24 71 +:v4) '
x3 x4)’ T1+x3+T4 T3 ’ 1 + x4 z1
We let py,...,ps be the entries of the matrices AB and AC. We take a random
plaintext b = (0,1,1,0) € F3 and we evaluate the polynomials p1,...,pg at b to
obtain the ciphertext a = (1,1,0,1,0,0,0,0) € F§. We then consider the system
F={p;i—a;: i=1,...,8} and the corresponding ideal I = (F) C R. The ideal
I is not radical as (x3 +1)% € I, but x3 + 1 € I. A computation with MAGMA
shows that the reduced lexicographic Grébner basis of I is {x1, zo+23, 3+1, 24 }.

We now discuss how one can efficiently compute the solutions of a polynomial
system from its lexicographic Groébner basis, without assuming that the ideal
generated by the equations is radical. We stress that we always assume that the
system has finitely many solutions over the algebraic closure. The next result
will be central to our discussion, as we will use it as a substitute of the Shape
Lemma.

Theorem 4 (Elimination Theorem - [CLO07], Chap. 3.1, Theorem 2).
Let I C R be an ideal and let G be a lexicographic Grébner basis of I. Then
for every 1 < £ < n—1 the set G N k[xps1,...,2,] 18 a Grobner basis of I N
klxei1, ..., @, with respect to the LEX order on k[xpy1,...,%y).

In the next result we use Theorem4 to prove that one can easily compute
the solutions of F from the reduced lexicographic Grébner basis of 1.

Theorem 5. Let I be a proper ideal of R = k[x1,...,x,] with finite affine zero
locus. The reduced lexicographic Grobner basis of I has the form

pml(xn)a

pnfl,l(-rnfly xn)a cee 7pn71,tn,1 (:I;nfh :En)u
pn—Q,l(mn—Qa Tn—1, xn)a e 7pn—2,tn_2(xn—2> Tp—1, L]cn)v
pl,l(xla s ,J?n), D1ty (.’1,'17 e 7In)a

where piy; € kl[x;,...,x,] for every index i € {1,...,n},j € {1,...,t;} and
tiy. . tno1 > 1. Moreover, for any 1 < £ < n, let a = (aps1,--.,a,) € k"¢ be
a solution of the equations

pn,l(xn)a
pn—1,1($n—17 xn)a s 7pn71,tn,1 (Infly .fL'n),
P€+1,1(1’e+17 ey Ty )y ,p€+1,tz+1(93£+1, ey Ty),
and let
p@(xf) = ng{pf,l(l‘z7 a/erl; sy an)7 s 7p[,tz (xea a€+17 sy an)}

Then pe(xg) € k.
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Proof. Let G be the reduced lexicographic Grébner basis of I. The set G N
klxe,...,xy] is of the form

GNklxe,...,xn] ={pij(xi...,xn) [ <i<n, 1 <5<t}

for some tq,...,t, > 0. Moreover, for any 1 < ¢ < n such that ps(x¢) # 0, one
has ty > 1. Hence it suffices to show that pe(zy) € k for 1 < £ <n.

We prove the claim by descending induction on ¢ < n. Let { = n, then
G N klx,] is the reduced lexicographic Grébner basis of I N k[x,] by Theorem 4.
Let pp1(z,) be a monic generator of I N klx,], then G N k[z,] = {pn1(zn)}
and ¢, = 1. Since the affine zero locus of I is finite, p, 1(zy) # 0. Moreover,
Pu(n) = Pua(wa) & B\ {0}, since 0+ Z(I) C Z(pn).

We suppose now that the claim holds up to £+1 and we prove that pe(z¢) & k.
By Theorem4, G N k[zg, ..., x,] is the reduced lexicographic Grébuner basis of
INk[xg,...,x,], in particular

INklze,....;zpn) = (pij [ £<i<n,1<j<t).
Let a € Z(I Nk[zes1,. .., 7)) Nk and define

[(67 a) = (pé,l(x€7af+la ey a’n)a s Pl (va Apy1ye--y an)) = (pf(zﬁ))
By [CLOO07, Chapter 3.2, Theorem 3] and since Z(I) is a finite set, one has that
Z(INklze,...,z0]) =mn_es1(Z(1)),

where 7; : k" — k' is the projection on the last i coordinates. In particular,
Z(INk[wg,...,xy,]) is finite. If py(2,) is the zero polynomial, then Z(I(¢,a)) = k
and

{(ag,apq1s--.yan) | ar €k} C Z(INK[xyg,...,T5]),

contradicting the finiteness of Z(I N k[zy,...,x,)). If instead pe(zs) € &\ {0},
then Z(I(¢,a)) = 0. However, a = (agt1,.--,an) € Z(I N k[zos1,...,zn]) =
Tn—e(Z(I)), where equality holds by [CLOO07, Chapter 3.2, Theorem 3.
So there exist aj,...,ap € k such that (ai,...,a,) € Z(I). Therefore,
Tn—t41(Q1,..yan) = (ag,...,an) € Z(I N kl[zg,...,2,]), that is a; €
Z(I(£,a)) =0, a contradiction. 0

We use the previous result to build an algorithm which computes the affine
zero locus of an ideal I from its reduced lexicographic Grobner basis. We adopt
the notation of Theorem 5.

Corollary 1. Let I C R = k[z1,...,xy] be an ideal with finite affine zero locus
Z(I). Then Z(I) can be computed as follows:

1. Compute the reduced lexicographic Grobner basis G of I to obtain the monic
polynomial py, € klx,] such that (pn) = I Nk[zy].
2. If pp, =1, then Z(I) = 0. Else, factor p,.
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3. For every root a of p, compute

pn—l(xn—l) = ng{pn—l,l(In—lv Oz), sy Pn—1,t, (1771,—17 O‘)}

4. Factor p,_1.
5. For every root 3 of pp—1 compute

pn72(xn72) = ng{pnfll(xan, 57 Ol), vy Pn—2,t,_o (xn72, ﬁv a)}
6. Proceed similarly, until all the elements of Z(I) are found.

Notice that the computation is even more efficient under the assumption that
the system F, or equivalently the ideal I, has only one zero over the algebraic
closure. This is often the case for polynomial systems coming from multivariate
cryptosystems, where we usually require that for each ciphertext b there is a
unique plaintext a such that f;(a) = b for every i = 1,...r.

In such a situation, one does not need to factor any univariate polynomial,
since each one of them has exactly one solution, which, for a monic polynomial of
degree d, can be computed by multiplying the coefficient of 27~ by (—1)4~td~!.

Remark 4. Assume that k is either a finite field or has characteristic zero. If T
admits only one solution (a1, ...,a,) € k™, then in fact (a1,...,a,) € k™. This
is true even if the solution has multiplicity higher than one. In fact, g,(x,) =
(r, — an)? € k[z,], hence da,, € k. If k has characteristic zero, then a, € k.
Else, let p be the characteristic of k and write d = p‘e where p { e. Then

€
gn(xn) = (xfff - aff) € k[zy], so eaff € k. This implies a{’f € k, hence a, € k,

since k is a finite field. One proceeds similarly to prove that a; € k for all i.

Remark 5. By [CLO07, Chapter 3.2, Theorem 3] and since Z(I) is a finite set,
one has that
Z(INklze,...,xn)) = Tn-e41(Z(I))

for 1 < £ < n, where 7; : k» — k' is the projection on the last i coordinates.
This implies that each path from the roots to the leaves in the tree-shaped
computation of Corollary 1 produces a solution. In particular, Corollary 1 does
not perform useless computations.

2.1 Adding the Field Equations to a System

Let Q@ = {2} — x1,...,2% — ,} be the system consisting of the field equations
relative to F,. Clearly, for any system of equations F = {f1,...,f,} C R =
F,lx1,...,z,] one has

Z(FUQ)=Z(F)NFy.

The systems F and FU Q, however, often have different algebraic properties.
It is easy to show that the ideal generated by F U Q is always radical, while
the ideal generated by F may not be. The structure of the reduced Groébner
bases of the ideals generated by the two systems and the degrees of the elements
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appearing in them are often different as well. As a consequence, adding the field
equations to a system often affects the complexity of computing a Grébner basis.

Therefore, passing from F to F U Q may or may not provide an advantage.
It typically provides an advantage for fields of small size, since the equations of
Q have low degree and adding them to F makes the ideal radical, a necessary
hypothesis for the Shape Lemma (Theorem 2) to apply. Over fields of large size,
however, adding the field equations may make the computation of a Grobner
basis practically infeasible. This is due to the fact that we are adding to the
system equations of large degree, which are involved in the computation of a
Grobner basis, therefore increasing the degree of the computation. In the next
example, we show that the solving degree may increase when passing from F to
F U Q (see Definition 6 for the definition of solving degree).

Ezample 5. Let F = {23 — 22,23 — 21} C Fs[x1,22,73] and let I = (F). The
affine zero locus of I over Fs is infinite. If we add the field equations Q =
{2} — 21,23 — 29,2} — 23} of F5 to F, we obtain the ideal J = (F U Q), which
has Z(J) = {(0,0,0),(1,1,1),(4,4,2),(4,4,3),(1,1,4)}. The elements of F are
a Grobner basis of I with respect to the LEX order, while the reduced Groébner
basis of J with respect to the same order also contains 23 — x3. In particular, the
Grobner basis of J contains a polynomial of higher degree and one can easily
verify that
solv. deg(F U Q) =5 > 3 = solv. deg(F).

Even if we restrict our attention to polynomial systems arising in public-key
cryptography, one may not always assume that the field equations can be added
to the system. An example coming from multivariate cryptography was given
in Example4. Another example are systems coming from the relation-collection
phase of index calculus on elliptic or hyperelliptic curves, since the field size is
very large (e.g., the field size required for 80-bit security is at least g ~ 260
for an elliptic curve and ¢ ~ 280 for a hyperelliptic curve of genus two). In
such a situation, adding equations of degree ¢ to the system would make it
unmanageable.

3 Solving Degree of Polynomial Systems

In Sect. 2 we discussed how one can compute the solutions of a polynomial sys-
tem, starting from a lexicographic Grobner basis of the ideal that it generates.
In this section, we address the problem of estimating the complexity of comput-
ing a lexicographic Grobner basis. In practice, one observes that computing a
Grobner basis with respect to LEX is usually slower than with respect to any
other term order. On the other hand, computing a Grébner basis with respect
to DRL is often faster than with respect to any other term order. Therefore,
computing a degree reverse lexicographic Grobner basis and converting it to a
lexicographic Grobner basis using FGLM or a similar algorithm is usually more
efficient than computing a lexicographic Grobner basis directly. For this reason,
in this section we discuss the complexity of computing a Grébner basis of an
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ideal I in a polynomial ring R = k[x1,...,x,] over a field k with respect to the
DRL order. We refer the reader to [FGLM93] for a description of the FGLM
algorithm and an estimate of its complexity.

3.1 Macaulay Matrices and Solving Degree

We have two main classes of algorithms for computing Grébner bases: Buch-
berger’s Algorithm and linear algebra based algorithms, which transform the
problem of computing a Grobner basis into one or more instances of Gaus-
sian elimination. Examples of linear algebra based algorithms are: F; [Fau99],
F5 [Fau02], the XL Algorithm [CKPS00], and MutantXL [DBMMWO08]. Buch-
berger’s Algorithm is older, and its complexity has been extensively studied. Lin-
ear algebra based algorithms are often faster in practice and have contributed
to breaking many cryptographic challenges. However, their complexity is less
understood, especially when the input consists of polynomials which are not
homogeneous.

In this section, we discuss the complexity of linear algebra based algorithms,
which is dominated by Gaussian elimination on the Macaulay matrices. First
we describe them for homogeneous systems, following [BFS15, p. 54]. Let F =
{f1,.--, fr} € R be a system of homogeneous polynomials and fix a term order.
The homogeneous Macaulay matriz My of F has columns indexed by the terms
of Ry sorted, from left to right, according to the chosen order. The rows of My
are indexed by the polynomials m; ; f;, where m;; € R is a term such that
deg(m; ;f;) = d. Then the entry (4, j) of My is the coefficient of the monomial
of column j in the polynomial corresponding to the i-th row.

Now let fi,..., fr be any polynomials (not necessarily homogeneous). For
any degree d € Z the Macaulay matriz M<g4 of F has columns indexed by the
terms of R of degree < d, sorted in decreasing order from left to right. The rows
of M<4 are indexed by the polynomials m; ; f;, where m; ; is a term in R such
that deg(m; ; f;) < d. The entries of M<q are defined as in the homogeneous case.
Notice that, if fi,..., f, are homogeneous, the Macaulay matrix M<4 is just a
block matrix, whose blocks are the homogeneous Macaulay matrices My, ..., My
associated to the same equations. This is the reason for using homogeneous
Macaulay matrices in the case that f1,..., f, are homogeneous.

The size of the Macaulay matrices M<4 and My, hence the computational
complexity of computing their reduced row echelon forms, depends on the degree
d. Therefore, following [DS13], we introduce the next definition.

Definition 6. Let F = {f1,...,fr} C R and let T be a term order on R. The
solving degree of F is the least degree d such that Gaussian elimination on the
Macaulay matric M<q produces a Grébner basis of F with respect to 7. We
denote it by solv.deg, (F). When the term order is clear from the context, we
omit the subscript T.

If F is homogeneous, we consider the homogeneous Macaulay matriz My and
let the solving degree of F be the least degree d such that Gaussian elimination
on My, ..., My produces a Gréobner basis of F with respect to T.
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Some algorithms perform Gaussian elimination on the Macaulay matrix for
increasing values of d. An algorithm of this kind has a termination criterion,
which allows to decide whether a Grébner basis has been found and the algorithm
can be stopped. For example, Fy uses the so-called signatures for this purpose.
Other algorithms perform Gaussian elimination on just one Macaulay matrix,
for a large enough value of d. For such an algorithm, a sharp bound on the
solving degree provides a good estimate for the value of d to be chosen. In both
cases, the solving degree produces a bound on the complexity of computing
the desired Grébner basis. In particular, one may choose to artificially stop a
Grobner basis computation in the degree corresponding to the solving degree.
For this reason, we use the solving degree to measure the complexity of Grébner
bases computations and we do not discuss termination criteria.

Remark 6. If F is not homogeneous, then Gaussian elimination on M<4 may
produce a row that corresponds to a polynomial f such that deg(f) < d and
in(f) was not the leading term of any row of M<, before performing Gaussian
elimination. If this is the case, then some variants of the algorithms add to M<4
the rows corresponding to the polynomials mf, where m is a monomial and
deg(mf) < d. Then they proceed to compute the reduced row echelon form of
this larger matrix. If no Groébner basis is produced in degree < d, then they
proceed by adding to this matrix the appropriate multiples of its rows in the
next degree and continue as before. This potentially has the effect of enlarging
the span of the rows of M<q, for all d. Introducing this variation may therefore
reduce the computational cost of computing a Grébner basis with respect to a
given term order, since we might be able to obtain a Grobner basis in a smaller
degree than the solving degree, as defined in Definition 6. Throughout the paper,
we consider the situation when no ezxtra rows are inserted. Notice that the solving
degree is an upper bound on the degree in which the algorithms adopting this
variation terminate.

Definition 7. Let I C R be an ideal and let T be a term order on R. We
denote by max. GB. deg_(I) the mazimum degree of a polynomial appearing in the
reduced T Grébner basis of I. If I = (F), we sometimes write max. GB. deg (F)
in place of max. GB.deg,(I).

It is clear that
max. GB. deg, (F) < solv.deg, (F),

for any system of polynomials F and any term order 7. Equality does not hold
in general, as we show in Example 8.

Remark 7. Assume that F = {f1,..., fr} is homogeneous. Gaussian elimination
on My exclusively produces rows that correspond to polynomials of degree d.
Therefore

solv. deg, (F) = max. GB. deg_ (F)

for any 7.
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Notice moreover that the solving degree of a system F may be strictly smaller
than the largest degree of an equation of F. This may happen, e.g., when F
contains redundant equations.

Example 6. Let F = {22 + 2,2y, y? + y, 2%y + 2% + 2} C Fa[z,y]. The reduced
DRL Grobner basis of I = (F) is {2% + z,2y,y? + y} and solv.degpp, F = 2.

3.2 Homogenization of Ideals and Extensions of Term Order

We consider a polynomial ring R = k[z1, ..., x,] and its extension S = R[t] with
respect to a new variable t. We compare term orders on R and S.

Definition 8. Let o be a term order on R, let T be a term order on S = R[t],
and let ¢ : S — R be the dehomogenization map. We say that T ¢-extends o,
or that T is a ¢-extension of o, if ¢(in,(f)) = ing (¢(f)) for every homogeneous
fes.

The next theorem relates Grobner basis and dehomogenization.

Theorem 6. Let o be a term order on R, and let T be a ¢-extension of o on S.
Let I be an ideal in R, let J be a homogeneous ideal in S such that ¢(J) = I.
The following hold:

1. in,(I) = ¢(in.(J));
2. if{g1,--.,9s} is a homogeneous T Grobner basis of J, then {¢(g1), ..., ¢(gs)}
is a o Grébner basis of 1.

Proof. We prove (1). Notice that in,(J) = (in.(f) : f € J, f homogeneous),
because J is a homogeneous ideal. Then we have

o(in.(J)) = (¢(in,(f)) : f € J, f homogeneous)
= (ins(¢(f)) : f € J, f homogeneous).

To conclude the proof of (1), it suffices to show that
{6(f): f€J, fhomogeneous} = I.

The inclusion from left to right follows from the assumption that ¢(J) = I.
To prove the other inclusion, we fix a system of generators fi,...,f, of I
and consider f = >0 p;f; € I, with p; € R. Let h; € J be homogeneous
such that ¢(h;) = f; for all i and define p = Y., t*p/h;. The polynomial
p belongs to J and it is homogeneous for a suitable choice of the «a;’s. Since
d(p) =S 1, p(t%plh;) =31 pifi = f, the inclusion follows.

To prove (2), observe that

o(in, (7)) = (&in(g:) : i =1,....8) = (ing($g:) i = L,....5),

since ¢ is a homomorphism and 7 ¢-extends o. This shows that {¢(g1), ..., d(gs)}
is a Grobner basis of ¢(in,(J)) with respect to o, which is equal to in,(I) by

(1). 0
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There is a natural way to ¢-extend a term order ¢ on R to a term order &
on S.

Definition 9. Let m,n be terms in R, let o be a term order on R. Define a
term order & on S wia: tm >4 t°n if and only if (m >, n) or (m = n and

a>f).
Lemma 1. 7 is a term order on S which ¢-extends o.

Proof. First we prove that ¢ is a term order. The fact that 1 <, m for every
term m € R implies 1 <5 m. We have also 1 =0 <; t.

Now, let t*m >5 tPn, with m,n terms in R, and a, 3 € N. We show that
>5 respects multiplication by terms. We have two possibilities: 1) m >, n
or 2) m = n and a > B. If 1) holds, then we have z;m >, xz;n for every
i =1,...,n since ¢ is a term order, which implies x;t®m >5 z;t’n. Clearly
to*tim >4 tPn, If 2) holds, then 2;m = x;n for every i = 1,...,n, therefore
zit%m >z x;tPn since a > B. Moreover we have t*tlm >4 tA+1n. because
m=nand a+1>(+ 1.

Now we prove that & ¢-extends o, that is ¢(ins(f)) = iny(¢(f)) for every
f € S homogeneous. Let f = Zle a;t*m; be a homogeneous polynomial, with
m; € R distinct terms, a; € N, and a; € k\ {0}. Then ¢(f) = Z?:o a;m;
and degm; = deg f — ;. If there is any cancellation in the sum defining ¢(f),
then the monomials cancelling have the same degree, then they have already
been cancelled in f. Hence, there is no cancellation in ¢(f). Without loss of
generality, let my = in,(¢(f)), that is my >, m; for every ¢ = 2,...,d. Then
£, = ing (f), and ¢(ing(f)) = ma = ing (8(f)). 0

Ezample 7. The equality ¢(ins(f)) = ing(¢(f)) does not necessarily hold for f
not homogeneous. For example consider f =tz —x +ty € S = k[z,y, t], and let

o= LEX. Then ins(f) = tz, ¢(f) =y, and in, (¢(f)) = y # = = ¢(ins(f)).
The next Lemma gives an important example of ¢-extension of a term order.

Lemma 2. Fiz the DRL order on R and extend it to the DRL order on S by
letting t be the smallest variable. Then the DRL order on S ¢-extends the DRL
order on R.

Proof. Let f = Zle a;t*m; be a homogeneous polynomial, with distinct terms
m; € R, a; € N, and a; € k\ {0}. Then ¢(f) = Z?:o a;m; and degm; =
deg f — ;. As in the proof of Lemma 1 there is no cancellation in ¢(f).
Without loss of generality, let inprr(¢(f)) = mi, that is my >prr m;
for all i = 2,...,d. For each i € {2,...,d} we have two possibilities: either
degmy > degm; or degmy = degm,;. If degmy > degm; then we have oy < «;,
since degm; + o; = deg f for every j. This implies t**mi >prr t%m;. If
degmi = degm,; then we have a; = «;, and t*'my >pprr t*m; follows from
my >prr m;. Therefore we have inpry(f) = t**my, and ¢(inprr(f)) = m1 =

inprr(¢(f)). o
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Remark 8. Fix the DRL order on R. The DRL order on S is different from the
order DRL obtained by applying Definition 9. For example, let R = k[z,y] with
x >y, S = R[t], and consider the monomials 3z and ty%. We have t3x <PEL ty?
because  <pprr y? in R. In particular, DRL is not degree-compatible, while
DRL is. Notice however that the two orders coincide on pairs of terms of the
same degree.

3.3 Solving Degree and Homogenization

Let R = k[z1,...,zy] with the DRL order and let S = R[t] with the DRL order
with ¢ as smallest variable. Let F = {f1,...,fr} C R, let I = (F) C R, let
I" C S be the homogenization of I with respect to ¢, and let (F*) C S be the
ideal generated by F" = {fl, ...  f}. The goal of this section is comparing the
solving degrees of F, F" and I" with respect to the chosen term orders. We
start with a preliminary result on Grébner bases and homogenization.

Proposition 1. Let R = k[x1,...,z,] and let S = R[t]. Fiz the DRL term
order on R and extend it to the DRL term order on S by letting t be the
smallest variable. Let I be an ideal of R with Grobner basis {g1,...,9s}. Then
{gh,... g"} is a Grébner basis of I".

Proof. First we show that g¥,..., g generate I". Clearly we have g?,..., ¢" €
I". For the other inclusion, consider f € I of degree d with standard representa-
tion f=37_, fig; for some f; € R, that is in(f) > in(f;g;) for all i = 1,...,s.

Since in(f) > in(f;g;) and DRL is degree-compatible, we have d > deg f; +
deg g;. Therefore we can write

S
= 3 i-don i ghgh ©)
i=1

which shows that f* € (gh,..., g").

To prove that {g?,...,g"} is a Grébner basis, it is enough to show that (2)
is a standard representation for f", i.e., in(f) > in(t?-dee fi=deggi fhghy for all
i=1,...,s5. We observe that in(f") = in(f) does not contain the variable ¢ and
we distinguish two cases.

1. If d — deg f; — degg; > 0, then a power of ¢t appears in t?—degfi—deggi fhoh
and in its initial term as well. It follows that in(f") > in(¢d—des fi—deggi fhgh)
since t is the smallest variable in the DRL term order of S.

2. If d — deg f; — deg g; = 0, then no power of ¢ appears in in(fg?). Therefore

we have in(fl'gl) = in(fig:) < in(f) = in(f"). O

The next result relates the solving degrees of F and F". It also clarifies why
the largest degree of an element in a reduced Grobner basis of F may be smaller
than its solving degree.
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Theorem 7. Let F = {f1,..., fr} C R =k[z1,...,x,] and consider the system
Fh={fh ..., f*} C S = R[t] obtained from F by homogenizing fi, ..., f, with
respect to t. Let I" C S be the homogenization of I = (F) C R with respect to t.
Consider the term order DRL on R and S, with t as smallest variable. Then

max. GB. deg(F") = solv. deg(F") = solv. deg(F)
> max. GB. deg(F) = max. GB. deg(I") = solv. deg(I").

Proof. We claim that the Macaulay matrix M<q of F with respect to DRL is
equal to the homogeneous Macaulay matrix My of F” with respect to DRL, for
every d > 1. In fact, the monomials of S of degree d are exactly the homogeniza-
tions of the monomials of R of degree < d. Similarly, if m; ; th is the index of a
row of Mg, i.e., deg(m;;f}') = d, then ¢(m;;fI") = ¢(mi;)f; has degree < d,
hence it is the index of a row of M<4. Conversely, every index m; ; fjh of a row
of Mg, can be obtained from an index of a row of M<4 by homogenizing and
multiplying by an appropriate power of ¢t. In a nutshell, the statement on the
columns follows from the fact that I<q = ¢ ((F")q). One also needs to check that
the order on the columns of My and M<, is the same. We consider M<g4. Since
DRL is degree-compatible, the columns are ordered in non-increasing degree
order from left to right. The columns of the same degree j € {1,...,d} are then
ordered according to DRL. Similarly, since t is the smallest variable in the DRL
order on S, the columns of M, are ordered in increasing order (from left to
right) of powers of ¢, which is equivalent to decreasing order of the degree of the
variables x1,...,%,. Then, the columns with the same power of ¢ are ordered
according to DRL on the variables x1,...,z,. This proves that the matrices
Mc<g4 and My coincide.

Let I = (F) and J = (F"). Since the matrices M<4 and My coincide and
since the dehomogenization of a Grobner basis of F" produces a Grébner basis
of F by Theorem 6, one has

solv. degppp (F) < solv.degppy (F").

To check that they are equal, for each minimal generator m of in(7I), we consider
the least degree d for which a polynomial f with in(f) = m appears among the
rows of the reduced row echelon form of M<4. Since My = M<, the polynomial
td—des(f) fh appears among the rows of the reduced row echelon form of M. We
claim that no polynomial g with in(g) | t4=4°&(/)m = in(t4—dee(f) 1) appears as
a row of the reduced row echelon form of M, for some e < d. In fact, if this were
the case then, by Theorem 6, the dehomogenization of in(g) would be equal to
m and appear as a row of M,. This contradicts the assumption that d is the
least degree for which a polynomial with leading term m appears among the
rows of the reduced row echelon form of M<4. This shows that the least degree
d in which the leading terms of the rows of the reduced row echelon form of the
matrix M<q generate the initial ideal of I is the same as the the least degree e
in which the leading terms of the rows of the reduced row echelon form of the
matrix M, generate in(J).. Therefore

solv. degppy (F) = solv.degppy (F").
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The equality max. GB. deg(F) = max. GB. deg(I") follows from the following
two facts:

— By Lemma2 and Theorem 6 the dehomogenization of a DRL Grébner basis
of I produces a DRL Grébner basis of I.

— The homogenization of a DRL Grobner basis of I produces a DRL Grobner
basis of I" by Proposition 1.

In particular, no leading term of an element of the reduced Grébner basis of
I" is divisible by ¢, so dehomogenization does not decrease the degrees of the
elements of the Grébner basis.

Finally, the two equalities

max. GB. deg(F") = solv. deg(F") and max. GB. deg(I") = solv. deg(I")
follow from Remark 7. O

Remark 9. Theorem 7 clarifies why, when the system F is not homogeneous, the
largest degree of an element in a reduced Grobner basis may be strictly smaller
than the solving degree. This is due to the difference between the ideals (F")
and I", and more specifically between max. GB. deg(F") and max. GB. deg(I").

The following is an example where solv. deg(F) > max. GB. deg(F). See also
Example 11 for a cryptographic example.

Ezample 8. Let R = k[z,y] and let S = R[t] = k[z,y,t], both with the DRL
order. We consider the system F = {f, fo} C R with f; = 2% — 1, fo = 2y + =z,
and let I = (F). Then F" = {f fi} = {2% — 2,2y + at}, and I" = (2 —
t2,y 4+ t). Writing the Macaulay matrices of F, F", and {22 — 2 y + ¢} and
doing Gaussian elimination, one sees that solv.deg(F) = solv.deg(F") = 3.
By computing Grébner bases, one can check that max. GB.deg(F") = 3 and
max. GB. deg(F) = max. GB. deg(I") = 2.

3.4 Solving Degree and Castelnuovo-Mumford Regularity

In what follows, we compare the solving degree of a homogeneous ideal with
a classical invariant from commutative algebra: the Castelnuovo-Mumford reg-
ularity. We recall the definition of this invariant and its basic properties before
illustrating the link with the solving degree.

Let R = k[z1,...,x,] be a polynomial ring in n variables over a field k and
let I be a homogeneous ideal of R. For any integer j we recall that R; denotes
the k-vector space of homogeneous elements of R of degree j.

Choose a minimal system of generators fi, ..., fg, of 1. We recall that, since
I is homogeneous, the number By and the degrees d; = deg f; are uniquely
determined. We fix an epimorphism ¢ : R — I sending the canonical basis
{e1,...,ep,} of the free module R% to {f1,..., fs,}. The map ¢ is in general
not homogeneous of degree 0, so we introduce degree shifts on R: For any integer
d, we denote by R(—d) the R-module R, whose j-th homogeneous component is
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R(—d); = R_g4+;. For example, the variables z1, ..., z, have degree 2 in R(—1),
and degree 0 in R(1). The map

is homogeneous of degree 0, that is deg(¢(f)) = deg f for every f.

Now consider the submodule ker ¢ C @]ﬁil R(—d;). It is again finitely gen-
erated and graded, and is called (first) syzygy module of I. We choose a minimal
system of generators of ker ¢ and we continue similarly defining an epimorphism
from a free R-module (with appropriate shifts) to ker ¢ and so on.

Hilbert’s Syzygy Theorem guarantees that this procedure terminates after a
finite number of steps. Thus, we obtain a minimal graded free resolution of I:

O—)Fp—>~--—>F1—>F0i>I—>0,

where the F; are free R-modules of the form
Bi
F; =@ R(—di )
§=0

for appropriate shifts d; ; € Z. By regrouping the shifts, we may write the free
R-modules of the minimal free resolution of I as

F; = P R(—j)%.

JEZ
The numbers f3; ; = 3; ;(I) are the (graded) Betti numbers of I.
Definition 10. The Castelnuovo-Mumford regularity of I is
reg(l) =max{j —i: [, ;(I)# 0}.
If F is a homogeneous system of generators of I, we set also reg(F) = reg(I).

Example 9. We consider the ideal I = (22, 2y, 22,9%) in R = k[x,y,2]. A mini-
mal free resolution of I is given by

0 — R(—4) 2 R(-3)* ® R(—4) 2% R(-2)* ® R(-3) 2% I — 0,

with R-linear maps given by the following matrices

—-y—2 0 0 z

2
vo= (2 ayzzy), pr=| L 0 TETY | o= | 7Y
b b 9 9 0 ,’I; y 0 b :I;
000 =z 0

So the non-zero Betti numbers of I are Byo = 3, Bo3 =1, 13 =3, B4 = 1,
B2.4 =1, and the Castelnuovo-Mumford regularity is reg(l) = 3.
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For more on regularity and its properties, the interested reader may con-
sult [Eis94, Chapter 20] or [Cha07]. In the sequel we only mention the facts that
are relevant for our purposes.

Remark 10. In many texts in commutative algebra or algebraic geometry it is
assumed that the field & is algebraically closed or infinite. However, the definition
of regularity makes perfect sense over a finite field. The construction of a minimal
free resolution that we illustrated can be carried out over a finite field. Moreover,
it shows that the Castelnuovo-Mumford regularity is preserved under field exten-
sions. In particular, if T is an ideal in a polynomial ring R = F[z1,...,2,] over
a finite field F, and J is its extension to the polynomial ring S = F,[x1, ..., z,]
over the algebraic closure of Fy, then regp(I) = regg(J).

The next theorem is due to Bayer and Stillman. It relates the regularity of
a homogeneous ideal to the regularity of its DRL initial ideal. Combined with
our Theorem 7, it will allow us to bound the solving degree of any system.

Theorem 8 ([BS87], Theorem 2.4 and Proposition 2.9). Let J be a homo-
geneous ideal in k[xy,...,x,]. Assume that J is in generic coordinates over k,
then

reg(J) = reg(inDRL(.])).

Remark 11. Let J be a homogeneous ideal in generic coordinates. If k£ has
characteristic zero, then we have reg(inprr(J)) = max.GB.degpr(J),
as shown in [BS87]. If k£ has positive characteristic, one still has that
max. GB.degpp (J) <reg(inprr(J)) and the inequality is often an equality. In
fact this was the case in all the examples that we computed while working on this
paper. Nevertheless, in positive characteristic one can find examples of ideals J in
generic coordinates for which the inequality is strict. E.g. J = (27, y?) C Fp[x, y]
is in generic coordinates, max. GB.degpp (J) = p, and reg(J) = 2p — 1.

Combining Theorem 7 and Theorem 8, one obtains bounds on the solving
degree. Our bounds assume that the ideal generated by the (homogenized) sys-
tem is in generic coordinates. Notice that this assumption is likely to be satisfied
for systems of equations coming from multivariate cryptography, at least over
a field of sufficiently large cardinality. In fact, multivariate schemes are often
constructed by applying a generic change of coordinates (and a generic linear
transformation) to the set of polynomials which constitutes the private key.

For the sake of clarity, we give a homogeneous and a non-homogeneous version
of the result. Since the proofs are very similar, and in fact more complicated in
the non-homogeneous case, we only give the proof in the latter case.

Theorem 9. Let 7 C R be a system of homogeneous polynomials and assume
that (F) is in generic coordinates over k. Then

solv.degppr (F) < reg(F).
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The following result allows us to bound the complexity of computing a
Grobner basis of a system of equations by establishing a connection with the
Castelnuovo-Mumford regularity of the homogenization of the system.

Theorem 10. Let F = {f1,...,fr} C R be a system of polynomials, which is
not homogeneous. Let F" = {ff',..., f'} € S = R[t] and assume that the ideal
(FM) is in generic coordinates over k. Then

solv. degp gy (F) < reg(F™).

Proof. For a homogeneous ideal J in R or S, max. GB.degpr;(J) and reg(J)
are invariant under field extension. So we may extend all ideals to the algebraic
closure k of k. By Theorem 7 and Theorem 8 we have the chain of equalities and
inequalities

solv.degppy (F) = solv.degDRL(fh)
= max. GB. degp g (F") < reg(inprr (F™)) = reg(F").
O

Remark 12. The upper bound in Theorem 9 and Theorem 10 is often an equality,
since max. GB.degppy (F") = reg(inprr(F")) if k has characteristic zero and
often even if it has positive characteristic (see Remark 11).

By combining Theorem 10 and classical results on the Castelnuovo-Mumford
regularity (see e.g. [Cha07, Theorem 12.4]), one immediately obtains the follow-
ing bound on the solving degree of systems which have finitely many solutions
over k. The bound is linear in both the number of variables and the degrees of
the polynomials of the system.

Corollary 2 (Macaulay bound - [Laz83], Theorem 2). Consider a system
of equations F = {f1,...,fr} C R with d; = deg f; and dy > do > -+ > d,.
Set ¢ = min{n + 1,7}. Assume that |Z,(F")| < oo and that (F") is in generic
coordinates over k. Then

solv.degppp(F) <di+...+dg—L+1

and equality holds if f1, ..., fr are a reqular sequence. In particular, if r > n and
d =dy, then
solv.degppp(F) < (n+1)(d—1)+1.

The condition that (F") is in generic coordinates is not always easy to verify.
Nevertheless, if we add the field equations, or their fake Weil descent, to the
generators of the ideal, then we can prove that the homogenized system is in
generic coordinates.

Theorem 11. Let p > 0 be a prime and let ¢ = p¢, e > 1. Let k be a field of
characteristic p and let F ={f1,..., fr} C klx1,...,2,] be a system of polyno-
mial equations. Set d; = deg f; with dy > dy > -+ > d, and £ = min{n + 1,r}.
Assume that one of the following holds:
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(i) ! —x; € F fori=1,...,n, or
(ii) x§ —xo,... 2} _| —xp, 2l —x1 € F.
Then the ideal (F") = (I, ..., f*) is in generic coordinates over k. In particular

solv.degppp(F) <di+...+d;—L+1

and equality holds if f1,..., fr are a reqular sequence. Moreover, if r > n and
d =dy, then
solv.degppp(F) < (n+1)(d—1)+1.

Proof. According to [BS87, Theorem 2.4 and Definition 1.5], J = (F") is in
generic coordinates over k if and only if ¢ is not a zero divisor on the quotient

klxy,...,Tn,t]/J%, where J5 is the saturation of J with respect to the irrele-
vant maximal ideal (x1,...,x,,t). Substituting ¢ = 0 in the equations of J one
obtains the equations z; = ... = x,, = 0. Therefore the projective zero locus of

J does not contain any point with ¢ = 0. This means that ¢ { 0 modulo J**,
hence proving that J is in generic coordinates. The second part of the statement
then follows from Corollary 2. O

Remark 13. From the proof of Theorem 11 one sees that a system is in generic
coordinates whenever it contains equations of the form xfi +pi(x1,...,z,) with
deg(p;) < d;, fori=1,...,n.

We may use the results established in this section to obtain bounds on the
solving degree of the ABC encryption scheme. We assume that the systems
have finite affine zero loci, which was the case for all the instances of the ABC
cryptosystem that we computed.

Ezample 10. The system associated to the ABC cryptosystems [TDTD13,
TXPD15] consists of 2n quadratic equations in n variables. Therefore by assum-
ing that the system is in generic coordinates, or, if the ground field is Fy, simply
by adding the field equations to the system we obtain

solv. deg(F) < n+ 2.

4 Solving Degree and Degree(s) of Regularity

In recent years, different invariants for measuring the complexity of solving a
polynomial system of equations were introduced. In particular, the notion of
degree of regularity gained importance and is widely used nowadays. In this
section we discuss how the degree of regularity is related with the Castelnuovo-
Mumford regularity.

In the literature we found several definitions of degree of regularity. However,
they are mostly variations of the following two concepts:

1. the degree of regularity by Bardet, Faugere, and Salvy [Bar04, BFS04, BFS15];
2. the degree of regularity by Dubois and Gama, later studied by Ding, Schmidt,
and Yang [DG10,DS13,DY13].

In this section we recall both definitions of degree of regularity and compare
them with the Castelnuovo-Mumford regularity.
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4.1 The Degree of Regularity by Bardet, Faugere, and Salvy

To the best of our knowledge, the degree of regularity appeared first in a paper
by Bardet, Faugere, and Salvy [BFS04] and in Bardet’s Ph.D. thesis [Bar04].
However, the idea of measuring the complexity of computing the Grobner basis of
a homogeneous ideal using its index of regularity can be traced back to Lazard’s
seminal work [Laz83]. Before giving the definition, we recall some concepts from
commutative algebra.

Let R = k[z1,...,2,] be a polynomial ring over a field k, let I be a homo-
geneous ideal of R, and let A = R/I. For an integer d > 0, we recall that Ay
denotes the homogeneous part of degree d of A. The function HF4(—) : N — N,
HF,(d) = dimy A, is called Hilbert function of A. It is well known that for large
d, the Hilbert function of A is a polynomial in d called Hilbert polynomial and
denoted by HP4(d). The generating series of HFy is called Hilbert series of A.
We denote it by HS4(z) = e HFa(d)z?. A classical theorem by Hilbert and
Serre says that the Hilbert series of A is a rational function, and more precisely
has the form

ha(z)

HSA(Z)ZW (3)

where h4(z) is a polynomial such that hs(1) # 0, called h-polynomial of A.

Definition 11. The index of regularity of I is the smallest integer ireq(I) >
0 such that HFg i(d) = HPg/i(d) for all d > idweg(I). If F is a system of
generators for I, we set also treg(F) = treg(l).

The index of regularity can be read off the Hilbert series of the ideal, as
shown in the next theorem.

Theorem 12 ([BH98], Proposition 4.1.12). Let I C R be a homogeneous
ideal with Hilbert series as in (3) and let 6 = degha. Then tyeg(l) =6 — ¢+ 1.

Let I C R be a homogeneous ideal. Applying the Grothendieck-Serre’s For-
mula [BHI98, Theorem 4.4.3] to R/I one obtains

ireg (I) < reg(I). (4)

Moreover, if I is homogeneous and I; = Ry for d > 0, then iyes(I) = reg(l)
by [Eis05, Corollary 4.15].

Definition 12. Let F = {f1,...,f-} € R be a system of equations and let
(FPoP) = (fiP, ..., ftP) be the ideal of R generated by the homogeneous part
of highest degree of F. Assume that (F*°P), = Rq for d > 0. The degree of
regularity of F is

dreg (F) = ireg (F*P).

Remark 14. If (F*°P), = Rq for d > 0, then |Z(F)| < co. The converse, how-
ever, does not hold in general. See Example12 for an example where F has
finitely many solutions over k, but (F*P), # Ry for all d.
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The following is an easy consequence of the definitions.

Proposition 2. Let F C R be a system of equations. Assume that (F*°P), = Rq
for d> 0. Then
dreg(F) = reg(F'°P).

If in addition F is homogeneous, then F*°P = F and
dreg (F) = reg(F).

In the context of multivariate cryptosystems however, it is almost never the
case that F is homogeneous and (F),; = Rq for d > 0. In fact, this is equivalent
to saying that Z(I) = {(0,...,0)} by Remark 2.

For a system F such that I = (F) has finite affine zero locus, we may
interpret the condition (F*P), = Ry for d > 0 as a genericity assumption. This
assumption guarantees that the degree of regularity gives an upper bound on
the maximum degree of a polynomial in a Grébner basis of I, with respect to
any degree-compatible term order.

Remark 15. Let 7 be a degree-compatible term order and assume that (F*P), =
Rq for d > 0. Let I = (F) and J = (F'P). Then HPg/;(z) = 0, hence
Jqg =1in,;(J)q = Rq for d > dyeg(F). The inclusion in,(J)q C in,(I)q holds for
any d, since 7 is degree-compatible. So we obtain in,(I)q = R4 for d > dyeg(F).
This implies that every element of the reduced Grobner basis of I has degree at
most dyeg(F), that is

max. GB. deg, (F) < dreg(F). (5)

Notice however that (5) does not yield a bound on the solving degree of F,
as we show in the next example.

Ezample 11. We consider the polynomial systems F obtained in [BG18] (see
also [Bial7, Chapter 5]) for collecting relations for index calculus following the
approach outlined by Gaudry in [Gau09]. For n = 3, they consist of three non-
homogeneous equations fi, fa, f3 of degree 3 in two variables. Computing 150’000
randomly generated examples of cryptographic size (3 different ¢’s, 5 elliptic
curves for each ¢, 10’000 random points per curve), we found that (F*P), = Ry
for d > 0 and

solv.degppy (F) = 1eg(F") = 5 > 4 = dyeg (F) = ireg (F*P).
The computations were performed by G. Bianco with MAGMA [BCP97].

Notice moreover that there are systems F for which |Z(F)| < oo and
(F'P), # Rq for all d > 0. Definition 12 and inequality (5) do not apply to
such systems. This can happen also for polynomial systems arising in cryptog-
raphy.

When this happens, one may be tempted to consider iyeq (F*°P) anyway, and
use it to bound the solving degree of F. Unfortunately this approach fails since
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ireg (F*°P) and solv. deg(F) might be far apart, as the next examples shows. On
the other hand, the Castelnuovo-Mumford regularity of F" still allows us to
correctly bound the solving degree of F.

Ezample 12. We consider the polynomial systems obtained in [GM15] for col-
lecting relations for index calculus following the approach outlined by Gaudry
in [Gau09]. For n = 3, they consist of three non-homogeneous equations f, fa, f3
in two variables, of degrees 7,7, and 8. Let F = {f1, f2, fa}, F" = {fI', f%, f#},
and FtoP = { f{°P £°P f1°P1 For 150’000 randomly generated examples of cryp-
tographic size (as in Example 11) we found that solv. degpp. (F) = reg(Fh) =
15, (F*P), # Ry for all d > 0, and ie(F*P) = 8. The computations were
performed by G. Bianco with MAGMA [BCP97].

Finally, given a polynomial system F = {f1,..., f.} there is a simple relation
between the ideals (F*°P) C R and (F") C S, namely
(FP)S + (1) = (F") + (). (6)

Here (F*°P)S denotes the extension of (F*P) to S, i.e., the ideal of S generated
by FtP. Since F'P C R, t { 0 modulo (F'*°P)S. If t { 0 modulo (F"), then
(Fh) = (F)" is the homogenization of (F) and reg(F") = reg(F*°P). Therefore,
if £10 modulo F" and (F*°P), = Ry for d > 0, then

dreg(F) = reg(}'h)

by Proposition 2. However, one expects that in most cases ¢ | 0 modulo (.7-'”).
In fact, (F") = (F)" only in very special cases, namely when fi,..., f. are a
Macaulay basis of (F) with respect to the standard grading (see [KR05, Theo-
rem 4.3.19]). Therefore (6) usually does not allow us to compare the regularity
and the index of regularity of F and F*P. See also [BDDGMT20, Section 4.1]
for a more detailed discussion.

4.2 The Degree of Regularity by Ding and Schmidt

The second notion of degree of regularity is more recent. To the extent of our
knowledge it has been introduced by Dubois and Gama [DG10], and later has
been used by several authors such as Ding, Schmidt, and Yang [DS13,DY13].
The definition we present here is taken from [DS13], and differs slightly from the
original one of Dubois and Gama.

Let F, and let B = Fylz1,...,z,]/(2f,...,22). Let f1,....f, € B be
homogeneous polynomials of degree 2. We fix a B-module homomorphism
¢ sending the canonical basis ej,...,e, of B" to {fi,...,fr}, that is for
every (b1,...,b,) € B" we have ¢(b1,...,b;) = >.i_; b;fi. We denote by
Syz(f1,..., fr) the first syzygy module of fi,..., f., that is the kernel of ¢.
An element of Syz(fi,..., fr) is a syzygy of fi,..., fr. In other words, it is a
vector of polynomials (b1, ...,b.) € B” such that > ;_, b;f; = 0.

An example of syzygy is given by the Koszul syzygies fie; — fje;, where
i # j or by the syzygies coming by the quotient structure of B, that is fiq_lei.
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Here e; denotes the i-th element of the canonical basis of B. These syzygies
are called trivial syzygies, because they are always present and do not depend
on the structure of fi,..., f,, but rather on the ring structure of B. We define
the module Triv(f1,..., f.) of trivial syzygies of f1,..., f. as the submodule of
Syz(fi,..., fr) generated by {fie; —fje;: 1 <i<j < PYU{fi e 1<i<r}).

For any d € N we define the vector space Syz(F)q = Syz(F) N B} of syzygies
of degree d. We define the vector subspace of trivial syzygies of degree d as
Triv(F)q = Triv(F) N Bj. Clearly, we have Triv(F)q C Syz(F)q.

Definition 13. Let F = {f1,..., fr} C B be a system of polynomials of degree
2. The degree of regularity of F is

Sreg(F) =min{d > 2 : Syz(F'P),_o/ Triv(F*P)g_a # 0}.

Remark 16. Dubois and Gama [DG10] work in the ring Fylzq,...,2,]/ (2] —
x1,...,28 —x,) and not in B = Fylxq,...,2,]/(2],...,22).

The degree of regularity is the first degree where we have a linear combination
of multiples of f1,..., f, which produces a non-trivial cancellation of their top
degree parts. For this reason, some authors refer to it as first fall degree.

One may wonder whether the degree of regularity by Ding and Schmidt is
close to the solving degree of a polynomial system of quadratic equations. Ding
and Schmidt showed that this is not always the case. In fact, it is easy to produce
examples, the so-called degenerate systems, for which the degree of regularity
and the solving degree are far apart. For a detailed exposition on this problem
and several examples we refer the reader to their paper [DS13].

We are not aware of any results relating d,eq(F) (Definition 13) and dyeg(F)
(Definition 12). Despite the fact that they share the name, we do not see an
immediate connection. A comparison between these two invariants is beyond
the scope of this paper.

5 Solving Degree of Ideals of Minors and the MinRank
Problem

The goal of this section is giving an example of how the results from Sect. 3,
in combination with known commutative algebra results, allow us to prove esti-
mates for the solving degree in a simple and synthetic way. We consider poly-
nomial systems coming from the MinRank Problem. For more bounds on the
complexity of the MinRank Problem, see [CG20].

The MinRank Problem can be stated as follows. Given an integer ¢ > 1 and
a set {M,...,M,} of s X s matrices with entries in a field k, find a non-zero
tuple A = (A1,...,\,) € k™ such that

rank (i: )\iMi> <t-—1. (7)

=1
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This problem finds several applications in multivariate cryptography and in other
areas of cryptography as well. For example, Goubin and Courtois [GC00] solved
a MinRank Problem to attack Stepwise Triangular Systems, and Kipnis and
Shamir [KS99] solved an instance of MinRank in their cryptanalysis of the HFE
cryptosystem.

Consider the matrix M = E?:l x; M;, whose entries are homogeneous linear
forms in R. Condition (7) is equivalent to requiring that the minors of size ¢ x t of
M vanish. Therefore, every solution of the MinRank Problem corresponds to a
non-zero point in the zero locus in k™ of the ideal I;(M) of t-minors of M. A sim-
ilar algebraic formulation can be given for the Generalized MinRank Problem,
which finds applications within coding theory, non-linear computational geome-
try, real geometry, and optimization. We refer the interested reader to [FSS13]
for a discussion of the applications of the Generalized MinRank Problem and a
list of references.

Problem 1 (Generalized MinRank Problem). Given a field k, an r x s matrix
M whose entries are polynomials in R = k[zy,...,2,], and an integer 1 < ¢ <
min{r, s}, find a point in k™ \ {(0, ...,0)} at which the evaluation of M has rank
at most ¢ — 1.

The Generalized MinRank Problem can be solved by computing the zero
locus of the ideal of ¢-minors I;(M). The minors of size ¢ x ¢ of the matrix M
form an algebraic system of multivariate polynomials, which one can attempt to
solve by computing a Grobner basis. This motivates our interest in estimating
the solving degree of this system for large classes of matrices.

Ideals of minors of a matrix with entries in a polynomial ring are called
determinantal ideals and have been extensively studied in commutative algebra
and algebraic geometry. Using Theorem 9, we can take advantage of the literature
on the regularity of determinantal ideals to give bounds on the solving degree
of systems of minors of certain large classes of matrices. For simplicity, we focus
on homogeneous matrices.

Definition 14. Let M be an r X s matriz with r < s, whose entries are elements
of R. The matrix M is homogeneous if both its entries and its 2-minors are
homogeneous polynomials.

It is easy to see that the minors of any size of a homogeneous matrix are
homogeneous polynomials. Moreover, observe that a matrix whose entries are
homogeneous polynomials of the same degree is a homogeneous matrix, but there
are homogeneous matrices whose entries have different degrees. After possibly
exchanging some rows and columns, we may assume without loss of generality
that the degrees of the entries of a homogeneous matrix increase from left to
right and from top to bottom. With this notation, we can compute the solving
degree of our first family of systems of minors. We refer the reader to [Eis94] for
the definition of height of an ideal.

Theorem 13. Let M = (f;;) be an r x s homogeneous matriz with r < s, whose
entries are elements of R, n > s —r + 1. Let F be the polynomial system of the
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minors of size r of M and assume that height(I.(M)) = s —r + 1. Then the
solving degree of F is upper bounded by

solv. deg(F) < deg(f1,1)+...+deg(fm.m)+deg(fmm+1)+-..+deg(fmn)—s+r
If deg(fi ;) =1 for all i,j, then solv.deg(F) = r.

Proof. Since the matrix M is homogeneous, the system of minors F consists of
homogeneous polynomials. The regularity of the corresponding ideal I.(M) =
(F) is

reg(l.(M)) = deg(f1,1) + ... +deg(frr) +deg(frri1) +... +deg(frs) — s+

The formula can be found in [BCGO04, Proposition 2.4] and is derived from
a classical result of Eagon and Northcott [EN62]. The bound on the solv-

ing degree now follows from Theorem9. In particular, if deg(f;;) = 1 for
all 7,7, then solv.deg(F) < r. Since I.(M) is generated in degree r, then
solv. deg(F) =r. O

Notice that the assumption on the height is satisfied by a matrix M whose
entries are generic homogeneous polynomials of fixed degrees. If n = s—r-+1, then
I.(M)q = Rq for d > 0, hence dycg(F) = reg(F), where F is the set of maximal
minors of M. Therefore, Theorem 13 recovers the results of [FSS10,FSS13] for
n=s—r+1andt =r, and extends them to homogeneous matrices whose
entries do not necessarily have the same degree.

We now restrict to systems of maximal minors of matrices of linear forms. The
MinRank Problem associated to this class of matrices is a slight generalization
of the classical MinRank Problem of (7). From the previous result it follows
that, if the height of the ideal of maximal minors is as large as possible, then the
solving degree of the corresponding system is as small as possible, namely r. We
now give different assumptions which allows us to obtain the same estimate on
the solving degree, for ideals of maximal minors whose height is not maximal.
We are also able to bound the solving degree of the system of 2-minors.

Let R have a standard Z"-graded structure, i.e., the degree of every indeter-
minate of R is an element of the canonical basis {ey,...,e,} of Z.

Definition 15. Let M = (fi’j) be an r x s matriz with entries in R, r < s.
We say that M is column-graded if s < wv, and f; ; = 0 or it is homogeneous of
degree deg(fi;) = e; € Z for everyi,j. We say that M is row-graded if r < v,
and f; ; =0 or it is homogeneous of degree deg(f; ;) = e; € Z" for every 1, j.

Informally, a matrix is row-graded if the entries of each row are homogeneous
linear forms in a different set of variables. Similarly for a column-graded matrix.

Theorem 14. Let M be an r X s row-graded or column-graded matriz with
entries in R . Assume that r < s and L.(M) # 0. Then:

— if F is the system of maximal minors of M then solv.deg(F) =r,
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— if F is the system of 2-minors of M then solv.deg(F) < s in the column-
graded case, and solv.deg(F) < r in the row-graded case.

Proof. It is shown in [CDG15,CDG20] that reg(I(M)) = r, reg(lo(M)) < s
in the column-graded case, and reg(lo(M)) < r in the row-graded case. The
bounds on the solving degree now follow from Theorem 9. g
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