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Preface

The 8th International Workshop on the Arithmetic of Finite Fields (WAIFI 2020) was
quite exceptional. It was originally planned to be held at the University of Rennes 1,
France. However, like most meetings in 2020, it ended up as a virtual workshop, a shift
due to the COVID-19 pandemic.

Without doubt, we all missed the face-to-face interaction that we value so much. On
the other hand, the unusual format of the meeting made it accessible to a wider research
community. Indeed, WAIFI 2020 attracted over 200 registered participants from all
around the world.

The program consisted of five plenary and twelve contributed talks. The plenary
speakers were André Chailloux (Inria, Paris, France), Elisa Gorla (University of
Neuchâtel, Switzerland), Gary McGuire (University College Dublin, Ireland), Emma-
nuela Orsini (KU Leuven, Belgium) and Eric Schost (University of Waterloo, Canada).
We invited the plenary speakers to contribute survey papers to the proceedings volume.
We are very glad that Elisa Gorla, Gary McGuire and Emmanuela Orsini were able to
allocate the time to prepare the manuscripts that are included in this volume. An
extended abstract of the talk of André Chailloux is also included here. Video recordings
of the talks of André Chailloux, Elisa Gorla, Emmanuela Orsini and Eric Schost can be
found at http://waifi.org/program.html.

The number of submissions to WAIFI 2020 was rather low, which was not sur-
prising, considering the uncertainties surrounding the COVID-19 pandemic. Out of the
22 fine papers, which received at least three single-blind reviews by PC members or
external reviewers chosen by the members, 12 were selected after a discussion online.
We are grateful to the Program Committee (PC) members and external reviewers for
ensuring a rigorous reviewing process despite all the difficulties caused by the pan-
demic and the confinement measures. We are also grateful to the authors for agreeing to
make video recordings presenting highlights of their papers, which are available on
http://waifi.org/program.html.

We worked very closely and harmoniously with the general chairs Sylvain
Duquesne and Arnaud Tisserand. Their engagement and hard work in leading the
overall organization are much appreciated. Special thanks go to José Luis Imaña, the
publicity chair, who also maintained the website with great care. Indeed, the website
was viewed over 1600 times in the two weeks starting on 29 June 2020, when the
programme was announced and the pre-recorded video presentations of selected papers
were posted. We are also thankful to the Steering Committee for their continual support
and acknowledge the brilliant work done by the Organizing Committee.

University of Rennes 1 provided the essential infrastructure. We are particularly
thankful to INRIA, Lab-STICC CNRS and Centre Henri Lebesgue. We acknowledge
the support of Pôle d’excellence cyber and GDR Sécurité Informatique in publicizing
the workshop. The program ran very smoothly, for which we are indebted to Sylvain

http://waifi.org/program.html
http://waifi.org/program.html


Duquesne for his handling of the software platform SVI esolutions and for the tireless
support he offered to each and everyone who had to use the platform.

As with the previous workshops, Springer agreed to publish the proceedings of
WAIFI 2020 as an LNCS volume. We thank Alfred Hoffman and Anna Kramer at
Springer for all their help. The EasyChair conference management system was helpful,
once again, during submission and selection phases.

With almost no prior experience in organizing online workshops of this size, it was
challenging at times to put together this event. Over 100 emails per week, exchanged
between the (general, PC, publicity) chairs, organizing committee, authors, speakers,
PC members and session chairs, especially during the weeks leading to the meeting,
may indicate the indispensable support and understanding we received from all. We
express our gratitude to them and all the participants of WAIFI 2020.

November 2020 Alev Topuzoğlu
Jean Claude Bajard
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Solving Multivariate Polynomial Systems
and an Invariant from Commutative Algebra

Alessio Caminata1 and Elisa Gorla2

1 Dipartimento di Matematica, Università degli Studi di Genova,
via Dodecaneso 35, 16146, Genova, Italy

caminata@dima.unige.it
2 Institut de Mathématiques,

Université de Neuchâtel, Rue Emile-Argand 11, 2000,
Neuchâtel, Switzerland

elisa.gorla@unine.ch

Abstract. The complexity of computing the solutions of a system of multi-
variate polynomial equations by means of Gröbner bases computations is upper
bounded by a function of the solving degree. In this paper, we discuss how to
rigorously estimate the solving degree of a system, focusing on systems arising
within public-key cryptography. In particular, we show that it is upper bounded
by, and often equal to, the Castelnuovo-Mumford regularity of the ideal gen-
erated by the homogenization of the equations of the system, or by the equations
themselves in case they are homogeneous. We discuss the underlying com-
mutative algebra and clarify under which assumptions the commonly used
results hold. In particular, we discuss the assumption of being in generic
coordinates (often required for bounds obtained following this type of approach)
and prove that systems that contain the field equations or their fake Weil descent
are in generic coordinates. We also compare the notion of solving degree with
that of degree of regularity, which is commonly used in the literature. We
complement the paper with some examples of bounds obtained following the
strategy that we describe.

https://orcid.org/0000-0001-5227-807X


Linearized Polynomials and Their Adjoints,
and Some Connections to Linear Sets

and Semifields

Gary McGuire and John Sheekey

UCD School of Mathematics and Statistics,
University College Dublin, Dublin, Ireland

gary.mcguire@ucd.ie
john.sheekey@ucd.ie

Abstract. For a q-linearized polynomial function L on a finite field, we give a
new short proof of a known result, that L(x)/x and L�ðxÞ=x have the same image,
where L�ðxÞ denotes the adjoint of L. We give some consequences for semifields,
recovering results first proved by Lavrauw and Sheekey. We also give a
characterization of planar functions.

https://orcid.org/0000-0003-2105-9792
https://orcid.org/0000-0002-8590-0301


Efficient, Actively Secure MPC
with a Dishonest Majority: a Survey

Emmanuela Orsi

imec-COSIC, KU Leuven,
Leuven, Belgium

emmanuela.orsini@kuleuven.be

Abstract. The last ten years have seen a tremendous growth in the interest and
practicality of secure multiparty computation (MPC) and its possible applica-
tions. Secure MPC is indeed a very hot research topic and recent advances in the
field have already been translated into commercial products world-wide.
A major pillar in this advance has been in the case of active security with a
dishonest majority, mainly due to the SPDZ-line of work protocols. This survey
gives an overview of these protocols, with a focus of the original SPDZ paper
(Damgård et al. CRYPTO 2012) and its subsequent optimizations.

http://orcid.org/0000-0002-1917-1833


Introduction to Quantum Computing

André Chailloux

Inria Paris, France

Abstract. The goal of this invited talk was to present an introduction to Quantum
Computing for computer scientists which are not specialists in the field. Here we
present a brief summary of the contents of this talk, available at http://www-labsticc.
univ-ubs.fr/waifi2020/videos/waifi2020-video-plenary-chailloux.mp4.

After a small introduction to the field, the talk is divided into 4 parts: basic notions of
quantum computing, quantum error correction, quantum algorithms and perspectives.

Basic Notions of Quantum Computing. I first present textbook knowledge on the
foundations of Quantum Computing. Here, bits are replaced by qubits which can be
represented by vectors in a complex Hilbert space, and computational gates are
replaced by unitary matrices that act on these qubits. The talk goes through these
notions not only by describing the mathematical rules behind quantum bits and
operations but also trying to give an intuition behind fundamental notions of quantum
computing: what does it mean to be in a superposition of states? What does it mean that
measuring a state alters it?

Quantum Error Correction. I then briefly mention one important theorem: the
Threshold Theorem. Qubits are indeed very fragile and become noisy very fast. There
are ways to perform quantum error correction but this requires adding more qubits,
which themselves create more errors. The Threshold Theorem states that it is possible
to correct these errors faster than they occur when adding new qubits, so stable
quantum computations are in theory possible, even though they require much more
resources than those we have today.

Quantum Algorithms. Then, I present some of the most iconic quantum algorithms:
Shor’s algortihm and Grover’s algorithm. Shor’s quantum algorithm shows that with a
fully working quantum computer, one can solve the factoring and the discrete loga-
rithm problems in polynomial time. As a consequence, this would break most of
today’s public key cryptography and we need to design new public key cryptosystems
if we want to avoid this weakness.

Perspectives for Quantum Computing. Finally, I present existing technologies for
quantum computing and those we can expect in the near and less near future. Quantum
Key Distribution for performing unconditional key exchange is a mature technology
that is already commercially available and can be used for highly sensitive data. On the
other hand, quantum computers are still at a very early stage. Very recently however,

http://www-labsticc.univ-ubs.fr/waifi2020/videos/waifi2020-video-plenary-chailloux.mp4
http://www-labsticc.univ-ubs.fr/waifi2020/videos/waifi2020-video-plenary-chailloux.mp4


several private companies managed to construct small quantum computers that have up
to around 60 qubits. While we can’t perform any useful computation with these, we
arrived at a point where these small quantum computers cannot be simulated with usual
computers so there is indeed some strong computational power here that needs to be
further improved in order to see real speedups promised by quantum computing.

A. Chailloux xv
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Solving Multivariate Polynomial Systems
and an Invariant from Commutative

Algebra

Alessio Caminata1 and Elisa Gorla2(B)

1 Dipartimento di Matematica, Università degli Studi di Genova,
via Dodecaneso 35, 16146 Genova, Italy

caminata@dima.unige.it
2 Institut de Mathématiques, Université de Neuchâtel,

Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
elisa.gorla@unine.ch

Abstract. The complexity of computing the solutions of a system of
multivariate polynomial equations by means of Gröbner bases compu-
tations is upper bounded by a function of the solving degree. In this
paper, we discuss how to rigorously estimate the solving degree of a
system, focusing on systems arising within public-key cryptography. In
particular, we show that it is upper bounded by, and often equal to, the
Castelnuovo-Mumford regularity of the ideal generated by the homoge-
nization of the equations of the system, or by the equations themselves
in case they are homogeneous. We discuss the underlying commutative
algebra and clarify under which assumptions the commonly used results
hold. In particular, we discuss the assumption of being in generic coor-
dinates (often required for bounds obtained following this type of app-
roach) and prove that systems that contain the field equations or their
fake Weil descent are in generic coordinates. We also compare the notion
of solving degree with that of degree of regularity, which is commonly
used in the literature. We complement the paper with some examples of
bounds obtained following the strategy that we describe.

Keywords: Gröbner basis · Solving degree · Degree of regularity ·
Castelnuovo-Mumford regularity · Generic coordinates · Multivariate
cryptography · Post-quantum cryptography

Introduction

Polynomial system solving plays an important role in many areas of mathemat-
ics. In this paper, we discuss how to solve a system of multivariate polynomial
equations by means of Gröbner bases techniques and estimate the complexity of
polynomial system solving. Our motivation comes from public-key cryptography,
where the computational problem of solving polynomial systems of equations
plays a major role.
c© Springer Nature Switzerland AG 2021
J. C. Bajard and A. Topuzoğlu (Eds.): WAIFI 2020, LNCS 12542, pp. 3–36, 2021.
https://doi.org/10.1007/978-3-030-68869-1_1
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http://orcid.org/0000-0001-5227-807X
https://doi.org/10.1007/978-3-030-68869-1_1


4 A. Caminata and E. Gorla

In multivariate cryptography, the security relies on the computational hard-
ness of finding the solutions of a system of polynomial equations over a finite
field. One can use similar strategies in order to produce public-key encryption
schemes and digital signature algorithms, whose security relies on this problem.
For signature schemes, e.g., the public key takes the form of a polynomial map

P : F
n
q −→ F

r
q

(a1, . . . , an) �−→ (f1(a1, . . . , an), . . . , fr(a1, . . . , an))

where f1, . . . , fr ∈ Fq[x1, . . . , xn] are multivariate polynomials with coefficients
in a finite field Fq. The secret key allows Alice to easily invert the system P. In
order to sign the hash b of a message, Alice computes a ∈ P−1(b) and sends it
to Bob. Bob can readily verify the validity of the signature by checking whether
P(a) = b. An illegitimate user Eve who wants to produce a valid signature
without knowing Alice’s secret key is faced with the problem of solving the
polynomial system of r equations in n variables

⎧
⎪⎨

⎪⎩

f1(x1, . . . , xn) = b1
...

fr(x1, . . . , xn) = br

Even without knowing Alice’s secret key, Eve may be able to exploit the struc-
ture of P in order to solve the system. Such an approach is largely used and the
adopted strategies vary significantly from one cryptographic scheme to another.
Moreover a direct attack is always possible, i.e., Eve may try to solve the sys-
tem by computing a Gröbner basis of it. Therefore, being able to estimate the
computational complexity of solving a multivariate polynomial system gives an
upper bound of the security of the corresponding cryptographic scheme, and is
therefore highly relevant. In this context, the complexity of solving a polyno-
mial system is typically large enough to make the computation unfeasible, since
being able to compute a solution would enable the attacker to forge a digital
signature or to decrypt an encrypted message. We emphasize that the secu-
rity of multivariate cryptographic schemes is a theme of high current interest.
For example, the National Institute of Standards (NIST) is in the process of
selecting post-quantum cryptographic schemes for standardization. Three digi-
tal signature algorithms were selected as finalists in Round 3 by NIST in July
2020 [NIST], one of which is a multivariate scheme.

Multivariate polynomial systems also appear in connection with the Discrete
Logarithm Problem (DLP) on an elliptic or hyperelliptic curve. An index calcu-
lus algorithm for solving the DLP on an abelian variety was proposed in [Gau09].
The relation-collection phase of the algorithm relies on Gröbner bases computa-
tions to solve a large number of polynomial systems. These systems usually do
not have any solutions, but, whenever they have one, they produce a decompo-
sition of a point of the abelian variety over the chosen factor base. In contrast
with polynomial systems arising within multivariate cryptography, it is feasi-
ble to solve the polynomial systems arising within index calculus algorithms.
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Nevertheless, it is important to be able to accurately estimate the complexity
of solving them. In fact, the complexity of solving these systems has a direct
impact on the complexity of the corresponding index calculus algorithm to solve
the DLP.

Estimating the complexity of solving multivariate polynomial systems is rele-
vant within public-key cryptography. In this context, we usually wish to compute
the solutions over a finite field of a system of multivariate polynomial equations.
Typically, the systems have one, or few, or no solutions, not only over the cho-
sen finite field, but also over its algebraic closure. Moreover, the equations are
usually not homogeneous. The degrees of the equations are often small for sys-
tems coming from multivariate cryptography, but they can be large for systems
arising within index calculus algorithms. Similarly, the number of equations and
of variables can vary. Therefore, in this paper we concentrate on finite fields
and on non homogeneous systems, which have a finite number of solutions over
the algebraic closure. We however do not make assumptions on the number of
variables, the number of equations and their degrees.

This paper is devoted to an in-depth discussion of how to estimate the com-
plexity of computing a Gröbner basis for a system of multivariate polynomial
equations. As said before, our focus is on finite fields and on systems that have
a finite number of solutions over the algebraic closure. At the same time, we try
to keep the discussion more general, whenever possible. We often concentrate on
systems which are not homogeneous, not only because this is the relevant case
for cryptographic applications, but also because it is the most difficult case to
treat.

After recalling in Sect. 1 the commutative algebras preliminaries that will be
needed throughout the paper, in Sect. 2 we discuss in detail the relation between
computing Gröbner bases and solving polynomial systems. This connection is
often taken for granted within the cryptographic community, as are the neces-
sary technical assumptions. In Sect. 2 we discuss in detail what these technical
assumptions are and what can be done when they are not satisfied. We also show
in Theorem 3 that, under the usual assumptions, solving a polynomial system of
equations is polynomial-time-equivalent to computing a Gröbner basis of it. We
conclude with Subsect. 2.1, where we discuss the feasibility of adding the field
equations to a system.

Section 3 is the core of the paper. After establishing the setup that we
will be adopting, we prove some results on Gröbner bases and homogeniza-
tion/dehomogenization. They allow us to compare, in Theorem7, the solving
degree of a system, the solving degree of its homogenization, and the solving
degree of the homogenization of the ideal generated by its equations. Combining
these results with a classical theorem by Bayer and Stillman [BS87], we obtain
Theorem 9 and Theorem 10, where we show that the Castelnuovo-Mumford reg-
ularity upper bounds the solving degree of a system, and recover Macaulay’s
Bound in Corollary 2. These results hold under the assumption that the homog-
enized system of equations is in generic coordinates, an assumption that is
often overlooked in the cryptographic literature and that we discuss in Sect. 1.
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In Theorem 11 we prove that any system that contains the field equations or
their fake Weil descent is in generic coordinates.

In Sect. 4 we discuss the relation between solving degree and degree of regu-
larity. The latter concept is commonly used in the cryptographic literature and
often used as a proxy for the solving degree. In Sect. 4 we discuss the limitations
of this approach. In particular, Example 11 and Example 12 are examples of sys-
tems coming from index calculus for which, respectively, the degree of regularity
is strictly smaller than the solving degree and the degree of regularity is not
defined.

Finally, Sect. 5 is meant as an example of how the results from Sect. 3, in
combination with known commutative algebra results, easily provide estimates
for the solving degree. In particular, Theorem13 and Theorem 14 give bounds for
the solving degree of polynomial systems coming from the MinRank Problem.

1 Preliminaries

In this section we introduce the basic notations and terminology from commu-
tative algebra that we need in the rest of the paper. All the definitions and the
proofs of the results that we quote here are extensively covered in the books
[KR00,KR05,KR16,CLO07].

1.1 Polynomial Rings and Term Orders

We work in a polynomial ring R = k[x1, . . . , xn] in n variables over a field k. An
element f ∈ R is a polynomial, and may be written as a finite sum f =

∑
ν aνxν ,

where ν ∈ N
n, aν ∈ k, and xν = xν1

1 · · · xνn
n . A polynomial of the form aνxν is

called a monomial of degree |ν| = ν1 + · · · + νn. In particular, every polynomial
f is a sum of monomials. The degree of f , denoted by deg(f), is the maximum
of the degrees of the monomials appearing in f . If all these monomials have the
same degree, say d, then f is homogeneous of degree d. A monomial aνxν with
aν = 1 is monic. A monic monomial is also called a term.

Notation. Given a system of polynomials F = {f1, . . . , fr} ⊆ R we denote by
(F) = (f1, . . . , fr) the ideal that they generate, that is (f1, . . . , fr) = {∑r

i=1 pifi :
pi ∈ R}.

The list F = {f1, . . . , fr} is called a system of generators of the ideal I = (F).
F is a minimal system of generators for I if the ideal generated by any non-empty
proper subset of F is strictly contained in I. If the polynomials f1, . . . , fr are
homogeneous, then we say that the system Fand the ideal I are homogeneous.

Remark 1. Let I be an ideal of R minimally generated by homogeneous poly-
nomials f1, . . . , fr. Then every homogeneous minimal system of generators of I
consists of r polynomials of the same degrees as f1, . . . , fr.
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For any degree d ∈ Z+, denote by Rd the d-th homogeneous component of
R. Rd is generated as a k-vector space by the monomials of R of degree d. If
I ⊆ R is homogeneous, we let Id = I ∩ Rd be the k-vector space of homogenous
polynomials of degree d in I.

We denote by T the set of terms of R. A term order on R is a total order τ
on the set T, which satisfies the following additional properties:

1. m ≤τ n implies p · m ≤τ p · n for all p,m, n ∈ T;
2. 1 ≤τ m for all m ∈ T.

If in addition m <τ n whenever deg(m) < deg(n), we say that the term order τ
is degree-compatible.

Example 1 (Lexicographic order). Let xα and xβ be two terms in R. We say
that xα >LEX xβ if the leftmost non-zero entry in the vector α − β ∈ Z

n is
positive. This term order is called lexicographic and it is not degree-compatible.
We denote it by LEX.

Example 2 (Degree reverse lexicographic order). Let xα and xβ be two terms in
R. We say that xα >DRL xβ if |α| > |β|, or |α| = |β| and the rightmost non-
zero entry in α − β ∈ Z

n is negative. This term order is called degree reverse
lexicographic (DRL for short) and it is degree-compatible.

Let f =
∑

i∈I aimi ∈ R\{0} be a polynomial, where ai ∈ k\{0}, and mi ∈ T

are distinct terms. We fix a term order τ on R. The initial term or leading term
of f with respect to τ is the largest term appearing in f , that is inτ (f) = mj ,
where mj > mi for all i ∈ I \ {j}. The support of f is supp(f) = {mi : i ∈ I}.
Given an ideal I of R, the initial ideal of I is

inτ (I) = (inτ (f) : f ∈ I \ {0}).

Definition 1. Let I be an ideal of R. A set of polynomials G ⊆ I is a Gröbner
basis of I with respect to τ if inτ (I) = (inτ (g) : g ∈ G). A Gröbner basis is
reduced if m �∈ (inτ (h) : h ∈ G \ {g}) for all g ∈ G and m ∈ supp(g).

Sometimes we will need to consider a field extension. At the level of the
ideal, this corresponds to looking at the ideal generated by the equations in a
polynomial ring over the desired field extension.

Definition 2. Let I = (f1, . . . , fr) ⊆ R = k[x1, . . . , xn], let K ⊇ k be a field
extension. We denote by IK[x1, . . . , xn] the extension of I to K[x1, . . . , xn], i.e.,
the ideal of K[x1, . . . , xn] generated by f1, . . . , fr. In symbols, IK[x1, . . . , xn] =
(f1, . . . , fr) ⊆ K[x1, . . . , xn].
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1.2 Zero Loci of Ideals

We are mostly interested in ideals, whose zero locus is finite.

Definition 3. The affine zero locus of an ideal I = (f1, . . . , fr) ⊆ R over the
algebraic closure k̄ of k is

Z(I) = {P ∈ k̄n : f(P ) = 0 for all f ∈ I} = {P ∈ k̄n : f1(P ) = . . . = fr(P ) = 0}.

We also denote it by Z(f1, . . . , fr).

Definition 4. The projective zero locus of a homogeneous ideal I =
(f1, . . . , fr) ⊆ R over the algebraic closure k̄ of k is

Z+(I) = {P ∈ P(k̄)n : f(P ) = 0 for all f ∈ I}
= {P ∈ P(k̄)n : f1(P ) = . . . = fr(P ) = 0}.

We also denote it by Z+(f1, . . . , fr).

Remark 2. The following are equivalent for a homogeneous ideal I ⊆ R:

|Z(I)| < ∞ ⇔ Z(I) = {(0, . . . , 0)} ⇔ Z+(I) = ∅.

These conditions are equivalent to the fact that the Krull dimension of R/I is
zero. This is in turn equivalent to R/I being a finite dimensional k-vector space.

In Definition 3 and Definition 4 it is important to look at the zero locus of I
or F over the algebraic closure of the base field. For cryptographic applications,
often the base field k is a finite field. In this case the condition that the zero
locus is finite over k is trivially satisfied by any ideal or system of equations.

1.3 Infinite Fields and the Zariski Topology

Let k be a field. The Zariski topology on the affine space kn is the set of com-
plements of solution sets of systems of polynomial equations over R, that is
{kn \ Z(f1, . . . , fr) | f1, . . . , fr ∈ R}. If k is an algebraically closed field, or at
least an infinite field, then every non-empty open set in the Zariski topology is
dense, i.e., its closure is equal to the entire space. A non-empty open subset of
kn is often called a generic set and a property which holds on a non-empty open
set is generic. Intuitively, a generic set is almost the whole space and a generic
property holds almost everywhere in kn.

If k is a finite field, on the other side, the Zariski topology is the discrete
topology on kn. In other words, any subset of kn is both open and closed, and
the algebraic-geometric intuition of genericity fails. In particular, one can no
longer say that a non-empty open subset of kn is almost the whole space, as the
closure of any subset of kn is the subset itself. Therefore, as genericity loses its
meaning over a finite field, we always will need to assume that the ground field
is infinite when dealing with generic sets or properties.
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1.4 Generic Changes of Coordinates

Fix a term order τ on R = k[x1, . . . , xn]. We denote by GL(n, k) the general
linear group of n × n invertible matrices with entries in k. This group acts on R
via linear changes of coordinates. Namely, a matrix g = (gi,j) ∈ GL(n, k) acts
on the variable xj as g(xj) =

∑n
i=1 gi,jxi. We refer to g also as a linear change

of coordinates. We observe that GL(n, k) ⊆ kn2
is an open subset with respect

to the Zariski topology.
It is easy to find examples of g ∈ GL(n, k) such that inτ (gI) �= inτ (I), that

is, initial ideals are not independent of coordinate changes. However, a famous
theorem by Galligo states that, applying a generic change of coordinates to an
ideal I, the initial ideal stays the same.

Theorem 1. [Gal74] Assume that k is infinite. Let I be a homogeneous ideal of
R, then there exist a non-empty Zariski-open set U ⊆ GL(n, k) and a monomial
ideal J such that inτ (gI) = J for all g ∈ U .

This motivates the following definition.

Definition 5. Let k be an infinite field. An ideal I ⊆ R is in generic coordinates
if 1 ∈ U , i.e., if

inτ (gI) = inτ (I)

for all g ∈ U .
Let k be any field and let K ⊇ k with K infinite. I is in generic coordinates

over K if IK[x1, . . . , xn] ⊆ K[x1, . . . , xn] is in generic coordinates.

Notice that, over an infinite field k, gI is by definition in generic coordinates
for any ideal I and g ∈ U , that is, for any ideal I and for a generic g. Informally,
any homogeneous ideal can be put in generic coordinates by applying a random
change of coordinates to it. If k is finite, it suffices to apply to I a random change
of coordinates over a field extension of sufficiently large cardinality.

1.5 Homogeneous Ideals Associated to a System

Let R = k[x1, . . . , xn] and let S = R[t]. Given a polynomial f ∈ R, we denote
by fh ∈ S the homogenization of f with respect to the new variable t. For
F = {f1, . . . , fr} ⊆ R, we let Fh ⊆ S denote the system obtained from F by
homogenizing each fi with respect to t, that is Fh = {fh

1 , . . . , fh
r }.

For an ideal I ⊆ R, the homogenization of I with respect to t, or simply the
homogenization of I, is the ideal

Ih = (fh : f ∈ I) ⊆ S.

If I = (F) ⊆ R, then Ih is a homogeneous ideal of S which contains (Fh). It is
easy to produce examples where the containment is strict.
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Remark 3. Let G be a Gröbner basis of I with respect to a degree-compatible
term order on R. It can be shown that Gh = {gh : g ∈ G} is a Gröbner basis
of Ih with respect to a suitable term order on S, see e.g. [KR05, Section 4.3]. In
particular Ih = (gh : g ∈ G), hence the degrees of a minimal system of generators
of Ih are usually different from those of a minimal system of generators of I.
Instead, the degrees of a minimal system of generators of (Fh) coincide with the
degrees of f1, . . . , fr.

The dehomogenization map φ is the standard projection on the quotient
φ : S → R ∼= S/(t − 1). For any system of equations F ⊆ R generating an ideal
I = (F) we have φ(Ih) = (φ(Fh)) = I. Notice that one also has φ((Fh)) =
(φ(Fh)) = I.

For a polynomial f ∈ R, we denote by f top its homogeneous part of highest
degree. For a system of equations F = {f1, . . . , fr} we denote by

F top = {f top
1 , . . . , f top

r }.

Both the ideal (Fh) and the ideal (F top) depend on F , and not only on the
ideal I = (F).

2 The Importance of Being LEX

The main goal of this section is clarifying the relation between solving a system of
polynomial equations F and computing a Gröbner basis of the ideal I generated
by the system. In the cryptographic literature it is often stated that, thanks to
the Shape Lemma, the problem of finding the solutions of F can be reduced to
that of computing a lexicographic Gröbner basis of I. This statement is however
not rigorous, since the Shape Lemma only holds under certain assumptions,
which are not always verified for cryptographic systems.

We start by stating the assumptions under which the Shape Lemma holds
and showing that, when they are satisfied, the problem of solving the system F is
polynomial-time-equivalent to that of computing a lexicographic Gröbner basis
of I. Then we discuss what can be done in the case when the assumptions of the
Shape Lemma are not satisfied. We come to the conclusion that, in all situations,
one can easily compute the solutions of F from a lexicographic Gröbner basis
of I. We stress that we are not stating that directly computing the reduced
lexicographic Gröbner basis is the most efficient way to solve a system (see also
Sect. 3). We conclude the section with a brief discussion of when it is feasible to
add the field equations to a system F and how that affects the computation of
a Gröbner basis of it.

Throughout the section we focus on systems of equations which have a finite
number of solutions over the algebraic closure of the field of definition, since
systems that arise in public key cryptography are usually of this kind. Moreover,
we always assume that our systems have at least one solution. In fact, if the
system has no solutions, the corresponding ideal is equal to the polynomial ring,
that is the reduced Gröbner basis with respect to any term order is equal to



Solving Multivariate Polynomial Systems 11

{1}. In this case, therefore, computing the reduced lexicographic Gröbner basis
allows us to decide that the system has no solutions, without any additional
work.

We start by recalling the Shape Lemma.

Theorem 2 (Shape Lemma – [KR00], Theorem 3.7.25). Let k be a field
and let f1, . . . , fr ∈ R be such that the corresponding ideal I = (f1, . . . , fr) is
radical, in normal xn-position, and |Z(I)| = d < ∞. The reduced lexicographic
Gröbner basis of I is of the form

{gn(xn), xn−1 − gn−1(xn), . . . , x1 − g1(xn)},

where g1, . . . , gn are univariate polynomials in xn and deg(g1), . . . ,deg(gn−1) <
deg(gn) = d.

The Shape Lemma assumes that the ideal I is radical and in normal xn-
position. An ideal I is radical if f � ∈ I for some � > 0 implies f ∈ I. This
assumption is not always verified for ideals generated by systems arising in cryp-
tography. Later in the section, we will show how one can use a more general
version of the Shape Lemma in order to overcome this problem.

Being in normal xn-position means that any two distinct zeros (a1, . . . , an),
(b1, . . . , bn) ∈ Z(I) satisfy an �= bn. Notice that every ideal I with finite affine
zero locus can be brought into normal xn-position by a suitable linear change
of coordinates, passing to a field extension if needed (see [KR00, Proposition
3.7.22]). A field extension may indeed be needed, as the next example shows.

Example 3. Let F = {x2
1 + x1, x1x2, x

2
2 + x2} ⊆ R = F2[x1, x2]. Then I =

(x2
1 + x1, x1x2, x

2
2 + x2) is a radical ideal and Z(I) = {(0, 0), (0, 1), (1, 0)}. We

claim that I cannot be brought in normal x2-position by a linear change of
coordinates over F2. In fact, a linear change of coordinates over F2 sends x2 to
either x1, x2, x1 + x2, x1 + 1, x2 + 1, or x1 + x2 + 1. However, all these linear
forms take the same value on at least two of the elements of Z(I).

Finally, the Shape Lemma assumes that |Z(I)| < ∞. If k is a finite field,
then one can add the field equations to I and obtain an ideal J which is radical
and such that Z(J) = Z(I) ∩ kn, in particular |Z(J)| < ∞. This is however not
always advantageous or even feasible, as we discuss in Sect. 2.1.

Whenever the assumptions of the Shape Lemma are satisfied, computing the
solutions of a system of equations has the same complexity as computing the
reduced lexicographic Gröbner basis of the ideal generated by the system.

Theorem 3. Let F = {f1, . . . , fr} ⊆ R be a polynomial system such that the
corresponding ideal I = (f1, . . . , fr) is radical and in normal xn-position. Assume
that |Z(I)| = d < ∞ and Z(I) ⊆ F

n
q . Consider the LEX order. The set of solu-

tions of F can be computed from the reduced Gröbner basis of I probabilistically
in time polynomial in log q, n and d. Conversely, the reduced Gröbner basis of I
can be computed from the set of solutions of F deterministically in time polyno-
mial in log q, n and d.
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Proof. By the Shape Lemma, the reduced lexicographic Gröbner basis of I has
the form:

{gn(xn), xn−1 − gn−1(xn), . . . , x1 − g1(xn)}, (1)

where gi(xn) are polynomials in the variable xn only, and deg(gj) < deg(gn) = d
for 1 ≤ j < n.

If we know the reduced lexicographic Gröbner basis of I, then we can factor
the polynomial gn(xn) to find its roots. Each root α of gn(xn) corresponds to
a solution (g1(α), . . . , gn−1(α), α) of f1 = . . . = fr = 0. Notice that the only
operation required, apart from the arithmetic over Fq, is factoring univariate
polynomials, which can be done in probabilistic polynomial time over a finite
field.

Vice versa, assume that we know Z(I) = {P1, . . . , Pd} ⊆ F
n
q of F . Write Pi =

(ai,1, . . . , ai,n) for i = 1, . . . , d. We wish to compute the reduced lexicographic
Gröbner basis of I, knowing that it is of the form (1). Since the roots of gn

are exactly a1,n, . . . , ad,n we can compute gn(xn) =
∏d

i=1(xn − ai,n). Now fix
j ∈ {1, . . . , n − 1}. Since gj(ai,n) = ai,j for i = 1, . . . , d and deg(gj) < d, we can
compute gj(xn) by using Lagrange interpolation:

gj(xn) =
d∑

i=1

⎛

⎜
⎜
⎝

∏

1≤λ≤d
λ�=i

xn − aλ,n

ai,n − aλ,n

⎞

⎟
⎟
⎠ ai,j .

��

We now discuss the situation in which the assumptions of the Shape Lemma
do not hold. In particular, we consider the case when I is not radical. Some
authors state that, since I + (xq

1 − x1, . . . , x
q
n − xn) ⊆ Fq[x1, . . . , xn] is always

radical, up to adding the field equations one may assume without loss of gen-
erality that I is radical. However, adding the field equations to the system is
not always computationally feasible, even in the case of systems coming from
cryptography. Therefore, being able to deal with the situation when the ideal I
is not radical is relevant for cryptographic applications. We discuss this issue in
more detail in Sect. 2.1.

Before continuing our discussion, we give an example of system coming
from multivariate cryptography for which the corresponding ideal is not rad-
ical, adding the field equations to the system is not feasible, and one ends up
with a reduced lexicographic Gröbner basis which does not have the shape pre-
dicted by the Shape Lemma. Indeed, this was the case for most of the instances
of the ABC cryptosystem [TDTD13,TXPD15] that we computed. Since the field
sizes proposed in [TXPD15] for achieving 80-bits security are 28, 216, and 232,
adding the field equations to the system is not feasible. In our next example we
disregard the linear transformations used in the ABC cryptosystem to disguise
the private key, since they do not affect the property of the system to generate
a radical ideal.
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Example 4. We consider R = F2[x1, x2, x3, x4] with the LEX term order and a
toy instance of an ABC cryptosystem with

A =

(
x1 x2

x3 x4

)
, B =

(
x1 + x2 + x3 x1 + x2

x1 + x3 + x4 x3

)
, C =

(
x1 + x2 + x3 + x4 x1 + x4

x1 + x4 x1

)
.

We let p1, . . . , p8 be the entries of the matrices AB and AC. We take a random
plaintext b = (0, 1, 1, 0) ∈ F

4
2 and we evaluate the polynomials p1, . . . , p8 at b to

obtain the ciphertext a = (1, 1, 0, 1, 0, 0, 0, 0) ∈ F
8
2. We then consider the system

F = {pi −ai : i = 1, . . . , 8} and the corresponding ideal I = (F) ⊆ R. The ideal
I is not radical as (x3 + 1)2 ∈ I, but x3 + 1 �∈ I. A computation with MAGMA
shows that the reduced lexicographic Gröbner basis of I is {x1, x2+x3, x

2
3+1, x4}.

We now discuss how one can efficiently compute the solutions of a polynomial
system from its lexicographic Gröbner basis, without assuming that the ideal
generated by the equations is radical. We stress that we always assume that the
system has finitely many solutions over the algebraic closure. The next result
will be central to our discussion, as we will use it as a substitute of the Shape
Lemma.

Theorem 4 (Elimination Theorem – [CLO07], Chap. 3.1, Theorem 2).
Let I ⊆ R be an ideal and let G be a lexicographic Gröbner basis of I. Then
for every 1 ≤ � ≤ n − 1 the set G ∩ k[x�+1, . . . , xn] is a Gröbner basis of I ∩
k[x�+1, . . . , xn] with respect to the LEX order on k[x�+1, . . . , xn].

In the next result we use Theorem 4 to prove that one can easily compute
the solutions of F from the reduced lexicographic Gröbner basis of I.

Theorem 5. Let I be a proper ideal of R = k[x1, . . . , xn] with finite affine zero
locus. The reduced lexicographic Gröbner basis of I has the form

pn,1(xn),
pn−1,1(xn−1, xn), . . . , pn−1,tn−1(xn−1, xn),
pn−2,1(xn−2, xn−1, xn), . . . , pn−2,tn−2(xn−2, xn−1, xn),
· · ·
p1,1(x1, . . . , xn), . . . , p1,t1(x1, . . . , xn),

where pi,tj
∈ k[xi, . . . , xn] for every index i ∈ {1, . . . , n}, j ∈ {1, . . . , ti} and

t1, . . . , tn−1 ≥ 1. Moreover, for any 1 ≤ � ≤ n, let a = (a�+1, . . . , an) ∈ kn−� be
a solution of the equations

pn,1(xn),
pn−1,1(xn−1, xn), . . . , pn−1,tn−1(xn−1, xn),
· · ·
p�+1,1(x�+1, . . . , xn), . . . , p�+1,t�+1(x�+1, . . . , xn),

and let

p�(x�) = gcd{p�,1(x�, a�+1, . . . , an), . . . , p�,t�
(x�, a�+1, . . . , an)}.

Then p�(x�) �∈ k.
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Proof. Let G be the reduced lexicographic Gröbner basis of I. The set G ∩
k[x�, . . . , xn] is of the form

G ∩ k[x�, . . . , xn] = {pi,j(xi, . . . , xn) | � ≤ i ≤ n, 1 ≤ j ≤ ti}

for some t1, . . . , tn ≥ 0. Moreover, for any 1 ≤ � ≤ n such that p�(x�) �= 0, one
has t� ≥ 1. Hence it suffices to show that p�(x�) �∈ k for 1 ≤ � ≤ n.

We prove the claim by descending induction on � ≤ n. Let � = n, then
G ∩ k[xn] is the reduced lexicographic Gröbner basis of I ∩ k[xn] by Theorem 4.
Let pn,1(xn) be a monic generator of I ∩ k[xn], then G ∩ k[xn] = {pn,1(xn)}
and tn = 1. Since the affine zero locus of I is finite, pn,1(xn) �= 0. Moreover,
pn(xn) = pn,1(xn) �∈ k \ {0}, since ∅ �= Z(I) ⊆ Z(pn).

We suppose now that the claim holds up to �+1 and we prove that p�(x�) �∈ k.
By Theorem 4, G ∩ k[x�, . . . , xn] is the reduced lexicographic Gröbner basis of
I ∩ k[x�, . . . , xn], in particular

I ∩ k[x�, . . . , xn] = (pi,j | � ≤ i ≤ n, 1 ≤ j ≤ ti).

Let a ∈ Z(I ∩ k[x�+1, . . . , xn]) ∩ kn−� and define

I(�, a) = (p�,1(x�, a�+1, . . . , an), . . . , p�,t�
(x�, a�+1, . . . , an)) = (p�(x�)).

By [CLO07, Chapter 3.2, Theorem 3] and since Z(I) is a finite set, one has that

Z(I ∩ k[x�, . . . , xn]) = πn−�+1(Z(I)),

where πi : kn → ki is the projection on the last i coordinates. In particular,
Z(I ∩k[x�, . . . , xn]) is finite. If p�(x�) is the zero polynomial, then Z(I(�, a)) = k̄
and

{(a�, a�+1, . . . , an) | a� ∈ k̄} ⊆ Z(I ∩ k[x�, . . . , xn]),

contradicting the finiteness of Z(I ∩ k[x�, . . . , xn]). If instead p�(x�) ∈ k \ {0},
then Z(I(�, a)) = ∅. However, a = (a�+1, . . . , an) ∈ Z(I ∩ k[x�+1, . . . , xn]) =
πn−�(Z(I)), where equality holds by [CLO07, Chapter 3.2, Theorem 3].
So there exist a1, . . . , a� ∈ k̄ such that (a1, . . . , an) ∈ Z(I). Therefore,
πn−�+1(a1, . . . , an) = (a�, . . . , an) ∈ Z(I ∩ k[x�, . . . , xn]), that is a� ∈
Z(I(�, a)) = ∅, a contradiction. ��

We use the previous result to build an algorithm which computes the affine
zero locus of an ideal I from its reduced lexicographic Gröbner basis. We adopt
the notation of Theorem 5.

Corollary 1. Let I ⊆ R = k[x1, . . . , xn] be an ideal with finite affine zero locus
Z(I). Then Z(I) can be computed as follows:

1. Compute the reduced lexicographic Gröbner basis G of I to obtain the monic
polynomial pn ∈ k[xn] such that (pn) = I ∩ k[xn].

2. If pn = 1, then Z(I) = ∅. Else, factor pn.
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3. For every root α of pn compute

pn−1(xn−1) = gcd{pn−1,1(xn−1, α), . . . , pn−1,tn−1(xn−1, α)}.

4. Factor pn−1.
5. For every root β of pn−1 compute

pn−2(xn−2) = gcd{pn−2,1(xn−2, β, α), . . . , pn−2,tn−2(xn−2, β, α)}.

6. Proceed similarly, until all the elements of Z(I) are found.

Notice that the computation is even more efficient under the assumption that
the system F , or equivalently the ideal I, has only one zero over the algebraic
closure. This is often the case for polynomial systems coming from multivariate
cryptosystems, where we usually require that for each ciphertext b there is a
unique plaintext a such that fi(a) = b for every i = 1, . . . r.

In such a situation, one does not need to factor any univariate polynomial,
since each one of them has exactly one solution, which, for a monic polynomial of
degree d, can be computed by multiplying the coefficient of xd−1 by (−1)d−1d−1.

Remark 4. Assume that k is either a finite field or has characteristic zero. If I
admits only one solution (a1, . . . , an) ∈ k̄n, then in fact (a1, . . . , an) ∈ kn. This
is true even if the solution has multiplicity higher than one. In fact, gn(xn) =
(xn − an)d ∈ k[xn], hence dan ∈ k. If k has characteristic zero, then an ∈ k.
Else, let p be the characteristic of k and write d = p�e where p � e. Then

gn(xn) =
(
xp�

n − ap�

n

)e

∈ k[xn], so eap�

n ∈ k. This implies ap�

n ∈ k, hence an ∈ k,
since k is a finite field. One proceeds similarly to prove that ai ∈ k for all i.

Remark 5. By [CLO07, Chapter 3.2, Theorem 3] and since Z(I) is a finite set,
one has that

Z(I ∩ k[x�, . . . , xn]) = πn−�+1(Z(I))

for 1 ≤ � ≤ n, where πi : kn → ki is the projection on the last i coordinates.
This implies that each path from the roots to the leaves in the tree-shaped
computation of Corollary 1 produces a solution. In particular, Corollary 1 does
not perform useless computations.

2.1 Adding the Field Equations to a System

Let Q = {xq
1 − x1, . . . , x

q
n − xn} be the system consisting of the field equations

relative to Fq. Clearly, for any system of equations F = {f1, . . . , fr} ⊆ R =
Fq[x1, . . . , xn] one has

Z(F ∪ Q) = Z(F) ∩ F
n
q .

The systems F and F ∪Q, however, often have different algebraic properties.
It is easy to show that the ideal generated by F ∪ Q is always radical, while
the ideal generated by F may not be. The structure of the reduced Gröbner
bases of the ideals generated by the two systems and the degrees of the elements
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appearing in them are often different as well. As a consequence, adding the field
equations to a system often affects the complexity of computing a Gröbner basis.

Therefore, passing from F to F ∪ Q may or may not provide an advantage.
It typically provides an advantage for fields of small size, since the equations of
Q have low degree and adding them to F makes the ideal radical, a necessary
hypothesis for the Shape Lemma (Theorem 2) to apply. Over fields of large size,
however, adding the field equations may make the computation of a Gröbner
basis practically infeasible. This is due to the fact that we are adding to the
system equations of large degree, which are involved in the computation of a
Gröbner basis, therefore increasing the degree of the computation. In the next
example, we show that the solving degree may increase when passing from F to
F ∪ Q (see Definition 6 for the definition of solving degree).

Example 5. Let F = {x2
3 − x2, x

3
2 − x1} ⊆ F5[x1, x2, x3] and let I = (F). The

affine zero locus of I over F5 is infinite. If we add the field equations Q =
{x5

1 − x1, x
5
2 − x2, x

5
3 − x3} of F5 to F , we obtain the ideal J = (F ∪ Q), which

has Z(J) = {(0, 0, 0), (1, 1, 1), (4, 4, 2), (4, 4, 3), (1, 1, 4)}. The elements of F are
a Gröbner basis of I with respect to the LEX order, while the reduced Gröbner
basis of J with respect to the same order also contains x5

3−x3. In particular, the
Gröbner basis of J contains a polynomial of higher degree and one can easily
verify that

solv.deg(F ∪ Q) = 5 > 3 = solv.deg(F).

Even if we restrict our attention to polynomial systems arising in public-key
cryptography, one may not always assume that the field equations can be added
to the system. An example coming from multivariate cryptography was given
in Example 4. Another example are systems coming from the relation-collection
phase of index calculus on elliptic or hyperelliptic curves, since the field size is
very large (e.g., the field size required for 80-bit security is at least q ∼ 2160

for an elliptic curve and q ∼ 280 for a hyperelliptic curve of genus two). In
such a situation, adding equations of degree q to the system would make it
unmanageable.

3 Solving Degree of Polynomial Systems

In Sect. 2 we discussed how one can compute the solutions of a polynomial sys-
tem, starting from a lexicographic Gröbner basis of the ideal that it generates.
In this section, we address the problem of estimating the complexity of comput-
ing a lexicographic Gröbner basis. In practice, one observes that computing a
Gröbner basis with respect to LEX is usually slower than with respect to any
other term order. On the other hand, computing a Gröbner basis with respect
to DRL is often faster than with respect to any other term order. Therefore,
computing a degree reverse lexicographic Gröbner basis and converting it to a
lexicographic Gröbner basis using FGLM or a similar algorithm is usually more
efficient than computing a lexicographic Gröbner basis directly. For this reason,
in this section we discuss the complexity of computing a Gröbner basis of an
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ideal I in a polynomial ring R = k[x1, . . . , xn] over a field k with respect to the
DRL order. We refer the reader to [FGLM93] for a description of the FGLM
algorithm and an estimate of its complexity.

3.1 Macaulay Matrices and Solving Degree

We have two main classes of algorithms for computing Gröbner bases: Buch-
berger’s Algorithm and linear algebra based algorithms, which transform the
problem of computing a Gröbner basis into one or more instances of Gaus-
sian elimination. Examples of linear algebra based algorithms are: F4 [Fau99],
F5 [Fau02], the XL Algorithm [CKPS00], and MutantXL [DBMMW08]. Buch-
berger’s Algorithm is older, and its complexity has been extensively studied. Lin-
ear algebra based algorithms are often faster in practice and have contributed
to breaking many cryptographic challenges. However, their complexity is less
understood, especially when the input consists of polynomials which are not
homogeneous.

In this section, we discuss the complexity of linear algebra based algorithms,
which is dominated by Gaussian elimination on the Macaulay matrices. First
we describe them for homogeneous systems, following [BFS15, p. 54]. Let F =
{f1, . . . , fr} ⊆ R be a system of homogeneous polynomials and fix a term order.
The homogeneous Macaulay matrix Md of F has columns indexed by the terms
of Rd sorted, from left to right, according to the chosen order. The rows of Md

are indexed by the polynomials mi,jfj , where mi,j ∈ R is a term such that
deg(mi,jfj) = d. Then the entry (i, j) of Md is the coefficient of the monomial
of column j in the polynomial corresponding to the i-th row.

Now let f1, . . . , fr be any polynomials (not necessarily homogeneous). For
any degree d ∈ Z+ the Macaulay matrix M≤d of F has columns indexed by the
terms of R of degree ≤ d, sorted in decreasing order from left to right. The rows
of M≤d are indexed by the polynomials mi,jfj , where mi,j is a term in R such
that deg(mi,jfj) ≤ d. The entries of M≤d are defined as in the homogeneous case.
Notice that, if f1, . . . , fr are homogeneous, the Macaulay matrix M≤d is just a
block matrix, whose blocks are the homogeneous Macaulay matrices Md, . . . ,M0

associated to the same equations. This is the reason for using homogeneous
Macaulay matrices in the case that f1, . . . , fr are homogeneous.

The size of the Macaulay matrices M≤d and Md, hence the computational
complexity of computing their reduced row echelon forms, depends on the degree
d. Therefore, following [DS13], we introduce the next definition.

Definition 6. Let F = {f1, . . . , fr} ⊆ R and let τ be a term order on R. The
solving degree of F is the least degree d such that Gaussian elimination on the
Macaulay matrix M≤d produces a Gröbner basis of F with respect to τ . We
denote it by solv.degτ (F). When the term order is clear from the context, we
omit the subscript τ .

If F is homogeneous, we consider the homogeneous Macaulay matrix Md and
let the solving degree of F be the least degree d such that Gaussian elimination
on M0, . . . ,Md produces a Gröbner basis of F with respect to τ .
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Some algorithms perform Gaussian elimination on the Macaulay matrix for
increasing values of d. An algorithm of this kind has a termination criterion,
which allows to decide whether a Gröbner basis has been found and the algorithm
can be stopped. For example, F5 uses the so-called signatures for this purpose.
Other algorithms perform Gaussian elimination on just one Macaulay matrix,
for a large enough value of d. For such an algorithm, a sharp bound on the
solving degree provides a good estimate for the value of d to be chosen. In both
cases, the solving degree produces a bound on the complexity of computing
the desired Gröbner basis. In particular, one may choose to artificially stop a
Gröbner basis computation in the degree corresponding to the solving degree.
For this reason, we use the solving degree to measure the complexity of Gröbner
bases computations and we do not discuss termination criteria.

Remark 6. If F is not homogeneous, then Gaussian elimination on M≤d may
produce a row that corresponds to a polynomial f such that deg(f) < d and
in(f) was not the leading term of any row of M≤d before performing Gaussian
elimination. If this is the case, then some variants of the algorithms add to M≤d

the rows corresponding to the polynomials mf , where m is a monomial and
deg(mf) ≤ d. Then they proceed to compute the reduced row echelon form of
this larger matrix. If no Gröbner basis is produced in degree ≤ d, then they
proceed by adding to this matrix the appropriate multiples of its rows in the
next degree and continue as before. This potentially has the effect of enlarging
the span of the rows of M≤d, for all d. Introducing this variation may therefore
reduce the computational cost of computing a Gröbner basis with respect to a
given term order, since we might be able to obtain a Gröbner basis in a smaller
degree than the solving degree, as defined in Definition 6. Throughout the paper,
we consider the situation when no extra rows are inserted. Notice that the solving
degree is an upper bound on the degree in which the algorithms adopting this
variation terminate.

Definition 7. Let I ⊆ R be an ideal and let τ be a term order on R. We
denote by max.GB.degτ (I) the maximum degree of a polynomial appearing in the
reduced τ Gröbner basis of I. If I = (F), we sometimes write max.GB.degτ (F)
in place of max.GB.degτ (I).

It is clear that

max.GB.degτ (F) ≤ solv.degτ (F),

for any system of polynomials F and any term order τ . Equality does not hold
in general, as we show in Example 8.

Remark 7. Assume that F = {f1, . . . , fr} is homogeneous. Gaussian elimination
on Md exclusively produces rows that correspond to polynomials of degree d.
Therefore

solv.degτ (F) = max.GB.degτ (F)

for any τ .
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Notice moreover that the solving degree of a system F may be strictly smaller
than the largest degree of an equation of F . This may happen, e.g., when F
contains redundant equations.

Example 6. Let F = {x2 + x, xy, y2 + y, x2y + x2 + x} ⊆ F2[x, y]. The reduced
DRL Gröbner basis of I = (F) is {x2 + x, xy, y2 + y} and solv.degDRL F = 2.

3.2 Homogenization of Ideals and Extensions of Term Order

We consider a polynomial ring R = k[x1, . . . , xn] and its extension S = R[t] with
respect to a new variable t. We compare term orders on R and S.

Definition 8. Let σ be a term order on R, let τ be a term order on S = R[t],
and let φ : S → R be the dehomogenization map. We say that τ φ-extends σ,
or that τ is a φ-extension of σ, if φ(inτ (f)) = inσ(φ(f)) for every homogeneous
f ∈ S.

The next theorem relates Gröbner basis and dehomogenization.

Theorem 6. Let σ be a term order on R, and let τ be a φ-extension of σ on S.
Let I be an ideal in R, let J be a homogeneous ideal in S such that φ(J) = I.
The following hold:

1. inσ(I) = φ(inτ (J));
2. if {g1, . . . , gs} is a homogeneous τ Gröbner basis of J , then {φ(g1), . . . , φ(gs)}

is a σ Gröbner basis of I.

Proof. We prove (1). Notice that inτ (J) = (inτ (f) : f ∈ J, f homogeneous),
because J is a homogeneous ideal. Then we have

φ(inτ (J)) = (φ(inτ (f)) : f ∈ J, f homogeneous)
= (inσ(φ(f)) : f ∈ J, f homogeneous) .

To conclude the proof of (1), it suffices to show that

{φ(f) : f ∈ J, f homogeneous} = I.

The inclusion from left to right follows from the assumption that φ(J) = I.
To prove the other inclusion, we fix a system of generators f1, . . . , fr of I
and consider f =

∑r
i=1 pifi ∈ I, with pi ∈ R. Let hi ∈ J be homogeneous

such that φ(hi) = fi for all i and define p̃ =
∑r

i=1 tαiph
i hi. The polynomial

p̃ belongs to J and it is homogeneous for a suitable choice of the αi’s. Since
φ(p̃) =

∑r
i=1 φ(tαiph

i hi) =
∑r

i=1 pifi = f , the inclusion follows.
To prove (2), observe that

φ(inτ (J)) = (φ(inτ (gi)) : i = 1, . . . , s) = (inσ(φ(gi)) i = 1, . . . , s) ,

since φ is a homomorphism and τ φ-extends σ. This shows that {φ(g1), . . . , φ(gs)}
is a Gröbner basis of φ(inτ (J)) with respect to σ, which is equal to inσ(I) by
(1). ��
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There is a natural way to φ-extend a term order σ on R to a term order σ̄
on S.

Definition 9. Let m,n be terms in R, let σ be a term order on R. Define a
term order σ̄ on S via: tαm >σ̄ tβn if and only if (m >σ n) or (m = n and
α > β).

Lemma 1. σ̄ is a term order on S which φ-extends σ.

Proof. First we prove that σ̄ is a term order. The fact that 1 <σ m for every
term m ∈ R implies 1 <σ̄ m. We have also 1 = t0 <σ̄ t.

Now, let tαm >σ̄ tβn, with m,n terms in R, and α, β ∈ N. We show that
>σ̄ respects multiplication by terms. We have two possibilities: 1) m >σ n
or 2) m = n and α > β. If 1) holds, then we have xim >σ xin for every
i = 1, . . . , n since σ is a term order, which implies xit

αm >σ̄ xit
βn. Clearly

tα+1m >σ̄ tβ+1n. If 2) holds, then xim = xin for every i = 1, . . . , n, therefore
xit

αm >σ̄ xit
βn since α > β. Moreover we have tα+1m >σ̄ tβ+1n, because

m = n and α + 1 > β + 1.
Now we prove that σ̄ φ-extends σ, that is φ(inσ̄(f)) = inσ(φ(f)) for every

f ∈ S homogeneous. Let f =
∑d

i=1 ait
αimi be a homogeneous polynomial, with

mi ∈ R distinct terms, αi ∈ N, and ai ∈ k \ {0}. Then φ(f) =
∑d

i=0 aimi

and deg mi = deg f − αi. If there is any cancellation in the sum defining φ(f),
then the monomials cancelling have the same degree, then they have already
been cancelled in f . Hence, there is no cancellation in φ(f). Without loss of
generality, let m1 = inσ(φ(f)), that is m1 >σ mi for every i = 2, . . . , d. Then
tα1m1 = inσ̄(f), and φ(inσ̄(f)) = m1 = inσ(φ(f)). ��
Example 7. The equality φ(inσ̄(f)) = inσ(φ(f)) does not necessarily hold for f
not homogeneous. For example consider f = tx − x + ty ∈ S = k[x, y, t], and let
σ = LEX. Then inσ̄(f) = tx, φ(f) = y, and inσ(φ(f)) = y �= x = φ(inσ̄(f)).

The next Lemma gives an important example of φ-extension of a term order.

Lemma 2. Fix the DRL order on R and extend it to the DRL order on S by
letting t be the smallest variable. Then the DRL order on S φ-extends the DRL
order on R.

Proof. Let f =
∑d

i=1 ait
αimi be a homogeneous polynomial, with distinct terms

mi ∈ R, αi ∈ N, and ai ∈ k \ {0}. Then φ(f) =
∑d

i=0 aimi and deg mi =
deg f − αi. As in the proof of Lemma 1 there is no cancellation in φ(f).

Without loss of generality, let inDRL(φ(f)) = m1, that is m1 >DRL mi

for all i = 2, . . . , d. For each i ∈ {2, . . . , d} we have two possibilities: either
deg m1 > deg mi or deg m1 = deg mi. If deg m1 > deg mi then we have α1 < αi,
since deg mj + αj = deg f for every j. This implies tα1m1 >DRL tαimi. If
deg m1 = deg mi then we have α1 = αi, and tα1m1 >DRL tαimi follows from
m1 >DRL mi. Therefore we have inDRL(f) = tα1m1, and φ(inDRL(f)) = m1 =
inDRL(φ(f)). ��
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Remark 8. Fix the DRL order on R. The DRL order on S is different from the
order DRL obtained by applying Definition 9. For example, let R = k[x, y] with
x > y, S = R[t], and consider the monomials t3x and ty2. We have t3x <DRL ty2

because x <DRL y2 in R. In particular, DRL is not degree-compatible, while
DRL is. Notice however that the two orders coincide on pairs of terms of the
same degree.

3.3 Solving Degree and Homogenization

Let R = k[x1, . . . , xn] with the DRL order and let S = R[t] with the DRL order
with t as smallest variable. Let F = {f1, . . . , fr} ⊆ R, let I = (F) ⊆ R, let
Ih ⊆ S be the homogenization of I with respect to t, and let (Fh) ⊆ S be the
ideal generated by Fh = {fh

1 , . . . , fh
r }. The goal of this section is comparing the

solving degrees of F , Fh, and Ih with respect to the chosen term orders. We
start with a preliminary result on Gröbner bases and homogenization.

Proposition 1. Let R = k[x1, . . . , xn] and let S = R[t]. Fix the DRL term
order on R and extend it to the DRL term order on S by letting t be the
smallest variable. Let I be an ideal of R with Gröbner basis {g1, . . . , gs}. Then
{gh

1 , . . . , gh
s } is a Gröbner basis of Ih.

Proof. First we show that gh
1 , . . . , gh

s generate Ih. Clearly we have gh
1 , . . . , gh

s ∈
Ih. For the other inclusion, consider f ∈ I of degree d with standard representa-
tion f =

∑s
i=1 figi for some fi ∈ R, that is in(f) ≥ in(figi) for all i = 1, . . . , s.

Since in(f) ≥ in(figi) and DRL is degree-compatible, we have d ≥ deg fi +
deg gi. Therefore we can write

fh =
s∑

i=1

td−deg fi−deg gifh
i gh

i , (2)

which shows that fh ∈ (gh
1 , . . . , gh

s ).
To prove that {gh

1 , . . . , gh
s } is a Gröbner basis, it is enough to show that (2)

is a standard representation for fh, i.e., in(fh) ≥ in(td−deg fi−deg gifh
i gh

i ) for all
i = 1, . . . , s. We observe that in(fh) = in(f) does not contain the variable t and
we distinguish two cases.

1. If d − deg fi − deg gi > 0, then a power of t appears in td−deg fi−deg gifh
i gh

i ,
and in its initial term as well. It follows that in(fh) ≥ in(td−deg fi−deg gifh

i gh
i )

since t is the smallest variable in the DRL term order of S.
2. If d − deg fi − deg gi = 0, then no power of t appears in in(fh

i gh
i ). Therefore

we have in(fh
i gh

i ) = in(figi) ≤ in(f) = in(fh). ��
The next result relates the solving degrees of F and Fh. It also clarifies why

the largest degree of an element in a reduced Gröbner basis of F may be smaller
than its solving degree.
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Theorem 7. Let F = {f1, . . . , fr} ⊆ R = k[x1, . . . , xn] and consider the system
Fh = {fh

1 , . . . , fh
r } ⊆ S = R[t] obtained from F by homogenizing f1, . . . , fr with

respect to t. Let Ih ⊆ S be the homogenization of I = (F) ⊆ R with respect to t.
Consider the term order DRL on R and S, with t as smallest variable. Then

max.GB.deg(Fh) = solv.deg(Fh) = solv.deg(F)

≥max.GB.deg(F) = max.GB.deg(Ih) = solv.deg(Ih).

Proof. We claim that the Macaulay matrix M≤d of F with respect to DRL is
equal to the homogeneous Macaulay matrix Md of Fh with respect to DRL, for
every d ≥ 1. In fact, the monomials of S of degree d are exactly the homogeniza-
tions of the monomials of R of degree ≤ d. Similarly, if mi,jf

h
j is the index of a

row of Md, i.e., deg(mi,jf
h
j ) = d, then φ(mi,jf

h
j ) = φ(mi,j)fj has degree ≤ d,

hence it is the index of a row of M≤d. Conversely, every index mi,jf
h
j of a row

of Md, can be obtained from an index of a row of M≤d by homogenizing and
multiplying by an appropriate power of t. In a nutshell, the statement on the
columns follows from the fact that I≤d = φ

(
(Fh)d

)
. One also needs to check that

the order on the columns of Md and M≤d is the same. We consider M≤d. Since
DRL is degree-compatible, the columns are ordered in non-increasing degree
order from left to right. The columns of the same degree j ∈ {1, . . . , d} are then
ordered according to DRL. Similarly, since t is the smallest variable in the DRL
order on S, the columns of Md are ordered in increasing order (from left to
right) of powers of t, which is equivalent to decreasing order of the degree of the
variables x1, . . . , xn. Then, the columns with the same power of t are ordered
according to DRL on the variables x1, . . . , xn. This proves that the matrices
M≤d and Md coincide.

Let I = (F) and J = (Fh). Since the matrices M≤d and Md coincide and
since the dehomogenization of a Gröbner basis of Fh produces a Gröbner basis
of F by Theorem 6, one has

solv.degDRL(F) ≤ solv.degDRL(Fh).

To check that they are equal, for each minimal generator m of in(I), we consider
the least degree d for which a polynomial f with in(f) = m appears among the
rows of the reduced row echelon form of M≤d. Since Md = M≤d, the polynomial
td−deg(f)fh appears among the rows of the reduced row echelon form of Md. We
claim that no polynomial g with in(g) | td−deg(f)m = in(td−deg(f)fh) appears as
a row of the reduced row echelon form of Me for some e < d. In fact, if this were
the case then, by Theorem 6, the dehomogenization of in(g) would be equal to
m and appear as a row of Me. This contradicts the assumption that d is the
least degree for which a polynomial with leading term m appears among the
rows of the reduced row echelon form of M≤d. This shows that the least degree
d in which the leading terms of the rows of the reduced row echelon form of the
matrix M≤d generate the initial ideal of I is the same as the the least degree e
in which the leading terms of the rows of the reduced row echelon form of the
matrix Me generate in(J)e. Therefore

solv.degDRL(F) = solv.degDRL(Fh).
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The equality max.GB.deg(F) = max.GB.deg(Ih) follows from the following
two facts:

– By Lemma 2 and Theorem 6 the dehomogenization of a DRL Gröbner basis
of Ih produces a DRL Gröbner basis of I.

– The homogenization of a DRL Gröbner basis of I produces a DRL Gröbner
basis of Ih by Proposition 1.

In particular, no leading term of an element of the reduced Gröbner basis of
Ih is divisible by t, so dehomogenization does not decrease the degrees of the
elements of the Gröbner basis.

Finally, the two equalities

max.GB.deg(Fh) = solv.deg(Fh) and max.GB.deg(Ih) = solv.deg(Ih)

follow from Remark 7. ��
Remark 9. Theorem 7 clarifies why, when the system F is not homogeneous, the
largest degree of an element in a reduced Gröbner basis may be strictly smaller
than the solving degree. This is due to the difference between the ideals (Fh)
and Ih, and more specifically between max.GB.deg(Fh) and max.GB.deg(Ih).

The following is an example where solv.deg(F) > max.GB.deg(F). See also
Example 11 for a cryptographic example.

Example 8. Let R = k[x, y] and let S = R[t] = k[x, y, t], both with the DRL
order. We consider the system F = {f1, f2} ⊆ R with f1 = x2 − 1, f2 = xy + x,
and let I = (F). Then Fh = {fh

1 , fh
2 } = {x2 − t2, xy + xt}, and Ih = (x2 −

t2, y + t). Writing the Macaulay matrices of F , Fh, and {x2 − t2, y + t} and
doing Gaussian elimination, one sees that solv.deg(F) = solv.deg(Fh) = 3.
By computing Gröbner bases, one can check that max.GB.deg(Fh) = 3 and
max.GB.deg(F) = max.GB.deg(Ih) = 2.

3.4 Solving Degree and Castelnuovo-Mumford Regularity

In what follows, we compare the solving degree of a homogeneous ideal with
a classical invariant from commutative algebra: the Castelnuovo-Mumford reg-
ularity. We recall the definition of this invariant and its basic properties before
illustrating the link with the solving degree.

Let R = k[x1, . . . , xn] be a polynomial ring in n variables over a field k and
let I be a homogeneous ideal of R. For any integer j we recall that Rj denotes
the k-vector space of homogeneous elements of R of degree j.

Choose a minimal system of generators f1, . . . , fβ0 of I. We recall that, since
I is homogeneous, the number β0 and the degrees di = deg fi are uniquely
determined. We fix an epimorphism ϕ : Rβ0 → I sending the canonical basis
{e1, . . . , eβ0} of the free module Rβ0 to {f1, . . . , fβ0}. The map ϕ is in general
not homogeneous of degree 0, so we introduce degree shifts on R: For any integer
d, we denote by R(−d) the R-module R, whose j-th homogeneous component is
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R(−d)j = R−d+j . For example, the variables x1, . . . , xn have degree 2 in R(−1),
and degree 0 in R(1). The map

ϕ :
β0⊕

j=1

R(−dj) → I

is homogeneous of degree 0, that is deg(ϕ(f)) = deg f for every f .
Now consider the submodule ker ϕ ⊆ ⊕β0

j=1 R(−dj). It is again finitely gen-
erated and graded, and is called (first) syzygy module of I. We choose a minimal
system of generators of ker ϕ and we continue similarly defining an epimorphism
from a free R-module (with appropriate shifts) to kerϕ and so on.

Hilbert’s Syzygy Theorem guarantees that this procedure terminates after a
finite number of steps. Thus, we obtain a minimal graded free resolution of I:

0 → Fp → · · · → F1 → F0
ϕ−→ I → 0,

where the Fi are free R-modules of the form

Fi =
βi⊕

j=0

R(−di,j)

for appropriate shifts di,j ∈ Z. By regrouping the shifts, we may write the free
R-modules of the minimal free resolution of I as

Fi =
⊕

j∈Z

R(−j)βi,j .

The numbers βi,j = βi,j(I) are the (graded) Betti numbers of I.

Definition 10. The Castelnuovo-Mumford regularity of I is

reg(I) = max{j − i : βi,j(I) �= 0}.

If F is a homogeneous system of generators of I, we set also reg(F) = reg(I).

Example 9. We consider the ideal I = (x2, xy, xz, y3) in R = k[x, y, z]. A mini-
mal free resolution of I is given by

0 → R(−4)
ϕ2−→ R(−3)3 ⊕ R(−4)

ϕ1−→ R(−2)3 ⊕ R(−3)
ϕ0−→ I → 0,

with R-linear maps given by the following matrices

ϕ0 = (x2, xy, xz, y3), ϕ1 =

⎛

⎜
⎜
⎝

−y −z 0 0
x 0 −z −y2

0 x y 0
0 0 0 x

⎞

⎟
⎟
⎠ , ϕ2 =

⎛

⎜
⎜
⎝

z
−y
x
0

⎞

⎟
⎟
⎠ .

So the non-zero Betti numbers of I are β0,2 = 3, β0,3 = 1, β1,3 = 3, β1,4 = 1,
β2,4 = 1, and the Castelnuovo-Mumford regularity is reg(I) = 3.
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For more on regularity and its properties, the interested reader may con-
sult [Eis94, Chapter 20] or [Cha07]. In the sequel we only mention the facts that
are relevant for our purposes.

Remark 10. In many texts in commutative algebra or algebraic geometry it is
assumed that the field k is algebraically closed or infinite. However, the definition
of regularity makes perfect sense over a finite field. The construction of a minimal
free resolution that we illustrated can be carried out over a finite field. Moreover,
it shows that the Castelnuovo-Mumford regularity is preserved under field exten-
sions. In particular, if I is an ideal in a polynomial ring R = Fq[x1, . . . , xn] over
a finite field Fq and J is its extension to the polynomial ring S = Fq[x1, . . . , xn]
over the algebraic closure of Fq, then regR(I) = regS(J).

The next theorem is due to Bayer and Stillman. It relates the regularity of
a homogeneous ideal to the regularity of its DRL initial ideal. Combined with
our Theorem 7, it will allow us to bound the solving degree of any system.

Theorem 8 ([BS87], Theorem 2.4 and Proposition 2.9). Let J be a homo-
geneous ideal in k[x1, . . . , xn]. Assume that J is in generic coordinates over k,
then

reg(J) = reg(inDRL(J)).

Remark 11. Let J be a homogeneous ideal in generic coordinates. If k has
characteristic zero, then we have reg(inDRL(J)) = max.GB.degDRL(J),
as shown in [BS87]. If k has positive characteristic, one still has that
max.GB.degDRL(J) ≤ reg(inDRL(J)) and the inequality is often an equality. In
fact this was the case in all the examples that we computed while working on this
paper. Nevertheless, in positive characteristic one can find examples of ideals J in
generic coordinates for which the inequality is strict. E.g. J = (xp, yp) ⊆ Fp[x, y]
is in generic coordinates, max.GB.degDRL(J) = p, and reg(J) = 2p − 1.

Combining Theorem 7 and Theorem 8, one obtains bounds on the solving
degree. Our bounds assume that the ideal generated by the (homogenized) sys-
tem is in generic coordinates. Notice that this assumption is likely to be satisfied
for systems of equations coming from multivariate cryptography, at least over
a field of sufficiently large cardinality. In fact, multivariate schemes are often
constructed by applying a generic change of coordinates (and a generic linear
transformation) to the set of polynomials which constitutes the private key.

For the sake of clarity, we give a homogeneous and a non-homogeneous version
of the result. Since the proofs are very similar, and in fact more complicated in
the non-homogeneous case, we only give the proof in the latter case.

Theorem 9. Let F ⊆ R be a system of homogeneous polynomials and assume
that (F) is in generic coordinates over k. Then

solv.degDRL(F) ≤ reg(F).
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The following result allows us to bound the complexity of computing a
Gröbner basis of a system of equations by establishing a connection with the
Castelnuovo-Mumford regularity of the homogenization of the system.

Theorem 10. Let F = {f1, . . . , fr} ⊆ R be a system of polynomials, which is
not homogeneous. Let Fh = {fh

1 , . . . , fh
r } ⊆ S = R[t] and assume that the ideal

(Fh) is in generic coordinates over k. Then

solv.degDRL(F) ≤ reg(Fh).

Proof. For a homogeneous ideal J in R or S, max.GB.degDRL(J) and reg(J)
are invariant under field extension. So we may extend all ideals to the algebraic
closure k of k. By Theorem 7 and Theorem 8 we have the chain of equalities and
inequalities

solv.degDRL(F) = solv.degDRL(Fh)

= max.GB.degDRL(Fh) ≤ reg(inDRL(Fh)) = reg(Fh).

��
Remark 12. The upper bound in Theorem9 and Theorem 10 is often an equality,
since max.GB.degDRL(Fh) = reg(inDRL(Fh)) if k has characteristic zero and
often even if it has positive characteristic (see Remark 11).

By combining Theorem 10 and classical results on the Castelnuovo-Mumford
regularity (see e.g. [Cha07, Theorem 12.4]), one immediately obtains the follow-
ing bound on the solving degree of systems which have finitely many solutions
over k̄. The bound is linear in both the number of variables and the degrees of
the polynomials of the system.

Corollary 2 (Macaulay bound – [Laz83], Theorem 2). Consider a system
of equations F = {f1, . . . , fr} ⊆ R with di = deg fi and d1 ≥ d2 ≥ · · · ≥ dr.
Set � = min{n + 1, r}. Assume that |Z+(Fh)| < ∞ and that (Fh) is in generic
coordinates over k. Then

solv.degDRL(F) ≤ d1 + . . . + d� − � + 1

and equality holds if f1, . . . , fr are a regular sequence. In particular, if r > n and
d = d1, then

solv.degDRL(F) ≤ (n + 1)(d − 1) + 1.

The condition that (Fh) is in generic coordinates is not always easy to verify.
Nevertheless, if we add the field equations, or their fake Weil descent, to the
generators of the ideal, then we can prove that the homogenized system is in
generic coordinates.

Theorem 11. Let p > 0 be a prime and let q = pe, e ≥ 1. Let k be a field of
characteristic p and let F = {f1, . . . , fr} ⊆ k[x1, . . . , xn] be a system of polyno-
mial equations. Set di = deg fi with d1 ≥ d2 ≥ · · · ≥ dr and � = min{n + 1, r}.
Assume that one of the following holds:
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(i) xq
i − xi ∈ F for i = 1, . . . , n, or

(ii) xq
1 − x2, . . . , x

q
n−1 − xn, xq

n − x1 ∈ F .

Then the ideal (Fh) = (fh
1 , . . . , fh

r ) is in generic coordinates over k̄. In particular

solv.degDRL(F) ≤ d1 + . . . + d� − � + 1

and equality holds if f1, . . . , fr are a regular sequence. Moreover, if r > n and
d = d1, then

solv.degDRL(F) ≤ (n + 1)(d − 1) + 1.

Proof. According to [BS87, Theorem 2.4 and Definition 1.5], J = (Fh) is in
generic coordinates over k̄ if and only if t is not a zero divisor on the quotient
k̄[x1, . . . , xn, t]/J sat, where J sat is the saturation of J with respect to the irrele-
vant maximal ideal (x1, . . . , xn, t). Substituting t = 0 in the equations of J one
obtains the equations x1 = . . . = xn = 0. Therefore the projective zero locus of
J does not contain any point with t = 0. This means that t � 0 modulo Jsat,
hence proving that J is in generic coordinates. The second part of the statement
then follows from Corollary 2. ��
Remark 13. From the proof of Theorem 11 one sees that a system is in generic
coordinates whenever it contains equations of the form xdi

i + pi(x1, . . . , xn) with
deg(pi) < di, for i = 1, . . . , n.

We may use the results established in this section to obtain bounds on the
solving degree of the ABC encryption scheme. We assume that the systems
have finite affine zero loci, which was the case for all the instances of the ABC
cryptosystem that we computed.

Example 10. The system associated to the ABC cryptosystems [TDTD13,
TXPD15] consists of 2n quadratic equations in n variables. Therefore by assum-
ing that the system is in generic coordinates, or, if the ground field is F2, simply
by adding the field equations to the system we obtain

solv.deg(F) ≤ n + 2.

4 Solving Degree and Degree(s) of Regularity

In recent years, different invariants for measuring the complexity of solving a
polynomial system of equations were introduced. In particular, the notion of
degree of regularity gained importance and is widely used nowadays. In this
section we discuss how the degree of regularity is related with the Castelnuovo-
Mumford regularity.

In the literature we found several definitions of degree of regularity. However,
they are mostly variations of the following two concepts:

1. the degree of regularity by Bardet, Faugère, and Salvy [Bar04,BFS04,BFS15];
2. the degree of regularity by Dubois and Gama, later studied by Ding, Schmidt,

and Yang [DG10,DS13,DY13].

In this section we recall both definitions of degree of regularity and compare
them with the Castelnuovo-Mumford regularity.
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4.1 The Degree of Regularity by Bardet, Faugère, and Salvy

To the best of our knowledge, the degree of regularity appeared first in a paper
by Bardet, Faugère, and Salvy [BFS04] and in Bardet’s Ph.D. thesis [Bar04].
However, the idea of measuring the complexity of computing the Gröbner basis of
a homogeneous ideal using its index of regularity can be traced back to Lazard’s
seminal work [Laz83]. Before giving the definition, we recall some concepts from
commutative algebra.

Let R = k[x1, . . . , xn] be a polynomial ring over a field k, let I be a homo-
geneous ideal of R, and let A = R/I. For an integer d ≥ 0, we recall that Ad

denotes the homogeneous part of degree d of A. The function HFA(−) : N → N,
HFA(d) = dimk Ad is called Hilbert function of A. It is well known that for large
d, the Hilbert function of A is a polynomial in d called Hilbert polynomial and
denoted by HPA(d). The generating series of HFA is called Hilbert series of A.
We denote it by HSA(z) =

∑
d∈N

HFA(d)zd. A classical theorem by Hilbert and
Serre says that the Hilbert series of A is a rational function, and more precisely
has the form

HSA(z) =
hA(z)

(1 − z)�
(3)

where hA(z) is a polynomial such that hA(1) �= 0, called h-polynomial of A.

Definition 11. The index of regularity of I is the smallest integer ireg(I) ≥
0 such that HFR/I(d) = HPR/I(d) for all d ≥ ireg(I). If F is a system of
generators for I, we set also ireg(F) = ireg(I).

The index of regularity can be read off the Hilbert series of the ideal, as
shown in the next theorem.

Theorem 12 ([BH98], Proposition 4.1.12). Let I ⊆ R be a homogeneous
ideal with Hilbert series as in (3) and let δ = deg hA. Then ireg(I) = δ − � + 1.

Let I ⊆ R be a homogeneous ideal. Applying the Grothendieck-Serre’s For-
mula [BH98, Theorem 4.4.3] to R/I one obtains

ireg(I) ≤ reg(I). (4)

Moreover, if I is homogeneous and Id = Rd for d � 0, then ireg(I) = reg(I)
by [Eis05, Corollary 4.15].

Definition 12. Let F = {f1, . . . , fr} ⊆ R be a system of equations and let
(F top) = (f top

1 , . . . , f top
r ) be the ideal of R generated by the homogeneous part

of highest degree of F . Assume that (F top)d = Rd for d � 0. The degree of
regularity of F is

dreg(F) = ireg(F top).

Remark 14. If (F top)d = Rd for d � 0, then |Z(F)| < ∞. The converse, how-
ever, does not hold in general. See Example 12 for an example where F has
finitely many solutions over k̄, but (F top)d �= Rd for all d.
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The following is an easy consequence of the definitions.

Proposition 2. Let F ⊆ R be a system of equations. Assume that (F top)d = Rd

for d � 0. Then
dreg(F) = reg(F top).

If in addition F is homogeneous, then F top = F and

dreg(F) = reg(F).

In the context of multivariate cryptosystems however, it is almost never the
case that F is homogeneous and (F)d = Rd for d � 0. In fact, this is equivalent
to saying that Z(I) = {(0, . . . , 0)} by Remark 2.

For a system F such that I = (F) has finite affine zero locus, we may
interpret the condition (F top)d = Rd for d � 0 as a genericity assumption. This
assumption guarantees that the degree of regularity gives an upper bound on
the maximum degree of a polynomial in a Gröbner basis of I, with respect to
any degree-compatible term order.

Remark 15. Let τ be a degree-compatible term order and assume that (F top)d =
Rd for d � 0. Let I = (F) and J = (F top). Then HPR/J(z) = 0, hence
Jd = inτ (J)d = Rd for d ≥ dreg(F). The inclusion inτ (J)d ⊆ inτ (I)d holds for
any d, since τ is degree-compatible. So we obtain inτ (I)d = Rd for d ≥ dreg(F).
This implies that every element of the reduced Gröbner basis of I has degree at
most dreg(F), that is

max.GB.degτ (F) ≤ dreg(F). (5)

Notice however that (5) does not yield a bound on the solving degree of F ,
as we show in the next example.

Example 11. We consider the polynomial systems F obtained in [BG18] (see
also [Bia17, Chapter 5]) for collecting relations for index calculus following the
approach outlined by Gaudry in [Gau09]. For n = 3, they consist of three non-
homogeneous equations f1, f2, f3 of degree 3 in two variables. Computing 150’000
randomly generated examples of cryptographic size (3 different q’s, 5 elliptic
curves for each q, 10’000 random points per curve), we found that (F top)d = Rd

for d � 0 and

solv.degDRL(F) = reg(Fh) = 5 > 4 = dreg(F) = ireg(F top).

The computations were performed by G. Bianco with MAGMA [BCP97].

Notice moreover that there are systems F for which |Z(F)| < ∞ and
(F top)d �= Rd for all d ≥ 0. Definition 12 and inequality (5) do not apply to
such systems. This can happen also for polynomial systems arising in cryptog-
raphy.

When this happens, one may be tempted to consider ireg(F top) anyway, and
use it to bound the solving degree of F . Unfortunately this approach fails since
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ireg(F top) and solv.deg(F) might be far apart, as the next examples shows. On
the other hand, the Castelnuovo-Mumford regularity of Fh still allows us to
correctly bound the solving degree of F .

Example 12. We consider the polynomial systems obtained in [GM15] for col-
lecting relations for index calculus following the approach outlined by Gaudry
in [Gau09]. For n = 3, they consist of three non-homogeneous equations f1, f2, f3
in two variables, of degrees 7,7, and 8. Let F = {f1, f2, f3}, Fh = {fh

1 , fh
2 , fh

3 },
and F top = {f top

1 , f top
2 , f top

3 }. For 150’000 randomly generated examples of cryp-
tographic size (as in Example 11) we found that solv.degDRL(F) = reg(Fh) =
15, (F top)d �= Rd for all d ≥ 0, and ireg(F top) = 8. The computations were
performed by G. Bianco with MAGMA [BCP97].

Finally, given a polynomial system F = {f1, . . . , fr} there is a simple relation
between the ideals (F top) ⊆ R and (Fh) ⊆ S, namely

(F top)S + (t) = (Fh) + (t). (6)

Here (F top)S denotes the extension of (F top) to S, i.e., the ideal of S generated
by F top. Since F top ⊆ R, t � 0 modulo (F top)S. If t � 0 modulo (Fh), then
(Fh) = (F)h is the homogenization of (F) and reg(Fh) = reg(F top). Therefore,
if t � 0 modulo Fh and (F top)d = Rd for d � 0, then

dreg(F) = reg(Fh)

by Proposition 2. However, one expects that in most cases t | 0 modulo (Fh).
In fact, (Fh) = (F)h only in very special cases, namely when f1, . . . , fr are a
Macaulay basis of (F) with respect to the standard grading (see [KR05, Theo-
rem 4.3.19]). Therefore (6) usually does not allow us to compare the regularity
and the index of regularity of Fh and F top. See also [BDDGMT20, Section 4.1]
for a more detailed discussion.

4.2 The Degree of Regularity by Ding and Schmidt

The second notion of degree of regularity is more recent. To the extent of our
knowledge it has been introduced by Dubois and Gama [DG10], and later has
been used by several authors such as Ding, Schmidt, and Yang [DS13,DY13].
The definition we present here is taken from [DS13], and differs slightly from the
original one of Dubois and Gama.

Let Fq and let B = Fq[x1, . . . , xn]/(xq
1, . . . , x

q
n). Let f1, . . . , fr ∈ B be

homogeneous polynomials of degree 2. We fix a B-module homomorphism
ϕ sending the canonical basis e1, . . . , er of Br to {f1, . . . , fr}, that is for
every (b1, . . . , br) ∈ Br we have ϕ(b1, . . . , br) =

∑r
i=1 bifi. We denote by

Syz(f1, . . . , fr) the first syzygy module of f1, . . . , fr, that is the kernel of ϕ.
An element of Syz(f1, . . . , fr) is a syzygy of f1, . . . , fr. In other words, it is a
vector of polynomials (b1, . . . , br) ∈ Br such that

∑r
i=1 bifi = 0.

An example of syzygy is given by the Koszul syzygies fiej − fjei, where
i �= j or by the syzygies coming by the quotient structure of B, that is fq−1

i ei.



Solving Multivariate Polynomial Systems 31

Here ei denotes the i-th element of the canonical basis of B. These syzygies
are called trivial syzygies, because they are always present and do not depend
on the structure of f1, . . . , fr, but rather on the ring structure of B. We define
the module Triv(f1, . . . , fr) of trivial syzygies of f1, . . . , fr as the submodule of
Syz(f1, . . . , fr) generated by {fiej −fjei : 1 ≤ i < j ≤ r}∪{fq−1

i ei : 1 ≤ i ≤ r}.
For any d ∈ N we define the vector space Syz(F)d = Syz(F)∩Br

d of syzygies
of degree d. We define the vector subspace of trivial syzygies of degree d as
Triv(F)d = Triv(F) ∩ Br

d. Clearly, we have Triv(F)d ⊆ Syz(F)d.

Definition 13. Let F = {f1, . . . , fr} ⊆ B be a system of polynomials of degree
2. The degree of regularity of F is

δreg(F) = min{d ≥ 2 : Syz(F top)d−2/Triv(F top)d−2 �= 0}.

Remark 16. Dubois and Gama [DG10] work in the ring Fq[x1, . . . , xn]/(xq
1 −

x1, . . . , x
q
n − xn) and not in B = Fq[x1, . . . , xn]/(xq

1, . . . , x
q
n).

The degree of regularity is the first degree where we have a linear combination
of multiples of f1, . . . , fr which produces a non-trivial cancellation of their top
degree parts. For this reason, some authors refer to it as first fall degree.

One may wonder whether the degree of regularity by Ding and Schmidt is
close to the solving degree of a polynomial system of quadratic equations. Ding
and Schmidt showed that this is not always the case. In fact, it is easy to produce
examples, the so-called degenerate systems, for which the degree of regularity
and the solving degree are far apart. For a detailed exposition on this problem
and several examples we refer the reader to their paper [DS13].

We are not aware of any results relating δreg(F) (Definition 13) and dreg(F)
(Definition 12). Despite the fact that they share the name, we do not see an
immediate connection. A comparison between these two invariants is beyond
the scope of this paper.

5 Solving Degree of Ideals of Minors and the MinRank
Problem

The goal of this section is giving an example of how the results from Sect. 3,
in combination with known commutative algebra results, allow us to prove esti-
mates for the solving degree in a simple and synthetic way. We consider poly-
nomial systems coming from the MinRank Problem. For more bounds on the
complexity of the MinRank Problem, see [CG20].

The MinRank Problem can be stated as follows. Given an integer t ≥ 1 and
a set {M1, . . . ,Mn} of s × s matrices with entries in a field k, find a non-zero
tuple λ = (λ1, . . . , λn) ∈ kn such that

rank

(
n∑

i=1

λiMi

)

≤ t − 1. (7)
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This problem finds several applications in multivariate cryptography and in other
areas of cryptography as well. For example, Goubin and Courtois [GC00] solved
a MinRank Problem to attack Stepwise Triangular Systems, and Kipnis and
Shamir [KS99] solved an instance of MinRank in their cryptanalysis of the HFE
cryptosystem.

Consider the matrix M =
∑n

i=1 xiMi, whose entries are homogeneous linear
forms in R. Condition (7) is equivalent to requiring that the minors of size t×t of
M vanish. Therefore, every solution of the MinRank Problem corresponds to a
non-zero point in the zero locus in kn of the ideal It(M) of t-minors of M . A sim-
ilar algebraic formulation can be given for the Generalized MinRank Problem,
which finds applications within coding theory, non-linear computational geome-
try, real geometry, and optimization. We refer the interested reader to [FSS13]
for a discussion of the applications of the Generalized MinRank Problem and a
list of references.

Problem 1 (Generalized MinRank Problem). Given a field k, an r × s matrix
M whose entries are polynomials in R = k[x1, . . . , xn], and an integer 1 ≤ t ≤
min{r, s}, find a point in kn \{(0, . . . , 0)} at which the evaluation of M has rank
at most t − 1.

The Generalized MinRank Problem can be solved by computing the zero
locus of the ideal of t-minors It(M). The minors of size t × t of the matrix M
form an algebraic system of multivariate polynomials, which one can attempt to
solve by computing a Gröbner basis. This motivates our interest in estimating
the solving degree of this system for large classes of matrices.

Ideals of minors of a matrix with entries in a polynomial ring are called
determinantal ideals and have been extensively studied in commutative algebra
and algebraic geometry. Using Theorem 9, we can take advantage of the literature
on the regularity of determinantal ideals to give bounds on the solving degree
of systems of minors of certain large classes of matrices. For simplicity, we focus
on homogeneous matrices.

Definition 14. Let M be an r×s matrix with r ≤ s, whose entries are elements
of R. The matrix M is homogeneous if both its entries and its 2-minors are
homogeneous polynomials.

It is easy to see that the minors of any size of a homogeneous matrix are
homogeneous polynomials. Moreover, observe that a matrix whose entries are
homogeneous polynomials of the same degree is a homogeneous matrix, but there
are homogeneous matrices whose entries have different degrees. After possibly
exchanging some rows and columns, we may assume without loss of generality
that the degrees of the entries of a homogeneous matrix increase from left to
right and from top to bottom. With this notation, we can compute the solving
degree of our first family of systems of minors. We refer the reader to [Eis94] for
the definition of height of an ideal.

Theorem 13. Let M = (fij) be an r×s homogeneous matrix with r ≤ s, whose
entries are elements of R, n ≥ s − r + 1. Let F be the polynomial system of the
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minors of size r of M and assume that height(Ir(M)) = s − r + 1. Then the
solving degree of F is upper bounded by

solv.deg(F) ≤ deg(f1,1)+. . .+deg(fm,m)+deg(fm,m+1)+. . .+deg(fm,n)−s+r.

If deg(fi,j) = 1 for all i, j, then solv.deg(F) = r.

Proof. Since the matrix M is homogeneous, the system of minors F consists of
homogeneous polynomials. The regularity of the corresponding ideal Ir(M) =
(F) is

reg(Ir(M)) = deg(f1,1) + . . . + deg(fr,r) + deg(fr,r+1) + . . . + deg(fr,s) − s + r.

The formula can be found in [BCG04, Proposition 2.4] and is derived from
a classical result of Eagon and Northcott [EN62]. The bound on the solv-
ing degree now follows from Theorem 9. In particular, if deg(fi,j) = 1 for
all i, j, then solv.deg(F) ≤ r. Since Ir(M) is generated in degree r, then
solv.deg(F) = r. ��

Notice that the assumption on the height is satisfied by a matrix M whose
entries are generic homogeneous polynomials of fixed degrees. If n = s−r+1, then
Ir(M)d = Rd for d � 0, hence dreg(F) = reg(F), where F is the set of maximal
minors of M . Therefore, Theorem 13 recovers the results of [FSS10,FSS13] for
n = s − r + 1 and t = r, and extends them to homogeneous matrices whose
entries do not necessarily have the same degree.

We now restrict to systems of maximal minors of matrices of linear forms. The
MinRank Problem associated to this class of matrices is a slight generalization
of the classical MinRank Problem of (7). From the previous result it follows
that, if the height of the ideal of maximal minors is as large as possible, then the
solving degree of the corresponding system is as small as possible, namely r. We
now give different assumptions which allows us to obtain the same estimate on
the solving degree, for ideals of maximal minors whose height is not maximal.
We are also able to bound the solving degree of the system of 2-minors.

Let R have a standard Z
v-graded structure, i.e., the degree of every indeter-

minate of R is an element of the canonical basis {e1, . . . , ev} of Z
v.

Definition 15. Let M = (fi,j) be an r × s matrix with entries in R, r ≤ s.
We say that M is column-graded if s ≤ v, and fi,j = 0 or it is homogeneous of
degree deg(fi,j) = ej ∈ Z

v for every i, j. We say that M is row-graded if r ≤ v,
and fi,j = 0 or it is homogeneous of degree deg(fi,j) = ei ∈ Z

v for every i, j.

Informally, a matrix is row-graded if the entries of each row are homogeneous
linear forms in a different set of variables. Similarly for a column-graded matrix.

Theorem 14. Let M be an r × s row-graded or column-graded matrix with
entries in R . Assume that r ≤ s and Ir(M) �= 0. Then:

– if F is the system of maximal minors of M then solv.deg(F) = r,



34 A. Caminata and E. Gorla

– if F is the system of 2-minors of M then solv.deg(F) ≤ s in the column-
graded case, and solv.deg(F) ≤ r in the row-graded case.

Proof. It is shown in [CDG15,CDG20] that reg(Ir(M)) = r, reg(I2(M)) ≤ s
in the column-graded case, and reg(I2(M)) ≤ r in the row-graded case. The
bounds on the solving degree now follow from Theorem9. ��
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For a q-linearized polynomial function L on a finite field, we give a new short
proof of a known result, that L(x)/x and L∗(x)/x have the same image, where
L∗(x) denotes the adjoint of L. We give some consequences for semifields, recov-
ering results first proved by Lavrauw and Sheekey. We also give a characterization
of planar functions.

1 Introduction

Throughout this paper we let p be a prime number, let q = pr and let Fqn denote
a finite field with qn elements, where n is a positive integer.

Any function Fqn −→ Fqn can be expressed uniquely as a polynomial function
(with coefficients in Fqn) of degree less than qn. This is because there are (qn)qn

such polynomials, they are distinct as functions, and this is also the total number
of functions. We call this polynomial the reduced form of the function.

A polynomial in Fqn [x] is called a permutation polynomial (PP) if it its
reduced form induces a bijective function Fqn −→ Fqn .

Thinking of Fqn as an n-dimensional vector space over Fq, a polynomial of
the form

a0x + a1x
q + a2x

q2
+ · · · + an−1x

qn−1
(1)

with ai ∈ Fqn induces an Fq-linear function Fqn −→ Fqn . Conversely, any Fq-
linear function Fqn −→ Fqn can be written in this form, because there are (qn)n

such polynomials, they are distinct as functions, and this is also the total num-
ber of Fq-linear functions. A polynomial of the form (1) is called a q-linearized
polynomial. This is already in reduced form. In this paper, when we use the term
q-linearized polynomial, we mean the function Fqn −→ Fqn that is induced by
the polynomial.

Let Tr denote the absolute trace map Fqn −→ Fp defined by

Tr(x) = x + xp + xp2
+ · · · + xprn−1

.

Let tr denote the relative trace map Fqn −→ Fq defined by

tr(x) = x + xq + xq2
+ · · · + xqn−1

.
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The adjoint of L(x) = a0x + a1x
q + a2x

q2
+ · · · + an−1x

qn−1
is defined to be

L∗(x) = a0x + aqn−1

1 xqn−1
+ aqn−2

2 xqn−2
+ · · · + aq

n−1x
q.

The adjoint has the property that tr(L(u)v) = tr(uL∗(v)) for all u, v ∈ Fqn .
This property implies that Tr(L(u)v) = Tr(uL∗(v)) for all u, v ∈ Fqn .

We introduce some notation. Let

V (L) =
{−a ∈ Fqn : L(x) + ax is a PP

}

and let

I(L) =
{L(z)

z
: z ∈ Fqn , z �= 0

}
.

The following theorem was first proved in Lemma 2.6 of [2].

Theorem 1. Let L(x) be a q-linearized polynomial. Then I(L) = I(L∗) and
V (L) = V (L∗).

In this paper we will provide a new proof of this fact. In addition to giving
an alternative viewpoint on this result, this approach may be of use towards
studying the following problem.

Open Question. Let L(x) be a q-linearized polynomial. For what other q-
linearized polynomials M(x) does it hold that I(L) = I(M) and V (L) = V (M)?

This question has been addressed in [3]; in particular it has been shown
that for n ≤ 5, and L(x) not a monomial, then I(L) = I(M) if and only if
L(x) = M(λx)/λ or L∗(x) = M(λx)/λ for some λ ∈ F

×
qn . If L(x) = xqi

and
M(x) = xqj

then I(L) = I(M) if and only if (i, n) = (j, n). The general case
remains an open problem.

Motivation for this question stems from the study of linear sets, which are
sets of points on a projective line PG(1, qn). The set UL = {(x,L(x)) : x ∈ F

×
qn}

defines a set LL of points on the projective line PG(1, qn) in a natural way.
Then it is straightforward to see that LL = LM if and only if I(L) = I(M). This
problem, which has been studied in [4,5], has applications in the study of MRD
codes, as well as for semifields, which we will see in Sect. 3.

2 Alternative Proof of Main Theorem

Let ζ be a primitive complex p-th root of unity. The additive characters of Fqn

may be written
χα(x) = ζTr(αx),

one character for each α ∈ Fqn .
The following is a well known characterization of PPs based on additive

characters (Theorem 7.7 in [8]).
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Theorem 2. A polynomial P (x) ∈ Fqn [x] is a permutation polynomial if and
only if ∑

x∈Fqn

χ(P (x)) = 0

for every nontrivial additive character χ of Fqn .

We will use the following well known fact (Theorem 7.9 in [8]).

Lemma 1. If L(x) ∈ Fqn [x] is a q-linearized polynomial, then L(x) is a PP on
Fqn if and only if the only solution in Fqn of L(x) = 0 is x = 0.

We use this characterisation in order to provide a new proof of the Main
Theorem.

Theorem 3. Let L(x) be a q-linearized polynomial. Then I(L) = I(L∗) and
V (L) = V (L∗).

Proof. We will show that both I(L) and I(L∗) are equal to the complement of
V (L). In part (i) we show that −a ∈ I(L) if and only if L(x) + ax is not a PP,
and in part (ii) we will show that −a ∈ I(L∗) if and only if L(x) + ax is not a
PP.

(i) Note that L(x) + ax maps 0 to 0, and so L(x) + ax is a PP if and only if
−a /∈ Im(L(x)/x) by Lemma 1. This proves that

I(L) =
{

−a ∈ Fqn : L(x) + ax is not a PP
}

which shows that I(L) is equal to the complement of V (L).
(ii) By Theorem 2, L(x) + ax is a PP if and only if

∑

x∈Fqn

χ(L(x) + ax) = 0

for all nontrivial additive characters χ, or equivalently, if and only if
∑

x∈Fqn

ζTr(α(L(x)+ax)) = 0

for all nonzero α ∈ Fq. But
∑

x∈Fqn

ζTr(α(L(x)+ax)) =
∑

x∈Fqn

ζTr(L
∗(α)x+αax) =

∑

x∈Fqn

ζTr((L
∗(α)+αa)x)

which is 0 if and only if L∗(α)+αa �= 0. In other words, L(x)+ax is a PP if and
only if L∗(α) + αa �= 0 for all nonzero α ∈ Fqn . Thus L(x) + ax is a PP if and
only if −a /∈ Im(L∗(x)/x). This proves that I(L∗) is equal to the complement
of V (L).

We have shown that both I(L) and I(L∗) are equal to the complement of
V (L), and it follows that I(L) = I(L∗). Applying this to L∗ instead of L shows
that both I(L) and I(L∗) are equal to the complement of V (L∗). Therefore
V (L) = V (L∗), and L(x) + ax is a PP if and only if L∗(x) + ax is a PP.
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3 Application to Semifields

We now present an alternative proof of a result of Lavrauw and Sheekey [6].
A finite semifield is a nonassociative division algebra of finite dimension over

Fq. There are many constructions for semifields, many of which use q-linearized
polynomials. In [6] a particular class of semifields were studied, namely those of
BEL-rank two. These are those semifields whose multiplication can be written
in the form

x ◦ y = xL(y) − M(x)y

for some q-linearized polynomials L(x) and M(x). As noted and studied in [7,9],
the condition for the pair (L,M) to defines a semifield is equivalent to the
condition I(L) ∩ I(M) = ∅, and equivalent to the condition that the sets of
points LL and LM in PG(1, qn) are disjoint. In [6] it was shown that if the pair
(L,M) define a semifield, then so do the pairs (L∗,M), (L,M∗), and (L∗,M∗) (as
well as the obvious fact that (M,L) also defines a semifield, the dual or opposite
semifield). The proof of this was an application of the switching operation defined
in [1]. In fact we can now see that this is an immediate consequence of the main
theorem.

Corollary 1. Let L(x) and M(x) be q-linearized polynomials. Suppose I(L) and
I(M) are disjoint, so that xL(y)−M(x)y defines a semifield multiplication law.
Then

1. xL∗(y) − M(x)y defines a semifield,
2. xL∗(y) − M∗(x)y defines a semifield,
3. xL(y) − M∗(x)y defines a semifield.

Proof. If I(L) ∩ I(M) = ∅ then x ∗ y = xL(y) − M(x)y defines a semifield
multiplication law. By Theorem 3 we have I(L) = I(L∗) and I(M) = I(M∗).
Since I(L) ∩ I(M) = ∅ we also get I(L∗) ∩ I(M) = ∅ and I(L∗) ∩ I(M∗) = ∅
and I(L) ∩ I(M∗) = ∅. The result follows.

Note that the main theorem is in fact stronger than the result of [6], in which
it was shown that if I(L) and I(M) are disjoint, then (for example) I(L∗) and
I(M) are disjoint, which does not necessarily imply that I(L) = I(L∗).

4 A Criterion for Planarity

Assume q is odd. A function f : Fqn −→ Fqn is said to be planar if the functions
x 
→ f(x + a) − f(x) are bijective for all nonzero a ∈ Fqn . The term PN (perfect
nonlinear) is also used instead of the word ‘planar’.

Sometimes a polynomial xL(x) will be planar, where L(x) is a q-linearized
polynomial. For example, x2 is planar. We present a criterion for the planarity
of xL(x).

Theorem 4. Let L(x) be a q-linearized polynomial. The polynomial xL(x) is
planar if and only if L∗(bx) + bL(x) is a PP for all nonzero b ∈ Fqn .
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Proof. First,

xL(x) is PN ⇐⇒ (x + u)L(x + u) − xL(x) is a PP for all nonzero u

⇐⇒ uL(x) + xL(u) + uL(u) is a PP for all nonzero u

⇐⇒ uL(x) + xL(u) is a PP for all nonzero u.

By Theorem 2, uL(x) + xL(u) is a PP if and only if
∑

x∈Fqn

ζTr(b(uL(x)+xL(u))) = 0

for all nonzero b ∈ Fqn . However
∑

x∈Fqn

ζTr(buL(x)+bxL(u)) =
∑

x∈Fqn

ζTr(L
∗(bu)x+bxL(u))

so uL(x) + xL(u) is a PP if and only if L∗(bu) + bL(u) �= 0 for all nonzero b. By
Lemma 1 we are done.
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Abstract. The last ten years have seen a tremendous growth in the
interest and practicality of secure multiparty computation (MPC) and its
possible applications. Secure MPC is indeed a very hot research topic and
recent advances in the field have already been translated into commercial
products world-wide. A major pillar in this advance has been in the case
of active security with a dishonest majority, mainly due to the SPDZ-line
of work protocols. This survey gives an overview of these protocols, with
a focus of the original SPDZ paper (Damg̊ard et al. CRYPTO 2012) and
its subsequent optimizations.

1 Introduction

Secure Multiparty Computation (MPC) allows a set of parties to compute a joint
function on their inputs while maintaining privacy, meaning that the output of
the computation should not reveal anything but the output itself.

The concept of secure computation was introduced by Andrew Yao [71] who
presented a two-party protocol for Boolean circuits based on the idea of garbled
circuits. Yao’s protocol is a constant-round protocol, where one party, the gar-
bler, generates an encrypted version of the circuit that is securely evaluated by
the other party, the evaluator. After forty years this protocol still remains the
basis for many efficient MPC implementations.

After Yao’s garbled-circuit based protocol was proposed, several multiparty
protocols appeared both for Boolean and arithmetic circuits, including those
given by Goldreich, Micali and Wigderson (GMW) [37], Ben Or, Goldwasser
and Wigderson (BGW) [15], Chaum, Crepeau and Damg̊ard (CCD) [23]. All of
these protocols have a number of rounds linear in the depth of the circuit to
be evaluated and consist in evaluating the circuit gate-by-gate using a secret-
sharing of the data. In 1990, Beaver, Micali and Rogaway presented the BMR
protocol [14] generalizing Yao’s approach to the multiparty setting. The BMR
protocol runs in a constant number of rounds, while achieving security against
dishonest majority. Almost all known secure MPC protocols rely on techniques
described in these fundamental works.

Secure multiparty computation should guarantee a number of security prop-
erties other than privacy, even in the presence of some adversarial entity that
controls a subset of the parties, usually referred to as corrupt parties. The most
c© Springer Nature Switzerland AG 2021
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significant of these properties are: a) correctness, meaning that each party should
receive a correct output; b) independence of the inputs, i.e. corrupt parties’ inputs
should be independent of honest parties’ inputs; c) guaranteed output delivery,
namely honest parties should always be able to receive their outputs; d) fair-
ness, i.e. corrupt parties should receive their outputs if and only if honest parties
do. Note that fairness is a weaker requirement than guaranteed output delivery;
indeed guaranteed output delivery implies fairness, but the opposite is not always
true [25].

Secure multiparty computation comes in different flavors according to diverse
corruption strategies, security requirements, model of computation, communica-
tion channels, etc. However, not all the possible combinations of these properties
and settings are possible. One major distinction is between protocols that rely
on the existence of a honest majority, i.e. less than a half of the total number of
parties is corrupt, and protocols that can be proven secure even with no honest
majority. In the first case it is possible to describe unconditionally secure pro-
tocols, whereas to deal with a dishonest majority it is necessary to restrict to
computational security that holds under some cryptographic assumption. Note
that assuming a honest majority is sometimes a strong requirement, and it is
pointless in the important case of two-party computation.

Another crucial division is determined by the type of corruptions that the
protocol can support. There are three main adversary models that are usually
considered: 1) semi-honest/passive adversary, that follows the protocol specifica-
tions but tries to gain more information than what is allowed; 2) malicious/active
adversary, that can arbitrarily deviate from the protocol in order to break the
inputs’ privacy and/or the outputs’ correctness; 3) covert adversary that may
behave maliciously, but with a fixed probability to be spotted. While actively
secure protocols are always able to detect malicious corruptions (but not neces-
sarily the identity of corrupt parties), in covert secure protocols a cheating party
might not be detected with a certain non-negligible probability. Semi-honest pro-
tocols offer a rather weak security guarantee, but they are much more efficient
than maliciously secure protocols. Interestingly, covert security can be thought
as a compromise between the other two more standard models, as it can offer
more efficiency than active security and stronger guarantees than semi-honest
one.

Besides this efficiency issue and the need of cryptographic assumptions, Cleve
in [24] showed that in the very desirable setting of active security and dishonest
majority it is impossible to obtain protocols for secure computation that provide
fairness and guaranteed output delivery. Consequently, many secure MPC proto-
cols with these strong security properties simply abort if a cheating is observed,
realizing the weaker notion of security with abort. In particular, this means that,
either the protocol succeeds and every party receives its outputs, or the protocol
aborts, and this can happen even after the adversary has learnt the output of
the computation, which could be a serious issue in some applications. One of
the main drawbacks is that these protocols are vulnerable to denial-of-service
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attacks where corrupt parties can force the protocol to abort so that honest
parties never learn the output of the computation.

This motivates the study of secure computation protocols with identifiable
abort (ID-MPC) [9,10,25,27,44]. In this setting, if some malicious behaviour is
detected or the adversary abort, the honest parties will agree upon the identity
of at least one corrupt party. Even though this notion of security remains strictly
weaker of fairness or guaranteed output delivery, it is very useful in practice as
it discourages corrupt parties to behave maliciously, because upon abort at least
one of them would be detected and maybe excluded from future computations.

1.1 Actively-Secure MPC with Dishonest Majority

The last decade has seen a huge progress in the practicality of secure com-
putations. Although it seems fairly natural to imagine efficient protocols with
restricted security against semi-honest adversaries and/or assuming an honest
majority, surprisingly a major advance has been in the dishonest majority case
with active corruptions with the SPDZ line of works [16,29,30].

MPC in the Correlated Randomness Model. A theoretically interesting and prac-
tically effective way to obtain efficiency in secure computation is by designing
protocols with a randomness distribution phase, which is independent of the
inputs to the function being computed, and sometimes also to the function
itself. During this phase, parties receive randomness that are correlated from
a pre-determined joint distribution. Using these random strings in the actual
computation, it is possible to circumvent impossibility results such as impos-
sibility of unconditional security in the plain model. Practically, one way to
instantiate this model is through MPC with pre-processing.

Secure MPC protocols in this model restrict all the expensive operations to
a pre-processing phase that can be both function and input independent. If this
is the case we talk of universal pre-processing and if the pre-processing is only
input independent, then we talk of dedicated pre-processing.

The randomness generated in the pre-processing stage is consumed by a
lightweight non-cryptographic online phase that performs the actual circuit eval-
uation. Typically, the main goal of the pre-processing (or, offline phase) in MPC
protocols is to produce randomness that enables an efficient, both in terms of
communication and computation, evaluation of multiplication gates. In 1991,
Beaver [11] introduced a neat trick that permits efficient secure evaluation of cir-
cuits by randomizing the inputs to each multiplication gate using a pre-processed
random multiplication triple. Using Beaver’s trick, online evaluation turns out to
be very efficient, involving only information-theoretic techniques, and creating
triples becomes the main bottleneck.

From Passive to Active Security. Even though the pre-processing model
allows to perform most of the work in a offline phase, leading to a very efficient
online computation, this does not reduce the price to pay to have actively secure
protocols compared to passively-secure ones. A typical example is the GMW
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protocol which needs expensive generic zero-knowledge (ZK) proofs to achieve
active security. In 2008, Ishai, Prabhakaran and Sahai in [45], described a novel
technique, also known as IPS compiler, for actively secure MPC for Boolean
circuits and constant number of parties, having asymptotic constant overhead
over passively secure protocols. The IPS compiler is based on Oblivious Transfer
(OT)1 and hence can also be expressed in the correlated randomness paradigm as
OT can be pre-processed as shown by Beaver [12]. In [55], Lindell et al. presented
a protocol based on the IPS compiler that converts semi-honest protocols in the
dishonest majority setting into covertly secure ones. Later, Genkin et al. [34]
proposed an MPC protocol for arbitrary number of parties based on Oblivious
Linear Evaluation (OLE) for large fields with constant communication overhead.
This technique was extended in [35] to obtain active security for Boolean circuits.
Recently, Hazay, Venkitasubramaniam and Weiss [41], have proposed a more
efficient compiler from passive to active that works over arbitrary fields and
arbitrary number of parties. Almost all these works make black-box use of the
underlying cryptographic primitives, OT, OLE, etc., and are mainly concerned
with asymptotic complexity.

Concrete Efficiency. A different line of works, more focused on concrete effi-
ciency, started with the paper by Damg̊ard and Orlandi [29] in 2010. To generate
triples, the pre-processing phase utilizes an additively homomorphic encryption
scheme, plus a “sacrifice” technique and homomorphic commitments to accom-
plish active security. This protocol uses commitments also during the circuit
evaluation, still limiting the online phase to computational security. This issue
was solved shortly after by Bendlin, Damg̊ard, Orlandi and Zakarias [16]. In this
protocol, often called BDOZ, the homomorphic commitment scheme is replaced
by a pairwise information-theoretic Message Authentication Code (MAC). A
further optimization was introduced by Damg̊ard, Pastro, Smart and Zakarias
in 2012 with the SPDZ protocol [30]. In SPDZ, the pairwise MAC used in BDOZ
was simplified to a “global” MAC so that each party only stores a single field
element for each MAC value instead of n − 1 (where n is the number of par-
ties). This leads to an information-theoretic online phase which is, roughly, only
two times less efficient than the passive variant of the protocol. A second effi-
ciency improvement provided by SPDZ is in the pre-processing phase, and comes
from replacing the additive homomorphic encryption scheme with a somewhat
homomorphic scheme. In particular, SPDZ uses the lattice-based scheme by
Brakersy, Gentry and Vaikuntanathan (BGV) [21], making extensive use of the
packing technique of Smart and Vercauteren [67], which allows the manipula-
tion of several plaintexts at once using SIMD (Single Instruction Multiple Data)
operations.

1 OT is a fundamental cryptographic primitive [63,69]. In its classical formulation, a
(one-out-of-two) oblivious transfer is a two-party protocol between a sender PS and
a receiver PR: PS inputs two messages x0, x1, PR inputs a bit b, and the goal is for
the receiver to learn xb and nothing more, whilst the sender learns no information
about b.
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After SPDZ, there has been a very large body of work mainly aiming to
improve the SPDZ pre-processing phase, and in particular the triples generation
step. In the next sections we will briefly describe some of these results, however
we stress that what we are going to present is far from being exhaustive, and
many interesting results are not going to be covered or even mentioned, due
to space limitation. The aim of this paper is to introduce the main ideas and
high level techniques used in protocols that are closely related to SPDZ, rather
than giving a detailed and complete description of all the protocols dealing with
active security and arbitrary number of corruptions.

1.2 Instantiating the Preprocessing and Alternative Approaches

Concurrently to SPDZ, at CRYPTO 2012, another practical secure MPC pro-
tocol was presented by Nielsen et al. [58], usually referred to as TinyOT. It is
a very efficient two-party protocol for secure computation of Boolean circuit,
hence, in some sense, it can be considered complementary to SPDZ that on
the contrary achieves better performances over large fields and allows arbitrary
number of parties. TinyOT-online phase is very similar to SPDZ-online phase,
except for the use of pair-wise MACs à la BDOZ. On the other hand, the offline
phase differs significantly as it is based on oblivious transfer. TinyOT was later
generalized to the multiparty case by Larraia et al. [54], and to work on arith-
metic circuit in MASCOT [50]. The most efficient versions of the offline phase
of SPDZ, TopGear [6,51], and MASCOT still represent the state-of-the-art of
linear secret-shared based MPC for arithmetic and binary circuits, respectively.
We provide a more detailed comparison between these two approaches in Sect. 5.

1.3 Is MPC Any Good in Practice? [59]

Secure multiparty computation has been studied since the mid 1980s and back
then the research on this field was mainly focused on feasibility results. Now,
after almost 40 years, MPC is a rather mature technology that has rapidly
progressed, especially in the last decade, from a notion of theoretical interest
only into a technology that is starting to being commercialized.

In some aspects the extraordinary advance in the practicality of secure com-
putation has been surprising, and it can be considered to be a consequence of
a combination of algorithmic, technological and computational progress. Prac-
tically, if we consider malicious secure two party computation, the first imple-
mentation of Pinkas et al. [62] reports roughly 1114 sec for the evaluation of
AES-128, i.e. a Boolean circuit of roughly 30000 gates (6400 AND gates and the
rest XOR gates). Recent protocols [48,68] require roughly 10 ms for the same
circuit. Possibly, recent improvements, for example in OT-extension protocols,
will further improve these running times.

A number of online implementations are available, and SCALE-MAMBA
[1] and MP-SPDZ [47] are the ones most closely related to SPDZ. We refer to
[40], for a more detailed discussion about these and other available frameworks.
Even if we only focus on the dishonest majority setting, we want to remark that
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significant advances have also been made in the practicality of MPC protocols
in different settings.

The current state of affairs is that secure MPC is able to compute relatively
simple functions very efficiently, but it fails when we try to scale to more involved
computations or involving a large number of parties. One of the main problem
is communication, especially for linear secret-sharing (LSSS) based protocols
like SPDZ or TinyOT. A major progress would consist in designing protocols
that have both low bandwidth, like LSSS-based protocols, and small number of
rounds, like GC-based protocols.

Despite the extraordinary progresses in the last years, there is still a long
way to go before we can assert that secure multiparty computation is practically
efficient in every scenario, for example for huge data sets or for Internet-like
settings. Research in MPC is very active, and range from fundamental research,
to implementation, to products deployments. It a very fast-moving field and,
considering recent improvements, one would expect to see more breakthroughs
in the area, with secure computation taking a leading role in most practical
privacy-preserving solutions.

1.4 This Survey

The aim of this work is to give an overview of the techniques used in concretely
efficient MPC protocols with active security and dishonest majority, giving a
high level description of the main building blocks of SPDZ and providing a lim-
ited literary review of the main related works. Other than describing the SPDZ
protocol in its most recent and efficient version, we also provide a rough descrip-
tion of the alternative approaches and, maybe more importantly, references to
the relative papers.

We start with basic notation and preliminaries in Sect. 2. We explain how
data is authenticated via information theoretic MACs in Sect. 3. Assuming a
trusted functionality FPrep for the pre-processing phase, we describe the SPDZ
online protocol in Sect. 4, and finally, in Sect. 5, we show how SPDZ imple-
ments FPrep. In this section we also describe an alternative approach to the
pre-processing implementation using oblivious transfer.

2 Preliminaries

We let κ (resp. s) denote the computational (resp. statistical) security parameter.
We say that a function μ : N → N is negligible if for every positive polynomial2

p(·), and all sufficiently large κ, it holds that μ(κ) < 1/p(κ). We use the abbre-
viation PPT to denote probabilistic polynomial-time. Let F denote a finite field,
we consider protocols that allow to evaluate circuits Cf representing functions
f : Fnin → F

nout with nin inputs and nout outputs. To ease the reading, we drop
the dependence on f , when it is clear from the context.

2 Given a set S, a positive polynomial on S is such that p(x) > 0 for every x ∈ S.
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We use lower case letters to denote finite field elements and bold lower case
letters for vectors in F

κ, for any finite field F. If x,y are vectors over F, then
x∗y denotes the component-wise products of the vectors. If A is a (probabilistic)
algorithm then we denote by a ← A the assignment of the output of A where
the probability distribution is over the random tape of A and we denote by by
s

$← S the uniform sampling of s from a set S. We also use the notation [d] as
shorthand for the set of integers {1, . . . , d}.

Security Model. Protocols described in this paper work with n parties from the
set P = {P1, . . . , Pn}, and we consider security against malicious, static adver-
saries, i.e. corruption may only take place before the protocols start, corrupting
up to n − 1 parties.

All the protocols described in this paper can be proved to be secure in the
universal composition (UC) framework of Canetti [22]. Even though we omit
these proofs here and provide the references to the relevant papers only, we will
maintain some of the terminology used in the UC framework. For example we
are going to use ideal functionalities in most of the protocols described in this
survey. The reader who is not familiar with this notation and security model, and
is not interested in understanding it, can simply imagine these functionalities as
trusted entities that are called to securely perform some specific tasks.

Loosely speaking, protocols that aim to achieve security in the UC model are
defined in three steps. First, the protocol and its execution in the presence of an
adversary are formalized, this represents the real-life model which we also call
the real world . Next, an ideal functionality for executing the task is defined; its
role is to act as a trusted party by separately receiving the input of each party,
both honest and corrupt, and honestly computing the result of the protocol
internally and returning the output assigned to each party. In this ideal process,
also called ideal world , the parties do not communicate with one another but
instead solely rely on the ideal functionality to provide them with their output.
Finally, we say that the protocol in question UC-realizes the ideal functionality
if running the protocol is equivalent, or indistinguishable, from emulating the
ideal functionality. When we say that a protocol Π securely implements an
ideal functionality F with computational (resp. statistical) security parameter κ
(resp. λ), our theorems guarantee that the advantage in distinguishing the real
and ideal executions is in O(2−κ) (resp. O(2−s)).

Communication Model. We assume all parties are connected via authenticated
communication channels, as well as secure point-to-point channels and a broad-
cast channel. In practice, since we are considering security with abort, broadcast
can be implemented with point-to-point channels requiring only two rounds of
communication as follows [38]: 1) The party that needs to broadcast a value sends
this to all parties; 2) All the receiving parties send the value they received to all
other parties. It can be proven that either all the parties output the same value or
the protocol aborts. This broadcast is also called broadcast with abort. It requires
O(n2) communication per broadcast. SPDZ [30] (Appendix A.3) describes how
to optimize it in the case there are many broadcasts to perform, like in MPC
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protocols. Roughly, in all the broadcast instances parties maintain a running
hash of all values sent and received, and these are checked later, at the end of
the protocol. With this optimization the amortized cost per broadcast value is
O(n).

Secret Sharing Scheme. We only consider computation on values that are addi-
tively secret shared among parties, i.e. each shared value x ∈ F is represented
as

〈x〉 = (x(1), . . . , x(n)),

where each party Pi ∈ P holds a random share x(i) and x =
∑

i∈[n] x
(i). In this

way, by setting all but a single share to be a random value in F, we have that
any subset of n − 1 parties cannot recover the secret value x. We give a more
formal definition below.

Definition 1 (Additive secret-sharing scheme). Let F be a finite field and
n ∈ N a positive integer. We define an additive secret sharing scheme S =
(Share,Recover) such that:

– Share(x, n): on input a secret x and an integer n, first it generates shares
(x(1), . . . , x(n−1)) uniformly at random from F and define x(n) = x −
∑n−1

i=1 x(i); then it outputs (x(1), . . . , x(n)), where x(i) is the share of party
Pi

– Recover(x(1), . . . , x(n)): given all the shares x(i), i ∈ [n], parties compute x =∑n
i=1 x(i).

Trivially, this secret sharing scheme is linear, therefore linear operations can be
performed locally without interactions among parties, as described below.

– Addition of secret-shared values: 〈x〉 + 〈y〉 = (x(1) + y(1), . . . , x(n) + y(n)) =
〈x + y〉

– Addition by a public value a: a + 〈x〉 = (a + x(1), . . . , x(n)) = 〈a + x〉
– Multiplication by a public value a: a · 〈x〉 = (a · x(1), . . . , a · x(n)) = 〈a · x〉
Statistical Distance. Let E be a finite set, Ω be a probability space and X,Y :
Ω → E be random variables. The statistical distance between X,Y is defined
as:

Δ(X,Y ) =
1
2

∑

x∈E

∣
∣Pr

X
(X = x) − Pr

Y
(Y = x)

∣
∣

We recall the following result from [2].

Lemma 1 (Smudging Lemma). Let B1 and B2 be positive integers, let e ∈
[−B1, B2] be a fixed integer, and let E1, E2 be independent random variables
uniformly distributed in [−B1, B2]. Define the two stochastic variables X1 =
E1 + e and X2 = E2. Then, it holds that:

Δ(E1, E2) < B1/B2.

This lemma allows to “smudge out” small differences between distributions
adding large noise. It will be used many times in the protocols we describe
in the next sections, often implicitly.
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2.1 Threshold (L-leveled) Homomorphic Encryption

We briefly recall the definition of threshold (L-leveled) homomorphic encryption
(THE) [2,17] scheme. It is similar to a standard (leveled) homomorphic encryp-
tion scheme, but with different key-generation and decryption algorithms. The
scheme is parametrized by security parameters (κ, s), the number of levels L, the
amount of packing of plaintext elements which can be made into a single cipher-
text N , and by a linear secret scheme S. We instantiate S with an additive secret
sharing scheme as describe before, and hence we give a less general definition
of a THE scheme. Informally, a threshold L-leveled HE scheme supports homo-
morphic evaluation of any circuit C consisting of addition and multiplication
gates and of multiplicative depth at most L, with the provision for distributed
(threshold) decryption.

Definition 2. An L-leveled public key homomorphic encryption scheme with
message space M = F

N , is a tuple of PPT algorithms THE = (KeyGen, Enc,Eval,
PartDec,DistDec), satisfying the following specifications:

(pk, sk(1), . . . , sk(n)) ← KeyGen(1κ, 1s, n) : taking as input the security parame-
ters κ and s, and the number of parties n, it outputs a public key pk, and
secret key additive shares (sk(1), . . . , sk(n));

ct ← Enc(m; pk) : it takes a plaintext m ∈ M and public key pk, and output a
ciphertext ct;

ĉt ← Eval(C, ct1, . . . , ctt) : it takes as input a circuit C : Ft → F, with multiplica-
tive depth at most L and t ciphertexts ct1, . . . , ctt, and outputs an evaluation
ciphertext ĉt;

(p(1), . . . , p(n)) ← PartDec(ct; sk(1), . . . , sk(n) : given a ciphertext ct and a secret
key share ct(i), it outputs a partial decryption p(i) to party Pi, for every i ∈ [n];

m̂ ← DistDec(p(1), . . . , p(n); pk) : it takes as input the public key and all the
partial decryption outputs, and outputs a plaintext m̂.

The scheme needs to satisfy correctness, semantic security and simulation secu-
rity as described in [17]. Here we omit the formal definitions of these properties.
While the first two are relatively standard, the latter essentially says that no
information about the key shares and plaintext should be leaked by the decryp-
tion algorithms other than what is already implied by the result of homomorphic
operations.

In SPDZ, a THE scheme is used to generate random triples in the pre-
processing phase, therefore we need a very simple THE supporting only one
homomorphic operation, i.e. L = 1. Concretely, the THE scheme is instantiated
with the scheme by Brakersky, Gentry and Vaikuntanathan (BGV) [21], based
on the Ring Learning with Error assumption [56,64], and supporting packing
operations [67] that permits to handle many plaintexts in a single ciphertext.
We omit the description of BGV in this survey.
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2.2 UC Commitments

Fig. 1. Commitments functionality.

A commitment scheme allows a commiter holding a secret value m to send a
commitment c of m to a verifier, and later on to “open” this commitment to
reveal m. More formally, a commitment scheme is defined by three algorithms.

– Setup(1κ) : given as input the security parameter, it generates the global
parameters that will be implicitly used by the other algorithms;

– (c, w) ← Commit(m) : given a message m it produces a commitment c on m
and the opening information w;

– m ← Open(c, w) : it decommits c using w and outputs either the message m
or ⊥ if the opening fails.

The scheme has to be both binding , i.e. the opening should successfully open
to one value only, and hiding which means that the commitment c should not
reveal any information about m. These two properties can be achieved in a per-
fect, statistical or computational way. A UC-secure commitment must be both
extractable (meaning that it is possible to extract the value that a corrupted
party commits to) and equivocable (meaning that it is possible to generate com-
mitments that can be opened to any value). In this survey we will use an ideal
functionality FCommit as described in Fig. 1.

This ideal functionality can be implemented assuming a random oracle, by
defining c = H(m, i, r), where H is a random oracle, r ← {0, 1}κ and w = (c, r).

Using this hash-based commitment we can also efficiently implement a stan-
dard coin flipping functionality FRand. We refer to [28] for more details.

2.3 Zero Knowledge Proofs

A zero-knowledge (ZK) proof [39] is an interactive protocol between a prover P
and a verifier V that allows the prover to demonstrate that a statement is true
without revealing any further information about the proof beyond the fact that
the statement is true.

An NP-relation R(x,w) is an efficiently decidable binary relation R(x,w)
that is polynomially bounded, i.e. if R(x,w) is satisfied, then |w| ≤ poly(|w|).
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Any NP-relation defines a language L = {x : ∃w,R(x,w) = 1}. Usually w is
called a witness for the statement x ∈ L.

A ZK proof protocol for the NP relation R(x,w), with common input x
and additional input w for P, satisfies three properties that we can informally
describe as follows:

– Completeness: if x ∈ L, and P knows a proof of this, she/he will succeed in
convincing V;

– Soundness: if the statement is false, no prover can convince the verifier of the
truth of the statement except with probability ε, where ε is the soundness
error of the protocol;

– Zero-knowledge: the interaction between P and V yields nothing beyond the
fact that the statement is true. This is equivalent to require the existence of
a simulator that can produce an honest-looking transcript for the protocol,
without knowing anything about the statement.

2.4 Oblivious Transfer

Oblivious transfer is a fundamental cryptographic primitive originally introduced
by Rabin [63] and Wiesner [69]. Subsequent works by [33,52] showed oblivious
transfer to be a very powerful primitive. In particular, Kilian [52] showed that
OT is complete for secure multi-party computation. Many MPC protocols have
been constructed based on OT, including the GMW protocol, Yao’s garbled
circuits and the IPS compiler that we have already mentioned before.

In its classical formulation, a (one-out-of-two) oblivious transfer is a two-
party protocol between a sender PS and a receiver PR: the sender inputs two
messages x0, x1, a receiver inputs a bit b, and the goal is for the receiver to
learn xb and nothing more, whilst the sender learns no information about b. In
Fig. 2 we describe the ideal functionality for oblivious transfer on bit strings of
length k, meaning that sender’s inputs x0, x1 are elements in {0, 1}k. Given the
inputs from PS and PR the functionality outputs the string xb corresponding to
receiver’s input b.

Functionality Fk
OT

Running between a sender PS and a receiver PR, it operates as follows.

- PS inputs (x0, x1) ∈ {0, 1}k × {0, 1}k and PR inputs b.
- The functionality outputs xb to PR.

Fig. 2. Functionality for one-out-of-two oblivious transfers on k-bit strings.

Oblivious Transfer Extension. Although oblivious transfer is a fundamental
building block for many cryptographic constructions, it used to be considered
an expensive primitive. Indeed, Impagliazzo and Rudich [42] showed a black-box
separation result that is strong evidence that OT is impossible without the use
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of expensive public-key cryptography. However, thanks to recent, and somehow
surprisingly, advances in the field, we can fairly claim that in practice OT is no
longer an expensive primitive.

Beaver in [13] first showed that OT can be “extended”, i.e. starting from few
OTs one could generate a large amount of additional OTs using only cheap sym-
metric primitives. Albeit elegant, Beaver’s protocol is highly impractical. The
first efficient OT-extension protocol was described by Ishai, Kilian, Nissim and
Petrank [43] in the passive setting. Subsequent works, secure against both pas-
sive [3,53] and active [4,49,60] adversary, all follow the IKNP blueprint. These
protocols are computationally very efficient and allow to create more than 10
million of OTs in 1 sec. The main bottleneck remains communication. A dif-
ferent approach, that uses LPN-based (LPN stands for Learning Parity with
Noise3) PCG (i.e. Pseudorandom Correlation Generators see Sect. 5.3) for OT-
extension, outperforms previous solutions in terms of communications in low
bandwidth network, but at price of high computational overhead [18,66]. A very
recent protocol by Yang et al. [70] achieves impressive performances both in
terms of communication and computation requiring only 21 nanoseconds (resp.
22 nanoseconds) for generating one (correlated) OT in a 50 Mbps network with
passive (resp. active) security. Correlated OT (COT) is a slightly different vari-
ant of OT, but sufficient for many practical MPC protocols. We will define COT
in Sect. 5.2.

3 Data Representation

While an additive secret sharing scheme is sufficient to guarantee privacy and
hence security in the weak model of semi-honest security, we need extra cau-
tion in presence of an active adversary in order to prevent corrupt parties to
inject incorrect values to the protocol that could lead to erroneous results or
information leakage.

As we mentioned in the introduction, SPDZ protocols achieve active security
by authenticating each shared value with an information-theoretic MAC. This
can be done either in a pairwise manner [16,58], or in a global manner [30,
54]. Both of these variants can be applied, yet implying significant practical
differences in the total amount of data each party needs to store, in the ZK
proofs and in the way MACs are checked. We describe both these variants below.

BDOZ-style MAC: Each value x ∈ F is authenticated and additively secret
shared among parties in P in such a way that each party Pi holds a share
x(i) and n − 1 pairwise MACs

m(ij)
x = k(ji)

x + x(i) · Δ(j),

for each j �= i. This notation implies that Pi holds x(i) and {m(ij)
x }j , and each

other party Pj holds a local key k
(ji)
x , i.e. depending on the value x(i), and a

3 Roughly, the LPN assumption says that given a random linear code C, a noisy
random codeword of C is pseudo-random.



54 E. Orsini

global key Δ(j) fixed for the entire computation. The values m
(ij)
x , k

(ji)
x ,Δ(j)

are either elements of F, or elements of an extension field E of F. Typically, if
log2 |F| ≥ κ, then E = F. We will use the following notation to represent this
type of authenticated values:

[x]jB =
(〈x〉, (m(1j)

x , . . . ,m(nj)
x ), (k(j1)x , . . . , k(jn)

x ),Δj
)
,

to denote each party authenticating their share of 〈x〉 towards party Pj , and

[x]B =
(
[x]1B , . . . , [x]nB

)
,

for the global representation. It is easy to see that parties can locally perform
linear operations on authenticated data.

Addition of pairwise authenticated secret-shared values.

[x]B + [y]B =
(
[x]1B + [y]1B , . . . , [x]nB + [y]nB

)
=

(
[x + y]1B , . . . , [x + y]nB

)

= [x + y]B ,

since, for each i, it holds:

[x]iB + [y]iB =
(〈x〉 + 〈y〉, (m(1j)

x + m(1j)
y , . . . ,m(nj)

x + m(nj)
y ),

(k(j1)x + k(j1)y , . . . , k(jn)
x + k(jn)

y ),Δj
)

=
(〈x + y〉, (m(1j)

x+y, . . . ,m
(nj)
x+y), (k(j1)x+y, . . . , k

(jn)
x+y),Δj

)

Addition by a public value. Given a publicly known value a ∈ F,

a + [x]B = [a + x]B ,

where 〈a+x〉 is obtained as described in the introduction. All the MAC values
and keys remain the same, except for k

(j1)
a+x = k

(j1)
x − a · Δ(j).

Multiplication by a public value. As before, given a public a ∈ F, a · [x]B =
[a · x]B , obtained by multiplying each share, MAC and local key by a.

SPDZ-style MAC: Each value x ∈ F is additively secret shared and authenti-
cated as follows.

[x]S = (〈x〉, 〈mx〉, 〈Δ〉),
where mx =

∑
i m

(i)
x = x · Δ and Δ =

∑
i Δ(i) is the MAC key, that is hence

unknown to the parties. As for [·]B , we assume mx and Δ to be elements of F
or E, such that F ⊂ E. Again, due to the linear relation between authenticated
values and MAC, linear operations can be carried out locally.

Addition of pairwise authenticated secret-shared values. [x]S + [y]S = (〈x〉 +
〈y〉, 〈mx〉 + 〈my〉, 〈Δ〉) = (〈x + y〉, 〈mx + my〉, 〈Δ〉) = [x + y]S .
In a similar way we can perform addition and multiplication by a public value.
Note that given a public value a, the MAC value on a is defined by each party
setting m

(i)
a = a · Δ(i), to obtain a valid authenticated share.
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Conversion to [·]S. It is possible to locally convert the BDOZ representation
to the SPDZ representation [54]. As we will see in Sect. 5, this conversion
is particularly useful in the case we want to use a two-party primitive, like
oblivious transfer, to generate authenticated values and random triples. This
allows a more efficient memory usage and exploits a less expensive, global
MAC check procedure in the online evaluation. Given a BDOZ-style authen-
ticated value [x]B , parties already hold 〈x〉 and additive shares of Δ, so to
obtain a SPDZ-style representation, it is enough to generate shares m

(i)
x of

mx = x · Δ. This is done without any interaction by parties combining their
pairwise MACs and keys as follows:

m(i)
x =

∑

j �=i

(
m(ij)

x − k(ij)x

)
+ x(i) · Δ(i).

Indeed the following relations hold:

mx =
∑

i

m(i)
x =

∑

i

x(i) · Δ(i) +
∑

i

∑

j �=i

(
m(ij)

x − k(ij)x

)

=
∑

i

x(i) · Δ(i) +
∑

i

∑

j �=i

x(i) · Δ(j)

= x · Δ.

3.1 Checking MACs

During the online evaluation of the circuit, parties need to communicate or, more
precisely, they need to be able to reveal secret shared values [x]. This is done by
sending over all the private shares x(i) of 〈x〉:
Open: On input (Open, x) from every party, each Pi broadcasts x(i), recovers

x =
∑

i x(i) and stores x.

Moreover, we need to prevent corrupt parties to disclose incorrect values, there-
fore we need a way to check MACs on opened values. This can be done in different
ways. Note that since it is always possible to convert from [·]B to [·]S , and the
latter allows a more efficient check, we only consider the case of SPDZ-style
MAC.

An obvious way to check if a reconstructed value is correct is by revealing
shares m

(i)
x and Δ(i), for each i ∈ [n], along with x(i). Clearly, we can perform

this check only once because after the MAC key Δ is revealed all parties can
forge new MACs and introduce incorrect values, so a new MAC key should be
generated (along with new pre-processed material).

To overcome this problem in original SPDZ protocol, parties wait until the
end of the computation to reveal the MACs and the MAC key. Only when the
circuit evaluation is completed, parties check the MACs on opened values, and
if the check passes the final result of the computation is opened.

However, this approach limits the use of Δ to a single evaluation, preventing
reactive computations without generating fresh MAC keys and pre-processed
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randomness. The following two procedures, firstly described in [28], allow to
check a single MAC and a batch of MACs, respectively, on opened values without
disclosing the global MAC key . At a high level, given an opened value x̃ and
authenticated value [x], the goal is to check whether x̃ = x by checking the
MAC relation mx = x̃ ·Δ. To this end parties broadcast σ(i) = m

(i)
x − x̃ ·Δ(i) and

then check that
∑

i σ(i) = 0. Note that the shares m
(i)
x are uniformly random,

so sending σ(i) does not leak any private information, in particular about Δ(i).

MAC Check. On input (CheckMAC, x̃) from all parties:
1. Each party Pi computes σ(i) = m

(i)
x − x̃ · Δ(i)

2. Pi calls the functionality FCommit on command (Commit, σ(i), i, τ (i)) to
broadcast (i, τ (i))

3. All parties call FCommit with command (Open, i, τ (i)), obtaining σ(i), for
all i ∈ [n]

4. Parties check if σ(1) + · · · + σ(n) = 0. If the check passes, accept x as a
correct authenticated value, otherwise output ⊥ and abort.

Batch MAC Check. On input (CheckMAC, x̃1, . . . x̃t) from all parties:
1. Parties use FRand to sample a random vector r ← F

t

2. Each party locally computes x̃ =
∑t

j=1 rj · x̃j

3. Each party Pi computes 〈m̃〉 ← ∑t
i=1 rj · 〈mx̃j

〉 and 〈σ〉 = 〈m〉 − x̃ · 〈Δ〉
4. Use the (single) MAC Check procedure described above to check the

MAC relation on the value x̃, with MAC m̃ and Δ.

Remark 1. These procedures use the FCommit (Fig. 1) functionality so that a
corrupt party is not able to cheat in the broadcast of its share of σ, for example
using information on shares sent by honest parties. In the same spirit, during the
Batch MAC Check, the sampling of the vector r, used to generate random
linear combinations of opened values and MACs, is performed by FRand to ensure
that corrupt parties are not able to influence it in the attempt of passing the
check with incorrect shares.

We omit the security proof of the MAC Check procedure, however, the intu-
ition is that if corrupt parties send incorrect shares, such that the opened value
is x+δ, for some adversarial chosen δ, then to pass the check it should hold that

∑

i∈[n]

σ(i) = (x + δ) · Δ −
∑

i

m(i)
x = (x + δ) · Δ − mx = 0.

This means that the adversary should be able to “correct” the corrupt parties’
MAC share by the value δ · Δ, which in turns implies to guess the global key Δ.
Hence the probability of passing the check is 1/|E|, which is negligible when the
field is large. As a consequence, to carry out computation over small fields we
need to take a large enough extension field E and embed the whole computation
in that field, generating a significant communication overhead.

Another issue with this technique is that it does not work over other rings,
for example over the modular rings Z/2k

Z. The reason is that these rings contain
zero divisors and hence guessing δ · Δ mod 2k is much easier than over fields.
We discuss in the next sections how to overcome these difficulties.
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4 SPDZ Online Evaluation

In this section we describe the circuit evaluation phase (or, online phase) of
SPDZ, assuming a trusted setup, FPrep, that generates the correlated randomness
used in the actual circuit computation. Recall that we assume that the circuit
being evaluated is an arithmetic circuit over the finite field F.

The main question is “What do we need for FPrep?” The minimal require-
ments are the following. 1) Random authenticated values, (r, [r]S), that are
used as masks to create authenticated sharings of the inputs. The value r is
secret shared, but known to the input party; 2) Random authenticated triples,
([a]S , [b]S , [c]S), c = a · b, used to multiply two shared values.

During the online protocol the circuit is evaluated gate by gate on shared
values and using the linearity of the [·]S-representation. To share an input xi,
party Pi takes a pre-processed random value [r]S and broadcast the value xi −r.
Since r is uniformly random in F and unknown to all other parties, it acts
as a one-time pad to perfectly hide xi. All parties can then locally compute
[r]S + (xi − r) to obtain [xi]S .

Multiplication of two shared values [x]S and [y]S uses Beaver’s trick. Using
a multiplication triple [a]S , [b]S , [c]S , first parties open and recover the values
ε = x−a and ρ = y − b. Again, the triple values perfectly mask the inputs x and
y, and the opened values appear uniformly random to corrupt parties. Given ε
and ρ, a sharing of the product x ·y can be locally computed by all parties using
the triple as follows:

[x · y]S = [c]S + ε · [b]S + ρ · [a]S + ε · ρ.

When the circuit evaluation is completed, parties check the MACs on all the
values revealed during the input and non-linear operations. If the check passes,
they open and recover the output, otherwise the protocol aborts.

Online protocol
Initialize. Parties call FPrep to get the shares Δ(i) of the MAC key,
multiplication triples ([a]S , [b]S , [c]S) and mask values (ri, [ri]S) as needed
for the function under evaluation. If FPrep aborts then the parties output
⊥ and abort.
Input. To share an input xi, party Pi takes an available mask value
(ri, [ri]S) and does the following:
1. Broadcast ε ← xi − ri.
2. The parties compute [xi]S as [ri] + ε.

Add. On input ([x]S , [y]S), locally compute [x + y]S ← [x]S + [y]S .
Multiply. On input ([x]S , [y]S), the parties do the following:
1. Take one multiplication triple ([a]S , [b]S , [c]S), compute [ε]S ← [x]S −

[a]S , [ρ]S ← [y]S − [b]S . Open those values and run MAC Check.
2. Use Beaver’s trick described above.

Output. To output a share [y]S , do the following:
1. Run MAC Check with input all opened values so far. If it fails, output

⊥ and abort.
2. Open and MAC Check [y]S . If the check fails, output ⊥ and abort,

otherwise accept y as a valid output.
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5 SPDZ Pre-processing

Here we show different ways of implementing the pre-processing phase. We recall,
once again, that the main (basic) tasks of this step is to produce the following
type of random authenticated values:

Input mask. ([r]S , Pi), with the value r known by Pi

Triples. ([a]S , [b]S , [c]S), where c = a · b

Of course it is possible to pre-process different types of correlated randomness,
such as random bits, squares, etc, that can help to improve the efficiency of
certain online operations. However, explaining this kind of optimization is out
of the scope of this work.

5.1 Pre-processing Using Threshold Homomorphic Encryption

As mentioned before, SPDZ offline protocol is based on a 1-leveled thresh-
old homomorphic encryption scheme (introduced in Sect. 2.1), supporting O(n)
additions and one homomorphic multiplication, instantiated with BGV. Let us
assume that M = F

N , where N is the packing parameter. This allows to produce
many correlated random values in parallel. The original SPDZ paper, and several
subsequent related works, assume a trusted setup FKeyGen for the KeyGen algo-
rithm. We recall that this algorithm securely provides to the parties the BGV
public key pk and a sharing 〈sk〉 of the secret key sk. [28] describes a covertly
secure protocol that achieves this task, and only recently Rotaru et al. [65] have
introduced a protocol that implements FKeyGen with active security. This pro-
tocol is based on oblivious transfer and, specifically, on the MASCOT protocol
[50]. The interested reader can find the implementation of the so-called “SPDZ
setup functionality” in [65], here we make use of ideal functionality FKeyGen in
the description of the pre-processing protocol.

Other than FKeyGen, we also assume another ideal functionality, FDistDec,
that extends the standard BGV decryption algorithm to securely allow dis-
tributed decryption inside SPDZ. Now we give an overview of the pre-processing
protocol, and later we provide and discuss it in greater detail.

High Level Description. The passive version of the pre-processing protocol works
as follows. Let us assume that the parties have (pk, 〈sk〉) and (〈Δ〉, ctΔ), where
ctΔ is an encryption of the MAC key Δ using BGV.

– To create an input mask ([r]S , Pi), each party Pi samples a random value r
and creates a random sharing 〈r〉, that is Pi sends the relative share r(j) to Pj ,
for each j �= i. Parties then locally compute the ciphertexts ctrj using the com-
mon public key pk and broadcast them. Using the homomorphic properties of
BGV, parties can locally compute ctr and ctr · ctΔ = ctmr

, i.e. encryptions of
the mask r and its MAC. Using a distributed decryption algorithm with 〈sk〉,
each party obtains a share of mr. Note that this step requires interaction.
The output of this simple procedure is used in the Input step of the online
evaluation to mask the actual input value, as described in Sect. 4.
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– A similar technique is used to produce triples. Each party samples random
shares a(i), b(i) and broadcast the corresponding ciphertexts ctai , ctbi . Parties
can compute ctc, ctma

, ctmb
as before and using the distributed decryption, the

MAC sharing 〈ma〉 and 〈mb〉. Since we allow only one homomorphic multipli-
cation, to produce 〈mc〉 parties first decrypt ctc, and, with 〈c〉, they produce
a fresh encryption c̃tc of c that can then be multiplied by ctΔ.

Unfortunately, this simple protocol is not sufficient against active corruptions.
Indeed, corrupt parties have the freedom to generate incorrect ciphertexts con-
taining maliciously chosen noise or unknown plaintexts, that would result either
in selective failure attacks or information leakage during distributed decryption.
To solve this problem SPDZ uses zero-knowledge proofs of plaintext knowledge
for every sent ciphertext, to prove that it is correctly generated. A second issue
arises in the distributed decryption itself. During this interactive procedure an
adversary might add errors both to triples and MAC values. While correctness
of triples is checked through an additional check, called “sacrifice” (that we will
describe later), errors on MACs have no impact on protocol security as potential
errors cause the MAC Check to fail except with negligible probability.

SPDZ Zero-Knowledge Proofs. As mentioned before, to achieve active secu-
rity SPDZ uses zero-knowledge proof of plaintext knowledge in order to prove
that the ciphertexts used to generate pre-processed randomness are correctly
generated. While it would be very convenient, in terms of efficiency, to avoid
these expensive proofs all together, they seem to be quite unavoidable if we do
not want to occur in decryption failures and information leakage both in the pre-
processing and, more importantly, in the online computation. Zero-knowledge
proofs constitute the main bottleneck in SPDZ implementations, both in terms
of communication and runtime. For this reason a consistent amount of work have
been devoted to the optimization of those proofs [5–8,31,51]. Here we informally
describe the main idea of these proofs and explain why they are so expensive.
For the details the reader may refer to [6,7].

Roughly, in SPDZ ZK proofs, each party Pi, acting as a prover P, has to prove
knowledge of a short preimage x of a linearly homomorphic function f such that
f(x) = y and ‖x‖ ≤ B, for some bound B. Here f is the BGV encryption
function and y is the ciphertext that Pi has to prove being correctly generated.
More formally, we need a zero-knowledge proof of knowledge for the relation

RZK = {(x, y) | y = f(x) ∧ ‖x‖ ≤ B}.

This kind of proofs usually consist of a standard Σ-protocol:

1. P samples a random r such that ‖r‖ ≤ τ · B, for τ sufficiently large (see
below), and sends f(r) = a to the verifier V;

2. V samples a random challenge e ∈ {0, 1} and sends it to P;
3. P replies with z = r + e · x.

Finally, the verifier checks whether f(z) = a + e · y and that ‖z‖ ≤ τ · B.
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It is evident that the bound proven above is not tight. Indeed a sufficiently
large τ is necessary to make the distribution of z statistically independent of
x and hence provide (honest-verifier) zero-knowledge. Also, we can extract the
witness x (and get special soundness) from two correct transcripts (a, e, z), (a, e+
1, z′) that a cheating prover can provide, by f(z − z′) = y, so that ‖z − z′‖ ≤
2·τ ·B. The term 2·τ ·B is known as soundness slack and quantifies the difference
between the bound used by an honest prover and what we can force a cheating
prover to do.

In short, this approach has two main drawbacks. Firstly, it needs to be
repeated many times to reach a sufficiently small soundness. Secondly, a large
soundness slack implies in SPDZ larger parameters in the underlying BGV cryp-
tosystem, with consequences in terms of computation and also communication
as these ciphertexts need to be sent to all parties in the protocol. As described
in [6], the slack can be removed by a modulus switch operation after the ZK
proof is executed. Loosely speaking, a modulus switching operation is a noise
management technique, introduced by Brakerski et al. [21], that transforms a
ciphertext over a certain modulo into a ciphertext defined over a smaller modulo.

A common solution to the first issue is to use standard amortized techniques
[26], and prove several statements at once. Even if on one hand the amortization
reduces the soundness from 1/2 to 2−t, where t is the number of instances we
are proving, on the other hand it introduces even more slack.

Different alternatives to this general approach have been proposed.
In [28] a cut-and-choose based check is described to replace the zero-

knowledge proofs. This method needs a large number of additional ciphertexts
and it seems to require too much memory to be practical.

In [51], Keller, Pastro and Rotaru revisited the original SPDZ ZK proofs
by noting that in the pre-processing it is not required that each ciphertext ctxi

was correctly generated, but rather than the sum of those is “correct”. This is
because only this sum is going to be used in the distributed decryption, and
not the single shares. In this way it is possible to replace the per-party proof
with a global proof, improving the overall computational complexity, as each
party needs to check only a single proof instead of n − 1, but not the overall
communication.

In a recent work [6], Baum, Cozzo and Smart improve the soundness of the
global proof introduced in [51]. This work implies a reduction in the amount of
amortization required to achieve the desired soundness and also smaller slack.
With this technique it is only possible to prove the validity of ciphertexts 2 · ctx,
and not of ctx, but in SPDZ this can be mitigated by slightly modifying some of
the shares in the MPC protocol.

SPDZ Sacrifice. To ensure triples correctness essentially all SPDZ-style proto-
cols use a standard sacrifice technique that checks a pair of triples such that one
can be then used securely. While the original SPDZ protocol used two indepen-
dent random triples ([a]S , [b]S , [c]S) and ([a′]S , [b′]S , [c′]S), checking one against
the other, in MASCOT it was noticed that the check also works with “correlated”
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triples ([a]S , [b]S , [c]S) and ([a′]S , [b]S , [c′]S), i.e. with the same b (or equivalently
same a). In this way we have a cheaper check requiring less authenticated ran-
domness and also less opening, and hence less communication. It proceeds as
follows.

Sacrifice: Given two correlated triples ([a]S , [b]S , [c]S) and ([a′]S , [b]S , [c′]S):
1. Parties call the ideal functionality FRand to obtain a random r ∈ F

2. Parties open the value ρ = r · [a] − [a′]
3. Parties compute r · [c]− [c′]− ρ · [b], and check whether it is equal to zero.

If not, the protocol outputs ⊥ and aborts.

If the triples are correct:

r · c − c′ − ρ · b = r · (a · b) − (a′ · b) − b · (r · a − a′) = 0.

If the triples are incorrect, that is (a, b, c + δ) and (a′, b, c′ + δ′), where δ, δ′ are
chosen by the adversary:

r · (c + δ) − (c′ + δ′) − ρ · b =
r · (a · b + δ) − (a′ · b + δ′) − b · (r · a − a′) = r · δ − δ′,

which is zero with probability 1/|F|.

Putting Everything Together. We can finally show the SPDZ offline proto-
col. We make the following assumptions:

– A global zero-knowledge protocol ΠgZKPoK as we have described above (for
details we refer to [6,51,61].

– A key generation functionality FKeyGen that distributes (pk, 〈sk〉) among the
parties (in SPDZ instantiation these keys are BGV encryption and decryption
keys).

– A distributed decryption functionality FDistDec that, given a correctly gen-
erated ciphertext, output a sharing of the decryption output.

When we implement FDistDec in SPDZ using BGV, we provide this ideal func-
tionality of two commands DDM and DDT, that we describe below.

Distributed decryption MACs (DDM): It takes as input a valid ciphertext
ctm and the BGV keys (pk, sk).
1. Decrypt ctm and send the output of the decryption m to the adversary.
2. Wait for an input from the adversary. If receive Abort, send Abort to the

parties and halt, otherwise on receiving m′ = m + δ, send 〈m′〉 to the
parties.

Distributed decryption triples (DDT): It takes as input a valid ciphertext
ctm and the BGV keys (pk, sk).
1. Do as DDM in steps 1. and 2.
2. Compute a fresh encryption ctm′ of m′ and send it to the parties.
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DDT is essentially the Reshare protocol given in [28,30]. When we implement
this functionality with BGV, the protocol requires a masking ciphertext, and
hence a ZK proof, that is used in the distributed decryption. Other than the
decryption sharing 〈m′〉, it also produces a fresh encryption ctm′ of the output
of the decryption. On the other hand, in the protocol implementing DDM [51],
a large “plaintext” mask is introduced directly in the decryption procedure,
and there is no need of ZK proof for this mask. Therefore, this latter protocol
is cheaper than DDT, but it can only be used if the result of the decryption
does not need to be re-encrypted. In particular, it can only be used for MACs
generations and not for generating c and mc, and for this reason it only outputs
decryption shares and not a fresh encryption of it as DDT does. Finally, note
that both of the commands allow the corrupt parties to add some error to the
outputs. This does not break the security of the protocol as these errors will be
detected by MAC Check failures.

Pre-processing protocol. Parties receive pk from FKeyGen.
Initialize. Parties create a ciphertext ctΔ encrypting the MAC key Δ:
1. Each party Pi samples a random Δ(i). Set Δ =

∑
i Δ(i)

2. Each Pi, i ∈ [n], computes and broadcasts ctΔi

3. Parties run ΠgZKPoK to check that ctΔ is valid
Input. On input (Input, Pi) from all parties:
1. Pi samples r ← F, creates 〈r〉 and sends r(j) to Pj , j �= i
2. Each party Pi creates ctri and broadcasts this value
3. Parties run ΠgZKPoK and compute ctr·Δ
4. Parties call FDistDec on command DDM receiving 〈mr〉
5. Parties run MAC Check, if it fails, the protocol Abort

Triples. On input (Triple) from all parties:
1. Each Pi samples random shares a(i), b(i) ← F, computes ctai , ctbi and

broadcasts these values
2. Parties run ΠgZKPoK to check the validity of cta and ctb
3. Parties compute cta · ctb = ctc
4. Parties call FDistDec on command DDT obtaining 〈c〉 and a fresh

encryption of c, c̃tc
5. Parties obtain 〈ma〉, 〈mb〉, 〈mc〉 calling FDistDec on command DDM

on inputs cta, ctb, c̃tc.
6. Parties repeat steps 2–5 with value a′, obtaining 〈c′〉, such that c′ =

a′ · b and 〈ma′〉, 〈mc′〉.
7. Parties run the Sacrifice check on input

(
(a, b, c), (a′, b, c′)

)
. If the

check fails, the protocol Abort
8. Parties run MAC Check, if it fails, the protocol Abort

5.2 Pre-processing Using Oblivious Transfer

Here we describe how to generate random authenticated values and triples using
oblivious transfer instead of homomorphic encryption. In order to do this we
need some more notation.
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We define the ‘gadget’ vector g consisting of the powers of two (in Fp) or
powers of X (in extension fields Fpk), so that

g = (1, g, g2, . . . , gk−1) ∈ F
k,

where, as said before, g = 2 in Fp and g = X in Fpk . Let g−1 : F → {0, 1}k be
the ‘bit decomposition’ function that maps x ∈ F to a bit vector xB = g−1(x) ∈
{0, 1}k, such that xB can be mapped back to F by taking the inner product
〈g,g−1(x)〉 = x. This tool permits to switch between field elements and vectors
of bits whilst remaining independent of the underlying finite field.

Passively-Secure Multiplication Using OT. We are now ready to show how to
use OT to produce a secret sharing of an arithmetic product. In a standard
one-out-of-two OT, the sender inputs two messages x0, x1 ∈ F, and the receiver
inputs a bit b, receiving xb = x0 + b · (x1 − x0). Setting a = x1 − x0, we obtain

xb − x0 = b · a,

where xb, x0, a ∈ F and b ∈ {0, 1}. The value a is called correlation, and the
corresponding OT functionality, correlated OT (Fig. 3).

Functionality FCOT

Running between a sender PS and a receiver PR, it operates as follows.

- PS inputs (x0, x0 + a) ∈ F × F and PR inputs b.
- The functionality outputs xb = x0 + b · a to PR.

Fig. 3. Functionality for one-out-of-two oblivious transfers on k-bit strings.

We can then combine k correlated OTs into one arithmetic OT, as follows.
Parties PS and PR input (xi, xi + a), for some fixed correlation a ∈ F, and
(b1, . . . , bk), such that (b1, . . . , bk) = g−1(b), b ∈ F, respectively. The receiver
then obtains yi = xi + bi · a, i ∈ [k]. By setting q = 〈g,y〉, with y = (y1, . . . , yk)
and t = 〈g,x〉, with x = (x1, . . . , xk), we obtain q = t + b · a, where the sender
holds q, a ∈ F and the receiver holds t, b ∈ F. We have thus transformed oblivious
transfer into a secret sharing of the product of both parties’ inputs in F.4 Using
this building block, constructing a passively secure protocol for secret-shared
multiplication triples is straightforward by simply running the protocol between
every pair of parties and summing the shares.

4 This generalisation of oblivious transfer is also referred to as oblivious linear function
evaluation (OLE) [57].
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Efficient Authentication Using Correlated OT. As for the case of homomorphic
encryption, also in oblivious transfer based pre-processing protocols we can use
the same approach to create triples and MACs, because the relation between
authenticated values and MAC keys is the same as the multiplication triple
relation. The main difference is that in an authentication procedure, the global
MAC key is fixed, so while in triples generation we need to use a fresh correlation
for each triple, the correlation remains the same for all the values we need to
authenticate. More precisely, the MAC generation for an additively secret shared
value x ∈ F proceeds as follows.

1. Each party Pi samples a random share Δ(i) of the global MAC key
2. Each pair of parties, (Pi, Pj), run k FCOT on input x(i), Δ(j), respectively,

obtaining
q(j,i) = t(i,j) + x(i) · Δ(j).

3. After all the n(n− 1) executions, each party Pi locally combines their results
to generate the MAC share

m(i) = x(i) · Δ(i) +
∑

j �=i

(
q(i,j) − t(i,j)

)
.

Essentially, using FCOT, i.e. a 2-party functionality, we naturally obtain a BDOZ-
style authentication that can be locally converted to SPDZ-style MACs as we
described in Sect. 3.

OT-Based Pre-processing with Active Security. It is clear, from previous descrip-
tion of the authentication and triple generation protocols, that an adversary
could easily cheat, for example by inputting inconsistent values in one of the
FCOT instances, or using different MAC key shares with different parties.

Here we discuss separately how to achieve active security of the MACs gen-
eration and triples generation protocols.

For the MAC generation, it turns out that the passively secure protocol is
almost enough. This is because during the authentication, the correlation Δ
is fixed at the beginning, so the adversary does not have much possibility to
deviate from protocol instructions later on. However, even after the correlation
has been fixed, the adversary is still able to create wrong MACs which contain
errors depending on the global key. It was proved in [50], that to obtain active
security it is enough to run a MAC Check opening a random linear combination
of authentication values just after their generation. This somehow fixes the global
key and ensures correctness of subsequent checks. Note that during the MAC
checks an adversary is still able to pass the check even in the presence of some
errors by guessing some bits of Δ, however if the guess is incorrect the protocol
aborts. So the only thing we have to make sure is that the global MAC key still
has sufficient entropy to prevent cheating in MAC checks, even if a few bits have
been guessed.

For triple generation achieving active security is more involved, since we do
not have a fixed correlation, and hence a linear combination on which running a
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check. Note that we need to ensure both correctness and privacy of the triples.
Correctness is easily verified with a pairwise, standard sacrifice technique. This
check, however, raises the possibility of selective failure attacks, so that if for
example the adversary cheats in just a single bit, and the check passes, then this
bit of the triple is leaked to the adversary. To prevent this, a simple variant of
privacy amplification is used. First we generate several leaky triples, from which
a single, random triple is extracted by taking random combinations [50].

SHE vs OT - Comparison. Here we compare the efficiency of OT-based
and HE-based pre-processing, reporting the figures provided by [51]. The values
in Table 1 confirm the complementarity of these two approaches, even if some
recent improvements in OT-extension protocols could greatly improve the effi-
ciency of protocols relying on oblivious transfer. We can see that MASCOT is
more efficient over binary extension fields and LowGear over prime fields of odd
characteristics. In the multiparty case, essentially when the number of parties is
larger than ∼ 7, HighGear will become more efficient than LowGear [51].

Table 1. Triple generation for prime and binary fields with two-party and 64 bits of
statistical security [51].

Protocol Triples/sec Network Field

MASCOT 5100 1Gbit/s Prime field log2 |F| = 128

214 50Mbit/s Prime field log2 |F| = 128

5100 1Gbit/s Binary field F2128

LowGear 30000 1Gbit/s Prime field log2 |F| = 128

3200 50Mbit/s Prime field log2 |F| = 128

117 1Gbit/s Binary field F2128

HighGear 5600 1Gbit/s Prime field log2 |F| = 128

1300 50Mbit/s Prime field log2 |F| = 128

67 1Gbit/s Binary field F2128

Pre-processing with OLE. We can naturally instantiate the pre-processing
with OLE (Oblivious Linear-function Evaluation) instead of OT. As we said
previously, OLE is an arithmetic generalization of OT to larger fields. More
formally, it is a two-party functionality where the sender PS inputs two values
a, b ∈ F and the receiver PR inputs a value x ∈ F obtaining y = x + a · b. OLE
can be constructed from several assumptions and public-key based constructions,
like OT (as seen before), homomorphic encryption, noisy encodings [36,46], etc.
An efficient arithmetic implementation of OLE can potentially lead to a very
efficient pre-processing phase, as it will avoid running FCOT for each bit of the
binary representation of the values involved in the computation. A two-party



66 E. Orsini

protocol based on OLE is described by Döttling et al. [32], that can be considered
as a natural generalization of TinyOT to the arithmetic setting, however this
work does not give an implementation of the protocols described, so the actual
efficiency of this approach is not completely clear.

5.3 Silent Pre-processing via PCG

In a recent line of work Boyle et al. [19,20] show how to generate correlated
randomness that can be used as pre-processd material in MPC protocols using
pseudorandom correlation generators (PCGs). A PCG is a deterministic function
that allows to extend short seeds to long instances of a desired correlation,
i.e. OT, OLE, triples etc. Using a PCG we can have a so-called “silent pre-
processing”. After a setup that consists of generation and distribution of the
seeds, the expansion is local, i.e. does not require communication, and hence the
term “silent”.

This is a very promising approach as it allows to reduce significatively the
communication and memory usage, even if it still require, in some useful case
like generation of authenticated triples, a quite expensive setup.
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32. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: effi-
cient actively secure two-party computation from oblivious linear function evalu-
ation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 2263–2276. ACM Press, October/November 2017. https://doi.org/10.
1145/3133956.3134024

33. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

34. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: Shmoys, D.B. (ed.)
46th ACM STOC, pp. 495–504. ACM Press, May/Jun 2014. https://doi.org/10.
1145/2591796.2591861

https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/12130.12168
https://doi.org/10.1007/978-3-662-45608-8_25
https://doi.org/10.1007/978-3-662-45608-8_25
https://doi.org/10.1007/978-3-642-03356-8_11
https://doi.org/10.1007/978-3-319-72089-0_7
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-63697-9_13
https://doi.org/10.1007/978-3-319-63697-9_13
https://doi.org/10.1145/3133956.3134024
https://doi.org/10.1145/3133956.3134024
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/2591796.2591861


Efficient, Actively Secure MPC 69

35. Genkin, D., Ishai, Y., Weiss, M.: Binary AMD circuits from secure multiparty
computation. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 336–
366. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 14

36. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 22

37. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC, pp. 218–229. ACM Press, May 1987. https://doi.org/10.1145/28395.
28420

38. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J.
Cryptol. 18(3), 247–287 (2005). https://doi.org/10.1007/s00145-005-0319-z

39. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

40. Hastings, M., Hemenway, B., Noble, D., Zdancewic, S.: SoK: general purpose com-
pilers for secure multi-party computation. In: 2019 IEEE Symposium on Security
and Privacy, pp. 1220–1237. IEEE Computer Society Press, May 2019. https://
doi.org/10.1109/SP.2019.00028

41. Hazay, C., Venkitasubramaniam, M., Weiss, M.: The price of active security in
cryptographic protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 184–215. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 7

42. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989. https://doi.
org/10.1145/73007.73012

43. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

44. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-
1 21

45. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

46. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

47. Keller, M.: MP-SPDZ: a versatile framework for multi-party computation. IACR
Cryptology ePrint Archive 2020, 521 (2020)

48. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: Goll-
mann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–
249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 12

49. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
724–741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 35

https://doi.org/10.1007/978-3-662-53641-4_14
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/s00145-005-0319-z
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1007/978-3-030-45724-2_7
https://doi.org/10.1007/978-3-030-45724-2_7
https://doi.org/10.1145/73007.73012
https://doi.org/10.1145/73007.73012
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-319-61204-1_12
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35


70 E. Orsini

50. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October
2016. https://doi.org/10.1145/2976749.2978357

51. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

52. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp.
20–31. ACM Press, May 1988. https://doi.org/10.1145/62212.62215

53. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 4

54. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 28

55. Lindell, Y., Pinkas, B., Oxman, E.: The IPS compiler: optimizations, variants and
concrete efficiency. Cryptology ePrint Archive, Report 2011/435 (2011). http://
eprint.iacr.org/2011/435

56. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for Ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

57. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st
ACM STOC, pp. 245–254. ACM Press, May 1999. https://doi.org/10.1145/301250.
301312

58. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

59. Orlandi, C.: Is multiparty computation any good in practice? In: Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP 2011, Prague Congress Center, Prague, Czech Republic, 22–27 May 2011,
pp. 5848–5851. IEEE (2011)
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Abstract. In this paper we propose a HDL generator for finite-field mul-
tipliers on FPGAs. The generated multipliers are based on the CIOS vari-
ant of Montgomery multiplication. They are designed to exploit finely the
DSPs available on most FPGAs, interleaving independent computations
to maximize throughput and DSP’s workload. Beside their throughput-
efficiency, these operators can dynamically adapt to different finite-fields
by changing both operand width and precomputed elements.

From this flexible and efficient operator base, our HDL generator
allows the exploration of a wide range of configurations. This is a valuable
asset for specialized circuit designers who wish to tune state-of-the-art
IPs and explore design space for their applications.

Keywords: Finite-field multiplier · FPGA design · Design space
exploration

1 Introduction

In hardware design, when considering specific fields of application, FPGA tar-
gets are particularly attractive today and found in many hardware acceleration
solutions. A classical step in the development of specialized hardware is the
exploration of design space to make architectural choices [1,13]. This explo-
ration may be necessary both at system’s level and at IP’s level. Exploration
tools that allow different IP configurations to be tested are therefore valuable
assets for digital circuit designers. This is also true for cryptography which is
more and more present in our digital applications.

Modern cryptography is often build upon finite-field arithmetic. As in clas-
sical arithmetic, multiplication is an expensive operation and optimizations of
multipliers are often the subject of researches and explorations [9,11,12].

In 2017 and 2018 Gallin and Tisserand [5,7] proposed a FPGA implemen-
tation of a Finely-Pipelined Modular Multiplier (FPMM) based on the CIOS
variant [8] of the Montgomery modular multiplication [10]. It makes fine use of
hardware resources present in FPGAs while exploiting in depth the characteris-
tics of the chosen algorithm. Their operator has a good throughput per area ratio
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compared to the state of the art due to a pipeline interleaving several indepen-
dent computations. Their approach is quite parametrizable but the developed
generator [6] is restricted to the parameters that were suitable for embedded
elliptic and hyperelliptic curve cryptography.

This paper presents our work of building up an extended generator for mod-
ular multiplier based on the FPMM’s approach. Our main scientific contribution
consists in the practical generalization of this operator. Another contribution is
a new functionality: the ability to dynamically change, to a certain extent, the
width of the finite-field elements handled by the operator. When enabled, this
feature increases the flexibility of the original operator for dynamically reconfig-
uring the finite-field over which the multiplier is operating. This feature could
be interesting in different contexts. For instance, a crypto-processor that imple-
ments several primitives requiring finite-fields of different widths (e.g. RSA,
ECC, HECC, etc.). Another example may be the implementation of modulus
switching homomorphic encryption schemes (e.g. BGV [2]), which leads to a
regular decrease in the width of underlying finite-field arithmetic.

2 Preliminaries

2.1 Notations

Throughout this paper we will use the following notations. An element of a large
finite field, as well as the prime number that defines it, are in upper case and bold
(e.g. A ∈ ZP). The width in bits of these elements is noted N . The Montgomery
constant is M -bit wide and noted as R.

The radix considered for Montgomery multiplication algorithm is 2Ω . The
Ω-bit elements are just in upper-case, not bold. Hence, a finite field element is
decomposed into s elements of width Ω-bit (i.e. A = {A0, ..., As−1}).

The width of the basic arithmetic considered in this paper is constrained by
the hardware resources available on a FPGA. We note here ω the width of a DSP
slice’s input words. These “basic words” are written in lower-case, and k denotes
the number of them needed to write a Ω-bit word (i.e A = {a0, ..., ak−1}).

2.2 DSP Slices

FPGAs are chips made of a grid of configurable basic hardware blocks, along
with a configurable interconnection network. Within these basic hardware blocks
are elementary resources allowing among other things: combinatorial logic (e.g.
Look-Up-Tables), data storage (e.g. Flip-Flops), and clock generation for syn-
chronous circuits [4]. With the growth of size and performance required for cir-
cuits to be programmed, more complex hardware blocks have been added to
the bestiary (e.g. BRAM, DSP, μP core, ...). In this work we are particularly
interested in DSP slices.

A DSP is a basic hardware block that embedded a small multiplier, accu-
mulators and cascading capabilities. They were historically designed for digital
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Fig. 1. DSP slice’s characteristics used for our finite-fields multipliers. (Color figure
online)

signal processing but could be efficiently used for finely-tuned arithmetic. They
can achieve interesting running frequencies (up 700 MHz for last FPGAs).

Figure 1 presents the main DSP characteristics that have been exploited for
our contributions. DSP are usually grouped in columns of half a dozen to a few
hundred. This grouping facilitates cascading of operations and propagation of
intermediate results within columns.

A single slice can be configured to perform one or several instructions mul-
tiplexed in time. In the latter, an operation code op is used to specify which
instruction is issued. In this paper we are interested in three types of instruc-
tions : a × b (red) for a simple ω-bit multiplication, a × b + p (green) for a ω-bit
multiplication followed by an accumulation, and a × b + (p � ω) (blue) where
the accumulated value is previously right-shifted by ω bits. For DSP slices that
do not have this right-shift capability (like DSP48A slices in some Xilinx FPGA
families), it is still possible to do so with external wires to the DSP. This makes
use of the c port designed for a×b+c instructions (brown). It may require extra
cycles in cascading operations to achieve the maximal running frequencies.

3 Previous Works on Finely-Pipelined Modular
Multiplier

The main ideas behind the Finely-Pipelined Modular Multiplier (FPMM) are
brought by Gallin and Tisserand’s works [5,7]. They are introduced in this
section but the details of the FPMM design comes in Sect. 4 along with our
generalization of this approach.

Latency Optimized CIOS Algorithm Without Final Subtraction. The FPMM
operator is based on the Coarsely Integrated Operand Scanning (CIOS) version
of Montgomery multiplication [8], without final subtraction [14]. It is designed as
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a pipelined interleaving several independent computations. The resulting algo-
rithm is presented in Algorithm1.

As a remainder, Montgomery multiplication computes the product modulo
P of two elements A and B in Montgomery form (i.e. scaled by R = 2M ), and
return the result T in Montgomery form. For FPMM, P is taken less than R/4 to
avoid the final subtraction of the original Montgomery algorithm (consequently
N ≤ M − 2). In practice, the operands are considered to be M -bit integers
decomposed into s > 1 words of Ω-bit.

Algorithm 1: Latency optimized CIOS algorithm

Require: P = {P0, ..., Ps−1} ; P ′ = −P−1 mod 2Ω ; 4P < R(= 2M ).
Input: A = {A0, ..., As−1} ; B = {B0, ..., Bs−1}.
Output: T = {T0, ..., Ts−1} with T = (AB · R−1) mod P and 0 ≤ T < 2P.

1 begin
2 for i = 0 to s − 1 do

3 for j = 0 to s − 1 do /* L1 stage */
4 (D, Uj) ← Ai × Bj + Tj + D
5 end

6 Qi ← (V0 × P ′) mod 2Ω /* L2 stage: V0 = (Ai × B0 + T0) mod 2Ω */

7 for j = 0 to s − 1 do /* L3 stage */
8 (C, Tj−1) ← Qi × Pj + Uj + C
9 end

10 Ts−1 ← T
(n)
−1 /* i.e. C + D */

11 end
12 return T = {T0, ..., Ts−1}
13 end

The particularities of the proposed implementation are visible at line 6 and
10, and comes from the proposed pipeline. For line 6, the original CIOS algorithm
computes Qi from U0, but also resets D for each new upper-loop’s iteration. The
equivalent behaviour is achieved with V0 that is extracted from the L1 stage com-
putation. For line 10, the authors have demonstrated in [5] that the summation
of remaining upper-words from L1 and L3 stages (i.e. C and D) is actually prop-
agated in the immediately successive computation. In different terms, the upper
word Ts−1 is actually the lower word in the immediately successive (and inde-
pendent) computation T

(n)
−1 . We do not go into the details of the demonstration

and invite the reader to take a look at the original paper.

Interleaving Independent Computations. The latency of an outer-loop iteration
is noted α. It is defined from the input of T in L1 stage to its retro-propagation
at the end of L3 stage. This latency depends on the choice of Ω w.r.t. the
decomposition of multiplications onto DSP slices. For typical applications α is
larger than s, leaving room for interleaving σ = �α/s� independent computations
in the outer-loop’s pipeline, while increasing its latency by lT = σ · s − α. Thus,
increasing by s · lT cycles a single modular multiplication. We note “slot” the
space taken by a single computation in the pipeline.

Figure 2 presents the interleaving principle. When a slot is unused, a new
computation can be requested. The storage of A and B in local memories and
to start their sub-word’s read routine takes lin cycles. Then, each outer-loop
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Fig. 2. Interleaving principle of the Finely-Pipelined Modular Multiplier.

iteration takes α + lT cycles. While waiting for intermediate results, iterations
of the other slots are performed.

Motivations for Extended Works. In [5], the authors explored FPMM imple-
mentations on different FPGAs from Xilinx. They varied several implementation
parameters such as the number of slots σ or the type of memory used (BRAM
or LUT based). However, their FPMM generator [6] is restricted to Ω being 2ω,
which reduces FPMM’s application ranges.

Therefore, our motivations are to generalize the FPMM principles to a wider
range of configurations. In particular, we look to aim for larger finite fields, which
require to choose Ω = kω with k ≥ 2.

When studying the FPMM operator, we realized that it should be able to
dynamically change the width of handled finite fields. Indeed, once parameter
Ω = kω is chosen, FPMM’s data-path is mainly fixed. The handled operands’
width (M) drives s, σ and lT parameters, which mainly impact control path.
Thus, control path may be somehow duplicated for different width and a mode
signal may select the current one.

4 FPMM’s Model for HDL Generation

This section presents the generalized FPMM operator. It includes design modi-
fications made to implement the multi-width feature.

Fig. 3. FPMM top module.
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4.1 FPMM Top Module

At top level, the FPMM operator is composed of five sub-modules: CTRL, MEM
and the L1, L2 and L3 stages (Fig. 3). It has two operating phases: setup and
run. A setup phase allows width mode and precomputed elements to be changed.
When in run phase, FPMM handles up to σ independent multiplications, with
σ depending on the current width mode.

MEM sub-module consists of two dual-port memories. Each of them can store
up to max(s · σ) Ω-bit words. Memory accesses are managed by CTRL while it
is orchestrating the computations of the σ slots.

4.2 L1 and L3 Sub-modules

Regarding Algorithm 1, L1 and L3 stages are very close from each others. They
both realize, in a i-indexed upper-loop, a j-indexed lower-loop of s iterations
performing a multiply-accumulate operation of the form (Hj , Lj) ← Ei × Fj +
Gj +Hj−1. Hj and Lj are respectively the upper and lower resulting words, and
Ei is constant for a whole lower loop.

Similarities of L1 and L3 Sub-modules. In practice, the multiply-accumulate
operation is decomposed in three computation’s sub-parts:

(H ′
j , L

′
j) ← Ei × Fj (1)

(c(1), Vj) ← L′
j + Gj (2)

(c(2), Lj) ← Vj + Hj−1 (3)

The result Lj is the resulting lower word at the end of all sub-parts. The most
significant word Hj is composed of H ′

j and two carry bits c(1) and c(2) (i.e.
Hj = H ′

j + c(1) + c(2)).
To illustrate the following discussion on hardware implementation, we rely

on Fig. 4. Equation 1 is broken down into ω-bit operations to be mapped onto
DSP slices. It results in k2 DSPs cascaded in space to fully pipeline the multi-
plication. Multiplexing in time with fewer DSPs would have reduced hardware
utilization, but would have increased latency and impacted the whole operator’s
performances.

Due to this cascading, the sub-results of Eq. 1 are produced with some delay
from each others. Each sub-result is used in further computation as soon as
possible. Consequently, Eq. 2 is also broken down into k sub-additions with carry
propagations (Fig. 4).

Given the Ω-bit multiplication algorithm, the mapping of sub-operations onto
DSP slices is only dependent on k and DSP characteristics. All latencies resulting
from the DSP cascade are known, and from them the hardware models of L1
and L3 stages are derived. To point out our contributions here: we managed to
express hardware’s models of each computation sub-parts depending on k and
DSP characteristics. The automatic generation of HDL code is then possible
from this modelisation.
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Fig. 4. Multiply-accumulate’s pipeline in L1 and L3 sub-modules with Ω = 2ω.

L1 Stage Specificities. For the L1 stage, (Hj , Lj , Ei, Fj , Gj) are identified with
(D, Uj , Ai, Bj , Tj) from Algorithm 1. There are three specificities for L1 stage:
handling the Tj ’s retro-propagated from L3 stage, reset D after a setup phase,
and early propagation of V0 to the L2 stage.

Fig. 5. Specificities of L1 stage.

Figure 5 illustrates design solutions for the first two specificities. In a multi-
width context, different width mode may require different latencies lT . The mode
signal selects the shift register’s depth according to current one (Fig. 5a). In
addition, the Tj ’s are reset by the CTRL module (rst T signal) whenever a new
finite-field multiplication starts.

After a setup phase, the propagations of intermediate results through imme-
diatly successive slots is mixed up. To restart a proper propagation, D is reset
for the first slot going through the L1 stage after a setup phase (Fig. 5b).

Finally, the early propagation of V0 is acheived by picking appropriately its
sub-words from their delay lines. More details are given in Sect. 4.3.

L3 Stage Specificities. For the L3 stage, (Hj , Lj , Ei, Fj , Gj) are identified with
(C, Tj−1, Qi, Pj , Uj) from Algorithm 1. There are four specificities for the L3
stage. The first three are in the management of operands Qi, Pj ’s and Uj ’s. The
fourth one is the handling of outputs.
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Fig. 6. Specificities of L3 stage.

Figure 6a presents the shift register step. It is fed by a L3 en signal coming
from CTRL module to restart L3 operations at each new slot.

Due to L2 sub-module’s architecture (presented in the next section), the Qi

input is received with delays between its sub-words. These delays are known
and depend on the decomposition of Ω-bit multiplication onto DSPs. A write
enable signal extracted from step (not shown) is generated for each sub-word
to register them at appropriate time.

Figure 6b presents the storage module for P. It is composed of max(s) regis-
ters of Ω-bit that are reprogrammed whenever the prime P is changed (set P ).
The depth used corresponds to the current width mode.

To synchronize the Uj ’s from L1 with Qi input, an artificial latency lU may
be required depending on the FPMM configuration (not shown).

Finally, two L3 stage’s outputs are differentiated (Fig. 6c): Tj feeds L1 stage
for further iteration, and Rj feeds the final result port.

4.3 L2 Sub-module

L2 stage performs Qi = V0 ×P ′ mod 2Ω , with V0 coming from L1, and P ′ being
precomputed. For convenience, V0 and Qi are noted V and Q.

Given Ω-bit multiplication’s decomposition, result modulo 2Ω requires only
k(k+1)/2 sub-multiplications. Moreover, L2 stage has s cycles to reuse the hard-
ware before the next slot’s data arrive. Consequently, only

⌈
k(k+1)

2s

⌉
DSPs are

Fig. 7. Example of L2 stage for Ω = 3ω and s = 3.



HDL Generator for Finite-Field Multipliers 83

instantiated (minimum s in that case of multi-width mode). Figure 7 illustrates
L2 stage for k = 3 and s = 3. The L2 en signal issued by CTRL restarts the
sequence of operations each time a new slot arrives. Each DSP is configured with
up to s different instructions, depending on the sub-multiplications it is taking
care of.

As introduced earlier, V sub-words are extracted from L1 stage’s data-path
with appropriate delay. For instance, vi[d] is the d-th register delaying the result
of the i-th sub-addition in Eq. 2’s data-path (Fig. 4).

Outputs (q0, ..., qk−1) are progressively generated by appropriate DSPs, and
stored in L3 stage as seen in L3 stage’s specificities. Depending on the configu-
ration, a latency lQ may be required to synchronise L1 and L2’s data-paths.

4.4 CTRL Sub-module

As FPMM’s data-path handles slot-wise computations, CTRL module is
ryhtmed over s cycles, depending on the current width mode (Fig. 8).

During a setup phase, CTRL updates precomputed values P ′ and P stored in
L2 and L3 stages. It propagates set P ′ (Fig. 7) and set P (Fig. 6) appropriately
(not shown for convenience).

Fig. 8. Control FSM and slot cadencing generation.

During run phase, CTRL handles the succession of slots with the help of a
control pipeline presented in Fig. 9. Whenever a last wd is triggered, a verifica-
tion is made of whether the next slot is free or already in use. This information
is gathered from a shift register slot occ presented latter.

Fig. 9. Control pipeline orchestrated by last wd signal.
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From this, the FPMM signals any free slot (slot avail) allowing a new
computation to be required (start), in that case the storage of computation
operands is issued (write en). The other signals are used to handle slot and
address managements.

Figure 10 presents the four shift registers for management of slots and
addresses. They are all of depth max(σ), and the portion currently used depends
on current width mode.

To the left, the shift register slot occ memories the current slot occupancy.
It is paired with iter count that memories the current upper-loop’s iteration of
each slot (i-indexed). At a slot’s last iteration the corresponding elements are
reset in both shift registers (slot end signal).

To the right, base addrs stores for each slot the base address where operands
are stored in MEM. It is reset with appropriate precomputed values during a
setup phases (not shown here). A addrs stores the address where Ai element
is read for each slot current upper-loop’s iteration. Read address for the Bj ’s is
incremented at each cycle from the current slot’s base address.

Fig. 10. Control shift registers for slot and address managements.

Finally, the different data path’s control signals are delayed from the control
signals shown in Fig. 9:

• rst T : write en delayed by lMEM + 4 cycles.
• rst D: s start delayed by 1+ lMEM + lL1 cycles, only for the first slot after

a setup phase, there is no reset otherwise.
• L2 en: comp en delayed by lMEM + 4 cycles.
• L3 en: L2 en delayed by lQ + 4 cycles.
• data avail: (comp en & last iter) delayed by lMEM + 3 + α cycles.

With lMEM being the read latency of MEM, and lL1 the latency of L1 stage.

5 Implementation and Exploration Results

Some concrete implementation results are presented in this section. Each gener-
ated design has been tested with tens of random stimuli for each possible width
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mode. Regarding FPGA implementations, a first “place and route” while target-
ing the theoretically possible maximum frequency (limited by BRAM or DSP)
was done for each design. If the timings are not met, performance optimizers
from FPGA manufacturer are run. If a design still fails to meet propagation
delays, we lower its targeted clock frequency and repeat the previous steps.

We named designs after their k parameter and the FPGA resource used to
implement its internal memories - B for BRAM and D for LUT. The operand
widths M for which the different designs are generated are made explicit in the
different discussions.

5.1 Outlines for FPMM Design Space Exploration

This section gives the FPMM’s practical limitations, as well as general obser-
vations on its performances and its FPGA utilization as a function of sizing
parameters.

Parameter Ranges. The generator imposes by design s and σ to be greater
than or equal to two. Thus, a given parameter k implies boundaries on operand
widths (i.e. M). Given a FPGA target, the choice of k implies Ω and α, and M
is restricted to the range from Ω + 1 (for s > 1) to (α − 1) · Ω (for σ > 1).

Table 1. (M , s, σ)’s ranges and number of cascaded DSP depending on k. Considering
DSP48E2 from Xilinx Ultrascale+, with ω = 17 (unsigned) and internal right-shifting
operation.

k Ω α lQ/lU M range s range σ range Cascaded DSP

2 34 14 0/4 35–442 2–13 7–2 4

3 51 18 0/0 52–867 2–17 9–2 9

4 68 32 7/0 69–2108 2–31 16–2 16

5 85 50 16/0 86–4165 2–49 25–2 25

6 102 72 27/0 103–7242 2–71 36–2 36

7 119 98 40/0 120–11543 2–97 49–2 49

8 136 128 55/0 137–17272 2–127 64–2 64

In addition, an FPGA target provides a limit to the depth of DSP cascades,
depending on the size of the DSP columns. Thus, k must be less than the square
root of the deepest possible cascade. This limitation can be somehow circum-
vented by cascading across DSP columns, but our generator does not handle this
limitation case at the moment. An example of parameter ranges for various k is
given in Table 1.
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Fig. 11. Theoretical performance exploration for M ∈ [64; 512].

Fig. 12. Xilinx’s Ultrascale+’s usage for M ∈ [64; 512].

Theoretical Performances. Regarding latency, it takes lFPMM = lin+(s−1)(α+
lT )+α cycles for a modular multiplication to be performed. For a given operand
width M , a larger parameter k increases α but reduces s, thus an appropriate
k may be found to reduce latency. Regarding throughput, the interleaving of
independent computations allows the operator to output up to one operation
every s2 cycles1. A larger k always improves throughput by lowering s.

Figure 11 plots latency and throughput as a function of the operand width
M for k ∈ [2; 8]. These are theoretical performances as it does not consider the
running frequency achieved on a specific FPGA target. The stepped shapes are
due to FPMM designs being actually dependent on (s, σ) pairs that are constants
for M in ](s − 1)Ω; sΩ]. Nevertheless, these plots suggest that increasing k is a
valid approach to improve both latency and throughput for larger M .

1 When fully loaded with instructions, σ operations are outputed every s2σ cycles.
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Resource Utilization. To give an overview of resource usage as a function of the
parameter k, we implemented all designs possible with M ∈ [64; 512] for each
k ∈ [2; 8]. The targeted FPGA is an Ultrascale+ from Xilinx.

Figure 12 displays for each k averages of resource usage and running fre-
quency, as well as deviations around these averages across designs (i.e. same
k and different M). Designs are relatively small, and are able to reach impor-
tant running frequency. The DSP are the limiting resources and their utilization
is quadratic with the growth of k. The impact of M is rather insignificant on
resource utilizations. For k < 5 the running frequency reach the upper limit
imposed by BRAMs. The complexity of the design increasing for larger k, the
maximum frequency achievable drops to 600 MHz (for k = 8).

5.2 Exploration’s Examples for (H)ECC

In this section, we consider the use case of elliptic and hyper-elliptic curve cryp-
tography to compare with previous works, and in particular [5] and [9]. For the
sake of comparison, the FPGA target is now a Virtex-7 and the operand widths
are 128-bit and 256-bit.

Table 2. Comparison of our generated FPMMs with [5] and [9].

M Work Name CLB/LUT/FF BRAM DSP Freq. MHz Lat. ns Thr. μs−1

128 [9] MA16 455/1182/1305 6 21 350 77.0 17.5

[5] F44B 325/545/725 2 9 528 141.8 33.1

Our 2-B 305/406/1074 1 9 558 125.5 34.9

Our 3-B 448/866/1785 2 20 396 156.4 44.0

Our 4-B 839/1803/2823 2 37 373 193.2 93.2

[5] F44D 306/600/758 – 9 633 118.5 39.6

Our 2-D 261/448/1218 – 9 539 129.8 33.7

Our 3-D 497/921/1921 – 20 406 152.7 45.1

Our 4-D 858/1902/2958 – 37 385 187.1 96.2

256 [9] MA16 661/1770/2172 10 37 372 99.5 13.3

[5] F28B 296/556/743 2 9 528 270.3 8.3

Our 2-B 481/578/1315 1 9 548 244.7 8.6

Our 3-B 500/898/1732 2 19 414 280.3 11.5

Our 4-B 860/1821/2829 2 35 367 370.9 22.9

[5] F28D 291/674/787 – 9 598 238.8 9.4

Our 2-D 372/629/1401 – 9 527 254.3 8.2

Our 3-D 466/956/1866 – 19 395 293.7 11.0

Our 4-D 853/1913/2965 – 35 362 375.6 22.6

In Table 2 comparisons are regrouped according to M and the type of
resources used to memorize input operands. Note that designs 2-[B/D] for
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Fig. 13. TPAR comparisons on a Virtex-7 from Xilinx for M ∈ {128, 256}.

M = 128 (resp. M = 256) are actually our FPMM versions of F44[B/D] (resp.
F28[B/D]), and are suppose to be very similar.

General Observations. A first observation is that increasing k makes the FPMM
reach higher possible throughputs than the state of the art - more than twice the
throughput of F44[D/B] and F28[B/D] with our 4-[B/D]. A second observation is
that compared to the equivalent designs from [5] our FPMMs use more flip-flops
and have a lower running frequency for designs with LUT based memories (e.g.
F44D Vs 2-D). This is certainly due to specific optimizations for the case k = 2
that we given up to facilitate the generalization to larger k. A final observation
concerns the operating frequency which seems to not be as stable with k growth
as for Ultrascale+ target. One possible explanation could be the improvement of
the configurable logic block carry-chains of the 7 Series for the Ultrascales (from
4-bit to 8-bit long). It may help to maintain the speed of the arithmetic as the
operands’ width grows. We did not investigate deeper this observation.

Throughput per Area Ratio. We then compare the different configurations
through a typical metric that merges the information of throughput and hard-
ware cost. This metric is called Throughput Per Area Ratio (TPAR) and gives
a number of operations per second and per unit of utilized resources.

Figure 13 displays TPAR on Virtex-7 for 128 and 256 bits operators. Accord-
ing to the limiting resource (DSP) our best implementations are with k = 2. We
believe that the the higher operating frequencies mainly explains this result.

From the flip-flops point of view, we find the consequence of the increased
usage compared to the original works F44[D/B] and F28[D/B]. Nevertheless, all
our different implementations remain relevant compared to Ma et al. [9] (MA16)
approach. It has the closest performances to the FPMM’s ones among the works
to which [5] compared itself.
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5.3 Multi-width FPMM

The multi-width feature allows an architect to implement a single operator to
handle different operand widths. Among others, applications could be encryption
circuits delivering several types of cryptographic primitives (e.g. RSA, DH, ECC,
HECC,...), or different level of security.

To illustrate the gain brought by multi-width FPMM in such context, let’s
consider an application of elliptic and hyper elliptic curve cryptography with two
different security levels, namely 128 and 256 bits. We further add the reason-
able assumption that multiplication is the application’s bottleneck and that the
operator is working full time. We note p the fraction of time spent performing
128-bit multiplications and (1 − p) the 256-bit one. We now compare a multi-
width FPMM against two other implementation choices: a 256-bit single-width
FPMM used for both operand widths, and two different single-width FPMMs,
one for each operand width.

Table 3. Comparison between single-width and multi-width FPMMs for k = 2 and
M = 128, 256 on Virtex-7 (V7) and Ultrascale+ (US+).

Parameters Single-width Multi-width

k M/s/σ CLB/LUT/FF BRAM DSP f CLB/LUT/FF BRAM DSP f#

V7 2 128/4/4 305/406/1074 1 9 557.7 372/547/1234 1 9 515.2

256/8/2 481/578/1315 1 9 547.6

US+ 2 128/4/4 116/383/1074 1 9 714.3 135/532/1229 1 9 714.3

256/8/2 152/552/1332 1 9 714.3

Table 3 shows implementation results of single-widths and multi-width FPMM
on Virtex-7 and Ultrascale+. Compared to the first implementation choice, the
multi-width FPMM improves throughput of 128-bit operations. The applica-
tion speedup is then derived from the fraction of time p spent on these small
operands2. For instance, with p equals to 0.25, 0.5 and 0.75 the respective
speedups are ×1.65, ×2.35 and ×3.06 on Virtex-7 and ×1.75, ×2.5 and ×3.25
on Ultrascale+. These improvements require no increase of resource utilization.

Compared to the second implementation choice, the multi-width FPMM does
not improve performances on Ultrascale+, and is 6% slower on Virtex-7 due
to the loss in running frequency. Nonetheless, it reduces by roughly half the
utilization of FPGA’s ressources.

In conclusion, the benefits of the multi-width option are case-critical when
several operand widths must coexist in the same application.

6 Conclusion

This paper presented our realization of an extended FPMM generator. Its main
scientific contributions are the generalization of the FPMM operator presented

2 Speedup =
f#

(
p

42
+ 1−p

82

)

f

82
.
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by Gallin and Tisserand [5] and the addition of a multi-width feature. The
generator is provided as a python package under GPL3 licence [3]. The purpose is
to propose a design space exploration tool for FPGA implementation of modular
arithmetic.

Although the core principles of the FPMM are implemented, our generator
is currently limited to Xillinx FPGA families. We have good reason to believe
that extension to other types of FPGAs should not be a major problem. Indeed,
the FPMM pre-requisites on DSP are typical characteristics of these arithmetic
units, non-specific to Xilinx’s ones.

A direct improvement of our generator would be the integration of design
optimizations for k = 2 from [5]. Another area for improvement could be the
mapping of Ω-bit multiplication onto DSPs. Karatsuba’s algorithm would cer-
tainly reduce the number of DSPs for large k. Nevertheless, it remains to identify
the impact on α and the differential in utilization of other hardware resources.

Ackowledgments. We would like to thank Arnaud Tisserand for our interesting
exchanges and his encouragement to publish these results; as well as the anonymous
reviewers for their pertinent and welcome remarks and suggestions.
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Abstract. Multiplication is an expensive arithmetic operation, there-
fore there has been extensive research to find Karatsuba-like formulae
reducing the number of multiplications involved when computing a bilin-
ear map. The minimal number of multiplications in such formulae is
called the bilinear complexity, and it is also of theoretical interest to
asymptotically understand it. Moreover, when the bilinear maps admit
some kind of invariance, it is also desirable to find formulae keeping the
same invariance. In this work, we study trisymmetric, hypersymmetric,
and Galois invariant multiplication formulae over finite fields, and we
give an algorithm to find such formulae. We also generalize the result
that the bilinear complexity and symmetric bilinear complexity of the
two-variable multiplication in an extension field are linear in the degree
of the extension, to trisymmetric bilinear complexity, and to the com-
plexity of t-variable multiplication for any t ≥ 3.

1 Introduction

Given an algorithm that computes a polynomial map over a field k (or a family
of such polynomial maps, with entries of length going to infinity), one is usually
interested in the (asymptotic) cost of the algorithm. In order to understand this
cost, one studies the complexity of the algorithm, i.e. the number of operations
needed by the algorithm. We can for example count the number of bit opera-
tions, or the number of algebraic operations (+,×) in k. The latter is called the
algebraic complexity and in this model it is supposed that all algebraic opera-
tions have the same cost. Nevertheless, multiplication of two variable quantities
in k is arguably more expensive than addition, or than multiplication of a vari-
able by a fixed constant. In the context of the computation of bilinear maps,
extensive work has been done to reduce the number of two-variable multiplica-
tions involved. Notable examples are Karatsuba’s algorithm [11] and Strassen’s
algorithm [19]. Karatsuba’s algorithm is based on the fact that the bilinear map
associated to the product of two polynomials of degree 1

A = a1X + a0 and B = b1X + b0
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can be computed with three products a0b0, (a0 + a1)(b0 + b1), a1b1 instead of
the four classic ones a0b0, a0b1, a1b0, a1b1. Strassen’s algorithm exploits a similar
idea in the case of 2 × 2 matrices: only 7 products are used instead of 8 in
order to compute a matrix product. Both these algorithms have very practical
consequences. The bilinear complexity μ(Φ) of a bilinear map Φ over k represents
the minimum number of two-variable multiplications in a formula that computes
Φ, discarding the cost of other operations such as addition or multiplication by a
constant. In particular when A is a finite dimensional algebra over k, we define
the bilinear complexity of A as μ(A/k) = μ(mA) where mA : A × A → A is the
multiplication map in A seen as a k-bilinear map.

Let k2×2 be the algebra of 2×2 matrices over k. We know thanks to Strassen’s
algorithm that

μ(k2×2/k) ≤ 7.

In fact, this is optimal, so we have exactly μ(k2×2/k) = 7 [20, Thm. 3.1]. In
general, it seems to be hard to find the bilinear complexity of a given algebra,
for example the bilinear complexity of k3×3 is not known. In the literature,
work has been done both to algorithmically find the bilinear complexity of small
algebras [5,10] and to understand how the bilinear complexity asymptotically
grows [2,9]. Chudnovsky and Chudnovsky proved in 1988 that the bilinear com-
plexity of an extension field Fqk/Fq is linear in the degree k of the extension,
using an evaluation-interpolation method on curves. As the main contribution of
this article, we investigate both questions for trisymmetric bilinear complexity,
and solve a certain number of the open problems stated in [2, §5.2].

When a bilinear map admits certain invariance properties, it can be inter-
esting, both for theoretical and for practical reasons, to find formulae for it that
exhibit these same properties. For symmetric bilinear maps, and in particular for
commutative algebras, this leads to the notion of symmetric bilinear complexity.
A further refinement, the trisymmetric bilinear complexity of Fqk over Fq, was
first introduced in [16], and rediscovered independently in [14, App. A].

In Sect. 2 we recall the definition of symmetric and trisymmetric formu-
lae, and discuss further generalizations such as hypersymmetric formulae for
higher multilinear maps, and Galois-invariant formulae. In Sect. 3 we describe
algorithms to compute trisymmetric decompositions in small dimension. In all
examples we were able to compute, the trisymmetric bilinear complexity is equal
to the symmetric bilinear complexity. However we found an example where the
Galois-invariant trisymmetric bilinear complexity is strictly larger. Finally, in
Sect. 4, we prove that for all q ≥ 3, the trisymmetric bilinear complexity of an
extension of Fq is again linear in the degree, as well as similar results for higher
multiplication maps.

2 Multiplication Formulae with Symmetries

Although we are mainly interested in bilinear multiplication formulae, the
notions we will consider naturally involve higher multilinear maps.
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Multilinear Complexity. Let Φ : V1 × · · · × Vt → W be a t-multilinear map
between finite dimensional vector spaces over k. A multilinear algorithm, or
multilinear decomposition, or multilinear formula of length n for Φ is a collection
of linear forms (ϕ(j)

i )1≤i≤n
1≤j≤t

, where ϕ
(j)
i is in V ∨

j , the dual vector space of Vj , and

elements (wi)1≤i≤n in W , such that for all v1, . . . , vt we have

Φ(v1, . . . , vt) =
n∑

i=1

ϕ
(1)
i (v1) · · · ϕ(t)

i (vt)wi.

The multilinear complexity μ(Φ) is then defined as the smallest length n of such
a decomposition. Equivalently, it is the rank of the tensor in V ∨

1 ⊗· · ·⊗V ∨
t ⊗W

corresponding to Φ.

Symmetric Multilinear Complexity. When V1 = · · · = Vt = V and Φ is
a symmetric multilinear map, it is natural to search for symmetric multilinear
decompositions, i.e. formulae of the form

Φ(v1, . . . , vt) =
n∑

i=1

ϕi(v1) · · · ϕi(vt)wi

with ϕ
(1)
i = · · · = ϕ

(t)
i = ϕi ∈ V ∨ for all i. It is more space-efficient, since

symmetric formulae admit a shorter description. From an algorithmic point of
view, it should also be simpler to find symmetric formulae, because the search
space is smaller. We define μsym(Φ), the symmetric multilinear complexity of Φ,
as the minimal length n of such a symmetric decomposition, if it exists (otherwise
we set μsym(Φ) = ∞).

In the case t = 2, a symmetric bilinear map always admits a symmetric
decomposition. However, when t ≥ 3 and k = Fq is a finite field, this can fail.
When t = 3 and q > 2, it is shown in [16, Lemma 7] that a symmetric trilinear
map Φ over Fq always admits a symmetric algorithm, while in the remaining
case t = 3 and q = 2, as observed by Cascudo, a necessary condition is that Φ
should satisfy Φ(x, x, y) = Φ(x, y, y) for all entries x, y. These results were then
combined and generalized into the following necessary and sufficient criterion:

Theorem 1 ([[14], Thm. A.7]). Let Φ : V t → W be a t-multilinear map
between finite dimensional vector spaces over Fq. Then Φ admits a symmetric
decomposition if and only if Φ is Frobenius-symmetric, i.e. if and only if it is
symmetric and one of the following two conditions holds:

– t ≤ q
– t ≥ q + 1 and for all u, v, z1, . . . , zt−q−1 in V ,

Φ(u, . . . , u︸ ︷︷ ︸
q times

, v, z1, . . . , zt−q−1) = Φ(u, v, . . . , v︸ ︷︷ ︸
q times

, z1, . . . , zt−q−1).
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Observe that this criterion involves the cardinality of the field, not its charac-
teristic.

Trisymmetric and Hypersymmetric Complexity. Now suppose further-
more that V = W , and that this space is equipped with a non-degenerate sym-
metric bilinear form, written as a scalar product

V × V → k
(v, w) �→ 〈v, w〉 .

This allows to identify V and V ∨, i.e. any linear form ϕ ∈ V ∨ is of the form
ϕ(x) = 〈a, x〉 for a uniquely determined a ∈ V . As a consequence, a symmet-
ric decomposition for Φ : V t → V can also be described as the data of ele-
ments (ai)1≤i≤n and (bi)1≤i≤n in V such that for all v1, . . . , vt in V , we have
Φ(v1, . . . , vt) =

∑n
i=1 〈ai, v1〉 · · · 〈ai, vt〉 bi. In order to have an even more com-

pact description, one could ask for bi to be proportional to ai, leading to the
following:

Definition 1. Let V be a finite dimensional k-vector space equipped with a
scalar product, and Φ : V t → V a symmetric t-multilinear map. Then a hyper-
symmetric formula for Φ is the data of elements (ai)1≤i≤n in V and scalars
(λi)1≤i≤n in k such that, for all v1, . . . , vt ∈ V ,

Φ(v1, . . . , vt) =
n∑

i=1

λi 〈ai, v1〉 · · · 〈ai, vt〉 ai.

The hypersymmetric complexity μhyp(Φ) is then the minimal length n of such a
hypersymmetric decomposition, if it exists. Obviously we always have μsym(Φ) ≤
μhyp(Φ).

When t = 2, we will say trisymmetric for hypersymmetric, and write μtri(Φ)
for μhyp(Φ).

As a further motivation, observe that to any t-multilinear map Φ : V t → V one
can associate a (t + 1)-multilinear form Φ̃ : V t+1 → k, defined by

Φ̃(v1, . . . , vt, vt+1) = 〈Φ(v1, . . . , vt), vt+1〉 .

We then say that Φ is hypersymmetric (as a t-multilinear map) if Φ̃ is symmetric
(as a (t + 1)-multilinear form). It is easily seen that Φ hypersymmetric is a
necessary condition for it to admit a hypersymmetric decomposition, and more
precisely:

Lemma 1. Elements (ai)1≤i≤n in V and scalars (λi)1≤i≤n in k define a hyper-
symmetric formula for the t-multilinear map Φ,

Φ(v1, . . . , vt) =
n∑

i=1

λi 〈ai, v1〉 · · · 〈ai, vt〉 ai,
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if and only if they define a symmetric formula for the (t + 1)-multilinear form
Φ̃,

Φ̃(v1, . . . , vs, vt+1) =
n∑

i=1

λi 〈ai, v1〉 · · · 〈ai, vt〉 〈ai, vt+1〉 .

Thus, Φ admits a hypersymmetric formula if and only if Φ̃ is Frobenius-
symmetric (in the sense of Theorem 1), and we have

μhyp(Φ) = μsym
(
Φ̃

)
.

In particular, if q ≥ t + 1, then any hypersymmetric t-multilinear map over
Fq admits a hypersymmetric formula.

Proof. For the only if part in the first assertion, take scalar product with vt+1.
For the if part, use the fact that the scalar product is non-degenerate. The other
assertions follow. ��

Galois Invariance. Last we consider another type of symmetry. Let σ : v �→ vσ

be a k-linear automorphism of V that respects the scalar product: 〈vσ, wσ〉 =
〈v, w〉 for all v, w in V .

Lemma 2. Let Φ : V t → V be a symmetric t-multilinear map that is compatible
with σ, i.e.

Φ(vσ
1 , . . . , vσ

t ) = Φ(v1, . . . , vt)σ

for all v1, . . . , vt in V , and let (ai)1≤i≤n and (bi)1≤i≤n in V define a symmetric
formula for Φ,

Φ(v1, . . . , vt) =
n∑

i=1

〈ai, v1〉 · · · 〈ai, vt〉 bi.

Then (aσ
i )1≤i≤n and (bσ

i )1≤i≤n also define a symmetric formula for Φ,

Φ(v1, . . . , vt) =
n∑

i=1

〈aσ
i , v1〉 · · · 〈aσ

i , vt〉 bσ
i .

Proof. Write Φ(v1, . . . , vt) = Φ(vσ−1

1 , . . . , vσ−1

t )σ and apply the formula. ��
We then say that the symmetric formula given by (ai)1≤i≤n and (bi)1≤i≤n is
σ-invariant if it is the same as the formula given by (aσ

i )1≤i≤n and (bσ
i )1≤i≤n,

i.e. if there is a permutation π of {1, . . . , n} such that (aσ
i , bσ

i ) = (aπ(i), bπ(i)) for
all i. This applies also to hypersymmetric formulae, setting bi = λiai.

If G is a group of k-linear automorphisms of V that respect the scalar prod-
uct, and if Φ : V t → V is a symmetric t-multilinear map that is compatible with
all elements in G, we then define μsym,G(Φ) (resp. μhyp,G(Φ)), the G-invariant
symmetric (resp. hypersymmetric) multilinear complexity of Φ, as the minimal
length n of a symmetric (resp. hypersymmetric) multilinear formula for Φ that
is G-invariant, i.e. σ-invariant for all σ in G.
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Multiplication Formulae in Algebras. Let A be a finite dimensional com-
mutative algebra over k. We say a linear form τ : A → k is trace-like if the
symmetric bilinear form A × A → k, (x, y) �→ τ(xy) is non-degenerate. If so,
we set 〈x, y〉 = τ(xy), which defines a scalar product on A. In this work we will
take k = Fq, and either:

– A = Fqk a finite field extension, and τ = TrF
qk /Fq

the usual trace map;
indeed it is well known that the trace bilinear form 〈x, y〉 = TrF

qk /Fq
(xy) is

non-degenerate
– A = Fq[T ]/(T k) an algebra of truncated polynomials, and τ defined by τ(x) =

xk−1 for x = x0 + x1T + · · · + xk−1T
k−1 in A; indeed, observe that for

x = x0+x1T + · · ·+xk−1T
k−1, y = y0+ y1T + · · ·+ yk−1T

k−1, we then have
〈x, y〉 = τ(xy) = x0yk−1 + x1yk−2 + · · · + xk−1y0, which is non-degenerate.

Let Φ : A × A → A be the multiplication map, Φ(x, y) = xy. It is easily seen
that Φ is trisymmetric. Indeed Φ̃ is the trilinear form x, y, z �→ τ(xyz), which is
symmetric. A symmetric bilinear multiplication formula for A is thus the data
of (ai)1≤i≤n in A and (ϕi)1≤i≤n in A∨ such that

∀x, y ∈ A, xy =
n∑

i=1

ϕi(x)ϕi(y)ai, (1)

and a trisymmetric formula is the data of (ai)1≤i≤n in A and (λi)1≤i≤n in Fq

such that

∀x, y ∈ A, xy =
n∑

i=1

λi 〈ai, x〉 〈ai, y〉 ai. (2)

We will write μq(k) (resp. μ̂q(k)) for the bilinear complexity of multiplication in
Fqk (resp. in Fq[T ]/(T k)) over Fq, and we will write likewise μsym

q (k), μ̂sym
q (k),

μtri
q (k), μ̂tri

q (k), μsym,G
q (k), μ̂sym,G

q (k), μtri,G
q (k), μ̂tri,G

q (k), etc. for the similar
quantities with the corresponding symmetry conditions.

For q ≥ 3 we have μtri
q (k) < ∞ and μ̂tri

q (k) < ∞ for all k, while for q = 2
we have μtri

2 (1) = μ̂tri
2 (1) = 1 and μtri

2 (2) = 3, but μtri
2 (k) = ∞ for k ≥ 3 and

μ̂tri
2 (k) = ∞ for k ≥ 2. This follows essentially from Theorem 1 and Lemma 1

(see also [14, Prop. A.14]).
Obviously we have μq(k) ≤ μsym

q (k) ≤ μtri
q (k) and μ̂q(k) ≤ μ̂sym

q (k) ≤ μ̂tri
q (k)

for all q and k. But when all these quantities are finite, e.g. when q ≥ 3, no
example of strict inequality is known.

In the other direction, when q ≥ 4 is not divisible by 3, [16, Thm. 2] gives
μtri

q (k) ≤ 4μsym
q (k) and μ̂tri

q (k) ≤ 4μ̂sym
q (k). This allows to translate the many

known upper bounds on symmetric complexity [2] into upper bounds on trisym-
metric complexity. However the resulting upper bounds do not seem to be tight,
so it would be desirable to have better estimates, and especially upper bounds
that work also for q divisible by 3.
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3 Finding Trisymmetric Decompositions

Algorithmic Search. Barbulescu et al. [5] and later Covanov [10] found clever
ways of exhaustively searching for formulae for (symmetric) bilinear maps. Their
method eliminates redundancy in the search but strongly relies on the fact that
the vectors ai ∈ A in the symmetric formulae (1) can be chosen independently
of the linear forms ϕi ∈ A∨, which is no longer the case when searching for
trisymmetric decompositions. For this reason, we use another method that is
once again a variant of an exhaustive search and thus still leads to an exponential
complexity algorithm. Let Φ be the two-variable product in A. Recall that we
are looking for a trisymmetric decomposition:

∀x, y ∈ A, Φ(x, y) = xy =
n∑

i=1

λi 〈x, ai〉 〈y, ai〉 ai,

with ai ∈ A and λi ∈ k for all 1 ≤ i ≤ n. Because we are allowed to use scalars
λi ∈ k, we can limit our search to “normalized” elements in A, as follows. Choose
a basis of A, which gives an identification A � kk as vector spaces. Then for all
1 ≤ i ≤ k, let

Ei =
{
x = (x1, . . . , xk) ∈ A � kk | ∀j ≤ i − 1, xj = 0 and xi = 1

}

and

E =
k⋃

i=1

Ei.

We search for elements ai in E instead of A. We further use the vector space
structure of A by searching for solutions on each coordinate. Let

xy = (π1(x, y), . . . , πk(x, y)) ∈ A � kk,

where, for all 1 ≤ i ≤ k, πi is the bilinear form corresponding to the i-th
coordinate of the product in Fpk . In other words,

Φ = (π1, . . . , πk).

We let B be the space of bilinear forms on A and we let f be the application
mapping an element in A to its associated bilinear symmetric form:

f : A → B
a �→ (x, y) �→ 〈x, a〉 〈y, a〉 .

We then search for elements a1, . . . , an1 in E1 and λ1, . . . , λn1 in k such that

π1 =
n1∑

j=1

λjf(aj), (3)
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and we obtain

Φ −
n1∑

j=1

λjf(aj)aj = (0, π′
2, . . . , π

′
k),

where for 2 ≤ i ≤ k, π′
i is some other bilinear form. We then continue the

operation with π′
2 and elements an1+1, . . . , an2 in E2, then with π′′

3 and elements
in E3, and so on. In the end, we have n elements a1, . . . , an ∈ E and λ1, . . . , λn ∈ k
such that

Φ =
n∑

j=1

λjf(aj)aj .

Now, there is left to see how we compute the elements a1, . . . , an1 ∈ E1 and
λ1, . . . , λn1 ∈ k in order to obtain (3). Let r1 be the rank of π1. We know
that the number n1 of elements in E1 such that we have (3) is at least r1, but
there also exist some trisymmetric decompositions where we need more than r1
elements. To find these elements, we search through elements a1 ∈ E1 such that
there exists λ1 ∈ k with

rank(π1 − λ1f(a1)) < rank(π1),

then, for each such a1 ∈ E1, we search through elements a2 ∈ E1 such that there
exists λ2 with

rank(π1 − λ1f(a1) − λ2f(a2)) < rank(π1 − λ1f(a1)),

and so on, eliminating a lot of unsuitable elements along the way. This method
allows us to find decompositions of π1 into a sum of exactly r1 bilinear forms of
rank 1. In order to find decompositions containing r1 + m1 bilinear forms, we
repeat the same process, except that we allow the rank not to decrease m1 times.
Let mj be the number of times we allow the rank not to decrease when dealing
with the j-th coordinate in the algorithm. We let M = (m1, . . . ,mk) and we call
margin this k-tuple. This strategy was implemented in the Julia programming
language [1] and a package searching for trisymmetric decompositions is available
online1, along with the source code.

This allowed us to compute μtri
3 (3) = 6, μtri

p (3) = 5 for all primes 5 ≤ p ≤ 257,
μtri
3 (4) = 9, μtri

5 (4) = 8, and μtri
p (4) = 7 for all primes 7 ≤ p ≤ 23. Details about

the computation can be found in Table 1, while examples of formulae obtained
via our algorithm are given in Table 2 (actually the formulae in this table are
normalized in the sense of [14, Def. A.16], i.e. they satisfy all λi = 1).

Galois Invariant Formulae. Let A = Fqk and G be the cyclic group generated
by σ, the Frobenius automorphism over Fq. In order to find G-invariant decom-
positions, we exhaustively search through orbits in Fqk , which is fast because
the search space is smaller. This allows us to find Galois invariant trisymmet-
ric formulae of length 11 for F35 , and of length 10 for F55 and F75 . Joint with
the obvious inequalities μq(k) ≤ μsym

q (k) ≤ μtri
q (k) ≤ μtri,G

q (k) and with known

1 https://github.com/erou/TriSym.jl.

https://github.com/erou/TriSym.jl
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Table 1. Algorithmic results with various degrees, base fields and margins.

Field Margin Solutions Length Time (s) Field Margin Solutions Length Time (s)

F32 (0, 0) 1 3 1.8 · 10−4
F73 (0, 0, 0) 8 5 7.0 · 10−3

F33 (0, 0, 0) 1 6 4.4 · 10−4
F133 (0, 0, 0) 100 5 2.9 · 10−1

F34 (0, 0, 0, 0) 2 9 5.3 · 10−3
F193 (0, 0, 0) 415 5 1.8

F34 (2, 1, 0, 0) 18 9 3.8 · 10−1
F313 (0, 0, 0) 2031 5 29

F34 (3, 2, 1, 1) 25 9 1.1 F473 (0, 0, 0) 7590 5 360

lower bounds from [2, Thm. 2.2] and [5], this gives 10 ≤ μ3(5) ≤ μsym
3 (5) =

μtri
3 (5) = μtri,G

3 (5) = 11, μ5(5) = μsym
5 (5) = μtri

5 (5) = μtri,G
5 (5) = 10, and

μ7(5) = μsym
7 (5) = μtri

7 (5) = μtri,G
7 (5) = 10. Some examples of Galois invariant

formulae can be found in Table 2.
For q ≥ 3 we know no example where one of the inequalities in μq(k) ≤

μsym
q (k) ≤ μtri

q (k) is strict. However, it turns out that the inequality with
μtri,G

q (k) can be strict. Indeed, let q = 3 and k = 7. In this setting our exhaustive
search found no G-invariant decomposition of length up to 15. Since all orbits
are of length 7, except the trivial orbit of length 1, the minimal length for a
G-invariant decomposition is congruent to 0 or 1 modulo 7, so we deduce that it
is at least 21. Furthermore, we know [2, table 2] that μsym

3 (7) ≤ 19, so we have

μ3(7) ≤ μsym
3 (7) ≤ 19 < 21 ≤ μtri,G

3 (7).

Table 2. Examples of trisymmetric multiplication formulae (the first three are Galois
invariant).

Field n Field elements a1, . . . , an such that xy =
∑n

i=1 〈ai, x〉 〈ai, y〉 ai

F33 = F3[α]/(α3−α+1) 6 a1 = α, a2 = aσ
1 , a3 = aσ

2 , a4 = 1−α2, a5 = aσ
4 , a6 = aσ

5

F34 = F3[α]/(α4−α3−1) 9 a1 = −1, a2 = −α, a3 = aσ
2 , a4 = aσ

3 , a5 = aσ
4 ,

a6 = α2+α+1, a7 = aσ
6 , a8 = aσ

7 , a9 = aσ
8

F35 = F3[α]/(α5−α+1) 11a1 = 1, a2 = α−1, a3 = aσ
2 , a4 = aσ

3 , a5 = aσ
4 , a6 = aσ

5 ,

a7 = 1−α−α2, a8 = aσ
7 , a9 = aσ

8 , a10 = aσ
9 , a11 = aσ

10

F53 = F5[α]/(α3+3α+3) 5 a1=3α+2, a2=−α2−α−1, a3=3α2+2α+2, a4=−α, a5=3α2+2α

F54 = F5[α]/(α4−α2−α+2)8 a1 = −1, a2 = 3α2+3α+3, a3 = 3α3−α2+2α−1, a4 = 2α3−α2−α+1,

a5 = α, a6 = −α2+α, a7 = α3+α2+α, a8 = α3+α2

Universal Formulae. As mentioned in Sect. 2, for q ≥ 3, we do not know any
example of algebra A = Fqk or A = Fq[T ]/(T k) where the bilinear complexity
and the trisymmetric bilinear complexity are different. We can even prove that
these quantities are the same in small dimension, by exhibiting trisymmetric
universal formulae, i.e. trisymmetric decompositions that are true for (almost)
any choice of q ≥ 3. In order to obtain such formulae, it is useful to change
our point of view on the problem. Assume we want to compute a trisymmetric
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decomposition of the product Φ in A, a commutative algebra of degree k. After
the choice of a basis of A and a basis of the space B of the bilinear forms on A,
we can represent

Φ = (π1, . . . , πk)

as a column vector B of length k3. The first k2 coordinates corresponding to π1,
the next k2 coordinates corresponding to π2 and so on up to πk. Now, for each
a ∈ E , we note

f(a) = a ⊗ f(a),

where a is the column vector of length k corresponding to a in the basis of A,
f(a) is the column vector of length k2 corresponding to f(a) ∈ B, and ⊗ is
the Kronecker product. With these notations, finding a trisymmetric decompo-
sition of the product in A is the same as finding elements a1 . . . , an ∈ E and
λ1, . . . , λn ∈ k with

B =
n∑

j=1

λjf(a).

Let A be the matrix which columns are the f(a) for all a ∈ E , then the problem
is to find a solution X of

AX = B

with the smallest possible number of nonzero entries in X.
We first consider the case A = Fq2 over k = Fq, where the characteristic of

k is not 2.

Proposition 1. For any odd q we have

μq(2) = μtri
q (2) = 3.

Proof. That μq(2) = 3 follows e.g. from [2, Thm. 2.2]. In order to prove that
μtri

q (2) = 3, we find an universal trisymmetric formula of length 3. We know
that we can find a non-square element ζ in Fq, we can then define

Fq2 ∼= Fq[T ]/(T 2 − ζ) = Fq(α),

where α = T̄ is the canonical generator of Fq2 . Let x = x0+x1α and y = y0+y1α
be two elements of Fq2 , we have

xy = (x0 + x1α)(y0 + y1α) = x0y0 + ζx1y1 + (x0y1 + x1y0)α.

We can lift the matrix B coming from the multiplication formula, that has coef-
ficients in Fq, to a matrix with coefficients in Q(ζ), where ζ is an indeterminate.
We can also lift the matrix A, because the map f (and therefore f) has the same
expression for all q not divisible by 2. Indeed, one can check that the map f is
given by

f(x0 + x1α) =
(

S

[
x0

x1

]) (
S

[
x0

x1

])ᵀ
= 4

[
x2
0 ζx0x1

ζx0x1 ζ2x2
1

]
.
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where
S =

[〈
αi, αj

〉]
0≤i,j≤1

=
[
Tr(αi+j)

]
0≤i,j≤1

=
[
2 0
0 2ζ

]
.

We can then solve AX = B over Q(ζ) and finally check that

B = (1 − ζ−1)4−1f(1) + (8ζ)−1f(1 + α) + (8ζ)−1f(1 − α),

so that the trisymmetric bilinear complexity of Fq2/Fq is 3. ��
Using the same strategy, we can also find universal formulae for another type of
algebra A = Fq[T ]/(T k), namely the truncated polynomials. In that context, we
first observe that we have

μ̂tri
q (k) ≥ μ̂q(k) ≥ 2k − 1

for all q and k. Indeed this is a special case of [21, Thm. 4], which holds for any
polynomial that is a power of an irreducible polynomial. Conversely we are able
to find formulae for 2 ≤ k ≤ 4 that match this lower bound.

Proposition 2. For any odd q we have

μ̂tri
q (2) = 3.

Proof. Let A = Fq[T ]/(T 2) = Fq[α] with α = T̄ , so α2 = 0. If x = x0 + x1α and
y = y0 + y1α are two elements of A, we have

xy = (x0 + x1α)(y0 + y1α) = x0y0 + (x0y1 + x1y0)α.

We can again construct the matrix B and A, and solve AX = B, this time
simply over Q. We obtain

B = −f(1) + 2−1f(1 + α) + 2−1f(1 − α)

so that the trisymmetric bilinear complexity of A = Fq[T ]/(T 2) is at least 3,
which concludes. ��
Proposition 3. For any q not divisible by 2 nor 3 we have

μ̂tri
q (3) = 5 and μ̂tri

q (4) = 7.

Proof. We use the same notations as before. For A = Fq[T ]/(T 3), we obtain

B = −f(1−α−α2)+3−1f(α+2α2)+2−1f(1−α−2α2)−3−1f(α−α2)+2−1f(1−α).

Therefore the trisymmetric bilinear complexity of A = Fq[T ]/(T 3) is 5.
Finally, for A = Fq[T ]/(T 4), we obtain

B = 2−1f(1− α2 + α3)− f(1− α2) + 12−1f(α + 2α2 + 2α3)− 12−1f(α − 2α2 + 2α3)

− 6−1f(α + α2 − α3) + 6−1f(α − α2 − α3) + 2−1f(1− α2 − α3) · (1− α2 − α3).

The trisymmetric bilinear complexity of A = Fq[T ]/(T 4) is then 7. ��
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4 Asymptotic Bounds

In this section, we work with A = Fqk or Fq[T ]/(T k), seen as an algebra over
k = Fq, and equipped with the trace-like linear form τ introduced at the end of
Sect. 2. Our aim is to show that the trisymmetric bilinear complexities μtri

q (k)
and μ̂tri

q (k) grow linearly as k → ∞. Our proof will involve higher multilinear
maps, and in turn, give results for them as well.

For any t we define the t-multilinear multiplication map in A over k

mt : At → A
(x1, . . . , xt) �→ x1 · · · xt

and the t-multilinear trace form

τt = τ ◦ mt : At → A
(x1, . . . , xt) �→ τ(x1 · · · xt).

If needed, we will write mt
A/k or τt

A/k to keep A and k explicit.
The (symmetric) multilinear complexity of mt has been considered in [7] in

relation with the theory of testers.

Lemma 3. The map mt is hypersymmetric, and we have

μhyp(mt) = μsym(τt+1) ≤ μsym(mt+1).

Proof. Indeed we have m̃t = τt+1, and the equality on the left is a special case
of Lemma 1. For the inequality on the right, take a symmetric formula for mt+1

and apply τ . ��
When studying the variation with the degree of the extension field Fqk over

Fq, we will write μsym
q (k,mt) for μsym

(
mt

F
qk /Fq

)
, and we will also use the similar

notations μhyp
q (k,mt), μsym

q (k, τt), etc. In particular for t = 2 we have

μtri
q (k) = μtri

q (k,m2) = μsym
q (k, τ3).

When working in Fq[T ]/(T k) over Fq, we will write likewise μ̂sym
q (k,mt),

μ̂hyp
q (k,mt), etc.

Our aim is, for fixed q and t with q ≥ t + 1, to show that μhyp
q (k,mt)

and μ̂hyp
q (k,mt) grow linearly with k → ∞. Thanks to Lemma 3, it suffices to

show that μsym
q (k,mt+1) and μ̂sym

q (k,mt+1) grow linearly with k → ∞. To ease
notations we will set

M sym
q,t = lim sup

k→∞

1
k

μsym
q (k,mt), Mhyp

q,t = lim sup
k→∞

1
k

μhyp
q (k,mt),

M tri
q = lim sup

k→∞

1
k

μtri
q (k) = Mhyp

q,2 ,

and likewise for M̂ sym
q,t , M̂hyp

q,t , M̂ tri
q , etc.
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Evaluation-Interpolation Method. We use the function field terminology
and notations presented in [18]. Let F/Fq be an algebraic function field of one
variable over Fq and let PF be the set of places of F . Let DF the set of divisors
on F , and if D ∈ DF is a divisor on F , we denote by L(D) its Riemann-Roch
space and 
(D) = dimL(D).

Proposition 4. Assume there exist a place Q ∈ PF of F of degree k,
P1, . . . , Pn ∈ PF places of F of degree 1, and a divisor D ∈ DF of F such
that the places Q and P1, . . . , Pn are not in the support of D and such that the
following conditions hold.

(i) The evaluation map
evQ,D : L(D) → Fqk

f �→ f(Q)

is surjective.
(ii) The evaluation map

evP,tD : L(tD) → (Fq)n

h �→ (h(P1), . . . , h(Pn))

is injective.

Then mt
F

qk /Fq admits a symmetric formula of length n, i.e. we have
μsym

q (k,mt) ≤ n.

Proof. Since the map evQ,D is surjective, it admits a right inverse, i.e. a linear
map s : Fqk → L(D) such that evQ,D ◦ s = IdF

qk
. For all x ∈ Fqk , we denote

s(x) ∈ L(D) by fx, so the map x �→ fx is linear, and fx(Q) = x. We also let

a : Fqk → (Fq)n

x �→ (fx(P1), . . . , fx(Pn))

be the composite map a = evP,D ◦ s. The situation is sumed up in the following
drawing.

L(D)

Fqk (Fq)n

s

evQ,D

evP,D

a

Observe that a is linear, so we can write

a(x) = (ϕ1(x), . . . , ϕn(x))

where ϕi : Fqk → Fq is a linear form, namely ϕi(x) = fx(Pi).
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Similarly, since the map evP,tD is injective, it admits a left inverse, i.e. a
linear map r : (Fq)n → L(tD) such that r ◦ evP,tD = IdL(tD). We also let
b : (Fq)n → Fqk be the composite map b = evQ,tD ◦ r. The situation is sumed up
in the following drawing.

L(tD)

Fqk (Fq)n

evP,tD

r

evQ,tD

b

The map b is linear, so there are b1, . . . , bn in Fqk such that, for all y =
(y1, . . . , yn) ∈ (Fq)n,

b(y) =
n∑

i=1

yibi.

Now for x, . . . , xt ∈ Fqk , let

p = (p1, . . . , pn) = ((
t∏

j=1

fxj
)(P1), . . . , (

t∏

j=1

fxj
)(Pn))

in (Fq)n be the coordinatewise product of the vectors a(x1), ..., a(xt). Then

h = r(p)

is an element of L(tD) such that h(Pi) = pi = (
∏t

j=1 fxj
)(Pi) for all i. Since the

map evP,tD is injective, this forces

h =
t∏

j=1

fxj
.

Then, we have

b(p) = evQ,tD(r(p)) = evQ,tD(h) = h(Q) =
t∏

j=1

fxj
(Q) =

t∏

j=1

xj .

But we also have

b(p) =
n∑

i=1

pibi =
n∑

i=1

(
t∏

j=1

fxj
(Pi))bi =

n∑

i=1

(
t∏

j=1

ϕi(xj))bi

and finally we get a symmetric formula for mt:
t∏

j=1

xj =
n∑

i=1

(
t∏

j=1

ϕi(xj))bi.

��
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Proposition 5. Let F/Fq be an algebraic function field of genus g. Assume that
F admits a place Q of degree k, and a set S of places of degree 1 of cardinality

|S| ≥ (k + g − 1)t + 1.

Then we have
μsym

q (k,mt) ≤ kt + (g − 1)(t − 1).

Proof. Set n = kt+(g − 1)(t− 1). We will show that there are places P1, . . . , Pn

in S, and a divisor D on F , such that Proposition 4 applies, which gives
μsym

q (k,mt) ≤ n as desired.
Using e.g. [3, Lemma 2.1] we know F admits a non-special divisor R of degree

g − 1. By the strong approximation theorem [18, Thm. 1.6.5] we can then find a
divisor D linearly equivalent to R + Q and of support disjoint from Q and S.

Then D − Q and D are non-special, with 
(D − Q) = 0 and 
(D) = k. We
thus find

Ker(evQ,D : L(D) → Fqk) = L(D − Q) = 0,

so evQ,D is injective, hence also surjective by equality of dimensions, i.e. the
surjectivity condition (i) in Proposition 4 is satisfied.

Likewise, tD is non-special, with deg(tD) = (k + g − 1)t and 
(tD) = kt +
(g − 1)(t − 1). Then the evaluation map

evS,tD : L(tD) → (Fq)|S|

h �→ (h(P ))P∈S

has kernel L(tD−∑
P∈S P ) = 0, because deg(tD−∑

P∈S P ) = (k+g−1)t−|S| <
0. So evS,tD is injective, with image of dimension dim Im(evS,tD) = 
(tD) = n.
Then we can find a subset P = {P1, . . . , Pn} ⊂ S of cardinality n, such that
evP,tD : L(tD) → (Fq)n is an isomorphism, and the injectivity condition (ii) in
Proposition 4 is also satisfied. ��

Choice of the Curves for q a Large Enough Square

Proposition 6. Let t be given, and assume q is a square, q ≥ (t + 2)2. Then
we have

M sym
q,t ≤ (1 + εt(q))t

with εt(q) = t−1√
q−t−1 .

Proof. We know [17] that there exists a family of function fields Fi/Fq of genus
gi → ∞ such that

(i) gi+1
gi

→ 1
(ii) Ni ∼ (

√
q − 1)gi
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where Ni = Card {P ∈ PFi
| degP = 1} is the number of places of degree 1 of

Fi. We can also assume that the sequence gi is increasing.
For any k let i(k) be the smallest index such that

Ni(k) ≥ (k + gi(k) − 1)t + 1.

Such an i(k) always exists since by (ii) we have Ni ∼ (
√

q−1)gi, with √
q−1 > t.

By definition we thus have

Ni(k) ≥ (k + gi(k) − 1)t + 1 > (k + gi(k)−1 − 1)t + 1 > Ni(k)−1.

As k → ∞ we have i(k) → ∞, and by (i) we get gi(k) ∼ gi(k)−1, so by (ii) we
also get Ni(k) ∼ Ni(k)−1. This then gives

Ni(k) ∼ (k + gi(k) − 1)t + 1
∼ (k + gi(k))t

while by (ii),
Ni(k) ∼ (

√
q − 1)gi(k).

From these two relations we deduce

gi(k) ∼ t√
q − 1 − t

k.

For k large enough this implies in particular 2gi(k) + 1 ≤ q(k−1)/2(
√

q − 1), so
Fi(k) admits a place of degree k by [18, Cor. 5.2.10].

From this we are allowed to apply Proposition 5 to Fi(k), which gives

μsym
q (k,mt) ≤ kt + (gi(k) − 1)(t − 1) ∼ kt + gi(k)(t − 1) ∼ kt(1 + εt(q))

as desired. ��
Corollary 1. For q a square, q ≥ (t + 3)2 we have

Mhyp
q,t ≤ (1 + εt+1(q))(t + 1),

and in particular we have

M tri
q ≤ 3

(
1 +

2√
q − 4

)

for q a square, q ≥ 25.

Conclusion for Arbitrary q

Lemma 4. Let q be a prime power. Then for any integers t, d, k we have

μsym
q (k,mt) ≤ μsym

q (dk,mt) ≤ μsym
q (d,mt)μ

sym
qd (k,mt).
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Proof. For the inequality on the left, there is nothing to prove if μsym
q (dk,mt) =

∞. So let us assume m
F

qdk /Fq

t admits a symmetric multiplication formula of
length n = μsym

q (dk,mt), i.e.

∀x1, . . . , xt ∈ Fqdk , x1 · · · xt =
n∑

i=1

ϕi(x1) · · · ϕi(xt)ai

for linear forms ϕi : Fqdk → Fq and elements ai ∈ Fqdk . Choose a linear projection

p : Fqdk → Fqk

left inverse for the inclusion Fqk ⊆ Fqdk . Then we get

∀x1, . . . , xt ∈ Fqk , x1 · · · xt = p(x1, . . . , xt) =
n∑

i=1

ϕi(x1) · · · ϕi(xt)p(ai)

which is a symmetric multiplication formula of length n for m
F

qk /Fq

t .
Likewise, for the inequality on the right, there is nothing to prove if

μsym
q (d,mt) = ∞ or μsym

qd (k,mt) = ∞. So let us assume m
F

qd/Fq

t and m
F

qdk /F
qd

t

admit symmetric multiplication formulae of length r = μsym
q (d,mt) and s =

μsym
qd (k,mt) respectively, so

∀y1, . . . , yt ∈ Fqd , y1 · · · yt =
r∑

u=1

ψu(y1) · · · ψu(yt)bu

∀z1, . . . , zt ∈ Fqdk , z1 · · · zt =
s∑

v=1

χv(z1) · · · χv(zt)cv

for linear forms ψu : Fqd → Fq, χv : Fqdk → Fqd and elements bu ∈ Fqd , cv ∈ Fqdk .
Then setting y1 = χv(z1), ..., yt = χv(zt) we find

∀z1, . . . , zt ∈ Fqdk , z1 · · · zt =
s∑

v=1

r∑

u=1

(ψu ◦ χv)(z1) · · · (ψu ◦ χv)(zt) · (bucv)

which is a symmetric multiplication formula of length rs for m
F

qdk /Fq

t . ��
Theorem 2. Let t ≥ 2 be an integer and q a prime power. If q < t, then
μsym

q (k,mt) = ∞ for all k ≥ 2.
On the other hand, if q ≥ t, then μsym

q (k,mt) grows at most linearly with k,
i.e. we have

M sym
q,t ≤ Ct(q)

for some real constant Ct(q) < ∞.

Proof. If q < t and k ≥ 2, then μsym
q (k,mt) = ∞ follows from Theorem 1.

On the other hand, for q ≥ t, we have μsym
q (d,mt) < ∞ for any integer

d. Choose d such that qd is a square, qd ≥ (t + 2)2. Then Proposition 6 shows
μsym

qd (k,mt) grows linearly with k. The Theorem then follows thanks to Lemma 4,
with Ct(q) = μsym

q (d,mt)(1 + εt(qd))t. ��
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Corollary 2. For q ≥ t + 1 we have

Mhyp
q,t ≤ Ct+1(q)

and in particular for q ≥ 3 we have

M tri
q ≤ C3(q).

Further Remarks and Possible Improvements

1. When q ≥ 4 is not divisible by 3, [16, Thm. 2] gives μtri
q (k) ≤ 4μsym

q (k). On
the other hand, [9] shows that μsym

q (k) grows linearly with k (the result is
stated for μq(k), but it is easily seen that the proof works for μsym

q (k)). Taken
together, these results show that μtri

q (k) grows linearly with k when q ≥ 4 is
not divisible by 3. One advantage of our method is that it works for all q ≥ 3.
Moreover it gives sharper bounds. For instance, when q is a square and large
enough, joining [16, Thm. 2] with the best asymptotic upper bound known
on μsym

q (k) [12, Thm. 6.4] gives M tri
q ≤ 8

(
1 + 1√

q−2

)
, which is not as good

as M tri
q ≤ 3

(
1 + 2√

q−4

)
from Corollary 1.

2. Open question: Lemma 3 reduces (upper) bounds on μhyp(mt) to bounds
on μsym(mt+1), and in particular it reduces bounds on M tri

q to bounds on
Mhyp

q,3 , which does not seem optimal. Indeed we know no example where the
inequality μsym

q (k) ≤ μtri
q (k) is strict. So, for instance for q square, q → ∞,

our method gives M tri
q ≤ 3(1+ o(1)), but one could ask whether it is possible

to get a bound of the form M tri
q ≤ 2(1 + o(1)), as given by [12, Thm. 6.4] for

M sym
q .

3. Open question: The condition |S| ≥ (k+ g −1)t+1 in Proposition 5 does not
seem optimal since in the end we do evaluation-interpolation at only kt+(g−
1)(t−1) places. If one could relax this condition to |S| ≥ kt+(g−1)(t−1), this
would improve Proposition 6 to M sym

q,t ≤ (1+ε′
t(q))t for q square, q ≥ (t+1)2,

with ε′
t(q) = t−1√

q−t . For t = 2 this is done in [12,15] using techniques from
[13]. However, as observed at the end of [13], a generalization to t ≥ 3 would
require new arguments.

4. Lemma 4, which generalizes [17, Lemma 1.2], is clearly not optimal. When
deriving upper bounds on μsym

q (k,mt) for non-square q, it might be better
to use evaluation-interpolation at places of higher degree, as first introduced
in [4], and further developped e.g. in [8,12]. To do this in an optimal way one
needs function fields Fi defined over Fq, of genus gi → ∞, with gi+1

gi
→ 1 and

N
(d)
i ∼ qd/2−1

d gi where N
(d)
i is the number of places of degree d in Fi, for a

convenient d. This improves the bound on M sym
q,t by a factor 1

d . The existence
of these function fields was first claimed in [8], but unfortunately with an
incorrect proof. A corrected construction, based on Drinfeld modular curves,
will be found in [6].
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5. All our bounds for multiplication in extension fields also hold for truncated
polynomials. For instance we have M̂ sym

q,t ≤ (1 + εt(q))t for q square, q ≥
(t + 2)2, and M̂ sym

q,t ≤ Ct(q) for all q ≥ t. This requires only minor changes
in our constructions. In Proposition 4, instead of evaluation at a place Q of
degree k, one uses evaluation at order k at an extra place P0 of degree 1.
Likewise in Proposition 5, one needs one more place of degree 1, but one does
not need Q (then the proof of Proposition 6 is slightly simplified since one
does not need to invoke [18, Cor. 5.2.10] anymore).
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Abstract. The aim of this note is to give a construction and an enumer-
ation of self-dual θ-cyclic and θ-negacyclic codes of length n over IFpn

where p is a prime number and θ is the Frobenius automorphism over
IFpn . We use the notion of isodual codes to achieve this construction.

Keywords: Coding theory · Finite fields · Skew polynomial rings ·
Self-dual codes

1 Introduction

Isodual codes [17] have been recently studied on many aspects [1–3]. Meanwhile,
in [5], a construction and an enumeration formula for self-dual θ-cyclic and θ-
negacyclic codes of even length n over IFp2 were given in the case when p is
a prime number and θ is the Frobenius automorphism over IFp2 . The aim of
this note is to give a construction and an enumeration formula for self-dual
θ-cyclic and θ-negacyclic codes of length n over IFpn when θ is the Frobenius
automorphism over IFpn . To this end, we will use and develop the notion of (θ, ν)-
isodual codes which form a subfamily of the family of isodual codes. Lastly we
will consider the construction of some self-dual Gabidulin evaluation codes.

The text is organized as follows. In Sect. 2 we define the notion of (θ, ν)-
isodual codes over IFq where θ is an automorphism of IFq and ν belongs to IF∗

q .
We recall the definitions of (θ, a)-constacyclic, θ-cyclic and θ-negacyclic codes
and some generalities on the dual of a (θ, a)-constacyclic code. Then we charac-
terize (θ, ν)-isodual θ-cyclic and θ-negacyclic codes thanks to an equation satis-
fied by the skew check polynomials of the codes. In Sect. 3 we consider the special
case when q is equal to pn where p is a prime number and θ is the Frobenius
automorphism over IFpn . After having given a necessary and sufficient condi-
tion for the existence of (θ, ν)-isodual θ-cyclic and θ-negacyclic codes, we give a
construction and an enumeration formula for (θ, ν)-isodual and self-dual θ-cyclic
and θ-negacyclic codes. In Sect. 4, we consider a subclass of self-dual θ-cyclic
codes over IFpn which are self-dual Gabidulin codes. We parametrize this family
by a parameter which satisfies a polynomial system.
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2 Some Generalities on Isodual Skew Codes

We first recall that a linear code C of length n and dimension k over IFq is a
subspace of dimension k of IFn

q . A generator matrix G of C is a k × n matrix
with coefficients in IFq and rank k such that C = {m G | m ∈ IFk

q}. Fur-
thermore the dual of C is C⊥ = {x ∈ IFn

q | ∀c ∈ C,< x, c >= 0} where
for x = (x0, . . . , xn−1), y = (y0, . . . , yn−1) in IFn

q , < x, y >:=
∑n−1

i=0 xiyi is the
Euclidean scalar product of x and y. Isodual codes [17] have been recently stud-
ied on many aspects [1–3].

Definition 1 ([17] page 199). A code C with generator matrix G is isodual if
it is equivalent to its dual. That means that there exists a monomial matrix D
such that G · D is a generator matrix of the dual C⊥ of C.

In what follows, we define a special class of isodual codes which are parame-
terized by an automorphism θ of IFq and an element ν of IF∗

q .

Definition 2. Consider n ∈ IN∗, ν ∈ IF∗
q and θ ∈ Aut(IFq). A linear code C of

length n and generator matrix G is a (θ, ν)-isodual code if G · D is a generator
matrix of C⊥ where D is the n × n diagonal matrix with diagonal coefficients
ν, θ(ν), . . . , θn−1(ν).

Remark 1. A code C is self-dual if and only if there exists ν fixed by θ such that
C is (θ, ν)-isodual.

Recall that if θ is an automorphism of IFq, the skew polynomial ring R is
defined as R = IFq[X; θ] under usual addition of polynomials and where mul-
tiplication is defined by the commutation law: ∀a ∈ IFq,X · a = θ(a)X ([16]).
The ring R is noncommutative unless θ is the identity automorphism on IFq.
The ring R is right-Euclidean and left-Euclidean. For f =

∑
aiX

i in R and α in
IFq, the evaluation f(α) of f at α is the remainder in the right division of f by
X − α. We have f(α) =

∑
i aiNi(α) where Ni(x) := xθ(x) · · · θi−1(x) (see [14]).

Recall also that if q = pn and θ is the Frobenius automorphism, then the center
of R is IFp[Xn].

For a in IF∗
q and θ in Aut(IFq), a (θ, a)-constacyclic code C of length n and

dimension k is a left R-submodule Rg/R(Xn − a) ⊂ R/R(Xn − a) where g is a
monic skew polynomial of degree n − k right-dividing Xn − a in R ([7]). That
means that a word c = (c0, . . . , cn−1) ∈ IFn

q belongs to C if and only if the skew
polynomial g right-divides the skew polynomial c0 + c1X + · · ·+ cn−1X

n−1 in R.
The skew polynomial g is called the skew generator polynomial of C. The monic
skew polynomial h defined by

Θn(h) · g = Xn − a (1)

is called skew check polynomial of C.
The (θ, a)-constacyclic code C is denoted C = (g)a

n,θ. If a = 1, the code is
θ-cyclic and if a = −1, the code is θ-negacyclic.
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A generator matrix of C is

G =

⎛

⎜
⎜
⎜
⎜
⎝

g0 g1 . . . . . . 1 0 . . . 0

0 θ(g0) θ(g1) . . . . . . 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 θk−1(g0) θk−1(g1) . . . . . . 1

⎞

⎟
⎟
⎟
⎟
⎠

. (2)

The skew reciprocal polynomial of h = Σk
i=0hiX

i ∈ R of degree k is h∗ =
Σk

i=0θ
i(hk−i)Xi. If h0 �= 0, the left monic skew reciprocal polynomial of h is

h� = 1
θk(h0)

h∗. The following technical lemma will be useful later. We will use

the application Θ : R �→ R given by
∑k

i=0 aiX
i �→ ∑k

i=0 θ(ai)Xi.

Lemma 1 (Lemma 1 of [8]). Consider θ ∈ Aut(IFq), R = IFq[X; θ], h and g
in R. Then (h · g)∗ = Θdeg(h)(g∗) · h∗.

Example 1. Consider n = 4, IF24 = IF2(a) with a4+a+1 = 0 and R = IF24 [X; θ].
We have

X4 + 1 = (X2 + a5X + a5) · (X2 + a5X + a10)

therefore the skew polynomial g1 = X2 +a5X +a10 generates a θ-cyclic code C1

of length 4 and dimension 2 over IF24 . As Θ4 is the identity over IF24 , the skew
check polynomial of the code is h1 = X2 + a5X + a5.

We have

X4 + 1 = (X2 + aX + a14) · (X2 + a4X + a)

therefore the skew polynomial g2 = X2 + a4X + a generates a θ-cyclic code
C2 of length 4 and dimension 2 over IF24 with skew check polynomial h2 =
X2 + aX + a14.

The following proposition describes the dual of a (θ, a)-constacyclic code.

Proposition 1 (Theorem 1 and Lemma 2 of [8], Proposition 1 of [6]).
Consider n ∈ IN∗, a ∈ IF∗

q , θ ∈ Aut(IFq) and C a (θ, a)-constacyclic code of
length n with skew generator polynomial g and skew check polynomial h. Then
the dual C⊥ of C is a (θ, 1/a)-constacyclic code with skew generator polynomial
h�.

Proof. (proof of Proposition 1 of [6]) We consider the equality (1) in R =
IFq[X; θ] and we multiply both members of this equality by h on the right.
We get Θn(h) · g · h = (Xn − a) · h and we deduce from this equality that
Θn(h) · (Xn − g · h) = a · h. As the skew polynomials Θn(h) and a · h have the
same degrees, the skew polynomial Xn − g · h is a constant that we will denote
λ and Θn(h) · λ − a · h = 0. As the leading coefficient of Θn(h) · λ − a · h is equal
to θk(λ) − a, we get that λ = θ−k(a).
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Furthermore, as Θn(h) · g = Xn − a, according to Lemma 1, we have
− 1

aΘk−n(g∗) · h∗ = Xn − 1
a . Therefore h� right-divides Xn − 1

a and is the skew
generator polynomial of a (θ, 1

a )-constacyclic code of length n.
A quick computation gives that for all (i, j) in {0, . . . , k−1}×{0, . . . , n−k−1},

the Euclidean scalar product of the words associated to Xi ·g and Xj ·h∗ is equal
to θi((g · h)j−i+k). Therefore the scalar product is equal to 0 and the words of
the code (g)a

n,θ are orthogonal to the words of the code (h�)1/a
n,θ .

In what follows, we characterize (θ, a)-constacyclic codes which are (θ, ν)-
isodual.

Proposition 2. Consider k ∈ IN∗, n = 2k, ν ∈ IF∗
q , a ∈ IFq, θ ∈ Aut(IFq), R =

IFq[X; θ], h ∈ R monic. The (θ, a)-constacyclic code of length n, dimension k
and skew check polynomial h is (θ, ν)-isodual if and only if

Θn(h) · θk(ν) · h� · 1
ν

= Xn − a. (3)

In this case we have a2 = θn(ν)/ν.

Proof. Consider C = (g)a
n,θ the (θ, a)-constacyclic code of length n = 2k, dimen-

sion k, skew check polynomial h and skew generator polynomial g. According to
(1), we have Θn(h) · g = Xn − a. Therefore, the relation (3) is satisfied if and
only if h� = g̃ where g̃ = θk(1/ν) · g · ν.

Let us prove that C is (θ, ν)-isodual if and only if h� = g̃. As g right-divides
Xn − a, g̃ right-divides Xn − ã where ã = a ν

θn(ν) . Therefore we can consider the
(θ, ã)-constacyclic code of length n and skew generator polynomial g̃. Further-
more, according to Proposition 1, C⊥ is a (θ, 1/a)-constacyclic code of length n
with skew generator polynomial h�.

Let us prove that C is (θ, ν)-isodual if and only if (h�)1/a
n,θ = (g̃)ã

n,θ.

Denote g =
∑n−k

i=0 giX
i =

∑k
i=0 giX

i and g̃ =
∑k

i=0 g̃iX
i. We have g̃i =

θk(1/ν)giθ
i(ν) for all i in {0, . . . , k}. Therefore a generator matrix of (g̃)ã

n,θ is

G̃ =

⎛

⎜
⎜
⎜
⎜
⎝

g̃0 g̃1 . . . . . . 1 0 . . . 0

0 θ(g̃0) θ(g̃1) . . . . . . 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 θk−1(g̃0) θk−1(g̃1) . . . . . . 1

⎞

⎟
⎟
⎟
⎟
⎠

= G · D

where G is given by (2) and D is the diagonal matrix with diagonal elements
ν, θ(ν), . . . , θn−1(ν).

According to Definition 2, the code C is (θ, ν)-isodual if and only if a gen-
erator matrix of C⊥ = (h�)1/a

n,θ is G · D. As G · D = G̃ is a generator matrix of

(g̃)ã
n,θ, we obtain that C is (θ, ν)-isodual if and only if (h�)1/a

n,θ = (g̃)ã
n,θ.

Lastly as g̃ right-divides Xn −a ν
θn(ν) and h� right-divides Xn − 1

a , we obtain
a2 = θn(ν)/ν.
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In the case when θ is the Frobenius automorphism over IFq and q = pn where
p is prime and n is the length of the code we obtain the following corollary that
will be useful in next section.

Corollary 1. Consider k ∈ IN∗, n = 2k, p a prime number, ν ∈ IF∗
pn , a ∈

IFpn , θ : x �→ xp ∈ Aut(IFpn), R = IFpn [X; θ], h ∈ R monic. The (θ, a)-
constacyclic code of length n and skew check polynomial h is (θ, ν)-isodual if
and only if

h · θk(ν) · h� · 1
ν

= h� · 1
ν

· h · θk(ν) = Xn − a. (4)

Furthermore, a2 = 1.

Proof. As θ is the Frobenius automorphism over IFpn , the order of θ is equal to
n. Therefore Θn(h) = h and θn(ν) = ν. According to Proposition 2, the (θ, a)-
constacyclic code of length n and skew check polynomial h is (θ, ν)-isodual if
and only if h · θk(ν) · h� · 1

ν = Xn − a. In this case a2 = 1. Therefore Xn − a is
central in R, and we have h · θk(ν) · h� · 1

ν = Xn − a = h� · 1
ν · h · θk(ν).

Example 2. (Example 1 continued) The left monic skew reciprocal polynomial
of h1 = X2 + a5X + a5 is h�

1 = X2 + a5X + a10 and X4 + 1 = (X2 + a5X + a5) ·
(X2 + a5X + a10) = (X2 + a5X + a10) · (X2 + a5X + a5), therefore the θ-cyclic
code C1 with skew check polynomial h1 is self-dual.

The left monic skew reciprocal polynomial of h2 = X2 + aX + a14 is h�
2 =

X2 + a6X + a4. Furthermore, X4 + 1 = (X2 + aX + a14) · (X2 + a4X + a) =
(X2 + aX + a14) · 1

a4 · (X2 + a6X + a4) · 1
a14 , therefore the θ-cyclic code C2 with

skew check polynomial h2 is (θ, a14)-isodual.

Lastly, we consider below a technical lemma which will be useful later and
which deals with the factorization of skew polynomials right-dividing Xn ± 1
in IFpn [X; θ] where θ is the Frobenius automorphism. These skew polynomials
belong to a wide class of skew polynomials, called Wedderburn polynomials,
which have been extensively studied (see Theorem 6.4 of [11] for the factor-
izations of these skew polynomials). Lemma 2 can be directly deduced from
Theorem 6.4 of [11] as well as from Proposition 2.2.2. of [10]. We propose here
a proof very specific to our special case.

Lemma 2. Consider n ∈ IN∗, p a prime number, θ : x �→ xp ∈ Aut(IFpn),
R = IFpn [X; θ], f in R of degree d and ε ∈ {−1, 1} such that f right-divides
Xn − ε in R. Then f is the product of d linear factors right-dividing Xn − ε and

#{(α1, . . . , αd) ∈ IFd
pn | f = (X + α1) · · · (X + αd)} =

d∏

i=1

pi − 1
p − 1

.

Proof. Consider y1, . . . , yn in IFpn linearly independent over IFp. Consider ξ in
IFpn such that X − ξ right-divides Xn − ε, which means Nn(ξ) = ε. Denote
α1 := ξ θ(y1)

y1
, . . . , αn = ξ θ(yn)

yn
. According to [14], the least common left multiple

of X − α1, . . . , X − αn is lclm1≤i≤n(X − αi) = Xn − ε. As f right-divides
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Xn − ε, according to Theorem 4 of [16], there exist β1, . . . , βd in IFpn such that
f = lclm1≤i≤d(X − βi). Furthermore Nn(βi) = ε = Nn(ξ). Therefore according
to Theorem 27 of [13], there exists zi in IF∗

pn such that βi = ξ θ(zi)
zi

. According

to [14], z1, . . . , zd are linearly independent over IFp. Denote f =
∑d

i=0 aiX
i, we

have {α ∈ IFpn | f(α) = 0} = {α = ξ θ(y)
y = ξyp−1 ∈ IFpn | L(y) = 0} where

L(y) :=
∑d

i=0 aiNi(ξ)θi(y). As the equation L(y) = 0 has d solutions (z1, . . . , zd)
in IFpn linearly independent over IFp, there are pd − 1 nonzero y in IFpn such
that L(y) = 0. Therefore {α ∈ IFpn | X − α right-divides f} has (pd − 1)/(p − 1)
elements. We conclude using an inductive argument.

Remark 2. It could be noted that the number
d∏

i=1

pi − 1
p − 1

is the size of the general

linear group GL(d, p) modulo diagonal matrices, and corresponds to choosing a
set of 1-dimensional vector spaces spanning a d-dimensional vector space.

Example 3. (Example 1 continued) The skew polynomial h1 = X2 + a5X + a5

has 3 factorizations into the product of linear monic skew polynomials, namely
h1 = (X + a14) · (X + a6) = (X + a11) · (X + a9) = (X + 1) · (X + a5). The skew
polynomial h2 = X2+aX+a14 has also 3 factorizations into the product of linear
monic skew polynomials, namely h2 = (X+a7)·(X+a7) = (X+a11)·(X+a3) =
(X + a10) · (X + a4).

3 Construction and Enumeration of (θ, ν)-isodual θ-cyclic
and θ-negacyclic Codes of Length n over IFpn

The aim of this section is to construct and to enumerate self-dual θ-cyclic and
θ-negacyclic codes of length n over IFpn where θ is the Frobenius automorphism.
Note that in this setting, θ-cyclic codes are called Gabidulin p-cyclical codes
(page 6 of [12]).

To achieve this construction, we will consider θ-cyclic and θ-negacyclic codes
which are (θ, ν)-isodual.

We introduce some notation. Consider R = IFpn [X; θ]. We will denote, for
ε ∈ {−1, 1} and ν ∈ IF∗

q :

Hν,ε := {h ∈ R | h monic, h� · 1
ν

· h · θk(ν) = Xn − ε}.

According to Corollary 1, the set Hν,ε is the set of the skew check polynomials
of (θ, ν)-isodual (θ, ε)-constacyclic codes. Following Remark 1, the set H1,ε is the
set of the skew check polynomials of self-dual (θ, ε)-constacyclic codes.

3.1 Necessary and Sufficient Existence Condition for (θ, ν)-isodual
θ-cyclic and θ-negacyclic Codes of Length n over IFpn

In [4] a necessary and sufficient condition for the existence of self-dual (θ, ε)-
constacyclic codes over a finite field IFq was derived where θ is an automorphism
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of IFq and ε ∈ {−1, 1}. In what follows we give a necessary and sufficient condi-
tion for the existence of (θ, ν)-isodual (θ, ε)-constacyclic codes of length n over
IFpn where p is a prime number and θ is the Frobenius automorphism.

Proposition 3. Consider k ∈ IN∗, n = 2k, p a prime number, θ : x �→ xp ∈
Aut(IFpn), ε ∈ {−1, 1}.
(i) If p = 2, then there exists a (θ, ν)-isodual θ-cyclic code of length n for all ν

in IF∗
pn .

(ii) If p is odd, then for ν ∈ IF∗
pn , there exists a (θ, ν)-isodual (θ, ε)-constacyclic

code of length 2k if and only if

ν
pn−1

2 = −ε(−1)k p−1
2 .

Proof. According to Corollary 1, there exists a (θ, ν)-isodual (θ, ε)-constacyclic
code of length n if and only if the set Hν,ε is nonempty.

– Assume that p = 2 (therefore ε = 1) and ν ∈ IF∗
2n . Consider α in IF2n such

that α2 = 1/ν2k−1 = ν
θk(ν)

and h = Xk + α. We have

h� · 1
ν · h · θk(ν) =

(

Xk +
1

θk(α)

)

·
(

Xk +
θk(ν)α

ν

)

= X2k + θk

(
1
α

+ α
θk(ν)

ν

)

Xk +
θk(ν)α
θk(α)ν

.

As ν/θk(ν) = α2, we obtain

h� · 1
ν

· h · θk(ν) = X2k +
1

αθk(α)
.

As θ(α) = α2 = ν
θk(ν)

, we obtain θk+1(α) = θk(ν)
ν , θ(α)θk+1(α) = 1 and

αθk(α) = 1. Therefore the skew polynomial h belongs to Hν,ε.
– Assume that p is odd and ν

pn−1
2 = −ε(−1)k p−1

2 .
We have

(− θk(ν)
ν )(p

n−1)/2 = (−1)(p
n−1)/2 θk(ν(pn−1)/2)

ν(pn−1)/2

= (−1)(p
n−1)/2

= 1 (because p is odd, therefore p2 ≡ 1 (mod 4) and
pn ≡ 1 (mod 4)).

Therefore − ν
θk(ν)

is a square. Consider α such that − ν
θk(ν)

= α2. Consider
h = Xk + α in R.

h� · 1
ν · h · θk(ν) =

(

Xk +
1

θk(α)

)

·
(

Xk +
θk(ν)α

ν

)

= X2k + θk

(
1
α

+ α
θk(ν)

ν

)

Xk +
θk(ν)α
θk(α)ν

.
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As ν/θk(ν) = −α2, we obtain

h� · 1
ν

· h · θk(ν) = X2k +
θk(ν)α
θk(α)ν

.

Furthermore

θk(ν)α
θk(α)ν

= θk(ν)
ν

(
− θk(ν)

ν

) pk−1
2

(because −θk(ν)/ν = 1/α2)

= (−1)
pk−1

2 ν
pn−1

2

= −ε (because ν
pn−1

2 = −ε(−1)k p−1
2 ).

Therefore

h� · 1
ν · h · θk(ν) = Xn − ε.

– Assume that p is odd and that there exists a (θ, ε)-constacyclic code of length
2k which is (θ, ν)-isodual. Consider h its skew check polynomial and h0 the
constant term of h. Necessarily the degree of h is equal to k.
As the code is (θ, ε)-constacyclic of length 2k, h right-divides X2k − ε. As the
code is defined over IFp2k with θ : x �→ xp, X2k − ε is central of degree 1 in
IFp[X2k] and h is the product of k linear skew polynomials X+α1, . . . , X+αk

right-dividing X2k − ε. Therefore h0 is the product of the k constant terms
α1, . . . , αk. As N2k(−αi) = ε, we have:

N2k(h0) = εk = Nk(h0)Nk(θk(h0)).

As the code is (θ, ν)-isodual, we have h� · 1
ν · h · θk(ν) = Xn − ε and

h0θ
k(ν) + εθk(h0)ν = 0.

As Nk(h0)Nk(θk(h0)) = εk, we obtain Nk(h0)2(−ε)k N2k(ν)
Nk(ν)2

= εk and

N2k(ν) = (−1)kNk(ν/h0)2.

Furthermore, θ(Nk(ν/h0)) = Nk(ν/h0)
θk(ν/h0)

ν/h0
= Nk(ν/h0)(−ε). Therefore

we have
Nk(ν/h0)p−1 = −ε. To conclude, if p is odd,

ν
pn−1

2 = N2k(ν)(p−1)/2 = (−1)k p−1
2 Nk(ν/h0)p−1 = −ε(−1)k p−1

2 .

Remark 3. Consider k ∈ IN∗, n = 2k, p an odd prime number, θ : x �→ xp ∈
Aut(IFpn), ε ∈ {−1, 1}. According to Proposition 3 and Remark 1, there exists
a self-dual (θ, ε)-constacyclic code of length n = 2k over IFpn if and only if
1 = −ε(−1)k p−1

2 . We therefore obtain the previous result of Proposition 5 of [4]:
if p is odd, there exists a self-dual θ-cyclic code of dimension k if and only if p ≡ 3
(mod 4) and k is odd; there exists a self-dual θ-negacyclic code of dimension k
if and only if p ≡ 1 (mod 4) or p ≡ 3 (mod 4) and k even.
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The existence result of Proposition 3 is not constructive and the aim of what
follows is to design a construction of the set Hν,ε based on the construction of
the sets H̃μ,ε defined for μ ∈ IF∗

pn by

H̃μ,ε := {h ∈ R | h ∈ Hh0/μ,ε}.

Thanks to factorization properties of the elements of H̃μ,ε, we will give both
a construction and an enumeration formula.

3.2 Construction and Enumeration Formula for the Set H̃μ,ε

The following technical lemma (Lemma 3) will be useful for the construction of
H̃μ,ε (Proposition 4).

Lemma 3. Consider k ∈ IN∗, n = 2k, p a prime number, θ : x �→ xp ∈
Aut(IFpn), R = IFpn [X; θ], P ∈ R and � ∈ {0, . . . , k} such that Θk+�(P ∗) = P
and deg(P ) = 2k−2�. If X+α right-divides P then there exists Q ∈ R satisfying
the two following properties:

1. P = Θk−�−1((X + α)∗) · Q · (X + α);
2. Θk+�+1(Q∗) = Q.

Proof. Consider f ∈ R such that P = f · (X + α).

1. Let us prove that P = Θk−1−�((X + α)∗) · Θk+�(f∗) and that X + α right-
divides Θk+�(f∗).
As P = f · (X + α), according to Lemma 1, we have P ∗ = Θ2k−2�−1((X +
α)∗) · f∗. Therefore P = Θk+�(P ∗) = Θk−�−1((X + α)∗) · Θk+�(f∗).
Denote K = k − � and f =

∑2K−1
j=0 ajX

j , then

f∗ =
2K−1∑

j=0

θ2K−1−j(aj)X2K−1−j .

Consider β = −θK(α), then X + α right-divides Θk+�(f∗) if and only if f∗

cancels at β.
Let us prove that

K−1∑

j=0

θ2K−1−j(aj)N2K−1−j(β) = −
2K−1∑

j=K

θ2K−j−1(aj)N2K−j−1(β).

As P = f · (X + α) = ΘK−1((X + α)∗) · ΘK+2�(f∗), we obtain:
∀j ∈ {1, . . . , K},

aj−1 =
j∑

i=1

Ni−1(−α)
Nj(−α)

θK(θ2�+i−1(a2K−i) + αθ2�+i−1(a2K−i+1)).
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Therefore, we get:

K−1∑

j=0

θ2K−1−j(aj)N2K−1−j(β) =

=
K∑

j=1

θ2K−j(aj−1)N2K−j(β)

= −
K∑

j=1

N2K−j(β)θ2K−j

(
j∑

i=1

Ni−1(−α)
Nj(−α)

θK(θ2�+i−1(a2K−i) +

αθ2�+i−1(a2K−i+1))
)

= −
K∑

j=1

N2K−j(β)
j∑

i=1

θK−j

(
Ni−1(β)
Nj(β)

)

θ3K−j
(
θ2�+i−1(a2K−i) +

αθ2�+i−1(a2K−i+1)
)

= −
K∑

i=1

K∑

j=i

N2K−j(β)θK−j

(
Ni−1(β)
Nj(β)

)

θi+K−j−1(a2K−i)

−
K−1∑

i=1

K∑

j=i+1

N2K−j(β)θK−j

(
Ni(β)
Nj(β)

)

θi+K−j(a2K−i)θ3K−j(α)

= −
K∑

i=1

NK(β)
Ni−1(β)
NK(β)

θi−1(a2K−i)

−
K−1∑

i=1

K−1∑

j=i

(
N2K−j(β)θK−j

(
Ni−1(β)
Nj(β)

)
θi+K−j−1(a2K−i)

+N2K−(j+1)(β)θK−(j+1)
(

Ni(β)
Nj+1(β)

)
θi+K−j−1(a2K−i) θ3K−j−1(α)

)

= −
K∑

i=1

Ni−1(β)θi−1(a2K−i)

−
K−1∑

i=1

K−1∑

j=i

(

N2K−j−1(β) θK−j−1

(
Ni(β)

Nj+1(β)

)

θi+K−j−1(a2K−i)

(θ2K−j−1(β) + θ3K−j−1(α))
)
.

As β = −θK(α), we obtain θ2K−j−1(β) + θ3K−j−1(α) = 0. Therefore
K−1∑

j=0

θ2K−1−j(aj)N2K−1−j(β) = −
K∑

i=1

Ni−1(β)θi−1(a2K−i)

= −
2K−1∑

j=K

θ2K−j−1(aj)N2K−j−1(β).

We conclude that f∗(β) = 0 and that X + α right-divides Θk+�(f∗). We
deduce the existence of a skew polynomial Q such that Θk+�(f∗) = Q·(X+α)
and we obtain P = Θk−1−�((X + α)∗) · Q · (X + α).
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2. Let us prove that Q = Θk+1+�(Q∗). According to Lemma 1, as Θk+�(f∗) =
Q · (X + α), we obtain f = Θk−1−�((X + α)∗) · Θk+1+�(Q∗). Therefore P =
Θk−1−�((X + α)∗) · Q · (X + α) = Θk−1−�((X + α)∗) · Θk+1+�(Q∗) · (X + α)
and Q = Θk+1+�(Q∗).

We are now giving a construction and an enumeration formula for the sets
H̃μ,ε (Proposition 4 and Algorithm 1).

Proposition 4. Consider k ∈ IN∗, n = 2k, p a prime number, θ : x �→ xp ∈
Aut(IFpn), R = IFpn [X; θ], ε ∈ {−1, 1}, μ ∈ IF∗

pn and Pk = −με(X2k − ε) ∈ R.
The set H̃μ,ε is nonempty if and only if θk(μ) + εμ = 0. In this case we have

H̃μ,ε = {(X + α1) · · · (X + αk) | X + αk right-divides Pk

X + αk−1 right-divides Pk−1(αk)
...
X + α1 right-divides P1(α2, . . . , αk)}

where for i = k, k − 1, . . . , 2, Pi−1(αi, . . . , αk) is the quotient in the left-division
of Qi−1 by Θi−1((X + αi)∗) and Qi−1 the quotient in the right-division of
Pi(αi+1, . . . , αk) by X + αi:

Pi(αi+1, . . . , αk) = Θi−1((X + αi)∗) · Pi−1(αi, . . . , αk)
︸ ︷︷ ︸

Qi−1

·(X + αi). (5)

Furthermore H̃μ,ε has
∏k

i=1(p
i + 1) elements.

Proof. Consider h in H̃μ,ε and ν = h0/μ then h∗ · 1
ν · h = θk(h0) · h� · 1

ν · h =
θk(h0) · (Xn − ε) · 1

θk(ν)
= Pk. Furthermore, Θk(P ∗

k ) = −(1 − εXn) · (εθk(μ)) =
(Xn − 1)(−εμ) = Pk. As Xn − ε is central in R of degree one in IFp[Xn], the
skew polynomial h is the product of k linear factors right-dividing Xn − ε and
therefore Pk: h = (X + α1) · · · (X + αk). As the skew polynomial X + αk right-
divides Pk, according to Lemma 3 applied to P = Pk and � = 0, there exists
Pk−1(αk) = Pk−1 ∈ R such that

Pk = Θk−1((X + αk)∗) · Pk−1 · (X + αk)

and Θk+1(P ∗
k−1) = Pk−1. Consider H = (X + α1) · · · (X + αk−1), according to

Lemma 1, we have h∗ = Θk−1((X + αk)∗) · H∗. We obtain

Θk−1((X + αk)∗) · Pk−1 · (X + αk) = Θk−1((X + αk)∗) · H∗ · 1
ν

· H · (X + αk).

Therefore Pk−1 = H∗ · 1
ν · H and X + αk−1 right-divides Pk−1. We conclude

using an inductive argument and Lemma 3.
Conversely, consider h = (X + α1) · · · (X + αk) in R such that X + αi right-

divides Pi(αi+1, . . . , αk) defined by (5). According to Lemma 3, Θk+1(P ∗
k−1) =
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Pk−1, . . . , Θ
2k−1(P ∗

1 ) = P1; furthermore, as X + α1 right-divides P1, there exist
P0 such that P1 = (X + α1)∗ · P0 · (X + α1). According to Lemma 1, h∗ =
Θk−1((X + αk)∗) · · · Θ0((X + α1)∗). Therefore, we obtain h∗ · P0 · h = Pk. In
particular, the constant term of both polynomials is P0h0 = μ. Considering
ν = h0/μ, we obtain h∗ · 1ν ·h = −εμ(Xn−ε) and h� · 1ν ·h·θk(ν) = − 1

θk(h0)
εμ(Xn−

ε) · θk(ν) = − 1
θk(μ)

εμ(Xn − ε) = Xn − ε.

Let us determine the cardinality of H̃μ,ε. According to Lemma 2, the number
of factorizations (as a product of k linear monic factors) of any monic skew
polynomial of degree k right-dividing Xn − ε in R is

∏k
i=1

pi−1
p−1 . Furthermore,

as Pi has degree 2i and right-divides Xn − ε, the number of αi ∈ IFq such that
X + αi right-divides Pi is p2i−1

p−1 . The number of elements of H̃μ,ε is therefore

∏k
i=1

p2i−1
p−1

∏k
i=1

pi−1
p−1

=
k∏

i=1

(pi + 1).

Algorithm 1. Construction of the set H̃μ,ε

Require: : μ in IF∗
pn such that θk(μ) + εμ = 0

Ensure: : H̃μ,ε

1: Pk ← −εμ(Xn − ε)
2: S ← ∅
3: Construct the sequences (αi, Pi−1)i=k,...,1 such that

– X + αi right-divides Pi;
– Pi−1 is the quotient in the left-division of Qi−1 by Θi−1((X+αi)

∗) where Qi−1

is the quotient in the right-division of Pi by X + αi.

4: for each sequence (α1, . . . , αk) do
5: S ← S ∪ {(X + α1) · · · (X + αk)}
6: end for
7: return S

Example 4. Consider IF24 = IF2(a) with a4 + a + 1 = 0 and n = 4. For μ ∈
{1, a5, a10}, H̃μ,1 has 15 elements:

H̃1,1 = {X2 + a14 X + a,X2 + a X + a14,X2 + a11 X + a4,X2 + a2 X +
a13,X2 + a13 X + a2,X2 + a4 X + a11,X2 + a5 X + a10,X2 + 1,X2 + a8 X +
a7,X2 + a9,X2 + a7 X + a8,X2 + a12,X2 + a3,X2 + a6,X2 + a10 X + a5},

H̃a5,1 = {X2 + a5 X + a5,X2 + a14 X + a11,X2 + a6 X + a4,X2 + a8 X +
a2,X2+a11 X +a14,X2+X +a10,X2+a2 X +a8,X2+1,X2+a3 X +a7,X2+
a9 X + a,X2 + a9,X2 + a12 X + a13,X2 + a12,X2 + a3,X2 + a6},

H̃a10,1 = {X2 + a10 X + a10,X2 + a13 X + a7,X2 + a12 X + a8,X2 + a9 X +
a11,X2 +X +a5,X2 +a X +a4,X2 +1,X2 +a6 X +a14,X2 +a3 X +a2,X2 +
a9,X2 + a4 X + a,X2 + a12,X2 + a7 X + a13,X2 + a3,X2 + a6}.
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3.3 Enumeration of (θ, ν)-isodual and Self-dual θ-cyclic
and θ-negacyclic Codes

From Proposition 4, we deduce the number of (θ, ε)-constacyclic codes of length
2k which are (θ, ν)-isodual. Let us first consider the particular case when k = 1:

Example 5. Consider k = 1, n = 2. If p = 2 and ν ∈ IF∗
22 , then Hν,ε = {X + α}

where α2 = ν. If p is odd and ν
p2−1

2 = −ε(−1)
p−1
2 , then Hν,ε = {X + α | α2 =

−νp−1}. Namely, consider h = X + α ∈ R, then

h� · ν · h · 1
θ(ν) = (X +

1
θ(α)

) · (X +
να

θ(ν)
)

= X2 +
ν + θ(ν)θ(α2)

θ(α)ν
X +

να

θ(να)
.

Therefore h belongs to Hν,ε if and only if α2 = −θ(ν)/ν.

Proposition 5. Consider k ∈ IN∗, n = 2k, p a prime number, θ : x �→ xp ∈
Aut(IFpn), ε ∈ {−1, 1} and ν ∈ IF∗

pn . If ν
pn−1

2 = −ε(−1)k p−1
2 then the number of

(θ, ν)-isodual (θ, ε)-constacyclic codes of length n over IFpn is

N
k−1∏

i=1

(pi + 1)

where N = 1 if p = 2 and N = 2 if p is odd.

Proof. We first prove that for ν in IF∗
pn , if Hν,ε is nonempty, then its cardinality

does not depend on ν. Consider ν, ν′ in IF∗
pn such that

ν
pn−1

N = (ν′)
pn−1

N = −ε(−1)k p−1
N .

Then according to Proposition 3, Hν,ε and Hν′,ε are nonempty. Consider ξ = ν
ν′

and a a square root of θk(ξ). As ξ
pn−1

N = 1, a is well defined. The application

f :
{Hν,ε → Hν′,ε

h �→ 1
θk(a)

· h · a

is also well defined: namely, consider for h in Hν,ε, H = 1
θk(a)

· h · a, then H∗ =
(h · a)∗ · 1

θk(a)
= θk(a) · h∗ · 1

θk(a)
. Therefore H� = θk(θk(a)/(h0a))θk(a)θk(h0) ·

h� · 1
θk(a)

= a · h� · 1
θk(a)

and H� · 1
ν′ · H · θk(ν′) =

a · h� · 1

θk(a)
· ξ

ν

1

θk(a)
· h · aθk(ν′) = a · h� · 1

ν
· h · a

θk(ν)

θk(ξ)
= a(Xn − ε)

a

θk(ξ)
= Xn − ε.

Therefore H belongs to Hν′,ε.
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Consider H in Hν′,ε then h = θk(a)H · 1
a is the unique pre-image of H in

Hν,ε. Therefore f is bijective and all nonempty sets Hν,ε have the same number
of elements, M : for all ν in IFpn such that ν

pn−1
N = −ε(−1)k p−1

N , the number of
(θ, ν)-isodual (θ, ε)-constacyclic codes of length 2k is M . Furthermore, we have

∀h ∈ R, (∃μ : h ∈ H̃μ,ε ⇔ ∃μ : h ∈ Hh0μ,ε ⇔ ∃ν : h ∈ Hν,ε). (6)

Therefore

∪μH̃μ,ε = ∪νHν,ε.

Now consider the union of the intersections H̃μ,ε∩H̃μ′,ε for μ �= μ′ and H̃μ,ε, H̃μ′,ε
nonempty. We have, according to (6):

⋃

μ�=μ′
(H̃μ,ε ∩ H̃μ′,ε) =

⋃

ν �=ν′
(Hν,ε ∩ Hν′,ε).

Similarly, we get
⋃

μ�=μ′ �=μ′′
(H̃μ,ε ∩ H̃μ′,ε ∩ H̃μ′′,ε) =

⋃

ν �=ν′ �=ν′′
(Hν,ε ∩ Hν′,ε ∩ Hν′′,ε) . . .

...

where the involved sets Hν,ε and H̃μ,ε are nonempty. Furthermore, #(∪μH̃μ,ε) =
∑

μ #H̃μ,ε−
∑

μ�=μ′ #(H̃μ,ε∩H̃μ′,ε)+
∑

μ�=μ′ �=μ′′ #(H̃μ,ε∩H̃μ′,ε∩H̃μ′′,ε)−· · · and
#(∪νHν,ε) =

∑
ν #Hν,ε − ∑

ν �=ν′ #(Hν,ε ∩ Hν′,ε) +
∑

ν �=ν′ �=ν′′ #(Hν,ε ∩ Hν′,ε ∩
Hν′′,ε) − · · · . Therefore

∑

μ

#H̃μ,ε =
∑

ν

#Hν,ε.

Lastly, according to Proposition 4, the pk − 1 nonempty sets H̃μ,ε all have
∏k

i=1(1 + pi) elements. As the p2k−1
N nonempty sets Hν,ε all have M elements,

we obtain

k∏

i=1

(1 + pi) (pk − 1) = M
p2k − 1

N
.

Example 6. Consider the (θ, ν)-isodual θ-cyclic codes of length 4 over IF24 =
IF2(a) where a4 +a+1 = 0. For μ ∈ {1, a5, a10}, H̃μ,1 has 15 elements (Example
4) and

⋃ H̃μ,1 =
⋃ Hν,ε has 35 elements. For ν ∈ IF∗

24 ,Hν,ε has 3 elements: there
are 3 (θ, ν)-isodual θ-cyclic codes:

H1,1 = {X2 + 1,X2 + a10 X + a10,X2 + a5 X + a5}, Ha14,1 = {X2 + a X +
a14,X2+a9,X2+a6 X+a4}, Ha13,1 = {X2+a2 X+a13,X2+a12 X+a8,X2+a3},
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Ha12,1 = {X2 + a8 X + a2,X2 + a13 X + a7,X2 + a12}, Ha11,1 = {X2 + a9 X +
a,X2 + a6,X2 + a4 X + a11}, Ha10,1 = {X2 +1,X2 +X + a5,X2 + a5 X + a10},
Ha9,1 = {X2 + a X + a4,X2 + a11 X + a14,X2 + a9}, Ha8,1 = {X2 + a7 X +
a8,X2+a12 X+a13,X2+a3}, Ha7,1 = {X2+a8 X+a7,X2+a12,X2+a3 X+a2},
Ha6,1 = {X2 +a14 X +a11,X2 +a4 X +a,X2 +a6}, Ha5,1 = {X2 +1,X2 +X +
a10,X2 + a10 X + a5}, Ha4,1 = {X2 + a11 X + a4,X2 + a9,X2 + a6 X + a14},
Ha3,1 = {X2 + a2 X + a8,X2 + a7 X + a13,X2 + a3}, Ha2,1 = {X2 + a3 X +
a7,X2+a13 X+a2,X2+a12}, Ha,1 = {X2+a14 X+a,X2+a9 X+a11,X2+a6}.

We check that
⋃

μ�=μ′
(H̃μ,1 ∩ H̃μ′,1) =

⋃

ν �=ν′
(Hν,ε ∩ Hν′,ε) = {X2 + 1, X2 + a9, X2 + a3, X2 + a12, X2 + a6},

H̃1,1 ∩ H̃a5,1 ∩ H̃a10,1 =
⋃

ν �=ν′ �=ν′′
(Hν,ε ∩ Hν′,ε ∩ Hν′′,ε)

= {X2 + 1,X2 + a9,X2 + a3,X2 + a12,X2 + a6},

∅ =
⋃

ν �=ν′ �=ν′′ �=ν′′′
(Hν,ε ∩ Hν′,ε ∩ Hν′′,ε ∩ Hν′′′,ε).

In [5], a formula for the number of self-dual (θ, ε)-constacyclic codes of length
n is given over IFp2 ⊂ IFpn when ε2 = 1. In what follows, we deduce from
Proposition 5 the number of self-dual (θ, ε)-constacyclic codes of length n over
IFpn .

Proposition 6. Consider k ∈ IN∗, n = 2k, ε ∈ {−1, 1}, p a prime number and
θ : x �→ xp ∈ Aut(IFpn). If p = 2, there are

∏k−1
i=1 (pi +1) self-dual θ-cyclic codes

of length n over IFpn . If p �= 2, and if (−1)k p−1
2 ε = −1, there are 2

∏k−1
i=1 (pi + 1)

self-dual (θ, ε)-constacyclic codes of length n over IFpn .

Proof. Self-dual (θ, ε)-constacyclic codes are (θ, 1)-isodual (θ, ε)-constacyclic
codes. The result follows from Proposition 5.

Example 7. There are 3 self-dual θ-cyclic codes of length 4 over IF24 , given in
Example 6 by H1,1. There are 15 self-dual θ-cyclic codes of length 6 over IF26 =
IF2(a) where a6 + a4 + a3 + a + 1 = 0. Their skew check polynomials are:
X3+a52X2+a23X+a54, X3+X2+a9X+a36, X3+a36 X2+a36 X+a45, X3+1,
X3+a19 X2+a29 X +a27, X3+a41 X2+a46 X +a45, X3+a18 X2+a18 X +a54,
X3 + a21 X2 + a42 X + 1, X3 + a26 X2 + a43 X + a27, X3 + a9 X2 + a9 X + a27,
X3 + a42 X2 + a21 X +1, X3 + a13 X2 + a53 X + a45, X3 + a38 X2 + a58 X + a54,
X3 + X2 + a18 X + a9 and X3 + X2 + a36 X + a18.
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Algorithm 2. (θ, ν)-isodual (θ, ε)-constacyclic codes of length n over IFpn

Require: : k ∈ IN∗, n = 2k, p, prime number, ε ∈ {−1, 1}, ν ∈ IF∗
pn

Ensure: : Hν,ε: the set of the skew check polynomials h of (θ, ν)-isodual (θ, ε)-
constacyclic codes of length n and dimension k over IFpn .

1: S ← ∅
2: for μ in IF∗

pn such that θk(μ) + εμ = 0 do
3: Pk ← −εμ(Xn − ε)
4: Construct the sequences (αi, Pi−1) for i = k, . . . , 1 such that

– X + αi right-divides Pi;
– Pi−1 is the quotient in the left-division of Qi−1 by Θi−1((X + αi)

∗) where
Qi−1 is the quotient in the right-division of Pi by X + αi;

– P0 = μ/
∏k

i=1 αi = ν.

5: for each (α1, . . . , αk) do
6: S ← S ∪ {(X + α1) · · · (X + αk)}
7: end for
8: end for
9: return S

4 A Construction of Self-dual θ-cyclic Codes over IFpn

Which are Gabidulin Evaluation Codes

We consider here a special subfamily of self-dual θ-cyclic codes of length n over
IFpn which are in fact Gabidulin evaluation codes and therefore Maximum Rank
Distance (MRD) codes (see [12] for the theory of MRD codes). In previous sec-
tions we have provided a construction of self-dual codes based on the factoriza-
tion of the skew check polynomials into the product of linear skew polynomials.
Here we change the point of view by writting the skew generator polynomials
as least common left multiples (lclm) of special linear skew polynomials, namely
skew polynomials of the form X − θi(α).

Definition 3. [12] Consider k ≤ n ∈ IN∗, p a prime number, θ : x �→ xp

∈ Aut(IFpn), y1, . . . , yn ∈ IFpn linearly independent over IFp. The Gabidulin eval-
uation code of length n, dimension k and support (y1, . . . , yn) is the code with
generator matrix

G =

⎛

⎜
⎜
⎜
⎝

y1 y1 . . . yn

θ(y1) θ(y2) . . . θ(yn)
...

θk−1(y1) θk−1(y2) . . . θk−1(yn)

⎞

⎟
⎟
⎟
⎠

. (7)

The following Proposition 7 can be found in [9] (Proposition 3, part 1).

Proposition 7 (Proposition 3 of [9]). Consider k ≤ n ∈ IN∗, p a prime num-
ber, θ : x �→ xp ∈ Aut(IFpn), R = IFpn [X; θ], α ∈ IFpn , ε = Nn(α). Assume that
ε2 = 1 and that 1, α,N2(α), . . ., Nn−1(α) are linearly independent over IFp. The
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θ-cyclic code of length n and skew generator polynomial g = lclm0≤i≤k−1(X −
θi(α)) is the dual of the Gabidulin evaluation code of length n, dimension k and
support (1, α,N2(α), . . . , Nn−1(α)).

Proof. Consider c = (c0, . . . , cn−1) ∈ IFn
pn . The word c belongs to the θ-cyclic

code generated by g if and only if for all i in {0, . . . , k−1}, X−θi(α) right-divides
g. As the remainder in the right division of c by X−θi(α) is

∑n−1
j=0 cjNj(θi(α)) =

∑n−1
j=0 cjθ

i(Nj(α)), we obtain that a check matrix for the code is the matrix G
given by (7) where y1 = 1, y2 = α, . . . , yn = Nn−1(α).

According to Theorem 4.10 of [15], if a Gabidulin evaluation code of length 2k
and dimension k is self-dual then p ≡ 3 (mod 4) and k is odd. In what follows
we construct a family of self-dual Gabidulin evaluation codes parameterized by
an element α of IFpn .

Proposition 8. Consider k ∈ IN∗, n = 2k, p a prime number, θ : x �→ xp

∈ Aut(IFpn), R = IFpn [X; θ], α ∈ IFpn such that Nn(α) = 1 and 1, α,N2(α), . . . ,
Nn−1(α) are linearly independent over IFp. The θ-cyclic code of length n and
skew generator polynomial g = lclm0≤i≤k−1(X − θi(α)) is self-dual if and only
if

∑n−1
i=0 Ni(α)1+p�

= 0,∀� ∈ {0, . . . , k − 1}.
Proof. The code is self-dual if and only if the lines of G are pairwise orthogonal
i.e. GGT = 0 where G is the matrix defined by (7) with y1 = 1, y2 = α, . . . , yn =
Nn−1(α).

Example 8. For p = 3 and k = 3, according to Proposition 5, there are 80
self-dual θ-cyclic codes of length 6 over IF33 . The polynomial system

⎧
⎨

⎩

∑6
i=0 Ni(α)2 = 0

∑6
i=0 Ni(α)4 = 0

∑6
i=0 Ni(α)10 = 0

has 18 solutions α: a580, a406, a378, a436, a124, a8, a648, a126, a388, a216, a42, a72,
a14, a284, a24, a372, a488, a490 and we get 18 self-dual θ-cyclic codes generated
by the skew polynomials g = lclm(X − α,X − θ(α),X − θ2(α)). These codes
are self-dual Gabidulin evaluation codes (and therefore self-dual MRD codes).
For example, take α = a8, then g = lclm(X − a,X − θ(a),X − θ2(a)) =
X3 +a185X2 +a383X +a322 generates a self-dual θ-cyclic code of length 6 which
is the Gabidulin evaluation code of dimension 3 and support (1, a, . . . , N5(a)) =
(1, a8, a32, a104, a320, a240).

An open question is to determine the number of self-dual θ-cyclic codes generated
by g = lclm0≤i≤k−1(X − θi(α)) over IFpn with n = 2k. More generally, it could
be interesting to construct and count self-dual θ-cyclic codes which are MRD.
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5 Conclusion

This note was devoted to the construction of self-dual θ-constacyclic codes of
length n over IFpm when m is equal to n and θ is the Frobenius automorphism
over IFpn . This work completes previous works on self-dual θ-constacyclic codes
over IFpm when m = 1 (then θ is the identity and codes are classical constacyclic
codes) and when m = 2. As a further work, it could be interesting to study the
cases when 2 < m < n and to have a more general classification only based on
the order of the automorphism θ in Aut(IFpn).

Acknowledgments. The authors thank the referees for their fruitful remarks. The
second author is supported by the French government “Investissements d’Avenir” pro-
gram ANR-11-LABX-0020-01.
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Abstract. We deal with two problems related with the use of the
Sakata’s algorithm in a specific class of bivariate codes (see [2,8,9]).
The first one is to improve the general framework of locator decoding
in order to apply it on such abelian codes. The second one is to find
sufficient conditions to guarantee that the minimal set of polynomials
given by the algorithm is exactly a Groebner basis of the locator ideal.
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1 Introduction

The Sakata algorithm (or Berlekamp-Massey-Sakata algorithm, BMSa, for short)
is one of the best known procedures to find Groebner basis (see [4,11]) for the so
called ideal of linear recurrence relations on a doubly periodic array [7,8]. It is
specially used for decoding algebraic geometric codes [2,10]. Another use of the
BMSa, which is also well-known but less studied or understood, may be found in
the context of the locator decoding method for general bivariate abelian codes
[2,9].

This paper deals with two questions related with the use of the Sakata’s
algorithm in bivariate codes. Firstly, we give an improvement of the framework
for applying the locator decoding algorithm in a class of abelian codes that we
call Hyperbolic-like abelian codes. Secondly, and in our opinion the main goal
of this paper, we give a sufficient condition to guarantee that the minimal set of
polynomials (given by the algorithm) is exactly the Groebner basis of the ideal
of linear recurrence relations, and so, to get the defining set for the locator ideal
(see [8, Section 6]). This condition is given in terms of the defining sets of these
codes. This paper is a portion of a study in progress of the BMSa in a more
general frame.
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2 Bivariate Codes

Let F be a finite field with q elements, with q a power of a prime number, let ri

be positive integers, for i ∈ {1, 2}, and r = r1 · r2. We denote by Zri
the ring of

integers modulo ri. We always write its elements as canonical representatives.
When necessary we write a ∈ Zk for any a ∈ Z.

A bivariate code, or 2-dimensional abelian code, of length r (see [6]) is
an ideal in the algebra F(r1, r2) = F[X1,X2]/〈Xr1

1 − 1,Xr2
2 − 1〉. Throughout

this work, we assume that this algebra is semisimple; that is, gcd(ri, q) = 1,
for i ∈ {1, 2}. The codewords are identified with polynomials. The weight of a
codeword c is denoted by ω(c). We denote by I the set Zr1 × Zr2 and we write
the elements f ∈ F(r1, r2) as f =

∑
amXm, where m = (m1,m2) ∈ I and

Xm = Xm1
1 · Xm2

2 . Given a polynomial f ∈ F[X1,X2], we denote by f its image
under the canonical projection onto F(r1, r2), when necessary.

For each i ∈ {1, 2}, we denote by Rri
(resp. Rri

) the set of ri-th roots of unity
(resp. ri-th primitive roots of unity) and define R = Rr1 ×Rr2 (R = Rr1 ×Rr2).
Throughout this paper, we fix L|F as a extension field containing Rri

.
For f = f(X1,X2) ∈ F[X1,X2] and ᾱ = (α1, α2) ∈ R, we write f(ᾱ) =

f(α1, α2). For m = (m1,m2) ∈ I, we write ᾱm = (αm1
1 , αm2

2 ).
It is a known fact that, in the semi simple case, every abelian code C in

F(r1, r2) is totally determined by its root set or set of zeros, namely

Z(C) = {ᾱ ∈ R | f(ᾱ) = 0, for all f ∈ C} .

For a fixed ᾱ ∈ R, the code C is determined by its defining set, with respect
to ᾱ, which is defined as

Dᾱ(C) = {m ∈ I | ᾱm ∈ Z(C)} .

It is easy to see that the notions of set of zeros and defining set may be considered
for any set of either polynomials or ideals in F(r1, r2) (or L(r1, r2)); moreover, it
is known that for any G ⊂ F(r1, r2) (or L(r1, r2)) and α ∈ R we have Dα(G) =
Dα(〈G〉). In [2,4], the defining set is considered for ideals P in L[X]. From the
definition, we have Dα(P ) = Dα(P ), where P ∈ L[X] is the canonical projection
of P onto L(r1, r2).

We also recall the extension of the concept of q-cyclotomic coset of an integer
to two components.

Given an element (a1, a2) ∈ I, we define its q-orbit modulo (r1, r2) as

Q(a1, a2) =
{(

a1 · qi, a2 · qi
) | i ∈ N

} ⊆ I = Zr1 × Zr2 . (1)

It is easy to see that for every abelian code C ⊆ F(r1, r2), Dα (C) is closed
under multiplication by q in I, and then Dα(C) is necessarily a disjoint union
of q-orbits modulo (r1, r2). Conversely, every union of q-orbits modulo (r1, r2)
defines an abelian code in F(r1, r2). For the sake of simplicity we only write
q-orbit, and the tuple of integers will be clear from the context.
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3 Apparent Distance and Multilevel Bound

In [2, p. 1614] Blahut considered hyperbolic codes with multilevel bound δ, that
is, bivariate codes in F(r1, r2) whose defining set with respect to α is

Dᾱ(C) = {(i, j) ∈ I | (i + 1)(j + 1) ≤ δ} .

For this family of codes it has been proved that δ is a lower bound for the
minimum distance. From this idea we are considering bivariate codes in F(r1, r2)
whose defining sets contain some sets very similar to those used for the definition
of hyperbolic codes. In detail, we take δ ∈ N and define

Bδ = {(i, j) ∈ I | (i + 1)(j + 1) ≤ δ} \ {(δ − 1, 0), (0, δ − 1)} (2)

Now, for any m ∈ I we set m+Bδ = {m+ a | a ∈ Bδ} ⊂ I. We shall see that
every abelian code having a subset (m+Bδ) ⊂ Dᾱ(C) verifies that δ ≤ d(C). To
do this, we shall use the Algorithm 1 in [1, p. 662] to compute a bound for the
minimum strong apparent distance (msd) of the matrix afforded by Dᾱ(C) (see
[1,3]); that is, M = (an)n∈I where an = 1 if n �∈ Dᾱ(C) and an = 0 otherwise.
In fact we prove the following lemma.

Lemma 1. Let m = (m1,m2) ∈ I and 0 �= M = (an)n∈I such that an = 0 for
all n ∈ m + Bδ, with δ ∈ N. Then the strong apparent distance of M , denoted by
sd∗(M) [1, Definition 10], satisifies sd∗(M) ≥ δ.

Proof. We shall follow the notation in [1, Remark 11]. Let Ri the i-th row of
M . Then m + {(0, 0), . . . , (0, δ − 2)} ⊂ Rm1 modulo r1, for some m1 ∈ Zr1 . If
Rm1 �= 0 then εM (X1) ≥ sd∗(Rm1) ≥ δ and hence sd∗(M) ≥ δ. So, suppose
that 0 = Rm1 = . . . = Rm1+k and Rm1+k+1 �= 0, for 0 ≤ k < δ − 2. Then

εM (X1) ≥ sd∗ (
Rm1+k+1

) ≥
(

 δ

k+2� + 1
)

and ωM (X1) ≥ k +1. Then sd∗(M) ≥
(

 δ

k+2� + 1
)

(k + 2) = 
 δ
k+2�(k + 2) + (k + 2) > δ. If 0 = Rm1 = . . . = Rm1+δ−2

then ωM (X1) ≥ δ − 1 and we are done.

Corollary 1. Let m = (m1,m2) ∈ I and δ ∈ N. Let 0 �= M = (an)n∈I such
that an = 0 for all n ∈ m + Bδ. Then msd(M) ≥ δ.

Consequently if C is a bivariate code in F(r1, r2) such that m + Bδ ⊂ Dᾱ(C)
then d(C) ≥ δ.

Proof. Comes directly from Definition 15, Theorem 16, Algorithm 1 and Theo-
rem 18 in [1], and the lemma above.

4 The Berlekamp-Massey-Sakata Algorithm

As it is commented in [2,7,8,11], the BMSa is an iterative procedure (w.r.t. a
total ordering) in order to construct a Groebner basis for the ideal of polynomials
satisfying some linear recurring relations for a doubly periodic array. Let us
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recall some terminology and some facts about it. We shall introduce some minor
modifications in order to improve its application.

We denote by N the set of natural numbers (including 0) and we define Σ0 =
N×N. We consider the partial ordering in Σ0 given by (n1, n2) � (m1,m2) ⇐⇒
n1 ≤ m1 and n2 ≤ m2. On the other hand, we will use a (total) monomial
ordering [4, Definition 2.2.1], denoted by “≤T ”, as in [8, Section 2]. This ordering
will be either the lexicographic order (with X1 > X2) [4, Definition 2.2.3] or the
(reverse) graded order (with X2 > X1) [4, Definition 2.2.6]. Of course, any result
in this paper may be obtained under the alternative lexicographic or graded
orders. The meaning of “≤T ” will be specified as required.

Definition 1. For s, k ∈ Σ0, we define

1. Σs = {m ∈ Σ0 | s � m},
2. Σk

s = {m ∈ Σ0 | s � m and m <T k} and
3. Δs = {n ∈ Σ0 | n � s}.

Given m,n ∈ Σ0, we define m + n, m − n (provided that n � m) and
n · m, coordinatewise, as it is usual. An infinite array or matrix is defined as
U = (un)n∈Σ0

; where the un will always belong to the extension field L. In
practice, we work with finite arrays defined as infinite doubly periodic (see [8,
p. 324]) and consider subarrays, as follows.

Definition 2. Let U = (un)n∈Σ0
be an infinite array.

1. We say that U is a doubly periodic array of period r1 × r2 if the following
property is satisfied: for n = (n1, n2) and m = (m1,m2) we have that ni ≡ mi

mod ri for i = 1, 2 implies that un = um.
2. If U is a doubly periodic array of period r1 × r2, a finite subarray ul ⊂ U ,

with l ∈ Σ0 is the array ul =
(
um | m ∈ Σl

0 ∩ Δ(r1−1,r2−1)

)

Note that, in the case of period r1 × r2 we may identify I = Zr1 × Zr2 =
Δ(r1−1,r2−1); so that, ul = (um | m ∈ I) for l >T (r1, r2).

As it is well known, every monomial ordering is a well order, so that any
n ∈ Σ0 has a succesor. For the graded order we have

n + 1 =

{
(n1 − 1, n2 + 1) if n1 > 0
(n2 + 1, 0) if n1 = 0

.

In the case of the lexicographic order, we have to introduce, besides the
unique succesor with respect to the monomial ordering, another succesor that
we will only use for the recursion steps over n ∈ Δ(r1−1,r2−1). We also denote it
by n + 1 as follows:

n + 1 =

{
(n1, n2 + 1) if n2 < r2 − 1
(n1 + 1, 0) if n2 = r2 − 1

.
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So, during the implementation of the BMSa (that is, results related with it),
the succesor of n ∈ Δ(r1−1,r2−1) will be donted by n + 1, independently of the
monomial ordering considered.

Now we recall some definitions that may be found in [8, pp. 322–323]. For
any f ∈ L[X] or f ∈ L(r1, r2), we denote the leading power product exponent
of f , with respect to “≤T ” by LP (f). Of course LP (f) ∈ Σ0. For F ⊂ L[X], we
denote LP (F ) = {LP (f) | f ∈ F}.

Definition 3. Let U be a doubly periodic array, f ∈ L[X], n ∈ Σ0 and LP (f) =
s. We write f =

∑
m∈supp(f) fmXm and define

f [U ]n =

⎧
⎪⎨

⎪⎩

∑

m∈supp(f)

fmum+n−s if n ∈ Σs

0 otherwise
.

The equality f [U ]n = 0 will be called a linear recurring relation and in
this case, we will say that the polynomial f is valid for U at n.

Definition 4. Let U be a doubly periodic array and f ∈ L[X] with LP (f) = s.

1. We say that f generates U and write f [U ] = 0, if f [U ]n = 0 at any n ∈ Σ0.
2. For any u = uk ⊂ U , we say that f generates u if f [U ]n = 0 at every n ∈ Σk

s

and we write f [u] = f [uk] = 0. In case Σk
s = ∅ we define f [u] = 0.

3. For any u = uk ⊂ U , we say that f generates u, up to l <T k, if f [ul] = 0.
4. Let u = uk ⊂ U .

(a) We write the set of generating polynomials for u as

Λ(u) = {f ∈ L[X] | f [u] = 0}.

(b) We write the set of generating polynomials for U as

Λ(U) = {f ∈ L[X] | f [U] = 0} ,

which was originally called V ALPOL(U) [8, p. 323].

Remark 1. By results in [2,8,9] we have the following facts:

1. Λ(U) is an ideal of L[X].
2. Setting Λ(U) = {g | g ∈ Λ(U)}, and viewing the elements of L(r1, r2) as

polynomials, we have that the ideal Λ(U) = L(r1, r2) ∩ Λ(U).

Let 0 < d ∈ N and consider the sequence s(1), . . . , s(d) in Σ0 satisfying

s
(1)
1 > . . . > s

(d)
1 = 0 and 0 = s

(1)
2 < . . . < s

(d)
2 . (3)

Now we set

Δi =
{

m ∈ Σ0 | m �
(
s
(i)
1 − 1, s

(i+1)
2 − 1

)}

1≤i≤d−1

= Δ
(s

(i)
1 −1,s

(i+1)
2 −1)

(4)
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and define Δ =
⋃d−1

i=1 Δi, which is called a Δ-set or delta-set, and the elements
s(1), . . . , s(d) are called its defining points.

We denote by F the collection of sets F =
{
f (1), . . . , f (d)

} ⊂ F[X] where
{LP (f (i)) = s(i) | i = 1, . . . , d} satisfy the condition (3). We shall say that the
elements F ∈ F are of type Δ and we denote by Δ(F ) the Δ-sets determined by
them.

Definition 5. Let U be doubly periodic and u = uk ⊂ U . We say that the set
F =

{
f (1), . . . , f (d)

}
is a minimal set of polynomials for u if:

1. F ⊂ Λ(u).
2. F ∈ F; that is Δ(F ) exists.
3. If g ∈ F[X] verifies LP (g) ∈ Δ(F ) then g �∈ Λ(u) (i.e. g[u] �= 0).

We denote by F(u) the collection of the minimal sets of u.
For any minimal set of polynomials F =

{
f (1), . . . , f (d)

}
one may see that

[8, p. 327] the sets Δi in (4) for i ∈ {1, . . . , d−1} always are nonempty and they
are determined by corresponding polynomials that we call g(i). Using this fact,
in each iteration, one may construct a set G = {g(i) | i = 1, . . . , d − 1}.

4.1 The Algorithm

From [2,8,9], we have the following facts:

Remark 2. Let U be a doubly periodic array.

1. For any l ∈ Σ0, ul ⊂ U and F, F ′ ∈ F(ul) we have that Δ(F ) = Δ(F ′), so
that we may write Δ(ul).

2. Δ(ul) ⊆ Δ(U) for all l ∈ Σ0 and if k <T l ∈ Σ0 then Δ(uk) ⊆ Δ(ul).
3. For any l ∈ Σ0, the set Δ(ul) always exists.
4. The set Δ(U) is exactly the footprint (see [2, p. 1615]) of Λ(U), and it is

completely determined by any of its Groebner basis.
5. For any F ∈ F(ul) we have F ⊂ Λ(U) implies 〈F 〉 = Λ(U). In fact, F is a

Groebner basis for Λ(U) by Definition 5 (3) and [4, Definition 2.5].
6. For any F ∈ F(ul), we always may construct a “normalized set” F ′ ∈ F(ul);

that is, satisfying the following property: for any f ∈ F ′ and for all m ∈
supp(f) \ {LP (f)} we have m � LP (f ′), for all f ′ ∈ F ′; that is, m ∈ Δ(ul)
[8, Section 6].

7. As we have commented, for any α ∈ R, the equality Dᾱ

(
Λ(U)

)
= Dᾱ (Λ(U))

holds. Then by [4, Proposition 5.3.1] or [2, p. 1617, Theorem] we have that∣
∣
∣Dᾱ

(
Λ(U)

)∣
∣
∣ = |Δ(U)| (see also [9, p. 1202]).

8. If F is a reduced Groebner basis for Λ(U) then LP (F ) ⊂ I and, for any
α ∈ R, Dα(F ) = Dα

(
Λ(U)

)

Each iteration in the BMSa gives us a minimal set of polynomials for u = ul+1

from such a set ul and the Δ-set Δ(ul). The construction of Δ(ul+1) is based
on the following remark.
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Remark 3. Suppose that f ∈ F ∈ F(ul), and f [u]l �= 0. Then, by the Agreement
Theorem and Sakata-Massey Theorem in [2], and Lemma 5 and Lemma 6 in [8]
it must happen one of the two following options:

1. l − LP (f) ∈ Δ(ul) and then LP (f) will be a defining point of Δ(ul+1).
2. l − LP (f) �∈ Δ(ul) and then, Δ(ul+1) will have at least one point more,

l − LP (f) itself; in fact, Δl−LP (f) ⊂ Δ(ul+1)

Before giving a brief description of the Sakata’s algorithm we show some
previous basic procedures used in it.

For a minimal set of polynomials F = {f (1), . . . , f (d)} of Λ(ul), with
LP (f (i)) =

(
s
(i)
1 , s

(i)
2

)
, for i = 1, . . . , d, we set FΛ = F ∩ Λ(ul+1) and

FN = F \ FΛ. We also consider G = {g(1), . . . , g(d−1)}, mentioned in the para-
graph below Definition 5.

Theorem 1 (Berlekamp procedure. Lemmas 5, 6 in [8]). Let f (a) ∈ F
and g(b) ∈ G such that f (a) ∈ Λ(ul), g(b) ∈ Λ(uk), for some k <T l ∈ I, with
f (a)[u]l = wa �= 0 and g(b)[u]k = vb �= 0.

We define

r1 = max{s
(a)
1 , l1 − s

(b)
1 + 1},

r2 = max{s
(a)
2 , l2 − s

(b+1)
2 + 1} and

e =
(
r1 − l1 + s

(b)
1 − 1, r2 − l2 + s

(b+1)
2 − 1

)
.

Then, setting r = (r1, r2), we have that

hf(a),g(b) = Xr−s(a)
f (a) − wa

vb
Xeg(b) ∈ Λ(ul+1).

We note that s
(b)
1 and s

(b+1)
2 refers to elements of F and not G. Now, we

establish two procedures to be used in the algorithm.

Procedure 1. [8, Theorem 1]. If f (i) ∈ FN and l ∈ s(i) + Δ(ul).

1. Find 1 ≤ j ≤ d − 1 such that l1 < s
(i)
1 + s

(j)
1 and l2 < s

(i)
2 + s

(j+1)
2 .

2. In the set F we replace f (i) by hf(i),g(j) obtained by the Berlekamp procedure.
The point s(i) will be a defining point of Δ(ul+1) as well.

Procedure 2. [8, Theorem 2]. If f (i) ∈ FN and l �∈ s(i) + Δ(ul) then one
consider all the following defining points and constructions hf(a),g(b) to replace
f (i) (and, possibly, some elements of G) with the suitable new polynomials in
order to get a new F ∈ F(ul+1).

1. S =
(
l1 − s

(i)
1 + 1, l2 − s

(i+1)
2 + 1

)
; with f (i+1) ∈ FN and 1 ≤ i < d. Then

find k ∈ {1, . . . , d} such that s(k) ≺ S and set hf(k),g(i) .
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2. S =
(
l1 − s

(k)
1 + 1, s

(i)
2

)
; for some k < d, with f (k) ∈ FN and s(i) ≺ S. Then

set hf(i),g(k) .

3. S =
(
l1 + 1, s

(i)
2

)
with i < d. Then set h = X

l1−s
(i)
1 +1

1 · f (i).

4. S =
(
s
(i)
1 , l2 − s

(j)
2 + 1

)
for j > 2 with f (j) ∈ FN and s(i) ≺ S. Then set

hf(i),g(j−1) .

5. S =
(
s
(i)
1 , l2 + 1

)
. Then set h = X

l2−s
(i)
2 +1

2 · f (i).

Now, we can show a brief scheme of the Sakata’s algorithm. See [8, p. 331]
for a detailed description.

Algorithm 1 (Sakata). We start from a finite doubly periodic array, u ⊂ U .

�� Initialize |l| = 0; that is l = (0, 0), F = {1}, G = ∅ and Δ = ∅.
�� For l ≥ (0, 0),

1. For each f (i) ∈ F for which f (i) ∈ FN we do
– If l ∈ s(i) + Δ(ul) then replace f (i) by Procedure 1.
– Otherwise, replace f (i) by one or more polynomials by Procedure 2.

2. Then form the new F , G and Δ(ul+1).
3. Set l := l + 1.

Let l ∈ Σ0, F ∈ F(ul) and consider the ideal 〈F 〉 in L[X]. We suppose WLOG
that the elements in F are written in their normal form. Then, on the one hand,
it may happen that F is not a Groebner basis for 〈F 〉; on the other hand, even
if F is a Groebner basis for 〈F 〉, it may happen that F is not a Groebner basis
for Λ(U). In [5,8] sufficient conditions on l ∈ Σ0 and F are given to ensure that
F is a Groebner basis for Λ(U); however, in general, such conditions are not
satisfied neither for hyperbolic codes nor hyperbolic-like codes. As we comment
in Introduction, we will study this problem in the next section.

5 A New Framework for Locator Decoding

Locator decoding in (bivariate) abelian codes was introduced in [9] (see also [2]).
Let us recall, and extend slightly, the basic ideas.

Let C be a bivariate code over F(r1, r2) with defining set Dᾱ (C), with respect
to some fixed ᾱ ∈ R. Suppose a word c ∈ C was sended and the polynomial c+e
in F(r1, r2) has been received. So that, the polynomial e represents the error that
we want to find out. To do this, we define the locator ideal in L(r1, r2), which is
defined originally in L[X] (see [2,9]).

Definition 6. In the setting above, the locator ideal for e is

L(e) = {f ∈ L(r1, r2) | f(ᾱn) = 0, ∀n ∈ supp(e)} .
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Having in mind that L|F is a splitting field for U , it is easy to see that
Dᾱ (L(e)) = supp(e). Our objective is to find the defining set of L(e) and hence
supp(e). The final step (that we will not comment) will be to solve a system of
equations to get the coefficients of e (in case q > 2). To do this, we shall connect
L(e) to the linear recurring relations as follows. Based on the so called syndromes
of the received polynomial, we are going to determine a suitable doubly periodic
array U = (un)n∈Σ0

such that the equality L(e) = Λ(U) holds (see Remark 1).
We begin dealing with syndromes. As it is usual in locator decoding, we first
consider (theoretically) the syndrome values of e ∈ F(r1, r2): let m ∈ Zr1 × Zr2

and define U = (un)n∈Σ0
, such that un = e (ᾱm+n). Clearly, U is an infinite

doubly periodic array.

Definition 7. Let e ∈ F(r1, r2), m ∈ Zr1 × Zr2 = I and define U = (un)n∈Σ0
,

such that un = e (ᾱm+n). We call U the syndrome table afforded by e and m.

In practice, we do not know all values of U . Let us return, for a moment,
to the error correcting context. By the notion of defining set, one has, for each
m + n ∈ Dᾱ(C), that (c + e) (ᾱn+m) = e (ᾱn+m); so, the syndrome values of the
error polynomial e are known for all elements in Dᾱ(C).

Now we state the mentioned equality of ideals. The proof of the following
theorem is (mutatis mutandi) similar to that of [9, p. 1202].

Theorem 2. Let U be the syndrome table afforded by e and m. For any f ∈
L(r1, r2) the following conditions are equivalent:

1. f ∈ L(e).
2.

∑
s∈supp(e) esᾱ

s·nf (ᾱs) = 0, for all n ∈ Σm.

3. f ∈ Λ(U).

Consequently, L(e) = Λ(U).

Theorem 2, together with Remark 2, say that if F is a Groebner basis of
Λ(U), then

Dᾱ(L(e)) = Dᾱ(Λ(U)) = Dᾱ(F )

according to the notation of Sect. 2.
The ideal Λ(U) drives us to the framework used in the BMSa in the specific

case of U , the syndrome table afforded by e.

5.1 Sufficient Conditions to Obtain a True Groebner Basis
for the Ideal Λ(U)

Now, we present our sufficient condition to obtain a Groebner basis for Λ(U) by
the BMSa, under the assumption ω(e) ≤ 4. It is essential to note that ω(e) ≤ t
implies |Δ(U)| ≤ t (see Remark 2).
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Lemma 2. Let U be the syndrome table afforded by e and m, with ω(e) ≤ t ≤ 4.
Suppose that, following the BMSa we have constructed, for l = (l1, l2), with
u = ul, the sets Δ(u) = Δ and F ∈ F(u). We also suppose that there is f ∈ F
such that f [u]l �= 0 and that l �∈ LP (F ) + Δ; that is, the delta-set will increase
(see Remark 3). Then

(l1 + 1)(l2 + 1) ≤ 2t + 1.

Proof. We shall prove the result for t = 4. The other cases are similar and
simpler than this. Suppose that F =

{
f (1), . . . , f (d)

}
with LP (f i) = s(i) for

i = 1, . . . , d ≥ 2. Setting f = f (i) we have, by hypothesis, f (i)[u]l �= 0 and
l �∈ s(i) + Δ.

First note that |Δ| ≤ 3 because the size will be increased. So let us
list all possible delta-sets: Δ11 = {(0, 0)}, Δ21 = {(0, 0), (0, 1)}, Δ22 =
{(0, 0), (1, 0)}, Δ31 = {(0, 0), (0, 1), (0, 2)}, Δ32 = {(0, 0), (1, 0), (0, 1)} and
Δ33 = {(0, 0), (1, 0), (2, 0)}.

We also note that, by definition of delta-set, if l �∈ LP (F ) + Δ then Σl ∩
(LP (F ) + Δ) = ∅.

Case a: l1 > 6. By paragraph above, we only have to consider l1 = 7. As
s
(1)
1 ≤ 3, we have that l1 − s

(i)
1 ≥ 7 − 3 = 4, thus, at least (3, 0), (4, 0) increase

Δ(ul+1), which is impossible. So we should have l1 ≤ 6.

Case b: l1 = 6 and l2 ≥ 1. Again, we only have to consider l = (6, 2). Then,
the points (3, 0) and (3, 1) will be added. If |Δ| = 2 then we have to add, in
addition, (2, 0) and (2, 1), and for Δ = Δ11 we have to add besides the points
below, (1, 0) and (1, 1). In all cases we get |Δ(ul+1)| > 4, which is impossible.

Case c: l1 = 5 and l2 ≥ 1, so we set l = (5, 1). If s
(1)
1 = 3 and i = 1 then

(2, 1) ∈ Δ(ul+1) which implies that (0, 1), (1, 1) ∈ Δ(ul+1) too. In case i = 2,
then at least (3, 0) and (4, 0) will be added. If s

(1)
1 = 2 then l1 − s

(i)
1 ≥ 3 so

that, for i = 1 we have that (2, 0), (2, 1), (3, 0), (3, 1) ∈ Δ(ul+1); for i = 2 then
l1 − s

(i)
1 ≥ 4, so (2, 0), (3, 0), (4, 0) ∈ Δ(ul+1). The case s

(1)
1 = 1 is trivial and

then in all cases we get |Δ(ul+1)| > 4, which is impossible.

Case d: l1 = 4 and l2 ≥ 1, so that, set l = (4, 1). If s
(i)
1 = 3 then we have to

add at least (0, 1) and (1, 1), if s
(i)
2 = 2 then we must have i = 2 and we should

add at least (1, 1) and (2, 1), for Δ32 and (0, 1) in addition, for Δ21. For s
(i)
1 = 1

then (1, l2 − s
(d)
2 ), (2, l2 − s

(d)
2 ) and (3, l2 − s

(d)
2 ) should be added. All of them

are impossible.

Case e: l1 = 3 and l2 ≥ 2; so that l = (3, 2). If i = d then we add at least
(2, l2 −s

(d)
2 ) and (3, l2 −s

(d)
2 ) for those |Δ| = 3 and, in addition, (0, l2 −s

(d)
2 ) and

(1, l2 − s
(d)
2 ) for those |Δ| ≤ 2. For Δ32 and i = 2, we have l − s(2) = (l1 − s

(2)
1 , 1)

so we add at least (1, 1) and (2, 1). Finally, the case i = 1 is obvious and then
in all cases we get |Δ(ul+1)| > 4, which is impossible.

Case f: l1 = 2 and l2 ≥ 3. Take l = (2, 3) and repeat Case e changing l2 by l1;
s
(d)
2 by s

(1)
1 and so.



144 J. J. Bernal and J. J. Simón

Case g: l1 = 1 and l2 ≥ 4. Take l = (1, 4) and repeat Case d with the adecuate
changes, as above.

The last case, l1 = 0 is immediate by Procedure 2.

The proof of the next lemma is a direct computation similar to that we have
done above.

Lemma 3. Let U be the syndrome table afforded by e and m, with ω(e) ≤
t ≤ 4. Suppose that, following the BMSa we have constructed, for l = (l1, l2),
with u = ul the sets Δ(u) = Δ and F ∈ F(u). If l = (l1, l2) is such that
(l1 + 1)(l2 + 1) > 2t + 1 then l �∈ LP (F ) + Δ and hence Σl ∩ (Δ + LP (F )) = ∅.

Thus, if n ∈ Σ(i,j), with (i, j) ∈ I satisfying (i + 1)(j + 1) > 2t + 1 then
f [u]n = 0, for any f ∈ F .

Let us summarize the results above in the following theorem.

Theorem 3. Let U be the syndrome table afforded by e and m, with ω(e) ≤ t ≤
4. Suppose that, following the BMSa we have constructed, for l = (l1, l2), and
u = ul, the sets Δ(u) = Δ and F ∈ F(u). For any f ∈ F , we have that:

1. If f ∈ F is such that f [u]l �= 0 and l �∈ LP (f)+Δ then (l1+1)(l2+1) ≤ 2t+1.
2. If lk > 2t − 1, for k ∈ {1, 2} then f [u]l = 0. If l = (0, l2) or l = (l1, 0) with

lk ≤ 2t − 1, for k ∈ {1, 2} then it may happen that f [u]l �= 0.
3. If l1, l2 �= 0 and (l1 + 1)(l2 + 1) > 2t + 1 then f [u]l = 0 for any f ∈ F .

Let C be a bivariate code with error-correction capability t = 
d(C)−1
2 � and

let g = c + e the received polynomial. Let U be the syndrome table afforded by
e and m ∈ I, and assume that ω(e) ≤ t ≤ 4. Suppose that m + B2t+1 ⊂ Dᾱ(C)
(see (2)). Then, for all n ∈ B2t+1, the values un = e (ᾱm+n) = g (ᾱm+n) are
known.

In practice we only know and work with a bound of the error-correction
capability; that is, t∗ = 
 sd∗(C)−1

2 �. We suppose that ω(e) ≤ t∗ ≤ 4 and we
consider B2t∗+1.

Theorem 4. In the setting described in paragraph above, if u(0,j) �= 0, for some
j < t (respectively if u(i,j) �= 0 with i + j = 1) we may find a Groebner basis for
the locator ideal L(e) following the BMSa with the lexicographic order (respec-
tively the graded order).

Proof. We begin by considering the lexicographic order.
We recall that at initializing the BMSa we take F = {1}, so that 1[u](0,j) =

u(0,j) and the first two defining points are (1, 0) and (0, j +1), which indicate us
the necessity u(0,j) �= 0 for some j < t.

Now, to do all steps for the pair of the form (0, ∗) we have to compute at
most l = (0, j) for j = 0, . . . 2t − 1. Now suppose we have compute Δ(ul) for all
l = (l1, l2) with l1, l2 �= 0 and (l1 + 1)(l2 + 1) ≤ 2t + 1, which is equivalent for
t ≤ 4 to the values l2 = 0, . . . , t − l1. Then any step considered after that, say
again l, must verify f [u]l = 0, by Theorem 3(3).
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Clearly, the last point for which our Δ may be increased is (2t − 1, 0). After
that, Theorem 3 guarantees us that Δ cannot increase their size. However, any
step of the form l = (l1, 0) with l1 ≤ 2t − 1 may satisfy l ∈ LP (F ) + Δ and so
F may be changed. So we have to consider them.

For any step of the form l ≥T (2t, 0) it happens that l �∈ LP (F ) + Δ and
clearly f [u]l = 0, for all f ∈ F ∈ F(ul) because |Δ(ul+1)| ≤ t.

Now we deal with graded order. Suppose we compute Δ(ul) for all {l =
(l1, l2) | l1+l2 ≤ t}, and F is the minimal set of polynomials obtained in the last
iteration, with Δ(F ) = Δ. Consider a point l = (l1, l2) such that l1 + l2 ≥ t + 1.
Then one may check that (l1 + 1)(l2 + 1) > 2t + 1, for t ≤ 4; so, if one has
that l1, l2 �= 0 then Theorem 3 says that f [u]l = 0 for all f ∈ F . Finally, it may
happen that f [u]l �= 0 for l = (a, 0), (0, a) with a ∈ {t + 1, . . . , 2t − 1} (the cases
l = (j, 0), with j ≥ 2t has been already seen). We will continue forming minimal
sets of polynomials until consider all of them.

Therefore in any of the monomial orders considered, the polynomials of F are
valid in I; so that F ⊂ Λ(U) and then 〈F 〉 = Λ(U). By Remark 2 and Theorem 2
we are done.

Example 1. Consider the code C, in F2(5, 15) with primitive root a, and
D(α,β)(C) = Q(0, 13)∪Q(1, 13)∪Q(2, 13)∪Q(3, 13)∪Q(4, 13)∪Q(0, 0)∪Q(0, 1).
One may check that the strong apparent distance sd∗(C) = 6, so that t = 2 is
a lower bound for the error correction capability of C. For the error polynomial
e = X2

1X2
2 + X2 and m = (0, 13) we have the first value u(0,0) = e(α0, β13) = a4

and the last one u(4,0) = e(α4, β13) = a2. So that we arrange

(un | n ∈ S(2)) =

⎛

⎜
⎜
⎝

a4 a2 0 a5

a14 a9

a3

a2

⎞

⎟
⎟
⎠ .

Next table summarizes all computation with respect to the lexicographic
order.

l F ⊂ Λ(ul+1) G Δ(ul+1)

Initializing {1} ∅ ∅
(0, 0) → {X1, X2} {1} {(0, 0)}
(0, 1) → {X1, X2 + a13} {1} {(0, 0)}
(0, 2) → {X1, X

2
2 + a13X2 + a11} {X2 + a13} {(0, 0), (0, 1)}

(0, 3) → {X1, X
2
2 + a5X2 + a3} {X2 + a13} {(0, 0), (0, 1)}

(1, 0) → {X1 + a6X2 + a2,
X2

2 + a5X2 + a3} {X2 + a13} {(0, 0), (0, 1)}

(1, 1) → {X1 + a8X2 + a7,
X2

2 + a5X2 + a3} {X2 + a13} {(0, 0), (0, 1)}
(2, 0), (3, 0) → Same Same Same

The reader may check that Dᾱ(Λ(U)) = Dᾱ(〈F 〉) = {(2, 2), (0, 1)}.
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Abstract. Dihedral codes, particular cases of quasi-cyclic codes, have
a nice algebraic structure which allows to store them efficiently. In this
paper, we investigate it and prove some lower bounds on their dimension
and minimum distance, in analogy with the theory of BCH codes. This
allows us to construct dihedral codes with prescribed minimum distance.
In the binary case, we present some examples of optimal dihedral codes
obtained by this construction.

Keywords: Group algebras · Dihedral codes · BCH bound

1 Introduction

Block codes were invented in the 1940s to correct errors in the communication
through noisy channels (see [18] for more details), and they are used nowadays
in different areas of information security. Originally, they were thought of just
as subsets of (code)words of n letters chosen in an alphabet K, which are far
enough apart from each other with respect to the Hamming distance. However,
they usually need to have more algebraic structure to be stored efficiently. By
considering linear codes of length n over a finite field K, that is subspaces of the
vector space Kn, we have a compact description given, for example, by the parity
check matrix, which is a matrix H such that c ∈ C if and only if cH = 0. Such a
description reduces exponentially the size of the data to be stored with respect
to general block codes. However, this reduction reveals to be insufficient in the
context of code-based cryptography ([20,24] and many others), where the public
key is related to the parity check matrix of a code of large length and dimension.
The size of the public key constitutes one of the main practical disadvantages in
the use of code-based cryptography and many efforts have been made to reduce
it by preserving the security of the system. One option may be to use codes
with symmetries, like cyclic or quasi-cyclic codes (see for example [3]). However,
since decoding of general quasi-cyclic codes is difficult, the algebraic structure
that one needs to add may also turn out to be a weakness of the system (see for
example [14]).
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A natural generalisation of cyclic codes is given by the family of group codes:
a linear code C is called a G-code (or a group code) if C is a right (or left) ideal
in the group algebra KG = {a =

∑
g∈G agg | ag ∈ K} where G is a finite

group. Reed Muller codes over prime fields Fp are group codes for an elementary
abelian p-group G [4,10], and there are many other remarkable optimal codes
which have been detected as group codes [5,12,15,21]. If G is cyclic, then all
right (or left) ideals of KG afford only one check equation (and then only a
small amount of data has to be stored). In the case G is a general finite group
there are only particular right (or left) ideals which satisfy this property, called
checkable codes [19]. In [6] it is proved that such codes are the duals of principal
ideals, and group algebras KG for which all right (or left) ideals are checkable (or
equivalently principal), called code-checkable group algebras, are characterised:
KG is a code-checkable group algebra if and only if G is p-nilpotent with a cyclic
Sylow p-subgroup, where p is the characteristic of K. This is a consequence of an
early result by Passman ([25, Theorem 4.1]). Checkable codes are asymptotically
good [2,7] and many optimal codes are checkable [6, Remark 2.9].

In the next table, the results of some simulations by Magma of random
binary dihedral codes are presented. The first line is the cardinality 2n of the
group, the second line is the percentage of optimal checkable codes among 1000
tested of dimension 3 ≤ k ≤ 2n − 3, the third line is the percentage of optimal
principal codes among 1000 tested of dimension 3 ≤ k ≤ 2n − 3.

10 14 18 22 26 30 34 38 42

51.4 5.4 4.4 48.4 42.2 0.3 1.3 2.871 0.7

23.2 5.6 70.2 47.5 20.5 54.1 27.2 1.105 69.3

All these data seem to suggest that the family of principal and checkable codes
is worth further investigation. In particular, it is desirable to prove some bounds
on the dimension and minimum distance for principal or checkable codes and
to introduce families of principal or checkable codes with prescribed minimum
distance (in analogy with BCH codes).

To our knowledge, there are very few results concerning the parameters of
group codes, both for general and particular groups. In [13], an algorithm for
computing the dimension of general group codes is given. In a very recent paper
[11], several relations and bounds for the dimension of principal ideals in group
algebras are determined by analysing minimal polynomials of regular represen-
tations. The concatenated structure of dihedral codes is investigated in [9]. How-
ever, we are not aware of results which allow to construct group codes with a
prescribed minimum distance or explicit lower bounds on both dimension and
minimum distance, even in the easiest case of dihedral codes. This paper wants
to be a first contribution in this direction. In Sect. 2 we will recall some results of
the theory of quasi-cyclic codes. In Sect. 3 we will recall the definition of dihedral
codes, present some results about their algebraic structure, make some remarks
about the dual codes, prove a BCH bound for principal dihedral codes, propose a
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definition of principal BCH-dihedral codes, consider the particular case of binary
dihedral codes and give some construction of optimal codes. Finally, in Sect. 4 we
will present some open problems. In particular, an efficient decoding algorithm
would be a necessary prerequisite for applications in cryptography.

2 Quasi-cyclic Codes

We recall in this section some definitions and known results about quasi-cyclic
codes. As we will see in the next section, dihedral codes, as all group codes, form
a subfamily of quasi-cyclic codes.

Let q be a power of a prime and Fq the finite field with q elements. Let n ∈ N.
The symmetric group Sn acts on the vector space F

n
q as follows:

vσ := (vσ−1(1), vσ−1(2), . . . , vσ−1(n))

for v := (v1, v2, . . . , vn) ∈ F
n
q and σ ∈ Sn. For a linear code C ⊆ F

n
q , the set of

permutations such that Cσ := {cσ | c ∈ C} is equal to C is a group which is called
the permutation automorphism group of C and which is denoted by PAut(C).

In this context, a remarkable transformation is the so-called shift map, that
is

Tn : Fn
q → F

n
q c �→ c(1 ... n) = (cn, c1, . . . , cn−1).

Linear codes which are invariant under the shift or its power are the so-called
quasi-cyclic codes, which are defined as follows.

Definition 1. Let C ⊆ F
n
q be a linear code. Suppose that n = �m, for some

positive integers � and m. The code C is quasi-cyclic of index � if T �
n(C) = C,

that is if

(1 . . . n)� =
�∏

j=1

(j � + j 2� + j . . . (m − 1)� + j) ∈ PAut(C).

If � = 1, the code C is called cyclic.

Let R := Fq[x]/(xm − 1). We may relabel the coordinates and consider the
bijective Fq-linear map

ϕ : Fn
q = (F�

q)
m → R� (1)

(c11, . . . , c1�, . . . , cm1, . . . , cm�) �→ (c11 + · · ·+ cm1x
m−1, . . . , c1� + · · ·+ cm�x

m−1).

The image of a quasi-cyclic code in R� is an R-submodule. Actually, the multi-
plication by x corresponds to the �-th power of the shift.

Remark 1. There is a one-to-one correspondence between the R-submodules
of R� and left ideals of Mat�(R) (which is isomorphic, as a ring, to
Mat�(Fq)[x]/(xm − 1)). This is a particular case of the Morita equivalence
for modules [23]. The explicit one-to-one map is given as follows: to any R-
submodule N of R� we associate the left ideal IN of Mat�(R) composed by
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matrices whose rows are elements in N . As already observed in [1], since R is a
commutative principal ideal ring, every R-submodule N of R� has at most � gen-
erators, so that the left ideal IN is principal (it suffices to consider the matrix
whose rows are the generators and eventually some zeros). So there exists a
generator of IN which can be seen a polynomial in Mat�(Fq)[x]/(xm − 1).

Let � be a positive integer, and ν ∈ Fq� be a primitive element of Fq�/Fq.
Recall that {1, ν, . . . , ν�−1} is an Fq-base of the vector space Fq� . The folding is
the Fq-linear map

φ : F�
q → Fq� = Fq[ν]

(a1, . . . , a�) �→ a1 + a2ν + · · · + a�ν
�−1.

Definition 2. Let C ⊆ F
n
q = (F�

q)
m be a linear code. The folded code of C is

C′ = φm(C) ⊆ (Fq�)m (where φm is the tensor power of φ). In this case, C is the
unfolded code of C′.

Remark 2. Note that the definition of the folding depends on the choice of ν.
However the properties that we will consider in this paper do not depend on it
and this is the reason why the definite article “the” makes sense in this context.
Note that the folded code C′ of a linear code C is an Fq-linear code. Moreover,
C is quasi-cyclic if and only if C′ is invariant under the shift Tm.

In the next section we will often use the above equivalence and the following
definition.

Definition 3. An Fq-linear code C ⊆ (Fq�)m which is invariant under the shift
Tm is called an Fq-linear cyclic code.

Barbier et al. define in [1] the analogue of BCH codes in the quasi-cyclic case.
They call them quasi-BCH codes. In [16], the algebraic structure of Fq-linear
cyclic codes over Fq� is studied. In next section we will explore the same concepts
in the context of dihedral codes.

3 Dihedral Codes

Let m ≥ 3 be an integer and

D2m := 〈α, β | αm = 1, β2 = 1, βα = αm−1β〉,

be the dihedral group of order 2m. The group algebra FqD2m is the set

FqD2m :=

⎧
⎨

⎩

∑

γ∈D2m

aγγ

∣
∣
∣
∣
∣
∣

aγ ∈ Fq

⎫
⎬

⎭
,
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which is a vector space over Fq with canonical basis {γ}γ∈D2m
. The operations

of sum and multiplication by scalars are defined in the following natural way:
for any aγ , bγ ∈ Fq and c ∈ Fq

∑

γ∈D2m

aγγ +
∑

γ∈D2m

bγγ =
∑

γ∈D2m

(aγ + bγ)γ,

c ·
⎛

⎝
∑

γ∈D2m

aγγ

⎞

⎠ =
∑

γ∈D2m

caγγ.

Moreover, FqD2m is an algebra with the product
⎛

⎝
∑

γ∈D2m

aγγ

⎞

⎠ •
⎛

⎝
∑

γ∈D2m

bγγ

⎞

⎠ =
∑

γ∈D2m

(
∑

μν=γ

aμbν

)

γ.

Definition 4. A dihedral code, or a D2m-code, is a left ideal of FqD2m.

As observed in [8], a linear code of length 2m can be seen as a D2m-code if
and only if its permutation automorphism group contains a subgroup isomorphic
to D2m all of whose nontrivial elements act fixed point free on the coordinates
{1, . . . , 2m}. In particular, if we consider the ordering

D2m = { 1︸︷︷︸
b1

, β
︸︷︷︸

b2

, α︸︷︷︸
b3

, αβ
︸︷︷︸

b4

, α2
︸︷︷︸

b5

, α2β
︸︷︷︸

b6

, . . . , αm−1
︸ ︷︷ ︸
b2m−1

, αm−1β
︸ ︷︷ ︸

b2m

}, (2)

and the Fq-linear isomorphism between F
2m
q and FqD2m given by ei �→ bi (where

{ei} is the canonical basis of F2m
q ), a linear code C ⊆ F

2m
q is a D2m-code if and

only if
α′ := (1 3 5 . . . 2m − 1)(2 4 6 . . . 2m)

and
β′ := (1 2)(3 2m)(4 2m − 1)(5 2m − 2) · · · (m + 1 m + 2)

are in PAut(C). These elements correspond to the permutation representation of
the left multiplication by α and by β respectively in FqD2m. In particular, since
α′ = (1 . . . 2m)2, a dihedral code is a quasi-cyclic code of index 2.

From now on, we will always consider the ordering (2) fixed and we will
identify F

2m
q and FqD2m.

3.1 Algebraic Structure

Let C be a D2m-code over Fq. As we observed above, since C is a quasi-cyclic
codes of index 2, C is a free left module of rank 2 over R := Fq[x]/(xm−1), which
is a commutative principal ideal ring. As we have already seen in Remark 1, this
means that C has at most two generators as a module over R. These are also
two generators of C viewed as an ideal in FqD2m. We have one generator of C as
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an ideal in Mat2(Fq)[x]/(xm − 1), given by the polynomial with coefficients in
the ring of matrices with first row given by the first generator and second row
given by the second one. However, it may happen that C is not principal as an
ideal in FqD2m.

Remark 3. As observed in [6], an early result by Passman ([25, Theorem 4.1])
gives us that all D2m-codes over a field Fq of characteristic p are principal if and
only if D2m is p-nilpotent with a cyclic Sylow p-subgroup (we recall that a group
G is p-nilpotent if it admits a normal subgroup N of order coprime with p and
such that G/N is a p-group). This is the case if and only if p does not divide m.
So

– if (m, q) = 1, all D2m-codes over Fq are principal;
– otherwise, a D2m-code over Fq is either principal or the sum of two principal

ideals.

We will study then the algebraic structure of principal left ideals in FqD2m,
that is principal dihedral codes. Via the map ϕ defined as in (1), we can consider
ϕ(C) inside R2. The automorphism α′ corresponds to the multiplication by x in
R2, whereas the automorphism β′ acts on R2 as follows: for (a(x), b(x)) ∈ R2,

(a(x), b(x))β′
= (b(xm−1), a(xm−1)).

So, C is a D2m-code if and only if ϕ(C) is an R-submodule of R2 invariant
under the action of β′, that is such that (b(xm−1), a(xm−1)) ∈ ϕ(C) for all
(a(x), b(x)) ∈ ϕ(C).

If C is principal, then ϕ(C) is an R-submodule of R2 generated, as a module,
by

(a(x), b(x)) and (b(xm−1), a(xm−1)).

Remark 4. We have already mentioned the Morita correspondence between R-
sub-modules and left ideals in Mat2(R) ∼= Mat2(Fq)[x]/(xm − 1). In this case,
the left ideal IC ⊆ Mat2(Fq)[x]/(xm − 1) associated to C is the principal ideal

IC =
〈(

a0 b0
b0 a0

)

+
(

a1 b1
bm−1 am−1

)

x + · · · +
(

am−1 bm−1

b1 a1

)

xm−1

〉

,

where a(x) := a0 +a1x+ . . .+am−1x
m−1 and b(x) := b0 +b1x+ . . .+bm−1x

m−1.

Considering the folding (Fq)2 → Fq2 = Fq[ν] (where ν is a primitive element
of Fq2/Fq), we can see the two polynomials a(x), b(x) as a unique polynomial
over Fq2 , that is

p(x) := (a0 + b0ν) + (a1 + b1ν)x + . . . + (am−1 + bm−1ν)xm−1,

so that a principal dihedral code can be seen as the sum (as vector spaces) of
the two Fq-linear cyclic codes over Fq2 , that is the one generated by p(x) and
the one generated by p(xm−1), where

p(x) := (b0 + a0ν) + (b1 + a1ν)x + . . . + (bm−1 + am−1ν)xm−1.



Dihedral Codes with Prescribed Minimum Distance 153

For τ := a+bν ∈ Fq2 , let τ := b+aν. The Fq-linear map τ �→ τ can be expressed
by the following linearised polynomial:

τ �→ L(τ) :=
(

1 − ν2

νq − ν

)

τ q +
(

νq+1 − 1
νq − ν

)

τ.

so that, if
p(x) := τ0 + τ1x + . . . + τm−1x

m−1,

we have
p(x) = τ0 + τ1x + . . . + τm−1x

m−1 =
(

1 − ν2

νq − ν

)

p(x1/q)q +
(

νq+1 − 1
νq − ν

)

p(x).

Note that p(x) is taken modulo xm − 1 and fractional exponents are only appar-
ent, since we consider the q-th power of p(x1/q).

Definition 5. For a polynomial r(x) ∈ Fq2 [x]/(xm − 1), we denote by 〈r(x)〉Fq

the unfolded Fq-linear cyclic code generated by r(x), i.e. the unfolded of

{t(x)r(x) ∈ Fq2 [x]/(xm − 1) | t(x) ∈ Fq[x]}.

We can summarise all the discussion in the following.

Theorem 1. Let Fq2 = Fq[ν] and C be a principal D2m-code over Fq. There
exists p(x) ∈ Fq2 [x]/(xm − 1) such that

C = 〈p(x)〉Fq
+ 〈p(xm−1)〉Fq

,

where

p(xm−1) =
(

1 − ν2

νq − ν

)

p(x(m−1)/q)q +
(

νq+1 − 1
νq − ν

)

p(xm−1) ∈ Fq2 [x]/(xm − 1).

In particular, as we have already observed in Remark 3, all D2m-codes over
Fq are principal if (m, q) = 1 and they are a sum (as vector spaces) of at most
two principal D2m-codes otherwise.

Definition 6. We call the polynomial p(x) a generator of the principal dihedral
code.

Corollary 1. Let C be a principal D2m-code over Fq generated by p(x). Then

dimFq
C ≥ max{m − deg p(x),m − deg p(xm−1)}.

Proof. This follows from the fact that the vectors in F
2m
q corresponding to the

polynomials
{p(x), xp(x), . . . , xm−deg p(x)−1p(x)}

are linearly independent, and the same holds for the ones corresponding to

{p(xm−1), xp(xm−1), . . . , xm−deg p(xm−1)−1p(xm−1)}.



154 M. Borello and A. Jamous

Remark 5. For calculations, it may be interesting to have integer exponents. In
the case (m, q) = 1, we can take m′ to be the inverse of m modulo q, so that
m′m − 1 is divisible by q. Let r := (m′m − 1)/q. Then

p(xm−1) =
(

1 − ν2

νq − ν

)

p(xr)q +
(

νq+1 − 1
νq − ν

)

p(xm−1).

3.2 Dual Code

In analogy with the theory of cyclic and quasi-cyclic codes, it it interesting to
investigate the dual codes of dihedral codes, which are still dihedral.

Proposition 1. The dual code C⊥ of a dihedral code C is a dihedral code.

Proof. This follows trivially from the fact that PAut(C⊥) = PAut(C).

The dual of a principal dihedral code is not necessarily principal. But if
(m, q) = 1, as we mentioned already, all dihedral codes are principal. So it
makes sense to investigate the relation between the generator of a code and a
generator of its dual.

Let p(x) and q(x) be two polynomial in Fq2 [x]/(xm − 1) and let v and w the
two vectors in F

2m
q corresponding to p(x) and q(x) respectively. We may define

∗ : Fq2 [x]/(xm − 1) × Fq2 [x]/(xm − 1) → Fq

(p(x), q(x)) �→ p(x) ∗ q(x) := 〈v, w〉
Proposition 2. Let (m, q) = 1. If C is a principal D2m-code generated by p(x)
and C⊥ is a principal D2m-code generated by q(x), then

p(x) ∗ q(x) = 0, p(x) ∗ q(xm−1) = 0,

p(xm−1) ∗ q(x) = 0, p(xm−1) ∗ q(xm−1) = 0.

The same holds with all the shifts of p(x) and p(xm−1).

Proof. This is clear from the definition of ∗.

Remark 6. At least two questions stand open in this context: the conditions in
Proposition 2 are only necessary. It would be very interesting to find sufficient
conditions for a polynomial q(x) to be a generator of the dual. We may add the
orthogonality with all the shifts of p(x) and p(xm−1), but this would still be
not enough. A polynomial q(x) satisfying all these relations would generate a
subcode of C⊥, but not necessarily the whole dual. In fact, there is an argument
on the dimension missing. Secondly, it would be nice to give some relations with
the usual product of polynomials (as in the cyclic codes case) and not with the
∗ product.

For dihedral codes over fields of characteristic 2, a nice relation holds.

Proposition 3. If q is a power of 2, then 〈p(xm−1)〉Fq
⊆ 〈p(x)〉⊥

Fq
. In particular,

the code generated by p(x) is contained in 〈p(x)〉Fq
+ 〈p(x)〉⊥

Fq
.
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Proof. Recall that if p(x) corresponds to the vector

v = (a0, b0, a1, b1, . . . , am−1, bm−1),

then p(xm−1) corresponds to the vector

w = (b0, a0, bm−1, am−1, . . . , b1, a1),

so that
〈v, w〉 = 2(a0b0 + a1bm−1 + am−1b1 + . . .) = 0

in any field of characteristic 2. Clearly, the same argument applies to xip(x).

Remark 7. In many examples, we get the equality 〈p(xm−1)〉Fq
= 〈p(x)〉⊥

Fq
. How-

ever, we could not find a general property of p(x) which guarantees it. Again,
there is an argument on the dimension missing.

3.3 Minimum Distance Bounds

Let (m, q) = 1, t be the order of q2 modulo m and ω be a primitive m-th root
of unity in Fq2t . If some consecutive powers of ω are roots of both p(x) and
p(xm−1), then a BCH bound can be proved for the code generated by p(x) and
p(xm−1).

Theorem 2 (BCH bound for principal dihedral codes). Let C be a prin-
cipal dihedral code generated by p(x) and 2 ≤ δ ≤ m. If δ − 1 consecutive powers
of ω are roots of both p(x) and p(xm−1), then C has minimum distance at least
δ.

Proof. A codeword c(x) of the folded C ⊆ F
m
q2 is of the form

c(x) = t1(x)p(x) + t2(x)p(xm−1),

for t1(x), t2(x) ∈ Fq[x]. As δ − 1 consecutive powers of ω are roots of both p(x)
and p(xm−1), we have c(x) = c′(x)g(x) where c′(x) ∈ Fq2 [x] and

g(x) = lcm{Mωb(x),Mωb+1(x), . . . , Mωb+δ−2(x)},

where Mωi(x) is the minimal polynomial of ωi over Fq2 . It follows that the folded
C is a subcode of the BCH code generated by g(x), which has minimum distance
at least δ by the classical BCH bound. Since a nonzero coordinate in a codeword
of the folded C corresponds to at least a nonzero coordinate of the unfolded
codeword in C, the minimum distance of C is at least δ.

Remark 8. As the proof of the theorem shows, the argument relies on the fact
that the folding of C is a subset of a cyclic code. Any bound involving zeros of
cyclic codes such as Hartmann-Tzeng bound (see [18, Theorem 4.5.6]) may be
applied. However, BCH bound is simpler and leads to easier definition of codes
with prescribed minimum distance, which is actually the aim of the paper.
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Let r be defined as in Remark 5. For many applications, it is suitable to
consider codes with a prescribed minimum distance. This can be achieved by
imposing that δ − 1 consecutive powers of ω, say ωb, ωb+1, . . . , ωb+δ−2, together
with their inverse and their r-th powers, are roots of p(x), which guarantees that
the code generated has minimum distance at least δ.

Definition 7. Let (m, q) = 1 and 2 ≤ δ ≤ m. A dihedral code C ⊆ F
2m
q is a

BCH-dihedral code of prescribed minimum distance δ if there exists an integer
b such that its generator is

p(x) = lcm

⎧
⎨

⎩

Mωb(x),Mωb+1(x), . . . ,Mωb+δ−2(x)
Mω−b(x),Mω−b−1(x), . . . ,Mω−b−δ+2(x)
Mωbr (x),Mωbr+r (x), . . . , Mωbr+δr−2r(x)

⎫
⎬

⎭

where r = (m′m − 1)/q, with m′ being the inverse of m modulo q, and Mωi(x)
is the minimal polynomial of ωi over Fq2 .

Remark 9. The definition above guarantees to have minimum distance at least
δ. Anyway, it may probably be improved by analysing the relations between the
cyclotomic cosets of the different roots. This reveals to be simpler in the binary
case, that we will consider in the next subsection.

3.4 Binary Case

Let us consider now D2m-codes over F2, with m ≥ 3 odd. The binary case is
particularly interesting, since ν2+1 − 1 = 0. In this case

p(xm−1) = νp(x(m−1)/2)2,

so that if Z(p) is the set of zeros of p(x), then Z(p)2/(m−1) is the set of zeros of
p(xm−1). In this case, we are considering p(x) and p(xm−1) as polynomials in
F4[x] and not in the quotient ring.

We consider an m-th root of unity ω in F4t , where t is the order of 4 modulo
m. The irreducible divisors of xm − 1 are associated to the cyclotomic cosets
Ci = {i, 4i mod m, 42i mod m, . . .} (this is classical in the theory of cyclic codes
- see for example [18]): actually, if Mωi(x) is the polynomial associated to Ci

(which is the minimal polynomial of ωi), its zeros are Z(Mωi(x)) = {ωj | j ∈ Ci}.

Proposition 4. The following conditions are equivalent:

a) Z(Mωi)(m−1)/2 = Z(Mωi) for all i ∈ {0, . . . , m − 1};
b) m−1

2 Ci = Ci for all i ∈ {0, . . . ,m − 1};
c) there exists an integer s such that 22s+1 = −1 mod m.

If m is prime, then a), b) and c) are equivalent to

d) s2(m) ≡ 2 mod 4, where s2(m) is the order of 2 modulo m.
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Proof. a)⇔b): if Z(Mωi)(m−1)/2 = Z(Mωi), then there exists j ∈ Ci such that
ωi(m−1)/2 = ωj , which means that the class Ci is sent to Ci by multiplying by
m−1
2 . The vice versa is trivial.

b)⇒c): since m−1
2 C1 = C1, there exists s such that m−1

2 = 4s mod m. Then
22s+1 = −1 mod m.
c)⇒b): 22s+1 = −1 mod m implies ((m, 2) = 1 so that 2 is invertible) that
4s = m−1

2 mod m. This means that for all i ∈ {0, . . . , m − 1}, we have m−1
2 i =

4si ∈ Ci, which implies m−1
2 Ci = Ci.

c)⇒d): Since 24s+2 = 1 mod m and 22s+1 = −1 mod m, then s2(m) divides
2(2s + 1) and s2(m) does not divide 2s + 1. So 2 divides s2(m). If 4 divides
s2(m), then 4 divides 4s + 2, which is not true. So s2(m) ≡ 2 mod 4.
d)⇒c): If s2(x) = 4s + 2, then 22s+1 is a root of x2 − 1 ∈ Fm[x], which has only
two solutions. The only possible solution in this case is −1 (otherwise the order
of 2 would be smaller than 4s + 2).

Remark 10. The set of primes P := {m | s2(m) ≡ 2 mod 4} = {3, 11, 19, 43, . . .}
is infinite (its density in the set of primes is 7/24 [22]).

Theorem 3. If there exists an integer s such that 22s+1 = −1 mod m (in par-
ticular if m is prime and s2(m) ≡ 2 mod 4), then, for all integers δ ≥ 2 and
b ≥ 0, the binary D2m-code generated by

p(x) = lcm{Mωb(x),Mωb+1(x), . . . , Mωb+δ−2(x)}

is a principal BCH-dihedral code with minimum distance d ≥ δ and dimension
k ≥ m − deg p(x).

Proof. It follows from the fact that, in this case, p(x) divides p(xm−1): actually,
all roots of p(x) are roots of p(xm−1) (as polynomial in F4[x]) and p(x) divides
xm − 1.

Remark 11. Theorem 3 allows to construct binary dihedral codes with prescribed
minimum distance and with a lower bound on their dimensions. With Magma we
did some calculations and we found some codes with the best-known minimum
distance for their dimension (see [17]). For example:

– the D22-code generated by

p(x) = x5 + νx4 + x3 + x2 + ν2x + 1,

which is a [22, 12, 6] code;
– the D66-code generated by

p(x) = x15 + νx14 + x13 + x11 + x10 + ν2x9 + ν2x8+

+νx7 + νx6 + x5 + x4 + x2 + ν2x + 1,

which is a [66, 33, 12] code;
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– the D86-code generated by

p(x) = x21 + νx20 + νx18 + νx17 + νx16 + x15 + ν2x11 + νx10+

+x6 + ν2x5 + ν2x4 + ν2x3 + ν2x + 1,

which is a [86, 44, 15] code;
– the D86-code generated by

p(x) = x7 + x6 + νx5 + ν2x2 + x + 1,

which is a [86, 72, 5] code.

Note that the dimension is always 2(m − deg p(x)).

4 Open Problems

In the paper we defined dihedral codes with prescribed minimum distance and
dimension. However, it would be interesting to prove better bounds on the dimen-
sion and to give a construction allowing to control it. In particular, an open
problem is the following.

Problem 1. When does equality hold in Corollary 1? Can the bound be
improved by adding some conditions on p(x)?

Related to that, there is also the problem of a canonical generator. Actu-
ally, in the theory of BCH codes we can read the dimension from the degree of
the generator polynomial (the one of lowest degree). It does not seem to exist
an analogue for dihedral codes. About dual codes, many questions stand open.
The main one is about the relation between the generators of code. Another
important problem, related to the use of dihedral codes in cryptography is the
following.

Problem 2. Is there any efficient decoding algorithm for dihedral codes, based
on the algebraic structure proved in the paper?

Finally, it would be interesting to extend the results to other group codes, at
least in the checkable case.

Acknowledgements. The authors are grateful to G.N. Alfarano, P. Moree and A.
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1 Department of Matemáticas, Estad́ıstica y Computación,
Universidad de Cantabria, Santander, Spain

{gomezperezai,gomezd}@unican.es
2 Scientific Technology, 10 Marion Street, Brighton, Vic 3186, Australia

atirkel@bigpond.net.au

http://grupos.unican.es/amac

Abstract. Watermarking digital media is one of the important chal-
lenges for information hiding. Not only the watermark must be resistant
to noise and against attempts of modification, legitimate users should
not be aware that it is embedded in the media. One of the techniques
for watermarking is using an special variant of spread-spectrum tech-
nique, called frequency hopping. It requires ensembles of periodic binary
sequences with low off-peak autocorrelation and cross-correlation. Unfor-
tunately, they are quite rare and difficult to find. The small Kasami,
Kamaletdinov, and Extended Rational Cycle constructions are versatile,
because they can also be converted into Costas-like arrays for frequency
hopping. We study the implementation of such ensembles using linear
feedback shift registers. This permits an efficient generation of sequences
and arrays in real time in FPGAs. Such an implementation requires
minimal memory usage and permits dynamic updating of sequences or
arrays.

The aim of our work was to broaden current knowledge of sets of
sequences with low correlation studying their implementation using lin-
ear feedback shift registers. A remarkable feature of these families is
their similarities in terms of implementation and it may open new way
to characterize sequences with low correlation, making it easier to gen-
erate them. It also validates a conjecture made by Moreno and Tirkel
about arrays constructed using the method of composition.

Keywords: Periodic sequences · Multidimensional arrays ·
Watermarking

1 Introduction

Digital media has became a widely used product in everyday life. The availability
of electronic devices, like computers and smartphones, makes possible large-scale
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distribution of digital content without proper authorization from content pro-
ducers. This situation has created a need for finding ways of hiding copyright
messages or serial numbers in order to trace copyright violators. Several com-
panies decided to fund the Digital Watermarking Alliance for raising awareness
and promote the adoption of digital watermarking.

There are several techniques that this consortium plan to standardize, and
one proposed method to hide information in digital media is a variant of spread-
spectrum techniques using ensembles of periodic sequences with low off-peak
autocorrelation and low cross-correlation [12]. This makes sets of arrays with
low correlations find applications in watermarking of images, audio, video, and
multimedia; but they are also prized in radar and communications, because
of their efficiency and noise immunity. Known ensembles of sequences, such as
the small Kasami set [11], are optimal with respect to the Sidelnikov corre-
lation bound, but their linear complexity is logarithmic in the length of the
sequences, so prone to cryptanalytic attacks. Other optimal ensembles of binary
sequences are Kamaletdinov ensembles of sequences [10], discovered indepen-
dently by Moreno and Tirkel among other families of sequences unfolded from
arrays constructed by the Extended Rational Cycle (ERC) [16]. These sequences
have lengths whose factors are relatively prime, so they can be folded into two-
dimensional arrays using the Chinese remainder theorem (CRT) [9]. They consist
of cyclic shifts of a pseudonoise or constant column [19] and can all be generated
using the composition method [18]. The idea behind this procedure is to build
arrays using shifted versions of the same pseudonoise sequence, by means of a
shift array or shift sequence. This method is very flexible and it allows also to
generate higher dimensional arrays [16]. A similar family of sequences with good
correlation properties are given by the interleaved sequences [8], but we remark
that the definition is different and so is the theory to generated by them. While
both constructions make use of the method of composition, and the concepts
of shift sequence and Trace function, they are quite distinct. The constructions
discussed here utilise families of novel shift sequences with low auto and cross
hit correlation, together with a solitary pseudonoise column. These construc-
tions yield sequences of length p(p + 1) and p(p − 1) [14] and multidimensional
multi-periodic arrays [16,19]. By contrast, interleaved sequences [8] use the com-
position of a solitary shift sequence with ingeniously chosen column sequences.
This construction is limited to sequence lengths (2n − 1)2. The construction
is single periodic because of the choice of the shift sequence [5] and only two
such shift sequences are available: exponential Welch and the folded m sequence
introduced by Baumert and Games, see [6]. Moreover, the shift arrays used in
the sequences can be converted into Costas-like arrays with bounded auto- and
cross-hit correlations [17]. Apart from watermarking, such ensembles are useful
in multiple access frequency/time hopping systems for UWB ranging, sonar, and
wireless communications.

An important aspect which has been little discussed is implementation.
Although all known constructions can be easily implemented in a computer,
the challenge is to do it in low-resource devices. Linear Feedback Shift Reg-
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isters (LFSRs) provide the most common technique for generating sequences.
However, Kamaletdinov ensembles and ERC families require quite large LFSRs.
Leukhin and Tirkel [14] proposed an implementation using cascade LFSRs and
then asked for a general formula for the length of the LFSRs involved. This
paper presents formulas for that parameter. For certain array sizes, this allows
an efficient generation of sequences and arrays in real time in FPGAs. Such an
implementation requires minimal memory usage and permits dynamic updating
of sequences or arrays.

Moreover, the factorization of the minimal polynomials of these LFSRs fol-
lows a certain pattern. This provides a way to unify the above sequences and
constructions and brings order to apparently haphazard discoveries. A challeng-
ing area in the field of finding families of low correlation sequences is to char-
acterize properties of these sets like linear complexity. This is still not widely
understood and this research is a step forward to close this gap. Our results
also validate a conjecture made by Moreno and Tirkel about arrays constructed
using the method of composition, which states the value of the linear com-
plexity of certain families of sequences generated by the composition method
(this is enunciated in conjecture 1). These results build on [14], where empirical
data suggested that such unification should be possible. In turn, Leukhin and
Tirkel [14] drew attention upon the pioneering works [1,4], which analysed the
cycle lengths of reducible polynomials and, most importantly, those containing
repeated factors. In order to understand the unified constructions, we first study
the nature of the most common column sequence employed by the method of
composition: the Legendre sequence which exists for every prime number. Ding
et al. [3] calculated the linear complexity of the binary Legendre sequence and
its minimal polynomial. We extend this result, giving the number of factors as
well as their degree. Explicitly, the factors are those of cyclotomic polynomials,
so similar algorithms as those by Tuxanidy and Wang [20] for odd characteris-
tic could be applied. We leave the development of such algorithms as an open
problem.

The paper is organized as follows: Sect. 2 introduces cascade LFSRs and
shows how a recursion polynomial (or minimal polynomial) for a Legendre
sequence factors into lower degree polynomials. Section 3 analyses the minimal
polynomials for arrays generated by the method of composition using the Leg-
endre sequence as column. By default, it also provides the minimal polynomials
for m-sequence columns, a much simpler case. Section 4 discusses how the new
theory is consistent with and validates the empirical findings in [14].

2 Cascade LFSRs and Legendre Sequence

Throughout the rest of the paper, we assume that the reader is familiar with
the theory of LFSRs. We recommend consulting the work by Birdsall and Ris-
tenbatt [1].

Implementation of sequences is an important and difficult issue. Although
any sequence can be generated by an LFSR, it is not always efficient because its
length can be close to that of the sequence.
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Fig. 1. A cascade with two LFSRs

There is an alternative to the naive implementation using LFSRs, called
cascade LFSRs. The idea is to speed up the generation combining the output
of several LFSRs by a XOR gate, as shown in Fig. 1. It is even more convenient
when some of the LFSRs give decimated sequences of another. In this case, some
memory can be saved.

Finding such a representation for a sequence is equivalent to finding factors
of its minimal polynomial. In this paper, we focus on nontrivial factors, i.e.
irreducible factors of degree greater than one. These are the ones which matter
most, because the factor x + 1 represents a sequence inversion. Although there
are efficient algorithms to factor polynomials with binary coefficients, our aim is
deriving formulas depending directly on the parameters of the sequence.

Now, we recall that The Legendre sequence (si) with respect to the prime p
is defined, for 0 ≤ i < p, by

si =

{(
1 +

(
i
p

))
/2, if gcd(i, p) = 1;

0, otherwise;
(1)

where
(

i
p

)
is the Legendre symbol. A binary Legendre sequence exists for all odd

prime length and its correlation is perfect if p = 3 mod 4, which makes it very
versatile and this is the reason it is used in the method of composition. Ding et
al. proved the following result regarding its minimal polynomial.

Lemma 1 (Theorem 2 in [3]). Let (si) be the Legendre sequence with respect
to the prime p and m(x) its minimal polynomial. We introduce the following
additional elements:

– F2 = {0, 1}, the finite field of two elements
– β, a primitive root over an extension of F2 of order p,
– q(x) =

∏{x + βi | 0 ≤ i < p,
(

i
p

)
= 1},

Then,

– m(x) = q(x)(x + 1), if p ≡ −1 mod 8
– m(x) = q(x), if p ≡ 1 mod 8
– m(x) = xp + 1, if p ≡ 3 mod 8
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– m(x) = (xp + 1)/(x + 1), if p ≡ 5 mod 8

Next lemma give some properties of the factorization of m(x).

Lemma 2 (Theorem 2.47 in [15]). Let F2[x] be the ring of polynomials with
coefficients in F2. For a prime p > 2, the irreducible factors of (xp + 1)/(x + 1)
over F2[x] have all degree d, the minimal positive integer such that 2d − 1 is
divisible by p. In particular, since m(x) divides xp + 1, all of its irreducible
factors have degree d.

A decimation of a p-periodic sequence (ui) is a sequence (vi) defined by vi = uαi,
where α is a positive integer. For the Legendre sequence, its cascade representa-
tion can be given by decimations of p-periodic sequences. This is a consequence
of the trace representation of the Legendre sequence, which can be found in [13].

Lemma 3 (Theorems 2 and 4 in [13]). Let Fp be the field with p elements.
There exists a p-periodic sequence (ui) such that the minimal polynomial of the
Legendre sequence (si) can be expressed as the product of the minimal polynomials
of decimations of (ui) by quadratic residues of Fp, times x+1 if p ≡ −1, 3 mod 8.
All these minimal polynomials have degree d, the minimal positive integer such
that 2d − 1 is divisible by p.

For convinience of the reader, a proof is given here.

Proof. We denote by F2d the finite field with 2d elements. By Lemma 2, all factors
of the polynomial (xp +1)/(x+1) have degree d and are irreducible. Indeed, any
LFSR (ui) which has as minimal polynomial one of these factors is of the form
ui = Tr(αi), for some α ∈ F2d , αp = 1, where Tr is the trace function. If α is a
generator of the multiplicative group of elements of order p, i.e. a primitive root
of order p, any other LFSR must be a decimation of (ui). Indeed, if vi = Tr(βi)
and there exists g such that αg = β,

vi = Tr(αgi) = ugi mod p.

The minimal polynomial of the Legendre sequence must be a product of these
irreducible factors, each of them defining a decimation of (ui). The fact that
these decimations are obtained through quadratic residues of the finite field Fp

is a consequence of Lemma 1. This concludes the proof. ��
Example 1. We calculate the occurring LFSRs for p = 73. In this case, we get
29 = 512 ≡ 1 mod 73, so d = 9. The factorization of the minimal polynomial of
the Legendre sequence with respect to prime p is exactly

m(x) = (x9 + x4 + x2 + x + 1)(x9 + x6 + x5 + x2 + 1)
(x9 + x7 + x4 + x3 + 1)(x9 + x8 + x7 + x5 + 1).

For general values of p, notice that we know exactly the linear complexity of
the Legendre sequence L(si), and that (si) can be represented in cascade LFSRs
using:
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– (p − 1)/(2d) nontrivial LFSRs, if p ≡ −1, 1 mod 8
– (p − 1)/(d) nontrivial LFSRs, otherwise

By Lemma 1, the output sequence has to be XORed with the constant sequence
of ones if p ≡ 3, 7 mod 8.

3 Composition Method

The composition method builds a two-dimensional array from a shift array and
a column. The output columns are cyclic shifts (as indicated by the shift array)
of the input one.

Fig. 2. Graphical example of the construction of a two-dimensional array using as
column a Legendre sequence with respect to the prime 7. The doubly periodic shift
sequence is [0, 1, 3, 4, 3, 1] and is represented as the left two-dimensional array: the shifts
for each output column are the black squares. The output is the array on the right.

This procedure admits a nice graphical representation: the shift array gets a
black square in position (i, j) if the column of index i is to be shifted j positions.
Figure 2 shows an example with a shift array belonging to family Kamaletdinov 1
and a Legendre sequence with respect to the prime 7 as input column. If the
numbers of rows and columns are coprime, it is possible to transform the two-
dimensional array into a sequence using the Chinese remainder theorem.

The shift array of T × N admits a representation as a sequence of integers
between 0 and T − 1, which are the shifts. So, in a similar vein, consider a
T -periodic binary sequence (ui) and an N -periodic sequence of shifts (yi) with
gcd(N,T ) = 1. The resulting sequence using the Chinese remainder theorem is

Si = u(i+yi mod N ) mod T , 0 ≤ i < NT. (2)

Next result gives a lower bound for the linear complexity of (Si), which is
generated by the composition method using (ui) and (yi).

Theorem 1. Let (ui) be a binary sequence of period T and (yi) an N -periodic
sequence of shifts. We define the following NT -periodic sequence:

Yi =

{
1, if ∃l, i ≡ (l − (l + yl)AN) mod NT, l = 0, . . . , N − 1;
0, otherwise;

(3)
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where A is the modular inverse of N modulo T , i.e. AN ≡ 1 mod T . Then,

L(Si) ≥ NL(ui) + L(Yi) − NT.

Proof. We consider the generating polynomial associated with (Si) (Eq. (2)):

S(x) =
NT−1∑

i=0

Six
i.

It is well known that the linear complexity of that sequence is

NT − deg(gcd(S(x), xTN − 1)).

In order to calculate the greatest common divisor of these two polynomials, we
denote by A an integer such that AN ≡ 1 mod T .

gcd
(
S(x), xTN − 1

)
= gcd

(
NT−1∑

i=0

Six
i, xTN − 1

)

= gcd

(
N−1∑

l=0

T−1∑

j=0

SNj+lx
Nj+l, xTN − 1

)

= gcd

(
N−1∑

l=0

T−1∑

j=0

uNj+l+ylx
Nj+l, xTN − 1

)

= gcd

(
u

(
xN

) N−1∑

l=0

x(l−(l+yl)AN) mod NT , xTN − 1

)
,

whose degree is not larger than

deg

(

gcd

(
N−1∑

l=0

x(l−(l+yl)AN) mod NT , xTN − 1

))

+ deg
(
gcd

(
u(xN ), xTN − 1

))

= deg

(

gcd

(
N−1∑

l=0

x(l−(l+yl)AN) mod NT , xTN − 1

))

+ N deg
(
gcd

(
u(x), xT − 1

))
.

Using the relation between the generating function and the linear complexity,
we get the result. ��
This is, to our knowledge, the first result that relates the linear complexity of the
column and doubly periodic shift sequences to the linear complexity generated
by the composition method and the Chinese remainder theorem.

Next, we give a formula to calculate a multiple of the minimal polynomial
of the unfolded sequences presented by Leukhin and Tirkel [14]. Indeed, if a
plausible conjecture holds true, we can give the LFSRs in cascade representation
of the unfolded sequences, up to multiplicities.

We define the following operation: given two polynomials f, g ∈ F2[x], f 	 g
is the monic polynomial defined by

f 	 g =
∏

f(α)=0

∏
g(β)=0

(x − αβ),

where the products run over all roots of f and g over a closed extension of F2,
see [20] for more about this operation.
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Theorem 2. Take a column sequence of length p whose minimal polynomial
is M(x) and a doubly periodic shift sequence of length T with gcd(T, p) = 1.
The minimal polynomial of any sequence unfolded using the Chinese remainder
theorem from an array output by the composition method is a divisor of M(x) 	
(xT + 1), if (xp + 1)/M(x) is not divisible by x + 1. Otherwise, the minimal
polynomial is a divisor of the product of M(x) 	 ((xT + 1)/(x + 1)) and (x + 1).

As a consequence, sequences coming from unfolded arrays generated by the
composition method can be represented as a set of cascade LFSRs. All these
LFSRs are decimations of a single linear generator of degree d, the minimum
integer satisfying

2d ≡ 1 mod pT ′, gcd(T ′, 2) = 1, T = 2fT ′,

and the multiplicity of the factors is less than 2f .

Proof. Given M(x), we define two sets:

{αβ | M(α) = 0, βT = 1}, (4)

{αβ | M(α) = 0, βT = 1, β 
= 1} ∪ {1}. (5)

A proof that all roots of the minimal polynomial of the unfolded array are in
one of these sets can be found in [16, Lemma 5.1]. For the second statement,
note that the generated sequence has period pT , which implies that the minimal
polynomial is xpT +1, whose roots are powers of a primitive root of order 2d − 1
and occur with multiplicity at most 2f . This finishes the proof. ��
As an example, let us apply the theorem above to the array generated in Fig. 2.
In that case, p = 7 and the period of the doubly periodic shift sequence is T = 6,
so the length of the LFSRs in the cascade representation is at most d = 6, which
is the minimum integer such that 2d ≡ 1 mod 21.

We remark that all the appearing LFSRs are decimations of the same -
LFSR, but not all proper necessarily. That is why the examples in Eqs. 16 and
18 calculated by Leukhin and Tirkel involve factors with different degrees.

Computer experiments show that the roots of the minimal polynomial are
those in either Eq. (4) or (5). Indeed, it is straightforward to prove this for the
shift arrays defined by ERC, Family A and Kamaletdinov 1 and 2 if the following
conjecture holds [7].

Conjecture 1. The sequences generated by the composition method with shift
arrays defined by Kamaletdinov families have maximal linear complexity.

Example 2. Let us go through the example in [14, Fig. 7]. Take p = 7 and a
doubly periodic shift sequence of length T = 6, so 6 = 2T ′ and T ′ = 3. The
degree d can be calculated directly:

26 = 64 ≡ 1 mod pT ′.

Notice that the factor multiplicity equals 2. In this case, Conjecture 1 holds
and the roots of the minimal polynomial are given exactly by Eq. (4). Using [2,
p. 119], it is possible to calculate a polynomial whose roots are exactly (4) or (5).
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We finish this section with a corollary on the length of the LFSRs in the cascade
representation when the Legendre sequence is used as column.

Corollary 1. Under the conditions of Theorem 2 and for the cascade represen-
tation defined in the theorem, using as input column the Legendre sequence with
respect to the prime p, all nontrivial LFSRs of the resulting cascade representa-
tion have degree d, if T ′ = 1. Otherwise, write φ for the Euler totient function
and, for an integer D > 1, let dD be the minimum positive integer such that
2dD ≡ 1 mod pD. One of the following cases holds:

– if p ≡ −1 mod 8, there are φ(pD)/(2dD) nontrivial LFRSs of length dD for
each divisor D of T ′

– if p ≡ 3 mod 8, there are φ(pD)/dD nontrivial LFRSs of length dD for each
divisor D of T ′

– if p ≡ 1 mod 8, there are φ(pD)/(2dD) nontrivial LFRSs of length dD for
each divisor D of T ′, except possibly for D = 1.

– if p ≡ 5 mod 8, there are φ(pD)/dD nontrivial LFRSs of length dD for each
divisor D of T ′, except possibly for D = 1.

Proof. If the sequences have maximal linear complexity, the minimal polynomial
must have as many roots as possible, i.e. the set of roots must be the one defined
in either Eq. (4) or (5). Now, the result is an immediate application of Theorem 2
and the factorization of xpT ′

+ 1 by cyclotomic polynomials. The number of -
LFSRs for the case D = 1 is deduced in Example 1 and can be found, in general,
in [15]. ��
Example 3. For p = 23, Leukhin and Tirkel [14] give the factorization for the
minimal polynomial of the sequence generated using the Extended Rational
Cycle. The parameters, in that case, are T = 24, T ′ = 3, and 2f = 8. Using
our notation, we have D1 = 11 and D3 = 22, so, applying the formula, there is
only one factor of degree 11 and another of degree 22.

Interestingly enough, Theorem 2 states that the multiplicity is less than 8.
In this case, the factor of degree 11 has multiplicity 7 and the other has multi-
plicity 8.

4 Conclusions

This paper shows that the recursion polynomial of the Legendre sequence is
the product of specific irreducible polynomials. Consequently, we compute the
recursion polynomials of sequences and arrays constructed by the method of
composition using the Legendre sequence as input column.

This validates empirical findings and conjectures by Leukhin, Moreno, and
Tirkel. It also shows that apparently unrelated constructions by Kamaletdinov,
Moreno, and Tirkel can be unified under these results.

We leave two open problems: the first one is to develop similar algorithms as
those in [20]. This would recover explicitly the factors of the minimal polynomial
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of the sequence. Although there are tables with the factorization of XpT + 1 for
some values of pT , it would still be interesting to obtain faster algorithms.

The second problem is to find an explicit formula for the multiplicity of the
different factors. Computer experiments show some regularities, for example,
there are always factors with maximal multiplicity, i.e. 2f . Again, it is possible
to compute the multiplicity efficiently.

As a final remark, the ideas outlayed here apply if the column is replaced by
any other sequence. However, only the Legendre sequence is presented because
it provides the most interesting case, due to its applications.
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Abstract. We develop a new algorithm to compute determinants of all
possible Hankel matrices made up from a given finite length sequence
over a finite field. Our algorithm fits within the dynamic programming
paradigm by exploiting new recursive relations on the determinants of
Hankel matrices together with new observations concerning the distri-
bution of zero determinants among the possible matrix sizes allowed by
the length of the original sequence. The algorithm can be used to iso-
late very efficiently linear shift feedback registers hidden in strings with
random prefix and random postfix for instance and, therefore, recovering
the shortest generating vector. Our new mathematical identities can be
used also in any other situations involving determinants of Hankel matri-
ces. We also implement a parallel version of our algorithm. We compare
our results empirically with the trivial algorithm which consists of com-
puting determinants for each possible Hankel matrices made up from a
given finite length sequence. Our new accelerated approach on a single
processor is faster than the trivial algorithm on 160 processors for input
sequences of length 16384 for instance.

Keywords: Generating polynomial · Quotient-difference tables ·
Linear algebra over finite fields · Hankel matrices · Linear shift
feedback registers · Pattern substrings · Berlekamp-Massey algorithm

1 Notation, Facts and Definitions

Let q be a prime power, n > 0, and x = (xi)n−1
i=0 ∈ F

n
q . For integers 1 ≤ j ≤ ⌈

n
2

⌉

and j − 1 ≤ i < n − j + 1, define the matrix Xi,j by

Xi,j =

⎛

⎜
⎜
⎜
⎝

xi . . . xi+j−2 xi+j−1

xi−1 . . . xi+j−3 xi+j−2

...
. . .

...
...

xi−j+1 . . . xi−1 xi

⎞

⎟
⎟
⎟
⎠

. (1)
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By convention, we let Xi,0 = 1 for 0 ≤ i < n. Every matrix Xi,j is a Hankel
matrix.

Hankel matrices have a large number of applications in applied mathematics.
In this paper we are interested in Hankel matrices over finite fields. We explore
the well known connection of Hankel matrices and sequences over finite fields;
for an introductory explanation see Sect. 8.6 in [13]. Hankel matrices are strongly
connected to coprime polynomials over finite fields. Indeed, the probability of
two monic polynomials of positive degree n over Fq to be relatively prime is
the same as the uniform probability for an n × n Hankel matrix over Fq be
nonsingular [6,7]. Elkies [5] studies the probability of Hankel matrices over finite
fields be nonsingular when independent biased entries are used for the matrix.
An algorithm to generate a class of Hankel matrices called superregular (that are
related to MDS codes) is given in [16]. Finally, we point out that several results
and applications of Hankel matrices over finite fields are given in the Handbook
of Finite Fields [14]. In particular, see Sect. 13.2 for enumeration and classical
results, Sect. 14.8 for connections to (t,m, s)-nets, and Sect. 16.7 for hardware
arithmetic for matrices over finite fields. In this paper, we give a new algorithm
to compute determinants of all possible Hankel matrices made up from a given
finite length sequence over a finite field.

We denote by di,j the determinant of Xi,j . By definition of Xi,j , we have for
all i

di,0 = 1, di,1 = xi, di,j = detXi,j .

For convenience, let h =
⌈
n/2

⌉
. We use the determinants to form a quotient-

difference table [10,17]. If h is odd, the determinants form a triangle:

0 : 1 1 . . . 1 1 1 . . . 1 1
1 : x0 x1 . . . . . . xh . . . . . . xn−2 xn−1

2 : d1,2 d2,2 . . . . . . . . . dn−3,2 dn−2,2

3 : d2,3 . . . . . . . . . dn−3,3

4 :
. . .

...
...

...
. . .

...
...

h : dh,h

If n is even, then the triangle is truncated at the hth level where there are two
elements dh,h and dh,h+1. We observe that i refers to columns and j refers to
rows.

For integers i0, i1, j0, j1 such that i1 > i0, h ≥ j1 − j0 > 0, consider the set
S(i0, i1, j0, j1) = {(i, j) ∈ N × N | i0 ≤ i ≤ i1, j0 ≤ j ≤ j1, j1 − 1 ≤ i <
n − j1 + 1}. We observe that S is nonempty and may have a k-side polygonal
shape with 3 ≤ k ≤ 6. Section 4 gives two examples, one with n = 32, k = 6,
and one with n = 81, k = 4. We see that the tip of the triangular table from
the example with n = 32 has length two, and therefore it yields to an hexagonal
case. For a detailed explanation, see Sect. 4. If S falls entirely inside the table,
then k = 4 necessarily, that is, we have a square of zeros. If S overlaps with
the edges of the triangular table, then k may be different than 4. We use ∂S to
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denote the boundary of S. We prove in this work that zeros in a difference table
are always distributed or grouped according to S.

Our goal is to design a dynamic programming algorithm to fill the table that
requires the least number of determinant evaluations. More precisely, if we know
the first j − 1 rows of the table, then we want to compute determinants for the
jth row by using the least possible number of rows above the jth. In Sect. 2, we
establish relations among determinants di,j ’s no matter how x is generated. Our
results amplify any linear patterns that could be used to generate the coordinates
of x. We show that any run of zeros in the table automatically implies a run of
zeros exactly below the former so that we obtain a square of zeros. Moreover, we
prove identities, that we call cross shape identities, relating determinants di,j ’s
located on a cross as explained later; those identities are based on Sylvester’s
identities, generalized by Bareiss [2], as well as Dogson’s identity [1,11].

It would be possible to avoid the evaluations of determinants of matrices by
generalizing determinantal identities given in Conjecture 1 from Sect. 2. More
precisely, in a true random sequence of length n, the expected length of the
maximum run of zeros is O(log2 n). Therefore using the recursive nature of
determinants, and especially determinants of Hankel matrices, we conjecture
that the evaluations of determinants of matrices larger than about O(log2 n)
are not required to complete the table above which would lead to a linear time
algorithm to locate the linear subsequence. Our algorithm may also be used as
a statistical test to determine linearity in a pseudo-random sequence.

In Section 3, we apply results from Sect. 2 to the case of a sequence x =
(xi)n

i=1 that contains a linearly shifted and fed back subsequence.

Definition 1. Using x = (xi)n−1
i=0 as above, let c = (c0, . . . , cd−1) ∈ F

d
q with

cd−1 = 1 and d < n − 1. The sequence x contains a linear subsequence if there
are integers s and t with d ≤ s ≤ t < n such that for all s ≤ � ≤ t we have

d−1∑

i=0

cix�−d+i = 0.

Indeed one of our motivations is to identify the indices s and t as well as to
find the generating vector c. This relates our work to the Berlekamp-Massey
algorithm. As shown later our method does not assume any upper bound on the
length of c or equivalently on the degree of the generating polynomial in the
framework of Berlekamp-Massey.

Given a prime power q, d > 0, and a sequence x = (xi)∞
i=0 with xi ∈ Fq,

the Berlekamp-Massey algorithm is an iterative algorithm that finds the shortest
linear feedback shift register (LFSR) that generates x. A register of size d over
Fq is an element of Fd

q . More precisely, an LFSR consists of an initial register
(x0, x1, . . . , xd−1) ∈ F

d
q , a non zero vector c = (c0, . . . , cd−1) ∈ F

d
q such that for

i ≥ 0

(xi, xi+1, . . . , xi+d−2, xi+d−1) −→ (xi+1, xi+2, . . . , xi+d−1,

d−1∑

j=0

cjxi+j). (2)
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The arrow in Eq. (2) expresses the transition. The state of a system at a point
in time is the content of the register. In Eq. (2), the system transits from the
state (xi, xi+1, . . . , xi+d−2, xi+d−1) to (xi+1, xi+2, . . . , xi+d−1, xi+d) where xi+d

is a given as linear combination of the previous xi’s. The content of the reg-
ister at time i + d − 1 is being fed back into the right end of it through
the linear combination

∑d−1
j=0 cjxi+j . At time i + d, the register is updated to

(xi+1, xi+2, . . . , xi+d−1, xi+d) where xi+d = c0xi + c1xi+1 + · · · + cd−1xi+d−1.
For more information on the Berlekamp-Massey algorithm, see [3] where

interesting connections between this algorithm and the extended Euclidean algo-
rithm are given. LaMacchia and Odlyzko [12] also review how Berlekamp-Massey
algorithm is used in the Wiedemann algorithm to find linear recurrences over
finite fields and also show interesting connections to determinants of Hankel
matrices. For more information on LFSR sequences, see [8,9].

We conclude the section giving the structure of the paper. Section 2 gives
several theoretical relations among Hankel determinants that are crucial in this
paper. Those relations are used in Sect. 3 where we provide our algorithm to
compute all determinants from Hankel matrices. Illustrative examples over F2

are given in Sect. 4. Due to the lack of space, experimental runs of our algorithm
against a standard method of computation are given in Appendix 5. We compare
our results empirically with the trivial algorithm which consists of computing
determinants for each possible Hankel matrices made up from a given finite
length sequence. Our new accelerated approach on a single processor is faster
than the trivial algorithm on 160 processors for input sequences of length 16384
for instance as shown in Sect. 5.

2 Relations Among Hankel Determinants

In this section, we derive useful results to allow the computations of di,j without
actually computing explicitly or directly determinants of size j and instead using
determinants di,j′ with j < j′. Then in Sect. 3, we fill the triangular table using
a dynamic programming approach. Before that, let us recall one of the results
from [2] applied to Hankel matrices and adapted to our notation. If i, j are such
that i0 < i < i1, j0 ≤ j ≤ j0+(i1−i0−1), and with the convention that di,0 = 1,
di,1 = xi, then

di,jd
j−j0
i,j0−1 = det

⎛

⎜
⎝

di,j0 . . . di+j−j0,j0
...

. . .
...

di−(j−j0),j0 . . . di,j0

⎞

⎟
⎠ . (3)

Equation (3) is called a jth-step integer preserving identity in [2]. We call an
identity like in Eq. (3) a cross shape identity because di,j , di,j0 and di,j0−1 are
located on the vertical part of a cross, and the other non-diagonal elements of
the matrix are located on the horizontal part of the aforementioned cross. A
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visual representation of Eq. (3) is as follow:

0 : 1 1 . . . 1 . . . 1 . . . 1 . . . 1 1
1 : x0 x1 . . . xi−j+j0 . . . xi . . . xi+j−j0 . . . xn−2 xn−1

...
. . .

...
...

...
...

j0 − 1 :
. . . di,j0−1

...
j0 : di−j+j0,j0 . . . di,j0 . . . di+j−j0,j0
...

...
...

...
j : di,j

...
...

We come back to Eq. (3) at the end of this section with a brief explanation of
its proof. Eq. (3) remains valid even if di,j0−1 = 0 as pointed in [2].

Theorem 1. Let i0 < i < i1, and j0 be such that di,j0 �= 0, di,j0+1 = 0,
di0,j0+1 �= 0, di1,j0+1 �= 0. Then with j1 = j0 + (i1 − i0) and S(i0, i1, j0, j1)
non-empty, we have

di,j = 0 for all (i, j) ∈ S(i0, i1, j0, j1),
di,j �= 0 for all (i, j) ∈ ∂S(i0, i1, j0, j1).

Proof. Without loss of generality, assume that S falls entirely inside the table
with left and right boundaries at (i0, j0) and (i1, j0), respectively, and with upper
and lower boundaries at (i0, j0) and (i0, j1), respectively. To fall entirely inside
the table, one must have 2(i0+1)−i1 ≥ 0 so that the Hankel matrix Xi0,i1−i0−1 is
properly defined; the number of consecutive zeros on level j0 that occur between
i0 and i1 is i1 − i0 − 1.

Fix i such that i0 < i < i1 and let j0 ≤ w ≤ j0 + (i1 − i0 − 1). Then using
Eq. (3) with w = j0 + 1 as the basis for induction, we obtain that di,j0+1 = 0,
that is, we obtain the second row of zeros below the first one. For the inductive
step, assume that di,w′ = 0 for j0 ≤ w′ < w, and rewrite Eq. (3) as

di,w = dj0−w
i,j0−1 det

⎛

⎜
⎝

di,j0 . . . di+w−j0,j0
...

. . .
...

di+j0−w,j0 . . . di,j0

⎞

⎟
⎠ .

Therefore at least one row of the previous matrix is made only of zeros which
implies the desired result.

We remark that Theorem 1 does not depend on the input sequence, and it is
solely a property of determinants for Hankel matrices. If for instance the input
sequence is chosen entirely at random with independent identically unbiased
distributed Bernoulli random variables, then the biggest squares have average
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side length O(log2 n) which is the expected length of the longest run of zeros in
a random sequence of Bernoulli random variables with length n.

Given a square matrix X of size � × �, we consider its sub-matrix C of size
(� − 2) × (� − 2) located in the center X, and its 4 sub-matrices N, S, E and
W of size (� − 1) × (� − 1) located in the top left, bottom right, top right and
bottom left of X, respectively. In other words let

X =

⎛

⎜
⎝

x1,1 . . . x1,�

... C
...

x�,1 . . . x�,�

⎞

⎟
⎠

=

⎛

⎜
⎝

N
x1,�

...
x�,1 . . . x�,�

⎞

⎟
⎠ =

⎛

⎜
⎝

x1,1 . . . x1,�

...
x�,1

S

⎞

⎟
⎠

=

⎛

⎜
⎝

x1,1 . . . x1,�

W
...

x�,�

⎞

⎟
⎠ =

⎛

⎜
⎝

x1,1

...
E

x�,1 . . . x�,�

⎞

⎟
⎠ .

Then we have Dodgson’s identity (see [1], or page 29 of [11]):

det(X) det(C) = det(N) det(S) − det(E) det(W). (4)

If the entry x�,� is an unknown and all other elements of X are known, then, for
some α, β ∈ Fq, we have that

(
x�,� det(N) + α

)
det(C) = det(N)

(
x�,� det(C) + β

) − det(E) det(W). (5)

Equation (5) implies that x�,� cannot be determined if det(N) = 0 or det(C) =
0. This simply implies that x�,� cannot be determined from a determinantal
equation of the type obtained by Dodgson’s identity.

We now derive a useful identity using Eq. (4) which can also be proved using
results from [2].

Proposition 1 (North-South-East-West). For all (i, j) such that i−j+1 ≥
0, and 2 ≤ j ≤ ⌈

n/2
⌉
the following identity is true:

di,jdi,j−2 = d2i,j−1 − di+1,j−1di−1,j−1.

Proof. Apply Eq. (4) on the matrix Xi,j given from (1) where det(W) =
di−1,j−1, det(E) = di+1,j−1, det(N) = di,j−1, det(S) = di,j−1, and det(C) =
di,j−2.

We observe that Proposition 1 is reminiscent to the North-South-East-West
identity [18] for quotient-difference table. Proposition 1 is similar to the 1st-order
step integer preserving relation from [2] with a much easier proof. The condition
di,j−2 �= 0 is not required as explained in [2], or as it follows directly from Eq. (4),
but it matters for our dynamic programming method since we cannot determine
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di,j if di,j−2 = 0 using the table information from the (j − 1)th and (j − 2)th
rows.

In order to accelerate the computation of determinants within a dynamical
programming approach, we must ensure that di,j0−1 �= 0 from Eq. (3). For that
we have the next theorem.

Theorem 2. For all (i, j) such that i − j + 1 ≥ 0, and j0 ≤ j ≤ ⌈
n/2

⌉
, if

di,j0−1 �= 0, di,k = 0 for j0 ≤ k ≤ j − 1,

then

di,j = dj0−j
i,j0−1 det

⎛

⎜
⎝

di,j0 . . . di+j−j0,j0
...

. . .
...

di−(j−j0),j0 . . . di,j0

⎞

⎟
⎠ .

Proof. Before starting, for a fixed position i and for any size j0, we observe that
the value j − j0 expresses the depth of singularity, that is, the number of zeros
below the non-zero cell indexed by (i, j0−1). The depth of singularity also relates
to the concentration of zeros aligned horizontally around the cell (i, j0 − 1). By
concentration of zeros, we mean the length of a run of consecutive zeros.

(j = j0 + 1)th step: Suppose that di,j0−1 �= 0 and di,j0 = 0. If di,j0+1 = 0,
then there is at least one zero to the left or to the right of (i, j0) or both. Indeed
Proposition 1 entails that di,j0+1di,j0−1 = d2i,j0−di+1,j0di−1,j0 which, in this case,
is equivalent to di,j0+1di,j0−1 = −di+1,j0di−1,j0 from which we infer that either
di−1,j0 = 0 or di+1,j0 = 0 whenever di,j0+1 = 0. So there is qualitatively speaking
a small concentration of zeros aligned horizontally around the cell (i, j0).

(j = j0 + 2)th step: Now suppose that di,j0−1 �= 0, di,j0 = di,j0+1 = 0 and
write

0 = di,j0+1d
2
i,j0−1 = det

⎛

⎝
0 di+1,j0 di+2,j0

di−1,j0 0 di+1,j0

di−2,j0 di−1,j0 0

⎞

⎠ .

By the (j = j0 +1)th-step, if di+1,j0 = 0, then 0 = di,j0+1d
2
i,j0−1 = d2i−1,j0

di+2,j0

from which either di−1,j0 = 0 or di+2,j0 = 0; if di−1,j0 = 0, then 0 = di,j0+1d
2
i,j0−1

= d2i+1,j0
di−2,j0 from which either di+1,j0 = 0 or di−2,j0 = 0. Therefore we

conclude that di−1,j0 = di+1,j0 = 0 as well. The horizontal part of the cross
contains therefore a higher concentration of zeros around di,j0 with respect to
the previous step. We cannot conclude at this moment that di+1,j0 = 0 = di+2,j0

or di−1,j0 = 0 = di−2,j0 without further adding deeper singularities.
(j = j0 + 3)th step: Now suppose that di,j0−1 �= 0 and di,j0 = di,j0+1 =

di,j0+2 = 0 and write

0 = di,j0+2d
3
i,j0−1 = det

⎛

⎜
⎜
⎝

0 di+1,j0 di+2,j0 di+3,j0

di−1,j0 0 di+1,j0 di+2,j0

di−2,j0 di−1,j0 0 di+1,j0

di−3,j0 di−2,j0 di−1,j0 0

⎞

⎟
⎟
⎠ . (6)
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From the (j = j0 + 2)th step, di−1,j0 = 0 = di+1,j0 , and Eq. (6) is equivalent to

0 = di,j0+2d
3
i,j0−1 = det

⎛

⎜
⎜
⎝

0 0 di+2,j0 di+3,j0

0 0 0 di+2,j0

di−2,j0 0 0 0
di−3,j0 di−2,j0 0 0

⎞

⎟
⎟
⎠

= d2i+2,j0d
2
i−2,j0 ,

so that either di−2,j0 = 0 or di+2,j0 = 0. With the knowledge of the (j0 + 2)th-
step, we can safely conclude that either di+1,j0 = 0 = di+2,j0 or di−2,j0 = 0 =
di−1,j0 . Hence the concentration of zeros increases on the j0th row with respect
to the previous steps. We observe that the previous determinant has at least one
row with 3 consecutive zeros. The position of a run of zeros from one row to the
following is shifted cyclically by one position.

The process stops when we can no longer add deeper singularity, that is, we
stop for the smallest index j > j0 such that di,j �= 0. When such index j is
found, then we can no longer deduce zero determinants on the horizontal part
of the cross.

jth step: Assume that di,j0−1 �= 0 and di,k = 0 for j0 ≤ k ≤ j − 1, and now
assume di,j �= 0. The matrix to consider at this step has size (j + 1) × (j + 1).
Thus at this current jth-step, we can find di,jd

j−j0
i,j0−1 �= 0. We observe that we

hit the boundaries of a square of zeros. At the following (j + 1)th step, all rows
would contain at least 2 non-zero elements or equivalently there would not be a
row with at least j + 1 consecutive zeros. Thus di,j+1d

j+1−j0
i,j0−1 would be the sum

of at least two products and it would become impossible to correctly deduce the
values of the determinants.

Now we work for our next result, a partially proved conjecture. Given valid
indices i, j for the column and the row of the triangular table of determinants,
and 2k ≤ j let Gi,j,k be a matrix of size (k + 1) × (k + 1) defined as

Gi,j,k =

⎛

⎜
⎜
⎜
⎝

di,j−2k di+1,j−2k+1 . . . di+k,j−k

di−1,j−2k+1 di,j−2k+2 . . . di+k−1,j−k+1

...
...

. . .
...

di−k,j−k di−k+1,j−k+1 . . . di,j

⎞

⎟
⎟
⎟
⎠

. (7)

In other words, for 0 ≤ r, c ≤ k, the entry of Gi,j,k located on the rth row and cth
column is given by di−r+c,j−2k+r+c. The pair (i−r+c, j−2k+r+c) indexing an
element of Gi,j,k is the intersection of two perpendicular lines. The intersection
of a group of k parallel lines intersecting perpendicularly another group of k
parallel lines as it might be easier to see with the following representation by
drawing k lines with slope π/4 and separated at distance

√
2 intersecting k other

lines with slope 3π/4 also at distance
√

2 of each other:
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. . . i − k i − k + 1 . . . i − 1 i i + 1 . . . i + k − 1 i + k . . .

0 . . . 1 1 . . . 1 1 1 . . . 1 1 . . .

1 . . . xi−k xi−k+1 . . . xi−1 xi xi+1 . . . xi+k−1 xi+k . . .

.

.

.
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

j − 2k di,j−2k

j − 2k + 1 di−1,j−2k+1 di+1,j−2k+1

.

.

.
...

. . .

j − k − 1 di−k+1,j−k−1 di−k+1,j−k−1

j − k . . .di−k,j−k di,j−k di+k,j−k . . .

j − k + 1 di−k+1,j−k+1 di−k+1,j−k+1

.

.

.
. . .

...

j − 1 di−1,j−1 di+1,j−1

j di,j

.

.

.

.

.

.

If the information about the determinants di,j′ , 0 ≤ j′ ≤ j − 1, is known,
then we might hope to solve a determinantal equation like det(Gi,j,k) = g for
some g ∈ Fq for the unknown di,j located in the bottom right corner of Gi,j,k.

We may sometimes abuse the language to denote the index (i, j) or the
value indexed by (i, j) which is di,j . It is very convenient to refer to k as a
radius of an �1-ball centered around di,j−k or more precisely around the index
(i, j − k). An �1-ball is a square grid. The grid can be seen as the intersection
of the two families of parallel lines and each family perpendicular to each other
as mentioned previously. The indices obtained by the intersection of the two
families are used to define Gi,j,k. We refer the neighbourhood around (i, j − k),
which is the center of the grid, as the �1-ball of radius k. If k is even, then the
center (i, j − k) is deleted. If k is odd, then the center is part of the ball. If
det(Gi,j,k) = 0, then there is a local linear dependency around (i, j − k). From
Dodgson’s identity, Gi,j,k−2 plays the role of the center which can be seen as the
interior of the neighbourhood of (i, j − k).

We postulate the following conjecture about the local linear dependency or
more precisely about the minimum amount of information required to determine
di,j assuming the table is known up to the (j − 1)th level, inclusively.

Conjecture 1. For 2 ≤ k ≤ 6, j ≥ 2k, and j−1 ≤ i ≤ n−j, where n is the length
of the sequence, the smallest radius k for which detGi,j,k = 0 is the smallest
value k for which detGi,j,k−1 �= 0. Assuming detGi,j,k′ = 0 for 2 ≤ k′ ≤ 6, then
we have detGi,j,7 = 0 if and only detGi,j,6 �= 0 and di,j−7 = 0.

We recall from linear algebra that the condition det(Gi,j,k−1) �= 0 is nec-
essary and sufficient for the uniqueness to the solution of the linear equation
det(Gi,j,k) = 0 with di,j as unknown for all value of k and j ≥ 2k.
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We verified the previous conjecture by comparing di,j obtained from solving
the corresponding determinantal equation with the value obtained from the triv-
ial algorithm. Given that we never found any counter-example to Conjecture 1,
we decided to include its algorithmic flavour, that is Algorithm 1, in our dynamic
method given in Algorithm 2.

Algorithm 1. Growing an �1-metric ball and solving for the unknown

Input: Integer n > 0, 2 ≤ k ≤ 7, j ≥ 2k, and j − 1 ≤ i ≤ n − j
1: if k ≤ 6 then
2: for k′ = 2 to k do
3: if det(Gi,j,k′−1) �= 0 then
4: Solve det(Gi,j,k′) = 0 with di,j as unknown
5: Return di,j

6: end if
7: end for
8: else if k = 7, det(Gi,j,6) �= 0, di,j−7 = 0 then
9: Solve det(Gi,j,7) = 0 with di,j as unknown

10: Return di,j

11: else
12: k out of range // We need more research for larger radius k.
13: end if

We finish by briefly explaining Eq. (3) as we promised at the beginning of
this section. Given a square matrix A of size h×h, with h = �n/2	, we introduce
the notation from [2]

a(k)
r,c = det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0,0 a0,1 . . . a0,k−1 a0,c

a1,0 a1,1 . . . a1,k−1 a1,c

...
...

. . .
...

...
ak−1,0 ak−1,1 . . . ak−1,k−1 ak−1,c

ar,0 ar,1 . . . ar,k−1 ar,c

⎞

⎟
⎟
⎟
⎟
⎟
⎠

for k ≤ r, c ≤ h.

Clearly a
(k)
r,c is the determinant of a (k + 1) × (k + 1) matrix. We observe that

the principal minors of A are a
(k)
k,k. In [2], it is shown that

a(k)
r,c =

1
(
a
(�−1)
�,�

)k−�
det

⎛

⎜
⎜
⎜
⎜
⎝

a
(�)
�,� . . . a

(�)
�,k−1 a

(�)
�,c

...
. . .

...
...

a
(�)
k−1,� . . . a

(�)
k−1,k−1 a

(�)
k−1,c

a
(�)
r,� . . . a

(�)
r,k−1 a

(�)
r,c

⎞

⎟
⎟
⎟
⎟
⎠

for 0 < � < k. (8)

So a
(k)
r,c is also the determinant of a (k−�+1)×(k−�+1) matrix of determinants.

The left side of Eq. (8) does not depend on �. Let us concentrate on the principal
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minors when r = c = k, and substitute � = j0 and k = j in Eq. (8) to get that

a
(j)
j,j =

1
(
a
(j0−1)
j0,j0

)j−j0
det

⎛

⎜
⎜
⎜
⎜
⎝

a
(j0)
j0,j0

. . . a
(j0)
j0,j−1 a

(j0)
j0,j

...
. . .

...
...

a
(j0)
j−1,j0

. . . a
(j0)
j−1,j−1 a

(j0)
j−1,j

a
(j0)
j,j0

. . . a
(j0)
j,j−1 a

(j0)
j,j

⎞

⎟
⎟
⎟
⎟
⎠

for 0 < j0 < j.

Entries (determinants) inside of the previous matrix are those dj−j0,j0 ’s intro-
duced at the beginning of this section. We observe that we can shift j − j0 by
any quantity modulo n and therefore get Eq. (3).

3 Algorithm to Compute Determinants of Hankel
Matrices over Finite Fields

In the following algorithm, the symbol j indexes the rows of the table and j is
the size of the Hankel matrix Xi,j as in the introduction. The symbol i indexes
the columns and is related to the position in the input vector x from where
we build the Hankel matrix Xi,j . We use the symbol M to denote the dynamic
table under consideration, and M [j][i] stands for di,j = detXi,j . The table grows
from top to bottom by considering the smallest possible Hankel matrices to the
largest one if n is odd or the largest two if n is even. For a given matrix of size
j or equivalently a given row j of M , the algorithm sweeps from the left to the
right using the input vector x in order to consider all possible Hankel matrices
of size j. We use also M [j][·] to refer to the jth row of the table M .

Algorithm 2. Computing determinants for all possible Hankel matrices made
up from a sequence x ∈ F

n
q

Input: Integer n > 0 and vector x ∈ F
n
q .

Output: Triangular table M .
1: h ← �n/2	
2: M ← ∅ // Allocate space for M with base h and width n.
3: for i = 0 to n − 1 do // Initialize first two rows M .
4: M [0][i] ← 1
5: M [1][i] ← xi

6: end for
7: for j = 2 to h do
8: Find new squares of zeros // Use Theorem 1 with the knowledge

of rows M [j − 1][·] and M [j − 2][·].
9: for i = j − 1 to n − j do // Loop is parallelized.

10: if M [j][i] has not been yet evaluated then
11: if M [j − 2][i] �= 0 then
12: Compute M [j][i] using Proposition 1
13: else if Conditions for Conjecture 1 then
14: Compute M [j][i] accordingly with Algorithm 1



Finding Linearly Generated Subsequences 185

15: else if Conditions for Theorem 2 then
16: Compute M [j][i] accordingly
17: else
18: Compute M [j][i] explicitly from its definition
19: end if
20: end if
21: end for
22: end for

Based on the results from Sect. 2, the algorithm correctly terminates. We
note that an auxiliary table can be maintained to flag entries of M that were
computed or not. Given j from line (7), to find squares of zeros using M [j −1][·]
and M [j − 2][·], we look for consecutive non zero elements between two indices,
say i0 and i1 (including M [j − 2][i0] �= 0 and M [j − 2][i1] �= 0) at level j − 2,
then check for M [j − 1][i0] �= 0 followed by zero elements until M [j − 1][i1] �= 0;
the procedure begins with i0 = j − 1 and if i1 is found to be the right upper
corner, then a square is filled, and the procedure continues from i1 until reaching
n−j. Once the squares are filled, the remaining elements on a given row must be
evaluated. The goal is to use as few as possible knowledge from the previous rows
by using Proposition 1, Theorem 2, and Conjecture 1. If none of the previous
results applied, then we revert to the trivial and expensive evaluation.

We end this section by explaining briefly how to find the generating vector of
a linear subsequence. Once an unusual long run of zeros is found on a row of the
table, we stop the computations of determinants since actually there is no need
to further complete the table. Indeed, all the knowledge we need to build the
adjugate, in order to invert a Hankel matrix connecting the generating vector to
a part of the original sequence, is located on the previous rows that had been
already computed.

4 Illustrative Visual Examples

In this section, we give two examples illustrating our new results over F2. For
the first example, we generate a sequence of length 32 indexed from left to right
starting with index 0, ending with index 31, and which is given by

01010110100111010011101011101110

Red color represents the prefix and the postfix that are generated randomly.
Green color represents the middle linear substring. The big square of zeros due to
the linearity of the middle string is in blue color. The sequence is used to initialize
the table so it is identical to the row indexed by 1 below. Row 0 contains only
unit elements. The generating vector is (1, 0, 1, 1) = (c0, c1, c2, c3). We note that
as mentioned previously, c3 = 1 to ensure the vector is not trivial. The leftmost
index of linear subsequence is 8, that is i0 = 8, and so the generated random
prefix is 01010110 = x0x1 · · · x7. The rightmost index of the linear subsequence
is 24, and the generated random postfix is 11101110 = x24 · · · x31.



186 C. Gravel et al.

The middle linearly substring is given by 1001110100111010 = x8x9 · · · x23,
and is generated linearly from the prefix string: c3x8 + c2x7 + c1x6 + c0x5 = 0
implies x8 = c2x7 + c1x6 + c0x5 = x7 + x5 = 0 + 1 = 1, x9 = x8 + x6 = 1 + 1 =
0, x10 = x9 + x7 = 0 + 0 = 0, and so on.

Since the generating vector has length 4, then the row at which appears a
long run of zeros is on the row indexed by 4. The shape of S is hexagonal, and
the values of j1 varies with those of the positional indices i. The value j0 = 4.

0 :11111111111111111111111111111111
1 :01010110100111010011101011101110
2 : 111111110010111001011111011101
3 : 0010011111111111111101111011
4 : 01001000000000000011101111
5 : 111100000000000001111100
6 : 0110000000000000100110
7 : 11000000000000010011
8 : 100000000000001111
9 : 0000000000000100

10 : 00000000000010
11 : 000000000001
12 : 0000000000
13 : 00000000
14 : 000000
15 : 0000
16 : 00

For the second example, we generate a sequence of length 81 indexed from
left to right starting with index 0, ending with index 80, and which is given by

101100000010101111011010110101100100011110101100100010101111011001100110000000100

0 :111111111111111111111111111111111111111111111111111111111111111111111111111111111

1 :101100000010101111011010110101100100011110101100100010101111011001100110000000100

2 : 1110000001111100111111111111110010001001111110010001111100111100110011000000010

3 : 01000000100110010001010010101111000100110101111000100110010011111111100000001

4 : 100000010011111000111001111111111111111111111111110011111001000000010000000

5 : 0000001111010100011111110000000000000000000001101111010111100000001000000

6 : 00000101111111111000001000000000000000000000111111111111010000000100000

7 : 111111100000111100000100000000000000000000010000000010111000000010000

8 : 0010110000010010000010000000000000000000001000000001111100000001111

9 : 01111000001001000001000000000000000000000100000000100010000000100

10 : 100100000111100000100000000000000000000010000000010001000000010

11 : 0010000011111111110000000000000000000001000000001000111111111

12 : 11111111000000001000000000000000000000100000000111111010010

13 : 000001100000000100000000000000000000010000000011110111001

14 : 0000110000000010000000000000000000001000000001001111111

15 : 00011000000001000000000000000000000111111111100110001

16 : 001100000000100000000000000000000011111101111111000

17 : 0110000000010000000000000000000001000011100100100

18 : 11000000001000000000000000000000100001010010011

19 : 100000000100000000000000000000010000111111111

20 : 1111111110000000000000000000001000010010011

21 : 11110001000000000000000000000111111001001

22 : 001000100000000000000000000010101111111

23 : 0100010000000000000000000001111100000

24 : 11111000000000000000000000100110000

25 : 001100000000000000000000010011000

26 : 0111111111111111111111111111100

27 : 10111100011010001101000001010

28 : 110010001111000111100000111

29 : 1001000101100010110000011

30 : 11111111111111111000001

31 : 001110000000000100000

32 : 0101000000000011111

33 : 11100000000001010

34 : 110000000000111

35 : 1000000000010

36 : 00000000001

37 : 000000000

38 : 0000000

39 : 00000

40 : 000

41 : 1

In this case the generating vector is (1, 0, 0, 1, 1) = (c0, c1, c2, c3, c4). The
leftmost index of the linear subsequence is 30, and the rightmost index of linear
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subsequence is 50. The shape of S is a square and i0 = 30, i1 = 50, j0 = 5, and
j1 = j0 + (i1 − i0) = 25 as it can be seen as well from the visual aid. The prefix
random string is given by x0x1 · · · x29 = 101100000010101111011010110101. The
postfix random string is x50x51 · · · x80 = 0010101111011001100110000000100.
The middle linear substring is given by x30 · · · x49 = 10010001111010110010.

5 Conclusion and Further Work

We believe that there are still more relations to be found and to be coded in order
to avoid the computation of determinants, and this is currently under study. An
ultimate goal is to get rid entirely of the evaluations of large determinants by
proving and generalizing Conjecture 1. How would the linear dependency vanish
as the radius gets larger or synonymously how far does it propagate around the
center? Can we further enlarge the radius by adding new conditions for k > 7?

It would be interesting to adapt our algorithm to output the generating vector
and compare it to efficient implementations of the Berlekamp-Massey algorithm.
We would need to stop at the level containing a long run of zeros and use the
information of the row preceding this one to solve efficiently the linear system
for the generating vector using adjugate matrices.

It is known that Berlekamp-Massey algorithm is virtually the same as the
extended Euclidean algorithm for polynomials over finite field. Could we find
a similar equivalence to our algorithm for problems involving Bezout identities
that express linear dependencies among elements in fields?

Our dynamic approach can be easily adapted to multiple and combined linear
feedback shift registers. Further research also includes to analyze the case of
non-linear feedback shift register by linearizing the generator; more precisely,
linearizing a non-linear boolean feedback function pertains to add constraints
which are reflected in the determinant identities.

Appendix: Run Times and Distribution of Counts

In order to compare in practice the running times between the trivial method
and our new method, we generate sequences of length n that we linearly filled. In
order to compute determinants of large Hankel matrices whenever necessary, we
do not use the Levinson-Durbin algorithm [4,15] that can be adapted to Hankel
matrices instead of Toeplitz matrices. We created an extremely fast C/C++ low-
level module to compute determinants over F2 in order to do not rely on any
external libraries. Our module to compute determinants over F2 is quite faster
than NTL; it however only applies to binary matrices. We recall that one of
our future goals is to avoid such computation of determinants of large matrices,
and only use local information. We look at typical worst-case instances when
the linear subsequence is “buried” between two long random sequences serving
as a prefix and a postfix. The prefix random string together with the generator
vector are used to built the linear subsequence in the middle. The prefix random
string must be at least as long as the length of the generating vector to be used
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as initial data. We also consider typical easy-case instances when there is no
random postfix sequence and when the length of the random prefix sequence is
the same as the generating vector.

For our accelerated dynamic algorithm, we give the distribution of counts of
the number of times, with respect to the number of entries in the table, that
we branch to Proposition 1, Theorems 1 or 2, Conjecture 1 or to an explicit
computation (where Levinson-Durbin could be used for instance). The time to
verify that the tables obtained from the trivial and our accelerated methods
coincide is not taken into account; we must check this because at this time
we cannot prove the validity of Conjecture 1 and/or further enhanced it. We
also parallelize both the naive and accelerated algorithms. We notice that our
accelerated algorithm on a single core is faster than the trivial algorithm on 160
cores for instance as shown here in the following tables. For n = 214 = 16384,
the time to run the trivial algorithm is prohibitive and we did not run the trivial
algorithm for length n = 214. The meanings of the abbreviations in the following
tables are: Tri. S.T. for trivial algorithm single threaded, Tri. M.T. for trivial
algorithm multi threaded, Acc. S.T. for accelerated algorithm single threaded,
and Acc. M.T. for accelerated algorithm multi threaded. Roughly speaking, a
thread is a core. All threads share a unique space in memory.

EXCERPT OF RUNNING TIMES FOR n = 4096 (in milliseconds)

Tri. S.T. Tri. M.T. Acc. S.T. Acc. M.T.

15931964.434875 793513.102411 209495.875914 79493.525290

15930582.584026 793131.331561 212010.715863 79784.405378

15931070.671137 793029.664463 211231.649798 79538.533773

≈4 h 30min ≈14 min ≈4min ≈1 min 33 s

EXCERPT OF RUNNING TIMES FOR n = 16384 (in milliseconds)

Acc. S.T. Acc. M.T.

95397251.744779 18823959.088013

92977447.400304 18820690.826587

93372757.004548 18817978.092718

≈26 h 30min ≈5 h 36 min

The hardware specification for the computer we used is: Intel(R) Core(TM)
i7-8700 CPU @ 3.20 GHz, 160 cores, 1TB RAM. Our code is available at https://
github.com/63EA13D5/. We coded Algorithm 2 over F2, and a compile switch
can be enable to avoid using the library NTL or to use it. For the worst-case
instances, we generate the sequences using the following parameters:

https://github.com/63EA13D5/
https://github.com/63EA13D5/
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1. Elements indexed from 0 to 7n/16 inclusively are generated randomly.
2. Elements indexed from 7n/16+1 to 9n/16 inclusively are linearly filled using

a non-trivial generating vector of length d = n/8. The generating vector is
randomly created and the rightmost coordinate is set to the unit element in
base field.

3. Elements indexed from 9n/16 to n inclusively are generated randomly.

The ratio of the number of entries in the big square over the number of entries for
the table of a given instance is about 1/16 up to a few decimals. For each value
of n, a sample of sequences is used to estimate the running time by evaluating
the averages over the sample, one average for the trivial and one average for
our method. For comparison, each method is applied to a sequence from the
sample. The ratios of the averages of the new method by the trivial are given.
We generate a sample of 1000 linearly filled vectors as described above for each
value of n. Zero counts are not shown in the tables (Tables 1 and 2).

Table 1. Time complexity and distribution of counts–hard instances.

Sample size 10140

Sequence length 4096

Generating vector length 256

Subsequence leftmost index 1792

Subsequence rightmost index 2304

Number of entries 4192256

Average time for accelerated method (ms) 482211.336405 (i)

Average time for trivial method (ms) 39627789.122209 (ii)

Ratio i/ii 0.012169

Average counts NSEW 1720642.408481

Average counts square filling 925814.212032

Average counts direct 60875.169231

Average counts 2 × 2 grid 467181.981164

Average counts 3 × 3 grid 382111.856114

Average counts 4 × 4 grid 265305.747436

Average counts 5 × 5 grid 169767.046746

Average counts 6 × 6 grid 94158.297732

Average counts 7 × 7 grid 51134.827416

Average counts 2-cross 3772.531657 Average counts 3-cross 2480.830473

Average counts 4-cross 1473.981558 Average counts 5-cross 821.684813

Average counts 6-cross 4415.502071 Average counts 7-cross 4449.331460

Average counts 8-cross 16683.110947 Average counts 9-cross 9334.250197

Average counts 10-cross 5165.383136 Average counts 11-cross 2828.874063

Average counts 12-cross 1536.936785 Average counts 13-cross 828.868540

Average counts 14-cross 444.807101 Average counts 15-cross 237.420710

Average counts 16-cross 125.906312 Average counts 17-cross 67.308679

Average counts 18-cross 35.672189 Average counts 19-cross 18.771893

Average counts 20-cross 9.915779 Average counts 21-cross 5.115089

Average counts 22-cross 2.713708 Average counts 23-cross 1.373570

Average counts 24-cross 0.696746 Average counts 25-cross 0.388955

(continued)
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Table 1. (continued)

Average counts 26-cross 0.246154 Average counts 27-cross 0.098422

Average counts 28-cross 0.054734 Average counts 29-cross 0.043590

Average counts 30-cross 0.020809 Average counts 31-cross 0.009369

Average counts 32-cross 0.006312 Average counts 256-cross 21.695464

Average counts 257-cross 53.271203 Average counts 258-cross 70.017061

Average counts 259-cross 74.697732 Average counts 260-cross 67.246943

Average counts 261-cross 56.079487 Average counts 262-cross 45.345661

Average counts 263-cross 35.773866 Average counts 264-cross 26.859369

Average counts 265-cross 20.313807 Average counts 266-cross 14.738166

Average counts 267-cross 9.678205 Average counts 268-cross 7.546055

Average counts 269-cross 5.817850 Average counts 270-cross 3.680079

Average counts 271-cross 2.569625 Average counts 272-cross 1.961440

Average counts 273-cross 1.428895 Average counts 274-cross 1.082840

Average counts 275-cross 0.923471 Average counts 276-cross 0.490335

Average counts 277-cross 0.383432 Average counts 278-cross 0.439250

Average counts 279-cross 0.247929 Average counts 280-cross 0.082840

Average counts 281-cross 0.027811 Average counts 282-cross 0.027811

Average counts 285-cross 0.028205 Average counts 286-cross 0.028205

Average counts 287-cross 0.028402 Average counts 288-cross 0.028402

Average counts 293-cross 0.028994 Average counts 294-cross 0.028994

Sum over all average counts 4192256

Table 2. Time complexity and distribution of counts–easy instances

Sample size 10140

Sequence length 4096

Generating vector length 256

Subsequence leftmost index 256

Subsequence rightmost index 4096

Number of entries 4192256

Average time for accelerated method (ms) 4331.896007 (i)

Average time for trivial method (ms) 25765730.530170 (ii)

Ratio i/ii 0.000168

Average counts NSEW 407852.065385

Average counts square filling 3419936.066568

Average counts direct 19444.707988

Average counts 2 × 2 grid 106227.368146

Average counts 3 × 3 grid 86949.429093

Average counts 4 × 4 grid 60390.460256

Average counts 5 × 5 grid 38652.743195

Average counts 6 × 6 grid 21438.953156

Average counts 7 × 7 grid 11646.030572

Average counts 2-cross 3772.586193 Average counts 3-cross 2479.999310

Average counts 4-cross 1473.537081 Average counts 5-cross 821.756805

Average counts 6-cross 1341.515483 Average counts 7-cross 1185.020414

Average counts 8-cross 3878.167554 Average counts 9-cross 2161.438363

Average counts 10-cross 1191.903748 Average counts 11-cross 651.711736

Average counts 12-cross 351.648225 Average counts 13-cross 189.478107

(continued)
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Table 2. (continued)

Average counts 14-cross 102.336391 Average counts 15-cross 54.392998

Average counts 16-cross 28.796746 Average counts 17-cross 15.180178

Average counts 18-cross 8.078008 Average counts 19-cross 4.166469

Average counts 20-cross 2.130868 Average counts 21-cross 1.140039

Average counts 22-cross 0.562821 Average counts 23-cross 0.254734

Average counts 24-cross 0.159073 Average counts 25-cross 0.104832

Average counts 26-cross 0.051972 Average counts 27-cross 0.035207

Average counts 28-cross 0.019428 Average counts 29-cross 0.002860

Average counts 1792-cross 0.645759 Average counts 1793-cross 0.501775

Average counts 1794-cross 0.350099 Average counts 1795-cross 0.212623

Average counts 1796-cross 0.121893 Average counts 1797-cross 0.073373

Average counts 1798-cross 0.039645 Average counts 1799-cross 0.022091

Average counts 1800-cross 0.015385 Average counts 1801-cross 0.007298

Average counts 1802-cross 0.005128 Average counts 1803-cross 0.001578

Average counts 1804-cross 0.002564 Average counts 1805-cross 0.000394

Average counts 1806-cross 0.000197 Average counts 1812-cross 0.000197

Sum over all average counts 4192256

We observe that we are about 83 times faster on typical hard instances and
about 5947 times faster on easy ones. In practice, to detect linearity or to solve
backward for the generating vector, we only need to stop at the first level that
contains a long run of zeros.
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Abstract. In 2008 Budaghyan, Carlet and Leander generalized a known
instance of an APN function over the finite field F212 and constructed
two new infinite families of APN binomials over the finite field F2n , one
for n divisible by 3, and one for n divisible by 4. By relaxing conditions,
the family of APN binomials for n divisible by 3 was generalized to a
family of differentially 2t-uniform functions in 2012 by Bracken, Tan and
Tan; in this sense, the binomials behave in the same way as the Gold
functions. In this paper, we show that when relaxing conditions on the
APN binomials for n divisible by 4, they also behave in the same way
as the Gold function x2s+1 (with s and n not necessarily coprime). As
a counterexample, we also show that a family of APN quadrinomials
obtained as a generalization of a known APN instance over F210 cannot
be generalized to functions with 2t-to-1 derivatives by relaxing conditions
in a similar way.

Keywords: Almost perfect nonlinear · Boolean functions · Differential
uniformity · Walsh transform · Walsh spectrum

1 Introduction

Let n,m be natural numbers. A vectorial Boolean (n,m)-function, or simply
an (n,m)-function, or vectorial Boolean function, is a mapping from the n-
dimensional vector space F

n
2 over the finite field F2 = {0, 1} to the m-dimensional

vector space F
m
2 . Since the extension field F2n can be identified with an n-

dimensional vector space over F2, (n,m)-functions can be seen as functions
between the Galois fields F2n and F2m . Vectorial Boolean functions have many
applications in mathematics and computer science. In cryptography, they are the
basic building blocks of block ciphers, and the choice of functions directly influ-
ences the security of the cipher. In order to construct cryptographically secure
ciphers, it is necessary to understand what properties such functions need to
possess in order to resist various types of cryptanalytic attacks, and to find
methods for constructing functions having these desirable properties. In our
work, we mostly concentrate on the case when n = m, i.e. when the number of
input and output bits is the same. A comprehensive survey on (n,m)-functions
can be found in [4,8].
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One of the most powerful attacks against block ciphers is differential crypt-
analysis, introduced by Biham and Shamir [1]. The attack is based on studying
how the difference in two inputs to a function affects the difference in the cor-
responding outputs. The resistance to differential attacks of an (n,m)-function
is measured by a property called its differential uniformity. The lower the differ-
ential uniformity, the more resistant the cryptosystem is to differential attacks.
The class of almost perfect nonlinear (APN) functions is defined as the class of
(n, n)-functions having the best possible differential uniformity, and thus pro-
vides optimal security against differential cryptanalysis.

Another powerful attack against block ciphers is linear cryptanalysis, intro-
duced by Matsui [12]. The property of a function which measures the resis-
tance to this kind of attack is called nonlinearity. The nonlinearity NL(F ) of an
(n,m)-function F is defined to be the minimum Hamming distance between any
component of F and any affine (n, 1)-function. An upper bound on the nonlin-
earity of any (n, n)-function can be derived, and the class of almost bent (AB)
functions is defined as the class of those functions that meet this bound with
equality and therefore provide the best possible resistance to linear attacks.

Recall that the Gold functions are APN power functions over F2n of the
form x2s+1 for some natural number s satisfying gcd(s, n) = 1. Relaxing the
condition to gcd(s, n) = t for some positive integer t, the functions of the
form F (x) = x2s+1 become differentially 2t-uniform, with all their derivatives
DaF (x) = F (x)+F (a+x) for a �= 0 being 2t-to-1 functions. These functions are
permutations if and only if n/ gcd(s, n) = n/t is odd [13], and are (2t + 1)–to–1
functions otherwise. Their nonlinearity is 2n−1 − 2(n+t)/2 when n/t is odd, and
2n−1 − 2(n+2t)/2 otherwise.

In 2008, two infinite families of (n, n)-APN binomials inequivalent to power
functions were introduced in [5] for values of n divisible by 3 or by 4 as gen-
eralizations of a known sporadic APN instance over F212 [11]. These were the
first known infinite families of APN functions that are inequivalent to power
functions. It was later shown in 2012 that the family of APN binomials for n
divisible by 3 can be generalized to functions with 2t-to-1 derivatives (for some
positive integer t) with nonlinearity equal to 2n−1 − 2(n+t)/2 for n + t even, and
2n−1 − 2(n+t−1)/2 for n + t odd by relaxing conditions [3]. Thus, the APN bino-
mials for n divisible by 3 behave in the same way as the Gold functions from the
point of view of differential uniformity, nonlinearity and properties of the image
set.

In this paper we show that the second class of APN binomials from [5] (for
n divisible by 4) also behaves in the same way as the Gold functions in this
respect. We note that all the constructed functions (much like the APN binomi-
als) are quadratic, and are therefore not directly suitable for cryptographic use
in practice. Nonetheless, the vast majority of known APN functions are given
by a quadratic representation, but contain representatives of higher algebraic
degrees in their CCZ-equivalence class. We also consider the family of APN
quadrinomials constructed by generalizing a known APN instance over F210 [7]
and computationally verify that they provide a counterexample to this approach,
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in the sense that they cannot be generalized to functions with 2t-to-1 derivatives
by relaxing conditions in a similar way for any even dimension n in the range
6 ≤ n ≤ 14.

The paper is structured as follows. In Sect. 2, we recall the basic definitions
and results that we use throughout our work. In Sect. 3, we compute the differen-
tial uniformity of the generalized families of binomials; an upper bound on their
nonlinearity is then derived in Sect. 4. Section 5, in which we computationally
show that the APN quadrinomials constructed in [7] cannot be generalized to
2t-uniform functions over F2n with 6 ≤ n ≤ 14, concludes the paper.

2 Preliminaries

Let n be a positive integer. Then F2n denotes the finite field with 2n elements,
and F

∗
2n denotes its multiplicative group. For any positive integer k dividing n,

the trace function Trn
k is the mapping from F2n to F2k defined by Trn

k (x) =
∑n

k −1
i=0 x2ik . For k = 1, the function Trn

1 : F2n → F2 is called the absolute trace
over F2n and is denoted simply by Trn(x), or by Tr(x) if the dimension n is clear
from context.

Let n and m be positive integers. An (n,m)-function is any function F
from F2n to F2m . For any (n,m)-function F and for any a ∈ F2n , the func-
tion DaF (x) = F (x + a) + F (x) is called the derivative of F in the direction a.
Let δF (a, b) denote the number of solutions of the equation DaF (x) = b for some
a ∈ F2n and b ∈ F2m . The multiset {δF (a, b) : a ∈ F

∗
2n , b ∈ F2m} is called the

differential spectrum of F . The differential uniformity of F is the largest value
in its differential spectrum. We say that F is differentially δ-uniform if its differ-
ential uniformity is at most δ. The differential uniformity of any (n,m)-function
is clearly always even, since if x ∈ F2n is a solution to DaF (x) = b for some
a ∈ F2n and b ∈ F2m , then so is x + a. The lowest possible differential unifor-
mity of any function is thus 2. A function with differential uniformity equal to
2 is called almost perfect nonlinear (APN). Since a low differential uniformity
corresponds to a strong resistance to differential cryptanalysis, APN functions
provide optimal security against this type of attack.

A component function of an (n,m)-function F is any function of the form x �→
Trm(cF (x)) for c ∈ F

∗
2m . The component functions are clearly (n, 1)-functions.

The nonlinearity NL(F ) of F is the minimum Hamming distance between any
component function of F and any affine (n, 1)-function, i.e. any function a :
F2n → F2 satisfying a(x)+a(y)+a(z) = a(x+ y + z) for all x, y, z ∈ F2n . Recall
that the Hamming distance between two (n, 1)-functions f and g is the number
of inputs x ∈ F2n for which f(x) �= g(x).

An important tool for analyzing any (n,m)-function F is the so-called Walsh
transform. The Walsh transform of F is the function WF : F2m × F2n → Z

defined as WF (a, b) =
∑

x∈F2n

(−1)Trm(aF (x))+Trn(bx).

The nonlinearity of an (n,m)-function F can be expressed as NL(F ) =
2n−1 − 1

2 max
a∈F

∗
2m ,b∈F2n

|WF (a, b)|. The nonlinearity of any (n, n)-function is
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bounded from above by 2n−1 − 2(n−1)/2 [10]. Functions attaining this bound
are called almost bent (AB). Clearly, AB functions exist only for odd values of
n; when n is even, functions with nonlinearity 2n−1 − 2n/2 are known, and it is
conjectured that this value is optimal in the even case. Nonlinearity measures
the resistance to linear cryptanalysis; the higher the nonlinearity, the better.
Thus, AB functions provide optimal security against linear cryptanalysis when
n is odd. Furthermore, all AB functions are necessarily APN [10], so that AB
functions are optimal with respect to differential cryptanalysis as well.

Due to the huge number of (n,m)-functions for non-trivial values of n and
m, they are typically classified up to some notion of equivalence. The most
general known equivalence relation which preserves differential uniformity (and
hence APN-ness) is Carlet-Charpin-Zinoviev (or CCZ) equivalence [6,9]. We say
that two (n,m)-functions F and F ′ are CCZ-equivalent if there is an affine
permutation A of F2n × F2m that maps the graph G(F ) = {(x, F (x)) : x ∈ F2n}
of F to the graph G(F ′) of F ′. A special case of CCZ-equivalence is extended
affine (or EA) equivalence. We say that F and F ′ are EA-equivalent if there
are affine permutations A1 and A2 of F2m and F2n , respectively, and an affine
(n,m)-function A such that F ′ = A1 ◦ F ◦ A2 + A.

In [5], Budaghyan, Carlet and Leander introduced the following two infinite
families of APN binomials:

1. For n = 3k:

F3(x) = x2s+1 + w2k−1x2ik+2mk+s

, (1)

where s and k are positive integers such that s ≤ 4k − 1, gcd(k, 3) =
gcd(s, 3k) = 1, i = sk mod 3, m = 3 − i and w is a primitive element of
the field F2n .

2. For n = 4k:

F4(x) = x2s+1 + w2k−1x2ik+2mk+s

, (2)

where s and k are positive integers such that s ≤ 4k − 1, gcd(k, 2) =
gcd(s, 2k) = 1, i = sk mod 4, m = 4 − i and w is a primitive element of
the field F2n .

The first class of APN binomials (for n divisible by 3) are permutations if and
only if k is odd.

As we show below, if the condition of k being odd is omitted, the binomials
for n divisible by 4 are EA-equivalent to the Gold functions. Indeed, let k be
even. Then i = sk mod 4 is also even. If i = 2, then

F (x) = x2s+1 + w2k−1x2ik+2mk+s

= x2s+1 + w2k−1x22k+22k+s

= x2s+1 + w2k−1x22k(1+2s) = x2s+1 + w2k−1(x2s+1)2
2k

which is EA-equivalent to x2s+1 since x �→ x+w2k−1x22k is a linear permutation.
Indeed, if x+w2k−1x22k = y+w2k−1y22k and x �= y, then we must have w1−2k =
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(x + y)2
2k−1 which is impossible since 22k − 1 is a multiple of 5 under the

hypothesis, whereas 2k − 1 is not.
In the same manner, if i = 0, we get

F (x) = x2s+1 + w2k−1x2ik+2mk+s

= x2s+1 + w2k−1x1+2s = x2s+1
(
1 + w2k−1

)
.

The complete Walsh spectra of the functions F3 and F4 were determined in
[2].

As previously mentioned, relaxing the conditions allows the functions F3 to
be generalized to a family of 2t-differentially uniform functions in the same way
as the Gold functions [3]. In this paper, we show how the family F4 can be
generalized to functions with 2t-to-1 derivatives in a similar way. Further, we
provide a counterexample to the question of whether this construction can be
used to generalize any family of quadratic APN functions to a family of 2t-
uniform functions: for the family of quadrinomials from [7], we computationally
verify that relaxing conditions does not lead to functions with 2t-to-1 derivatives
for t > 1 over F2n for any 6 ≤ n ≤ 14.

For background on APN functions and cryptographic Boolean functions, we
refer the reader to [4] or [8].

3 Differential Uniformity

In the following theorem, we show that by relaxing the condition gcd(s, 2k) = 1
in (2) to gcd(s, 2k) = t for some positive integer t, we obtain functions over F24k

all of whose derivatives are 2t-to-1 functions.

Theorem 1. Let s, k, t be positive integers and let n = 4k. Let gcd(s, 2k) = t,
2 � k, i = sk mod 4, m = 4 − i, and w be a primitive element of F2n . Then all
derivatives DaF for a ∈ F

∗
2n of the function

F (x) = wx2s+1 + w2kx2ik+2mk+s

(3)

are 2t-to-1 functions. In particular, F is differentially 2t-uniform.

Proof. We first show that for i even, F is EA-equivalent to x2s+1. To see this,
consider two cases depending on the value of i. First, suppose i = 2. Then

F (x) = wx2s+1 + w2kx22k+22k+s

= wx2s+1 + w2k(x2s+1)2
2k

which is EA-equivalent to x2s+1 since x �→ wx+w2kx22k is a linear permutation.
Indeed, suppose that wx+w2kx22k = wy+w2ky22k for some two distinct elements
x, y ∈ F2n ; then (x+y)2

2k−1 = w1−2k which is a contradiction since the exponent
on the left-hand side is a multiple of three, while the one on the right-hand side
is not. Finally, note that the derivatives of x2s+1 are all 2t-to-1 functions since
gcd(s, 4k) = gcd(s, 2k) = t.
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If i = 0, then

F (x) = wx2s+1 + w2kx1+24k+s

= wx2s+1 + w2kx1+2s = x2s+1
(
w + w2k

)
,

which is EA-equivalent to x2s+1 (as w is a primitive element, we have w+w2k �=
0), and hence all of its derivatives are 2t-to-1 under the conditions on s, t and k.

We now consider the case of i odd. Both possibilities for i produce functions
in the same EA-equivalence class. For i = 1, the function (3) takes the form

F (x) = wx2s+1 + w2kx2k+23k+s

. (4)

Consider the function F ′ defined by

F ′(x) = F (x)2
3k

=
(
wx2s+1 + w2kx2k+23k+s

)23k

= wx22k+s+1 + w23kx23k(2s+1).

Clearly, F ′ is EA-equivalent to F . From the condition ks = 1 mod 4 we get k
mod 4 = s mod 4, i.e. 2k + s = 3s mod 4, hence (2k + s)k = 3sk = 3 mod 4.
Thus, denoting 2k + s by s′, we get F ′(x) = wx2s

′
+1 + w2−k

x23k+2k+s′
, which is

precisely the function from (3) for i = 3.
It is thus enough to prove the theorem for i = 3, i.e. for the function F (x) =

wx2s+1 + w2kx23k+2k+s

.
The derivatives of F are 2t-to-1 functions if and only if the equation F (x) +

F (x + v) = u has either 0 or 2t solutions for any u, v ∈ F
n
2 , v �= 0. The left-hand

side of this equality takes the form

F (x) + F (x + v)

= wx2s+1 + w2kx23k+2k+s

+ w(x + v)2
s+1 + w2k(x + v)2

3k+2k+s

= wx2s+1 + w2kx23k+2k+s

+ wx2s+1 + wv2s+1 + wx2sv + wxv2
s

+ w2kx23k+2k+s

+ w2kv23k+2k+s

+ w2kx23kv2k+s

+ w2kv23kx2k+s

= wv2s+1 + wx2sv + wxv2
s

+ w2kv23k+2k+s

+ w2kx23kv2k+s

+ w2kv23kx2k+s

= w2kv23k+2k+s

(
(x

v

)23k

+
(x

v

)2k+s
)

+ wv2s+1

(
(x

v

)2s

+
(x

v

)
)

+ wv2s+1

+ w2kv23k+2k+s

.

Dividing the last expression by wv2s+1 and substituting vx for x, we get a linear
expression in x:

a
(
x23k + x2k+s

)
+

(
x2s + x

)
+ 1 + a,

where a = w2k−1v23k+2k+s−(2s+1). So, F (x) + F (x + v) = u has 0 or 2t solutions
if and only if the kernel of the linear map

Δa(x) = a
(
x23k + x2k+s

)
+

(
x2s + x

)
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has 2t elements. Consider the equation Δa(x) = 0. We use Dobbertin’s multi-
variate method and follow the computations from Theorem 2 of [5]. Let b = a2k

and c = b2
k

. We get that

Δa(x) = 0 if and only if ab
(
bc + 1

)2s+1(
x22s + x2s

)
= 0,

assuming that P (a) = c(ab + 1)2
s+1 + a2s(bc + 1)2

s+1 �= 0.

We now show that bc + 1 �= 0. Clearly, bc + 1 = 0 if and only if ab + 1 = 0.
Suppose ab = 1, i.e. a2k+1 = 1. From

(
23k + 2k+s − (2s + 1)

)(
2k + 1

)
= (22k − 1)(2k + 2s) mod (24k − 1)

we get

1 = a2k+1 =
(
w2k−1v23k+2k+s−(2s+1)

)2k+1

= w22k−1v(22k−1)(2k+2s)

=
(
wv2k+2s

)22k−1

,

hence wv2k+2s is a (22k +1)-st power of an element from F2n . On the other hand,
from ks = 3 mod 4 and 2 � k we have that k and s are odd, and k �= s mod 4,
which means that k − s = 2p for some odd p. Thus, 2k + 2s = 2s(2k−s + 1) =
2s(22p + 1). Since p is odd, we have 5 | 22p + 1, and therefore u2k+2s is the fifth
power of an element of the field, while wu2k+2s is not. Thus wu2k+2s is also
not a (22k + 1)-st power. Hence, we get a contradiction, and so we must have
ab + 1 �= 0 and hence bc + 1 �= 0. Therefore, we have

Δa(x) = 0 if and only if x22s + x2s = 0

when P (a) �= 0.
By the statement of Theorem 1, k is odd and sk = 3 mod 4, so that s is

also odd, and from gcd(s, 2k) = t it follows that gcd(s, 4k) = t. Therefore the
equation x22s +x2s = 0, which is equivalent to x2s = 1, has exactly 2gcd(s,4k) = 2t

solutions.
So we only have to show that P (a) = c(ab + 1)2

s+1 + a2s(bc + 1)2
s+1 does

not vanish.
Assume P (a) = 0, i.e.

c

a2s
=

(
bc + 1
ab + 1

)2s+1

.

We have that c
a2s is the third power of an element of the field since 3 | 2s+1, 2n−1

(since s is odd and n is even). On the other hand,

c

a2s
= a22k−2s = a2s(22k−s−1) =

(
w2k−1v23k+2k+s−(2s+1)

)2s(22k−s−1)

= w(2k−1)2s(22k−s−1)v(23k+2k+s−(2s+1))2s(22k−s−1)
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and 23k + 2k+s − (2s + 1) = 2s(23k−s − 1) + (2k+s − 1) is divisible by 3 because
3 | 23k−s −1 and 3 | 2k+s−1 due to k and s being odd. But since k and 2k−s are
odd, we have 3 � 2k − 1 and 3 � 22k−s − 1, which means that w(2k−1)2s(22k−s−1)

is not a third power, therefore c
a2s is not a third power either, and we get a

contradiction.

As the following proposition illustrates, the binomials from (3) also behave
in the same way as the Gold functions from the point of view of bijectivity.

Proposition 1. A function of the form (3) is a permutation if and only if it is
EA-equivalent to a 2t-differentially uniform permutation of the form x2s+1 for
some positive integer s.

Proof. Recall that the power function x2s+1 over F2n is 2t-uniform for some
positive integer t if and only if gcd(s, n) = t, and it is a permutation if and only
if n/t is odd.

Let F (x) = wx2s+1 + w2kx2ik+2mk+s

be a function satisfying the conditions
of Theorem 1. If F is a permutation, then 4k/ gcd(s, 4k) is odd. Indeed, assume
that F is a permutation and 4k/ gcd(s, 4k) is even. Since k is odd, we have that
gcd(s, 4k) should be odd or gcd(s, 4k) = 2 mod 4. If gcd(s, 4k) is odd, then so
is s, and therefore 3 | 2s +1. Since i = (sk mod 4) and s, k are odd, then i is an
odd number, and hence (m − i)k + s is also odd; hence 3 | 2ik(1 + 2(m−i)k+s) =
2ik + 2mk+s. Thus, for any γ ∈ F22 , we have F (γx) = F (x). On the other
hand, if gcd(s, 4k) = 2 mod 4, then s is even, and therefore i is also even
due to i = sk mod 4. Hence, as we discussed in the proof of Theorem 1, F is
EA-equivalent to x2s+1 which is not a permutation since 4k/ gcd(s, 4k) is even.
Therefore 4k/ gcd(s, 4k) is necessarily odd if F is a permutation. However, when
4k/ gcd(4k, s) is odd, gcd(4k, s) is divisible by 4, and therefore s is also divisible
by 4 since k is odd. This means that F is EA-equivalent to a 2t-differentially
uniform permutation of the form x2l+1 for some positive integer l.

4 Magnitude of the Walsh Coefficients

In following theorem, we compute an upper bound on the absolute values of the
Walsh coefficients of the functions from (3). In the proof we make use of the
following result.

Lemma 1 ([14]). Let n, l, d be positive integers such that gcd(n, s) = 1 and let

G(x) =
d∑

i=0

aix
li ∈ F2n [x]. Then the equation G(x) = 0 has at most 2d solutions.

We are now ready to present the main result of this section.

Theorem 2. Let s, k, t be positive integers and let n = 4k. Let gcd(s, 2k) = t,
2 � k, i = sk mod 4, m = 4 − i and let w be a primitive element of F2n . Then
the Walsh coefficients of the function F from (3) satisfy

|WF (a, b)| ≤ 22k+t

for any a ∈ F
∗
2n and b ∈ F2n .
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Proof. For simplicity, instead of F (x) = wx2s+1 + w2kx2ik+2mk+s

, we consider
the EA-equivalent function F ′(x) = x2s+1 + αx2ik+2mk+s

, where α = w2k−1.
We are going to prove the theorem for i = 3, since as we already observed

in the proof of Theorem 1, if i is even, the function F (x) is EA-equivalent to
a Gold-like differentially 2t-uniform function; and if i is odd, the functions that
we obtain for i = 1 and for i = 3 are EA-equivalent.

We have

W 2
F ′(a, b) =

∑

x

∑

y

(−1)Tr(ax+ay+bF ′(x)+bF ′(y)).

Substituting x + y for y, we get

W 2
F ′(a, b) =

∑

x

∑

y

(−1)Tr(ax+a(x+y)+bF ′(x)+bF ′(x+y)).

By straightforward calculations, the exponent from the previous expression
becomes

Tr
(
ax + a(x + y) + bF ′(x) + bF ′(x + y)

)

= Tr
(
ay + b

(
x2s+1 + αx23k+2k+s

+ (x + y)2
s+1 + α(x + y)2

3k+2k+s
))

= Tr
(
ay + by2s+1 + bαy2k+s+23k

)
+ Tr

(
bx2sy + bxy2s + bαx23ky2k+s

+ bαy23kx2k+s
)

= Tr
(
ay + by2s+1 + bαy2k+s+23k

)
+ Tr(xL(y)),

where L(y) = (by)2
−s

+ by2s + (bα)2
−3k

y2s−2k
+ (bα)2

3k−s

y22k−s

= (by)2
−s

+
by2s + (bα)2

2k
y2s+2k

+ (bα)2
3k−s

y22k−s

is a linear function.
Thus

W 2
F ′(a, b) = 2n

∑

{y|L(y)=0}
(−1)Tr(ay+by2s+1+bαy2k+s+23k ).

The next step is to show that the cardinality of the kernel of L(y) is at most
22t, where t = gcd(2k, s). Following the computations of [2], we have

b2
−s+2kL(y) + (bα)2

3k−sL22k(y) = 0 and b2
2kL(y) + (bα)2

kL22k(y) = 0,

from where we get

Ay2s + By2−s

+ Cy2s+2k
= 0, (5)

B2sy2s + A22ky2−s

+ Cy2−s+2k
= 0, (6)

where

A = b2
−s+2k+1 + (bα)2

−k+23k−s �= 0,

B = b2
−s+2−s+2k

+ (bα)2
k−s+23k−s

, and

C = b2
−s+2k+2kα2k + b2

2k+23k−s

α23k−s �= 0,
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with B = 0 if and only if B2s−1 is a cube.
Assume that B �= 0, i.e. B2s−1 is not a cube. Then from (5) and (6) we get

B22sC2−s

y22s + C2−s

A22k+s

y + B2−s

C2sy2−2s
+ A2−s

C2sy = 0.

Denote the last expression by G(y). For some v �= 0 in the kernel of G(y),
consider the expression Gv(y) = yG(y) + vG(v) + (y + v)G(y + v) , i.e.

C2sB2−s
(
y2−2s

v + v2−2s
y
)

+ C2−s

B22s
(
y22sv + v22sy

)
.

Note that the kernel of L(y) is contained in that of Gv(y). Then from Gv(y) = 0
we get

C2−s−2sB22s−1
(
y2−2s

v + v2−2s
y
)22s−1

= B2s−1.

If y2−2s
v + v2−2s

y = 0, i.e. yv−1 = (yv−1)2
2s

, then yv−1 ∈ Fgcd(2s,4k) = F22t

and therefore L(y) = 0 has exactly 22t solutions. Otherwise, if y2−2s
v + v2−2s

y
does not vanish, then the right-hand side of the previous equation is not a cube
by our assumption, while the left-hand side is. Hence, L(y) = 0 has exactly 22t

solutions, where t = gcd(2k, s).
Suppose now that B = 0. Following the computations of [2], the equation

L(y) = 0 becomes
(
b + (bw)2

k

v22k+s−2s
)
y2s +

(
b2

−s

+ (bw)2
3k−s

v22k−s−2−s
)
y2−s

= 0.

If both coefficients (in front of y2s and in front of y2−s

) in the above equation
are nonzero, then raising both sides to the power 2s, we get

(
b + (bw)2

k

v22k+s−2s
)2s

y22s +
(
b2

−s

+ (bw)2
3k−s

v22k−s−2−s
)2s

y = 0.

Note that 2s = 2t s
t and gcd( s

t , 4k) = 1. Then, applying Lemma 1, we get that
L(y) = 0 has at most 22t solutions. If exactly one of the coefficients is not
zero, then the equation will have exactly one solution, namely y = 0. If both
coefficients are equal to zero, then raising them to the power of 2s and of 2−s, and
adding these powers together, we get v22k−1 = b2

3k−2k−s

w−2k−s

= b1−23kw−23k

which implies C = 0, a contradiction.
Thus, the kernel of L(y) consists of at most 22t elements, where t = gcd(2k, s),

and therefore |W 2
F (a, b)| ≤ 2n22t and |WF (a, b)| ≤ 22k+t .

The next corollary immediately follows from Theorem 2.

Corollary 1. Let s, k, t be positive integers and let n = 4k. Let gcd(s, 2k) = t,
2 � k, i = sk mod 4, m = 4 − i and let w be a primitive element of F2n . Then
the nonlinearity of the function F from (3) satisfies

NL(F ) ≤ 2n−1 − 22k+t−1.
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5 A Counterexample: Generalizing a Family of APN
Quadrinomials to 2t-uniform Functions

As discussed above, both families of APN binomials from [5] can be generalized
to functions all of whose derivatives are 2t-to-1 by relaxing conditions; further-
more, the two families are obtained as generalizations of a previously unclassified
sporadic APN instance over F212 . Another sporadic APN instance, this time over
F210 , was recently also generalized into an infinite family [7]. This immediately
raises the question of whether the same approach, i.e. relaxing conditions in
order to obtain functions with 2t-to-1 derivatives, could be applied to the latter
family. In this section, we summarize our experimental results, which suggest
that this is impossible.

The functions in the infinite family from [7] are defined over F2n with n = 2m
with m odd such that 3 � m, and have the form

F (x) = x3 + β(x2i+1)2
k

+ β2(x3)2
m

+ (x2i+1)2
m+k

, (7)

where k is a non-negative integer, and β is a primitive element of F22 . It is shown
that the function in (7) is APN for i = m− 2 and i = (m− 2)−1 mod n, as well
as for i = m and i = m − 1 (however, the last two values yield functions that
are trivially EA-equivalent to known ones).

We computationally go through all functions of the form

F (x) = x2j+1 + β(x2i+1)2
k

+ β2(x2j+1)2
m

+ (x2i+1)2
m+k

(8)

with 0 ≤ i, j ≤ n − 1 for all values of n = 2m with 6 ≤ n ≤ 14, disregarding the
conditions of 3 � m and of m being odd. For each such function, we test whether
all of its derivatives are 2t-to-1 functions for some positive integer t. We restrict
ourselves to the cases k = 0 and k = 1, as the APN functions constructed for
k ∈ {0, 1} appear to exhaust all CCZ-equivalence classes [7].

Besides the already known APN functions, for k = 0, we only encounter
functions with 2t-to-1 derivatives when j = i, i.e. when all exponents are in the
same cyclotomic coset. In the case of k = 1, the only exceptions are for n = 12
where each pair (j, i) with 2 ≤ j, i ≤ 12 and i, j even yields a 22-to-1, i.e. 4-to-
1 function. However, since we do not observe other such non-trivial functions
for other dimensions n, this does not suggest that (7) can be generalized to
2t-functions in general.

These computational results constitute convincing evidence that the quadri-
nomials of the form (7) cannot be generalized to 2t-to-1 functions in the same
way as the binomials from [5].

6 Conclusion

The APN binomial x3 + αx258 over F212 was generalized in 2008 to two infinite
APN families over F2n , one for 3 | n, and one for 4 | n. The family for 3 | n
was generalized to a family of functions with 2t-to-1 derivatives in 2012 [3] by
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relaxing conditions. We have shown that the same approach can be applied
to the family for 4 | n, and have computed the differential uniformity of the
resulting functions. We have also given an upper bound on their nonlinearity,
and have shown that this construction cannot be applied to any infinite family
of quadratic APN functions by computationally verifying that the quadrinomial
family from [7] constitutes a counterexample.

Acknowledgment. This research was supported by the Trond Mohn foundation
(TMS).
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Abstract. Permutations of the form F (x) = L1(x
−1) + L2(x) with lin-

ear functions L1, L2 are closely related to several interesting questions
regarding CCZ-equivalence and EA-equivalence of the inverse function.
In this paper, we show that F cannot be a permutation on binary fields
if the kernel of L1 or L2 is large. A key step of our proof is an observation
on the maximal size of a subspace V of F2n that consists of Kloosterman
zeros, i.e. a subspace V such that Kn(v) = 0 for every v ∈ V where
Kn(v) denotes the Kloosterman sum of v.

Keywords: Inverse function · Permutation polynomials · Kloosterman
sums · EA-equivalence · CCZ-equivalence

1 Introduction

Vectorial Boolean functions play an important role in the design of symmetric
cryptosystems as design choices for S-boxes. The linear and differential properties
of vectorial Boolean functions are a measure of resistance against linear [31] and
differential [1] attacks.

Definition 1. A function F : F2n → F2n has differential uniformity d, if

d = max
a∈F

∗
2n ,b∈F2n

|{x : F (x) + F (x + a) = b}|.

A function with differential uniformity 2 is called almost perfect nonlinear (APN)
on F2n .

To resist differential attacks, a vectorial Boolean function should have low dif-
ferential uniformity. As the differential uniformity is always even, the APN func-
tions yield the best resistance against differential attacks.
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Definition 2. The Walsh transform WF : F2n×F2n → Z of a function F : F2n →
F2n is defined as follows:

WF (a, b) =
∑

x∈F2n

(−1)Tr(aF (x)+bx).

The nonlinearity of F is defined as

nl(F ) = 2n−1 − 1
2

max
a∈F

∗
2n ,b∈F2n

|WF (a, b)|. (1)

The higher the nonlinearity of a vectorial Boolean function, the better is its
resistance to linear attacks.

There are several operations on the set of Boolean functions under which
linear and differential properties are invariant. They lead to several equivalence
concepts for vectorial Boolean functions. We denote by

GF = {(x, F (x)) : x ∈ F2n} ⊂ F2n × F2n

the graph of the function F : F2n → F2n . In the next definition and in the
remainder of the paper we use the term linear function to refer to an F2-linear
one. Similarly, we will call a function affine if it is sum of a linear function and
a constant.

Definition 3. Two functions F1, F2 : F2n → F2n are called extended affine
equivalent (EA-equivalent) if there are affine permutations A1, A2 and an affine
mapping A3 mapping from F2n to itself such that

A1(F1(A2(x))) + A3(x) = F2(x). (2)

F1 and F2 are called affine equivalent if they are EA-equivalent and it is possible
to choose A3 = 0 in Eq. (2).

Moreover, F1 and F2 are called CCZ-equivalent if there are linear functions
α, β, γ, δ : F2n → F2n and a, b ∈ F2n such that L : F

2
2n → F

2
2n defined by

L(x, y) = (α(x) + β(y), γ(x) + δ(y))

is bijective and
L(GF1) + (a, b) = GF2 .

F1 and F2 are EA-equivalent if and only if a mapping L defined as above can
be found with β = 0, and affine equivalent if and only if a mapping L can be
found with β = γ = 0.

The concept of CCZ-equivalence was introduced in [8] in 1998. It has been
extensively studied, since it is a powerful tool for constructing and studying cryp-
tological functions [5–7,14]. Clearly, affine equivalence implies EA-equivalence,
which in turn implies CCZ-equivalence. The size of the image set is invariant
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under affine equivalence but in general it is changed under EA-equivalence. Non-
linearity and differential uniformity are invariant under CCZ-equivalence.

Outline. In this paper, we consider EA- and CCZ-equivalence to the inverse
function. This is a particularly interesting case because of the good crypto-
graphic properties of the inverse function. In the second section, we show that
some questions about CCZ- and EA-equivalence to a function F are related to
the existence of permutations of the form L1(F (x)) + L2(x). Accordingly, we
investigate the existence of permutations of the form L1(x−1) + L2(x). This
problem is related to Kloosterman zeros, i.e. elements whose Kloosterman sum
is zero. In Sect. 3 we give an upper bound on the maximal size of a subspace of
F2n that contains only Kloosterman zeros. Using this result, we show in Sect. 4
that there are no permutations of the form L1(x−1)+L2(x) if ker(L1) or ker(L2)
is large.

2 EA- and CCZ-equivalence and Specific Permutations

The only known examples of APN permutations on F2n with n even are con-
structed for n = 6 via study of the set of CCZ-equivalent functions to a known
non-bijective function in [4]. The question about existence of APN permuta-
tions for an even n ≥ 8 is considered as the biggest challenge in the research on
APN functions. As the examples in [4] suggest, a better understanding of CCZ-
equivalence for permutations could be essential for progressing on this topic.
Proposition 1 shows that this is closely related to study of permutations of form
L1(F (x)) + L2(x) with linear L1, L2. We would like to note that similar results
are mentioned in various papers, for instance in [5–7].

Proposition 1. – (a) Let F : F2n → F2n and no permutation of the form
F (x) + L(x) exist with non-zero linear L(x). Then every permutation that
is EA-equivalent to F is already affine equivalent to it. In particular, if such
an F is not bijective, then there are no EA-equivalent permutations to F .

– (b) Let F : F2n → F2n and no permutation of the form L1(F (x)) + L2(x)
exist with non-zero linear L1, L2. Then every function that is CCZ-equivalent
to F is EA-equivalent to F or F−1 (if it exists). Moreover, all permutations
that are CCZ-equivalent to F are affine equivalent to F or F−1.

Proof. (a) Let F2 be a permutation EA-equivalent to F . By the definition of
EA-equivalence, there exist (a, b) ∈ F

2
2n and a bijective mapping L : F

2
2n → F

2
2n

defined by L(x, y) = (α(x), γ(x)+ δ(y)) with linear functions α, γ, δ : F2n → F2n

such that

L(x, F (x)) + (a, b) = (α(x) + a, γ(x) + δ(F (x)) + b) = (π(x), F2(π(x)))

where π : F2n → F2n is the permutation given by π(x) = α(x)+a. Note that the
function δ is bijective on F2n , since L is bijective on F

2
2n . Also the composition
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F2(π(x)) is bijective on F2n , implying that γ(x)+δ(F (x)) is bijective, and hence
also δ−1(γ(x))+F (x) is a permutation. Since δ−1(γ(x)) is linear, our assumption
on F yields that γ = 0, completing the proof.

(b) Let now F2 be a function CCZ-equivalent to F . By the definition of CCZ-
equivalence, there exist (a, b) ∈ F

2
2n and a bijective mapping L : F

2
2n → F

2
2n given

by L(x, y) = (α(x) + β(y), γ(x) + δ(y)) with linear α, β, γ, δ : F2n → F2n such
that

L(x, F (x)) + (a, b) = (α(x) + β(F (x)) + a, γ(x) + δ(F (x)) + b)
= (π(x), F2(π(x)))

where π : F2n → F2n is the permutation on F2n given by π(x) = α(x)+β(F (x))+
a. By our assumption on F , either α = 0 or β = 0. Assume first that α = 0.
Then π(x) = β(F (x)) + a and in particular both F and β are bijective. Further,
γ is bijective since L is bijective. We then have

γ(x) + δ(F (x)) + b = F2(π(x)) = F2(β(F (x)) + a).

The composition with the inverse F−1(x) yields

γ(F−1(x)) + δ(x) + b = F2(β(x) + a),

and hence F2 is EA-equivalent to F−1. In the case β = 0 we get similarly
π(x) = α(x) + a and

γ(x) + δ(F (x)) + b = F2(π(x)) = F2(α(x) + a),

where the mappings α and δ are bijective. Hence F2 is EA-equivalent to F .
Now assume that F2 is additionally a permutation. If F2 is EA-equivalent to

F then F2 is affine equivalent to F using the statement in (a). Let us now con-
sider the case that F2 is EA-equivalent to F−1. Observe that F−1(x)+L(x) is a
permutation if and only if L(F (x))+x is a permutation, so there are no permu-
tations of the form F−1(x) + L(x) by the assumption stated in the proposition.
Again using (a), we conclude that F2 is affine equivalent to F−1. ��

The following proposition gives a criterion when a function L1(F (x))+L2(x)
is bijective. For a linear mapping L, we denote by L∗ its adjoint mapping with
respect to the bilinear form

〈x, y〉 = Tr(xy)

where Tr is the absolute trace mapping, i.e. we have

Tr(L(x)y) = Tr(xL∗(y))

for all x, y ∈ F2n . Further, for a subset A ⊆ F2n we denote by A⊥ its orthogonal
complement, that is

A⊥ = {x ∈ F2n : Tr(ax) = 0 for all a ∈ A}.
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Proposition 2. Let F : F2n → F2n and L1, L2 be linear mappings. The function
L1(F (x)) + L2(x) is a permutation if and only if

WF (L∗
1(b), L

∗
2(b)) = 0

for all b ∈ F
∗
2n .

Proof. It is well-known that a function is a permutation if and only if all of its
component functions are balanced (for a proof, see [29, Theorem 7.7]). Conse-
quently, L1(F (x)) + L2(x) is a permutation if and only if

0 =
∑

x∈F2n

(−1)Tr(b(L1(F (x))+L2(x)))

=
∑

x∈F2n

(−1)Tr(L
∗
1(b)F (x)+L∗

2(b)x) = WF (L∗
1(b), L

∗
2(b))

for all b ∈ F
∗
2n . ��

Permutations of form L1(F (x)) + L2(x) are characterized for some special
choices of F and L1, L2. It was shown in [12] that no permutation of the form
xd + L(x) exists when there is an a ∈ F2n such that Tr(axd) is bent. Corollary
2.3 from [16] implies that xd + L(K(x)) is not bijective on Fq for an arbitrary
function K whenever gcd(d, q − 1) �= 1 and L is a non-bijective linear function.
In [27] a characterization of all permutations of the form x2i+1 + L(x) over F2n

with gcd(i, n) = 1 was given, as well as some results for the more general case
xd + L(x). Permutations of the form x2i+1 + L(x) over F2n with gcd(i, n) > 1
were recently considered in [3]. A particularly interesting case are the functions
of shape L1(x−1) + L2(x) because of their good cryptographic properties. (Here
we use as usual the convention 0−1 = 0.) It was shown in [17] that such functions
are never permutations in characteristic ≥ 5 (except for the trivial cases L1 = 0
or L2 = 0). In characteristic 3, no permutations of the type x−1 + L(x) with
L �= 0 exist, except for sporadic cases in the small fields F3 and F9. In this paper
we are interested in the case of characteristic 2. If L1 or L2 is bijective, then
L1(x−1) + L2(x) cannot be bijective on F2n for n ≥ 5 as shown in [28].

Theorem 1. ([28]). Let F : F2n → F2n be defined by F (x) = x−1 + L(x) with
some linear mapping L(x) �= 0. If n ≥ 5 then F is not a permutation.

The following result is an immediate consequence of Theorem 1.

Corollary 1. Let n ≥ 5 and F : F2n → F2n be defined by F (x) = L1(x−1) +
L2(x), where L1, L2 are non-zero linear functions of F2n . If L1 or L2 is bijective,
then F is not a permutation on F2n .

Proof. Note that F (x) is bijective if and only if F (x−1) = L1(x)+L2(x−1) is so.
Hence without loss of generality suppose L1 is bijective. Then the composition
L−1
1 (F (x)) = x−1 + L−1

1 (L2(x)) is bijective if and only if F is so, and Theorem
1 completes the proof. ��
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In this paper, we continue the study of functions L1(x−1)+L2(x) where L1, L2

are linear polynomials over F2n . In the case of the inverse function x �→ x−1, the
Walsh transform is closely connected to Kloosterman sums.

Definition 4. For a ∈ F2n , the Kloosterman sum of a over F2n is defined as

Kn(a) =
∑

x∈F2n

(−1)Tr(x
−1+ax).

An element a ∈ F2n with Kn(a) = 0 is called a Kloosterman zero.

Note Kn(a) = WF (1, a) for F (x) = x−1. More precisely, for a �= 0 we have

WF (a, b) =
∑

x∈F2n

(−1)Tr(ax
−1+bx) =

∑

x∈F2n

(−1)Tr(x
−1+abx) = Kn(ab)

using the substitution x �→ ax. For a = 0 and b �= 0, we have Kn(ab) =
WF (a, b) = 0.

Proposition 2 can thus be stated using Kloosterman sums:

Corollary 2. Let L1, L2 be linear functions of F2n . Then L1(x−1) + L2(x) is a
permutation on F2n if and only if ker(L∗

1) ∩ ker(L∗
2) = {0} and

Kn(L∗
1(b)L

∗
2(b)) = 0

for all b ∈ F2n .

Proof. By Proposition 2, L1(x−1) + L2(x) is a permutation if and only
if WF (L∗

1(b), L
∗
2(b)) = 0 for all b �= 0. If b ∈ ker(L∗

1) ∩ ker(L∗
2), then

WF (L∗
1(b), L

∗
2(b)) = 2n �= 0. In the other cases WF (L∗

1(b), L
∗
2(b)) =

K(L∗
1(b)L

∗
2(b)) by the considerations above. ��

Corollary 2 shows that a function L1(x−1) + L2(x) is bijective on F2n only
if the set {L∗

1(x)L∗
2(x)|x ∈ F2n} is a subset of the set of Kloosterman zeroes.

Conversely, in [19] specific functions of shape L1(x−1)+L2(x) are used to obtain
identities for Kloosterman sums.

3 Vector Spaces of Kloosterman Zeros

The Kloosterman sums provide a powerful tool for studying additive properties
of the inversion on finite fields. Kloosterman zeros are used for the construction
of bent and hyperbent functions (see for example [10,13,26]). Vector spaces of
Kloosterman zeros of dimension d in F2n can be used to construct vectorial bent
functions from F22n to F2d by modifying Dillon’s construction, as shown in [26,
Proposition 5].

Few results about the distribution of Kloosterman zeros are known. There
is a way to compute the number of Kloosterman zeros [24], which relies on
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determining the class number of binary quadratic forms. However, it is difficult
to use this method to derive a theoretical result on the number and distribution
of Kloosterman sums. It was shown that for all n, Kloosterman zeros exist [23]
(note that this is not true in characteristic ≥ 5 [22]). Moreover, it is known that
for n > 4, Kloosterman zeros are never contained in proper subfields of F2n [30].
In [32], it is noted that |{a ∈ F2n : Kn(a) = 0}| = O(23n/4). In this section,
we give an upper bound for the size of vector spaces that contain exclusively
Kloosterman zeros.

Let B be a bilinear form from F2n to F2. We denote by rad(B) = {y ∈
F2n : B(x, y) = 0 for all x ∈ F2n} the radical of B. Given a quadratic form
f : F2n → F2, let Bf (x, y) = f(x)+f(y)+f(x+y) be the bilinear form associated
to it. The radical of the quadratic form f is defined as rad(Bf ) ∩ f−1({0}). A
quadratic form is called non-degenerate if rad(f) = {0}.

Let Q : F2n → F2 be the quadratic form defined by

Q(x) =
∑

0≤i<j<n

x2i+2j

for all x ∈ F2n . Note that if ma is the minimal polynomial of a ∈ F2n over F2 of
degree d, then Q(a) is the third coefficient of m

n/d
a . Indeed, recall that m

n/d
a = χa

is the characteristic polynomial of a over F2 and χa(x) =
∑n−1

i=0 (x + a2i). By
expanding the product, we see that Q(a) is the coefficient of xn−2 as claimed.
This in particular shows that Q(a) ∈ F2.

The dyadic approximation of Kloosterman sums are often used to study
Kloosterman zeroes. A nice survey on this topic is given in [34]. The main tool
for results in this section is the following characterization of Kloosterman sums
divisible by 24.

Theorem 2. ([18]). Let n ≥ 4 and a ∈ F2n . Then Kn(a) ≡ 0 (mod 16) if and
only if Tr(a) = 0 and Q(a) = 0.

Theorem 2 implies that the Kloosterman zeroes are contained in the inter-
section of the quadric {x ∈ F2n : Q(x) = 0} and the hyperplane

H = {x ∈ F2n : Tr(x) = 0}.

Therefore we consider the quadratic form Q|H which is induced by Q on H. We
first determine its radical.

Lemma 1. We have

rad(Q|H) =

{
{0, 1}, n ≡ 0 (mod 4)
{0}, else.
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Proof. First we compute the bilinear form associated to Q:

BQ(x, y) =
∑

0≤i<j<n

x2i+2j +
∑

0≤i<j<n

y2i+2j +
∑

0≤i<j<n

(x + y)2
i+2j

=
∑

i�=j

x2iy2j =
n−1∑

i=0

x2i
∑

j �=i

y2j

=
n−1∑

i=0

x2i(Tr(y) + y2i) =
n−1∑

i=0

(xy)2
i

+ Tr(y)
n−1∑

i=0

x2i

= Tr(xy) + Tr(x)Tr(y) = Tr((y + Tr(y))x).

Since Tr(y) = 0 for all y ∈ H, we have

BQ|H (x, y) = Tr(xy).

Then y ∈ rad(BQ|H ), if BQ|H (x, y) = Tr(xy) = 0 for all x ∈ H. Hence
rad(BQ|H ) = F2 ∩ H. Observe that 1 ∈ H if and only if n is even, so
rad(BQ|H ) = {0} if n is odd and rad(BQ|H ) = F2 if n is even. One can eas-
ily verify that

Q(1) =
n(n − 1)

2
=

{
0 n ≡ 0, 1 (mod 4)
1 n ≡ 2, 3 (mod 4)

and the result follows. ��
Let N(Q|H(x) = u) denote the number of solutions of Q|H(x) = u for

u ∈ F2. Observe that N(Q|H(x) = 0) is precisely the number of elements
x ∈ F2n whose second and third coefficients of the characteristic polynomial
χx are zero. The value N(Q|H(x) = a) was investigated in [9,15,33], where irre-
ducible polynomials with prescribed coefficients were studied. In particular, the
value N(Q|H(x) = 0) was determined. We summarize some of their results in
the following theorem.

Theorem 3. Let N(Q|H(x) = 0) be the number of x ∈ H with Q|H(x) = 0.
Then N(Q|H(x) = 0) = 2n−2 + e where

e =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−2
n−2
2 , n ≡ 0 (mod 8)

2
n−3
2 , n ≡ 1, 7 (mod 8)

0, n ≡ 2, 6 (mod 8)
−2

n−3
2 , n ≡ 3, 5 (mod 8)

2
n−2
2 , n ≡ 4 (mod 8).

Two quadratic forms f and g on a vector space V are called equivalent if f
can be transformed into g with a non-singular linear transformation of V . The
following result is well known (see e.g. [20,29]).



Subspaces of Kloosterman Zeros and Permutations Polynomials 215

Theorem 4 (Classification of quadratic forms). Let f : V → F2 with
dim(V ) = n be a quadratic form with dim(rad(f)) = w. Then f is equivalent to
one of three forms:

f �
v∑

i=1

xiyi (hyperbolic case)

f � z +
v∑

i=1

xiyi (parabolic case)

f � x2
1 + x1y1 + y2

1 +
v∑

i=2

xiyi (elliptic case),

where v = �(n − w)/2�.

The value of N(f(x) = 0) depends only on n, w and the type of the quadratic
form. More precisely,

N(f(x) = 0) = 2n−1 + Λ(f)2
n+w−2

2 ,

with

Λ(f) =

⎧
⎪⎨

⎪⎩

1, if f is hyperbolic
0, if f is parabolic
−1, if f is elliptic.

The Witt index of a quadratic form is the number of pairs xiyi that appear
in the decomposition described above. In particular, the Witt index of f is v in
the hyperbolic and parabolic case, and v − 1 in the elliptic case.

Remark 1. Just using the classification of quadratic forms in Theorem 4 and
the determination of the radical in Lemma 1 we can give a simple alternative
proof of the cases n ≡ 2, 6 (mod 8) in Theorem 3. Indeed, in these cases Q|H is
necessarily parabolic which immediately gives the value for N(Q|H(x) = 0).

We are now interested in the maximal dimension of a subspace contained
in a quadric. Let f be a quadratic form on V . A subspace W of V is called
totally isotropic if f(w) = 0 for all w ∈ W . And a subspace W is called maximal
totally isotropic if there is no subspace W2 with f(w) = 0 for all w ∈ W2 and
W � W2 ⊆ V . Any two maximal totally isotropic subspaces have the same
dimension, which is the sum of the Witt index and the dimension of the radical
of the quadratic form, as the following result implies.

Proposition 3 ([25, Corollary 4.4.]). Let f : V → F2 be a non-degenerate
quadratic form on a vector space V over F2 with dim(V ) = n. Let W be a
maximal totally isotropic subspace of V . Then, the dimension of W is equal to
the Witt index of f . In particular, we have

dim(W ) =

⎧
⎪⎨

⎪⎩

n
2 , if f is hyperbolic
n−1
2 , if f is parabolic

n−2
2 , if f is elliptic.
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We collect the above observations to give a sharp upper bound on the size of
vector spaces that consist of elements with Kloosterman sum divisible by 16.

Proposition 4. Let W be a subspace of F2n with Kn(w) ≡ 0 (mod 16) for all
w ∈ W and n ≥ 5. Then dim W ≤ d where

d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n−2
2 , n ≡ 0, 2, 6 (mod 8)

n−1
2 , n ≡ 1, 7 (mod 8)

n−3
2 , n ≡ 3, 5 (mod 8)

n
2 , n ≡ 4 (mod 8).

The bounds are sharp.

Proof. From the Theorems 3 and 4 we deduce that Q|H is elliptic if n ≡ 0, 3, 5
(mod 8), hyperbolic if n ≡ 1, 4, 7 (mod 8) and parabolic if n ≡ 2, 6 (mod 8).
In the cases n �≡ 0, 4 (mod 8) the quadratic form Q|H is non-degenerate by
Lemma 1 and we immediately get bounds on dim(W ) from Proposition 3 (recall
that Q|H is a quadratic form on an (n − 1) dimensional space). If n ≡ 0, 4
(mod 8) then dim(rad(Q|H)) = 1, so dim V ≤ 1 + n−4

2 = n−2
2 if n ≡ 0 (mod 8)

and dim V ≤ 1 + n−2
2 = n

2 if n ≡ 4 (mod 8). ��
Remark 2. Every vector space W that contains exclusively Kloosterman zeros
is of course also a vector space that contains only Kloosterman sums divisible
by 16. In particular, by Propositions 3 and 4, all vector spaces of Kloosterman
zeros are necessarily contained in a maximal totally isotropic vector space of
Q|H . However, these vector spaces are generally not unique.

Using Proposition 4, we get the following result.

Theorem 5. Let W be a subspace of F2n such that Kn(v) = 0 for all v ∈ W
and n ≥ 5. Then dim W ≤ d where

d =

⎧
⎪⎨

⎪⎩

n−2
2 , n ≡ 0, 2, 4, 6 (mod 8)

n−1
2 , n ≡ 1, 7 (mod 8)

n−3
2 , n ≡ 3, 5 (mod 8).

Proof. The bound follows from Proposition 4 for all cases except n ≡ 4 (mod 8).
In the latter case the bound of Proposition 4 can be improved by one using the
following observation for even n. 1 Let n = 2k be even. As noted in [30], there are
no non-zero Kloosterman zeros in the subfield F2k . We have F2k ⊂ H, W ⊂ H
and W ∩ F2k = {0}, implying dim(V ) ≤ n−2

2 . ��
We would like to mention that the following approach yields a slightly weaker

bound than the one given in Theorem 5. The following identity for sums of

1 This is due to an anonymous referee.
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Kloosterman sums over a vector space was given in [11, Proposition 3]: For any
subspace V of F2n with dim(V ) = k we have

∑

a∈V

(K2
n(a) − Kn(a)) = 2n+k − 2n+1 + 2k

∑

u∈V ⊥
Kn(u−1).

If V contains exclusively Kloosterman zeros, we get

0 = 2n+k − 2n+1 + 2k
∑

u∈V ⊥
Kn(u−1),

recall we set 0−1 = 0. Bounding the Kloosterman sum in the right hand side of
the equation using the Weil bound |Kn(a)| ≤ 2

n
2 +1, we get

0 ≥ 2n+k − 2n+1 − 2k2n−k2
n
2 +1 = 2n+k − 2n+1 − 2

3n
2 +1.

This shows that k = dim(V ) ≤ n
2 + 1 for n ≥ 3.

Remark 3. Theorem 5 provides to our knowledge the first general upper bound
on the maximal size of subspaces of Kloosterman zeros. However, experimental
results indicate that our bound is weak, see Table 1. Our bound is sharp for very
small n (see right table in Table 1), which is not surprising since the approx-
imation modulo 16 is strong for small n. Numerics in Table 1 were computed
using [21,24] for the left table and [2] for the right table. The left table shows
that the total number of Kloosterman zeros in the field F2n is close to 2n/2 for
n ≤ 60. It is of course not to expect that the set of Kloosterman zeros has a
strong additive structure, so we believe that the bound of Theorem 5 can be
significantly improved.

Problem 1. Find a better bound on the maximal size of a subspace containing
exclusively Kloosterman zeros.

4 Permutations of the Form L1(x
−1) + L2(x)

We now apply the results from the previous section. The following lemma is
well-known. We include a simple proof of it for the convenience of the reader.

Lemma 2. Let L : F2n → F2n be linear and L∗ be its adjoint mapping. Then
dim(im(L∗)) = dim(im(L)) and dim(ker(L∗)) = dim(ker(L)).

Proof. Let v ∈ im(L∗) and w ∈ ker(L). We can write v = L∗(x) for some x ∈ F2n .
Then 〈v, w〉 = 〈L∗(x), w〉 = 〈x,L(w)〉 = 〈x, 0〉 = 0, so im(L∗) ⊆ ker(L)⊥, in
particular dim(im(L∗)) ≤ dim(im(L)). The other inequality holds with L∗∗ = L.

The statement on the kernel follows from dim(im(L)) + dim(ker(L)) = n. ��
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Table 1. Left Table: Comparison of the number of Kloosterman zeros over F2n to the
value 2n/2. Here, Z(n) denotes the number of Kloosterman zeros over F2n . Right table:
the maximal dimension of a subspace W of F2n that contains exclusively Kloosterman
zeros.

n 2
−n
2 Z(n)

5 0.88

10 1.87

15 1.57

20 0.86

25 0.67

30 1.29

35 1.15

40 1.15

45 1.14

50 0.91

55 1.32

60 1.25

n dim(V )

5 1

6 2

7 3

8 1

9 1

10 2

11 2

12 2

13 1

14 3

15 4

16 2

Corollary 1 shows that a function L1(x−1) + L2(x) cannot be bijective on
F2n if at least one of L1 or L2 is bijective, equivalently has a trivial kernel. The
next result shows that such a function is not bijective also in the case when the
kernel of L1 or L2 is large.

Theorem 6. Let n ≥ 5 and F (x) = L1(x−1) + L2(x) where L1 and L2 are
non-bijective non-zero linear functions of F2n . Further, let d be defined as in
Theorem 5. If max(dim(ker(L1)),dim(ker(L2))) > d, then F does not permute
F2n .

Proof. Observe that F (x) is a permutation if and only if F (x−1) =
L1(x) + L2(x−1) is so. Hence we may assume without loss of generality that
dim(ker(L1)) ≥ dim(ker(L2)) ≥ 1. Suppose F is a permutation. Then by Corol-
lary 2 we have ker(L∗

1) ∩ ker(L∗
2) = {0} and Kn(L∗

1(b)L
∗
2(b)) = 0 for all b ∈ F2n .

Set e = dim ker L1 = dim ker L∗
1. Choose 0 �= c ∈ ker(L∗

2). The set

V = L∗
1(c + ker(L∗

1)) · L∗
2(c + ker(L∗

1)) = L∗
1(c) · L∗

2(ker(L∗
1))

is a vector space that is contained in the image set of L∗
1(b)L

∗
2(b). In particular

Kn(v) = 0 for all v ∈ V . Since ker(L∗
1) ∩ ker(L∗

2) = {0} we have dim(V ) = e.
Theorem 5 then implies that e ≤ d. ��

We conjecture that the following statements hold: 2

Conjecture 1. Let F = L1(x−1)+L2(x) where L1 �= 0 and L2 �= 0 are linearized
polynomials over F2n with n ≥ 5. Then F does not permute F2n .
2 After the acceptance of this submission, Lukas Kölsch found a proof for Conjecture 1.
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With Proposition 1, Conjecture 1 implies the following (recall that the inverse
mapping is an involution):

Conjecture 2. Let n ≥ 5. Every function F : F2n → F2n that is CCZ equivalent to
the inverse function is already EA equivalent to it. Moreover, if F is additionally
a permutation then F is affine equivalent to the inverse function.
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Abstract. Let p, t, q, n, m and r be positive integers, such that p is a
prime number, q = pt, gcd(q, n) = 1, m = ordn(q), and suppose that the
prime factors of r divide n but not (qm−1)/n, and that qm ≡ 1 (mod 4),
if 4|r. Also let u such that u = gcd( qm−1

q−1
, qm−1

n
). Assume that u = 1

or p is semiprimitive modulo u. Under these conditions, we are going
to obtain the explicit factorization of the period polynomial of degree
gcd( qmr−1

q−1
, qmr−1

nr
) for the finite field Fqmr . In fact, we will see that such

polynomial has always integer roots, meaning that the corresponding
Gaussian periods are also integer numbers. As an application, we also
determine the number of solutions of certain diagonal equations with
constant exponent.

Keywords: Period polynomials · Gaussian periods · Irreducible cyclic
codes · Weight distribution

1 Introduction

Let Fq be a finite field of characteristic p with q = pt, and let γ be a primitive
element of Fq. Let e and f be positive integers such that q − 1 = ef . For
i = 0, 1, · · · , e − 1, define D(e,q)

i := γi〈γe〉, where 〈γe〉 denotes the subgroup of
F

∗
q generated by γe. The coset D(e,q)

i is called the i-th cyclotomic class of order
e in Fq. Let χ be the canonical additive character of Fq (see for example [10,
Chap. 5]).

For i = 0, 1, · · · , e − 1, the i-th Gaussian period, η
(e,q)
i , of order e for Fq is

defined to be

η
(e,q)
i :=

∑

z∈D(e,q)
i

χ(z) .

The period polynomial, ψ(e,q)(X), of degree e for Fq is given by

ψ(e,q)(X) :=
e−1∏

i=0

(X − η
(e,q)
i ) ,
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while the reduced period polynomial, ψ∗
(e,q)(X), of degree e for Fq is

ψ∗
(e,q)(X) :=

e−1∏

i=0

(X − η
∗(e,q)
i ) ,

where

η
∗(e,q)
i :=

∑

z∈Fq

χ(γize) = 1 + eη
(e,q)
i ,

is the i-th reduced Gaussian period of order e for Fq.
The polynomial ψ(e,q)(X) has integer coefficients and is independent of the

choice of the primitive element γ (see [11, Theorem 3]). To determine the coef-
ficients of the period polynomial ψ(e,q)(X) (or equivalently, the reduced period
polynomial ψ∗

(e,q)(X) = eeψ(e,q)((X − 1)/e)) is a classical problem dating back
to Gauss (see [2]). It is well known (see [11, Theorem 4]) that the period polyno-
mial ψ(e,q)(X) splits over Q into δ = gcd(e, (q − 1)/(p− 1)) factors of degree e/δ
(not necessarily distinct), and each of these factors are irreducible or a power of
an irreducible polynomial. The explicit factorization of ψ(e,q)(X), if reducible, is
in general very hard to determine, and it has been done only in certain special
cases (see for example [1,7–9,11]).

Let p, t, q, n, m and r be positive integers, such that p is a prime number,
q = pt, gcd(q, n) = 1, m = ordn(q), and suppose that the prime factors of r
divide n but not (qm − 1)/n, and that qm ≡ 1 (mod 4), if 4|r. Also let u such
that u = gcd( qm−1

q−1 , qm−1
n ). Assume that u = 1 or p is semiprimitive modulo

u (see definition below). Fix e = gcd( qmr−1
q−1 , qmr−1

nr ). The aim of this work is

to obtain the Gaussian periods, η
(e,qmr)
i , of order e for Fqmr . That is, for Fqmr ,

we are going to give the explicit factorization of the period polynomials of the
form ψ(e,qmr)(X). In fact, since qmr−1

q−1 | qmr−1
p−1 , δ = gcd(e, (qmr − 1)/(p − 1)) = e,

therefore ψ(e,qmr)(X) (or the reduced period polynomial ψ∗
(e,qmr)(X)) will split

over Q into e factors of degree 1. In fact, we will see that such linear factors have
always integer roots, meaning that the corresponding Gaussian periods η

(e,qmr)
i

are all integer numbers.
The explicit factorization of the period polynomials has several applications

and one of them is to determine the weight distributions for some irreducible
cyclic codes (see for example [1,5,6,15]). Now, the traditional approach to obtain
the explicit factorization of one of these polynomials is to express its correspond-
ing Gaussian periods in terms of Gauss sums and to apply known results about
these sums. Instead, to achieve our goal, we are going to proceed in the oppo-
site direction. In other words, in some cases it may be possible to determine
the weight distributions of some irreducible cyclic codes without needing to
obtain the Gaussian periods (see for example [13,14]). Particularly, an infinite
family of irreducible cyclic codes whose weight distributions are explicitly deter-
mined through the well-known weight distributions of either a one-weight, or a
semiprimitive two-weight irreducible cyclic code, was recently presented in [14].
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Thus, our strategy for this work, will be to use these already known weight distri-
butions in this infinite family, in order to determine the explicit factorization for
the corresponding period polynomials. As an application of this explicit factor-
ization, we also determine the number of solutions of certain diagonal equations
with constant exponent.

This work is organized as follows: Sect. 2 consists of background material and
already known results needed later, in particular, it is recalled the result that
determines the weight distributions for an infinite family of irreducible cyclic
codes. In Sect. 3, some preliminary results are presented. Among them an identity
that gives us the values of Gaussian periods in terms of the Hamming weight of
the codewords in an irreducible cyclic code. Results in Sects. 2 and 3, are used in
Sect. 4 in order to present an explicit factorization of the period polynomials of
the form ψ(e,qmr)(X). Some examples of such factorization are also presented in
Sect. 4. As an application of our results, we determine the number of solutions
of certain diagonal equations with constant exponent in Sect. 5. Finally, Sect. 6
is devoted to conclusions.

2 Background Material and Already Known Results

Let v and w be integers, such that gcd(v, w) = 1. Then, the smallest positive
integer i, such that wi ≡ 1 (mod v), is called the multiplicative order of w
modulo v, and is denoted by ordv(w). In addition, we are going to say that w is
semiprimitive modulo v, if there exists a positive integer j, such that wj ≡ −1
(mod v).

By identifying the vector (c0, c1, . . . , cn−1) ∈ F
n
q with the polynomial c0 +

c1x + . . . + cn−1x
n−1 ∈ Fq[x], it follows that any linear code C of length n over

Fq corresponds to a subset of the residue class ring Fq[x]/〈xn − 1〉. Moreover,
it is well known that the linear code C is cyclic if and only if the corresponding
subset is an ideal of Fq[x]/〈xn − 1〉 (see for example [10, Theorem 9.36]).

Now, note that every ideal of Fq[x]/〈xn − 1〉 is principal. In consequence,
if C is a cyclic code of length n over Fq, then C = 〈g(x)〉, where g(x) is a
monic polynomial, such that g(x) | (xn − 1). This polynomial is unique, and
it is called the generator polynomial of C. On the other hand, the polynomial
h(x) = (xn − 1)/g(x) is referred to as the parity check polynomial of C.

A cyclic code over Fq is called irreducible (reducible) if its parity check poly-
nomial is irreducible (reducible) over Fq.

A precise description of an irreducible cyclic code over Fq is achieved by
means of the following:

Definition 1 [12, Definition 2.2]. Let n be a positive divisor of qm − 1, write
D = (qm − 1)/n, and let ω be a primitive n-th root of unity in Fqm . For each
β ∈ Fqm define c(qm,D, β) as the vector of length n over Fq, given by

c(qm,D, β) = (TrFqm/Fq
(βωj))n−1

j=0 .

where “TrFqm/Fq
” denotes the trace mapping from Fqm to Fq. Then, an irre-

ducible cyclic code C(D) of length n over Fq, is the set



Explicit Factorization of Some Period Polynomials 225

C(D) = {c(qm,D, β) | β ∈ Fqm}.

Remark 1. The dimension of C(D) is ordn(q), which is a divisor of m. Also note
that, if γ is a primitive element of Fqm , then, thanks to Delsarte’s Theorem (see
for example [3]), the parity-check polynomial of the irreducible cyclic code under
the previous definition is the minimal polynomial of γ−D (see [10, Definition
1.81]), if ω = γD.

According to [14, Definition 3 and Theorem 4], an irreducible cyclic code C
of length n and dimension m over Fq is called semiprimitive if u ≥ 2 and p is
semiprimitive modulo u, where u = gcd( qm−1

q−1 , qm−1
n ) (recall q = pt).

To determine the Gaussian periods in terms of the weight distribution of an
irreducible cyclic code, we need to recall the following:

Lemma 1 [6, Lemma 5]. Let D be a positive divisor of qm − 1. Fix e =
gcd( qm−1

q−1 ,D), and let i be any integer with 0 ≤ i < D. We have the follow-
ing multiset equality:

{xy | x ∈ D(D,qm)
i , y ∈ F

∗
q} =

e(q − 1)
D

∗ D(e,qm)
i ,

where e(q−1)
D ∗ D(e,qm)

i denotes the multiset in which each element in the set
D(e,qm)

i appears in the multiset with multiplicity e(q−1)
D .

The following result determines the weight distribution of an infinite family
of irreducible cyclic codes, that includes as a particular instance (r = 1) all the
one-weight and semiprimitive two-weight irreducible cyclic codes.

Theorem 1 [14, Theorems 4 and 10]. Let n, m and r be three positive integers,
such that gcd(n, q) = 1, m = ordn(q), and r ≥ 1. If r ≥ 2, suppose that the prime
factors of r divide n but not (qm − 1)/n, and that qm ≡ 1 (mod 4), if 4|r. Fix
d = qm−1

n , and u = gcd( qm−1
q−1 , d). Assume also that u = 1 or p is semiprimitive

modulo u. Fix D = qmr−1
nr . Then, any irreducible cyclic code of the form C(D) is

an [nr,mr] code over Fq, whose weight enumerator polynomial is

(1 +
(qm − 1)

u
[(u − 1)z

(q−1)qm/2

dq (qm/2−(−1)s) + z
(q−1)qm/2

dq (qm/2+(−1)s(u−1))])r,

where s = (mt)/ordu(p).

Note that if r = 1, then all the weight distributions for the one-weight and
semiprimitive two-weight irreducible cyclic codes, are determined through the
previous theorem (see [14, Theorem 4]). On the other hand, if r = 2 and u =
1, then the weight distribution of the corresponding irreducible cyclic code in
Theorem 1, is the weight distribution of a semiprimitive two-weight irreducible
cyclic code, which can also be described through the same theorem when u > 1
and r = 1. However, if r ≥ 2 and u > 1, or if r ≥ 3 and u ≥ 1, then the weight
distribution of the corresponding irreducible cyclic code in Theorem 1, cannot
be the weight distribution of either a one-weight, or a semiprimitive two-weight
irreducible cyclic code.
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3 Some Preliminary Results

It is important to note that the weight distribution in Theorem 1, is not given
explicitly. Thus, the purpose of the following result is to get rid of this inconve-
nience.

Lemma 2. Let u, A1, A2, w1, w2, and r be non-negative integers such that
u ≥ 1, u|(q − 1), A1 = (qm−1)

u (u − 1), A2 = (qm−1)
u , and r ≥ 1. Then the

polynomial (1 + A1z
w1 + A2z

w2)r is equal to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 +
r∑

j=1

(
r
j

)
Aj

2z
jw2 if u = 1,

1 +
∑

0 ≤ k ≤ j ≤ r
(j, k) 	= (0, 0)

(
r
j

) (
j
k

)
Aj−k

1 Ak
2z

jw1+k(w2−w1) otherwise. (1)

Proof. It is a consequence of the binomial serie: (a + b)r =
r∑

j=0

(
r
j

)
ar−jbj . 
�

Table 1. Weight distribution of C(D), when u = 1. The integer j runs from 1 to r.

Weight Frequency

0 1

(q−1)qmj
dq

(
r

j

)
(qm − 1)j

An explicit description of the weight distribution of an irreducible cyclic code
in Theorem 1 is as follows.

Corollary 1. Assume the same notation and conditions as in Theorem 1 and
Lemma 2. Then the weight distribution of any irreducible cyclic code of the form
C(D) is given by Tables 1 and 2.

Proof. If w1 = (q−1)qm/2

dq (qm/2−(−1)s), and w2 = (q−1)qm/2

dq (qm/2+(−1)s(u−1)),
then the result follows directly from Theorem 1 and Lemma 2. 
�
Example 1. With the notation of Theorem 1, let q = p = 5, n = 3, and r = 3.
Thus, m = 2, d = 8, u = 2 > 1, and s = 1. Clearly r divides n but not (qm−1)/n,
and p is semiprimitive modulo u. Fix D = qmr−1

nr = 1736. Then, Table 2 tells us
that the explicit weight enumerator polynomial of C(1736) is 1 + 36z2 + 36z3 +
432z4 + 864z5 + 2160z6 + 5184z7 + 5184z8 + 1728z9.
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Table 2. Weight distribution of C(D), when u > 1. Here s = (mt)/ordu(p), and the
integers j and k are such that 0 ≤ k ≤ j ≤ r, and (j, k) �= (0, 0).

Weight Frequency

0 1

(q−1)qm/2

dq
(jqm/2 + (−1)s(ku − j))

(
r

j

) (
j

k

)
(qm−1)j(u−1)j−k

uj

As already stated, the aim of this work is to use irreducible cyclic codes,
whose weight distributions are already known, in order to determine the explicit
factorization for the corresponding period polynomials. To achieve this objective,
we need to find a way to express the value of a Gaussian period in terms of
the Hamming weight of a codeword in an irreducible cyclic code. Such way is
described below.

Lemma 3. Let n be a positive divisor of qm − 1, write D = (qm − 1)/n, and
let C(D) be the associated irreducible cyclic code under the Definition 1. Fix e =
gcd( qm−1

q−1 ,D), and for i = 0, 1, · · · , e−1, let η
(e,qm)
i and D(e,qm)

i be, respectively,
the i-th Gaussian period of order e for Fqm , and the i-th cyclotomic class of order
e in Fqm . Let c(qm,D, β) ∈ C(D), and suppose that β ∈ D(e,qm)

i . Then η
(e,qm)
i is

an integer number, whose value is given by

η
(e,qm)
i =

D

e
(n − qwH(c(qm,D, β))

q − 1
), (2)

where “wH” stands for the Hamming weight of a codeword.

Proof. Let ω be a primitive n-th root of unity in Fqm , then the Hamming weight
of the codeword c(qm,D, β) ∈ C(D) is equal to n − Z(β), where

Z(β) = 	{ j | 0 ≤ j < n,TrFqm/Fq
(βωj) = 0}.

If χ′ and χ are, respectively, the canonical additive characters of Fq and Fqm (see
for example [10, Chap. 5]), then χ′ and χ are related by χ′(TrFqm/Fq

(ε)) = χ(ε)
for all ε ∈ Fqm . Therefore,

Z(β) =
1
q

n−1∑

j=0

∑

y∈Fq

χ′(TrFqm/Fq
(y(βωj)))

=
n

q
+

1
q

n−1∑

j=0

∑

y∈F∗
q

χ(yβωj)

=
n

q
+

1
q

∑

x∈D(D,qm)
0

∑

y∈F∗
q

χ(yβx).
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because D(D,qm)
0 := 〈ω〉. But, owing to Lemma 1 we have,

Z(β) =
n

q
+

e(q − 1)
Dq

∑

z∈D(e,qm)
0

χ(βz).

Now, since β ∈ D(e,qm)
i ,

wH(c(qm,D, β)) = n − Z(β) = n − n

q
− e(q − 1)

Dq
η
(e,qm)
i ,

which implies (2). Finally, since e = gcd( qm−1
q−1 ,D), we have, owing to [6, Theorem

13], that η
(e,qm)
i ∈ Z. 
�

To determine the number of solutions of certain diagonal equations with
constant exponent, we need the following:

Lemma 4. With our current notation, let e and v be positive integers such that
v ≥ 2, and e|(q − 1). Let b ∈ Fq, and denote by N the number of solutions to the
equation xe

1 + · · · + xe
v = b in F

v
q . Suppose that −b ∈ D(e,q)

0 . Then

N = qv−1 +
1
q

e−1∑

i=1

(η∗(e,q)
i )vη

(e,q)
i .

Proof. From [16, Proposition 1], we have

N = q−1
∑

a∈Fq

χ(−ab)
v∏

j=0

∑

z∈Fq

χ(aze) .

If γ is a primitive element of Fq, then

N = qv−1 +
1
q

e−1∑

i=0

∑

y∈〈γe〉
χ(−γiyb)

v∏

j=0

∑

z∈Fq

χ(γiyze)

= qv−1 +
1
q

e−1∑

i=0

⎡

⎣
v∏

j=0

∑

z∈Fq

χ(γize)

⎤

⎦
∑

y∈〈γe〉
χ(−γiyb)

= qv−1 +
1
q

e−1∑

i=1

(η∗(e,q)
i )v

∑

y∈〈γe〉
χ(−γiyb) .

But since −b ∈ D(e,q)
0 ,

∑
y∈〈γe〉 χ(−γiyb) = η

(e,q)
i . Thus, the result is proved. 
�
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4 Explicit Factorization of the Period Polynomials of the
Form ψ(e,qm r )(X)

Prior to seeking for the explicit factorization of a period polynomial of the form
ψ(e,qmr)(X), we first need to find the Gaussian periods associated with such
polynomial.

Table 3. The Gaussian periods of order e for Fqmr , when u = 1. The integer j runs
from 1 to r.

Value Multiplicity

qmr−1
e

(1 − qmj
(qm−1)r

)

(
r

j

)
(qm−1)je
qmr−1

Table 4. The Gaussian periods of order e for Fqmr , when u > 1. Here s = (mt)/ordu(p),
and the integers j and k are such that 0 ≤ k ≤ j ≤ r, and (j, k) �= (0, 0).

Value Multiplicity

qmr−1
e

(1 − qm/2

(qm−1)r
[jqm/2 + (ku − j)(−1)s])

(
r

j

) (
j

k

)
(qm−1)j(u−1)j−ke

(qmr−1)uj

Theorem 2. Let n, m and r be three positive integers, such that gcd(n, q) =
1, m = ordn(q), and r ≥ 1. If r ≥ 2, suppose that the prime factors of r

divide n but not (qm − 1)/n, and that qm ≡ 1 (mod 4), if 4|r. Fix d = qm−1
n ,

u = gcd( qm−1
q−1 , d), and e = gcd( qmr−1

q−1 , qmr−1
nr ). Assume also that u = 1 or p

is semiprimitive modulo u. Then, the Gaussian periods of order e for Fqmr are
integer numbers, whose values and multiplicities are given by Tables 3 and 4.

Proof. Let D = qmr−1
nr , and C(D) the associated irreducible cyclic code under

Definition 1. Also let β ∈ Fqmr , and suppose that β ∈ D(e,qmr)
i , for some i =

0, 1, · · · , e − 1. Thus, owing to Lemma 3, the i-th Gaussian period, η
(e,qmr)
i , of

order e for Fqmr is an integer number, whose value is,

η
(e,qmr)
i =

D

e
(nr − qwH(c(qmr,D, β))

q − 1
) .

Now, if F is the Frequency of wH(c(qmr,D, β)) in the weight distribution of
C(D), then Corollary 1 tells us that the pair (wH(c(qmr,D, β)),F ) should be
listed either in Table 1 or Table 2. Finally since |D(e,qmr)

i | = qmr−1
e , the result

follows from the fact that the multiplicity of η
(e,qmr)
i is Fe

qmr−1 . 
�
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Table 5. The Gaussian periods η
(7,64)
i (0 ≤ i < 7).

Value 1 5 −3

Multiplicity 3 1 3

Example 2. With the notation of Theorem 2, let q = 4, n = 3, and r = 3. Thus,
m = 1 and clearly r divides n but not (qm − 1)/n. In addition, d = 1, u = 1,
and e = 7. Then, through Table 3 we see that the values and their corresponding
multiplicities of the Gaussian periods, η

(7,64)
i (0 ≤ i < 7) are given by Table 5.

Remark 2. Note that our previous example coincides with Lemma 3 in [17].

We are now in a position to give an explicit factorization for the period
polynomials of the form ψ(e,qmr)(X).

Corollary 2. Assume the same notation and conditions as in Theorem 2. Fix
h1 = qmr−1

e , and h2 = qm/2

(qm−1)r . Then the explicit factorization for the period
polynomial, ψ(e,qmr)(X), of degree e for F

mr
q is

r∏

j=1

(X − h1(1 − h2q
m/2j))

⎛
⎝ r

j

⎞
⎠ (qm−1)j

h1

,

if u = 1, and if u > 1 we have

∏

0 ≤ k ≤ j ≤ r
(j, k) 	= (0, 0)

(X − h1(1 − h2[jqm/2 + (ku − j)(−1)s]))

⎛
⎝ r

j

⎞
⎠

⎛
⎝ j

k

⎞
⎠ (qm−1)j(u−1)j−k

h1uj

.

Proof. It is a direct consequence of the definition of ψ(e,qmr)(X), and
Theorem 2. 
�
Example 3. With the notation of Theorem 2, let q = p = 5, n = 3, m = 2,
and r = 3 (see Example 1). Thus, d = 8, u = 2 > 1, e = 434, and s = 1.
Clearly r divides n but not (qm − 1)/n, and p is semiprimitive modulo u. Fix
h1 = qmr−1

e = 36, and h2 = qm/2

(qm−1)r = 5
72 . Then, through Corollary 2, we see

that

ψ(434,56)(X) = (X − 21)(X − 26)(X − 6)12(X − 11)24(X − 16)12

(X + 9)48(X + 4)144(X − 1)144(X − 6)48 .
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Take q = p (that is t = 1), m ≥ 1, r = 1. Let n and e such that
n|(pm − 1), and e = gcd(pm−1

p−1 , pm−1
n ), and suppose that e > 2 and e|(pv + 1),

with v chosen minimal. Thus, in accordance with Theorem 2, u = e. Therefore
s = (mt)/ordu(p) = m/(2v), and p is semiprimitive modulo u. Now, by using
Corollary 2 we have:

ψ(e,pm)(X) = (X − h1(1 − h2[pm/2 − (−1)s]))e−1

(X − h1(1 − h2[pm/2 + (e − 1)(−1)s]))

= (X − 1
e
(pm/2(−1)s − 1))e−1(X − 1

e
(pm/2(e − 1)(−1)s+1 − 1)).

But ψ∗
(e,pm)(X) = eeψ(e,pm)((X − 1)/e)), therefore

ψ∗
(e,pm)(X) = (X + (−1)m/(2v)(e − 1)pm/2)(X − (−1)m/(2v)pm/2)e−1.

The previous reduced period polynomial is the same to that reported in [1,
p. 320]. In this way, without considering the problem of locating the Gaussian
periods (see [11, Sect. 7]), we end this section by noting that Theorem 2 extends
the scope of Proposition 20 in [11].

5 Diagonal Equations with Constant Exponent

For integers e ≥ 1 and v ≥ 2, and for finite field elements a1, · · · , av, b ∈ Fq, a
diagonal equation with constant exponent e, over Fq, is an equation of the form:

a1x
e
1 + · · · + avxe

v = b.

Finding the number of solutions (x1, · · · , xv) ∈ F
v
q , in the general case, is a very

difficult problem. The following result gives a solution to this problem for certain
diagonal equations.

Theorem 3. Assume the same notation and conditions as in Theorem 2. Also,
let v ≥ 2 be an integer, and b ∈ Fqrm . Denote by N the number of solutions to the
diagonal equation xe

1 + · · ·+xe
v = b in F

v
qrm . Fix h1 = qmr−1

e , and h2 = qm/2

(qm−1)r .
For integers j and k, such that 0 ≤ k ≤ j ≤ r, define the functions:

N1(j) = h1(1 − h2q
m/2j),

F1(j) =
(

r
j

)
(qm − 1)j

h1
,

N2(j, k) = h1(1 − h2[jqm/2 + (ku − j)(−1)s]),

F2(j, k) =
(

r
j

) (
j
k

)
(qm − 1)j(u − 1)j−k

h1uj
.
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Suppose that b ∈ D(e,qrm)
0 . Then N − qrm(v−1) is equal to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
qrm

r∑

j=1

F1(j)(eN1(j) + 1)vN1(j) if u = 1,

1
qrm

∑

0 ≤ k ≤ j ≤ r
(j, k) 	= (0, 0)

F2(j, k)(eN2(j, k) + 1)vN2(j, k) otherwise.

Proof. Since −1 ∈ D(e,qrm)
0 , −b ∈ D(e,qrm)

0 . Thus, the result is a direct conse-
quence of Theorem 2, and Lemma 4. 
�
Example 4. Let q = 4, n = 3, and r = 3. Thus, by Example 2, we have
((N1(j),F1(j))3j=1 = ((1, 3), (5, 1), (−3, 3)). Therefore, the number of solutions
(x1, · · · , xv) ∈ F

v
43 of the diagonal equation x7

1 + · · · + x7
v = 1 is

N = 43(v−1) +
1
64

[3(8)v + (36)v(5) + 3(−20)v(−3)].

Example 5. With the notation of Theorem 2, let q = p = 5, n = 8, and r = 2.
Thus, m = 2, d = 3, u = 3 > 1, e = 39, and s = 1. Clearly r divides n but
not (qm − 1)/n, and p is semiprimitive modulo u. Fix h1 = qmr−1

e = 16, and

h2 = qm/2

(qm−1)r = 5
48 . Thus, by Theorem 3, we have that

((N2(j, k),F2(j, k)) 0 ≤ k ≤ j ≤ 3
(j, k) 	= (0, 0)

= ((6, 2), (11, 1), (−4, 16), (1, 16), (6, 4)).

Therefore, the number of solutions (x1, · · · , xv) ∈ F
v
54 of the diagonal equation

x39
1 + · · · + x39

v = 4 is

N = 54(v−1) +
1

625
[6(235)v(6) + (430)v(11) + 16(−155)v(−4) + 16(40)v].

Remark 3. For, v = 2, 3, the numerical results in the two previous examples
were corroborated with the help of a computer.

6 Conclusion

Let n, m, u, e, and r be positive integers, such that gcd(q, n) = 1, m = ordn(q),
u = gcd( qm−1

q−1 , qm−1
n ), e = gcd( qmr−1

q−1 , qmr−1
nr ), and suppose that u = 1 or p is

semiprimitive modulo u, and suppose also that the prime factors of r divide n but
not (qm − 1)/n, and that qm ≡ 1 (mod 4), if 4|r. Then, under these conditions,
we obtained the values and their multiplicities of all the Gaussian periods of the
form η

(e,qmr)
i , showing at the same time that such Gaussian periods are always

integer numbers (Theorem 2). Then, we used such values and multiplicities to
give the explicit factorization of the period polynomials of the form ψ(e,qmr)(X)
(Corollary 2). As an application of our results, we determined the number of
solutions of certain diagonal equations with constant exponent (Theorem 3).
Finally, notice that such solutions are a generalisation of those in [4].
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Abstract. We consider rational functions of the form V (x)/U(x), where
both V (x) and U(x) are relatively prime polynomials over the finite field
Fq. Polynomials that permute the elements of a field, called permuta-
tion polynomials (PPs), have been the subject of research for decades.
Let P1(Fq) denote Fq ∪ {∞}. If the rational function, V (x)/U(x), per-
mutes the elements of P1(Fq), it is called a permutation rational function
(PRF). Let Nd(q) denote the number of PPs of degree d over Fq, and let
Nv,u(q) denote the number of PRFs with a numerator of degree v and a
denominator of degree u. It follows that Nd,0(q) = Nd(q), so PRFs are
a generalization of PPs. The number of monic degree 3 PRFs is known
[11]. We develop efficient computational techniques for Nv,u(q), and use
them to show N4,3(q) = (q+1)q2(q−1)2/3, for all prime powers q ≤ 307,
N5,4(q) > (q+1)q3(q−1)2/2, for all prime powers q ≤ 97, and give a for-
mula for N4,4(q). We conjecture that these are true for all prime powers q.
Let M(n, D) denote the maximum number of permutations on n symbols
with pairwise Hamming distance D. Computing improved lower bounds
for M(n, D) is the subject of much current research with applications
in error correcting codes. Using PRFs, we obtain significantly improved
lower bounds on M(q, q − d) and M(q + 1, q − d), for d ∈ {5, 7, 9}.

Keywords: Hamming distance · Permutation array · Rational
functions · Permutation polynomials

1 Introduction

Permutation arrays (PAs) with large Hamming distance have been the subject
of many recent papers with applications in the design of error correcting codes.
New lower bounds for the size of such permutation arrays are given, for example
[1–7,12,14,15,19,20,22].

Let X be a set of n symbols, and let π and σ be permutations over X.
The Hamming distance between π and σ, denoted by hd(π, σ), is the number
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of positions x ∈ X such that π(x) �= σ(x). Define the Hamming distance of a
PA A, by hd(A) = min{hd(π, σ) | π, σ ∈ A, π �= σ}. Let M(n,D) denote the
maximum number of permutations in any PA A on n symbols with Hamming
distance D.

Let Fq denote the finite field with q = pm elements, where p is prime and
m ≥ 1. The prime p is called the characteristic of the field. A polynomial V (x)
over Fq is a permutation polynomial (PP ) if it permutes the elements of Fq.
Permutation polynomials have been studied for many decades, for example [2,8–
10,13,16,17,21].

In this paper, we focus on permutation rational functions (PRFs), defined
as follows:

Definition 1. Let V (x) and U(x) be polynomials over Fq, such that gcd(V (x),
U(x)) = 1. Let P1(Fq) denote Fq ∪ {∞}. If the rational function V (x)/U(x)
permutes the elements of P1(Fq), then it is called a permutation rational
function (PRF).

Yang et al. [23] used PRFs to compute, for example, an improved lower bound
for M(19, 14). Ferraguti and Micheli [11] enumerated all PRFs of degree 3.

Let a ∈ Fq and a′ ∈ Fq\{0}. We use these conventions to evaluate expressions
involving ∞:

a/∞ = 0, a′/0 = ∞. (1)

Let W (x) = V (x)
U(x) be a PRF , where V (x) has degree v, U(x) has degree u, and

their high order coefficients are av and bu, respectively. We use Eq. 1 to evaluate
W (x) at ∞:

W (∞) = W (1/x) when x = 0. (2)

Specifically, Eq. 2 implies that

W (∞) =

⎧
⎪⎨

⎪⎩

∞, when v > u

0, when v < u

av/bv, when v = u.

(3)

Observe that when v > u, PRFs over P1(Fq) can be viewed as permutations of
Fq by eliminating ∞ from the domain.

Example. Let V (x) = x3 + x and U(x) = x2 + 5 be polynomials over F7, where
our computations are based on the primitive polynomial x + 4. Observe that
V (0) = 0, V (1) = 3, V (2) = 3, V (3) = 2, V (4) = 6, V (5) = 6, V (6) = 5 and
U(0) = 5, U(1) = 6, U(2) = 4, U(3) = 1, U(4) = 6, U(5) = 4, U(6) = 1. Let
W (x) be the rational function defined by W (x) = V (x)/U(x) = (x3+x)/(x2+5).
Then

W (x) =
(

0 1 2 3 4 5 6 ∞
0
5

3
6

3
4

2
1

6
6

6
4

5
1

1
0

)

=
(

0 1 2 3 4 5 6 ∞
0 4 6 2 1 3 5 ∞

)

.

Clearly W (x) is a permutation of the elements of P1(F7). Hence W (x) is a PRF .
Observe also that when W (x) is restricted to F7, the result is a permutation of
the elements of F7. Also observe that W (1/x) is a PRF :
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W (1/x) =
(

0 1 2 3 4 5 6 ∞
∞ 4 5 3 1 2 6 0

)

In general, many of the same concepts and techniques discussed for polyno-
mials over finite fields apply to PRFs. Let Nd(q) be the number of PPs of degree
d over Fq [17]. We generalize this notion by defining Nv,u(q) for PRFs.

Definition 2. Nv,u(q) is the number of PRFs V (x)/U(x), where V (x) has
degree v, and U(x) has degree u.

Note that Nd(q) is the same as Nd,0(q). Note also that Nu,v(q) = Nv,u(q),
because V (x)

U(x) is a PRF if and only if U(x)
V (x) is also a PRF . That is, if (a0, a1, . . . , aq)

is a permutation of P 1(Fq), then (a−1
0 , a−1

1 , . . . , a−1
q ) is also a permutation of

P 1(Fq).
We compute values of Nv,u(q), for many values of v, u and q, and use the

computed values to give significantly improved lower bounds for M(q,D) and
M(q+1,D). We show that the Hamming distance between permutations defined
by PRFs, V (x)

U(x) and R(x)
S(x) , where V (x) is of degree v, U(x) is of degree u, R(x)

is of degree r, and S(x) is of degree s, is at least q − max{v + s, u + r}. In
this paper we focus on PRFs with numerators of degree v and denominators of
degree either v or v −1; however, Nv,u(q) is computed also for other pairs of v, u
for the sake of computing M(q,D).

Definition 3. Define Td(q) =
∑

v,u Nv,u(q), for all v, u ≤ (d + 1)/2.

We obtain improved lower bounds for M(q, q−d) and M(q+1, q−d) by showing
that M(q + 1, q − d) ≥ Td(q). In addition, by computation, we show that:

N4,3(q) = (q + 1)q2(q − 1)2/3, q ≤ 307,
N5,4(q) > (q + 1)q3(q − 1)2/2, q ≤ 97, and
N4,4(q) = (q + 1)q2(q − 1)3/3, for odd q ≤ 307.

Based on our experimental evidence, we conjecture that these formulas are valid
for all prime powers q. We have also computed N3,2(q) and N3,3(q), not included
in the above list as Ferraguti et al. [11], described all PRFs of degree 3. However,
we do use the results for degree 3 PRFs to give improved lower bounds for
M(q, q − d) and M(q + 1, q − d) for d ∈ {5, 7, 9}.

Our paper is organized as follows. In Sect. 2 we discuss Hamming distance
properties of PRFs, and give proofs of our new lower bounds for M(q, q−d) and
M(q + 1, q − d). In Sect. 3 we consider various forms of normalization that are
useful for speeding up the search for PRFs. In Sect. 4 we discuss functions that
map PRFs into PRFs that are also useful for speeding up our computations. In
Sect. 5 we give formulas and compute values for N4,3(q), N4,4(q), and N5,4(q).
The formulas are verified computationally and conjectured to be valid for all
prime powers q. In Tables 3 and 5, we list new results, derived from PRFs, for
M(q,D), for various q and D. Table 3 shows new results for M(q, q − 5) and
M(q, q − 7), for 16 ≤ q ≤ 149. Table 4 shows new results for N5,4(q) and values
obtained by our formula given in Conjecture 2 (our 5/4 conjecture). Table 5
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shows new results for M(q, q − 9), for 13 ≤ q ≤ 97. Tables 6 and 7 give new
results for M(q + 1, q − 5) and M(q + 1, q − 7), respectively. We have improved
lower bounds for M(q,D) for several other values of q and D, but they are not
included here due to space restrictions.

Notation. We use the following notation throughout this paper. Fq is a finite
field where q = pm for some m ≥ 1. We use the convention that t denotes
a generator of the group of non-zero elements of Fq. Using this notation, the
elements of Fq are 0, t0 = 1, t1 = 2, . . . , tq−2 = q − 1. Lidl and Niederreiter
[18] give this as one way to represent the elements of a finite field. Another
representation lists the elements of Fpm by degree m polynomials with coefficients
from Fp. PRFs can easily be converted from one notation to the other. As a
primitive polynomial is needed to do the appropriate arithmetic, we give explicit
primitive polynomials for our computations and results. For notational clarity, we
let V, U, R and S denote polynomials of degree v, u, r and s, with coefficients
ai, bi, ci and di respectively, That is, V (x) =

∑v
i=0 aix

i, U(x) =
∑u

i=0 bix
i,

R(x) =
∑r

i=0 cix
i, and S(x) =

∑s
i=0 dix

i, Lastly, we let W , Y , and Z denote
PRFs. So if W (x) = V (x)

U(x) , then W (x) =
∑v

i=0 aix
i/

∑u
i=0 bix

i.

2 Hamming Distance of PRFs

Recall that by Definition 1, gcd(V (x), U(x)) = 1 for any PRF . This property is
implicit in our counting arguments for PRFs. For example, see Corollary 5 and
Corollary 7.

We now discuss properties of PRFs that are useful for improving lower
bounds for M(q,D) and M(q + 1,D). Some similar ideas were given in [23]. For
the proofs in this section, we consider the PRFs W (x) = V (x)

U(x) and Y (x) = R(x)
S(x)

that permute the elements of P1(Fq) such that V (x)S(x) − U(x)R(x) is not a
constant. For this discussion, the degrees of the PRFs need be not be the same.

Theorem 4. Let v+s ≤ d and u+r ≤ d, for some d. Let π and σ be the permuta-
tions of P1(Fq) generated by W (x) and Y (x) respectively. Then hd(π, σ) ≥ q−d.

Proof. We consider the values of the PRFs for elements of Fq, and simultaneously
note that V (∞)

U(∞) and R(∞)
S(∞) may be the same. Assume that for some a ∈ Fq,

V (a)
U(a)

= R(a)
S(a) . Then V (a)S(a) = U(a)R(a), so V (a)S(a)−U(a)R(a) = 0. Observe that

V (x)S(x) and U(x)R(x) are polynomials of degree v + s ≤ d and u + r ≤ d,
respectively. Hence, V (x)S(x) − U(x)R(x) is a polynomial of degree at most
d and has at most d roots. That is, there are at most d values a ∈ Fq such
that V (a)S(a) − U(a)R(a) = 0. Note also that if V (a)

U(a) = R(a)
S(a) = ∞, then

U(a) = S(a) = 0. So, V (a)S(a) − U(a)R(a) = 0, and a is a root. This means
that V (a)

U(a) = R(a)
S(a) for at most d values a ∈ Fq. By including the values of the PRFs

at ∞, there may be d+1 agreements. Thus, there are at least q+1−(d+1) = q−d
disagreements. Hence, hd(π, σ) ≥ q − d. �	
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It follows also that the permutations corresponding to different PRFs are
different, because the permutations have non-trivial Hamming distance.

Corollary 5. M(q + 1, q − d) ≥ Td(q).

Proof. Let v, u, r, s ≤ (d + 1)/2, and consider any pair of distinct PRFs W (x) =
V (x)
U(x) and Y (x) = R(x)

S(x) . Observe that, by Eq. 3, W (∞) = av

bu
∈ Fq \ {0} if and

only if v = u, and Y (∞) = cr
ds

∈ Fq\{0} if and only if r = s.

Case 1. v = u = r = s.
For Case 1, observe that W (∞) = Y (∞) if and only if the ratios of the high order
coefficients in the numerator and denominator are the same in W (x) and Y (x).
That is, W (∞) = Y (∞) if and only if av/bu = cr/ds. Call this property (=).
Observe that the coefficients of the high order terms in the polynomials V (x)S(x)
and U(x)R(x) are avdsx

v+s and bucrx
u+r, respectively, where v + s = u + r. So

the high order term of the polynomial V (x)S(x)−U(x)R(x) is (avds−bucr)xv+s.
If (=) is true, then the polynomial V (x)S(x) − U(x)R(x) is of degree at most d,
not d + 1, since the high order terms, if they are of the same degree, disappear
through subtraction. It follows that, if W (x) and Y (x) have the same value at
∞, then there are at most d agreements when x ∈ Fq, hence, at most d + 1
agreements counting the agreement at infinity. On the other hand, if (=) is not
true, then the polynomial V (x)S(x) − U(x)R(x) is of degree at most at d + 1,
so it too has at most d + 1 agreements. Either way, the permutations defined by
these PRFs have Hamming distance at least q + 1 − (d + 1) = q − d.

Case 2. v = u and r > s.
It follows that W (∞) ∈ Fq \ {0} and Y (∞) = ∞, so W (∞) �= Y (∞). Further-
more, V (x)S(x) − U(x)R(x) is of degree at most d + 1, so it has at most d + 1
roots. That is, there are at most d+1 values a ∈ Fq such that W (a) = Y (a). Con-
sequently, there are at least q+1−(d+1) = q−d positions b where W (b) �= Y (b).
So, the permutations defined by these PRFs have Hamming distance at least
q − d.

Case 3. v = u and r < s.
This is similar to Case 2. The difference is that Y (∞) = 0.

Case 4. v < u and r > s.
This is similar to Case 2. The difference is that W (∞) = 0.

Case 5. v < u and r < s.
It follows that W (∞) = Y (∞) = 0. Since, V (x)S(x) − U(x)R(x) is of degree
at most d, it has at most d roots. Hence, there are at most d values a ∈ Fq

such that W (a) = Y (a), and counting the agreement at infinity, the result is a
total of d + 1 agreements. That is, at least q + 1 − (d + 1) = q − d positions b
where W (b) �= Y (b). So, the permutations defined by these PRFs have Hamming
distance at least q − d. �	
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Definition 6. Define Sd(q) = Nt,t(q)/(q − 1) +
∑

v,u Nv,u(q), where t = (d −
3)/2, and in the sum, v and u are evaluated as

v, u =

⎧
⎪⎨

⎪⎩

v ≤ (d + 1)/2, u ≤ (d − 1)/2 when v > u,

v ≤ (d − 1)/2, u ≤ (d − 3)/2 when v < u,

u, v ≤ (d − 5)/2 when v = u.

Corollary 7. M(q, q − d) ≥ Sd(q).

Proof. Consider the PRFs W (x) = V (x)
U(x) and Y (x) = R(x)

S(x) . Observe that by the
definition of Sd(q), the largest values for v and s are (d + 1)/2 and (d − 1)/2,
respectively, and similarly for u and r. Let v, r ≤ (d + 1)/2 and u, s ≤ (d − 1)/2.
It follows that V (x)S(x) − U(x)R(x) is of degree ≤ d. As seen in the proof of
Theorem 4, this means that permutations defined by W (x) and Y (x) have at
most d agreements.

As we want to consider permutations on Fq (not P1(Fq)) we need to eliminate
occurrences of the symbol ∞ in the permutations corresponding to W (x) and
Y (x) using an operation called contraction [1]. If W (∞) = ∞, then we can simply
eliminate the symbol ∞ in the corresponding permutation, which of course makes
no new agreements. If W (∞) = a, with a ∈ Fq, then we exchange the symbol
∞ wherever it occurs in the permutation with a. This moves the symbol ∞ to
the last position in the permutation, so it can be eliminated. One, or at most
two, new agreements could be created, the latter situation arising when v = u.
Consequently, if W (∞) �= ∞ (so an exchange with ∞ is required), stronger
conditions are needed to ensure that there are a total of at most d agreements.
The terms in the sum Sd(q) are calculated to ensure that the Hamming distance
between permutations (after all needed contractions are performed) is at least
q − d.

We do a proof by cases based on the values of v, u, r, s and t.

Case 1. v = u = t = (d − 3)/2.
Suppose that U(x) and V (x) are monic polynomials. Then the related permu-
tations always end with the same symbol, namely 1. Contraction applied to the
permutation associated with W (x) creates at most one new agreement with any
other permutation that already has the symbol 1 in the exchanged position.
The number of such permutations produced by PRFs with U(x) and V (x) both
monic and both of degree t is Nt,t(q)/(q − 1).

Case 2. v and u have their maximum values, and r = s ≤ (d − 5)/2.
It follows that the polynomial V (x)S(x) − U(x)R(x) has degree at most d − 2.
Then permutations defined by W (x) and Y (x) have at most d − 2 agreements.
Since contraction creates at most 2 new agreements, it follows that there are
at most d agreements. Therefore, the permutations have Hamming distance at
least q − d.

Case 3. r ≤ v ≤ (d + 1)/2 and s ≤ u ≤ (d − 1)/2, v > u and r > s.
It follows that the polynomial V (x)S(x)−U(x)R(x) has degree at most d, so

permutations defined by W (x) and Y (x) have at most d agreements. Note that
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W (∞) = ∞ and Y (∞) = ∞. Hence the permutations defined by W (x) and Y (x)
make no new agreements through contraction, i.e., the ∞ simply disappears in
each permutation. Therefore, the permutations have Hamming distance at least
q − d.

Case 4. u < v ≤ (d + 1)/2, and r < s ≤ (d − 3)/2.
It follows that the polynomial V (x)S(x) − U(x)R(x) has degree ≤ d − 1, so
permutations defined by W (x) and Y (x) have at most d − 1 agreements. Since
W (∞) = ∞ and Y (∞) = 0, at most one new agreement is created through con-
traction. Therefore, the total number of agreements is d, and the permutations
have Hamming distance at least q − d.

Case 5. v < u ≤ (d − 3)/2 and r < s ≤ (d − 3)/2.
It follows that the polynomial V (x)S(x) − U(x)R(x) has degree at most

d − 4, so permutations defined by W (x) and Y (x) have at most d−4 agreements.
Contraction of these permutations makes at most 2 new agreements. Therefore,
the permutations have Hamming distance at least q − d.

Hence the Hamming distance between permutations defined by W (x) and
Y (x), with the stated numerator/denominator degree bounds given in the sum
in the definition of Sd(q), is at most q − d. It follows that total number of
permutations on q symbols with pairwise Hamming distance q − d is at least as
large as Sd(q). �	

Examples. (Note: Some of the terms in the sums are not shown because they
are zero. Also, some terms are written as 2Nu,v to denote Nu,v + Nv,u when
applicable).
(a) M(q, q−5) : S5(q) = N3,2(q)+N3,0(q)+N2,0(q)+N1,1(q)/(q−1)+2N1,0(q).
(b) M(q, q − 7) : S7(q) = N4,3(q) + N3,2(q) + N4,0(q) + N3,0(q) + 2N2,0(q) +
N2,2(q)/(q − 1) + N1,1(q) + 2N1,0(q).
(c) M(q, q − 9) : S9(q) = N5,4(q) + N5,3(q) + N5,0(q) + N4,3(q) + N4,0(q) +
N3,3(q)/(q − 1) + 2N3,2(q) + 2N3,0(q) + N2,2(q) + 2N2,0(q) + N1,1(q) + 2N1,0(q).

3 Normalization of PRFs

The goal of normalization is to enable a more efficient search for PRFs. That is,
normalization indicates that certain coefficients can be fixed at a specified value
and a search algorithm need not try all possibilities. Normalization has been
discussed previously in the context of PPs [2,17,21]. Equivalence relations based
on normalization [2] allow partitioning of PPs of degree d in Fq into equivalence
classes, each represented by a normalized permutation polynomial (nPP).

We use normalization to map PRFs to normalized PRFs (nPRFs). Nor-
malization operations [18], listed in Table 1, are essentially the same for PPs
and PRFs. We point out a few subtleties that arise due to the presence of a
denominator in PRFs. Let a, b, c, r, y, z ∈ Fq. Multiplying a PRF W (x) = V (x)

U(x)

by a nonzero constant a is equivalent to multiplying by a = y/z, for y, z �= 0.
Addition of a constant b to the variable is accomplished by replacing x by x + b
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Table 1. Normalization operations for PPs and PRFs in Fq.

Normalization operation For PPs V (x) For PRFs W (x) = V (x)
U(x)

Multiplication by a nonzero
constant

aV (x) : a ∈ Fq
yV (x)
zU(x)

: y, z ∈ Fq

Addition to the variable V (x + b) : b ∈ Fq
V (x+b)
U(x+b)

: b ∈ Fq

Addition of a constant V (x) + c : c ∈ Fq
V (x)+c U(x)

U(x)
: c ∈ Fq

Multiplication of the variable
by a constant

V (rx) : r ∈ Fq
V (rx)
U(rx)

: r ∈ Fq

in both numerator and denominator. Adding a constant c to W (x) equates to
computing V (x)

U(x) + c = V (x)+c U(x)
U(x) . Multiplication of the variable by a constant

is accomplished by replacing the argument x by rx, for some constant r �= 0.
Note that if W (x) permutes the elements of P1(Fq), then so does W (rx). That
is, if W (x) is a PRF , then W (rx) is also a PRF . In fact, all of the normalization
operations in Table 1 map PRFs to PRFs.

We now discuss the usage of these operations to map PRFs to nPRFs. In
Table 2 we define define three types of normalized PRFs and list the restrictions
on each. The definitions are modeled after the definitions of normalization of
PPs which are described in [2]. Note that normalization of PRFs fixes four
coefficients: av and bu both have the value 1, a0 is 0, and an additional coefficient,
determined by the type of normalization, is zero. In the sections that follow, we
prove that almost all PRFs can be normalized. As explained earlier, this is
useful for an efficient search for PRFs. We use the following in our proofs for
normalization. Let a, b, c ∈ Fq, a �= 0, let x, y ∈ Fq\{0} such that y/z = a. Let
Y (x) = aW (x + b) + c. Then

Y (x) = aW (x + b) + c =
yV (x + b)
zU(x + b)

+
czU(x + b)
zU(x + b)

=
yV (x + b) + czU(x + b)

zU(x + b)
=

V ′(x)
U ′(x)

, where

V ′(x) = yV (x + b) + cU ′(x)

= (yav(x + b)v + yav−1(x + b)v−1 + · · · + ya1(x + b) + ya0)

+ (czbu(x + b)u + czbu−1(x + b)u−1 + · · · + czb1(x + b) + czb0),

(4)

and

U ′(x) = zU(x + b) = zbu(x + b)u + zbu−1(x + b)u−1 + · · · + zb0. (5)

3.1 C-Normalization

As seen in Table 2, c-normalization applies to PRFs when the field characteristic
p does not divide the degree of the denominator. We use nPRFs to define an
equivalence relation on PRFs as follows:
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Table 2. Types of normalization for PRFs W (x) = V (x)
U(x)

, where V (x) =
∑v

i=0 aix
i

and U(x) =
∑u

i=0 bix
i, with field characteristic p. The degrees of V (x) and U(x) are v

and u, respectively.

Normalization type Degree restriction nPRF properties

c-normalization p � u V (x) and U(x) are monic, V (0) = 0, and

v > u bu−1 = 0

m-normalization p | u and p > 2 V (x) and U(x) are monic, V (0) = 0, and

v > u in U(x), either bu−1 = 0 or bu−2 = 0

b-normalization p | u and p = 2 V (x) and U(x) are monic, V (0) = 0, and

v > u if 2i ≤ u ≤ 2i+1 − 3 for some i, then either

br = 0 or br−1 = 0, where r = 2i − 1

Definition 8. Let W (x) = V (x)
U(x) and Y (x) = R(x)

S(x) be PRFs. We say that W (x)
and Y (x) are related by Rc if there is a sequence of the first three normalization
operations in Table 1 that converts W (x) into Y (x).

It is easily seen that Rc is an equivalence relation on PRFs. That is, observe
that each of the three operations has an inverse. For example, the inverse of
multiplying by a is multiplying by the inverse of a. So, W (x) is related to itself
by the empty sequence of operations. If W (x) and Y (x) are Rc related, then there
is some sequence that transforms W (x) into Y (x). A sequence formed by taking
the inverse of each operation in backwards order transforms Y (x) into W (x). So,
Y (x) and W (x) are also Rc related. That is, Rc is symmetric. Finally, if there
is a sequence of operations that transforms W (x) into Y (x) and a sequence that
transforms Y (x) into P (x)

Q(x) , then a concatenation of these sequences transforms

W (x) into P (x)
Q(x) . So, Rc is transitive.

The equivalence class under the relation Rc containing W (x), denoted by
[W ], is the set

[W ] = {aW (x + b) + c | a, b, c ∈ Fq and a �= 0}

= {a
V (x + b)
U(x + b)

+ c | a, b, c ∈ Fq and a �= 0}.

We show that [W ] contains exactly q2(q − 1) PRFs. Theorem 9 below is nearly
identical to one proved (for PPs) in [2].

Theorem 9 [2]. Let W (x) = V (x)
U(x) be a PRF with v > u. Then there is a unique

triple (a, b, c) such that Y (x) = aW (x + b) + c = V ′(x)
U ′(x) is c-normalized.

Lemma 10. All q2(q − 1) PRFs in [W ] are different.

Proof. Let Y (x) ∈ [W ] be a PRF that is not normalized, and let W (x) be the
nPRF that represents [W ]. That is, let Y (x) = aW (x + b) + c. We compute the
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triple (a′, b′, c′) such that Y ′(x) = a′Y (x + b′) + c′ is normalized as follows.

Y ′(x) = a′Y (x + b′) + c′ = a′(aW (x + b) + b′) + c) + c′

= a′aW (x + (b + b′)) + a′c + c′ = W (x),

where the last equality is achieved by letting a′ = a−1, b′ = −b, and c′ = −(a′c).
By Theorem 9, the triple (a′, b′, c′) is unique for normalizing the specific PRF
Y (x). By the uniqueness properties of inverses in a field, a, b and c are are
unique as well. Thus each triple in the set {(a, b, c) | a, b, c ∈ Fq and a �= 0} is
unique. Since there are q2(q − 1) such triples, the claim follows. �	

Note that Theorem 9 implies that each equivalence class of Rc contains one
and only one nPRF . By Lemma 10, each equivalence class contains exactly
q2(q − 1) members (including the representative nPRF ). Equivalence classes by
definition are disjoint, so, if the number of nPRFs is k, there are kq2(q−1) PRFs.
Note that c-normalization indicates that we can fix four coefficients, namely the
first coefficient of both V (x) and U(x), the second coefficient of U(x), and the
last coefficient of V (x). There are, in general, q possible values for each coeffi-
cient. Furthermore, V (x) and U(x) are of degrees v and u, respectively, so there
are v + u + 2 coefficients altogether. This means a naive search program (which
exhaustively tries all combinations of coefficients) needs to examine qu+v+2 ratio-
nal functions. Normalization allows the number to be reduced to qu+v−2.

3.2 M-Normalization

As seen in Table 2, m-normalization is used when p | u and p �= 2. See Eqs. 4 and
5 for the definitions of V ′(x) and U ′(x).

Theorem 11. Let v, u ∈ Fpm , where v > u and p | u and p �= 2. Any PRF
W (x) = V (x)

U(x) can be transformed to an m-normalized PRF Y (x) = V ′(x)
U ′(x) by the

normalization operations.

Proof. For m-normalization, we need to show that

(A) either the coefficient of xu−1, or the coefficient of xu−2 in U ′(x) is zero,
(B) U ′(x) is monic,
(C) V ′(x) is monic, and
(D) V ′(0), the constant term of V ′(x), is zero.

To show that (A) holds, we must show that either zbu−1 = 0 or zbu−2 = 0.

Case 1. bu−1 = 0. So, zbu−1 = 0.

Case 2. bu−1 �= 0. Consider zbu−2 in U ′(x). Since u is a multiple of p, the
expansion of (x+b)u will derive nonzero coefficients only for terms whose degrees
are multiples of p. Since p > 2, this means that p � (u − 2), so (x + b)u will have
a coefficient of 0 for the degree u − 2 term. Hence bu−2 is calculated solely by
the expansion of (x + b)u−1 and (x + b)u−2.
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The expansion of (x+b)u−1 will produce a term of degree u−2 with coefficient
zbu−1b

′ where b′ =
∑u−1

1 b. The expansion of (x + b)u−2 will produce a term of
degree u − 2 with coefficient zbu−2. Therefore the coefficient of xu−2 in U ′(x)
is zbu−1b

′ + zbu−2 = z(bu−1b
′ + bu−2), which is zero if bu−1b

′ + bu−2 = 0. Since
bu−1 �= 0, and u − 1 is not a multiple of p, we can choose b such that b′ is the
additive inverse of bu−2/bu−1, making the coefficient of xu−2 in U ′(x) equal to
zero.

It follows that, in U ′(x), either bu−1 = 0 or bu−2 = 0, so (A) holds.
To show that (B) holds, observe that the degree u term of U ′(x) has the

coefficient zbu. If we choose z to be the multiplicative inverse of bu, then U ′(x)
will be monic. To show that (C) holds, observe that every term in U ′(x) has
smaller degree than v. Hence none of them affect the coefficient of degree v term
in V ′(x). This means that the coefficient of xv term of V ′(x) is yav. Since av �= 0,
we choose y = a−1

v , making V ′(x) monic. To show that (D) holds, observe that
the coefficient of x0 in V ′(x) is y

∑v
j=0 ajb

j + cz
∑u

j=0 bjb
j . We choose c to be

(−y
∑v

j=0 ajb
j)/(z

∑u
j=0 bjb

j), making the coefficient of x0 in V ′(x) equal to
zero.

It follows that Y (x) is m-normalized. �	

3.3 B-Normalization

In this section, we consider the remaining case, namely, p | u and p = 2, and
show that b-normalization can be achieved except when u = 2i − 2, for some
i ≥ 2.

We begin with a brief description of the Gap Lemma for polynomials (Lemma
12 below), and its application for normalization of polynomials (Lemma 13
below). Both were proven in [2]. We use these lemmas in the proof of Theo-
rem 14 which describes b-normalization for PRFs.

We say that the integer interval [r, s] has a [t, w] gap, if for all d ∈ [r, s],
the expansion of (x + b)d, does not include any nonzero xe monomials, where
e ∈ [t, w].

Lemma 12 [Gap Lemma [2]]. For all i > 1, the expansion of (x + b)d, for
d ∈ [2i, 2i+1 − 3], has a [2i − 2, 2i − 1] gap.

Lemma 13 [2]. Let i > 1, m > 2 and let d ∈ [2i, 2i+1 − 3] be even. For any
PP P (x) over F2m , there is a constant b in F2m such that in the PP P (x + b),
either the x2i−1 term or the x2i−2 term is zero.

For example, let d = 23, and let P (x) = a8x
8 + a7x

7 + a6x
6 + · · · + a1x + a0.

Adding b to the argument gives:

P (x + b) = a8(x + b)8 + a7(x + b)7 + a6(x + b)6 + · · · + a1x + a0

= a8(x8 + b8) + a7(x7 + bx6 + b2x5 + . . . ) + a6(x6 + b2x4 + . . . ) + . . .

= a8x
8 + a8b

8 + (a7x
7 + a7bx

6 + . . . ) + (a6x
6 + a6b

2x4 + . . . ) + . . .
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We want to solve for the value of b that makes the coefficient of the x6 term of
P (x + b) zero. So a7bx

6 + a6x
6 = 0 is satisfied by b = −a7/a6.

We now use Lemma 13 in our proof that certain PRFs can be b-normalized.

Theorem 14. Any PRF V (x)
U(x) in F2m with v > u,m > 2, and 2 | u, can be

transformed to a b-normalized PRF V ′(x)
U ′(x) by the normalization operations, except

when u = 2i − 2, for some i ≥ 2.

Proof. See Eqs. 4 and 5 for the definitions of V ′(x) and U ′(x). Observe first that
the degree u term of U ′(x) has the coefficient zbu. Noting that bu �= 0, we choose
z = b−1

u , making U ′(x) monic. Observe further that every term in U ′(x) has
smaller degree than v. Hence none of them affect the coefficient of degree v term
in V ′(x). This means that the coefficient of xv term of V ′(x) is yav. Noting that
av �= 0, we choose y = a−1

v , making V ′(x) monic. To see that V ′(0) = 0, observe
that the coefficient of x0 in V ′(x) is y

∑v
j=0 ajb

j + cz
∑u

j=0 bjb
j . We choose c

to be (−y
∑v

j=0 ajb
j)/(z

∑u
j=0 bjb

j), making the coefficient of x0 in V ′(x) equal
to zero. Finally, by Lemma 13, there is a b such that in U ′(x), the coefficient
of either the degree 2i − 1 term or degree 2i − 2 term equal to 0, except when
u = 2i − 2, for some i ≥ 2. Hence V ′(x)

U ′(x) is b-normalized. �	

4 Mapping nPRFs to nPRFs

We are interested in methods to optimize the search for PRFs. In [2] we described
several operations on permutation polynomials that allow certain coefficients
of PPs to be fixed, making the search space smaller. These operations include
normalization and the F -map and the G-map. The F -map allows an additional
coefficient to be fixed. The G-map partitions nPRFs into disjoint cycles, and each
cycle can be described by a representative nPRF . We show that the F -map and
the G-map can be extended to nPRFs, allowing again faster searches.

Definition 15. Define the F -map on a polynomial V (x) over Fq [2] by

F (V (x)) = t0avx
v + t1av−1x

v−1 + · · · + tv−1a1x + tva0.

Define the F -map on a PRF W (x) = V (x)/U(x) over Fq by

F (W (x)) =
F (V (x))
F (U(x))

=
t0avx

v + t1av−1x
v−1 + · · · + tv−1a1x + tva0

t0buxu + t1bu−1xu−1 + · · · + tu−1b1x + tub0
. (6)

It is shown in [2] that F (V (x)) = tvV (x/t). So for a PRF W (x), we have

F (W (x)) = W ′(x) =
tvV (x/t)
tuU(x/t)

=
tv−uV (x/t)

U(x/t)
= tv−uW (x/t).

Thus, if W (x) is a PRF , then so is W ′(x) = tv−uW (x/t). That is, if W (x)
permutes the elements of P1(Fq), then so does W ′(x). Consequently, the F -map
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maps PRFs to PRFs. In fact, referring to Eq. 6, we see that the F -map maps
nPRFs to nPRFs , as the first coefficients of both numerator and denominator
map to themselves, and any zero coefficient is mapped to itself.

We use the F -map to fix an additional coefficient in a PRF , resulting in
a total of 5 fixed coefficients for each nPRF . For example, consider search-
ing for nPRFs of the form W (x) = V (x)

U(x) . By the definition of normaliza-
tion, V (x) and U(x) are monic, the coefficient of x0 in V (x) is zero, and one
other coefficient in U(x) is zero, as determined by the type of normalization.
Using the F -map, the coefficient of xv−1 in V (x) can also be fixed to either
0 or 1. That is, if the coefficient of xv−1 is not zero, then consider the cycle,
V (x), F (V (x)), F 2(V (x)), . . . , F i(V (x)), . . . . By the definition of the F -map,
the coefficient of xv−1 in F i(V (x)) is tiav−1, and for some i, tiav−1 = 1. Thus,
if V (x)

U(x) is an nPRF and the coefficient of xv−1 in V (x) is nonzero and is not
equal to 1, then there is also an nPRF where the coefficient of xv−1 in V (x) is
equal to 1. We now discuss the G-map [2] and how it can be applied to PRFs.
The G-map raises each coefficient in a polynomial to the p-th power, where p is
the field characteristic.

Definition 16. Define the G-map on polynomials [2] over Fq by

G(V (x)) = ap
vx

v + ap
v−1x

v−1 + · · · + ap
1x + ap

0

Define the G-map on PRFs over Fq by

G(W (x)) =
G(V (x))
G(U(x))

=
ap
vx

v + ap
v−1x

v−1 + · · · + ap
1x + ap

0

bpuxu + bpu−1x
u−1 + · · · + bp1x + bp0

.

It is shown in [2] that, if V (x) is a PP (nPP), then G(V (x)) is a PP (nPP), and
that G(V (xp)) = V (x)p. Similarly,

G(W (xp)) =
G(V (xp))
G(U(xp))

=
V (x)p

U(x)p
= W (x)p.

Consequently, if W (x) is a PRF , then G(W (x)) is a PRF . That is,
(0p, 1p, . . . , (q − 1)p,∞p) is a permutation of P 1(Fq), and, if W (x) is a PRF ,
then W (x)p is a PRF . This follows from the fact that (x + y)p = xp + yp, when
p is the characteristic of the field.

Iterating the G-map gives a cycle based on orbits of elements in Fq. For exam-
ple, consider the field F23 , when defined by the primitive polynomial x3 +x2 +1,
and the PRF W (x) = x3+x2+2x

x2+4x+1 . We have G(W (x)) = x3+x2+3x
x2+7x+1 , G2(W (x)) =

x3+x2+5x
x2+6x+1 , G3(W (x)) = W (x). Consequently, it is not necessary to search sepa-

rately for cases when the coefficient of x in the numerator is either 3 or 5. It is
sufficient to search with the coefficient 2. In general, cycles partition the elements
of Fq into disjoint sets, so for a chosen coefficient, the search can be limited to
one value in each set.



Permutation Arrays from Permutation Rational Functions 247

5 Results

A basic computational strategy computes Nv,u by considering all possible ratio-
nal functions, V (x)

U(x) , where V (x) and U(x) are polynomials of degree v and u,
respectively. This entails evaluating qu+v+2 different rational functions. We use
a more efficient strategy that implements the normalization theorems in Table 1,
and the F -map and the G-map described in Sect. 4. This fixes five coefficients,
thus requiring at most qu+v−3 different rational functions to be evaluated. This
computational strategy yields equivalence class representatives, which in turn
yield the total number of PRFs, as indicated in Sects. 3 and 4. Our results are
presented in Tables 3 through 7.

We have found several interesting classes of PRFs. Specifically, there are
good classes with degree ratios 3/2, 4/3, and 5/4 for PRFs of Fq, and with
degree ratios 3/3, 4/4, and 5/5 for PRFs of P1(Fq). Note that when the degree
of the numerator is larger than the degree of the denominator, the permutations
of P 1(Fq) end with ∞, and ∞ can just be deleted giving a permutation of Fq.

Theorem 17 below justifies substantial improvements on lower bounds for
M(q, q − 5) and M(q + 1, q − 5), for many prime powers q, as shown in Table 3
and Table 6. As mentioned earlier, Ferraguti et al. [11] have recently given a
complete characterization of monic degree 3 PRFs, which subsumes our results
for degree ratios 3/2 and 3/3. They gave essentially Theorem 17 based on monic
PRFs, hence we omit a proof.

Theorem 17. For all q,

N3,2(q) = q2(q − 1)2/2,

N3,3(q) = q2(q − 1)2(q + 1)/2, if q ≡ 2 (mod 3),

N3,3(q) = q2(q − 1)3/2, if q ≡ 1 (mod 3),

N3,3(q) = (q4 − q3 + q2 − q)/2, if q ≡ 0 (mod 3).

For degree ratios 4/3, 4/4, and 5/4, the number of nPRFs is also predictable.
Formulas for the number of PRFs for ratios 4/3, 4/4, and 5/4 are given in Conjec-
tures 1, 2 and Theorem 18 below. Experimentally, we have verified that N4,3(q)
is exactly (q + 1)q2(q − 1)2/3, for all q ≤ 307. Again, this justifies substantial
improvements on previous lower bounds for M(q, q − 7) for many prime powers
q, as shown in Table 3.
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Table 3. Lower bounds for M(q, q − 5) and M(q, q − 7) using S5(q) and S7(q), respec-
tively. Improved bounds are shown in bold. (* see [23]).

q M(q, q − 5) ≥ Previous M(q, q − 7) ≥ Previous

16 29,792 40,320 381,120 1,377,360

17 42,466 83,504 490,960 1,240,320

19 59,546 65,322∗ 845,766 1,221,624

23 141,220 291,456 2,201,100 10,200,960

25 181,850 192,000 3,316,800 867,000

27 248,562 522,288 4,866,966 1,280,448

29 355,656 58,968 6,971,020 42,033,992

31 435,240 58,968 9,687,810 3,056,919

32 496,000 1,388,800 11,691,712 3,420,416

37 891,108 1,824,480 23,411,232 3,648,348

41 1,416,960 68,880 39,135,320 1,720,944

43 1,636,236 3,341,100 49,547,610 413,280

47 2,445,232 4,879,634 77,330,416 9,655,492

49 2,773,008 117,600 95,081,952 9,433,872

53 3,952,104 7,887,928 140,812,308 15,632,032

59 6,067,206 407,218 240,463,940 12,319,200

61 6,708,780 226,920 283,767,120 13,622,520

64 8,144,640 5,773,824 360,991,078 13,622,032

67 9,790,308 19,854,780 453,303,642 39,705,138

71 12,718,230 357,840 605,882,760 12,355,419

73 13,828,536 28,014,480 695,631,600 56,023,704

79 19,003,608 492,960 1,032,017,922 38,950,002

81 21,280,320 571,704 1,169,529,840 42,787,440

83 23,746,134 47,858,238 1,321,303,228 48,423,136

89 31,390,656 1,401,920 1,872,278,760 63,439,192

97 43,384,604 87,625,920 2,876,904,792 88,529,184

101 52,045,300 1,030,200 3,520,385,300 104,060,300

103 55,209,030 111,458,154 3,881,578,278 222,926,814

107 65,556,760 129,854,358 4,696,631,464 260,934,052

109 69,313,536 1,294,920 5,150,579,616 141,158,052

113 80,112,480 161,604,464 6,166,737,248 163,047,248

121 105,444,240 1,771,440 8,679,213,840 212,601,840

125 122,093,500 123,935,000 10,212,593,500 125,472,500

127 128,064,006 258,112,260 11,053,461,510 258,112,260

128 132,161,280 90,903,592 11,495,251,584 95,861,632

131 145,044,510 2,247,960 12,905,964,110 294,409,790

137 173,612,976 349,704,008 16,142,578,480 701,979,232

139 184,012,926 370,634,604 17,354,972,046 741,250,026

149 243,189,456 6,593,548 24,557,724,656 496,170,000
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Conjecture 1. (4/3 - conjecture) For all q, N4,3(q) = (q + 1)q2(q − 1)2/3.

Conjecture 2. (5/4 - conjecture) N5,4(q) > (q + 1)q3(q − 1)2/2.

The 5/4-conjecture is true for all q ≤ 97. N5,4(q) for q ≤ 97 is shown in
Table 4. This justifies substantial improvements on previous lower bounds on
M(q, q − 9), which are shown in Table 5. We can show the following.

Table 4. Computed results for N5,4(q) and 5/4-conjectured lower bound.

q N5,4(q) (q + 1)q3(q − 1)2/2 q N5,4(q) (q + 1)q3(q − 1)2/2

17 16,189,440 11,319,552 53 11,074,291,488 10,869,212,016

19 24,503,958 22,223,160 59 21,084,006,242 20,726,848,680

23 74,762,512 70,665,936 61 25,753,041,000 25,331,079,600

25 125,820,000 117,000,000 64 34,351,091,712 33,814,609,920

27 193,179,168 86,279,912 67 45,315,700,848 44,544,203,352

29 297,858,652 286,814,640 71 64,037,083,250 63,135,500,400

31 444,126,150 428,990,400 73 75,638,717,568 74,616,572,736

32 553,107,456 519,585,792 79 121,523,765,922 119,985,971,040

37 1,280,989,728 1,247,279,472 81 141,192,720,000 139,450,118,400

41 2,373,572,000 2,315,745,600 83 163,422,731,808 161,477,223,096

43 3,157,263,648 3,085,507,656 89 248,458,577,312 245,667,597,120

47 5,384,729,088 5,272,547,232 97 416,397,477,888 412,148,524,032

49 6,917,645,952 6,776,582,400

Table 5. Lower bounds for M(q, q−9) using S9(q). Improved bounds are shown in bold.
Previous values are obtained by permutation polynomials, except where indicated:
(a, b) = Mathieu group M24 and contraction [3], (a, d) = Mathieu group M24 and
M(n + 1, d) ≥ M(n, d), (c) coset search [5].

n M(q, q − 9) ≥ Previous q M(q, n − 9) ≥ Previous

13 4,926,480 60,635,520(c) 49 6,877,311,504 20,497,680

16 12,629,280 70,804,800(c) 53 11,025,653,600 23,373,636

17 12,342,272 75,176,640(c) 59 20,979,628,398 35,941,256

19 23,218,380 12,421,152 61 25,628,242,320 13,622,520

23 73,414,022 244,823,040(a,b) 64 34,192,366,054 332,236,800

25 121,108,200 244,823,040(a,d) 67 45,036,911,436 39,705,686

27 191,914,893 28,928,802 71 63,766,789,800 605,529,877

29 294,515,648 42,033,992 73 75,367,839,096 56,023,418

31 439,831,410 22,084,310 79 121,056,446,004 38,930,002

32 533,338,880 32,759,808 81 140,641,174,881 3,100,641,122

37 1,274,288,436 3,648,348 83 162,892,864,290 94,909,620

41 2,357,705,000 22,392,560 89 247,603,307,248 125,475,872

43 3,141,656,196 10,125,360 97 415,199,758,776 88,529,184

47 5,359,530,978 42,883,412
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Table 6. Lower bounds for M(q + 1, q − 5) using T5(q).

q + 1 M(q + 1, q − 5) ≥ Previous q + 1 M(q + 1, q − 5) ≥ Previous

14 172,536 380,160 50 138,415,200 2,768,309

17 497,730 187,600 54 213,115,968 7,890,428

18 753,984 83,504 60 363,621,720 821,240

20 1,176,480 177,840 62 415,490,520 13,622,520

24 3,363,888 291,456 65 528,877,440 5,515,776

26 4,695,600 218,418 68 665,139,552 19,854,780

28 788,346 522,288 72 914,996,880 28,014,480

30 10,620,960 170,520 74 1,022,533,776 28,014,480

32 13,868,160 1,388,810 80 1,519,302,720 38,930,002

33 17,320,320 1,388,810 82 64,314,000 21,001,679

38 33,760,872 1,824,800 84 1,993,531,848 47,458,238

42 59,374,560 1,419,680 90 2,823,749,280 125,475,872

44 71,835,456 1,632,624 98 4,249,866,432 87,625,920

48 117,163,104 4,879,634

Table 7. Lower bounds for M(q + 1, q − 7) using T7(q).

q + 1 M(q + 1, q − 7) ≥ Previous q + 1 M(q + 1, q − 7) ≥ Previous

14 1,762,488 10,834,560 30 208,424,160 14,326,150

17 6,087,810 6,617,760 32 309,087,360 22,887,424

18 8,744,256 12,421,152 33 375,214,080 14,076,480

20 16,771,680 10,745,640 38 887,754,024 6,529,464

24 52,522,800 244,823,040 42 1,640,859,360 10,125,360

26 85,815,600 9,313,200 44 2,176,677,888 3,341,100

28 129,574,458 10,511,196 48 3,706,982,496 143,116,896

Theorem 18. For any v > 1, Nv,v(q) = (q − 1)
∑

u<v Nv,u(q).

We use the N4,4(q) results to obtain improved lower bounds for M(q+1, q−7)
as shown in Table 7.

Examples of overall results:
(a) S5(23) = N3,2(23) + N3,0(23) + N1,1(23)/22 + 2N1,0(23) = 140, 688. So,
M(23, 18) ≥ 140, 688.
(b) S7(23) = N4,3(23)+N3,2(23)+N3,0(23)+N2,2(23)/22+2N2,0(23)+N1,1(23)+
2N1,0(23) = 2, 201, 100, since N4,3(23) = 2, 048, 288, N3,2(23) = 128, 018,
N3,0(23) = 11, 638, N1,1(23) = 12, 144, and N1,0(23) = 506. So, M(23, 16) ≥
2, 201, 100.
(c) N5,5(19) = 446, 802, 480. This yields M(20, 10) ≥ N5,5(19) + 2N5,4(19) +
2N5,0(19)+N4,4(19)+2N4,3(19)+N3,3(19)+2N3,2(19)+N1,1(19)+2N1,0(19) =
508, 177, 876.
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(d) N5,5(23) = 1, 650, 664, 092. This yields M(24, 14) ≥ N5,5(23) + 2N5,4(23) +
2N5,0(23)+N4,4(23)+2N4,3(23)+N3,3(23)+2N3,2(23)+2N3,0(23)+N1,1(23)+
2N1,0(23) = 1, 845, 054, 112.

6 Conclusions, Acknowledgments, and Future Work

We have substantially improved many lower bounds for M(n,D). We conjecture
that many of our bounds represent formulas that are true for all powers of a prime
q. We wish to thank Dr. Carlos Arreche in the Department of Mathematical
Sciences at the University of Texas at Dallas for many helpful discussions.
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University of Zürich, Winterthurerstrasse, 8057 Zurich, Switzerland
simran.tinani@math.uzh.ch

https://www.math.uzh.ch/aa/

Abstract. Normal bases in finite fields constitute a vast topic of large
theoretical and practical interest. Recently, k-normal elements were
introduced as a natural extension of normal elements. The existence
and the number of k-normal elements in a fixed extension of a finite
field are both open problems in full generality, and comprise a promising
research avenue. In this paper, we first formulate a general lower bound
for the number of k-normal elements, assuming that they exist. We fur-
ther derive a new existence condition for k-normal elements using the
general factorization of the polynomial xm − 1 into cyclotomic polyno-
mials. Finally, we provide an existence condition for normal elements in
Fqm with a non-maximal but high multiplicative order in the group of
units of the finite field.

Keywords: Finite fields · Normal bases

1 Introduction

Let q denote a power of a prime p, and Fq denote the finite field of order q. If F

is an extension field of the field K, we denote by Gal(F/K) the Galois group of
the extension field F over K. We are interested in studying elements in a finite
extension Fqm of degree m over Fq. An element α ∈ Fqm is called a normal ele-
ment over Fq if all its Galois conjugates, i.e. the m elements {α, αq, . . . , αqm−1},
form a basis of Fqm as a vector space over Fq. A basis of this form is called a
normal basis.

We let φ denote the usual Euler-phi function for integers. Let f ∈ Fq[x] be
a polynomial with positive degree m. Then Φq(f) is defined to be the order of

the ring
(

Fq [x]
〈f〉

)×
, where 〈f〉 denotes the ideal generated by f in Fq[x]. In other

words, Φq(f) is the number of polynomials co-prime to f and with degree less
than m. It is well known that normal elements exist in every finite extension
Fqm of Fq and that there are precisely Φq(xm − 1) normal elements, and thus
Φq(x

m−1)
m normal bases in Fqm [14, Theorem 2.35, Theorem 3.73], [8,18]).
Normal elements are a topic of major significance and interest because they

offer an avenue for efficient arithmetic in a finite field Fq: for instance, raising
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an element to the power q is simply a cyclic shift in normal base representation.
Normal bases and related concepts such as optimal normal bases and self-dual
normal bases find several applications, both theoretical and practical. We refer
the interested reader to [1,6], and [16] for more on this topic.

In [9], Huczynska et al. introduced the concept of k-normal elements as a
natural generalization of normal elements. One of the many equivalent ways
to define a k-normal element α ∈ Fqm is as an element whose conjugates
{α, αq, αq2

, . . . αqm−1} span a vector space of dimension m − k over Fq. It is
then of natural interest to examine the existence and the number of k-normal
elements. These problems have been shown to be closely tied to the factoriza-
tion of the polynomial xm − 1 [9]. In this paper, we denote by nk the number of
k-normal elements in an extension Fqm of Fq. There are numerous known results
on bounds on the number n0, several of which build on the lower bounds proved
in [5] using properties of the function Φq (see also the improvements on these
results in [7]). For arbitrary k, 0 < k < m − 1, neither a general rule for the
existence of k-normal elements nor a general formula for their number nk, when
they exist, is known.

Huczynska et al. [9] have used the approach of Frandsen [5] to give a lower
bound on nk which holds asymptotically, as well as an upper bound which holds
in general. However, both their upper and lower bounds depend directly on the
number of divisors of xm−1 with degree m−k, and are thus difficult to calculate.
Moreover, when xm − 1 has no divisor of degree m − k, the bounds equal zero,
which means that the statement about lower bounds does not yield any existence
result.

In a recent paper, Saygı et al. [21] give formulas (in terms of q and m) for
nk for cases where m is a power of a prime or of the form 2v · r where r �= 2 is a
prime and v ≥ 1, using known results on the explicit factorization of cyclotomic
polynomials. In particular, their formulae guarantee existence for certain cases.
A recent result by Reis [20, Theorem 5.5] provides a sufficient condition on m for
which k-normal elements exist for every 0 ≤ k ≤ m. Some relevant interesting
results on the construction of k-normal elements, as well as alternate proofs of
existing results, are found in [22].

In 1987, Lenstra and Schoof [13] proved (also see partial proofs by Carlitz
[2] and Davenport [4]) the Primitive Normal Basis theorem, which states the
existence of an element that is simultaneously normal and primitive (i.e. has
multiplicative order qm − 1 in F

∗
qm). By extension, elements that have high

multiplicative orders and also span large subspaces along with their conjugates
are of interest. In particular, problems along this line have found mention in
[9,11,12] and [17]. The question of the existence of elements in Fqm that are
both 1-normal over Fq and primitive has been answered in entirety in [20], after
a partial proof and formulation of the problem in [9].

In this paper, we first present a result that guarantees a general lower bound
on nk (for arbitrary 0 ≤ k ≤ m − 1), provided that k-normal elements exist.
This proves a link between n0 and nk for k > 0. Since this result does not make
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any additional assumption about k, q or m, it is not derivable from any of the
known formulas for nk.

We further present an existence condition for k-normal elements (over Fq)
in Fqm based on inequalities involving m and k. It turns out that under certain
constraints on m (loosely put, m must have a sufficiently large common divisor
with qm −1), k-normal elements exist for k above a minimum lower bound. This
result is independent of the factorization of xm − 1. Moreover, the conditions on
m and q required are weaker than the special forms required in [21], and also
cannot be derived from the conditions in [19, Theorem 5.5]. In fact, when p � m,
our theorem is a generalization of this result.

Our final contribution is an existence condition for normal elements of mul-
tiplicative order qm−1

q−1 in Fqm when m and q − 1 are co-prime. Using the ter-
minology of [17], this is the same as talking about 0-normal, (q − 1)-primitive
elements. With this result, we answer a special case of Problem 6.4 posed in
[9], which deals with high multiplicative order k-normal elements in Fqm over
Fq. Our proof follows the method used by Lenstra and Schoof in proving the
Primitive Normal Basis Theorem [13].

2 Preliminaries

Definition 1. An element α ∈ Fqm is called k-normal if

dimFq

(
span

Fq

{
α, αq, . . . , αqm−1

})
= m − k.

Remark 1. It is clear from the definition that an element α is 0-normal if and
only if it is normal by the usual definition. Also, the only m-normal element in
Fqm is 0.

Given α ∈ Fqm , we denote by ord(α) the usual multiplicative order of α in
the group F

∗
qm . Fqm may be seen as a module over the ring Fq[x], under the

action
n∑

i=0

aix
i · α =

n∑
i=0

aiα
qi

, α ∈ Fqm . (1)

In other words, the value of the image of α under the action of a polynomial
f(x) =

∑n
i=0 aix

i is the evaluation of α at the q-associate [14, Definition 3.58]
of f(x). Note that this is the same as the action of Fq-linear maps on Fqm . This
module structure has been explored in more detail, for instance, in [22]. Through
this module structure, we also have another concept of order, as defined in [13]
as an additive analogue of the multiplicative order.

Definition 2. Define the function

Ord : Fqm → Fq[x]
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as follows. For any α ∈ Fqm , Ord(α) is the unique monic polynomial generating
the annihilator of α under the action defined by Eq. (1), i.e.

Ann(α) = 〈Ord(α)〉 in Fq[x].

We now state an important result which provides several equivalent charac-
terizations of k-normal elements.

Theorem 1 [9, Theorem 3.2]. Let α be an element of Fqm and

gα(x) :=
m−1∑
i=0

αqi · xm−1−i ∈ Fqm [x].

Then the following conditions are equivalent:

1. α is k-normal.
2. gcd(xm − 1, gα(x)) over Fqm has degree k.
3. deg(Ord(α)) = m − k.
4. The matrix Aα defined below has rank m − k.

Aα =

⎡
⎢⎢⎢⎢⎣

α αq αq2 · · · αqm−1

αqm−1
α αq · · · αqm−2

...
... · · · ...

...
αq αq2

αq3 · · · α

⎤
⎥⎥⎥⎥⎦
.

The following result on the number of k-normal elements will also prove
useful.

Theorem 2 [9, Theorem 3.5]. The number of k-normal elements of Fqm over
Fq equals 0 if there is no h ∈ Fq[x] of degree m − k dividing xm − 1; otherwise
it is given by ∑

h|xm−1
deg(h)=m−k

Φq(h), (2)

where divisors are monic and polynomial division is over Fq.

It is known that xm − 1 factorizes over Fq into the product of cyclotomic
polynomials of degrees dividing m [14, Theorem 2.45]. Moreover, for p � d (recall
that p is defined as p = char(Fq)), each of the irreducible factors of the cyclo-
tomic polynomial Qd(x) has degree φ(d)

r , where r is the multiplicative order of d
mod q [14, Theorem 2.47]. Since there is no known closed formula for this num-
ber, there is also no closed-form complete factorization (i.e. factorization into
irreducibles) of xm − 1 over Fq. Thus, the above theorem does not give direct
answers about the existence of k-normal elements for k > 0. However, it may be
used to ascertain the existence of k-normal elements for certain values of k. In
the next two sections, we look at some interesting results on k-normal elements
which can be derived in certain special cases using Thereom 2.
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3 Number of k-Normal Elements

For k = 0, the formula in Thereom2 yields the well-known value Φq(m) for the
number of normal elements over Fq in Fqm [14, Theorem 3.37]. Since xm − 1
always has the divisor x− 1 of degree 1 and hence also a divisor of degree m − 1
(and since Φq(f(x)) �= 0 for any nonzero polynomial f(x)), we always have 1-
normal and (m−1)-normal elements in Fqm . It has been observed in [9] that the
only values of k for which k-normal elements are guaranteed to exist for every
pair (q, m) are 0, 1 and m − 1. In fact, as noted in [20], if q is a primitive root
modulo m, xm−1

x−1 is irreducible and so for 1 < k < m − 1, k-normal elements do
not exist.

In certain other cases, it is possible to use information about the factorization
of xm − 1 along with Theorem 2 to gain insights into the number of k-normal
elements for different values of k. In [21], the authors provide explicit formulas
for k-normal elements for degrees m that are either prime powers or numbers of
the form 2v · r, for a prime r �= 2, under certain other constraints on q and m.
Below we state one of their noteworthy results.

Proposition 1 ([21, Proposition 1]). Let char(Fq) = p and m = pr for some
positive integer r. Then the number of k-normal elements of Fqm over Fq is given
by

(q − 1) · qm−k−1,

where k = 0, 1, . . . ,m − 1.

The following result by Huczynska et al. [9] formulates a lower bound for the
number of k-normal elements when the extension degree m is large enough.

Theorem 3 ([9, Theorem 4.6]). Let cm−k denote the number of divisors of
xm − 1 with degree m − k. There is a constant c such that for all q ≥ 2 and
m > qc, the number of k-normal elements of Fqm over Fq is at least

0.28477 · qm−k · cm−k√
logq(m)

.

Note that there is no simple rule or formula for the value cm−k in terms of m,
k and q, and it may equal zero. So, the above result does not yield an existence
condition.

We now proceed to build a general result on the number of k-normal elements,
assuming that they exist. For this purpose, we consider the structure of Fqm as
an Fq[x]-module under the action defined by Eq. (1). We follow the approach in
[10], which is based on the observation that for K = Fqm and G = Gal(K/Fq),
the group of invertible elements K[G]× of the group algebra K[G] acts on the set
of normal elements of Fqm . Using this group action, the author of [10] formulates
an alternative method to count normal elements. We adapt the same argument
to find a lower bound on the number of k-normal elements in Fqm when they
exist.
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Theorem 4. Let k ∈ {0, 1, . . . ,m} and let nk denote the number of k-normal
elements in Fqm . If nk > 0, i.e. if k-normal elements exist in Fqm , then

nk ≥ Φq(xm − 1)
qk

.

Proof. Denote G := Gal(Fqm/Fq) and K := Fq. Let Sk be the set of k-normal
elements over Fq in Fqm , and assume that Sk �= ∅. Let K[G]× be the group of
invertible elements of the group algebra K[G]. The map

K[G]× × Sk → Sk, given by(∑
h∈G

ah · h

)
· α =

∑
h∈G

ah · (h · α) (3)

for α ∈ Fqm and coefficients ah ∈ K defines a group action. The rest of the axioms
are clear, and only thing that needs to be verified is that k-normal elements map
to k-normal elements. To see this, note that an element ψ =

∑
h∈G ah ·h of K[G]×

is a field automorphism of Fqm , and so the images of subspaces of dimension m−k
also have dimension m − k. So, for a k-normal element α,

dim(span{ψ(α), ψ(αq), . . . , ψ(αqm−1
)}) = dim(span{ψ(α), ψ(α)q, . . . , ψ(α)q

m−1})
= dim(span{α, αq, . . . , αqm−1}) = m − k.

Now note that for a generator σ of G we have a ring isomorphism
(

Fq[x]
〈xm − 1〉

)

→ K[G]

x 
→ σ. (4)

Therefore,

K[G]× ∼=
(

Fq[x]
〈xm − 1〉

)×
(as groups). (5)

We conclude that through the isomorphism (4) the group action (3) induces
a group action

(
Fq[x]

〈xm − 1〉
)×

× Sk 
→ Sk

given by

(
m−1∑
i=0

fi · xi

)
· α =

m−1∑
i=0

fi · σi(α) =
m−1∑
i=0

fi · αqi

. (6)

Denote H :=
(

Fq[x]
(xm−1)

)×
. For any k-normal element α, we have

Stab(α) = {p(x) ∈ H : p(x) · α = α}
= {p(x) ∈ H : (p(x) − 1) · α = 0}
= {p(x) ∈ H : Ord(α) divides (p(x) − 1).} (7)
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We know from Theorem 1 that Ord(α) is a polynomial of degree m − k.
Equation (7) implies that for p(x) ∈ H,

p(x) ∈ Stab(α) ⇐⇒ p(x) = Ord(α) · r(x) + 1, with deg(r(x)) ≤ k − 1. (8)

Hence, the number of possible distinct values for p(x) ∈ Stab(α) cannot
exceed the number of polynomials with degree less than k. More precisely,

|Stab(α)| ≤ min(|H|, qk) = min
(
Φq(xm − 1), qk

) ≤ qk. (9)

Finally, Eq. (9) and the Orbit-Stabilizer Theorem together give

|Orb(α)| =
∣∣∣∣

H

Stab(α)

∣∣∣∣ ≥ Φq(xm − 1)
qk

.

Since the action (6) is on k-normal elements, it is now clear that the number
nk of k-normal elements satisfies nk ≥ Φq(x

m−1)
qk , thus completing the proof. ��

Remark 2. Note that if a k-normal element α exists, then the lower bound in
Theorem 2 is, in fact, for the number of k-normal elements lying in a single orbit,
and therefore in span

Fq
{α, αq, αq2

, . . . , αqm−1}.

Remark 3. In [10], it is shown that for the case of normal elements (i.e. k = 0),
the action (6) is both free (i.e. u · α = α =⇒ u = 1) and transitive. This yields
an alternate proof of the well-known result that the number of normal elements
in Fqm is equal to Φq(xm − 1). For k > 0 it is clear that for every k-normal α,
there exists u ∈ K[G] such that u · α = α. However, it is unclear whether such
a u can be found in K[G]× or if the action is transitive. So, we cannot directly
adapt the argument as in [10] to count the exact number of k-normal elements.
However, as shown by the above theorem, the action may nevertheless be used
to obtain a lower bound.

4 Existence of k-Normal Elements

From the previous section, it is clear that some results on the number of k-
normal elements automatically imply their existence. For instance, the existence
of k-normal in Fqm for m a power of the characteristic p is established as an
immediate corollary of Proposition 1. On the other hand, the cardinality formula
in Theorem 3 gives the value zero when xm −1 has no divisor with degree m−k,
and thus yields no condition for the existence of k-normal elements. Similarly,
the statement on cardinalities in Theorem 4 holds only under the assumption
that k-normal elements exist in Fqm . We now shift our focus to finding exis-
tence conditions for k-normal elements over Fq. We begin by presenting (a slight
rewording of) a result by Reis, which is closely related to our existence result.

Theorem 5 ([19]). Let q be a power of a prime p and let m ≥ 2 be a positive
integer such that every prime divisor of m divides p · (q − 1). Then k-normal
elements exist for all k = 0, 1, 2, . . . ,m.
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Clearly, we get the existence implication of Proposition 1 as a corollary of
the above theorem. Although this theorem significantly extends Proposition 1,
it still restricts the prime factorization of m to be of a particular form, and thus
limits the allowed values of m. It is easy to see that it does not apply to simple
examples like q = 5, m = 6, and q = 8, m = 6, where k-normal elements are
known to exist for every k = 0, 1, 2, . . . ,m. We now state the main result of this
section, a sufficient condition for the existence of k-normal elements, which does
not, unlike Proposition 1 and Theorem 5, require m or its prime factors to be
of a fixed type. This result is also independent of the factorization of xm − 1
into irreducibles over Fq, and is derived using only the general factorization into
cyclotomic polynomials. Before the main theorem, we prove a number theoretic
result which will be used. The proof of the below proposition was inspired by
the proof of Theorem 6.3 in [15].

Proposition 2. Let a and m be arbitrary natural numbers and suppose that
m � am − 1. Then m has a prime factor that does not divide am − 1.

Proof. We proceed by contradiction. Suppose that the statement is false and let
p be any prime divisor of m. By hypothesis, p | am − 1. Write m = pb · s, with
b ≥ 1 and p � s. We have

0 = am − 1 mod p

= (aspb − 1) mod p

= (as − 1)pb

mod p

=⇒ as = 1 mod p. (10)

We claim that am − 1 = 0 mod pb, or in other words, aspb − 1 = 0 mod pb. We
prove this claim by induction on b.

For b = 1, the statement aps − 1 = 0 mod p is true by the hypothesis of the
proposition. Now assume that aspb − 1 = 0 mod pb for some b ≥ 1. Then,

aspb+1 − 1 = (aspb

)
p − 1

= (aspb − 1)(1 + aspb

+ a2spb

+ . . . + a(p−1)spb

). (11)

By the induction hypothesis, pb | aspb − 1. Also, from (10), we have

as = 1 mod p

=⇒ aispb

= 1 mod p ∀ 0 ≤ i ≤ p − 1.

=⇒ 1 + aspb

+ a2spb

+ . . . + a(p−1)spb

= 0 mod p

Combining these results, (11) clearly gives pb+1 | aspb+1 −1, thus proving the
result for b + 1. By induction, the result holds for every b ≥ 1, and therefore for
every m = spb. So, we may now conclude that am − 1 = 0 mod pb for m, b, p
as in the proposition. Since this holds for any prime factor p of m, this implies
that m | am − 1, which is a contradiction to the assumption. Hence, we must
have p � am − 1 for some prime divisor p of m. The proof is now complete. ��
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Remark 4. Note that if p � m and the hypothesis of Theorem 5 by Reis holds,
i.e. every prime factor of m divides p · (q − 1) then Proposition 2 says that we
are in the case m | qm − 1. In this case it will become clear that our theorem is
a generalization of the result of 5.

Theorem 6. If m | (qm − 1), then k-normal elements exist in Fqm for every
integer k in the interval 0 ≤ k ≤ m − 1. If m � qm − 1, let d = gcd(qm − 1, m).
Assume that

√
m < d. Let b denote the largest prime divisor of m that is a

non-divisor of qm −1 (b exists by Proposition 2). Then, for k ≥ m−d− b+1, k-
normal elements exist in Fqm . In particular, if m is a prime not dividing qm −1,
then we have b = m, d = 1, and so k-normal elements exist for every k in the
interval 0 ≤ k ≤ m − 1.

Proof. We know from Eq. (2) that the number of k-normal elements in Fqm is
given by ∑

h|xm−1
deg h=m−k

Φq(h(x)).

Thus, normal elements exist in Fqm if and only if xm − 1 has a divisor of degree
m − k. First note that for d = gcd(qm − 1,m), we have d | qm − 1, the order
of F

∗
qm , so by the general properties of a finite cyclic group, there are precisely

d elements α in the group F
∗
qm satisfying αd = 1, and so d elements must also

satisfy αm = 1. Thus, xm − 1 has precisely d linear factors over Fqm . Let its
roots in Fqm be α1, α2, . . . , αd.

If m | qm − 1, then d = m, and xm − 1 splits into linear factors over Fqm .
Thus, in this case, for any k ∈ {0, 1, 2, . . . ,m−1}, one may always combine m−k
of the m linear factors to obtain a factor of degree m − k of xm − 1. Hence, we
are done for this case. Note that the same conclusion could have been drawn by
directly applying Theorem2 and using the fact that the polynomial splits into
linear factors.

If m � qm − 1, then d < m. Assume that for some k ∈ {0, 1, 2, . . . ,m − 1},
no k-normal element exists in Fqm . It is known that xm − 1 has the following
factorization over Fq:

xm − 1 =
∏
t|m

Qt(x).

where Qt(x) denotes the tth cyclotomic polynomial, and is known to have coef-
ficients in Fq [14, Theorem 2.45]. Write
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xm − 1 =
∏
t | d

Qt(x) ·
∏

t | m
t � qm−1

Qt(x)

= (xd − 1) ·
∏

t | m
t � qm−1

Qt(x)

= (x − α1) · (x − α2) · . . . · (x − αd) ·
∏

t | m
t � qm−1

Qt(x),

where the last step follows from the fact that d | qm − 1, so as in the first
case, xd − 1 splits in Fqm . Now, let b be the largest prime dividing m but not
qm − 1 (such a prime exists by Proposition 2). Then Qb(x) figures in the latter
product of the above equation. Since no k-normal element exists in Fqm , m − k
must be greater than the number d of linear factors, and it must be impossible
to combine the factors of degree greater than 1, in particular, Qb(x), with the
linear factors to obtain a factor of degree m − k. Mathematically, we get, after
minor rearrangement,

k < m − d, (12)
and
either k > m − φ(b) or k < m − d − φ(b). (13)

Now, since b is a prime dividing m but not q − 1, b must divide m
d . In

particular, b ≤ m
d . From the hypothesis

√
m < d, we get b ≤ m

d < d, and so

m − φ(b) = m − b + 1
> m − d + 1 > m − d

> k, (14)

where the last step follows from Eq. (12). We now immediately note that the
former condition in Eq. (13) is incompatible with Eq. (14), and so it cannot hold.
Therefore, the latter condition of Eq. (13) must be satisfied, i.e. we must have

k < m − d − φ(b) = m − d − b + 1

for k such that k-normal elements do not exist. Hence, we conclude that for all
k ≥ m − d − b + 1, k-normal elements exist in Fqm , as required.

Finally, it is clear that if m is a prime, then we have b = m, d = 1, and so
k-normal elements exist for every k in the interval 0 ≤ k ≤ m − 1 by the above
condition. ��
Remark 5. If m is composite and does not divide qm−1, then we cannot conclude
the existence of k-normal elements for every value of k using the above theorem.
This follows from the following argument, which was provided by one of the
reviewers of this paper. Since b and d are different divisors of m, then b + d ≤
m
2 + m

3 , which is incompatible with the condition m ≤ d + b − 1.
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Remark 6. Note that the fact that b is a prime plays a key role in the above
proof. If b is, instead, an arbitrary divisor of m that does not divide q − 1, then
it is not guaranteed that b divides m

d (E.g. consider q = 25,m = 20, b = 10). So
the argument may not hold true even though the inequality m

d < d may hold.

We now reconsider the two examples considered before. For q = 5, m = 6, we
have qm −1 = 15624, which is divisible by 6. So, Theorem6 shows that k-normal
elements exist in Fqm for every k ∈ {0, 1, . . . ,m}. For q = 8, m = 6, we have
qm − 1 = 262143, and so d = gcd(qm − 1, m) = 3 >

√
6. The largest prime b

that divides 6 and not 262143 is clearly 2. So, Theorem6 shows that k-normal
elements exist in Fqm for every k ≥ m − d − b + 1, i.e. for every k ≥ 2. Since we
know that 0- and 1-normal elements always exist in Fqm , we conclude that in
this case k-normal elements exist for every k ∈ {0, 1, . . . ,m}. The exact numbers
for these two examples are listed in Tables 4 and 2, respectively, in Sect. 6.

5 Normal Elements with Large Multiplicative Order

So far, we have studied the “additive” structure of Fqm as a vector space over Fq.
It is also of interest to study the relation between this additive structure and the
natural multiplicative structure of F

∗
qm . One of the most noteworthy results in

this direction is the Primitive Normal Basis Theorem [2,4,13]). We state some of
its proposed generalizations of this result in Sect. 6. Below, we state and prove
an existence result for normal elements (i.e. k = 0) with multiplicative order
qm−1
q−1 in Fqm . It turns out that such elements always exist if m and q − 1 are

co-prime, and that this may be derived using the same methods as Lenstra and
Schoof [13] in the proof of the Primitive Normal Basis Theorem.

Theorem 7. Suppose that (m, q −1) = 1. Then Fqm has a normal element with
multiplicative order qm−1

q−1 .

Proof. Let k := qm−1
q−1 . Define

A = {α ∈ Fqm : Ord(α) = xm − 1},

B = {α ∈ F
∗
qm : ord(α) = k},

C = {α ∈ Fqm : α(q−1)2 = 1},

where the sets A and C are defined identically as in the proof of Lenstra and
Schoof, and B is defined as the set of elements with order k, rather than primitive
elements. Note that C is a subgroup of F

∗
qm . Also note that since the definitions

of A and C are unchanged, we may use directly the result (1.12) of the original
proof in [13]. We state this as follows. For the set CA defined as

CA = {γ · α : γ ∈ C,α ∈ A},

we have
CA = A. (15)



266 S. Tinani and J. Rosenthal

Let BC denote the set BC = {β · γ : β ∈ B, γ ∈ C}. Now, since Eq. (15)
holds, the exact same argument as in the original proof also yields the result
indexed (1.13) in [13]. Since we have a different B, we prove it below. The proof
is identical for B defined as the set of elements of any multiplicative order.

If α ∈ A, β ∈ B, γ ∈ C are such that α = β · γ ∈ B · C, then β = α · γ−1 ∈
CA ∩ B = A ∩ B, and so we have

A ∩ B = ∅ ⇐⇒ A ∩ BC = ∅. (16)

As in the original paper, we use Eq. (16) and prove that A ∩ B · C �= ∅ to
conclude that A ∩ B �= ∅.

Let H denote the unique subgroup of order k in F
∗
qm . Here,

BC = {β · γ : β ∈ B, γ ∈ C}
= {β · γ : β generates H, γ ∈ C}

=
{

β · γ : β · C generates
H

C
, γ ∈ C

}

=
{

β · γ : β · C ∩ H generates
H

H ∩ C
, γ ∈ C

}
.

Now note that

gcd(k, (q − 1)) = gcd
(

qm − 1
q − 1

, q − 1
)

= gcd
(
1 + q + q2 + . . . + qm−1, q − 1

)

= gcd(m, q − 1)
= 1,

where the second last equality can be checked by direct computation for general
values of m and q, and the last equality follows by the hypothesis of the theorem.
We now have |C| = (q − 1) · gcd(q − 1, m) = (q − 1). So, in this case, C is the
unique subgroup of F

∗
qm with order q − 1. Thus, C and H are subgroups with

co-prime orders, and therefore intersect trivially. Now let

D = {α ∈ F
∗
qm : ord(α) = qm − 1}

denote the set of generators of F
∗
qm . We claim that

D ⊆ BC.

To see this, pick α ∈ D. Since gcd(k, q − 1) = 1, there exist integers a and b
such that

a · k + b · (q − 1) = 1.

This implies that (a, q − 1) = 1 and (b, k) = 1. Thus, αka has order q − 1 and
αb(q−1) has order k.
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Thus, α = αb(q−1) · αka, with αb(q−1) ∈ B and αka ∈ C. We have hereby
proved that D ⊆ BC. We now have A∩D ⊆ A∩BC. But, by [13, result (1.10)],
we have A ∩ D �= ∅, and so we must also have A ∩ BC �= ∅. By Eq. (16), we
conclude that A ∩ B �= ∅.

Hence, Fqm contains a normal element with multiplicative order k = qm−1
q−1 ,

as required. ��

6 Examples

We now demonstrate Theorems 4, 6, and 7 by providing concrete examples. The
following cardinalities were derived by an exhaustive search using the algebra
software package SageMath [23]. Each table below corresponds to the extension
Fqm of Fq, and shows that the number of k-normal elements, whenever nonzero,
is greater than or equal to the number Φq(x

m−1)
qk (which has been rounded off

to two decimal places in the table), as stated in Theorem 4. Below each table,
we give the number of normal elements with multiplicative order qm−1

q−1 . In the
terminology of [17], we call these (q − 1)-primitive normal elements. Clearly,
Theorem 7 is validated by the fact that all these numbers are non-zero.

We have already discussed Tables 4 and 6 in the light of Theorems 5 and 6.
On the other hand, note that for the example in Table 5, Theorem 5 is applicable,
while Theorem 6 is not. As we have noted before, this happens precisely when
p÷m and the hypothesis of 5 holds. This shows that neither of these two results is
stronger than the other. In the case of Table 8, the assumptions of both theorems
hold and both guarantee the existence of k-normal elements for every value of k
less than m. For Tables 1, 2, 3, and 7, neither Theorem 5 nor Theorem 6 applies.
In fact, Table 3 shows that 3-normal elements and 7-normal elements over F2 do
not exist in F1024.

Table 1. F8/F2 (q = 2, m = 3)

k # of k-normal elements
Φq(x

m − 1)

qk

0 4 4

1 4 4

2 2 2

3 1 1

# of (q − 1)-primitive normal elements = 4

Table 2. F59049/F9 (q = 9, m = 5)

k # of k-normal elements
Φq(x

m − 1)

qk

0 51200 51200

1 6400 5688.89

2 1280 632.10

3 160 70.23

4 8 7.80

# of (q − 1)-primitive normal elements =
5750
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Table 3. F1024/F2 (q = 2, m = 10)

k # of k-normal elements
Φq(x

m − 1)

qk

0 480 480

1 240 240

2 240 120

3 0 60

4 35 30

5 15 15

6 15 7.5

7 0 3.75

8 2 1.875

9 1 0.94

# of (q − 1)-primitive normal elements =
290

Table 4. F262144/F8 (q = 8, m = 6)

k # of k-normal elements
Φq(x

m − 1)

qk

0 225792 225792

1 28224 28224

2 7560 3528

3 441 441

4 119 55.13

5 7 6.89

# of (q − 1)-primitive normal elements =
20124

Table 5. F729/F3 (q = 3, m = 6)

k # of k-normal elements
Φq(x

m − 1)

qk

0 324 324

1 216 108

2 108 36

3 60 12

4 16 4

5 4 1.33

# of (q − 1)-primitive normal elements =
290

Table 6. F15625/F5 (q = 5, m = 6)

k # of k-normal elements
Φq(x

m − 1)

qk

0 9216 9216

1 4608 1843.20

2 1344 368.64

3 384 73.73

4 64 14.75

5 8 2.95

# of (q − 1)-primitive normal elements =
642

Table 7. F4913/F17 (q = 17, m = 3)

k # of k-normal elements
Φq(x

m − 1)

qk

0 4608 4608

1 288 271.06

2 16 15.94

# of (q − 1)-primitive normal elements =
288

Table 8. F2401/F7 (q = 7, m = 4)

k # of k-normal elements
Φq(x

m − 1)

qk

0 1728 1728

1 576 246.86

2 84 35.26

3 16 5.04

# of (q − 1)-primitive normal elements =
112

7 Conclusions and Open Problems

In this paper, we dealt with the recently introduced concept of k-normal elements
in finite fields [9]. The existence and cardinalities of k-normal elements in Fqm are
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both strongly tied to the factorization of the polynomial xm − 1 over Fq, which,
in turn, depends on the factorization of cyclotomic polynomials. One does not
have an explicit formula for the irreducible factors of cyclotomic polynomials,
or of their degrees, and so it is not possible to directly infer the existence or
numbers of k-normal elements. However, one may deduce several key results by
forcing certain conditions on m, k, and q. In Theorem 6, we used the general
factorization of xm − 1 into cyclotomic polynomials to obtain a new existence
condition for k-normal elements.

The structure of Fqm as an additive module over Fq[x] plays a key role in
proofs related to normal and k-normal bases. In Theorem 4, we furnished a lower
bound for the number of k-normal elements in Fqm under the sole assumption
that at least one of them exists. The proof is inspired by the observation in [10]
that the additive module structure of Fqm in fact gives rise to a group action on
all the normal elements. Our bound does not require a specific form for m or
q, and therefore extends beyond the formulas provided in [21]. Two interesting
problems arise in this direction.

Problem 1. Given a k-normal element α, which subsets of {α, αq, αq2
, . . . , αqm−1}

with size m − k or smaller, apart from {α, αq, αq2
, . . . , αqm−k−1} are linearly

independent? Computer experiments show that in many cases, there do exist
linearly dependent subsets with size smaller than m − k.

Problem 2. Given a k-normal element α, does there exist another k-normal ele-
ment outside span

Fq
{α, αq, αq2

, . . . , αqm−1}? We have noted in Remark 2 that
Theorem 2 proves that the number of k-normal elements in this subspace is
larger than Φq(x

m−1)
qk . It would also be interesting to see whether a better bound

for the total number can be obtained by bounding above the intersection of the
Fq- spans of two distinct k-normal elements.

Problem 3. Under what circumstances is the group action (6) free? Under what
circumstances is it transitive?

After the proof of the well-known Primitive Normal Basis Theorem by
Lenstra and Schoof [13], several interesting generalizations have been proposed.
The existence and numbers of elements with different pairs of additive orders (as
in Definition 2) and multiplicative group orders have been investigated by several
authors. Some solved and unsolved problems in this domain may be found in
[3,9,17], and [12]. We state one such relevant open problem below.

Problem 4 ([9, Problem 6.4]). Determine the existence of high-order k-normal
elements α ∈ Fqm over Fq, where “high order” means ord(α) = N , with N a
large positive divisor of qm − 1.

With Theorem 7 we answered a special case of Problem 4. Following the
method of Lenstra and Schoof [13], we provided an existence condition for ele-
ments in Fqm with maximal additive order (i.e. normal elements) that simulta-
neously have a non-maximal but high multiplicative order, namely qm−1

q−1 .
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