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Abstract. Deep-learning-based methods have been used for 3D action
recognition in recent years. Methods based on recurrent neural networks
(RNNs) have the advantage of modeling long-term context, but they
focus mainly on temporal information and ignore the spatial relationships
in each skeleton frame. In addition, it is difficult to handle a very long
skeleton sequence using an RNN. Compared with an RNN, a convolu-
tional neural network (CNN) is better able to extract spatial information.
To model the temporal information of skeleton sequences and incorpo-
rate the spatial relationship in each frame efficiently using a CNN, this
paper proposes a multi-feature skeleton representation for encoding fea-
tures from original skeleton sequences. The relative distances between
joints in each skeleton frame are computed from the original skeleton
sequence, and several relative angles between the skeleton structures are
computed. This useful information from the original skeleton sequence is
encoded as pixels in grayscale images. To preserve more spatial relation-
ships between input skeleton joints in these images, the skeleton joints
are divided into five groups: one for the trunk and one for each arm and
each leg. Relationships between joints in the same group are more rele-
vant than those between joints in different groups. By rearranging pixels
in encoded images, the joints that are mutually related in the spatial
structure are adjacent in the images. The skeleton representations, com-
posed of several grayscale images, are input to CNNs for action recogni-
tion. Experimental results demonstrate the effectiveness of the proposed
method on three public 3D skeleton-based action datasets.
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1 Introduction

In recent years, human action recognition has been applied to many fields, such as
video surveillance, medical monitoring, security, intelligent houses, and content-
based video retrieval [8,10]. With the development of deep learning, action recog-
nition has proved to be highly effective in these application areas. The modalities
of input data usually include RGB videos, depth maps, and three-dimensional
(3D) skeleton data. RGB is widely used in action recognition, but it can easily be
affected by illumination changes and appearance of texture, resulting in ambigu-
ity. Since the appearance of 3D cameras, such as the Microsoft Kinect, the use
of skeleton data has become increasingly popular. Skeleton data are robust to
variations in illumination, camera viewpoint changes, and texture variation in
comparison with RGB and depth data. In this paper, we focus on 3D skeleton-
based action recognition.

A skeleton data sequence consists of a series of 3D coordinates of body
joints. In each skeleton sequence, the temporal information of the whole sequence
describes the dynamics of action, and the spatial information in each skeleton
frame describes the relationship between joints. It is of great importance to
extract features from the original skeleton sequence and retain temporal and
spatial information, as much as possible, for further classification. The recurrent
neural network (RNN) and its extended version with long short-term memory
(LSTM) [7] have been used for skeleton-based action recognition and have been
shown to be effective [6,20,22,24,25,28,30]. They are mainly used to model the
long-term context information along the temporal dimension by representing
motion-based dynamics [19]. However, the RNN and LSTM lack the ability to
model the entire information of a very long sequence. In addition, they focus
mainly on the temporal relationship between skeleton frames, paying less atten-
tion to spatial structure in a single frame. However, the structure of joints in
each skeleton frame is very important for discrimination between action cate-
gories. Not only in the field of action recognition, but also in other fields such as
person re-identification, the importance of capturing and understanding infor-
mation about various parts of the human body is raised. In [12], human body
semantic analysis is used to extract local visual clues. In [36], the structure of
the human body is used to enhance the recognition capability. [29] also proposed
the importance of accurately locating each part of pedestrian and consider the
continuity of information transition between each part. The convolutional neu-
ral network (CNN) [15] performs well in representation learning and has been
proved effective in skeleton-based action recognition [1,2,4,5,13,34]. Compared
with an LSTM, a CNN has the advantage of learning spatial structure infor-
mation. In the CNN-based method for action recognition, the manner in which
the spatial relationship is extracted and the method of modeling the long-term
sequence are of crucial importance.

In this paper, we propose a CNN-based method for extracting useful features
from an original skeleton sequence and encoding them into grayscale images.
The association between skeleton frames reflects the temporal information of the
action, whereas the relationship between skeleton joints in each frame reflects the
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spatial information of the action. Qiuhong Ke et al. [13] proposed an effective
encoding method that models the temporal dynamics of the original skeleton
sequence as a single image. By selecting several key joints in a single frame
and calculating the relative distance between other joints and the key joints,
each image reveals the connection information of the skeleton structure, and all
images incorporate the spatial information of the whole sequence. In addition,
the arrangement of data in the encoded image reflects the spatial connection
between the joints in each skeleton frame. In this paper, we propose a new
method that divides the skeleton structure into five parts and rearranges the
skeleton joints. In this manner, the encoded images can better represent the
relationships in the original skeleton structure. In addition, we define several
important angles in a single skeleton frame. These data are encoded into an
image, to incorporate more useful information and better describe the spatial
features. In this manner, each original skeleton sequence can be encoded into
six grayscale images: five images corresponding to five key joints and one image
corresponding to the angles. These images are then input to six identical CNNs,
which are trained simultaneously. Finally, we conduct score fusion to obtain the
final action classification.

The main contributions of our work are as follows:

– A multi-feature skeleton representation, based on spatio-temporal informa-
tion processing, is proposed.

– A useful method for space division and encoding, which corresponds to the
human skeleton structure, is proposed. This can efficiently incorporate infor-
mation about the relationships between adjacent joints in human movement.

– Several important joint angles, for the human skeleton structure, are defined
and calculated to reflect the changes of movement and incorporate spatial
motion information.

Experiments were conducted on three 3D skeleton-based action recognition
datasets (NTU RGB+D [27], NTU RGB+D 120 [17] and UTKinect-Action3D
Dataset [33]) with standard evaluation protocols. The results demonstrate the
effectiveness of the proposed method for 3D skeleton-based action recognition.

In this paper, we introduce related work in Sect. 2. The process of select-
ing features from the original skeleton data and encoding them into grayscale
images for CNN classification is described in Sect. 3. In Sect. 4, the imple-
mentation details of the experiments are explained, and the ablation study and
experimental results are presented and compared with other related methods.
Finally, Sect. 5 presents our conclusions.

2 Related Work

In this section, we introduce some related work on skeleton-based action recog-
nition.

An end-to-end hierarchical RNN was proposed in [6]. The skeleton is divided
according to the human body structure into five parts, which are input to five
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networks for classification. In [5], the joint coordinates of a skeleton sequence are
concatenated as a matrix, which is then quantified into an image for further clas-
sification, such that each image corresponds to a skeleton sequence. In [13], each
skeleton sequence is used to generate four images, each of which incorporates the
temporal information of the entire sequence and the spatial relationship in each
frame. The four images incorporate different aspects of the spatial information
of the whole sequence. To focus more attention on the most informative joints in
skeleton frames, [22] proposed the global context-aware attention LSTM (GCA-
LSTM). A two-stream RNN was proposed in [30] to handle the temporal and
spatial information of a skeleton sequence. For temporal dynamics, a stacked
RNN and a hierarchical RNN were proposed. For spatial information, a method
of converting a spatial graph into a series of joints was proposed. In [19], a gat-
ing mechanism was used in an LSTM module to process the noise in a skeleton
sequence. A method for multi-modal feature fusion using an LSTM was also pro-
posed. Zhengyuan Yang et al. [34] proposed the idea of applying depth-first tree
traversal in a skeleton representation, in the tree structure skeleton image (TSSI)
method. Carlos Caetano et al. [1] combined the ideas of [13] and TSSI [34] to
propose a new skeleton representation called the tree structure reference joints
image (TSRJI). In the method of [24], features are separately extracted from
the pose coordinate system and the trajectory coordinate system, which are the
result of conversion from the original coordinate system of skeleton joints. These
two types of features are then input to two LSTM networks and concatenated,
for further classification.

3 The Proposed Method

This section introduces our method for generating the skeleton representation
from original skeleton sequences. The skeleton sequences are trajectories of 3D
coordinates of skeleton joints. The skeleton sequence is converted into several
grayscale images, which incorporate both the dynamics and spatial information
of the original skeleton structure. The method of calculating the relative dis-
tance between joints and important angles in the skeleton structure is explained.

Fig. 1. 3D skeleton joints structure. Joints 1, 4, 8, 12, 16 are key joints defined in [13].
Relative distance calculated by each key joint with other skeleton joints are preserved
in an array according to the sequential order from 0 to 24.
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The method of rearranging the pixels in the encoded images, depending on the
spatial relationship between skeleton joints, can preserve much of the motion
information. CNNs are then employed to extract features from these images for
classification.

3.1 Encoding Process

In a skeleton sequence, each frame consists of several skeleton joints. The relative
position of any two joints describes the motion migration. In previous work, the
movement information of each frame has often been encoded to a single image;
however, a long sequence contains too many images for this to be practical.
According to [13], it is hard to learn temporal dynamics, and therefore each
image will be very sparse. A new method for encoding the dynamics of skeleton
sequences was proposed by [13] to overcome these weaknesses. In this paper, we
propose an improved method using the skeleton representation of [13].

In the method of [13], the temporal dynamics of a skeleton sequence are
encoded in an image, and the spatial information of the skeleton joints is incor-
porated into multiple images. It selects four key joints, which are considered to
be stable throughout the action. But in our method, five key joints (the middle
of the spine, left shoulder, right shoulder, left hip, and right hip) are chosen for
use, as shown in Fig. 1. The relative distance between each key joint and other
joints can then be computed. The skeleton joints in each skeleton frame are all
numbered and arranged from 0 to 24. For each key joint, there is a corresponding
array C with a size of N × T (N is the number of skeleton joints in each frame
and T is the number of frames in each sequence). Each value in the array is
scaled to 0–255 by a linear transformation.

In the above encoding process for skeleton data, the arrangement of skeleton
joints (i.e., the distance between a key joint and other joints in the calculated
array) is in order of serial number, from 0 to 24, as shown in Fig. 1. However, in
this order, the adjacent joints in each array lose some spatial relationships that
are present in the original skeleton structures. For example, joint number 1 is
the middle of the spine and joint number 20 is also the spine. They are adjacent
in the original skeleton structure, but the direct adjacency relationship is lost
after the encoding process. Conversely, joint number 11 is the right hand and
joint number 12 is the left hip. Their numbers are consecutive, and so they are
encoded adjacent to each other in the grayscale image, but they have no spatial
relationship in the original skeleton structure. If this problem is not solved,
the generated grayscale images are likely to lose many of the direct, or highly
relevant, spatial relationships between the skeleton joints.

In this study, we propose a new method in which the skeleton joints are
divided into groups according to the limb relationships. The positions of pix-
els in encoded images are changed according to that division, to enhance the
spatial information preserved in encoded grayscale images. The original skeleton
structure consists of 25 joints, which we divide into five groups according to the
human body structure, as shown in Fig. 2. The five parts of the body are the
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Fig. 2. Skeleton structure is divided into five parts: the trunk (3, 2, 20, 1, 0), the left
hand (4, 5, 6, 7, 21, 22), the right hand (8, 9, 10, 11, 23, 24), the left leg (12, 13, 14,
15) and the right leg (16, 17, 18, 19). The new array is concatenated by the five groups
as (3, 2, 20, 1, 0, 4, 5, 6, 7, 21, 22, 8, 9, 10, 11, 23, 24, 12, 13, 14, 15, 16, 17, 18, 19).

Fig. 3. The process of encoding skeleton representation from original skeleton sequence.
For each input skeleton sequence, the order of the serial number of joints is first rear-
ranged by our proposed method. Then the relative distance between key joint and other
joints are calculated respectively. Each key joint corresponds to an encoded grayscale
image and five images revealing the relative distance are generated.

trunk (3, 2, 20, 1, 0), left hand (4, 5, 6, 7, 21, 22), right hand (8, 9, 10, 11, 23,
24), left leg (12, 13, 14, 15), and right leg (16, 17, 18, 19). These five groups of
joints are concatenated together to obtain a new array (3, 2, 20, 1, 0, 4, 5, 6, 7,
21, 22, 8, 9, 10, 11, 23, 24, 12, 13, 14, 15, 16, 17, 18, 19), as shown in Fig. 2. The
five arrays, corresponding to the five key joints of a sequence, are used to gener-
ate five grayscale images. In this manner, the joints that are directly related in
each part of the original skeleton structure are adjacent in the encoded images.
The whole process of feature encoding is depicted in Fig. 3. The experiments in
Sect. 4 indicate the effectiveness of our method of rearranging the order of joints
according to the body joint relationships.
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3.2 Important Angles Between Joints

Changes in the relative distance between joints in the skeleton structure can char-
acterize action movements, so we encode five skeleton grayscale images, related
to the five key joints from a skeleton sequence. Similarly, every pair of joints
in a single skeleton frame can be treated as a vector, and the angle between
two vectors can reveal the action gesture. In each skeleton sequence, a change of
these angles provides motion information. In this paper, nine important angles
are defined and calculated, as shown in Fig. 4. Each angle is defined by the
following equation:

θ = cos−1(
�a ·�b
|�a|·|�b|

) (1)

where �a and �b are vectors that include the same joint vertex and θ is the angle
between the two vectors. For example, as shown in Fig. 4, θ4 is the angle between
the arm and the trunk. To calculate θ4, three joints (4, 5, and 12) are selected, to
form two 3D vectors using the joints’ coordinates. θ4 is calculated according to
Eq. (1) and these vectors. For a skeleton sequence, we calculate the nine defined
angles of each skeleton frame and arrange the values of each frame in a row. The
values are quantified as an integer in [0, 255], corresponding to the gray scale.
The generation of the grayscale image for angle is similar to that of the grayscale
image for relative distance, as shown in Fig. 4. However, in this section, the nine
angle values are copied three times, to fill a row of the image, to enhance the
effect of changes in angles. The effectiveness of this technique has been proved
in our experiments. Thus, from each sequence, we generate a grayscale image
that incorporates angle displacement information.

In summary, from each sequence, we generate five images by calculating the
relative positions of joints and one image by computing important angles. These
six grayscale images are then input to CNN for feature extraction and action
classification. The integral pipeline is shown in Fig. 5.

Fig. 4. Nine angels labeled from θ1 to θ9 are defiened in the left of the figure. These
angles are calculated and quantified as an integer in [0, 255], then the nine angle values
are copied three times to fill each row of the image.
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Fig. 5. The architecture of the recognition process. For each skeleton sequence, the
relative distance corresponding to five key joints are computed to generate five skeleton
images, and the defined angles are calculated to generate one skeleton image. The six
grayscale images are fed into six identical CNNs for feature extraction simultaneously.
At last, the class scores of different networks are fused to yield final classification results.

4 Experiments and Analysis

In this section, we evaluate the performance of our proposed multi-feature skele-
ton representation for 3D skeleton-based action recognition. The experiments
were conducted on three 3D skeleton datasets: NTU RGB+D [27], NTU RGB+D
120 [17], and UTKinect-Action3D [33]. In particular, ablation experiments were
conducted on the NTU RGB+D dataset, to assess the effectiveness of each com-
ponent of our proposed model. We then compare our results with other methods
on the three datasets, with standard evaluation protocols. The neural network
architecture and implementation details are also explained.

4.1 Datasets

NTU RGB+D Dataset [27]. This is a large dataset for action recognition
with more than 56,000 video samples and 4 million frames, performed by 40
distinct subjects. It contains 60 action classes, including 40 daily actions (e.g.,
standing up, reading, and making a phone call), nine health-related actions (e.g.,
staggering and falling down), and 11 mutual actions (e.g., pushing, hugging, and
shaking hands). All the data were collected by three Microsoft Kinect v2 cameras
from different viewpoints simultaneously. This dataset provides four major data
modalities: depth maps, RGB frames, IR sequences, and 3D skeleton sequences,
consisting of 3D coordinates of 25 human body joints. Because of the large
quantity and wide variety of views and classes, it is a challenging dataset.

NTU RGB+D 120 Dataset [17]. This is the latest large-scale dataset for 3D
skeleton-based human action recognition. It contains 120 action classes and more
than 114,000 video clips, performed by 106 distinct subjects. It extends the NTU



A Novel Multi-feature Skeleton Representation for 3D Action Recognition 373

RGB+D dataset [27] by adding more action classes and samples. It also provides
daily, mutual, and health-related activities and several data modalities: depth
maps, RGB frames, IR sequences, and 3D skeleton sequences. This dataset is
very challenging because of its distinct action categories, varied human subjects,
and diverse environmental conditions.

UTKinect-Action3D Dataset [33]. This dataset contains 10 categories of
action classes: walk, sit down, stand up, pick up, carry, throw, push, pull, wave,
and clap hands. These actions are performed by 10 subjects, each performing
every action twice. There are 200 action clips and 6220 frames in total. The
dataset is challenging because of its intra-class variation.

4.2 Implementation Details

The neural network architecture employed in our method is derived from tem-
poral segment networks, which were proposed by [31], choosing Inception with
batch normalization (BN-Inception) [11] as building block. Besides, the mean
and variance paramenter of Batch Normalization layers are frozen except the
first one, and a dropout layer is added after the global pooling layer to reduce
over-fitting. Each grayscale image is generated with the size of 340 × 256, the
number of segments in the network is set to six, corresponding to our six gener-
ated grayscale images, which are input to six identical CNNs. The class scores
of each image are fused by an function to obtain a consensus of class hypothesis
among them, then the Softmax function is used to predict the action class based
on the consensus, as [31] did.

In experiments on the NTU RGB+D and NTU RGB+D 120 datasets, we
exploited models pretrained on the ImageNet [3] dataset, to initialize the network
weights, and we use stochastic gradient descent to learn network parameters,
as [31] did. We set the initial learning rate to 0.001, which is reduced by a
factor of 10 after 10,000, 18,000, and 26,000 iterations. The maximum number
of iterations was 36,000 and the batch size was set to 16. In experiments on the
UTKinect-Action3D dataset, the model trained on the NTU RGB+D dataset
by our method was used as the pretrained model, because of the small size of
the UTKinect-Action3D dataset. The initial learning rate was 0.001, the stepsize
was 1500, and the maximum number of iterations was 3500. The number of units
in the fully connected layer was the same as the number of action categories in
each dataset.

4.3 Experimental Evaluation

In this section, we show the results of the ablation evaluation on the NTU
RGB+D dataset. We then present the recognition results on the three 3D
skeleton-based datasets and make comparisons with other methods, to demon-
strate the effectiveness of the proposed multi-feature skeleton representation.

NTU RGB+D Dataset [27]. The author of the dataset provided two pro-
tocols for training and testing. Cross-subject evaluation splits the dataset into
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40,320 samples performed by 20 subjects for training, and 16,560 samples by the
remaining 20 subjects for testing. Cross-view evaluation picks 37,920 samples
from cameras 2 and 3 for training and 18,960 samples from camera 1 for testing.
We followed the two protocols and report the experimental results from each.

Table 1. Ablation study and recognition performance compared with other methods
on NTU RGB+D dataset. Accuracy on standard cross-subject and cross-view protocols
are reported.

Method Cross-subject Cross-view

Dynamic skeletons [9] 60.23% 65.22%

Deep LSTM [27] 60.69% 67.29%

Part-aware LSTM [27] 62.93% 70.27%

ST-LASTM [20] 69.2% 77.7%

Two-stream RNN [30] 71.3% 79.5%

STA-LSTM [28] 73.4% 81.2%

TSRJI (late fusion) [1] 73.3% 80.3%

5 Key Joints 74.93% 79.11%

5 Key Joints + Angles 75.59% 80.56%

5 Key Joints + Rearrangement 76.03% 81.21%

5 Key Joints + Rearrangement + Angles 77.33% 82.48%

First, we examine the contributions of each component of our proposed rep-
resentation, as shown in Table 1. The method of generating the skeleton repre-
sentation named ‘5 Key Joints’ is based on the idea of [13], but the neural net-
work architecture and implementation details are replaced. By reclassifying the
skeletal structure and rearranging the pixels in the generated grayscale images
according to the joints’ relevance, we can observe that ‘5 Key Joints + Rear-
rangement’ outperformed ‘5 Key Joints’ by 1.1% and 2.1% on the cross-subject
and cross-view protocols, respectively. The results demonstrate the effectiveness
of the proposed method of rearranging the order of joints according to the five
body parts in the encoding process. It also indicates that two adjacent joints
(connected by an edge) in the original skeleton structure incorporate more spa-
tial information than two joints that are not adjacent. Our method allows the
encoded images to preserve more spatial structure information of the skeleton
joints that are adjacent to each other in space. Another component is the nine
defined angles between joints in the skeleton structure; the calculated angles
were added to ‘5 Key Joints’. ‘5 Key Joints + Angles’ achieved an accuracy of
75.59% and 80.56% on the cross-subject and cross-view protocols, respectively,
outperforming ‘5 Key Joints’ on both protocols. This indicates that these angles
play an important role in skeleton movements, so that the change of the angles
reflects the action. This proves the effectiveness of the selected angles for action
recognition. Finally, we combined the two methods (Rearrangement and Angles)



A Novel Multi-feature Skeleton Representation for 3D Action Recognition 375

together. ‘5 Key Joints + Rearrangement + Angles’ achieved the best result, with
77.33% and 82.48% on the cross-subject and cross-view protocols, respectively.
In particular, this result was obtained by using the strategy of copying the values
of the angles three times as much as before, in the encoded grayscale image. We
also conducted the experiments with no copying operation; the accuracy was
81.27% on the cross-view protocol and 76.17% on the cross-subject protocol,
which is a worse result than that obtained with the copying operation. This
indicates the effectiveness of the proposed strategy. Based on these results, we
used this combined representation, ‘5 KeyJoints + Rearrangement + Angles’, in
the following experiments for comparison with other methods.

We compared the proposed method with other methods using the NTU
TGB+D dataset, as shown in Table 1. Our method achieved better results than
others, on both the cross-subject and cross-view evaluation protocols. The best
accuracy on the cross-view protocol was 82.48%, which is 2.18% higher than
the best CNN-based method TSRJI (Late Fusion) [1], and higher than the best
RNN-based method STA-LSTM [28] by 1.28%. On the cross-subject protocol,
the proposed method achieved an accuracy of 77.33%. In comparison with the
previous best method STA-LSTM [28], tested on the cross-subject protocol, the
accuracy has been improved by 3.93%.

Table 2. Evaluation results on NTU RGB+D 120 Dataset. We list the accuracy on
standard cross-subject and cross-setup protocols. Results of other methods for com-
parison are from [17].

Method Cross-subject Cross-setup

Dynamic skeletons [9] 50.8% 54.7%

Spatio-temporal LSTM [20] 55.7% 57.9%

Internal feature fusion [19] 58.2% 60.9%

GCA-LSTM [22] 58.3% 59.2%

Multi-task learning network [13] 58.4% 57.9%

FSNet [18] 59.9% 62.4%

Skeleton visualization (single stream) [23] 60.3% 63.2%

Two-stream attention LSTM [21] 61.2% 63.3%

Multi-task CNN with RotClips [14] 62.2% 61.8%

Magnitude-orientation (TSA) [2] 62.9% 63.0%

TSRJI (late fusion) [1] 65.5% 59.7%

5 key joints + rearrangement + angles 65.44% 65.15%

NTU RGB+D 120 Dataset [17]. This dataset is more challenging than the
NTU RGB+D dataset, because it has many more action categories, perform-
ers, and skeleton sequences. There are two standard evaluation protocols for
testing on this dataset. Cross-subject evaluation splits the 106 human subjects
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into training and testing sets by the subjects’ identifiers. Cross-setup evaluation
selects samples with even setup identifiers for training and odd identifiers for
testing.

According to the experimental results shown in Table 1, the proposed method
‘5 Key Joints + Rearrangement + Angles’ achieved the best performance on
the NTU RGB+D dataset, so we tested this method on the NTU RGB+D
120 dataset. As shown in Table 2, the proposed method outperformed all other
methods on the cross-setup protocol, with an accuracy of 65.15%. On the cross-
subject protocol, the best result was achieved by [1] with an accuracy of 65.5%.
However, our method still achieved a competitive result, with an accuracy of
65.44%.

UTKinect-Action3D Dataset [33]. In the evaluation on the UTKinect
dataset, we used the cross-subject evaluation protocol, as [26] did. Half of the
subjects in the dataset were used for training and the remaining subjects were
used for testing. The evaluation result of our method is shown in Table 3. The
results of the other methods in Table 3 were all evaluated with the same cross-
subject protocol. Compared with other methods, our method achieved the high-
est accuracy, 97.0%.

Table 3. Experimental results on UTKinect-Action3D Dataset.

Method Accuracy

JL-d [35] 95.96%

Lie group representation [26] 96.68%

Ensemble TS-LSTM v2 [16] 96.97%

HST-RNN [32] 96.97%

5 key joints + rearrangement + angles 97.0%

5 Conclusions

In this paper, we proposed a method of extracting features from an original
skeleton sequence as a multi-feature skeleton representation, which is then input
to CNNs for further action classification. To enable the pixels in the generated
grayscale images to preserve more of the spatial information of the original skele-
ton structure, we proposed the strategy of dividing the skeleton joints into several
groups in which joints are related to each other, and rearranging the positions of
pixels according to the relationships. This method proved effective for improving
the recognition accuracy. In addition, a set of important angles in the skeleton
structure was calculated, to form a multi-feature representation and utilize more
spatial information. The proposed method was evaluated with standard evalu-
ation protocols on three 3D skeleton-based action datasets: NTU RGB+D [27],
NTU RGB+D 120 [17], and UTKinect-Action3D Dataset [33]. The experimental
results indicated the effectiveness of our method of using a novel spatio-temporal
skeleton representation for 3D skeleton-based action recognition.
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