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Abstract. The dominant paradigm in spatiotemporal action detection
is to classify actions using spatiotemporal features learned by 2D or
3D Convolutional Networks. We argue that several actions are char-
acterized by their context, such as relevant objects and actors present
in the video. To this end, we introduce an architecture based on self-
attention and Graph Convolutional Networks in order to model contex-
tual cues, such as actor-actor and actor-object interactions, to improve
human action detection in video. We are interested in achieving this in
a weakly-supervised setting, i.e. using as less annotations as possible in
terms of action bounding boxes. Our model aids explainability by visu-
alizing the learned context as an attention map, even for actions and
objects unseen during training. We evaluate how well our model high-
lights the relevant context by introducing a quantitative metric based
on recall of objects retrieved by attention maps. Our model relies on a
3D convolutional RGB stream, and does not require expensive optical
flow computation. We evaluate our models on the DALY dataset, which
consists of human-object interaction actions. Experimental results show
that our contextualized approach outperforms a baseline action detec-
tion approach by more than 2 points in Video-mAP. Code is available at
https://github.com/micts/acgcn.

Keywords: Weakly-supervised action detection · Graph convolutional
networks · Relational reasoning · Actor-context relations

1 Introduction

Human action recognition is an important part of video understanding, with
potential applications in robotics, autonomous driving, surveillance, video
retrieval and healthcare. Given a video, spatiotemporal action detection aims
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to localize all human actions in space and time, and classify the actions being
performed. The dominant paradigm in action detection is to extend CNN-based
object detectors [13,18] to learn appearance and motion representations in order
to jointly localize and classify actions in video. The desired output are action
tubes [9]: sequences of action bounding boxes connected in time throughout the
video.

In contrast to object detection, action detection requires learning of both
appearance and motion features. Although spatiotemporal features are essential
for action recognition and detection, they might prove insufficient for actions that
share similar characteristics in terms of appearance and motion. For example,
spatiotemporal features might not be sufficient to differentiate the action “Tak-
ing Photos” in Fig. 1 from a similar one, such as “Phoning”, since both share
similar characteristics in space and time (i.e. similar posture, motion around the
head). As humans, we make use of context to put actions and objects in perspec-
tive, which can be an important cue to improve action recognition. Such con-
textual cues can refer to actor-object and actor-actor interactions. For instance,
a person holding a camera is more likely to perform the action “Taking Pho-
tos” than “Phoning”, and vice versa. CNNs are able to capture such abstract
or distant visual interactions only implicitly by stacking several convolutional
layers, which increases the overall complexity and number of parameters. Hence,
an approach to explicitly model contextual cues would be beneficial.

We introduce an approach to explicitly learn contextual cues, such as actor-
actor and actor-object interactions, to aid action classification for the task of
action detection. Our model, inspired by recent work on graph neural networks
[12,27,32], learns context by performing relational reasoning on a graph struc-
ture using Graph Convolutional Networks (GCN) [12]. A high-level overview
is illustrated in Fig. 1. Given a detected actor in a short video clip, we con-
struct a graph with an actor node encoding actor features, and context nodes
encoding context features, such as objects and other actors in the scene. The
graph’s adjacency matrix consists of relation values encoding the importance
of context nodes to the actor node, and is learned during training via gradi-
ent descent. Graph convolutions accumulate the learned context to the actor to
obtain contextualized/updated actor features for action classification. Our model
aids explainability by visualizing the learned adjacency matrix as an attention
map that highlight the relevant context for recognizing the action.

We are interested in an approach to learn these contextual cues using as few
annotated data as possible. Recent works [7,23,25,33] that model contextual
cues for action detection rely on full supervision in terms of actor bounding
box annotations. However, extensive video annotation is time consuming and
expensive [15]. In this work, we are interested in learning context for the task
of weakly-supervised action detection, i.e. action detection when only a handful
of annotated frames are available throughout the action instance. Following the
setting of sparse spatial supervision [31], we train our contextual model by using
up to five actor bounding box annotations throughout the action instance.
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Fig. 1. Given spatiotemporal features extracted from an input clip, we construct a
graph with an actor (grey) node and context (numbered) nodes in order to model rela-
tions, such as actor-actor and actor-object interactions. Graph convolutions accumulate
the learned context to the actor to obtain updated actor features for classification.

We evaluate our models on the challenging Daily Action Localization in
YouTube (DALY) dataset [31], which consists of 10 action classes of human-
object interactions (e.g. Drinking, Phoning, Brushing Teeth), and is annotated
based on sparse spatial supervision. Therefore, DALY is a suitable test bed to
model context for the task of weakly-supervised action detection.

Our contributions are as follows: 1) We introduce an architecture employing
Graph Convolutional Networks [12] in order to model contextual cues to improve
classification of human actions in videos; 2) Our model aids explainability by
visualizing the graph’s adjacency matrix in the form of attention maps that
highlight the learned context, even in a zero-shot setting, i.e. for actions and
objects unseen during training; 3) We achieve 1) and 2) in a weakly-supervised
setting, i.e. when annotated data are sparse throughout the action instance; 4)
We introduce an intuitive metric based on recall of retrieved objects in attention
maps, in order to quantitatively evaluate how well the model highlights the
important context. As attention maps are often used for qualitative inspection
only, this metric may be of general use beyond our use case.

In Sect. 3, we present the baseline model and our approach on learning con-
text by performing reasoning on a graph structure using GCN [12]. Addition-
ally, we discuss training of these models using sparse spatial supervision [31].
We conduct experiments and report results in Sect. 4. In Sect. 5, we perform a
qualitative and quantitative analysis of attention maps.

2 Related Work

2.1 Action Recognition and Detection

Action recognition aims to classify the action taking place in a video. Early
approaches relied on two-stream 2D CNNs [21] operating on RGB and opti-
cal flow inputs, or on detectors to classify bounding boxes of components in
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keyframes leaving action classification at the video level to traditional machine
learning techniques [3]. Recent works focus on (two-stream) 3D CNNs [4,17,24],
which perform spatiotemporal (3D) convolutions. While action recognition con-
siders the classification task, action detection carries out both classification and
detection of actions. Although action detection is usually addressed using full
supervision [7,9,23,25,30,33], we are interested in weak supervision, which allows
us to reduce annotation cost by training models using very few action bounding
box annotations per action instance.

Sivan and Xiang [22] approach weakly-supervised action detection using Mul-
tiple Instance Learning (MIL). Their approach requires binary labels at the video
level, indicating the presence of an action. Mettes et al. [15] propose action anno-
tation using points, instead of boxes. Chéron et al. [5] present a unified framework
for action detection by incorporating varying levels of supervision in the form
of labels at the video level, a few bounding boxes, etc. Weinzaepfel et al. [31]
introduce DALY and the setting of sparse spatial supervision, in which, up to
five bounding boxes are available per action instance. Chesneau et al. [6] produce
full-body actor tubes inferred from detected body parts, even when the actor is
occluded or part of the actor is not included in the frame.

2.2 Visual Relational Reasoning

There has been recent research on augmenting deep learning models with the
ability to perform visual relational reasoning.

Santoro et al. [20] propose the relation network, which models relations
between pairs of feature map pixels for visual question answering. This idea
has been extended for action detection [23,25] to model actor-context relations.
Similar to [23,25], we treat every 1×1×1 location of the feature map as context.
In these works, learned actor-context relations are used either directly [23] or to
highlight features of the feature map [25] for action classification. In contrast,
we encode actor-context relations as edges in a graph, and graph convolutions
output updated actor features for action classification.

With regard to visual attention, non-local neural networks [28] compute the
output of a feature map pixel as a weighted sum of all input pixels. For action
detection, Girdhar et al. [7] extend the Transformer architecture [26] for action
detection. Although a Transformer can be represented as a graph neural net-
work and vice versa, we argue that a graph representation is simpler and more
intuitive compared to the Transformer representation of Queries, Keys and Val-
ues. Whilst [7] use two transformations of a feature map to represent context
as Keys and Values, this representation does not have a direct interpretation in
a graph. In contrast, we use a single transformation to obtain context features,
which correspond to context nodes in the graph. Furthermore, our model does
not require residual connections [11] nor Layer Normalization [2], two essential
components of the Transformer.

In this work, we apply Graph Convolutional Networks (GCN) [12], which
provide a structured and intuitive way to model relations between nodes in a
graph. Recently, GCN have been used for visual relational reasoning for the tasks
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of action recognition [29] and group activity recognition [32]. Zhang et al. [33]
employ GCN [12] for action detection, where nodes represent detected actors
and objects. As we do not require an external object detector, our approach is
suitable to reason with respect to arbitrary context and objects which cannot
be detected, e.g. because the object detector has not been trained to do so.

Whilst aforementioned approaches [7,23,25,33] rely on full actor supervision
during training, our work focuses on learning contextual cues using weak super-
vision in terms of actor bounding box annotations. Although similar attention
maps are also presented in [7,23,25], our work is the first to generate them in a
zero-shot setting, and introduce a metric to quantitatively evaluate them.

3 Learning Context with GCN

We propose an approach to learn contextual cues, such as actor-actor and actor-
object interactions, by performing relational reasoning on a graph structure using
Graph Convolutional Networks (GCN) [12]. We expect such contextual cues to
improve action classification, as they can be discriminative for the actions per-
formed, and provide more insight into what the model has learnt, which bene-
fits interpretability. Moreover, we are interested in learning context using weak
supervision in terms of actor bounding box annotations. An overview of our pro-
posed GCN model is illustrated in the second branch of Fig. 2. The input is a
short video clip with at least one actor performing an action. A 3D convolutional
network extracts spatiotemporal features for the input clip, up to a convolutional
layer. We treat every 1×1×1 spatiotemporal location of the output feature map
as context, while actor features are extracted by RoI Pooling [8] on the detected
actor’s bounding box and subsequent 3D convolutional layers. We construct a
graph consisting of context nodes and an actor node, with connections drawn
from every context node to the actor node. Relation values between nodes are
encoded in the adjacency matrix, and learned using a dot-product self-attention
mechanism [26,27]. Graph convolutions accumulate the learned context to the
actor in order to obtain updated/contextualized actor features for action classi-
fication. We compare the GCN model to a baseline model that uses no context,
and classifies the action using the feature representation corresponding to the
actor bounding box.

In this section, we first present the 3D convolutional backbone network to
learn spatiotemporal features using weak supervision. Next, we present our app-
roach on learning contextual cues for action detection using GCN and we provide
implementation details.

3.1 Feature Extraction with Weak Supervision

Backbone Network. Spatiotemporal features for the whole input clip are
extracted using a 3D convolutional backbone network. There are several 3D
architectures in literature [4,17,24]. We opt for I3D [4], which is widely used
and has demonstrated very positive results in action recognition. The input is
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Fig. 2. The lowest part shows the graph representation of the GCN model for a single
graph, while its implementation using matrix operations is shown in the middle part.
The top part illustrates the construction of multiple graphs (multi-head attention) in
order to learn different types of actor-context relations.

a sequence of frames of size C × T × H × W , where C denotes the number of
channels, T is the number of input frames, and H and W represent the height
and width of the input sequence. Features are extracted up to Mixed 4f layer,
which has an output feature map of size D′ × T ′ × H ′ × W ′, where D′ denotes
the number of feature channels, T ′ = T

8 , H ′ = H
16 , and W ′ = W

16 .

Actor Feature Extraction with Weak Supervision. We are interested in
learning spatiotemporal features using only a handful of annotated frames per
action instance. For an annotated frame, also called keyframe, annotation is in
the form of an action bounding box and corresponding class label. Due to the
limited number of available annotated frames, training a Region Proposal Net-
work (RPN) [18] to produce actor box proposals would be sub-optimal. To this
end, we train our models using sparse spatial supervision as introduced in [31].
In detail, a Faster R-CNN [18] detects all actors in each frame, and detections
are tracked throughout the action instance using a tracking-by-detection app-
roach [30], which produces class-agnostic action tubes. In practice, we use tubes
provided by [31]. Tubes are labeled based on spatiotemporal Intersection over
Union (IoU) with sparse annotations, i.e. ground truth tubes comprised of up to
5 bounding boxes throughout the action instance. Tubes with spatiotemporal
IoU greater than 0.5 are assigned to the action class of the ground truth tube
with the highest IoU. If no such ground truth tube exists, the action tube is
labeled as background. The backbone is augmented with a RoI pooling layer [8]
to extract features for each actor for action classification. Boxes of each tube are
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appropriately scaled and mapped to the output feature map of Mixed 4f layer,
with a temporal stride of four frames. For each action tube, RoI pooling extracts
actor features of size D′ × T ′ × 7 × 7. Actor features are then passed through
I3D tail consisted of 3D convolutional layers Mixed 5b and Mixed 5c. Finally, a
spatiotemporal (3D) average pooling layer reduces the size to D′′ × 1 × 1 × 1.

3.2 Graph Convolutional Networks

Learning Relations. Our graph consists of two types of nodes: context nodes
and actor nodes. Context node features, f ′

j ∈ R
D′×1×1×1, j = 1, 2, . . . ,M , M =

T ′H ′W ′, correspond to every 1 × 1 × 1 spatiotemporal location of the output
feature map of Mixed 4f layer. Actor node features, a′

i ∈ R
D′′×1, i = 1, 2, . . . , N ,

where N is the number of detected actors in the input clip, are extracted as
described in Sect. 3.1. Relations between actor features and context features,
shown in orange arrows in Fig. 2, are learned using a dot-product self-attention
operation [26,27], after projecting the features in a lower dimensional space using
a linear transformation. Formally,

eij = θ(a′
i)

T · φ(f ′
j) (1)

where

ai = θ(a′
i) = Wθa

′
i + bθ (2)

fj = φ(f ′
j) = Wφf ′

j + bφ (3)

Equations 2–3 are transformations for actor features and context features,
respectively, with Wθ ∈ R

D′′×D,Wφ ∈ R
D′×D; bθ,bφ ∈ R

D×1; D < D′,D′′.
In matrix form, A ∈ R

N×D for transformed actor features and F ∈ R
M×D for

transformed context features. The graph is represented by an adjacency matrix,
G ∈ R

N×M , where gij ∈ G denotes the relation or attention value, indicating
the importance of context feature, fj , to actor feature, ai. Consequently, G is
a directed graph connecting every context node to every actor node. Relation
or attention values, gij , are obtained by applying softmax normalization on eij

(output of dot-product) across context features

gij =
exp(eij)∑
k exp(eik)

(4)

Graph Convolutions. Having defined the graph and a mechanism for learning
actor-context relations, we perform reasoning on the graph in order to obtain
updated actor features. This is achieved by accumulating information from con-
text nodes to the actor node using graph convolutions. Updated actor features,
Z ∈ R

N×D, are obtained by

Z = σ
((

GF + A
)
W

)
(5)
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The operation is shown in blue arrows in Fig. 2. The weighted average of F with
the relation values G produces weighted context features. Adding actor features
A to the resulting representation imposes identity links for all actor nodes in
the graph. The output is passed through a learnable linear transformation W ∈
R

D×D and a non-linear activation function σ(·) implemented as ReLU [10].
In order to capture multiple types of relations between the actor and the

context, we perform multi-head attention [26] by constructing multiple graphs
at a given layer and merging their outputs using concatenation or summation.
Weight matrices Wθ,Wφ, W are independent across graphs. Finally, in order to
encode updated actor features on a higher level, we stack multiple GCN layers
by providing the output of multiple graphs as input to the next GCN layer.

Location Embedding. Location information, such as the position of an actor
with respect to other actors and objects, is important for modeling contextual
cues. However, such information, encoded indirectly by regular convolutions, is
lost when applying convolutions on a graph structure.

We incorporate location information in both context features and actor fea-
tures. For context features, we concatenate coordinates (x, y) along the channel
dimension before applying Wφ, indicating the location of the feature on the
output feature map. For actor features, we concatenate coordinates (cx, cy, w, h)
before applying Wθ, corresponding to the average center, width and height of
the actor tube across the input clip. Coordinates are normalized in [−1, 1].

3.3 Implementation Details

We implement our models in PyTorch [16]. I3D is pre-trained on ImageNet
[19] and then on the Kinetics [4] action recognition dataset, while the external
detector is pre-trained on the MPII Human Pose dataset [1]. The input is a clip
of 32 RGB frames with spatial resolution of 224 × 224. The output feature map
of Mixed 4f layer has D′ = 832 channels, while actor features have D′′ = 1024.
Transformations Wθ, W are implemented as fully connected layers and Wφ

as a 3D convolutional layer with kernel size 1 × 1 × 1. We set D = 256. We
apply 3-dimensional dropout to context features before Wφ. Additionally, 1-
dimensional dropout is applied to actor features before Wθ in the first GCN
layer, before W in all GCN layers and prior to the final classification layer (in
both GCN and baseline model). Dropout probability is 0.5 in all cases. All fully
connected layers are initialized using a Normal distribution according to [10]. We
set the gain parameter to 1 for Wθ and to

√
2 for the rest of the fully connected

layers. Wφ is initialized using a Uniform distribution according to [10] in the
range (−b + 0.01, b − 0.01) for the first GCN layer, and in the range (−b, b) for
subsequent layers, using a gain of 1√

3
. Biases of all layers are initialized to zero.

Models are optimized using SGD and cosine learning rate annealing, with
learning rate 2.5 · 10−4 over 150 epochs, and 4.7 · 10−5 over 450 epochs, for the
baseline and GCN model, respectively. We use a batch size of 3 clips, where each
clip is randomly sampled from a video in the training set. Tubes of each clip are
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scored using the softmax scores produced by the model. During inference, we
sample 10 32-frame clips from each video, and tubes are scored by averaging the
softmax scores across the clips. The same clips are sampled in order to facilitate
fair comparison between different models. Training time is approximately one
day for GCN and less than half a day for the baseline on a GTX 1080 Ti GPU.

4 Experiments

In this section, we first describe the DALY dataset and the evaluation metric
used throughout the experiments. Next, we conduct experiments to evaluate the
performance of the GCN model, and we compare it with the baseline and the
state of the art on DALY. Finally, we evaluate the GCN model using minimal
spatial supervision i.e. one bounding box per action instance.

4.1 Dataset and Evaluation Metric

We develop and evaluate our models on the Daily Action Localization in Youtube
(DALY) [31] dataset. It consists of 510 videos of 10 human actions, such as
“Drinking”, “Phoning” and “Brushing Teeth”. In this paper, we do not per-
form temporal localization, and we assume that the temporal boundaries of
each action instance within a video are known. An action instance has an aver-
age duration of 8 s and may contain more than one person performing an action.
Each of the 10 classes contains an interaction between a person and an object
that define the action taking place. There are 31 training videos and 20 test
videos per class. We fine-tune our models by holding out a subset of the training
set as a validation set, consisted of 10 videos from each class. We evaluate models
using Video-mAP at 0.5 IoU threshold (Video-mAP@0.5) [9].

4.2 Evaluation of Architecture Choices

In this section, we experimentally evaluate the GCN model with respect to sev-
eral architecture choices. Specifically, we experiment with up to two GCN lay-
ers and up to three graphs per layer. Additionally, we compare concatenation
and summation as merging functions to combine the output of multiple graphs.
Finally, we measure the impact of including the location embedding and the I3D
tail (convolutional layers Mixed 5b and Mixed 5c) to extract actor features.

Results with respect to different number of layers and graphs are shown
in Table 1, along with the number of parameters for every configuration (I3D
parameters are not included). Note that for two GCN layers, the first layer
always employs concatenation as a merging function. Building multiple graphs
is beneficial for model performance, for both functions. It is interesting that mAP
increases for a 2-layer GCN model with concatenation, but not with summation.
Concatenation outperforms summation in nearly all configurations. For the rest
of the experiments, we choose a 2-layer, 2-graph GCN model with concatenation,
which provides a good trade-off between performance and number of parameters.
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Table 1. Validation mAP with respect to different number of layers, number of graphs
per layer and merging functions to combine the output of multiple graphs. The number
of model parameters are provided for every configuration.

# Layers # Graphs Merging function # Parameters Val. mAP

1 1 – 543K 49.39

1 2 Sum 1.084M 51.39

Concat 1.086M 51.3

1 3 Sum 1.624M 50.7

Concat 1.630M 50.98

2 1 – 887K 47.28

2 2 Sum 1.903M 50.1

Concat 1.906M 51.82

2 3 Sum 3.050M 49.98

Concat 3.055M 52.09

In order to measure the impact on model performance obtained by the loca-
tion embedding and I3D tail, we remove them from the architecture and examine
the difference in model performance. By removing the location embedding, the
model has no information of the actor’s location relatively to other actors and
objects, and relations are calculated based solely on visual features. This results
in a decrease of 1.1 points in mAP (50.7), which indicates that modeling spa-
tial actor-context relations improves performance. By removing the I3D tail,
actor features are extracted from the output feature map of Mixed 4f layer.
This results in a significant decrease of more than four points in mAP (47.42),
highlighting the importance of using the I3D tail to encode actor features.

4.3 Comparison with Baseline and State of the Art

We compare the GCN model with the baseline model and the state-of-the-art
[6,31] on the DALY test set in Table 2.

The baseline model classifies actor features obtained from I3D (see Sect. 3.1)
using a linear layer that outputs classification scores for C action classes and
a background class. Results are shown in Table 2. Across five repetitions, the
GCN model outperforms the baseline model by 2.24 (3.7%) points in mean
mAP, and by 2.94 (4.9%) points in maximum mAP. The left-hand side of Fig. 3
illustrates per-class average precision for the baseline and GCN model. GCN
performs comparably or better than the baseline model in all classes except
“TakingPhotosOrVideos”. On the right-hand side of Fig. 3, we visualize t-sne
[14] actor feature embeddings, colored by the respective action, for the GCN
(top) and baseline model (bottom). The GCN model produces tighter and more
distinct clusters compared to the baseline model.
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Table 2. Comparison of GCN model with the baseline model and state-of-the-art on
the test set. We report model architecture and input modalities (RGB, Optical Flow).

Model Architecture Input Test mAP

Weinzaepfel et al. [31] Fast R-CNN (VGG-16) RGB, OF 61.12

Chesneau et al. [6] Fast R-CNN (VGG-16) RGB, OF 63.51

Baseline (Ours) I3D RGB 59.58 (± 0.22) (59.79)

GCN (Ours) I3D RGB 61.82 (± 0.51) (62.73)

Fig. 3. Per-class Video-AP on the test set across five repetitions of GCN and baseline
model, and t-SNE actor feature embeddings of GCN (top) and baseline model (bottom).

Comparing the GCN model with the state-of-the-art [6,31], we obtain slightly
improved performance in comparison to [31], while Chesneau et al. [6] achieve
better performance by 1.69 points in mean mAP and 0.78 points in maximum
mAP. We argue that this is due to the following reasons. Firstly, our models
are trained using fewer videos, since we hold out a part of the training set as a
validation set for fine-tuning. Secondly, [6,31] train their models on the region
proposals produced by the detector (see Sect. 3.1), while we train our models
on the data provided by [31], which are only the final detections of the detector.
Consequently, we train our models using fewer videos and boxes compared to
[6,31]. It is worth noting that, in contrast to [6,31], our model does not employ
expensive optical flow computation.
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4.4 Reducing Annotation to One Bounding Box

We examine model performance when minimal spatial supervision is used, i.e.
one bounding box per action instance. We label tubes based on spatial IoU with
the ground truth box of a randomly selected keyframe for each action instance.
A GCN model is then trained using the newly labeled tubes. Using only a single
keyframe to label tubes, we obtain a small decrease in mAP, from 61.82 to
61.07. On the other hand, when one keyframe is used during evaluation too,
performance decreases by 3.15 points in mAP. The reason for such a decrease is
that mAP is not adequately estimated using only one evaluation keyframe.

5 Analysis of Attention

Our GCN model aids explainability by visualizing the adjacency matrix in the
form of attention maps that highlight the learned context, even in a zero-shot
setting, i.e. for actions and objects unseen during training. Although similar
attention maps are presented in previous works [7,23,25] (albeit not in a zero-
shot setting), in this paper, we go one step further to quantitatively evaluate the
ability of the attention to highlight the relevant context. To this end, we propose
a metric based on recall of objects retrieved by attention maps. In this Section,
we present qualitative and quantitative results of attention maps.

5.1 Evaluation of Attention Maps

The adjacency matrix contains the relation or attention values, indicating the
importance of every context node (spatiotemporal location of feature map) to
the actor node. By visualizing the adjacency matrix, we obtain an attention map
that highlights, for a given actor, the important context regions the model pays
most attention to. The map is interpolated to the original input size and overlaid
on the input clip. Our model is even able to generalize its attention in a zero-
shot setting i.e. for actions that the model has not been trained to recognize. To
achieve this, we train a GCN model by excluding two action classes, and then
visualize the attention maps for the excluded classes.

Qualitative Evaluation. Figure 4 illustrates examples of attention maps,
where each one is the combination of four adjacency matrices (2 GCN lay-
ers; 2 graphs per layer) by summing their values along the spatial dimensions.
Each example contains four attention maps, representing time progression along
the input clip. The last row of Fig. 4 contains zero-shot attention maps for
classes “Ironing” and “TakingPhotosOrVideos”. The attention maps show that
our GCN model highlights relevant context, such as objects, hands and faces,
and is also able to track objects along time. Finally, our model is able to high-
light relevant objects (e.g. Iron, Camera) for actions unseen during training (last
row of Fig. 4).
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Fig. 4. Per-class object recall curves, along with visualizations of attention maps (last
row illustrates zero-shot cases) for actions “Drinking”, “CleaningFloor”, “Cleaning-
Windows”, “BrushingTeeth”, “FoldingTextile”, “Ironing”, “TakingPhotosOrVideos”.

Quantitative Evaluation. We evaluate how well the attention maps highlight
relevant objects by introducing a metric based on recall of objects retrieved by
the attention. DALY provides object bounding box annotations on annotated
frames. Given the attention map produced for a detected actor, we sum the
attention values inside the object’s bounding box. An instance is a true positive
if the sum of values is larger than a threshold, and a false negative, otherwise.

A per-class quantitative evaluation of attention maps is shown in Fig. 4, with
recall on the y-axis and the attention threshold on the x-axis. Dashed curves
correspond to zero-shot cases. Our metric suggests that objects are retrieved
by the attention with relatively high recall, even for large attention thresholds,
which shows the effectiveness of our model to highlight the relevant context.

6 Conclusion

We propose an approach using Graph Convolutional Networks [12] to model
contextual cues, such as actor-actor and actor-object interactions, to improve
action detection in video. On the challenging DALY dataset [31], our model
outperforms a baseline, which uses no context, by more than 2 points in Video-
mAP, performing on par or better in all action classes but one. The learned
adjacency matrix, visualized as an attention map, aids explainability by high-
lighting the learned context, such as objects relevant for recognizing the action,
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even in a zero-shot setting, i.e. for actions unseen during training. We quantita-
tively evaluate the attention maps using our proposed metric based on recall of
objects retrieved by the attention. Results show the effectiveness of our model
to highlight the relevant objects with high recall. All the above are achieved in a
weakly-supervised setting using only up to five or even one actor box annotation
per action instance. Future work includes end-to-end model training using weak
supervision and modeling relations between consecutive clips and videos of the
same action.

Acknowledgements. We would like to thank Philippe Weinzaepfel for providing us
with the predicted action tubes of their tracking-by-detection model.
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