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Abstract. Video understanding has received more attention in the past
few years due to the availability of several large-scale video datasets.
However, annotating large-scale video datasets are cost-intensive. In this
work, we propose a time-efficient video annotation method using spatio-
temporal feature similarity and t-SNE dimensionality reduction to speed
up the annotation process massively. Placing the same actions from dif-
ferent videos near each other in the two-dimensional space based on
feature similarity helps the annotator to group-label video clips. We eval-
uate our method on two subsets of the ActivityNet (v1.3) and a subset
of the Sports-1M dataset. We show that t-EVA (https://github.com/
spoorgholi74/t-EVA) can outperform other video annotation tools while
maintaining test accuracy on video classification.
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1 Introduction

The availability of large-scale video datasets [17,19,20], has made video under-
standing in various tasks such as action recognition [25,37,41], object tracking
[42,47,48] an attractive topic of research. Various supervised methods, [8,37,41],
have improved video classification and temporal localization accuracy on large-
scale video datasets such as ActivityNet (v1.3) [17]; however, labeling videos on
such a large-scale dataset, requires a great deal of human effort. Therefore, other
methods aim to train the networks for tasks such as video action recognition in
a semi-supervised [1,46] manner without having the full labels. To decrease the
dependency on the quality and amount of annotated data, [12,15] investigated
pre-training features with internet videos with noisy labels in a weakly super-
vised manner. However, these methods cannot achieve higher accuracy on video
classification tasks than supervised models on large-scale video datasets such as
Kinetics [20]. Instead of using such techniques, we focus on reducing the anno-
tation effort for adding more training data.

Fully-supervised models require much annotated data that is unavailable as
videos are unlabeled by nature, and annotating them is labor-intensive. Large
scale datasets [6,17,20] use strategies like Amazon Mechanical Turk (AMT) to
annotate the videos. [20] uses majority voting between multiple AMT workers
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to accept annotation of a single video. Using such methods is not efficient for
video annotation on a large scale as it costs a lot in terms of time and money.
MuViLab [2], an open-source software, enables the oracle to annotate multiple
parts of a video simultaneously. However, these methods do not exploit the
structure of the video data.

Fig. 1. Comparison of annotation time using dif-
ferent tools versus video time for the ActivityNet
[17] subset-1. Our annotation method (t-EVA)
outperforms the conventional (no specific tools)
annotation and MuViLab [2] in annotation time.
With a window size of 128 time-steps (128-TS),
our method can annotate 769 min of video in
21 min. The MuViLab and conventional annota-
tion numbers are extrapolated.

We introduce an annota-
tion tool that helps the anno-
tator group-label videos based
on their latent space feature
similarity in a 2-dimensional
space. Transferring the high-
dimensional features obtained
from 3D ConvNet to two dimen-
sions using t-SNE gives the
annotator an easy view to group
label the videos both, temporal
labels and classification labels.
The annotation speed depends
on the quality of the extracted
features and how well they are
placed together in the t-SNE
plot. If the classes are well-
separated in the t-SNE plot,
group labeling becomes faster
for the oracle.

We evaluated our method on
two subsets of ActivityNet (v1.3
datasets) [17] and a subset of
Sports-1M dataset [19] with 15 random classes. Conventional annotation refers
to humans watching the videos and annotating the temporal boundaries of the
human actions in videos without any specific tool. MuViLab is a more advanced
open-source tool that extracts short clips from each video and plays them simul-
taneously in a grid-like figure beside each other. Oracle can annotate the video
by selecting multiple short clips at the same time and assigning the specific class.
We show that t-EVA outperforms conventional annotation techniques (with no
specific tools) and MuViLab [2] in time of annotation (ToA) by a large margin
on the ActivityNet dataset while still being able to keep the test accuracy on
video classification task within a close range of using the original ground truth
annotations (Fig. 1).
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2 Related Work

Video Understanding. In the past the focus was on the use of specific hand-
designed features such as HOG3D [21] SIFT-3D [33], optical flow [34] and iDT
[40]. Among these methods, iDT and Optical flow is being used in combination
with CNNs in different architectures such as two-stream networks [36]. Later
some attempts used 2D CNNs and extract features from video frames and com-
bine them with different temporal integration functions [14,45]. The introduc-
tion of 3D convolution [35,37] in CNNs which extends the 2D CNNs in temporal
dimension showed promising results in the task of action recognition in large-
scale video datasets. 3D CNNs in different variations such as single stream and
multiple-stream are among state of the art in the task of video understanding
[4,10,13,18,28,32,38].

Dimensionality Reduction. Dimensionality reduction (DR) is an essential
tool for high-dimensional data analysis. In linear DR methods such as PCA, the
lower-dimension representation is a linear combination of the high-dimensional
axes. Non-linear methods, on the other hand, are more useful to capture a more
complex high-dimensional pattern [22]. In general, non-linear DR tries to main-
tain the local structure of the data in the transition from high-dimension to
low-dimension and tends to ignore larger distances between the features [5].
t-Distributed Stochastic Neighbor Embedding (t-SNE) introduced by [39] is a
non-linear DR technique which is used more for visualization. [24] shows that
t-SNE is able to distinct well-separable clusters in low-dimensional space. More-
over, some works have been proposed for more effective use of t-SNE. [5] proposes
a tool to support interactive exploration and visualization of high-dimensional
data. An alternative to t-SNE is using UMAP [29] for dimensionality reduction.
However, t-SNE is better studied, shows good results, and has the benefit of
high-speed optimization [31]. Therefore, t-EVA uses t-SNE to reduce the dimen-
sionality of the feature representations.

Data Annotation is essential for supervised models. Different tools have
been proposed for making an easy annotation tool for videos and images.
However, they usually do not exploit the structure of the data, which is especially
useful in videos [2,3,7]. Some works [11,23,26,44] have been done to make the
process of image annotation easier. [23] offers a real-time framework for anno-
tating internet images, and [11] uses multi-instances learning to learn the classes
and image attributes together; however, none of these methods use a deep repre-
sentation of data. In more recent works [44] uses Deep Multiple Instance Learning
to automatically annotate images and [26] uses semi-supervised t-SNE and fea-
ture space visualization in lower dimension to provide an interactive annotation
environment for images. [9] proposed a general framework for annotating images
and videos. However, to the best of our knowledge, our method is the first video
annotation platform that can exploit the structure of video using latent space
feature similarity to increase the annotation speed.
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Fig. 2. t-EVA pipeline: 1) Video clips are extracted from n consecutive frames [t0-tn]
(time-steps). 2) Spatio-temporal features are extracted from the last layer of a 3D
ConvNet before the classifier layer. 3) High dimensional features are projected to two
dimensions using t-SNE and are plotted on a scatter plot. 4) Oracle annotates the clips
represented in the scatter plot using a lasso tool. 5) The newly annotated data is added
to the labeled pool. 6) The network is fine-tuned for a certain number of epochs. This
cycle is repeated until all the videos are labeled, or the annotation budget runs out.

3 t-EVA for Efficient Video Annotation

We propose incremental labeling with t-SNE based on feature similarity (Fig. 2).
First, several videos are randomly selected from the unlabeled pool, and 3D
ConvNet features are extracted. The feature embeddings are transferred to a
two-dimensional space using t-SNE. As it can be seen in Fig. 3, the oracle has
two subplots for annotation: (i) A plot in which the oracle can use a lasso tool
to group label videos and (ii) Other plot with the middle frame of each clip in
which the oracle can move and zoom with the cursor on the plot and observe
where to annotate. After annotating the first set of videos, the video clips are
moved to the labeled pool, and the 3D network is fine-tuned for a certain number
of epochs with the newly labeled videos. We continue this process until all the
videos are labeled, or the annotation budget finishes.

We use 3D ConvNets to extract features from the videos and split each video
v into k shorter clips vi = [clip1, . . . , clipk] by sampling every n non-overlapping
frames clipi = [frame1, . . . , framen]. Sampling in multiple time-steps enables
us to capture different lengths of actions in the dataset. Afterward, each clip ci is
fed into the 3D ConvNet, for feature extraction. The features are extracted from
the last convolution layer after applying global average pooling. In t-SNE, the
pair-wise distances between feature vectors are used to map features to 2D. In
this paper, we use the Barnes-Hut optimized t-SNE version [27], which reduces
the complexity of O(NlogN) where N is the number of data-points.
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Fig. 3. A minimal representation of the annotation tool. 1) The oracle can see the
scatter plot (left) and the corresponding frames from the videos (middle) in separate
figures. 2) Based on the figures’ inspection, the oracle can detect different clusters of
an action class (kayaking) and use the lasso tool to select the cluster. 3) In the end,
the oracle assigns a label and based on the assigned class name, the selected points in
the scatter plot change color.

3.1 How to Annotate?

An overview of the annotation procedure can be seen in Fig. 3. First, the oracle
sees the scatter plot with all points with the same color representing the unla-
beled pool (Fig. 3 left) and the corresponding middle frame of each clip in the
video (Fig. 3 middle). The oracle can move the cursor and zoom in the plot to
inspect the frames with more details. Second, using the lasso tool, the oracle
can draw a lasso around the scatter plots based on the visual similarity and
inspection of the video frames. Third, oracle assigns the labels, and the network
is fine-tuned for a certain number of epochs. The same process repeats until all
the videos are annotated, or the annotation budget ends.

4 Experiments

In this section, we first explain the benchmark dataset and evaluation metrics.
In addition, we empirically show how our t-EVA can speed up annotation for
the ActivityNet dataset while keeping the video classification accuracy in a close
range to the usage of the ground truth labels. We also compare our results with
MuViLab [2] annotation tool. Furthermore, we qualitatively show how t-EVA
can help to annotate the Sports1-M [19].

4.1 Datasets

ActivityNet (v1.3) is an untrimmed video dataset with a wide range of human
activities [17]. It comprises of 203 classes with an average of 137 untrimmed
videos per class in about 849 h of video. We use two subsets of the ActivityNet
dataset. The first subset comprises 10 random classes, namely preparing salad,
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kayaking, fixing bicycle, mixing drinks, bathing dog, getting a haircut, snatch,
installing carpet, hopscotch, zumba consisting of 607 videos with 407 training
videos and 200 testing videos. The second subset adds another 5 handpicked
classes, which are playing water polo, high jump, discus throw, rock climbing,
using parallel bars, and they are visually close to some of the 10 random classes
to make the classification task harder. The second subset comprises 950 videos
with 639 videos in training and 311 videos in the test set.

Sports-1M is a large-scale public video dataset with 1.1 million YouTube
videos of 487 fine-grained sports classes [19]. We choose a subset of 15 random
classes of the Sports-1M dataset, namely boxing, kyūdō, rings (gymnastics),
yoga, judo, skiing, dachshund racing, snooker, drag racing, olympic weightlift-
ing, motocross, team handball, hockey, paintball, beach soccer with 702 videos
in total. The dataset provides video level annotation for the entire untrimmed
video; however, the temporal boundaries of the actions in the video are not
identified. Approximately 5% of the videos contain more than one action label.

4.2 Evaluation Metrics

To evaluate our method on ActivityNet subsets, we report the time of annotation
(ToA) as a metric to measure how fast the oracle can annotate a certain number
of videos. The ToA score is an average of three times repeating each experiment
by the oracle. ToA for conventional annotation and MuViLab on ActivityNet
subset-1 is extrapolated since annotating 13 h of video using these methods is
not feasible. We also report video classification accuracy in the form of mean
average precision (mAP) for the ActivityNet subsets to measure the quality of
annotation when the network is fine-tuned with our annotations versus with the
ground truth annotations. mAP is used instead of a confusion matrix since some
videos of ActivityNet contain more than one action [17].

For the Sports-1M [19] dataset, we perform a qualitative analysis of the
t-SNE projections. To motivate our design choices beyond qualitative results,
we introduce a realistic annotation emulation metric to estimate the quality of
t-SNE projections on a global and local level. To report how well the t-SNE
projection can separate the classes at a global level, we use a measure of cluster
homogeneity, and completeness. Homogeneity measures if the points in a cluster
only belong to one class and completeness measures if all points from one class
are grouped in the same cluster. In an ideal t-SNE projection, all the points in
each cluster belong to one class (homogeneity = 1.0), and all the points from a
class are in the same cluster (completeness = 1.0), which makes the annotation
process much faster. For clustering, K-Means clustering with K being the number
of classes is used. We use the K-Means clustering algorithm because it is fast
and has less hyperparameters to choose.

Since ToA can be a subjective metric, to evaluate the generalization of t-EVA
and to emulate the oracle’s annotation speed better, we also use a measure of
local homogeneity using K-nearest neighbors (KNN) with K=4 as in [26].
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KNN can be used to estimate the local homogeneity between the features in
lower dimensions. Higher KNN accuracy results in higher local homogeneity and
better grouping; meaning, the oracle can annotate the videos faster.

4.3 Implementation Details

Feature Extraction. We use the 3D ResNet-34 architecture [16], pre-trained
on Kinetics-400, as a feature extractor for all the experiments owing to their
good performance and usage of RGB frames only. As in [16], each frame is
resized spatially to 112 × 112 pixels from the original resolution. Each video
is transferred to clips by sampling every 32 consecutive frames. The feature
extractor in every forward pass takes a clip in the form of a 5D tensor as an
input. Each dimension of the input tensor represents the batch size, input color
channels, number of frames, spatial height, and width, respectively. Namely, an
input tensor for a clip sampled at 32 frames can be shown as (1, 3, 32, 112,
112). The features are extracted after the final 3D average pooling with an
8 × 4 × 4 kernel before the classifier layer. The dimensions of the feature vectors
are k × 512 with k being the total number of clips and later reduced to k × 2
using t-SNE.

t-SNE. For dimensionality reduction, a Barnes-Hut implementation of t-SNE
with two components are used from the scikit-learn library [30]. The perplexity
is set to 30, and the early exaggeration parameter is 12, with a learning rate of
200. The cost function is optimized for 2500 iterations.

Training. After annotating each set of videos, the network is fine-tuned for a
certain number of epochs. For training, the same 3D ResNet-34 [16] architecture
is used. The sample duration is chosen as 32 frames for each clip, and the input
batch size is 32. Stochastic gradient descends (SGD) is used as the optimizer
with a learning rate of 0.1, weight decay of 1e−3, and momentum of 0.9.

4.4 Results on ActivityNet

ActivityNet Subset-1. First, we put all the 407 videos in the unlabeled
pool. Then, we divide the videos randomly into four different sets of unlabeled
videos. The clips are generated with 32 consecutive frames, and the features are
extracted using the 3D Resnet-34. After annotating each set of unlabeled videos,
the network is fine-tuned for 20 epochs with the labeled videos. To note that,
previously labeled videos are also used in the later epochs. The process continues
until the network reaches 100 epochs. Between epoch 60 and 100, the network
is fine-tuned using all 407 videos. Meanwhile, we refine the labels of the videos.

The videos are annotated incrementally, each time one set is labeled. Table 1
shows that the annotation time drops after every iteration of annotation and
fine-tuning. Before fine-tuning the network, the labeling of the first set takes
600 s. ToA reduces 150 s at epoch 60 when the network is fine-tuned with pre-
viously labeled videos. Because of the incremental labeling and fine-tuning, the
network learns to extract better features from the videos, which can be better
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grouped in the t-SNE plot. It is also expected that the oracle spends more time
annotating the first few unlabeled set as the network is not yet fine-tuned. The
quality of annotation at the early stage significantly impacts the next iterations
of extracted features.

Table 1. Oracle’s time of annotation (ToA) is shown on subset 1 of the ActivityNet
(v1.3) dataset with 10 classes containing 407 videos (∼13 h). At every 20 iterations from
0 to 60, 102 new videos are annotated, and the network is fine-tuned for 20 epochs.
From epoch 60 to 100, no new video is added. The previous video labels are refined
by the oracle as the network can extract better features. The network is fine-tuned on
the existing labeled videos until epoch 100. It can be seen with incremental annotation
and fine-tuning the annotation time in the later epochs drops.

Epoch 0 20 40 60 80 100

ToA (s) 600 552 516 450 240 180

Annotation Speed. To evaluate the annotation speed, we choose three meth-
ods: conventional, MuViLab [2], and t-EVA.

One way to increase the annotation speed of t-EVA is by putting more videos
on the screen for the oracle to annotate. However, it does not make the labelling
process easier. Since ActivityNet videos on average have 30 frames per second
(FPS), every 32 time-steps that we sample represent almost 1 s (∼ 32

30 ) of video.
Putting all of the 407 videos (13 h) overflows the screen with the frames and
makes the annotation harder for the oracle. One way to prevent overflowing the
figures with thousands of frames is to increase the time-steps for sampling frames
from each clip to the point that the network can still preserve the clips’ temporal
coherency. This way, we can show all of the videos on the 2D plot with fewer
points. Consequently, we design three different t-EVA in terms of the number of
time steps as t-EVA-32, 64, and 128.

Table 2. Comparison of time gain when annotating with different methods on a subset-
1 of ActivityNet containing 769 min of video. Our method (t-EVA) with 128 time-steps
outperforms conventional, and MuViLab [2] methods with labeling 769 min of video in
21 min. Using more consecutive frames increases annotation speed.

Conventional MuViLab t-EVA-32 t-EVA-64 t-EVA-128

Time Gain 3× 4.5× 18× 24× 36×

First, we choose ActivityNet subset-1 with a total duration of 769 min. We
annotated 30 min of videos using MuViLab and Conventional methods and
extrapolated the result to match the total duration of ActivityNet subset-1.
Additionally, the entire subset-1 is annotated using different variants of t-EVA,
and we compare the annotation speed of all these methods (Table 2). The results
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Fig. 4. Comparison of video classification performance in the form of mAP (%) between
fine-tuning the 3D ConvNet on ground truth label versus fine-tuning with our anno-
tation acquired using different time-steps (TS). Fine-tuning the 3D ConvNet on the
annotation generated by our method can achieve comparable video classification accu-
racy to the ground truth.

show that labeling 769 min of video takes approximately 21 min with the t-EVA-
32 method. t-EVA-32 outperforms both conventional and MuViLab methods on
ActivityNet subset-1 in annotation speed by a large margin by respectively 4 to
6 times faster. With t-EVA-64 and 128, time gain can reach respectively 24 and
36 times more. Conventional annotation and MuViLab do not take advantage
of the temporal dimension of videos for annotation. Nevertheless, our method
exploits the spatio-temporal features and places similar actions near each other
in the t-SNE plot for the oracle to annotate the actions.

We also evaluate the performance of the network on the test set of Activi-
tyNet subset-1. In Fig. 4, we compare the classification performance of the net-
works: (i) fine-tuned with original ground truth labels and (ii) fine-tuned by
using newly annotated videos by 32, 64, and 128 time-steps. Annotating the
videos with t-EVA method can achieve a classification performance of 67.2%
with 32-TS, 65.9% with 64-TS, and 65.4% with 128-TS, which is comparable to
the training with ground truth labels (blue) by 69.7% mAP.

Table 3 shows the speed-accuracy trade off between t-EVA and ground-truth
annotation. When the original ground truth labels are used for fine-tuning the
network, we obtain 69.7% of mAP. 407 videos can be labeled in 42 min with
t-EVA-32 by losing only 2.5% of performance in comparison to using ground
truth labels. When the time-steps are increased as 64 and 128, the annotation
speed decreases respectively to 31 and 21 min, yet the classification performance
also reduces by 3.8% and 4.3%. Using 128 time-steps (t-EVA-128) reduces test
accuracy while increasing the annotation speed. The decrease in accuracy com-
pared to the 32-TS version is expected since the annotation is more prone to
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noise when the time-step is increased to 128 frames. With 128-TS for each clip,
every point in the scatter plot represents 4 s of the video while it represents 1 s in
the 32-TS version. Namely, labeling points wrongly in the 128 version (t-EVA-
128) brings more significant consequences in the fine-tuning process. However,
Table 3 indicates that using 128-TS (t-EVA-128) compared to the 32-TS (t-EVA-
32) increases the annotation speed twice while the mAP score decreases less than
2%.

Table 3. Comparison of video classification performance (mAP) and ToA (time of
annotation) on ActivityNet subset-1. This subset contains 407 videos in about 13 h
of video. Our method in 32 time-steps (t-EVA-32) and 128 time-steps (t-EVA-128)
achieves comparable test accuracy to the ground truth accuracy and requires a much
shorter time to annotate. There is a trade-off between annotation speed and perfor-
mance.

Method GT t-EVA-32 t-EVA-64 t-EVA-128

mAP 69.7% 67.2% 65.9% 65.4%

ToA (min) – 42 31 21

4.5 Generalization

To further demonstrate the generalization of our method, we conduct the same
annotation experiment on a more challenging subset of ActivityNet (v1.3) with
15 classes and a subset of Sports-1M [19] with 15 random classes.

ActivityNet (v1.3) Subset-2. Subset 2 of ActivityNet (v1.3) contains 637
training videos and 311 test videos. The first iteration of features is extracted
from the 637 training videos and is annotated in 15 min by the oracle using
t-EVA. After 20 epochs of fine-tuning, the new features are extracted, and the
labels are fine-tuned again by the oracle. After this stage, the network is fine-
tuned for 80 epochs. After fine-tuning for 100 epochs, our method reaches a
test accuracy of 66.4%, while the training with ground-truth labels achieves an
accuracy of 68.3% on the video classification task.

The 4-NN accuracy of the final features is 92.4%, which shows the quality
of the extracted features is sufficient for the oracle to annotate. t-EVA can also
perform well on the ActivityNet subset-2. The fact validates that our method
can also generalize on a more challenging subset of ActivityNet.

Sports-1M. We further validate our method on a subset of Sports-1M [19]
dataset with 15 random classes. We randomly sample 200 videos (∼860 min)
from the total 702 videos available in the 15 classes. The features are extracted
from 200 videos, and ground truth labels of the two-dimensional features can be
seen in Fig. 5. Using 4-NN, we obtain an accuracy of 92.3%, which shows the
features can be annotated based on similarity. Using our method, we were able
to annotate 860 min of video in 28 min, giving us a time gain of 30.7. t-EVA
indicates an extensive time gain on the Sports-1M dataset.
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Fig. 5. t-SNE projection of extracted features from 200 videos from the Sports-1M
[19] dataset with ground truth labels as colors. 200 videos are from 15 random classes;
however, some videos contain more than one activity class. The 4-NN accuracy, which
emulates the quality of the projection through measuring local homogeneity, is 92.3%,
indicating such a figure is annotate-able by the oracle.

5 Ablation Study

In this section, we conduct an ablation study to motivate our design choices in
the following aspects: (i) dimensionality reduction method, (ii) t-SNE parameter
selection, and (iii) 2D versus 3D backbone for feature extraction.

5.1 Dimensionality Reduction

We investigate using PCA as a linear dimensionality method and t-SNE as a
non-linear dimensionality method for visualizing the high-dimensional features
in two dimensions. We use the extracted feature from the ActivityNet subset-1
with 407 videos. Figure 6-b shows qualitatively that PCA is not able to group
similar features and separate unalike features from the videos in the transition
to a lower dimension, making the annotation more difficult. However, Fig. 6-a,
shows that t-SNE projection can maintain the local structure of each class while
separating the features from different classes. To report the quality of projec-
tion in quantitative measures, we use KNN with K = 4. The 4-NN classification
accuracy in Fig. 6 for the t-SNE projection is 80.6%, and for the PCA projection
is 58.2%. Therefore, PCA, a linear dimensionality method, cannot reduce the
feature dimension while placing similar classes near each other.
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Fig. 6. Visual comparison of the projection quality of high-dimensional features to two
dimensions using t-SNE (a) and PCA (b). PCA is unable to maintain the structure of
the high-dimensional data in two dimensions.

5.2 t-SNE Parameters

We investigate using different perplexity parameters for the t-SNE projection.
[39] recommend using perplexity parameter between [5–50], however larger and
denser datasets requires relatively higher perplexity. With low perplexity, the
local structure of data in each video dominates the action grouping from multi-
ple video [43], but our goal is to group multiple actions from different videos. To
emulate the t-SNE projection quality for the annotation, we report homogene-
ity and completeness scores with different perplexities in Table 4. Perplexity 30
shows the highest homogeneity and completeness scores, meaning that t-SNE
projection with perplexity 30 can separate the classes better than projecting
with the other perplexity parameters. Therefore, using t-SNE with perplexity 30
makes the group labeling process easier for the oracle.

5.3 2D-3D Comparison

We investigate replacing the 3D ConvNet with a 2D CNN to compare the qual-
ity of the feature embedding. For 3D ConvNet, 3D ResNet-34 pre-trained on
Kinetics [20] and for the 2D CNN ResNet-50 pre-trained on Kinetics [20] are
used. We chose Resnet-50 instead of Resnet-34 for the 2D CNN because the
Kinetics pre-trained weights were only available for ResNet-50. To experiment,
we sample every 32 consecutive frames (time-steps) as a clip in the 3D ConvNet,
and for the 2D CNN, we choose one frame for every 32 frames to represent that
specific window. The experiment is done on the subset-1 of the Activity-Net
dataset with 10 classes. It can be seen in Fig. 7 that we start the experiments
with 32 time-steps. With 32 time-steps, we can see the 2D CNN can capture the
same action in different videos but can not place them together as well as the
3D ConvNet. Therefore, the colors representing the classes are better gathered
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Table 4. Comparison of homogeneity and completeness scores as a measure to emulate
the quality of t-SNE projection on a global-level. Higher homogeneity means all the
points in a cluster belong to the same class. Higher completeness means all the points
belonging to a class are in the same cluster. t-SNE perplexity parameter as 30 gives
the highest homogeneity and completeness score.

px-5 px-15 px-30 px-50 px-100 px-120

Homogeneity 44.7% 58.7% 62.5% 61.3% 61.7% 61.5%

Completeness 42.5% 56.1% 60% 58.5% 59% 58.8%

nearby in the 3D ConvNet, making the annotation process faster than the 2D
CNN projection. Moreover, by increasing the time-steps for frame sampling, the
2D CNN, even with deeper architecture, starts losing the temporal coherency
between the data-points because 2D CNN only focuses on the spatial informa-
tion between the frames. Focusing only on spatial information can still work
in lower time-steps (32-TS) because the frames from the same action contain
similar spatial information. However, using spatial information alone becomes
problematic in higher time-steps as increasing the time-steps reduces the spatial
similarity between the frames.

To evaluate our findings quantitatively, we use K-NN accuracy as a quanti-
tative emulation for the quality of features for annotation. Table 5 shows that
increasing the number of frames in the clips degrades the 4-NN accuracy of 2D
CNN dramatically from 93% to 75%. However, 3D CNN only loses around 5%
from 32 time steps to 128. The local homogeneity decreases more drastically in
2D CNNs compared to 3D CNNs, which makes annotation more difficult for the
oracle. In other words, the 2D CNN alone can not maintain the temporal struc-
ture of the data in higher time-steps. Thus, in the t-EVA method, 3D features
are extracted to use for group labeling.

Table 5. Comparison of 4-NN accuracy of extracted features from a 2D CNN (ResNet-
50) and a 3D ConvNet (3D ResNet-34) on subset-1 of ActivityNet [17]. Increasing
time-steps cause the 2D CNN to lose the spatial similarity between the frames and fail
to group them in the t-SNE plot, while the 3D ConvNet can still group similar actions
even in higher time-steps.

32-TS 64-TS 128-TS

2D CNN 93.1% 89.3% 74.6%

3D CNN 100% 97.6% 95.2%
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Fig. 7. Comparison of t-SNE projection of extracted features from a 2D CNN versus
a 3D ConvNet for videos from 3 action classes of ActivityNet dataset [17]. Increasing
the time-steps for sampling clips from the videos causes the 2D CNN to lose the clips’
spatial information. However, the features from the 3D ConvNet can maintain the
coherency between the clips.

6 Conclusion

This paper introduced a smart annotation tool, t-EVA, for helping the ora-
cle to group label videos based on their latent space feature similarity in two-
dimensional space. Our experiments on subsets of large-scale datasets shows
that t-EVA can be useful in annotating large-scale video datasets, especially if
the annotation budget and time are limited. Our method can outperform the
conventional annotation method, and MuViLab [2] time-wise in the order of mag-
nitude with a minor drop in the video classification accuracy. Besides, t-EVA is
a modular tool, and its components can be easily replaced by other methods. To
illustrate, 3D ResNet can be changed to another feature extractor.

t-EVA method has a trade-off between annotation speed and network per-
formance. Increasing time steps can reduce the annotation time; however, the
network’s accuracy may also decrease.

t-EVA can be sensitive to the initial state of the feature extractor. If the
feature extractor can not separate classes well, it can take a longer time to
annotate the videos initially. After fine-tuning the network with new labels for
a few epochs, the labeling time can reduce again. Besides, putting more video
frames in the t-SNE plot can overflow the screen and make the annotation process
harder for the oracle.



t-EVA: Time-Efficient t-SNE Video Annotation 167

References

1. Ahsan, U., Sun, C., Essa, I.A.: DiscrimNet: semi-supervised action recognition
from videos using generative adversarial networks. CoRR abs/1801.07230 (2018).
http://arxiv.org/abs/1801.07230

2. Alessandro Masullo, L.D.: Muvilab (2019). https://github.com/ale152/muvilab
3. Gupta, A.K.: ImgLab (2017). https://github.com/NaturalIntelligence/imglab
4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the

kinetics dataset. CoRR abs/1705.07750 (2017). http://arxiv.org/abs/1705.07750
5. Chatzimparmpas, A., Martins, R.M., Kerren, A.: t-viSNE: interactive assessment

and interpretation of t-SNE projections. IEEE Trans. Vis. Comput. Graph. 26(8),
2696–2714 (2020). https://doi.org/10.1109/tvcg.2020.2986996

6. Damen, D., et al.: Scaling egocentric vision: the EPIC-KITCHENS dataset. CoRR
abs/1804.02748 (2018). http://arxiv.org/abs/1804.02748

7. darrenl, o.c.: labelimg (2017). https://github.com/tzutalin/labelImg
8. Diba, A., et al.: Temporal 3d ConvNets: new architecture and transfer learning

for video classification. CoRR abs/1711.08200 (2017). http://arxiv.org/abs/1711.
08200

9. Dutta, A., Zisserman, A.: The via annotation software for images, audio and video.
In: Proceedings of the 27th ACM International Conference on Multimedia, MM
2019, pp. 2276–2279. Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3343031.3350535

10. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recog-
nition. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV) (October 2019)

11. Wang, G., Forsyth, D.: Joint learning of visual attributes, object classes and visual
saliency. In: 2009 IEEE 12th International Conference on Computer Vision, pp.
537–544 (2009)

12. Ghadiyaram, D., Feiszli, M., Tran, D., Yan, X., Wang, H., Mahajan, D.: Large-scale
weakly-supervised pre-training for video action recognition. CoRR abs/1905.00561
(2019). http://arxiv.org/abs/1905.00561

13. Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: Video action transformer
network. CoRR abs/1812.02707 (2018). http://arxiv.org/abs/1812.02707

14. Girdhar, R., Ramanan, D., Gupta, A., Sivic, J., Russell, B.: ActionVLAD: learning
spatio-temporal aggregation for action classification. In: Proceedings of (CVPR)
Computer Vision and Pattern Recognition, pp. 3165–3174 (July 2017)

15. Girdhar, R., Tran, D., Torresani, L., Ramanan, D.: Distinit: Learning video rep-
resentations without a single labeled video. CoRR abs/1901.09244 (2019). http://
arxiv.org/abs/1901.09244

16. Hara, K., Kataoka, H., Satoh, Y.: Learning spatio-temporal features with 3d resid-
ual networks for action recognition. CoRR abs/1708.07632 (2017). http://arxiv.
org/abs/1708.07632

17. Heilbron, F.C., Escorcia, V., Ghanem, B., Niebles, J.C.: ActivityNet: a large-scale
video benchmark for human activity understanding. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 961–970 (2015)

18. Hussein, N., Gavves, E., Smeulders, A.W.M.: Timeception for complex action
recognition. CoRR abs/1812.01289 (2018). http://arxiv.org/abs/1812.01289

19. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: CVPR (2014)

http://arxiv.org/abs/1801.07230
https://github.com/ale152/muvilab
https://github.com/NaturalIntelligence/imglab
http://arxiv.org/abs/1705.07750
https://doi.org/10.1109/tvcg.2020.2986996
http://arxiv.org/abs/1804.02748
https://github.com/tzutalin/labelImg
http://arxiv.org/abs/1711.08200
http://arxiv.org/abs/1711.08200
https://doi.org/10.1145/3343031.3350535
http://arxiv.org/abs/1905.00561
http://arxiv.org/abs/1812.02707
http://arxiv.org/abs/1901.09244
http://arxiv.org/abs/1901.09244
http://arxiv.org/abs/1708.07632
http://arxiv.org/abs/1708.07632
http://arxiv.org/abs/1812.01289


168 S. Poorgholi et al.

20. Kay, W., et al.: The kinetics human action video dataset. CoRR abs/1705.06950
(2017). http://arxiv.org/abs/1705.06950

21. Kläser, A., Marszalek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-
gradients. In: BMVC (2008)

22. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, New York
(2007). https://doi.org/10.1007/978-0-387-39351-3

23. Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. IEEE Trans.
Pattern Anal. Mach. Intell. 30(6), 985–1002 (2008)

24. Linderman, G.C., Steinerberger, S.: Clustering with t-SNE, provably. CoRR
abs/1706.02582 (2017). http://arxiv.org/abs/1706.02582

25. Liu, K., Liu, W., Gan, C., Tan, M., Ma, H.: T-C3D: temporal convolutional 3d
network for real-time action recognition. In: AAAI (2018)

26. Luus, F.P.S., Khan, N., Akhalwaya, I.: Active learning with TensorBoard Projector.
CoRR abs/1901.00675 (2019). http://arxiv.org/abs/1901.00675

27. van der Maaten, L.: Barnes-Hut-SNE (2013)
28. Martinez, B., Modolo, D., Xiong, Y., Tighe, J.: Action recognition with spatial-

temporal discriminative filter banks (2019)
29. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and

projection for dimension reduction (2018)
30. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.

Res. 12, 2825–2830 (2011)
31. Pezzotti, N., et al.: GPGPU linear complexity t-SNE optimization. IEEE Trans.

Visual. Comput. Graph. (Proc. VAST 2019) 26(1), 1172–1181 (2020). http://
graphics.tudelft.nl/Publications-new/2020/PTMHLLEV20

32. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d
residual networks. CoRR abs/1711.10305 (2017). http://arxiv.org/abs/1711.10305

33. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application
to action recognition. In: Proceedings of the 15th ACM International Conference
on Multimedia, MM 2007, pp. 357–360. Association for Computing Machinery,
New York (2007). https://doi.org/10.1145/1291233.1291311
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