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Abstract. This work proposes a novel general framework, in the context
of eXplainable Artificial Intelligence (XAI), to construct explanations for
the behaviour of Machine Learning (ML) models in terms of middle-level
features which represent perceptually salient input parts. One can iso-
late two different ways to provide explanations in the context of XAI:
low and middle-level explanations. Middle-level explanations have been
introduced for alleviating some deficiencies of low-level explanations such
as, in the context of image classification, the fact that human users are
left with a significant interpretive burden: starting from low-level expla-
nations, one has to identify properties of the overall input that are per-
ceptually salient for the human visual system. However, a general app-
roach to correctly evaluate the elements of middle-level explanations with
respect ML model responses has never been proposed in the literature.

We experimentally evaluate the proposed approach to explain the
decisions made by an Imagenet pre-trained VGG16 model on STL-10
images and by a customised model trained on the JAFFE dataset, using
two different computational definitions of middle-level features and com-
pare it with two different XAI middle-level methods. The results show
that our approach can be used successfully in different computational
definitions of middle-level explanations.
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1 Introduction

In the last years, Machine Learning (ML) approaches have been widely used to
address several challenges in Artificial Intelligence (AI), such as image [31] and
text classification [11] problems, multi-target regression [25] and robot navigation
[28]. However, a large part of these approaches suffers from a pervasive lack of
transparency also connected to the problem of explaining their behaviour in
terms that are easy to understand for human beings [18]. Indeed, it seems that
the better ML systems become in terms of their performance, the harder it is
to understand the underlying mechanisms and explain their behaviours [1]. For
this reason, ML systems are often considered as black-box systems [1] insofar as
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their decisions are hard to interpret in terms of meaningful input features. Thus,
generating explanations for ML system behaviours that are understandable to
human beings is a central scientific and technological issue addressed by the
rapidly growing AI research area of eXplainable Artificial Intelligence (XAI).

The literature counts various strategies to make ML systems - especially those
endowed with Deep Neural Network (DNN) architectures [21] - interpretable
and explainable [12,22]. XAI approaches to the explanation problem can be
classified in several ways according to which properties are taken into account
[1,15,23,34]. A key distinction is between low-level and middle-level input fea-
ture approaches. Low-level feature approaches to XAI attempt to explain the
output of an ML system in terms of low-level features of the input such as pixels
in case of image classification problems. One of the most successful methods
for this type of approaches is the Layer-wise Relevance Propagation (LRP) [6],
which associates a relevance value to each input element (to each pixel in the
case of images) as an explanation of the ML model response. Thus, human users
are left with a significant interpretive burden: starting from the relevance val-
ues of each input element (pixel), one has to identify properties of the overall
input that are perceptually salient for the human visual system. A method which
attempt to alleviate this drawback of low-level approaches to explanation have
been proposed in [3,4], where explanations are provided in terms of middle-level
properties (atoms) of the input which represent perceptually salient input parts
[7].

A popular method which is also based on middle-level properties of the input
is LIME [26], which returns a set of image parts (superpixels), that could have
driven the ML model to the given answer. This set of superpixels can be then
considered as an explanation to the ML model response. To the best of our
knowledge, these types of approaches can be classified as model-agnostic.

Model-agnostic approaches correspond to XAI methods which are indepen-
dent of the ML model to be explained [1], i.e., model-agnostic solutions are
built relying only the relation between ML model inputs and outputs, without
any consideration about the ML model internal state. Although this property
ensures the applicability of these approaches to any ML model, on the other
hand, how we will discuss more in details in Sect. 3, the explanations of the
model-agnostic methods could not be fully related to the actual causal rela-
tionships between model’s inputs and outputs which have contributed to the
given model response. For instance, LIME returns an explanation inspecting the
behaviour of the model in the neighbourhood of the input, but nothing ensures
that, for that particular input instance, the answer of the classifier has a totally
different explanation (for example, a particular on the background of the specific
input image which the model has already seen during the training stage, making
the model biased).

In this paper, we propose a new method, that we called Middle-Level Feature
Relevance (MLFR), based on a variation of LRP that, instead of returning a
relevance value for each input pixel, returns relevance values for a given set of
middle-level features. This method can be applied whenever a) the input of a ML
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system can be encoded and decoded on the basis of middle-level features, and
b) LRP can be applied on both the ML model and the decoder (see Sect. 3 for
further details). In this sense we consider MLFR as a a general framework insofar
as it can be applied on several different computational definitions of middle-level
features as we will discuss in Sect. 3. Notice that MLFR is not a model-agnostic
approach, however it can be applied to a large class of ML models as well as
LRP [6], for example feedforward neural networks architectures such as shallow
network and deep networks.

This paper is structured as follows. Section 2 briefly reviews the related lit-
erature; Section 3 describes the proposed architecture; experiments and results
are discussed in Sect. 4; the concluding Sect. 5 summarises the main results of
the proposed explanation framework and outlines some future developments.

2 Related Works

Many XAI methods have been proposed since explainability is now a sought for
requirement for AI solution. The literature proposes several reviews trying to cat-
egorise/distinguish the existing methods [1,15,21,34] looking at different proper-
ties of the XAI methods. According to these categorisations, our method can be
classified as a white-box and local XAI approach. White-box approaches require
access to the internal structure of the ML model [1]. By contrast, black-box, or
model-agnostic, approaches provide explanation methods which are independent
of the ML model [1], i.e., they need access only to the input-output relations
of the ML model. Local approaches provide explanations for each given input,
while the goal of global approaches is to produce an explanation for the whole
behaviour of the ML system [21].

Many model-agnostic approaches are based on proxy-models [8,10,24] or
some type of maximisation of the ML model response with respect to the
input, such as the Activation-Maximisation (AM) method [12]. Proxy models
are models behaving similarly to the original model, but in a way that it is
easier to explain [13]. Approaches based on AM method enables one to deter-
mine the input that makes the output of the ML model as close as possible
to the model’s initial response, for example, in case of classification problems,
given Ck as the response of the ML model, one maximises the P (Ck|x) with
respect to x satisfying some constraints on x. Notice that the explanations of
the model-agnostic methods suffer from the lack of information about the actual
input-output causal relationships which have contributed to the given ML model
answers; thus these explanations may not be related to the specific ML model
response to be explained [19].

Another critical distinction is based on the granularity level of the explana-
tions. In fact, several XAI solutions provide explanations in terms of low-level
input features. For instance, in image classification problems the output of an
ML system is explained considering low-level features of the input image in terms
of salience maps where to each pixel is associated a relevance value which quan-
tifies the degree of importance of that pixel to cause the ML model response.
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Among the approaches of this type, Layer-wise Relevance Propagation (LRP)
[6], is the most popular in the literature. LRP is a white-box approach, although
it applies to many ML models such as deep networks. Notice that it is a gen-
eral framework rather than a specific method insofar as it is defined as a set
of constraints that an XAI algorithm should satisfy. Thus, different XAI algo-
rithms with different explanations may be appropriate under these constraints
[6]. For example, Deep-Taylor Decomposition [21] can be interpreted as a way
of obtaining LRP.

In this type of approaches, human users are left with a significant interpretive
burden: starting from the relevance values of each input element (pixel), one has
to identify properties of the overall input that are perceptually salient for the
human visual system. Thus, to alleviate this cognitive burden, an alternative
model-agnostic method, called Explanation-Maximization (EM), was proposed
in [2–4]. EM, which also applies in different areas, was instantiated in the context
of image classification systems. EM obtains sets of perceptually salient middle-
level properties of input images by applying sparse dictionary learning techniques
and a variant of AM. These middle-level properties are used as building blocks
for explanations of image classifications. However, this approach suffers from the
typical shortcomings of the model-agnostic ones as regards the reliability of the
explanations given, as previously discussed. Among other methods using middle-
level input features to build explanations about ML model responses, LIME [26]
can be considered the most popular in the literature. It is model-agnostic and
based on a proxy-model: it explains the output of an ML system by observing its
behaviour on perturbations of its input. The input is partitioned in a collection of
components (super-pixel in the case of images); perturbed inputs are composed
of specific superpositions of these components. Perturbed inputs and outputs are
used to construct a local linear model which is used as a simplified proxy for the
original ML system in the neighbourhood of the input. Thus, from the proxy, it
is possible to infer an explanation of the original ML model response. However,
the faithfulness of the proxy with respect to the original model remains an open
issue [19]. Other methods, based on LIME, as in Ribeiro et al. [27] and Guidotti
et al. [14], return explanations in terms of decision rules that are used as local
conditions for decisions.

The method we propose in this paper differs from the works mentioned above
in the following aspects, as it can be seen as a general framework to obtain
middle-level explanations analysing the actual input-output relationship defined
by the ML model. Thus, different definitions of middle-level input features with
different resulting solutions may be possible under this general framework. The
only constraints are that the input can be encoded and decoded based on the
defined middle-level input features and that LRP can be applied on both the
ML model to be explained and the input decoder.

3 Middle-Level Relevance

Given an ML model M which receives an input x ∈ Rd and outputs y ∈ Rc,
let us suppose that x can be decomposed in a set of m middle-level features
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vi each one encoded by a value ui. More formally, we suppose that a decoder
D : (V,u) −→ x ∈ Rd exists. Where V = {vi}mi=1 is the set of v’s middle-
level features and u ∈ Rm encodes x in terms of the middle-level features.
For example, in an image classification problem, a possible set of middle-level
features can be the result of a segmentation algorithm on the input image x
which produces a partition of x in m regions or partitions {Pi}mi=1. Each image’s
partition Pi can be represented by a vector vi ∈ Rd such that their summation
is equal to x, in this case the decoder is a linear combination of the vi with all
the coefficients equal to 1, which represent the encoding of the image x on the
basis of the m partitions (see Sect. 3.1).

Then, if we can use LRP on both M and D, we can apply it on the model M
and use the obtained relevance values to apply LRP on D thus getting a relevance
value for each middle-level feature. In other words, we can stack D on the top of
M , thus obtaining a new model DM which receives as input u and outputs y,
and uses LRP propagation on DM from y to u. Let us take as an example of M
a neural network composed of L layers. The LRP procedure computes a set of
relevance values for any given layer l composed of kl neurons as the combination
of the scores assigned to each neuron of l, representing the importance of each
node for the network’s output. The scores are computed by propagating the
relevance values from the output layer to the input layer in a back-propagation
fashion. Similarly, let us consider a shallow neural network composed of m input
values ui, d output neurons with biases equal to 0, the identity as activation
functions, and one hidden layer of weights W = V . This network can be seen as
a decoder D where the weights associated with the connections going from each
input value ui to all output neurons represent the middle-level feature vector vi.
If we stack the shallow network/decoder D on the top of the L-layer model M ,
we obtain a new neural network model DM composed of L + 1 layers. Then,
we can apply the LRP procedure on the whole DM model and obtain relevance
values which designate what input’s middle-level features have most contributed
on the outcome yi (see Fig. 1). In other words, we search for a relevance vector
r ∈ R

m which helps the user to know each middle-level feature of x how much
has contributed to the ML model answer yi. Note that, this approach can be
generalised to any decoder to which LRP applies. For instance, we can consider
any dictionary learning approach, as for example [16,17,32] (see Sect. 3.2 for
more details), where each input x can be decomposed as x = Vu + ε, V is a
dictionary of middle-level features and ε is the reconstruction error vector. Also,
in this case, we can notice that the decoder can be represented as a shallow neural
network having the dictionary elements as weights and the biases in terms of the
reconstruction error vector (see Sect. 3.2).

In the remainder of this section, we will describe two alternative ways (seg-
mentation and dictionary learning) to obtain a decoder LRP method can be
applied to, in more details. We experimentally tested our framework using both
methods.
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(b) The dictionary-based approach.

(a) The segmentation-based approach.

Fig. 1. A description of the proposed method (MLFR) using two different types of
middle-level features. (a) After segmenting the input, the segments are used as weights
for the decoder, so feeding the decoder with the 1s is equivalent to give the input
image to the trained neural network. After, the LRP algorithm is used to obtain the
segment relevances (see Sect. 3.1 for further details). (b) Having a dictionary, and an
input encoding which best approximates the input image, we can use the dictionary
and the representation error respectively as weights and bias of the decoder. So, feeding
the decoder with the input encoding is equivalent to give the network the input image.
After, the LRP algorithm is used to obtain the atom relevances (see Sect. 3.2 for further
details).
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3.1 Decoder by Super-Pixel Segmentation

Given an image x ∈ Rd, we can obtain a partition of x composed of m elements
Ph through any segmentation algorithm. We can associate to each element Ph

a vector pvh ∈ Rd such that pvh
i = 1 if xi ∈ Ph, otherwise pvh

i = 0. Thus, each
element Ph can be represented by the element-wise product between x and pvh,
i.e., vh = pvh � x, since this operation products selects all the pixels belonging
to the element Ph.

Consequently, we can decompose x as x =
m∑

h=1

uhvh, with uh = 1. Then, the

decoder D is a linear combination of the vh with all the coefficients equal to 1,
which represent the encoding of the image x on the basis of the m partition’s
elements.

Following [26], in this paper we use the Quickshift segmentation algorithm
[33] where the elements of the partition are called super-pixels.

We assume that a possible explanation to the output of a given classifier
can be obtained in terms of relevant super-pixels, where the relevance can be
computed using an LRP-based procedure.

3.2 Decoder by Sparse Dictionary Learning Methods

A sparse dictionary learning problem (see, for example, [32]) is a minimisation
problem that one can formally describe as follows.

arg min
U,V

||X − V U ||2F + γ1

k∑

i=1

ΩV (vi)

s.t. ∀i, ΩU (ui) < γ2

(1)

where X ∈ Rd×n is composed of n experimental observations which are expressed
as column vector xi ∈ Rd, V is the dictionary, and the k columns vi of V are the
dictionary elements or atoms, subject to some sparsity constraint possibly. Each
column of X is approximated by a linear combination of the k columns of V ,
subjects to some sparsity constraint potentially. Thus, U ∈ Rk×n is the matrix of
the linear combination coefficients, i.e., the i-th column of U , ui, corresponds to
the k coefficients of the linear combination of the k columns of V to approximate
xi, the i-th column of X. ΩV and ΩU are some norms or quasi-norms that
constrain or regularise the solutions of the minimisation problem, and γ1 ≥ 0
and γ2 ≥ 0 are parameters that control to what extent the dictionary and the
coefficients are regularised.

Elements of a dictionary can be used to compute explanations of a ML model
response in terms of middle-level input features [2–5].

For the experiments presented in this paper, we obtain the dictionaries from
a specific sparse dictionary learning method based on SSPCA [16]. However, any
dictionary learning/sparse coding method able to produce dictionaries that can
be considered human-understandable can be used [2].
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Given a dictionary V and an experimental observation x one can solve the
minimisation problem as expressed in Eq. 1 with respect to the coefficients only,
finding a single column vector u. Consequently, x̃ = V u is an approximation of
x with an error for each component equal to εh = xh − x̃h. Then, the decoder
D can be represented as a shallow neural network composed of just one weight
layer W , k input values and d output neurons. Each output neuron j has the
identity as activation function and the bias equal to εj . The weights associated
to the connection going from the j-th input value to all the output neurons
correspond to j-th V ’s column. Consequently, given the decomposition of x as
V u the decoder D receives u as input and outputs x.

4 Experimental Assessment

In this section, we describe the experiments performed and show the results
obtained. We show a set of explanations produced by our approach using two
different experimental setups.

The former uses as middle-level features the super-pixel segmentation schema
described in Sect. 3.1; the latter adopts the sparse dictionary approach described
in Sect. 3.2. For the segmentation-based experiments, we used as classifier a
VGG-16 [30] neural network trained on Imagenet, and as input images a subset
of the STL-10 dataset [9]. For the dictionary-based experiments, we use the
JAFFE dataset [20] and a custom neural network trained from scratch with
a final accuracy of the 94% on a test set. We chose to use a custom model
because, to the best of our knowledge, there are no reference models for this
particular dataset in the current literature. Notice that for this type of middle-
level features we used a more simple dataset since dictionary learning methods
on large datasets can be very expensive in terms of computational costs.

We compare the results obtained by the proposed method (MLFR) with two
related methods proposed in the literature, LIME [26] and EM [2,4], and with
a standard low-level feature method as LRP [6]. Notice that as we discussed in
Sect. 2 the explanations returned by LIME and EM are based on features which
can be considered of middle-level, but, differently from the MLFR approach,
they are built in a black-box approach relying on a proxy model instead of the
actual model in case of LIME, and in terms of dictionary elements by a variant of
the activation-maximisation method, in case of EM. For the segmentation-based
approach, we compared MLFR with LIME and LRP. For the dictionary-based
approach, we compared our results with the ones produced by EM and LRP.
The segments and the dictionaries are obtained respectively using Quickshift [33]
(that is the same algorithm used by LIME to make the superpixel segmentation)
and SSPCA [16].

A visual comparison is not enough, and to give a quantitative evaluation of
our results, we use the same strategy introduced in [29] and described in Sect. 4.2.
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Fig. 2. Results obtained from MLFR using image segmentation (Sect. 3.1) on the
STL10 dataset. For each input (1st and 5th column), we present the explanations
produced by LRP method (2nd, 6th column) in terms of heatmaps (blue pixels indi-
cate negative relevance, while red pixels indicate positive ones), LIME method (3th
and 7th column) and MLFR (4rd and 8th column) as superimposition of the three
superpixels with the highest relevance scores. The class returned by the classifier is
reported for each input. (Color figure online)
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Fig. 3. Results obtained from MLFR with sparse dictionaries (Sect. 3.2) on the JAFFE
dataset. For each input (1st, 4th and 7th column), we present the explanations obtained
by EM method (2nd, 5th and 8th column) and MLFR (3rd, 6th and 9th column) as
superimposition of the three atoms with the highest relevance scores. On the left of
each input, we report the class returned by the classifier.

4.1 Qualitative Results

Some results of the two proposed strategies are shown in Fig. 2 for the
superpixels-based approach and in Fig. 3 for the dictionary-based approach. To
make a comparison, we also report the explanations given by LIME and LRP
methods for the superpixels-based approach and EM for the dictionary-based
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approach. For each input, we show the superposition of the three most relevant
segments/atoms for LIME, EM and MLFR, and the heatmap produced by LRP.

With respect to LIME and EM, we can show that in several cases, the expla-
nations produced by MLFR can be considered closer to what a human being
expects from a classification system. For example, we expect that the output
“hummingbird” and “indigo bunting” (Fig. 2, first and second row, first column)
is due mainly by the presence of the main components of a bird in the image,
neglecting non-relevant part as background sprigs. Similar considerations can
be done for the “hartebeest” and the “gazelle” (Fig. 2, second and third row,
fifth column) and several other inputs shown in the figure. In particular, the
“Bedlington Terrier” input (Fig. 2, fourth row, fifth column) provides an inter-
esting case due to the presence of several hypothetical relevant candidates (the
several human being parts) which can lead the classifier toward different clas-
sification. The proposed method, in agreement with LRP, highlights that the
dog face is one of the main discriminative parts behind the classifier’s choice.
The different results returned by LIME can be due to several factors, such as
a sub-optimal training procedure of the proxy model or the inadequacy of the
proxy model in representing the real one.

Similar consideration can be done for the results shown in Fig. 3 inherent
the dictionary-based approach. We show inputs for several classes of the Jaffe
dataset (SAD, SURPRISE, HAPPY, FEAR, ANGRY) and the results obtained
respectively by the EM method and the proposed MLFR. It is possible to see
how the proposed method highlights atoms which better characterise the faces, as
we would expect by an emotion classifier. MLFR highlights details concerning
facial expressions as the open mouth and the eyes for the inputs classified as
“SURPRISE” or the smiling expression for the input classified for “HAPPY”
(for example, on the Fig. 3 see the results of the inputs on the first, fourth and
seventh columns of the 5th and 8th row). The results produced by EM method,
instead, seems more confused and less clear and intuitive. As far as the EM
method is not based on proxy models, it is again a black-box approach based only
on the input/output relations of the classifier, so without any knowledge to the
real inner state of the model. Furthermore, EM needs several hyperparameters
to be set, which can affect the reliability of the results produced.

Notice that for reasons of space we do not report the results obtained by
LRP, since the qualitive comparison is similar to the one for the STL10 dataset.

4.2 Quantitative Evaluation

In the previous section, we show the explanations obtained in terms of the
most relevant middle-level features selected by MLFR compared against the
ones selected by some related works proposed in the literature. However, all the
consideration we made are based only on subjective evaluations, and an objective
and quantitative evaluation of the explanation methods is still an open research
problem.

A possible quantitative evaluation framework was proposed in [29] with region
flipping, a generalisation of the pixel-flipping measure proposed in [6]. In a
nutshell, given an image classification to explain, regions of a given size are
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(a) AOPC curve of the proposed
method (segmentation-based, section
3.1) compared with the LIME method.

(b) AOPC curve of the proposed
method (DL-based, section 3.2) com-
pared with the EM method.

Fig. 4. Comparison of the AOPC curves of the methods used in the experiments. As
made in [29], all the curves have been plotted relatively to a random AOPC curve,
which was obtained following a random order instead of a relevance order during the
image perturbation steps.

substituted iteratively, following the descending relevance order assigned to the
central pixel (MoRF, Most Relevant First) by the explanation method. At each
step, the difference between the original class score returned by the model and the
score returned on the perturbed input is computed, generating a curve (MoRF
curve). We expect that the better the explanation method is, the stronger the
difference between the scores is. Repeating this process for several images and
averaging between them, it is possible to obtain the Area Over the MoRF Per-
turbation Curve (AOPC):

AOPC =
1

L + 1
<

L∑

k=0

f(x(0)) − f(x(k)) >p(x)

where < · >p(x) is the average over the dataset images, L is the number of regions
and x(k) is the input at k−th perturbation step. If the regions are well-ranked
(so, relevant regions have a higher relevance), we expect that the resulting AOPC
values are large, so we can infer that the largest the AOPC value is, the better
the explanation method is. The original region-flipping method was originally
defined for pixel-based heatmaps using regions of fixed size (9 × 9 in [29]). How-
ever, it is easily adapted to our proposed method and LIME, considering that
each middle-level feature is a single region. As a perturbation scheme, we adopt
the same used in [29], changing each pixel in the region with a value sampled
from the Uniform distribution. In Fig. 4a we plot the AOPC curve for LIME and
our proposed method on the VGG16 model, showing that MLFR outperforms
LIME in terms of AOPC curve, suggesting that the former, on average, gives a
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more reliably relevance score respect to the latter. We hypothesise that LIME,
exploiting a proxy classifier which emulates the real one, may not capture the
real “reasons” behind the choices made by a classifier, so assigning scores to
the features in a manner which not reflect the real inner state of the classifier.
Similar results are shown in Fig. 4b, where the results of the proposed approach
are compared with the EM method. Again, in this case, the proposed method
shows better results in terms of AOPC values, giving better reliability to the
explanations produced.

5 Conclusions

In this work, we propose MLFR, a novel XAI method based on middle-level
features. The proposed method generalises the well-known LRP method, initially
proposed for low-level features (such as pixels for image domain), to middle-level
features, returning data representations which can be interpreted by a human.
We describe how the proposed method can be easily adapted to several classes
of middle-level features. For instance, we show how two different middle-level
input representations can be suitable for the proposed method, the former based
on image segments directly obtained from the input to explain, the latter on a
more general set of elements which can be constructed through some dictionary
learning approach. However, nothing prevents to use other representations.

To evaluate the proposed method, we adapt the quantitative measure
described in [29], proposed initially for pixelwise-based methods, to middle-level
feature methods, and we make a comparison with others middle-level features
approaches present in literature. The results of the experiments that we carried
out are encouraging, both under the qualitative point of view, giving explana-
tions that can be easily interpretable by the human being, and the quantitative
point of view, giving performances in terms of AOPC curve which are compara-
ble to other methods present in the current literature.
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