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Abstract. Current Artificial Intelligence (Al) machine learning approaches per-
form well with similar sensors for data collection, training, and testing. The abil-
ity to learn and analyze data from multiple sources would enhance capabilities
for Artificial Intelligence (AI) systems. This paper presents a deep learning-
based multi-source self-correcting approach to fuse data with different modalities.
The data-level fusion approach maximizes the capability to detect unanticipated
events/targets augmented with machine learning methods. The proposed Domain
Adaptation for Efficient Learning Fusion (DAELF) deep neural network adapts
to changes of the input distribution allowing for self-correcting of multiple source
classification and fusion. When supported by a distributed computing hierarchy,
the proposed DAELF scales up in neural network size and out in geographical span.
The design of DAELF includes various types of data fusion, including decision-
level and feature-level data fusion. The results of DAELF highlight that feature-
level fusion outperforms other approaches in terms of classification accuracy for
the digit data and the Aerial Image Data analysis.
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1 Introduction

Deep learning, as an element of machine learning (ML), has revolutionized many tra-
ditional data fusion approaches including wavelet fusion [1, 2], manifold fusion [3,
4] and target tracking [5-7]. Data fusion approaches include data-level, feature-level,
and decision-level fusion for such applications as audio-video [8], video-text [9], and
visual-infrared fusion [10]. The data fusion methods for aerial sensing extend to situation
awareness [11] and temporal awareness [12]. The combination of deep learning-based
multi-source analysis and data-level fusion provide a self-correcting approach to com-
bine data of different modalities. Cognitively-motivated approaches provide flexibility
and robustness of sensory fusion required under partially unknown conditions and in
response to unexpected scenarios [4, 14]. Both machine learning and heterogeneous
data-level fusion can enhance detection of unanticipated events/targets through the use of
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domain adaptation, see Fig. 1. The proposed Domain Adaptation for Efficient Learning
Fusion (DAELF) deep neural network approach adapts to changes of the input distribu-
tion allowing self-correcting multiple source classification and fusion. When supported
by a scalable distributed computing hierarchy, DAELF scales up in neural network size,
scales out in geographical span, and scales across modalities.
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Fig. 1. Machine Learning based Domain Adaptation for Multiple Source Classification and
Fusion

Generalizing models learned on one domain to another novel domain has been a
major challenge in the quest for universal object recognition, especially for aerial motion
imagery [15]. The performance of the learned models degrades significantly when test-
ing on novel domains due to the presence of domain shift [16]. In Fig. 1, the proposed
Domain Adaptation for Efficient Learning Fusion (DAELF) highlights heterogeneous
data fusion for unanticipated event/target detection. The data from different sensing
modalities are processed through a ML-based domain adapter, which can leverage unsu-
pervised data to bring the source and target distributions closer in a learned joint feature
space. DAELF includes a symbiotic relationship between the learned embedding and a
generative adversarial network (GAN). Note, the GAN in DAELF supports joint mul-
timodal analysis as contrasted to traditional GAN methods, which use the adversarial
framework for generating realistic data and retraining deep models with such synthetic
data [17, 18].

Based on the single source unsupervised domain adaptation (UDA), DAELF is an
innovative approach to align multiple source domains with the target domain, which
incorporates the moment Matching Component (MC) with GANSs into deep neural net-
work (DNN) to train the model in an end-to-end fashion. The key advantages of the
DAELF approach include:
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e Learning features that combine (i) discriminativeness and (ii) domain-invariance
achieved by jointly optimizing the underlying features as well as two discrimina-
tive classifiers operating on these features. Namely, (i) the label predictor that pre-
dicts class labels and is used both during training and at test time and (ii) the domain
classifier that discriminates between the source and the target domains during training;

e Adapting classifiers to the target domain with different distributions without retraining
new input data. DAELF leverages unsupervised data to bring the source and target
domain distributions closer in a learned joint feature space;

e Leveraging an adversarial data generation approach to directly learn the shared fea-
ture embedding using labeled data from source domain and unlabeled data from target
domain. The novelty of the DAELF approach is in using a joint generative discrimi-
native method: the embeddings are learned using a combination of classification loss
and data generation procedure that is modeled using a variant of GANs. Then, given
the availability of multiple sources data, which aims to transfer knowledge learned
from multiple labeled source domains to an unlabeled target domain by dynamically
aligning moments of their feature distribution; and

e Incorporating decision-level and feature-level fusion for enhanced target/event
detection robust performance.

Deep learning has been utilized to uncover rich, hierarchical models [19] that repre-
sent probability distributions of various labeled data in different domains such as natural
aerial images, audio waveforms containing speech, and symbols in natural language
corpora. For a problem lacking labeled data, it may be still possible to obtain training
sets that are large enough for training large-scale deep models, but they suffer from the
domain shift in data from the trained data to that of the actual data encountered at the
application time.

To account for domain shift, methods are needed to learn features that combine
discriminativeness and domain-invariance in order to address environmental changes.
While the parameters of the classifier are optimized in order to minimize errors on the
training set, the parameters of the underlying deep feature mapping are optimized in
order to minimize the loss of the label classifier and to maximize the loss of the domain
classifier. The label classifier update works adversarially to the domain classifier, and it
encourages domain-invariant features to emerge in the course of the optimization.

The rest of the paper is as follows. Section 2 describes the methods of domain
adaptation with adversarial networks. Section 3 provides results using the Aerial Image
Data (AID) dataset and Sect. 4 concludes the paper.

2 Methods

For data analysis, consider the tasks where X = {x,-}?’: | istheinput spaceand Y = {yi}f\]: 1
is the label space. It is assumed that there exists a source-domain distribution S(x, y)
and target-domain distribution 7 (x, y) over the samples in X. There are three types of
domain adaptation shown in Table 1.
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Table 1. Types of domain adaptation

Source and Target domain | Source and Target tasks
Inductive Domain Adaptation Same Different but related
Transductive Domain Adaptation Different but related Same
Unsupervised Domain Adaptation | Different but related Different but related

For  unsuper-
vised domain
adaptation, the
source  distri-
bution  using
labeled data
from X is only
accessible  for
the machine (@) ®)

model training. Fig. 2. Ilustration of Domain Adaptation of samples of the same class
The problem of from Source and Target Domains that are (a) sep-arated and (b) close to
unsupervised each other.

domain adapta-

tion (Fig. 2) can be stated as learning a predictor that is optimal in the joint distribution
space by using labeled source domain data and unlabeled target domain data sampled
from X. The objective is to learn an embedding map F : X — R¢ and a prediction
function C : R? — Y. In DAELF, both F and C are modeled as deep neural networks.
The predictor has access to the labels only for the data sampled from source domain
and not from the target domain during the training process, so F' implicitly learns the
domain shift between source domain distribution S(x, y) and target domain distribution
7T (x,y). Likewise, a GAN-based approach is proposed to bridge the gap between the
source and target domains. The target can be accomplished by using both generative
and discriminative process which takes as much information as possible to learn the
invariant features existing between the source and target domain.
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2.1 Generative Adversarial Network

Generative Adversarial Networks (GANs) [1, 18] are utilized in many machine learning
methods in domain adaptation. In a traditional GAN, two competing mappings are
learned, the discriminator D and the generator G, both of which are modeled as deep
neural networks. G and D play minmax the game, where D tries to classify the generated
samples as fake and G tries to fool D by producing examples that are as realistic as
possible. In order to train a GAN, the following optimization problem is solved in an
iterative manner,

ngn max V(D, G) = Ex~pa [108 D(X) | + Eznp,iee [l02(1 — D(G(2))] (1)
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where D(x) represents the probability that x comes from the real data distribution rather
than the distribution modeled by the generator G(z), where z are noise variables. As an
extension to traditional GANSs, conditional GANs enable conditioning the generator and
discriminator mappings on additional data such as a class label or an embedding. They
have been shown to generate data on the class label or the embedding respectively. As
in training a traditional GAN, the conditional GAN involves optimizing the following
minimax objective, conditioned on the variable y:

m(i;n Max Ex~pue 108(DEIY)) + Ezrp,yi 10g(1 — D(G(2]1))) (@)

Building on the development of traditional GANs, conditional GANs, and multi-modal
GAN:S, the next sections highlights a domain adaptation approach using GANs.

2.2 Domain-Adversarial Neural Networks

The proposed DAELF is designed by employing a variant of the conditional GAN
called Auxiliary Classifier GAN (AC-GAN) [20] by Sankaranarayanan, et al., where the
discriminator is modeled as a multi-class classifier instead of providing conditioning
information at the input, as shown in Fig. 3.

The AC-GAN set up for the domain adaptation is as follows:

e Sampling: Given a real data set x as input to F, the input to the generator network G
is x; = [F(x), z, I], which is a concatenated version of the encoder embedding F'(x),
a random noise vector z € R4 sampled from N (0, 1) and a one-hot encoding of the
class label, [ € {0, 1}™*+D with N, real classes and {N,. + 1} being the fake class. For
all target samples, since the class labels are unknown, / is set as the one-hot encoding
of the fake class {N. + 1}.

e Classifier: The classifier network C that takes as input the embedding generated by
F and predicts a multiclass distribution C (x), i.e. the class probability distribution of
the input x, which is modeled as a N.-way classifier.

e Discriminator: The discriminator mapping D takes the real input data x or the gener-
ated input G(xg) as input and outputs two distributions: (1) D 4, (x): the probability
of the input being real, which is modeled as a binary classifier, and (2) D (x): the
class probability distribution of the input x, which is modeled as a N.-way classifier.
To clarify the notation, D, (x), implies the probability assigned by the classifier map-
ping D.js from input x to y. It should be noted that, for target domain data, since class
labels are unknown, only D, is used to backpropagate the gradients. Please refer to
[20] for additional details. It is worth mentioning that in order to better improve the
training performance, the target domain data is also used to update the generator (G),
which is denoted as follows,

LG = min By — log(Ders(G(xe)), ) +108(1 = Daara(G(xe))) +1og(1 = D (G (h3,)))
3)
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Fig. 3. Illustration of DAELF AC-GAN Approach [adapted from 20] (“F” denotes Feature Extrac-
tion Network, “C” denotes Label Prediction Network, “G” denotes Generator Network, and “D”
denotes Discriminator Network)
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different pair from the source/target

dataset. See Table 3 in the Results section, where two pair datasets MNIST — USPS
and SVHN — JP are used to demonstrate the validity of the proposed DAELF sensor
fusion. The weights of the two netFs are then brought into the centralized fusion network
and the netC is trained by using two source datasets. The two networks {netF and netC}
are trained and the whole fusion network is able to predict both target domain inputs.

Two fusion approaches widely used are decision-level fusion (DLF) shown in Fig. 4
and feature-level fusion (FLF) shown in Fig. 5. The FLF consists of two separately
trained feature networks (netF1 and netF2) followed by one decision network that takes
the concatenation of the outputs of the two feature networks (i.e., two embedding feature
vectors) as inputs. The decision network needs to be trained by the two source domain
training datasets with matched class labels.

Compared to feature-level fusion (FLF), decision-level fusion (DLF) does not need a
second training. DLF consists of the two classification networks, as each was formed by
a feature network (netF) and a decision network (netC) that were trained by the Generate
to Adapt (GTA) method [20] with using one pair of source/target domain data. DAELF

Source 2
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Fig. 5. Feature-level Data Fusion for Multiple Sensors

employs a strategy to predict the input images’ class label according to the outputs of
the two decision networks, which is explained as follows.

The last layer of each netCF has 10 outputs that represent the class labels of 10
digits from O to 9. A class label d described in Eq. (4) is predicted if the corresponding
output value is the maximum among the 10 outputs. In order to make a final prediction
D from the predictions of the two decision networks, DAELF assesses each prediction’s
reliability by computing an entropy H using Eq. (5), where pg through pg are 10 output
values from one netCF. The final prediction would be the one that has a smaller entropy
(Eq. (6)).

d = argmax(p;,i=0,1,...9) @)
9
H ==Y pilog(p:) 5)
i=0
D= dll.fH1<H2 ©6)
dy if Hy < H

DAELF uses the two separately trained neural networks to form a fusion network to
simulate a two-sensor two-modality system (Fig. 5). Because there are two sensors used
to detect the same object, then it is required that every two images feeding to the fusion
network must have an identical class label, which is also the true output of the network.

The next section demonstrates the DAELF approach for different scenarios.
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3 Simulation Results

3.1 Classification of Digits Dataset

Comparing to other standard image datasets, the three DIGITS datasets, USPS
(U.S. Postal Service), MNIST (Modified National Institute of Standards and Technology
database), and SVHN (Google Street View House Number) are simple, and the domain
shift from one to the other is relatively small [16]. The datasets are widely used as the
first set of data in the testing of various domain adaptation algorithms. The original
algorithm has two ways in training a network to classify images of handwriting digits:

1) Source-only that trains a network (formed by netF and netCF) with labeled source
training data only;

2) Generate to Adapt (GTA) that trains netF and netCF separately. NetF is trained by
labeled source training data and unlabeled target training data through a GAN, while
netC is trained by source training data only.

A target testing dataset was used to evaluate the performance of the network (netF
plus netC) trained by the two different ways. Various datasets exist for comparison:
MNIST, USPS, and SVHN. Table 2 compares the classification accuracies obtained
to that of the results by using Source-only approach. In all three domain adaptation
cases, the network trained by GTA significantly outperformed the network trained by
the source-only method. Through inspecting the clustering of embedding features, we
found that it is possible to achieve an accuracy as high as 96% if we are able to modify
the model selection strategy. This potential improvement by model selection is discussed
in the next section.

Table 2. Performance Comparison

MNIST—USPS | USPS—MNIST | SVHN—MNIST
Source | 79.1+0.9 57.1+£ 1.7 603+ 1.5
only
GTA 953 +£0.7 90.8 £ 1.3 92.4+0.9
DAELF |93.8 97.0 88.9

3.2 Visualization and Potential Improvement of Embedding Features

DAELF employs a T-distributed Stochastic Neighbor Embedding (TSNE) method to
visualize the embedding features produced by netF. TSNE is a widely-used feature
reduction and visualization method that transfers samples in a high-dimensional space
to a low-dimensional space while retaining their relative distribution in the original
space. Therefore, a cluster of samples on a 2D graph indicates a similar cluster of these
samples in their original high dimensional space.
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(A) Source Only (B) GTA Best: epoch 13, val. Acc. 91.0%
Test Acc: 61% Test Accuracy: 88.9%

(C) GTA: epoch 51, val. Acc. 89.8% (D) GTA: epoch 76, val. Acc. 90.4%
Test Accuracy: 97.0% Test Accuracy: 96.4%
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Fig. 6. 2D view of embedding features of a batch of target testing data. TSNE method was used
to map the 128 features generated by netF that was trained by (A) source-only mode, (B) GTA
mode at when maximal validation accuracy was reached, (C) GTA mode at epoch 51, (D) GTA
mode at epoch 76.

By visually inspecting the distribution of target samples’ embedding features (128
dimensions) that were mapped onto a 2D graph via the TSNE method, the results are
promising. Figure 6 shows the 2D maps of embedding features for MNIST testing data
generated by netF that were trained by SVHN as source training data (Fig. 6A, source
only), and by SVHN as source and MNIST as target training data (Fig. 6B to Fig. 6D,
GTA).

Comparing embedding features obtained through GTA and source-only training,
GTA features could better separate testing images of 10 digits into distinct clusters,
which led to a significantly improvement of classification accuracy for target testing
data from 61% to 88%. Interestingly, DAELF didn’t obtain the best performance from
the GTA trained netF that was selected when the validation accuracy reached maximum
at epoch 13. On the contrary, DAELF obtained significantly higher testing accuracies
for netF selected after more training iterations, for example at epoch 51, epoch 76. At
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these times, the validation accuracy (on source data) was slightly decreased from 91.0%
to 89.8% and 90.4%. However, the testing accuracy increased from 88.9% to 97.0% and
96.4%. Correspondingly, the clusters of the testing images of 10 digits are more clearly
separated on the 2D graphs by the embedding features from netF selected later at epochs
51 and 76 (Fig. 6C and Fig. 6D).

The results demonstrate that the validation accuracy measured on source domain
data may not be the ideal metric for selecting the optional model (netF) to classify target
domain data. Since domain adaptation is driven by both source and target domain data
during GTA mode training, a model’s performance on source domain could be a trade-off
to its performance on the target domain. Therefore, the selection of a model solely based
on its best performance on the source domain data could be sub-optimal for the target
domain data. An optimal model selection strategy should balance the performance on
both domains.

A model’s performance on target domain cannot be directly estimated without know-
ing target sample labels. In this case, a surrogate metric is needed to indirectly estimate
a model’s potential performance on the target domain. One of such surrogate metrics
could be based on the clustering of target domain data in the embedding feature space
as its correlation with target domain performance has been shown in Fig. 6. To achieve
correlation without knowing the labels of target samples, it is possible to rely on the
labeled source training samples to determine the clustered regions in the embedding fea-
ture space and quantify how well the target training samples may fall into those dense
regions.

3.3 Data Fusion for Multiple Sensors

Using the four DIGIT datasets simulates two sensor modalities. The four datasets include
two datasets (SVHN and USPS) that have been used in previous studies by Taigman, et al.
[16], and the two new datasets, MNIST-N (noise) and MNIST-JP (Japanese). MNIST-N
consists of images derived from MNIST by adding background noise. MNIST-JP consists
of is a dataset similar to MNIST but the images of hand writing digits were written by
Japanese. We used these two new datasets in order to increase learning difficulty so that
the performance improvement of the fusion approaches could be observed.

We separated the four datasets into two pairs and applied the GTA algorithm to train
two separate neural networks. The first neural network was trained by using SVHN as
source domain data and MNIST-JP as target domain data (SVHN — MNIST-JP). The
second neural network as trained by using MNIST-N as source domain data and USPS
as target domain data (MNIST-N — USPS). The two networks were evaluated by testing
data from the target domain, i.e., MNIST-JP and USPS, respectively.

We evaluated the performances of the feature-level and the decision-level fusion
approaches and compared them with single GTA-trained networks. Table 3 lists the
classification accuracy when each method was used to predict testing datasets, which
were not used in any training processes.

The GTA-trained network can effectively improve the classification accuracy for
target domain data. DAELF shows improvement here again in each single GTA trained
network. The network trained by MNIST-N — USPS achieved 71.9% (Fig. 7) accuracy
for USPS testing data and the network trained by SVHN — MNIST-JP achieved 74.37%
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(Fig. 8) accuracy for MNIST-JP testing data. However, the two networks don’t perform
well for new domain data. The former network only achieved 56.89% accuracy for
MNIST-JP and the latter network achieved 58.44% accuracy for USPS.
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After incorporating the two networks together, either through feature-level or
decision-level fusion, the new system outperformed any single network for every one
of the two testing datasets. The two fusion methods achieved 84.28% (Fig. 9) and
86.07% (Fig. 10) accuracy, respectively. This more than 10% increase demonstrates
the effectiveness of our proposed fusion approaches.

Table 3. Classification accuracies achieved by single GTA-trained and the fusion networks:
Feature-Level Fusion (FLF), Decision-Level Fusion (DLF)

Testing Dataset Single GTA-trained network FLF DLF
MNIST-M—USPS SVHN—MNIST-JP

USPS 71.90 58.44

MNIST-JP 56.89 74.37

USPS + MNIST-JP 86.07 | 84.28
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3.4 Classification of Aerial Image Dataset

Aerial imagery analysis provides a good showcase for advances in deep learning [21].
Using the DAELF model, it was modified to enable the classification of aerial images.
We chose two datasets: Aerial Image Dataset (AID) and the University of California,
Merced (UCM) dataset as source and target domain datasets, respectively. AID is a new
large-scale aerial image dataset that collected images from the Google Earth imagery. The
dataset contains 10000 600 x 600-pixel land images that are categorized in 30 scenes.
The UCM is a similar land image dataset, which contains 2100 256 x 256-pixel images
that are categorized in 21 scenes (100 images per scene). The images were manually
extracted from large images from the USGS National Map Urban Area Imagery col-
lection for various urban areas around the country. In order to test the DAELF model,
we only used five classes of images from each dataset in the model development. These
classes are: baseball field, medium residential area, sparse residential area, beach, and
parking lot. We randomly chose 70% of images from AID and UCM to form source
and target training datasets and used the remaining images as testing datasets. Figure 11
shows two example images from AID and UCM.

(A) Source domain: Images in AID dataset (B) Target domain: Images in UCM dataset

Fig. 11. Domain adaptation between AID and UCM datasets.

The DAELF network’s architecture for domain adaption was tailored between AID
and UCM. In particular, the Resnet-50 network with pre-trained weights was used and
the last layer removed as netF, and one linear layer as netC. Figure 12 illustrates the
architectures of netF, netC, netG, and netD (replacing those of Fig. 3 with similar con-
structs of F, C, G, and D). Since the input image size for Resnet-50 is 224 x 224 pixels,
both the AID and UCM images were re-sized to 224 x 224 before feeding them to the
network.



130 J. Luetal.

NetF /~ NetG \ /  NetD "\

ConvT Conv
ReSNet0 (512¢ch, 2x2, 1, 0) (128ch, 5x5, 1, 2)
(LastLayer Out) BN, RelLU BN, ReLU, Max(4x4)
ConvT Conv
Net (256¢h, 4x4, 2, 1) (128ch, 5x5, 1, 2)
BN, ReLU BN, RelLU, Max(2x2)
Linear (128 ﬁ°2vl 1,0) (128 hcosmg 1,2)
c ' X 7 ] c 7 X 7 7
2048 > 5 BN, RelLU x3 |[gN, ReLU, Max(7x7)|| *3
(128cﬁ02)\(14-1r 2,1) Linear
BN, ReLU 128 > 500
(64chC 3&?2 1) Linear
BN, RelU 500 = 500
ConvT .
(3ch, 4x4, 2, 1) Linear
BN, ReLU 500> 5

g

Fig. 12. Architectures for domain adaptation between AID and UCM dataset

DAELF was developed as a method for domain adaptation and data fusion. To achieve
optimal performance, different combinations of parameters are explored in training the
network. The parameters and the performance of ‘source only’ and GTA method are
listed in Table 4. By choosing parameters properly, DAELF was able to obtain significant
improvement for the GTA method when using the last trained model after 1000 epochs.
Compared with the corresponding ‘source only’ method, the GTA accuracy can increase
up to 12%. Figure 13 shows the TSNE method for the target domain testing images for
the results in Table 4.

Table 4. Effect of parameters for the performance of the GTA method

1 2 3 4 5
Parameters Learning Rate 0.0004 | 0.0004 | 0.0004 | 0.0001 | 0.0004
Learning Rate decay | 0.0002 | 0.0002 | 0.0002 | 0.0010 | 0.0010
Alpha 0.05 0.01 0.08 0.05 0.05
Beta 0.05 0.01 0.08 0.05 0.05
Testing Accuracy | Source Only 69.7 69.7 69.7 69.7 69.7
Best GTA Method 66.4 56.2 66.7 54.7 65.1
Last GTA Method 78.7 48.5 75.6 60.3 65.7
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Fig. 13. 2D view of embedding features extracted by the TSNE method for the target domain
testing images for Table 4 with accuracy of 78.7%.

4 Discussion and Conclusions

The paper introduces a deep neural network-based method DAELF, which adapts to
changes of the input distribution allowing for self-correcting of multiple source clas-
sification and fusion. The DAELF results showed that optimum performance can be
achieved, which reaches or even exceeds state-of-art approaches in common datasets.
The performance of the DAELF depends on various hyper-parameters, each of which
must be tuned to achieve optimum. The optimization is a sensitive process, requiring
great attention and significant computational efforts. Hence, future results seek to better
interpret the selection of the hyper-parameters for different scenarios.

It is known that the training process of GAN models may exhibit oscillations and
instabilities, which is called generator collapse [18]. There are various methods to
address these issues. Two such methods which have been used in our studies as ongoing
work:

e Unrolled GAN: The original GAN framework is a minimax optimization problem,
which is practically unfeasible to solve for optimal parameters of discriminator and
generator. Instead, it is solved by iteratively using gradient descent on G and gradient
ascent on D. Unrolled GANs [22] are simultaneous recurrent networks (SRN), which
extend the time horizon of the iterative solution, when the theory of ordered deriva-
tives in backpropagation through time (BPTT) is directly applicable [23, 24]. SRNs
provide are a natural way to improve the performance of GANs by considering the
unfolding iterations over a given time horizon, e.g., 10-20 iterations. The stability
and convergence are improved using unrolled GANS.
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o Wasserstein GAN: WGAN is an alternative to traditional GAN training, by replacing
the original Kullback-Leibler (KL)-based distance measure by a new, mathematically
justified function [25, 26]. Results demonstrated that Wasserstein loss stabilizes the
performance of the DAELF system. The method has been extended to Wasserstein
GAN as well. Performance stabilization is extremely important when using GANSs for
domain transfer applications, as when the data changes, sometimes in an unpredictable
way, stability issues can arise.

In conclusion, this paper develops a deep learning-based multi-source self-correcting
approach to fuse data with different modalities at the data-level to maximize their capabil-
ities to detect unanticipated events/targets. The Domain Adaptation for Efficient Learn-
ing Fusion (DAELF) deep neural network approach adapts to changes of the input
distribution allowing self-correcting across multiple source classifications. When sup-
ported by a distributed computing hierarchy, DAELF scales in data size, geographical
span, and sensor modalities. From the aerial data sets analysis, feature-level fusion (FLF)
outperforms decision-level fusion (DLF) approaches in terms of classification accuracy.

Acknowledgements. This material is based on research sponsored by Air Force under contract
FA864920P0350. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the United States Air Force.

References

1. Zheng, Y., Blasch, E., Liu, Z.: Multispectral Image Fusion and Colorization, SPIE Press,
Bellingham (2018)

2. Zhang, R., Bin, J., Liu, Z., et al.: WGGAN: a wavelet-guided generative adversarial network
for thermal image translation. In: Naved, M. (ed.), Generative Adversarial Networks for
Image-to-Image Translation. Elsevier (2020)

3. Shen, D., et al.: A joint manifold leaning-based framework for heterogeneous upstream data
fusion. J. Algorithms Comput. Technol. (JACT) 12(4), 311-332 (2018)

4. Vakil, A., Liu, J., Zulch, P, et al.: A survey of multimodal sensor fusion for passive RF and
EO information integration. In: IEEE Aerospace and Electronics System Magazine (2020)

5. Bunyak, F., Palaniappan, K., Nath, S.K., Seetharaman, G.: Flux tensor constrained geodesic
active contours with sensor fusion for persistent object tracking. J. Multimedia 2(4), 20 (2007)

6. Jia, B.,Pham, K.D., etal.: Cooperative space object tracking using space-based optical sensors
via consensus-based filters. IEEE Tr. Aerosp. Electron. Syst. 52(3), 1908-1936 (2016)

7. Shen, D., Sheaff, C., Guo, M., et al.: Enhanced GANs for satellite behavior discovery. In:
Proc SPIE, p. 11422 (2020)

8. Nicolaou, M.A., Gunes, H., Pantic, M.: Audio-visual classification and fusion of spontaneous
affective data in likelihood space. In: ICPR (2010)

9. Muller, H., Kalpathy—Cramer, J.: The image CLEF medical retrieval task at ICPR 2010
— information fusion to combine visual and textual information. In: ICPR (2010)

10. Li, H., Wu, X.J., Kittler, J.: Infrared and visible image fusion using a deep learning framework.
In: ICPR (2018)

11. Blasch, E., Seetharaman, G., Palaniappan, K., Ling, H., Chen, G.: Wide-area motion imagery
(WAMI) exploitation tools for enhanced situation awareness. In: IEEE Applied Imagery
Pattern Recognition Workshop (2012)



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Deep Learning Based Domain Adaptation with Data Fusion 133

. Palaniappan, K., et al.: Moving object detection for vehicle tracking in wide area motion

imagery using 4D filtering. In: International Conference on Pattern Recognition (ICPR) (2016)
Kozma, R.: A cognitively motivated algorithm for rapid response in emergency situations.
In: IEEE Conference on Cognitive and Computational Aspects of Situation Management
(CogSIMA) (2017)

Kozma, R.: Intentional systems: review of neurodynamics, modeling, and robotics implemen-
tation. Phys. Life Rev. 5(1), 1-21 (2008)

Majumder, U., Blasch, E., Garren, D.: Deep Learning for Radar and Communications
Automatic Target Recognition. Artech House, Norwood (2020)

Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. arXiv
preprint arXiv:1611.02200 (2016)

Goodfellow, I.J.: NIPS 2016 tutorial: Generative adversarial networks. arXiv:1701.00160v4
(2016)

Goodfellow, I.]., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural
Information Processing Systems (NIPS), p. 27 (2014)

Tzeng, E., Devin, C., Hoffman, J., Finn, C., Abbeel, P.: Adapting deep visuomotor represen-
tations with weak pairwise constraints. arXiv, https://arxiv.org/abs/1511.07111 (2015)
Sankaranarayanan, S., Balaji, Y., Castillo, C.D.: Generate to adapt: aligning domains using
generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8503-8512 (2018)

Savakis, A., Nagananda, N., Kerekes, J.P., et al.: Change detection in satellite imagery with
region proposal networks. Defense Syst. Inform. Anal. Center (DSIAC) J. 6(4), 23-28 Fall
(2019)

Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial networks.
arXiv preprint arXiv:1611.02163 (2016)

Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10),
1550-1560 (1990)

Ilin, R., Kozma, R., Werbos, P.J.: Beyond feedforward models trained by backpropagation: a
practical training tool for a more efficient universal approximator. IEEE Trans. Neural Netw.
19(6), 929-937 (2008)

Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875
(2017)

Gulrajani, F., Ahmed, M., Arjovsky, V., Dumoulin Courville, A.C.: Improved training of
Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767-5777
(2017). https://arxiv.org/pdf/1704.00028.pdf.


http://arxiv.org/abs/1611.02200
http://arxiv.org/abs/1701.00160v4
https://arxiv.org/abs/1511.07111
http://arxiv.org/abs/1611.02163
http://arxiv.org/abs/1701.07875
https://arxiv.org/pdf/1704.00028.pdf

	Deep Learning Based Domain Adaptation with Data Fusion for Aerial Image Data Analysis
	1 Introduction
	2 Methods
	2.1 Generative Adversarial Network
	2.2 Domain-Adversarial Neural Networks
	2.3 Fusion Network Model

	3 Simulation Results
	3.1 Classification of Digits Dataset
	3.2 Visualization and Potential Improvement of Embedding Features
	3.3 Data Fusion for Multiple Sensors
	3.4 Classification of Aerial Image Dataset

	4 Discussion and Conclusions
	References




