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Abstract. Motion imagery interpretability is commonly represented by theVideo
National Imagery Interpretability Rating Scale (VNIIRS), which is a subjective
metric based on human analysts’ visual assessment. Therefore, VNIIRS is a very
time-consuming task. This paper presents the development of a fully automated
motion imagery interpretability prediction, calledAMIIP. AMIIP employs a three-
dimensional convolutional neural network (3D-CNN) that accepts as inputs many
video blocks (small image sequences) extracted frommotion imagery, and outputs
the label classification for each video block. The result is a histogram of the
labels/categories that is then used to estimate the interpretability of the motion
imagery. For each training video clip, it is labeled based on its subjectively rated
VNIIRS level; thus, the required human annotation of imagery for training data
is minimized. By using a collection of 76 high definition aerial video clips, three
preliminary experimental results indicate that the estimation error is within 0.5
VNIIRS rating scale.

Keywords: Motion imagery interpretability · VNIIRS · National Imagery
Interpretability Rating Scale · Deep learning · 3D-CNN

1 Introduction

The pervasive use of still and video imagery from advanced imaging sensors and com-
puting systems produces a desire to quantify the interpretability of imagery. Hence, the
Video National Imagery Interpretability Rating Scale (VNIIRS) has been developed.
The VNIIRS defines different levels of interpretability based on the types of tasks an
analyst can perform with videos of a given VNIIRS rating. The VNIIRS concept assists
imagery analysts to perform demanding interpretation tasks as the quality of the imagery
increases. Users of motion imagery exploit the interpretability of motion imagery as a
guide to determine its relevance value. However, the availability of increasing volumes
of motion imagery data makes it infeasible to rely on human analysts for rating all the
motion imagery.

The VNIIRS standard is documented in Motion Imagery Standards Board (MISB)
Standard 0901.2 [1]. A concurrent recommended practice MISB RP 1203.3 describes
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two equations, including 1) a video quality equation that predicts the overall appearance
of the video and 2) the VNIIRS interpretability estimation equation, orMotion Imagery
Quality Equation (MIQE) [2], that predicts the VNIIRS rating of a given video based on
resolution, blur, noise, camera/platformmotion, overall contrast, foreground contrast and
motion, and artifacts. The difference between task-based interpretability and appearance-
based video quality is defined by ITU-T Recommendation P. 912 [3]. MIQE has been
previously used for the development of an automated VNIIRS assessment system [4,
5] as well as the General Image Quality Equation (GIQE) [6, 7]; however, experience
has shown that measurements of interpretability from engineering metrics are not easily
reconciled with measurements of interpretability from human analysts [8, 9].

The value of aerial motion imagery depends on the resolution, quality, and intended
use. Standard aerial imagery typically involves a single camera pointing towards a region
of interest from which to determine the dynamic content. The interpretability of such
aerial imagery compounds for situations such as wide-area motion imagery (WAMI)
where multiple cameras are collocated and the images are stitched together to increase
the field of view. WAMI exploitation from aerial collects includes multi-object detec-
tion [10], coordinated target association [11], distributed processing [12], multi-object
tracking [13], and image mosaicking [14]. The ability for aerial imagery to support
operational needs of registration, detection, recognition, classification, and identifica-
tion requires intelligent methods for processing. Examples inherent in any imagery pro-
cessing pipeline is image compression with effects of image quality [15], interpretability
degradation [16], and multiview reconstruction [17]. Additional motion imagery devel-
opments of semantic labeling [18] and tensor methods [19] enable fusion on different
types of aerial imagery. For example, synthetic aperture radar (SAR) for moving targets
[20] utilizes the NIIRS, but can be enhanced for a VNIIRS and advancements in deep
learning [21].

This paper describes a fully automated VNIIRS estimation approach without resort-
ing toMIQE. The idea is to cast VNIIRS estimation as a video classification problem and
develop an advancedmachine learning (ML) 3D convolutional neural networks (CNNs).
To realize the ML approach, the video clip is segmented into many short, small video
blocks (VBs). The classification result is a histogram of predicted labels/categories that
can be used to estimate the VNIIRS level of the test video clip.

This paper is organized as follows. In Sect. 2, the VNIIRS standard is reviewed.
Section 3 present works that are related to the present study. The automated motion
imagery interpretability prediction (AMIIP) approach is detailed in Sect. 4, followed by
experimental results in Sect. 5. Conclusions are provided in Sect. 6.

2 Video National Imagery Interpretability Rating Scale andMotion
Imagery Quality Equation

Measures of visual interpretability are used in various ways: [1]

• By users to describe a user’s visual interpretability needs
• By mission planners in predictive equations
• By users to measure visual interpretability of collected images
• By developers to assess sensor design and image interpretability
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The VNIIRS is designed to quantify the interpretability of motion imagery through
a set of pre-defined criteria for seven orders of battle or content domains1. Each of the
written criteria contains the following five components: Analyst Task (such as ‘track’
or ‘confirm’), Object of Interest, Associated Activity or Behavior, Environment, and
optional Object Reference Examples. We refer to the criteria as the VNIIRS components
in this paper. For instance, the following criterion is provided to define the level 5VNIIRS
rating in CULTURE content domain: “Track the movement of - a car, SUV, van, or light
truck- driving independently - on roadways in medium traffic - (mid & full-size cars &
trucks: 5 m – 6 m length).” The VNIIRS has interpretability levels ranging from 3 to 11,
and each content domain has at least one task defined for each of the nine VNIIRS level.

Both sensor design parameters and imaging conditions affect the VNIIRS rating of
Motion Imagery. For example, the sensor design parameters are relative edge response
(RER), signal to noise ratio (SNR), peak SNR (PSNR) resolution or frame size, and
compression are sensor design parameters; while the imaging conditions are ground
sample distance (GSD), atmospheric conditions, target illumination, object and camera
motion, and amount of clutters. Attempts have been made to objectively predict the
VNIIRS based on these factors, and the result is motion imagery quality equation, or
MIQE [2], which expresses the instantaneous interpretability estimate for the kth frame
as a function of resolution (in term of ground sampling distance, GSD), blur (in terms of
relative edge response, RER), noise (in terms of peak signal to noise ratio in dB, PSNR),
camera/platform motion, overall contrast, foreground contrast and motion, and artifacts
as:

Ik = 14− log2 GSDk − log2
(
1/
RERk

)
− exp(0.5 · (PSNRc − PSNRk)) (1)

−�Icamara − �Icontrast − �Imovers − �Iartifacts

where PSNRc is the critical point which has been experimentally determined to be 26 dB.
Interesting readers are referred to [3] for the detailed definition of each involved variable
as well as the recommended implementations.

3 Related Work

The current study is related to deep learning-based no-reference video quality assessment
(NR-VQA). The goal of NR-VQA is to estimate the mean opinion score (MOS) of the
video. In [3], video quality is formally defined as a metric of five levels: 1. Bad; 2. Poor;
3. Fair; 4. Good; and 5. Excellence. Nevertheless, other standardized quality ratings also
exist, such as a continuous scale ranging from 1.0 to 100.0, but Huynh-Thu et al. [22]
noted that there are no statistical differences between the different scales used for the
same visual stimuli.

Among varies NR-VQA schemes [23–27], the work proposed by Varga [28] mostly
resembles the work presented in this paper in the sense that both works cast video
quality or interpretability prediction as a classification problem. Nevertheless, there are

1 This is based on the standard MISB ST 0901.2. However, in the newest standard MISB ST
0901.3, criteria are defined for three orders of battle.
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several differences. 1) In [28], Two-dimensional deep convolutional neural networks are
employed to extract frame-wise feature vectors followed by varies element-wise fusion
strategies to form video-level feature vector, while AMIIP utilizes a 3D CNN for feature
extraction. 2) In [28], there is only one classification task involved in each video clip;
while in the AMIIP approach, a large number of small video blocks (VBs) are extracted
from each video clip and classification is performed on each VB. Finally, 3) in [28] a
support vector regressor is employed to map the temporally pooled video-level feature
vectors to perceptual quality scores, while AMIIP employs a simple linear classifier for
classifying the encoded feature vector for each VB.

Another closely related area is video analysis through spatiotemporal features such
as action recognition and content-based video classification. The spatiotemporal fea-
tures in [29] for action recognition are learned by performing 3D convolutions on an
image block of size 60 (H) × 40 (W) × 33 (D) which in turn is obtained by stacking
five channels2 of the input video block of size 60 (H) × 40 (W) × 7 (F). In [30] for
content-based video classification, different strategies for extending the connectivity of
a CNN in time domain are proposed and compared, including Late Fusion, Early Fusion
and Slow Fusion, in addition to the base line Single Frame. In [31], a general-purpose
spatiotemporal feature learning scheme, known as C3D, is proposed. C3D features the
use of small 3×3×3 convolution kernels in all layers making it an appealing scheme
for end-to-end deep learning applications. The AMIIP deep convolutional neural net-
work is based on the C3D network structure with some modifications to accommodate
the specific input sizes for the application. Specifically, AMIIP doubles the number of
convolutional layers from Conv3a to Conv5b and adds Conv6 in the network architec-
ture. Due to the deeper CNN architecture, to avoid the vanishing gradient problem [32],
the concept of residual blocks is employed to build Conv3a to Conv5b network blocks.
The details of the 3D CNN architecture are illustrated in Fig. 2. The imagery analysis
is to maintain situation awareness [33] through an interpretability index demonstrating
classification performance.

4 Methodology

The workflow of the proposed automated motion imagery interpretability prediction
(AMIIP) method is shown in Fig. 1 which consists of three stages: Video Block (VB)
Generation, 3D-CNNBased VBClassification, and VNIIRS Prediction. In the first stage
of VB Generation, a large number of small video blocks are generated from the center
part of the video, which is the part of the video that analysts focus on. In the second
stage of VB Classification, each video block is fed into a 3D-CNN based classifier for
label prediction. The result is a frequency histogram, which is then used for VNIIRS
prediction at the third stage forVNIIRS Prediction. The details of each stage are provided
next.

4.1 Video Block Generation

As shown in Fig. 1, the first stage of the proposed approach is video block generation.
The output of this stage is a large number of fixed sized image volumes employed as

2 The five channels are defined as gray, gradient-x, gradient-y, optflow-x and optflow-y.
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Fig. 1. Overview of the proposed automated motion imagery interpretability prediction (AMIIP)
approachwith (1) video block generation, (2) video block classification, and (3)VNIIRSprediction
based on aggregate video block processing

inputs to the subsequent 3D CNN. There are at least two reasons that support the use
of small video blocks instead of using the entire video. 1) Motion is an important cue
for an image analyst to subjectively assign a VNIIRS level. To capture the information
pertaining to motion, a reasonable number of consecutive frames need to be grouped
instead of just three frames as employed by Tran et al. in [31] or seven frames by Ji
et al. in [29]. As a result, the spatial extent has to be small enough in order to have a
sufficient number of input data in one batch. 2) Like visual quality analysis of video,
interpretability of motion imagery should be content independent. By keeping the spatial
extent of video blocks from being too large, it is less likely that an object completely
resides in a video block. In this work, different video block sizes are experimented.
Specifically, the values tested of {height(h)× width(w)× frames(f )} include {64× 64
× 16}, {32 × 32 × 16}, and {64 × 64 × 32}. In our implementation, AMIIP applies a
3D sliding window approach at the center part of each framewith step sizes�h,�w,�f
equal to h, w, and 0.5f respectively.

Intuitively, an ideal VB should contain sufficient spatial (in x-y plane, or frame-
wise) and temporal (in the z direction) variations. A frame without spatial variation
is an indication of lack of foreground in the frame, and a volume without intensity
variation along the z-direction which indicates either no object is present, or the object
is not moving. For this reason, two VB selection criteria are devised to select VBs of
large spatial and temporal variations. In the first criterion, spatial STD test, AMIIP first
computes the standard variation of pixel intensities for each frame of a VB. Next, AMIIP
denotes the median of the STDs of all frames in a VB as δspatial. Then, a selected VB
must satisfy:

δspatial > Thspatial (2)

Likewise, in the second criterion, temporal STD test, AMIIP first computes the
standard deviation of pixel intensities for each x-y position along z-direction for each
VB. Next, AMIIP denotes the 99th percentile of the STDs of all x-y positions in a VB
as δtemporal. Then, a selected small volume must satisfy:

δtemporal > Thtemporal (3)
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To test the validity of the two VB selection criteria, experiments are conducted to
compare the performances obtained by selecting the VBs that satisfied both criteria and
by selecting the VBs that do not satisfy both criteria. In other words, in the latter case,
the selected VBs are either homogeneous in each frame or almost no moving objects are
contained in them.

4.2 Three-Dimensional CNN Based Video Block Classification

Inspired by the C3D network structure shown in Fig. 2(a), AMIIP is designed by con-
structing several variants of the C3D based on the size of the input video block. One
typical structure is given in Fig. 2(b), which corresponds to input block size of 64 × 64
× 32. In this case, because of the longer input image sequence, conv6 and the subsequent
max pooling layers are added to reduce the dimension of the feature vector. In addition,
batch normalization, dropout and residual blocks are incorporated into the proposed
AMIIP 3D CNN structure. The final feature vector has length 256 and the number of
class is 9, which is explained in Sect. 5. For other variants of C3D, for example, when
the input video block size is 64× 64× 163, conv6 related layers such as bn6, relu6, and
maxPool6 are removed.

(a)

(b)

Fig. 2. (a) Basic C3D structure for video of size 112 × 112 × 16. (b) The proposed 3D CNN
structure for video block of size 64 × 64 × 32.

3 Different video block sizes are experimented in this paper.
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4.3 Video NIIRS Prediction from Label Histogram

Results of the second stage for each test video clip can be represented as a label histogram
as illustrated in Fig. 3, where each label in the horizontal axis corresponds to a different
VNIIRS level. To obtain the predicted VNIIRS level for the test video clip, AMIIP
simply computes the weighted average of the nearest 5 entries surrounding the highest
histogram.

Fig. 3. VNIIRS prediction from label histogram

5 Experiments

As a preliminary study, in this section we report three experimental results using a set
of 76 high definition aerial video clips among which 66 clips are used as the training
data set and the remaining 10 video clips are adopted as test data set. All clips have been
subjectively assigned non-integer VNIIRS levels ranging from 7 to 11 by several image
analysts. Some information about the video clips including the duration, frame-size and
frame-rate are provided in Table 1. The AMIIP classifiers are implemented inMATLAB.
In all experiments, the batch size is 54 with stochastic gradient descent optimization with
initial learning rate 0.001 and momentum 0.8.

Table 1. Information of video clips used in the experiments.

Clip length Frame size (width × height) Frame rate (fps)

10 s 1920 × 1080 25

5.1 Data Preparation

We first assign each training video clip a group label from G14 to G22 according to
its ground truth VNIIRS levels rounded to half-integers. For example, the group G16
includes the training clips whose rounded VNIIRS values are 8. In other words, the
ground truth VNIIRS values of the clips in the group G16 are between 7.75 and 8.25. In
this way, we divide the 66 training clips into nine groups of different labels.
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5.2 Experiment 1: Performance Comparison of Two Spatial Extents

In the experiment to compare spatial extent, we evaluate the performances of two dif-
ferent VB sizes, 64× 64× 16 and 32× 32× 16. AMIIP first generates VBs of size 64
× 64 × 16 and select 22984 VBs by using both the spatial and the temporal STD tests
given in Eqs. (2) and (3). Both thresholds are set to be 10. For VBs of size 32× 32× 16,
in order to use the same 3D CNN structure, AMIIP re-uses the generated VBs of size 64
× 64 × 16 by dividing each VB into four 32 × 32 × 16 VBs followed by up-sampling
each 32 × 32 × 16 VB to 64 × 64 × 16 VB. The sampling procedure, as illustrated in
Fig. 4, also ensures that exactly the same training VBs are involved in both cases. The
same procedure is employed when preparing the VBs of test clips. Figure 5 shows the
results of the 10 test video clips. The numerical results are provided in Table 2. Clearly,
VBs of size 64 × 64 × 16 outperform VBs of size 32 × 32 × 16 in this experiment.

Fig. 4. Video Blocks generation in experiment 1 (spatial extent)

Fig. 5. Result of experiment 1. Blue: VBs of size 32 × 32× 16; Red: Ground truth; Green: VBs
of size 64 × 64× 16. (Color figure online)
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Table 2. Numerical result of experiment 1

Video Block Total # of VBs Mean error STD

64 × 64 × 16 22984 0.67 0.35

32 × 32 × 16 91936 (22984 ×
4)

0.86 0.34

5.3 Experiment 2: Performance Comparison of Two Temporal Extents

In the experiment to compare temporal extent, we evaluate the performances of two
different VB lengths, 64 × 64 × 16 and 64 × 64 × 32. AMIIP first generates VBs of
size 64 × 64 × 32 and select 23308 VBs by using both the spatial and the temporal
STD tests given in Eqs. (2) and (3). Both thresholds are set to be 10. For VBs of size
64× 64× 16, in order to use exactly the same training data, AMIIP re-uses the VBs of
size 64 × 64 × 32 by splitting each VB into two 64 × 64 × 16 VBs. This procedure
is graphically illustrated in Fig. 6. Due to the different VB lengths, different 3D CNN
structures are used as explained in Sect. 4.2. The experiment is repeated three times,
resulting in three classifiers for each VB size. In addition, during the test phase, instead
of using all VBs, AMIIP randomly selects 40 and 100 VBs per clip in order to speed
up the prediction process. The same test VBs are used in all three runs. The results are
provided in Fig. 7 and Table 3. From the results, we observe: 1) VBs of size 64 × 64
× 32 outperform VBs of size 64 × 64 × 16; 2) Selecting 100 VBs for each test clip
outperforms selecting 40 VBs for each test clip; and 3) even when the same training VBs
are used, performances of the three trained classifiers fluctuates. The first observation
seems indicate that longer VBs captures motion information better than shorter VBs,
while the second observation suggests that an insufficient number of test VBs per video
clip deteriorates the performance.

Fig. 6. Video Block generation scheme adopted in experiment 2 (temporal extent)
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Table 3. Numerical results of three runs of the second experiment (temporal extent).

VB length # of VBs Avg. error
(40 VBs)

Avg. STD
(40 VBs)

Avg. error
(100 VBs)

Avg. STD
(100 VBs)

32-1 23308 0.650 0.694 0.509 0.385

32-2 23308 0.560 0.561 0.410 0.260

32-3 23308 0.709 0.720 0.481 0.371

16-1 46616 0.689 0.503 0.538 0.380

16-2 46616 0.649 0.596 0.830 0.731

16-3 46616 0.681 0.477 0.560 0.378

(a) (b)

Fig. 7. Results of the second experiment (temporal extent). Each row is the results of one run of
the experiment. (a) VBs of size 64 × 64 × 16. (b) VBs of size 64 × 64 × 32. Blue: 40 VBs per
test clip. Red: Ground truth. Green: 100 VBs per test clip. (Color figure online)
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5.4 Experiment 3: Test the Effectiveness of Both VB Selection Criteria

The final experiment tests the effectiveness of the spatial STD test and the temporal
STD test for VB selection. Both tests are given in Eqs. (2) and (3). For this experiment,
we adopt the setup of Experiment 2 for the case of VBs of size 64 × 64 × 32, but
the selected training VBs are those that fail both tests. In addition, we also test the
performance of employing more VBs in the test phase. Table 4 and Fig. 8 show the
results. In Table 4, the values in the first three rows are taken from the first three rows
of Table 3. Surprisingly, although the performance resulting from those training VBs
that pass both tests is better, the difference between them is not significant. It indicates
that the VBs that mostly contain homogeneous background and lack of moving objects
do capture useful information for VNIIRS prediction. However, the performances of the
resulting classifiers seem not as stable as those resulting from using the classifiers trained
by the VBs that pass both criteria.

Table 4. Numerical results of three runs of the third experiment (block selection).

VB selection
tests

# of VBs Avg. error
(230 VBs)

Avg. STD
(230 VBs)

Avg. error
(100 VBs)

Avg. STD
(100 VBs)

Pass – 1 23308 n/a n/a 0.509 0.385

Pass – 2 23308 n/a n/a 0.410 0.260

Pass – 3 23308 n/a n/a 0.481 0.371

Fail – 1 18904 0.420 0.340 0.461 0.307

Fail – 2 18904 0.617 0.691 0.897 0.814

Fail – 3 18904 0.423 0.518 0.593 0.561
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(a) (b)

Fig. 8. Results of the third experiment (block selection). Each row is the results of one run of
the experiment. (a) 100 test VBs per test clip. (b) 230 test VBs per test clip. Blue: VBs fail to
pass both VB selection tests. Red: Ground truth. Green: VBs pass both VB selection tests. (Color
figure online)

6 Concluding Remarks

In this paper, a fully automated approach for predicting the interpretability of motion
imagery, based on advanced 3D convolutional neural networks is presented. The AMIIP
(automated motion imagery interpretability prediction) predicts the interpretability of
high definition aerial videos with VNIIRS ranging from 7 to 11, by casting it as a
video classification problem. Due to the large frame size and the adoption of 3D CNN,
AMIIP divides the entire video clip into many small video blocks (VBs) and predicts
the VNIIRS level of a test clip based on the labels predicted for all VBs. The AMIIP
3D CNN structure is based on the C3D network that utilizes small 3D convolutional
kernels. Using a set of 76 short HD aerial video clips, three preliminary experimental
results demonstrate the feasibility of the proposed fully automated VNIIRS prediction.
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One surprising observation is that VBs with mostly homogeneous backgrounds still
contain information that can be used by the 3D classifier to distinguish clips with dif-
ferent interpretability. However, due to the limited video dataset tested, future work will
investigate (1) more video data sets of different lengths, (2) different imagery types,
and (3) multimodal analysis. The extent of these variations for robustness is required to
consolidate and verify the findings reported in this paper.
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