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Abstract. This work summarizes the results of the second Competi-
tion on Harvesting Raw Tables from Infographics (ICPR 2020 CHART-
Infographics). Chart Recognition is difficult and multifaceted, so for this
competition we divide the process into the following tasks: Chart Image
Classification (Task 1), Text Detection and Recognition (Task 2), Text
Role Classification (Task 3), Axis Analysis (Task 4), Legend Analysis
(Task 5), Plot Element Detection and Classification (Task 6.a), Data
Extraction (Task 6.b), and End-to-End Data Extraction (Task 7). We
provided two sets of datasets for training and evaluation of the par-
ticipant submissions. The first set is based on synthetic charts (Adobe
Synth) generated from real data sources using matplotlib. The second
one is based on manually annotated charts extracted from the Open
Access section of the PubMed Central (UB PMC). More than 25 teams
registered out of which 7 submitted results for different tasks of the com-
petition. While results on synthetic data are near perfect at times, the
same models still have room to improve when it comes to data extraction
from real charts. The data, annotation tools, and evaluation scripts have
been publicly released for academic use.

Keywords: Chart recognition · Competition · Chart dataset

1 Introduction

Visualizations can be helpful tools for the communication of complex ideas.
Among these, we find statistical charts which are used to display data in a
way that facilitates the observation of patterns that are otherwise much harder
to perceive using tables. In many cases, charts are also the main source used
to share raw data that is not made publicly available in any other formats.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-68793-9 27) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2021
A. Del Bimbo et al. (Eds.): ICPR 2020 Workshops, LNCS 12668, pp. 361–380, 2021.
https://doi.org/10.1007/978-3-030-68793-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68793-9_27&domain=pdf
http://orcid.org/0000-0001-6308-7113
http://orcid.org/0000-0002-0761-3243
http://orcid.org/0000-0002-4794-1962
http://orcid.org/0000-0003-3705-120X
http://orcid.org/0000-0002-7118-9280
http://orcid.org/0000-0002-5318-7409
https://doi.org/10.1007/978-3-030-68793-9_27
https://doi.org/10.1007/978-3-030-68793-9_27
https://doi.org/10.1007/978-3-030-68793-9_27


362 K. Davila et al.

(a) Area (b) Donut (c) Heatmap (d) Hor. Bar (e) Hor. Box

(f) Hor. Interval (g) Line (h) Pie (i) Polar (j) Scatter

(k) Surface (l) Venn (m) Vert. Bar (n) Vert. Box (o) Vert. Interval

Fig. 1. A sample of 15 types of charts used in the competition.

This is just one out of many reasons that have motivated past works in the field
of Chart Recognition [1,7,19]. Despite significant work in this field, not many
have used standardized comparisons against previous methods. This is in part
due to the lack of large scale benchmarks which can be used for this purpose.
This began to change with the first edition of the Competition on Harvesting
Raw Tables from Infographics (ICDAR 2019 CHART-Infographics) [8], which
provided both data and tools for the chart recognition community. This paper
describe the continuation of this effort through the second edition of the CHART-
Infographics competition at the International Conference on Pattern Recognition
(ICPR) 2020 (Fig. 1).

In the second edition, we provided two pairs of datasets for training and eval-
uation of chart recognition systems (Sect. 2). The first pair of datasets, Adobe
Synth, is based on synthetic charts generated from real data using matplotlib.
The second pair of datasets, UB PMC, is based on manually annotated charts
from PubMed Central1, a free full-text archive of biomedical and life sciences
journal literature at the U.S. National Institutes of Health’s National Library of
Medicine. We divide the Chart Recognition challenge into a pipeline of 6 tasks,
and we also consider a seventh task to evaluate end-to-end systems (Sect. 3).
We evaluate these tasks using revised versions of the metrics that were pro-
posed in the first edition of the competition [8]. Many teams registered for this
edition (Sect. 4), out of which 7 submitted results for different tasks (Sect. 5).
We analyzed these results and the methods that generated them to provide our

1 https://www.ncbi.nlm.nih.gov/pmc/.

https://www.ncbi.nlm.nih.gov/pmc/


ICPR 2020 - Competition on Harvesting Raw Tables from Infographics 363

Table 1. Distribution of chart types on the competition training and testing sets.

Adobe Synth. UB PMC

Chart Type Train Test Train Test

Area 1,200 250 120 52

Line 1,200 250 7,401 3,155

Manhattan 0 0 123 53

Scatter 1,200 250 875 475

Scatter-line 0 0 1,260 558

Polar 1,200 250 0 0

Donut 1,200 250 0 0

Pie 1,200 250 170 72

Horizontal box 1,200 249 0 0

Vertical box 1,200 250 316 447

Horizontal bar (grouped) 1,200 250 429 358

Horizontal bar (stacked) 1,200 250

Vertical bar (grouped) 1,200 250 3,818 1,636

Vertical bar (stacked) 1,200 250

Horizontal interval 0 0 109 47

Vertical interval 0 0 342 147

Map 0 0 373 160

Heatmap 0 0 138 59

Surface 0 0 110 45

Venn 0 0 52 23

Total 14,400 2,999 15,636 7,287

conclusions (Sect. 6) based on this competition. The data, annotation tools, and
evaluation scripts have been publicly released for academic use2.

2 Data

We constructed two types of datasets for this competition: synthetic and real.
For each type, we have provided both a training set that was released to par-
ticipants upon registration and a corresponding testing set that was released to
all participants at the same time. Participants were given one week to run their
systems on the test data and return their results for evaluation by the orga-
nizers. There is a large overlap in terms of the classes covered by both types
of datasets, but some classes are only included in one type (see Table 1). Both
types are described in this section.

2 https://chartinfo.github.io/.

https://chartinfo.github.io/


364 K. Davila et al.

2.1 Synthetic Chart Dataset

We constructed the synthetic chart dataset using data from several public sources
- (a) World Development Indicators3, (b) Gender Statistics (World Bank)4, (c)
Government of India Open Data5, (d) Commodity Trade Statistics6, (e) US
Census Data (for 2000 and 2010)7, (f) Price Volume Data for Stocks and ETFs8.

Chart Generation: Multiple charts of different categories were created using
the Matplotlib library9. The tabular data was first cleansed and converted into
a common format. From each table, different sets of columns and randomized
rows were selected to create the charts. To emulate features of real-world charts,
we introduced variations in chart component such as: (1) positioning of titles,
legends, and different stackings of legend entries (vertical/horizontal); (2) font
families and sizes for different elements; (3) background/foreground text colors,
color and/or width of lines, borders, grids, and markers; (4) bar widths and
inner/outer radii of pies, exploded pies; and the (5) elements like plot text,
minor/major axis ticks, tick direction, axis label variations. The statistics of
different types of charts is shown in Table 1.

Chart Annotations: The required annotations for charts were obtained using
functions provided by Matplotlib API including tight bounding boxes for text
regions, axes, legends, and data elements (e.g. bars, lines, scatter plot markers,
box plot elements and pies). For pie charts, tight masks were produced covering
each pie region.

2.2 PubMedCentral Chart Dataset

A sample of real charts was extracted from the PubMed Central. The Open
Access Section has more than 1.8 million papers, out of which we extracted
more than 40,000 papers from different journals in fields such as epidemiology,
public health, pathology, and genetics which typically contain many charts. This
is the same sample of papers described in the first edition [8].

Data Sampling. We started with the 4242 chart images that were labeled
for the first edition of this competition [8]. Using this as a seed, we trained
a convolutional neural network using Triplet loss to learn an embedding for
different types of charts. This network allowed us to sample images from regions

3 www.datacatalog.worldbank.org/dataset/world-development-indicators.
4 www.datacatalog.worldbank.org/dataset/gender-statistics.
5 www.visualize.data.gov.in.
6 www.kaggle.com/unitednations/global-commodity-trade-statistics/data.
7 www.kaggle.com/muonneutrino/us-census-demographic-data/data.
8 www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs.
9 www.matplotlib.org/.

www.datacatalog.worldbank.org/dataset/world-development-indicators
www.datacatalog.worldbank.org/dataset/gender-statistics
www.visualize.data.gov.in
www.kaggle.com/unitednations/global-commodity-trade-statistics/data
www.kaggle.com/muonneutrino/us-census-demographic-data/data
www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
www.matplotlib.org/
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Table 2. Distribution of charts in the testing set. All available charts on each dataset
were split into 5 sets used to evaluate different tasks. Note that all pairs of splits need
to be disjoint except the first and the last one where no ground truth is provided to
the participants.

Split Adobe Synth UB PMC Tasks

Split 1 1,240 5103 Task 1

Split 2 352 732 Task 2

Split 3 528 726 Tasks 3, 4, 5

Split 4 527 726 Tasks 6a, 6b

Split 5 352 726 Task 7

Total 2,999 7,287

of the embedded space that were not covered by the original sample. The newly
sampled images were manually labeled first as either chart or non chart, and
single-panel or multi-panel (4 possible combinations). We then chose the single
panel chart images and sub-classified them into chart types. Using the newly
annotated images and the original sample, we then retrained the embedding
network and repeated this sampling process until we collected more than 65,000
images, out of which more than 22,500 were single panel charts. For some under-
represented classes (e.g. vertical box charts and horizontal bar charts), we further
found multi-panel image charts which contained them and manually labeled the
panels to split them into single panel chart images. These charts were further
split into training and testing datasets as shown in Table 1. The testing set was
further split into 5 disjoint sets used to evaluate different tasks each as shown in
Table 2. This is necessary due to the fact that some tasks require inputs from
the previous task.

Data Annotation. We further extended and improved our existing tools for
the annotation of charts. We started with images which were already divided by
chart types. We further split them into small batches (around 60 charts each)
for further annotation. A small team of annotators was trained to use the tools
that we created to produce a variety of annotations on the chart images.

First, they annotated the text regions on the chart by providing the loca-
tion, transcription and role of each text region. Unlike the previous competition,
this time we allowed text regions to be represented by quadrilaterals to handle
rotated text properly. Annotators were only required to provide a rough but
valid boundary for the text region and the tool included an option which further
refined these text regions by fitting them to the text they contained using con-
nected component analysis. The text itself was annotated in a semi-automatic
fashion by first using the Tesseract OCR [23] to transcribe most of the selected
text regions, and further manual error corrections when required. For special
symbols and formulas, the annotators were required to provide LATEXstrings.
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The next step was legend and axes annotations. For legends, they had to mark
tight boxes around the corresponding data marks for each legend entry. For axes,
they had to provide a bounding box of the plot region which defines the position
of the x and y axes. They also had to annotate the titles of each axes, tick labels,
axis types (categorical vs numeric), and axis scales if they were numeric (linear,
logarithmic, other). In addition, they had to provide the tick mark locations,
types of tick marks (markers or separators), and associations between tick labels
and tick marks. Finally, they had to annotate the data on specific types of charts
(Line, Scatter, Horizontal/Vertical Box and Horizontal/Vertical Bar). For each
type of chart, the tool was modified to provide different options which made the
annotation process faster, allowing us to greatly upscale our datasets. The tool
also now includes multiple options for quality control which basically attempts
to parse the chart based on the annotations provided and automatically finds
and notifies the user of existing inconsistencies in the annotation. After that, all
charts were again manually inspected to find and correct additional errors which
might not have been captured by the automatic checks.

3 Tasks and Metrics

Fig. 2. The process of extracting data from chart images. The output from initial tasks
can be used to inform later tasks.

Extracting data from chart images is a complex task. To allow the development
of algorithms for specific parts of the process, we have broken it down into
smaller tasks (Fig. 2): 1) chart classification, 2) text detection and recognition,
3) text role classification, 4) axis analysis, 5) legend analysis, 6) data extraction,
and 7) end-to-end data extraction. In this section, we describe each task and the
metrics used for evaluation. For each task, we provide the ground truth output
from previous tasks in order to analyze the performance of systems independently
of errors made in previous tasks. Note that the implementations of all metrics
are publicly available10.

As mentioned in Sect. 2, we have two datasets with very different properties.
We consider individual leaderboards per task per dataset for a total of 14 leader-
boards. In order to select the competition winners, we use a point-based system

10 https://chartinfo.github.io/.

https://chartinfo.github.io/
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where the method that obtains the top-1 rank on each task on each dataset is
awarded 4 points, the top-2 rank gets 3 points, the top-3 rank gets 2 points and
the remaining teams with a submission get 1 point for participation, while the
rest who did not participate on that task or dataset get 0. We then add up all
points across the leaderboards to create the overall ranking of participants.

3.1 Task 1. Chart Classification

In this task, chart images are classified into different types as described in Table
1. Note that some classes are only represented in the synthetic dataset and others
are only represented in the UB PMC dataset. Most of these classes are only
considered for this task. For each class, we compute the precision and recall, and
then take the harmonic mean (F-measure). We use the average of these values
as the final score.

3.2 Task 2. Text Detection and Recognition

The input for the task is the chart image and its correct chart class. Then, text
detection and recognition is performed at the logical element level. This means
some multi-word and even multi-line elements such as titles and axis tick labels
are treated as a single element. Previously, we used bounding boxes for text
regions [8]. In this edition, we now use polygons, specifically quadrilaterals, to
represent text regions.

During evaluation, the predicted text regions are compared to the ground
truth quadrilaterals and they are considered a match if their intersection over
union (IOU) exceeded 0.5. For many-to-one and one-to-many matches, the pair
with the highest overlap is chosen and the remaining regions are counted as false
negatives or false positives. Matched pairs are scored by Normalized Character
Recognition Rate (NCRR) for recognition using max(1 − NCER, 0) as well as
IOU for detection. Normalized Character Error Rate (NCER) is measured as the
edit distance between ground truth string and predicted string normalized with
respect to ground truth string length. Some regions include special symbols and
even mathematical expressions which are all labeled using LATEX. At the moment
we simply convert these annotations back to unicode strings which might not be
ideal for some complex expression as well as symbols having both super and sub
indices.

For each image, the maximum between ground truth text regions and pre-
dicted text regions is used to normalize the detection scores. For recognition
scores, we simply use the number of ground truth boxes. The harmonic mean
of detection and recognition scores is used as the final score per image, and the
average of this metric is computed for the entire test as the final score for the
task.

3.3 Task 3. Text Role Classification

In this task, participants are provided with the GT chart type and the correct
text region-transcripts pairs, and their target is to classify each region based on
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their semantic roles. The classes considered are: chart title, axis title, legend title,
legend label, mark label, tick label, tick grouping, value label and other. Submis-
sions were evaluated using the average per-class F-measure (same as Task 1).

3.4 Task 4. Axis Analysis

In Task 4, systems must associate tick labels with pixel coordinates. This is a
necessary step in order to convert the coordinates of chart data point geometries
from pixel space to the chart space represented by the axes. Similar to Task 3,
the inputs are the chart image, its class and the text regions with transcriptions,
but participants do not know which text regions are the tick labels. Then, for
each axis the output is a list of text regions (tick labels), each paired with a
(x, y) point representing the tick location in the image.

The evaluation is based on a weighted F-measure, where each tick mark
can get a score between 0 and 1 based on location accuracy. Extra elements
incorrectly predicted as ticks receive a score of 0. There are two thresholds used
(a = 1.0% and b = 2.0%) which are proportional to the chart image diagonal.
With these, we score predictions located at a distance d from the GT tick location
using:

s(d, a, b) =

⎧
⎪⎨

⎪⎩

1, for d ≤ a
b−d
b−a , for a ≤ d ≤ b

0, for d ≥ b

⎫
⎪⎬

⎪⎭
(1)

Recall is computed as the sum of the scores divided by the number of GT
ticks, and precision is the sum of scores divided by the number of predicted ticks.

3.5 Task 5. Legend Analysis

The goal of legend analysis is to pair textual legend labels with their correspond-
ing graphical markers. Similar to Task 4, participants must produce a list of text
regions, each paired with a bounding box that surrounds its corresponding legend
marker. The input is same as Task 4 which means that all text regions are given
without knowing which ones belong to the legend. The final score is a normal-
ized IOU score, where true positive predictions must have the text element and
a partial score is determined by either the recall or the IOU of the legend marker
bounding box. Normalization is done by dividing the sum by the largest between
the number of expected legend boxes and the number of predicted boxes, thus
punishing for false positives as well. Previously, we only reported the IOU-based
metric [8], but this time we are also reporting the Recall-based version.

3.6 Task 6. Data Extraction

Charts are often used to convey numerical data, and the main goal of this com-
petition is to get an approximation of the original data (e.g. data points) used
to generate the chart. We further divide this task into two sub-tasks where the
inputs are the ideal outputs from all previous tasks.
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Task 6.a Plot Element Detection and Classification. All visual elements
representing data must be localized in the chart. This includes bars, lines, points
and boxes (with whiskers). For bar charts, the expected output is a set of bound-
ing boxes representing each bar. For scatter plots, the output is a set of (x, y)
points. For line plots, the output is a set of lines, where each line is represented
as an ordered sequence of points. For box plots, the output is a set of boxes,
where each box is represented by a tuple with 5 elements corresponding to the
min, third quartile, median, first quartile, and max values. We currently ignore
outlier marks and assume the ends of the whiskers to be the min and max values.

For all chart types considered here, the metric involves a set of predicted
objects that need to be aligned with a set of ground truth objects. We use
a difference distance function for each chart type to define a matching score
between a predicted object and the ground truth object. For predicted objects
P = {pi} and GT objects G = {gi}, we construct the K×K (K = max(|P |, |G|))
cost matrix C where Cij encodes the cost of matching pi with gj . When i > |P |
or j > |G|, Cij := 1 to denote that unmatched objects incur maximum cost. We
then use the Hungarian algorithm [16] to solve the assignment problem defined
by this cost matrix, which yields the optimal pairing of predicted and GT objects
and c, the total cost of this pairing.

The final score (higher is better) for each image is 1 − c
K . We then average

each chart image’s score across the entire test set. Further details on the distance
functions per chart element are available in our competition website including
the scripts used to compute these metrics.

Task 6.b Raw Data Extraction. The output of this task is the data that
was used to render the chart image. In the case of box plots, we only require
the summary statistics (i.e., min, 1st, 2nd, 3rd quartiles, and max) as those are
sufficient to re-create the plot. The output of this task is a set of data series
objects, where a data series consists of a name (string) and a sequence of (x, y)
values (order only matters for line plots). If the x-axis has a discrete domain,
then we represent each x value as a string, otherwise it is a real value. All y
values are real numbers. The name of a data series corresponds to the textual
label found in the legend or mark. If there is no legend in the chart, then we
check for mark labels and if these are also absent then the GT name for the data
series is ignored for evaluation purposes.

To compare a set of predicted data series with a set of GT data series, we
find the optimal pairing using the Hungarian algorithm [16] of data series under
a data series distance function that compares both data series names and sets
of points. Specifically, the distance D between data series is

D(n1, d1, n2, d2) = (1 − β1)L(n1, n2)α + β1M(d1, d2) (2)

where n1 and n2 are the names of the data series, L is the normalized Levenshtein
Edit Distance, M is a distance function appropriate for the chart type, and
d1 and d2 are the two sets of points. The hyperparameters α = 1 and β1 =
0.75 control the relative contribution of the point set comparison and the name
comparison.
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Each evaluation of M may also contain an assignment problem to find the
optimal pairing of (x, y) points between d1 and d2 (as in Task 6a). When x is
discrete, we use the normalized string edit distance, L. For continuous values, we
use the Mahalanobis distance to normalize the dataset scales across images. For
line plots with continuous x values, instead of pairing points, we approximate
the integral of the difference between the predicted and GT line, using linear
interpolation to account for differences in the predicted and GT x values. For
further details, please see the online supplementary materials and scripts to
compute this metric.

3.7 Task 7. Raw Data Extraction

The desired output of this challenging task is the same as task 6b, except that
the only input is the chart image (i.e., this is the entire pipeline end-to-end). In
this case, idealized outputs of tasks 1–5 are not provided, so the method must
perform all of these steps in series, which allows for errors to cascade. This task
reflects real-world performance of systems and is scored using the same metric
as 6b.

4 Participants

A total of 27 teams registered for the competition, out of which 7 finally submit-
ted results for different subsets of tasks each. In this section, we briefly describe
each team who made a submission to the competition.

1) DeepBlueAI: Zhipeng Luo, Zhiguang Zhang, Ge Li, Lixuan Che, Jianye
He, and Zhenyu Xu from DeepBlue Technology and Peking University. Task
1: Employed a ResNet50 classifier [11] trained with a cross-entropy loss and
label smoothing. Task 2: The detection model is a Cascade R-CNN model [2]
with a ResNext-101 backbone [24], Deformable Convolution layers [5], and
GCBlocks [3]. For text recognition, a CRNN model [22] trained with CTC
loss [10] and data augmentation is applied to the detected text boxes after rotat-
ing them to make the text horizontal. Task 3: To classify text role, Random For-
est and LightGBM [15] classifiers consume features derived from bounding box
geometry, textual content, alignment with other text boxes, and position relative
to the detected legend (if present). Task 4: A CenterNet [9] with a DLA-34 [26]
backbone is used to detect tick locations via heatmap prediction. One branch
of the network predicts the offset to the associated text label and matching is
performed by L1 distance. Task 5: A CenterNet model is used to detect both
legend graphics and legend pairs of graphics and legend text blocks. Then the
Hungarian algorithm is used to assign graphics to text blocks. Task 6: Cen-
terNet is used to detect rectangular elements and point elements are detected
by a separate heatmap prediction model. To match chart elements with legend
entries, they use similarity between HOG [6] features extracted from the chart
elements and the legend entries. For charts without legends, K-means clustering
is performed on HOG features to group chart elements.
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2) Magic: Wang Chen, Cui Kaixu and Zhang Suya from XinHuaZhiYunInc.
and State Key Laboratory of Media Convergence. Task 1: A ResNet50 [11] was
used for the Synthetic data and an ensemble of 10 ResNet152 models was used
for the PMC data. Task 2: They detect blocks of text using a Mask RCNN net-
work [12] with a ResNeXt-152-FPN [17] backbone, deformable convolutions [5],
and network cascades [2]. An attentional sequence to sequence model [20] com-
posed of BLSTM layers and trained with numerous public datasets is used for
text recognition. Task 3: They employed fusion approach of an object detector
for 5 text classes and LayoutLM [25] for all text classes. Task 5: First the legend
area was detected using a model similar to that of Task 2. Then the cropped
legend image was fed to a Cascade RCNN [2] to find legend markers.

3) Lenovo-SCUT-Intsig: Hui Li, Yuhao Huang, Bangdong Chen, Luyan
Wang, Kai Ding, Sihang Wu, Canyu Xie, June Lv, Wei Fei, Yan Li, Qiany-
ing Liao, Guozhi Tang, Jiapeng Wang, XinFeng Chang, and Hongliang Li from
SCUT, Lenovo, and IntSig. Task 1: An ensemble composed of 5 DenseNet-
121 [13] models, a ResNet-152 [11], and a ResNet-152 with pyramid convolutions
is trained using class-balancing techniques. Task 2: They use Cascade R-CNN for
the Synthetic dataset and Cascade Mask R-CNN for PMC text block detection.
Text blocks are split into lines before inputting them to a CRNN+CTC [10,22]
and attention model ensemble. Task 3: A weighted ensemble of 3 models that use
text semantics, visual features, text features, chart type, and location features
is trained with data augmentation.

4) IntSig-SCUT-Lenovo: Hesuo Zhang, Shuang Yan, Weihong Ma Guangsun
Yao, Adam Wu, Lianwen Jin from SCUT, Lenovo, and IntSig. Task 5: A Cas-
cade Mask R-CNN [2] detects both legend marks and mark-text pairs and the
pairing is performed using IoU of the detections. Task 6: A modified Pyramid
Mask Text Detector [18] is used to detect bar boxes in bar charts, and a Gaus-
sian heatmap regression model [4] is used to detect points in other charts. For
task6b, they match the detected elements with legend entries and assign values
by interpolation from the tick marks detected locations.

5) SCUT-IntSig-Lenovo: Weihong Ma, Hesuo Zhang, Guozhi Tang, Jiapeng
Wang, Sihang Wu, Yuhao Huang, Hui Li, Canyu Xie, Kai Ding, Adam Wu,
Qianying Liao, Ptolemy Zhang, and Yichao Huang from SCUT, Lenovo, and
IngSig. Task 4: Tick detection is performed by Gaussian heatmap regression
using a ResNet18 backbone with a deconvolution prediction layer. Heuristics
are used to pair detected tick marks with tick labels. Task 7: A DenseNet-121
is first used to classify the chart type, and a Cascade RCNN [2] is used for
text detection. For text line recognition, the C-RNN model [22] is trained with
CTC loss [10]. Tick detection is performed the same as Task 4. Cascade RCNN is
used to detect the legend box, the legend marks, and mark-text pairs. Then they
detect and classify individual chart elements in the plot area. To associate chart
elements with legend entries, they use K-means and RGB histogram features.
Finally, real values are created by interpolating between detected tick marks.
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6) IPSA: Mandhatya Singh and Puneet Goyal from Indian Institute of Tech-
nology Ropar. Task 1: DenseNet-121 [13] with an additional set of dense layers,
batch normalization [14], and dropout layers have been used. Task 2: EAST [27]
based text detection (with preprocessing) is used for detecting text boxes.

7) PY: Pengyu Yan from University of Buffalo. Task 2: Faster-RCNN [21]
is used to detect text regions which are then recognized using the open source
Tesseract OCR library. Task 3: Faster-RCNN is used to detect plot area, x-axis,
y-axis, and legend area, and this information is used to classify text role. Task
4: Faster-RCNN is used to detect axis areas after which corner detection is used
to localize tick marks. Pairing is performed with nearest bipartition rules.

5 Competition Results

5.1 Task 1. Chart Classification Results

Table 3. Task 1 results: Average F-measure across all predicted chart classes.

Team Adobe Synth UB PMC

Lenovo-SCUT-Intsig 1.00 0.928

DeepBlueAI 1.00 0.904

IPSA 0.992 0.863

Magic 0.994 0.905

Table 3 shows the average F-measure of each chart type prediction. For Adobe
Synth, all participants achieved near perfect accuracy. The only confusions were
among sub-categories of bar-charts. We consider DeepBlueAI and Lenovo-SCUT-
Intsig tied for 1st with IPSA and Magic tied for 3rd since their performance
difference is not statistically significant.

However, this task is not solved for the real world charts with all 4 systems
achieving around 90% average F-measure across the classes. Lenovo-SCUT-Intsig
is the clear winner for this dataset, while DeepBlueAI and Magic are tied for the
second place.
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5.2 Task 2. Text Detection and Recognition Results

Table 4. Task 2 results: Intersection over Union (IoU) for Text Detection; Normal-
ized Character Recognition Rate NCRR for Text Recognition; Combined score is the
harmonic mean of IoU and NCRR.

Adobe Synth UB PMC

Team IoU NCRR Combined IoU NCRR Combined

Lenovo-SCUT-Intsig 0.943 0.973 0.958 0.741 0.765 0.752

Magic 0.929 0.922 0.926 0.722 0.735 0.729

DeepBlueAI 0.441 0.702 0.542 0.737 0.584 0.652

Py – – – 0.676 0.606 0.639

IPSA 0.135 0.209 0.164 0.275 0.320 0.296

(a) Lenovo-SCUT-Intsig (b) Magic

Fig. 3. Confusion matrices for Task 3 for the top-2 participants.

Table 4 shows the detection IoU and the NCRR for each submission for both
datasets. The top 2 performers, Lenovo-SCUT-Intsig and Magic, used similar
techniques, employing Cascade Mask RCNN models [2,12], to achieve similar
detection scores. DeepBlueAI also used a similar model and is competitive with
the top performer on the UB dataset. The Py submission employed a Faster
R-CNN [21], which is shown to not be as effective as the Cascade models at
detecting small objects like text.

There was a bigger gap between the top-2 in text recognition with Lenovo-
SCUT-Intsig using an ensemble of 2 models (CTC [10] and attention-based), and
Magic using a seq-2-seq approach. Tesseract, which is not specifically designed for
chart OCR, was used by Py and achieved a lower result, which may suggest that
tuning models to perform OCR for charts is necessary for optimal performance.
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5.3 Task 3. Text Role Classification Results

Table 5. Task 3 results: Average F-measure across all predicted text role classes.

Team Adobe Synth UB PMC

Lenovo-SCUT-Intsig 1.00 0.859

Magic 0.999 0.817

DeepBlueAI 0.999 0.772

Py – 0.654

Table 5 shows the average F-measure for the classification of all text blocks
in the charts. There is sufficient regularity in the text placement and style in
the synthetic data that 3 participants were able to perfectly or near-perfectly
classify all text blocks. In the PMC data, there is much greater variety. Both
Magic and Lenovo-SCUT-Intsig employed ensemble models and used features
from pre-trained Language Models. The Lenovo-SCUT-Intsig team used hand-
crafted features such as chart type, bounding box geometry, etc. as input to a
shallow model while Magic used only deeply learned features from the image
and text. The confusion matrices for both Lenovo-SCUT-Intsig and Magic are
shown in Fig. 3.

5.4 Task 4. Axis Analysis Results

Table 6. Task 4 results: Localization of tick marks for each tick label.

Team Adobe Synth UB PMC

DeepBlueAI 0.999 0.813

SCUT-IntSig-Lenovo 0.998 0.801

Py – 0.588

Table 6 shows the results of Task 4 where tick labels are associated with the
pixel location of the corresponding tick mark. We again observe near perfect
accuracy on the synthetic data, which is not surprising given that all tick marks
in the dataset are rendered using the same pattern of pixels. For the PMC
data, DeepBlueAI performed best by a narrow margin over SCUT-IntSig-Lenovo,
though both teams used deep models to regress Gaussian heatmaps around tick
locations.

Accurate localization of tick marks is critical for performing the later task
6b correctly, since if the ticks are not pixel precise, mapping pixel locations of
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visual elements onto the axis values will be imprecise. The only exceptions are
charts with categorical axes for which the actual tick marks might not be visually
aligned with the actual tick values. Charts with this condition are common in
the UB PMC dataset and logical tick marks were used to mark the best position
within each axis to which the tick values need to be associated. Currently, the
best result is 81% and no penalty was given for predictions within 1% (in terms
of the image diagonal) of the target location, meaning that at least 19% of the
predicted ticks were more than 1% away from the target. Since this task directly
impacts the extracted data values, current methods are likely insufficient for
real world applications of Chart Recognition and further work is needed on axis
analysis.

5.5 Task 5. Legend Analysis Results

Table 7 shows results for legend analysis. We can see that in terms of the recall-
based metric both IntSig-SCUT-Lenovo and Magic obtained near perfect scores,
and they have a larger gap on the UB PMC dataset. However, in terms of the
IOU-based metric, Magic achieved the highest scores on both datasets, including
a near perfect score of 99% on the Synthetic dataset. Note that both methods are
based on Cascade RCNNs, but the method from Magic first cropped the legend
region thus simplifying the recognition problem given that the legend region is
correctly detected.

Table 7. Task 5 results: Legend Analysis. We report both normalized Recall-based
and normalized IOU-based scores.

Adobe Synth UB PMC

Team Recall IoU Recall IoU

DeepBlueAI 0.928 0.919 0.864 0.818

IntSig-SCUT-Lenovo 0.997 0.950 0.932 0.849

Magic 0.993 0.990 0.920 0.860

5.6 Task 6. Data Extraction Results

We break down and analyze the results for Task 6 by Subtasks 6a and 6b.

Task 6.a Plot Element Detection and Classification Results. Table 8
shows the results of Task 6a which received 2 submissions. DeepBlueAI used
a CenterNet for detecting all elements, which outperformed the Pyramid Mask
Text Detector [18] used by IntSig-SCUT-Lenovo on all but one bar chart cate-
gory. However, the Gaussian regression model used by IntSig-SCUT-Lenovo on
all other chart types was superior on non-bar charts. This was especially true on
scatter plots, which had the lowest performance of all chart types.
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Table 8. Task 6a results: Detection of visual elements. Note that the PMC dataset
did not differentiate between stacked and grouped bar charts, so results are presented
only at the horizontal and vertical bar chart level.

Adobe Synth UB PMC

Chart type DeepBlueAI IntSig-SCUT-Lenovo DeepBlueAI IntSig-SCUT-Lenovo

Stacked Horz. bar 0.962 0.957 0.929 0.870

Grouped Horz. bar 0.963 0.917

Stacked Vert. bar 0.963 0.941 0.942 0.932

Grouped Vert. bar 0.927 0.941

Horz. box 0.804 1.000 – –

Vert. box 0.832 1.000 0.977 0.989

Scatter 0.799 0.874 0.654 0.793

Line 0.976 0.992 0.842 0.847

All 0.907 0.954 0.870 0.882

Task 6.b Raw Data Extraction Results. Table 9 shows the results of Task
6b, which with few exceptions are lower than that of Task 6a. This makes sense
since solving task 6b entails taking the detections from Task 6a, associating
them with legend entries (or inferring clusters if no legend is present), and then
mapping the pixel-based detections to the value-space of the axes. It is interesting
that IntSig-SCUT-Lenovo scores for bar charts actually increased w.r.t. Task 6a,
which may be explained by the fact that Task 6a is scored based on bar bounding
box IoU, but perhaps this can be explained because the width of vertical bars
(and height of horizontal bars) is irrelevant for data extraction. This suggests
that a better metric for Task 6a might only score bar bounding boxes based

Table 9. Task 6b results: Extraction of Data Series. Here we show the combined
name and point set scores as described in Sect. 3.6 for each chart type, and show the
average name score and data score for all charts. Note that the PMC dataset did not
differentiate between stacked and grouped bar charts, so results are presented only at
the horizontal and vertical bar chart level.

Adobe Synth UB PMC

Chart type DeepBlueAI IntSig-SCUT-Lenovo DeepBlueAI IntSig-SCUT-Lenovo

Stacked Horz. bar 0.783 0.987 0.752 0.877

Grouped Horz. bar 0.905 0.980

Stacked Vert. bar 0.261 0.981 0.649 0.913

Grouped Vert. bar 0.882 0.981

Horz. box 0.934 0.992 – –

Vert. box 0.977 0.979 0.599 0.863

Scatter 0.419 0.867 0.232 0.710

Line 0.926 0.987 0.679 0.698

All 0.764 0.971 0.610 0.800

All-name-score 0.948 0.999 0.785 0.904

All-data-score 0.703 0.962 0.552 0.765
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Table 10. Task 7 results for SCUT-IntSig-Lenovo, which submitted the only entry for
this task. Scores are decomposed by chart type and by name-score and data-score.

Adobe Synth UB PMC

Chart type Combined Name Data Combined Name Data

Stacked Horz. bar 0.960 0.978 0.954 0.742 0.796 0.724

Grouped Horz. bar 0.912 0.965 0.894

Stacked Vert. bar 0.975 0.995 0.968 0.881 0.951 0.857

Grouped Vert. bar 0.952 0.974 0.945

Horz. box 0.949 0.926 0.957 – – –

Vert. box 0.969 0.948 0.976 0.660 0.662 0.660

Scatter 0.855 1.00 0.806 0.558 0.814 0.472

Line 0.960 0.975 0.955 0.660 0.762 0.626

Average 0.941 0.970 0.932 0.723 0.821 0.691

on the longer dimension rather than requiring precise localization of the shorter
dimension.

For this task, the systems were furnished with the GT axes and legend infor-
mation, which alleviates some of the difficulty, but still leaves some room for
error. We see that systems degraded most on scatter plots, which is reason-
able, given that overlapping scatter points are difficult to segment and properly
associate with legend symbols.

It is indeed impressive that IntSig-SCUT-Lenovo was able to achieve a data
score of 96.2% and a near perfect name score on Adobe Synth. However, the same
system applied to real world data only achieved a data score of 76.5%, suggesting
that a large difficulty gap still exists between the synthetic and real data and
that training a chart recognition system on purely homogeneous synthetic data
may not work well on real chart images. Interesting future work would examine
the learning curve of the systems to gain a better understanding of how much
further improvement could be made if more real data were to be annotated.

5.7 Task 7. Raw Data Extraction Results

Table 10 shows the results for the only submission, by SCUT-IntSig-Lenovo, for
the end-to-end Task 7. Overall, the scores for bar charts are much higher than
those of box, scatter, and line plots. For both datasets, scatter plots had the
lowest data-scores, but were among the highest name-scores.

Surprisingly, the overall scores are not much lower than the best scores of Task
6b systems on UB PMC, which systems have the advantage of GT information
for the output of Tasks 1–5. Given that other systems were able to get perfect
results on Tasks 1 and 3–5 for Adobe Synth, it is reasonable for an end-to-end
system to not degrade too much (e.g. 2%) w.r.t. Task 6b results. However, for UB
PMC, the Task 1–5 results for other systems were much lower than for Adobe
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Synth, and generally in pipeline architectures such as the one designed for this
competition (see Fig. 2), errors made on previous tasks tend to cascade and
cause even more errors on downstream modules that rely on accurate inputs.
We observe only an 8% decrease overall. Further analysis of the performance of
the SCUT-IntSig-Lenovo system on Tasks 1–6 could help explain this finding;
however, we only have their results for Task 4.

5.8 Final Ranking

The overall ranking for our competition is presented in Table 11. This table
applies the scoring scheme described in Sect. 3, where winners of each task per
dataset get 4 points, other teams can get at least 1 point for participation or
0 if they did not submit an entry for the task and dataset. Using this method,
the overall winner of this competition is DeepBlueAI with an overall score of 35,
Magic is second with 27 points, and third is Lenovo-SCUT-Intsig with 24 points.
The ties over near perfect scores on Adobe Synth allowed multiple teams to get
the 4 points on a few selected tasks. Meanwhile, the differences on the UB PMC
were much larger allowing only one team to get the 4 points on each task.

Table 11. Overall Ranking: Total points scored per team across all tasks.

UB PMC Adobe Synth

Team 1 2 3 4 5 6 7 1 2 3 4 5 6 7 Score

DeepBlueAI 3 2 2 4 2 3 0 4 2 4 4 2 3 0 35

Magic 3 3 3 0 4 0 0 3 3 4 0 4 0 0 27

Lenovo-SCUT-Intsig 4 4 4 0 0 0 0 4 4 4 0 0 0 0 24

SCUT-IntSig-Lenovo 0 0 0 3 0 0 4 0 0 0 4 0 0 4 15

IntSig-SCUT-Lenovo 0 0 0 0 3 4 0 0 0 0 0 3 4 0 14

IPSA 2 1 0 0 0 0 0 3 1 0 0 0 0 0 7

PY 0 1 1 2 0 0 0 0 0 0 0 0 0 0 4

6 Conclusion

In this paper, we have presented a summary of all activities of the second Com-
petition on HArvesting Raw Tables from Infographics (CHART-Infographics).
Compared to the previous edition [8], this year we provided upscaled datasets
including a brand new training set based on real charts from the PubMed Cen-
tral, and we also had participants for all tasks including task 6 and 7 which
did not get any submissions in the previous edition. Consistent with the first
version of the competition, we observed higher scores for the synthetic dataset
including many near perfect ones, while the new testing dataset based on real
charts remained the most challenging. The one submission we received for Task
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7 scored fairly well in comparison with submissions for Task 6 which had access
to additional ground truth data. We chose a brand new scoring scheme to rank
participants across all tasks, and the overall winner this year is Team Deep-
BlueAI.

This year we also observed multiple methods for different tasks which were on
average, far more complex than the ones we evaluated in the previous edition.
However, despite the increased complexity of these methods, there are tasks
where results are still far from ideal for large-scale applications. It might be
possible that some of these methods will perform better in the future as more
data becomes available. We hope that all data and tools and data that were
produced during this competition will be valuable assets for future research in
the field of chart recognition.
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