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Abstract. Recent research has questioned the fairness of face-based
recognition and attribute classification methods (such as gender and
race) for dark-skinned people and women. Ocular biometrics in the visi-
ble spectrum is an alternate solution over face biometrics, thanks to its
accuracy, security, robustness against facial expression, and ease of use
in mobile devices. With the recent COVID-19 crisis, ocular biometrics
has a further advantage over face biometrics in the presence of a mask.
However, fairness of ocular biometrics has not been studied till now.
This first study aims to explore the fairness of ocular-based authentica-
tion and gender classification methods across males and females. To this
aim, VISOB 2.0 dataset, along with its gender annotations, is used for
the fairness analysis of ocular biometrics methods based on ResNet-50,
MobileNet-V2 and lightCNN-29 models. Experimental results suggest
the equivalent performance of males and females for ocular-based mobile
user-authentication in terms of genuine match rate (GMR) at lower
false match rates (FMRs) and an overall Area Under Curve (AUC). For
instance, an AUC of 0.96 for females and 0.95 for males was obtained for
lightCNN-29 on an average. However, males significantly outperformed
females in deep learning based gender classification models based on
ocular-region.

Keywords: Fairness and Bias in AI · Mobile ocular biometrics · Deep
learning

1 Introduction

With AI and computer vision reaching an inflection point, face biometrics is
widely adopted for recognizing identities, surveillance, border control, and mobile
user authentication with Apple introducing Face ID moniker in iPhone X1.
1 https://www.apple.com/iphone/.
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The wide-scale integration of biometrics technology in mobile devices facilitate
enhanced security in a user login, payment transaction, and eCommerce. Over
the last few years, fairness of these automated face-based recognition [1,5,12,23]
and gender classification methods have been questioned [4,11,14] across demo-
graphic variations. Fairness is defined as the absence of any prejudice or
favoritism toward a group based on their inherent or acquired characteristics.
Specifically, the majority of these studies raise the concern of higher error rates
of face-based recognition and gender2 classification methods3 for darker-skinned
people like African-American, and for women.

Speculated causes of the difference in the accuracy rates are skin-tone, make-
up, facial expression change rate, pose, and illumination variations for face bio-
metrics. Further, there has been a recent push for alternate solutions for face
biometrics due to a significant drop in its performance in the presence of occlu-
sion, such as mask amid COVID-19 [6]. Recent 2020 NIST study [15] suggests
the presence of a mask could cause a face recognition system to fail up to 50%.

Fig. 1. An ocular image labeled with vasculature pattern, eyebrow, eyelids, eyelashes,
and periocular skin texture.

Ocular biometrics in the visible spectrum offers a perfect alternate solution
over the face and can be acquired using the front-facing RGB camera already
installed in the mobile device [17,19,20]. It comprises of scanning regions in
the eye and those around it, i.e., iris, conjunctival and episcleral vasculature
and periocular region for person authentication. Figure 1 shows an ocular image
labeled with vasculature pattern, eyebrow, eyelids, eyelashes, and periocular skin
texture. It has obtained significant attention from the research community due
to its accuracy, security, robustness against facial expressions, and ease of use in
mobile device. The use of ocular biometrics technology in the mobile device is
termed as mobile ocular biometrics [13,19].

With advances in deep learning, deeply coupled autoencoders and convolu-
tional neural networks (CNNs) have been trained from scratch and re-purposed

2 The term “sex” would be more appropriate, but in consistency with the existing
studies, the term “gender” is used in this paper.

3 The term “methods”, “algorithms” and “models” are used interchangeably.
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for mobile ocular recognition4 [19,21]. Thorough evaluation of fine-tuned CNNs
suggests efficacy of ResNet-50, LightCNN and MobileNet in mobile ocular recog-
nition [21]. Datasets such as MICHE-I [7] (92 subjects) and VISOB 1.0 [16]
(550 subjects) have been assembled for ocular recognition in mobile devices.
VISOB 1.0 dataset was used in the IEEE 2016 ICIP international competition
for mobile ocular biometrics. Studies in [3,18,19] also suggested the efficacy of
deep learning-based methods for gender classification from the ocular region
in the visible spectrum acquired using a mobile device. The reported results
obtained from fine-tuned CNNs suggest that equivalent performance could be
obtained in gender classification (with an accuracy of about 85%) from the ocular
region over face biometrics.

Recent interest has been in using subject-independent evaluation of these
ocular recognition methods where subjects do not overlap between the training
and testing set to simulate realistic scenarios. To this front, VISOB 2.0 compe-
tition [16] in IEEE WCCI 2020 conference has been organized using VISOB 2.0
database. VISOB 2.0 [16] is a new version of the VISOB 1.0 dataset where the
region of interest is extended from the eye (iris, conjunctival, and episcleral vas-
culature) to periocular (a region encompassing the eye). Further, the evaluation
protocol followed is subject-independent, over subject-dependent evaluation in
IEEE ICIP VISOB 1.0 competition [20]. Furthermore, instead of a single frame
eye image in VISOB 1.0 [20], the data sample consists of a stack of five images
captured in burst mode to facilitate multi-frame analysis.

However, to date, the fairness of these deep learning based mobile ocular bio-
metrics analysis models (such as ResNet-50, LightCNN and MobileNet) has not
been evaluated. It is not known whether ocular biometrics also have an advantage
over face biometrics in terms of performance across demographic variations. The
aim of this paper is to evaluate the fairness of ocular-based recognition and gen-
der classification models across males and females from images acquired using
mobile devices. In the context of this study, fairness is defined as equivalent
error rates (or accuracy rates) for user authentication and gender classification
across males and females. To the best of our knowledge, this is the first study of
its kind. To this aim, the contributions of this paper are as follows:

– Evaluation of the fairness of deep learning-based methods for mobile ocular-
based user authentication across males and females. To this front, perfor-
mance of the fine-tuned version of ResNet-50 [8] and lightCNN-29 [24] have
been evaluated using Softmax and cosine loss functions (ArcFace, CosFace,
SphereFace, and AdaCos [2]) in three lighting conditions (office, dark and
daylight condition).

– Evaluation of the fairness of gender classification methods based on ocular
region across males and females. The performance of fine-tuned ResNet-50 [8],
MobileNet-V2 [9,22] and their ensemble have been evaluated in three lighting
conditions across gender.

4 The term “recognition” and “user authentication” are used interchangeably.
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All the experiments are conducted on VISOB 2.0 dataset [16], which facili-
tates subject-independent evaluation across three lighting conditions; office, day-
light, and dark light. This paper is organized as follows: Sect. 2 details deep learn-
ing architectures used in this study for ocular analysis. Section 3 discusses the
VISOB 2.0 training and testing dataset. Sections 4 and 5 discuss implementation
details, and the obtained results on the fairness of the mobile ocular-based user
authentication and gender classification methods, respectively, across males and
females. Conclusions are drawn in Sect. 6.

2 Convolutional Neural Networks (CNN) Models Used

We used the popular ResNet [8], mobile friendly lightCNN [24] and
MobileNet [22] based ocular analysis models for our evaluation. Efficacy of these
models have already been established for mobile user recognition [21] and gender
classification from ocular region [3,18,19]. Experimental results are reported for
only two best models for user authentication and gender classification for the
sake of space. These models (networks) are described below as follows:

– ResNet: ResNet [8] is a short form of residual network based on the idea of
“identity shortcut connection” where input features may skip certain layers.
The residual or shortcut connections introduced in ResNet allow for identity
mappings to propagate around multiple nonlinear layers, preconditioning the
optimization and alleviating the vanishing gradient problem. In this study,
we used ResNet-50 model, which has 23.5M parameters.

– LightCNN: This model extensively uses the Max-Feature-Map (MFM) oper-
ation instead of ReLu activation, which acts as a feature filter after each con-
volutional layer [24]. The operation takes two feature maps, eliminates the
element-wise minimums, and returns element-wise maximums. By doing so
across feature channels, only 50% of the information-bearing nodes from each
layer reach the next layer. Consequently, during training, each layer is forced
to preserve only compact feature maps. Therefore, model parameters and the
extracted features are significantly reduced. We used the lightCNN-29 model
consisting of 12K parameters in this study.

– MobileNet: MobileNet [9,22] is one of the most popular mobile-centric deep
learning architectures, which is not only small in size but also computation-
ally efficient while achieving high performance. The main idea of MobileNet
is that instead of using regular 3× 3 convolution filters, the operation is split
into depth-wise separable 3 × 3 convolution filters followed by 1 × 1 con-
volutions. While achieving the same filtering and combination process as a
regular convolution, the new architecture requires less number of operations
and parameters. In this study, we used MobileNet-V2 [22] which consist of
3.4M parameters.

3 VISOB 2.0 Dataset

In this section, we discuss VISOB 2.0 dataset along with the experimental pro-
tocol.
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VISOB 2.0 [16] is the 2nd version of VISOB 1.0 dataset used in IEEE WCCI
competition 2020. This publicly available dataset consists of a stack of eye images
captured using the burst mode via two mobile devices: Samsung Note 4 and
Oppo N1. During the data collection, the volunteers were asked to take their
selfie images in two visits, 2 to 4 weeks apart from each other. At each visit,
the selfie-like images were captured using the front-facing camera of the mobile
devices under three lighting conditions (daylight, office light, and dark light) and
two sessions (about 10 to 15 min apart). The stack consisting of five consecutive
eye images were extracted from the stack of full-face frames selected such that the
correlation coefficient between the center frame and the remaining four images
is greater than 90%. The face and eye landmarks are detected using the Dlib
library [10]. The eye crops were generated such that the width and height of the
crop are 2.5× that of eye width.

Training and Testing Subset: The subset of the VISOB 2.0 dataset consisting
of 150 subjects each for left and right eye (ocular regions) from two visits are
used as the training set. This set was provided to the participants at the IEEE
WCCI competition 2020. All the images from visit 1 and visit 2 (2–4 weeks
apart) under three lighting conditions are included in this training set.

In order to evaluate the submission for real-life scenarios, 100 subjects each
for left and right eye images are used as the testing set. All the stack of five
images per sample from two visits across three lighting conditions is available in
this set as well. We used a gender-balanced subset of the dataset for training and
testing the models for user-authentication and gender classification (detailed in
Sects. 4 and 5). This is in order to mitigate the impact of training and testing
set imbalance on the fairness of the models.

4 Fairness of Mobile Ocular Recognition Methods Across
Gender

In this section, we discuss the implementation of the models (networks) for
ocular-based user authentication evaluated across males and females. All the
implementations are done using Pytorch library (https://pytorch.org/).

4.1 Network Training and Implementation Details

ResNet-50 [8] and lightCNN-29 [24] are fine-tuned on the training subset of the
VISOB 2.0 dataset [16] using five different loss functions; Softmax and cosine-
based (ArcFace, CosFace, SphereFace, and AdaCos [2]) for the first time for ocu-
lar recognition. For ResNet-50 based on cosine loss functions (ArcFace, CosFace,
SphereFace, and AdaCos [2]), batch normalization, drop-out, and fully connected
layers of 2048 and 512 are added after the last convolutional layer. This is fol-
lowed by the final output layer. In case of lightCNN-29, the layers added after
the last pooling layer: batch normalization, drop-out, and a fully connected layer

https://pytorch.org/
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of 128× 128× 8 and 512, and followed by the output layer. The angular margins
are set to 0.50, 0.40, and 4.0 for ArcFace, CosFace, and SphereFace. AdaCos
adjusts its scale parameter automatically. SphereFace obtained equivalent per-
formance with AdaCos and results are not included due to space constraints. The
ResNet-50 network is trained using Adam optimizer with a batch size of 128 for
15 iterations, and lightCNN-29 using stochastic gradient decent optimizer with
a batch size of 64 and the same number of iterations as ResNet-50. The learning
rate was set to 0.001.

We used a gender-balanced subset of the training set of these models. Fol-
lowing IEEE WCCI competition protocol, left and right eye images are treated
as different identities. To this aim, 288 subjects consisting of left and right eye
individually (with 50% male and 50% female distribution) are randomly chosen.
The training set consists of 64K ocular images from all the lighting conditions
and the two visits. In particular, the number of samples from visit 1 is around
32K and 40K from visit 2 where each subject has 500 images. The models are
trained and validated on a split of 80/20 using samples from both the visits and
across all the lighting conditions for left and right eyes5 are used for training the
models.

The trained models are evaluated using a subject-independent testing set of
VISOB 2.0. For the purpose of this study, we used a gender-balanced version of
the test set as well. This results in a total of 21K ocular images for each gender
for Oppo device, and 15K images for Note-4 from 86 subjects for all the three
lighting conditions. The deep features of size 512−D are extracted from the fully
connected layers of these trained models for the evaluation. The deep features
from the samples in visit 1 and visit 2 are chosen as the template and query
pairs, respectively. The scores are computed in a pairwise fashion over a stack
of images and are averaged per template-query pair. Cosine similarity is used to
compute scores between deep features from a pair of template-query pair.

4.2 Experimental Results

In this section, we compare the verification performance of the ResNet-50 and
lightCNN-29 models trained using multiple loss functions on the gender-balanced
subset. Both models are evaluated in the same lighting conditions for both left
and right eye regions. Table 1 and 2 compare the Equal Error Rate (EER) and
Genuine Match Rate (GMR) across males and females at 1−4, 1−3, and 1−2

FMRs.
Tables 1 and 2 shows Equal Error Rates (EER) and Genuine Match Rates

(GMR) at three different False Match Rates (FMR). In general, both models
performed better for females than males. For instance, lightCNN-29 obtained
an average EER of 9.94 for females and 11.16 for males, respectively. ResNet-50
obtained higher EER of 17.47 for females and 20.15 for males over ResNet-
50. However, both the genders obtained similar Genuine Match Rate (GMR)
averaged over both the models. For instance, lightCNN-29 obtained 36.94 and

5 The term “eye” and “ocular region” are used interchangeably.
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Table 1. EER(%), GMR@1−4FMR, GMR@1−3FMR, and GMR@1−2FMR for
lightCNN-29 model (trained on gender balanced subset of VISOB 2.0) for five loss
functions and evaluated in different light conditions for males (M) and females (F) for
mobile user authentication. Gender-balanced training and testing subset of VISOB 2.0
are used.

Loss function Light condition Eye EER(%) GMR(/%)@1−4FMR GMR(%)@1−3FMR GMR(%)@1−2FMR

lightCNN-29 - Note-4

M F M F M F M F

AdaCos Office L 7.73 3.43 29.04 50.33 46.25 58.89 72.06 87.02

R 4.26 4.15 67.25 56.76 76.56 69.48 87.53 87.15

Daylight L 4.93 3.19 55.96 65.42 71.90 78.39 84.29 92.42

R 4.66 2.84 76.40 64.79 81.69 80.12 90.37 93.84

Dark L 6.39 2.20 38.99 53.36 56.43 65.61 78.93 93.15

R 5.54 2.61 72.22 79.85 77.82 86.75 85.79 95.38

ArcFace Office L 17.21 14.25 11.84 12.85 25.65 28.52 49.17 44.60

R 13.12 11.04 39.15 11.71 48.30 29.85 64.64 54.08

Daylight L 9.01 5.34 39.38 31.49 59.12 39.00 78.93 82.15

R 4.53 6.16 64.48 55.82 71.27 68.27 90.21 79.52

Dark L 11.10 7.87 17.25 21.84 38.26 40.77 63.39 76.76

R 6.37 9.63 53.03 39.94 60.28 65.16 77.98 77.05

CosFace Office L 10.37 11.53 49.17 34.02 61.38 46.30 74.95 68.42

R 9.36 7.93 60.18 54.58 70.92 73.75 82.39 82.53

Daylight L 11.38 8.81 51.65 34.30 58.26 40.49 72.75 74.79

R 6.16 8.22 60.37 58.73 71.10 65.82 86.97 85.46

Dark L 22.93 19.96 8.35 17.53 14.40 25.40 30.09 42.92

R 17.71 16.45 25.96 10.01 33.49 25.21 51.93 48.91

Softmax Office L 11.93 9.56 31.56 13.03 44.13 34.68 64.31 68.98

R 11.38 10.57 45.87 39.66 60.64 57.88 74.50 76.96

Daylight L 5.95 9.27 47.19 30.96 62.45 44.35 78.35 75.54

R 6.49 3.92 64.61 64.26 71.54 71.00 90.37 87.38

Dark L 3.14 5.02 72.29 45.10 81.71 60.51 91.77 82.27

R 4.44 2.60 73.16 78.29 81.28 84.56 90.58 93.42

Dark L 8.69 8.01 34.96 33.36 43.51 54.97 77.06 77.56

R 3.35 6.90 73.16 61.76 79.11 70.53 90.37 81.66

lightCNN-29 - Oppo

AdaCos Office L 9.68 10.46 28.31 27.10 36.20 47.07 63.16 71.48

R 14.32 11.08 17.99 28.10 27.04 43.57 51.96 70.02

Daylight L 12.42 10.71 23.82 21.04 41.44 42.17 60.02 69.51

R 15.51 11.87 21.20 35.32 30.35 43.68 46.90 63.21

Dark L 16.10 10.98 28.58 20.04 38.90 39.62 52.30 70.83

R 13.39 12.22 25.80 22.41 35.37 36.65 60.39 60.71

ArcFace Office L 21.24 18.72 12.53 12.12 18.91 26.17 30.09 43.13

R 20.42 19.70 9.36 10.22 17.68 22.25 32.01 44.22

Daylight L 16.42 14.05 19.83 18.14 29.12 31.44 49.43 54.34

R 16.71 13.57 11.74 17.09 19.23 28.63 32.57 49.23

Dark L 11.93 7.97 21.36 32.26 37.21 56.92 59.98 78.64

R 12.03 8.48 39.81 33.17 49.35 57.27 65.31 79.59

CosFace Office L 13.29 9.39 22.23 55.53 39.81 66.19 61.53 79.11

R 12.25 7.67 49.53 40.47 62.43 50.93 71.69 74.08

Daylight L 14.12 10.55 30.37 45.86 41.93 58.66 60.99 77.61

R 11.64 10.99 53.57 44.15 60.95 55.69 71.76 70.83

Dark L 20.21 15.50 15.09 8.28 19.09 26.20 34.40 53.23

R 15.22 13.08 19.20 22.24 26.59 32.46 47.98 54.82

Softmax Office L 18.14 15.58 27.70 47.25 39.63 58.34 52.27 71.30

R 12.90 9.31 41.43 43.56 50.86 53.47 64.48 70.31

Daylight L 9.93 8.56 34.41 29.67 47.85 41.97 73.88 70.33

R 10.48 7.24 32.50 42.84 46.94 52.25 61.07 74.98

Dark L 6.38 8.84 20.69 44.46 42.74 60.23 77.51 74.45

R 8.13 9.17 40.44 39.50 53.73 57.20 77.10 76.55



236 A. Krishnan et al.

Table 2. EER(%), GMR@1−4FMR, GMR@1−3FMR, and GMR@1−2FMR for
ResNet-50 model using five loss functions and evaluated in different light conditions
across males (M) and females (F) for mobile user authentication. Gender-balanced
training and testing subset of VISOB 2.0 are used.

Loss function Light condition Eye EER(%) GMR(/%)@1−4FMR GMR(%)@1−3FMR GMR(%)@1−2FMR

ResNet-50 - Note-4

M F M F M F M F

AdaCos Office L 19.65 12.38 0.00 4.48 4.74 12.38 27.86 41.63

R 10.45 8.45 9.87 1.00 28.57 15.66 58.41 59.84

Daylight L 24.80 16.24 0.28 16.49 3.67 24.27 19.08 48.55

R 19.36 13.69 5.41 0.00 18.35 2.27 41.93 31.35

Dark L 17.54 13.61 4.65 5.24 7.36 14.88 19.05 40.39

R 18.29 14.65 5.19 8.54 17.97 17.87 51.62 46.87

ArcFace Office L 25.36 18.71 1.10 2.24 5.21 7.18 22.65 25.76

R 19.02 11.24 12.23 3.15 18.94 26.97 38.12 61.18

Daylight L 21.83 15.87 1.10 6.00 6.33 13.50 34.59 45.36

R 18.94 16.52 0.18 6.70 7.16 27.10 30.83 50.90

Dark L 21.64 17.35 5.41 4.64 10.17 11.52 29.55 30.59

R 15.27 11.99 4.55 5.02 20.89 19.20 46.43 48.12

CosFace Office L 19.42 11.73 2.68 8.83 5.84 15.68 19.10 49.47

R 12.31 12.38 0.95 20.62 14.44 31.79 55.56 56.43

Daylight L 24.60 17.06 3.76 10.31 9.27 18.93 26.61 44.89

R 21.96 19.64 1.19 3.78 2.75 9.92 26.97 38.05

Dark L 15.58 19.45 0.65 0.90 4.44 3.89 27.38 19.00

R 15.19 16.22 10.82 6.97 18.40 21.00 48.70 41.85

Softmax Office L 20.44 7.97 8.13 13.11 20.36 32.54 43.96 62.12

R 10.90 9.24 15.63 7.70 31.49 20.88 59.19 60.84

Daylight L 15.59 18.27 11.28 21.37 18.90 29.80 45.50 47.80

R 12.66 13.31 33.21 26.63 38.81 38.81 55.87 65.72

Dark L 16.12 10.11 19.16 4.94 28.68 19.37 44.70 52.88

R 8.66 10.97 20.02 20.92 33.87 32.84 65.48 58.86

ResNet-50 - Oppo

AdaCos Office L 22.00 20.65 1.46 8.31 11.78 18.39 32.52 36.09

R 27.25 19.59 6.10 3.00 10.91 14.86 23.32 38.69

Daylight L 28.76 22.31 0.68 3.25 1.66 12.05 19.31 28.97

R 23.05 25.29 1.62 2.73 10.59 12.45 30.08 35.16

Dark L 18.43 17.48 4.11 3.87 14.19 9.82 43.14 42.42

R 17.70 17.14 0.56 3.42 13.73 5.11 32.62 32.18

ArcFace Office L 24.21 23.91 7.29 4.20 19.61 15.42 36.36 33.72

R 25.24 20.93 13.19 3.11 18.56 12.66 30.92 36.41

Daylight L 27.61 28.74 1.19 1.39 7.89 8.20 21.90 26.28

R 23.27 24.49 3.46 4.40 10.66 16.45 32.13 34.68

Dark L 22.50 18.66 6.10 3.83 13.32 11.49 27.31 31.50

R 21.39 16.46 7.86 2.41 14.09 9.01 29.64 37.05

CosFace Office L 22.99 24.08 0.81 0.02 1.24 0.70 29.07 16.79

R 24.21 22.34 7.91 0.72 12.51 2.42 26.99 34.56

Daylight L 31.41 23.50 2.09 2.54 9.55 9.75 24.03 28.38

R 25.50 26.40 2.92 1.55 15.13 4.44 31.81 32.58

Dark L 19.62 20.92 5.98 3.71 15.43 23.96 36.04 43.56

R 22.40 20.55 0.36 2.37 7.38 14.92 27.82 35.96

Softmax Office L 21.40 17.24 8.81 9.01 17.61 18.81 38.74 41.59

R 23.69 17.95 6.98 9.20 10.96 20.09 25.59 44.10

Daylight L 20.10 16.01 8.29 13.48 21.65 26.91 40.85 48.55

R 20.82 16.80 7.78 8.13 18.88 18.31 42.76 42.73

Dark L 11.56 12.80 13.04 14.87 26.36 27.55 49.72 50.00

R 17.30 10.92 10.71 18.10 22.10 33.39 43.49 53.70
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37.69 for females and males at GMR@1−4FMR, respectively. At the same
FMR, ResNet-50 obtained GMR of 6.43 and about 5.44 for females and
males, respectively. However, females tends to outperform males remarkably at
GMR@1−2FMR. This can be noticed for lightCNN-29, which obtained an aver-
age of 71.00 GMR on females compared to 66.87 on males. Similarly, a difference
of about 7% was obtained for ResNet-50 across females and males.

Across lighting conditions, females obtained equivalent EERs across dark
and office lighting conditions. For lightCNN model, females obtained an average
EER of 9.94 for dark and 9.43 for office light, respectively. For ResNet-50, EER
of 16.04 and 16.54 for dark and office light, respectively. On the other hand,
males performed the best in dark conditions for both models compared to other
lighting conditions. This can be observed as the EERs increased by about 4.5%
for daylight and 3% for office light compared to dark lighting condition.

The performance across gender for different loss functions varied depending
on the lighting conditions and the CNN model. AdaCos loss function results
in lower EER for females than males for both the models and across all the
lighting conditions. For instance, in dark condition, an overall increase in EER
of 0.964 for lightCNN-29 and 2.27 for ResNet-50 was observed. ArcFace also
performed better for females than males except in the case of lightCNN-29 in
dark conditions where the EER of females increased by 0.88. For other lighting
conditions, males obtained an average increase of 2.67 in EER over females. At
GMR@1−2FMR, females obtained higher performance across many loss func-
tions and lighting conditions, yet the performance for females dropped uniquely
across all loss functions in the dark conditions for lightCNN-29, except for Ada-
Cos. The average drop at GMR@1−2FMR was about 2.79% for ArcFace, Cos-
Face, SphereFace, and Softmax where AdaCos declined for males by only 1.14%.
In daylight and office light conditions, a constant increase in GMR@1−2FMR
for females was noticed.

Generally, the average AUC of both genders were equivalent for lightCNN-
29 (0.96 for females and 0.95 for males). In the case of ResNet-50, the average
AUC for females was 0.90, whereas males obtained an AUC of 0.87.

5 Fairness of Mobile Ocular-Based Gender Classification
Methods

In this section, we evaluate the fairness of the gender classification models based
on the ocular region. Following the studies in [3,18,19], we fine-tuned ResNet-50,
MobileNet-v2 and their ensemble for gender classification. Next, we discuss the
implementation details and the obtained results.

5.1 Network Training and Implementation Details

ResNet-50 and MobileNet-V2 CNN models are fine-tuned on training subset of
VISOB 2.0 dataset. We also evaluated ensemble of ResNet-50 and MobileNet-V2
models.
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Table 3. Almost gender-balanced subset of VISOB 2.0 dataset subset used for training
gender classification models.

Lighting condition Left eye Right eye

M F M F

Dark 35,917 31,023 35,917 31,023

Daylight 36,095 30,742 36,095 30,742

Office 44,669 38,424 44,669 38,424

Table 4. Gender-balanced subject independent testing subset of VISOB 2.0 dataset
used for gender classification model evaluation.

Lighting condition NOTE4 Oppo

Left eye Right eye Left eye Right eye

M F M F M F M F

Dark 1019 1020 1020 1020 1525 1525 1525 1525

Daylight 1300 1300 1300 1300 1590 1590 1590 1590

Office 1485 1485 1485 1485 2515 2515 2515 2515

For fine-tuning ResNet-50 and MobileNet-V2, fully connected layers of 512
and 512 were added after the last convolutional layer, followed by the final output
layer. Ensemble of ResNet-50 and MobileNet-V2 was obtained by concatenating
their first fully connected layers (of size 1024), followed by the final output layer.
The above models were trained using an Adamax optimizer6 on a batch size of
128 for 100 epochs using an early stopping mechanism on the validation set
(80-20 split of training and validation). The learning rate was set equal to 1e−4
and decay of 5e−4. In order to mitigate the impact of imbalanced training and
evaluation set on the fairness of the models. We used an almost gender balanced
subset of the VISOB 2.0 training set (shown in Table 3) for these models training.
Samples across both the visits (1 and 2) and all three lighting conditions are used
all together to train the models for left and right eye, individually. Validation
accuracy of about 90% was obtained for most of the cases. The trained models are
evaluated on a subject independent gender-balanced testing subset of the VISOB
2.0 dataset shown in Table 4. Results are reported in terms of accuracy values
across gender and lighting conditions for the left and right eye, individually.
Further, false positive rate (FPR), indicating females misclassified as males, and
false negative rate (FNR), indicating males misclassified as females, are also
reported for further insight.

5.2 Experimental Results

In this section, we report the gender classification accuracy of the ocular-based
models across males and females.
6 https://pytorch.org/docs/stable/optim.html.

https://pytorch.org/docs/stable/optim.html
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Tables 5, 6, 7, 8 shows the accuracy of the fine-tuned ResNet-50, MobileNet-
V2, and their ensemble across gender and lighting conditions for left and right
ocular images acquired using Note-4 and Oppo, individually. FPR and FNR are
also reported in these tables.

Table 5. Gender classification accuracy rates of ResNet-50, MobileNet-V2 and their
ensemble across males (M) and females (F) in different lighting conditions, when trained
and test on left eye images acquired using Note-4.

ResNet-50 MobileNet-V2 Ensemble

M F Overall Acc. M F Overall Acc. M F Overall Acc.

Dark 98 59 78.71 83 79 80.88 93 74.5 83.93

Daylight 90.2 69 80.76 91.7 63 78.56 89.6 71.7 81.12

Office 94 64.6 79.69 93.5 76.6 85.43 94.2 78.9 87.01

FPR FNR FPR FNR FPR FNR

Dark 29.4 3.2 20.3 17.8 21.4 8

Daylight 25.6 12.4 28.9 11.7 24 12.6

Office 27.3 8.5 20 7.8 18.2 6.8

Table 6. Gender classification accuracy rates of ResNet-50, MobileNet-V2 and their
ensemble across males (M) and females (F) in different lighting conditions, when trained
and tested on left eye images acquired using Oppo.

ResNet-50 MobileNet-V2 Ensemble

M F Overall Acc. M F Overall Acc. M F Overall Acc.

Dark 96.26 66.67 81.6 95.74 63.34 79.64 96.6 70 83.4

Daylight 91.76 60.75 77.31 93.2 58.05 76.71 92.07 62.45 77.41

Office 95.6 61.07 78.61 97.25 56.18 77.11 97.23 62.94 80.47

FPR FNR FPR FNR FPR FNR

Dark 25.7 5.3 27.69 6.3 23.72 4.64

Daylight 29.96 11.9 31.0 3 0.104 28.96 11.26

Office 28.94 6.7 31.05 4.65 27.58 4.11

For Note-4, the average gender classification accuracy across lighting con-
ditions is 79.72%, 81.62%, and 84.02% for ResNet-50, MobileNet-V2 and their
ensemble, respectively, when trained and tested on the left ocular region (as can
be seen from Table 5). Similarly, for the right ocular region, Resnet-50 has the
highest average accuracy of 83.98%, followed by ensemble with an accuracy of
82.46% and MobileNet-v2 with an average accuracy of 81.02% (as can be seen
from Table 7).

Across gender for left ocular region acquired using Note4; males obtained the
highest average accuracy of 94.07% and the lowest of 89.4% for ResNet-50 and
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Table 7. Gender classification accuracy rates of ResNet-50, MobileNet-V2 and their
ensemble across males (M) and females (F) in different lighting conditions, when trained
and tested on right eye images acquired using Note-4.

ResNet-50 MobileNet-V2 Ensemble

M F Overall Acc. M F Overall Acc. M F Overall Acc.

Dark 91.3 70.3 80.83 80.5 81.6 81.02 89.7 76.2 82.94

Daylight 95 57 77.59 92 74 84.03 95.5 61.7 79.32

Office 98.4 70.2 84.64 95.3 78.2 86.89 98.2 71 85.12

FPR FNR FPR FNR FPR FNR

Dark 24.6 11 18.6 19.3 21 12

Daylight 31.3 8.55 21.9 9.6 28.6 6.7

Office 23.2 2.2 18.6 5.7 22.8 2.5

MobileNet-V2, respectively. However, females obtained the highest of 75.03%
and the lowest of 64.2% for Ensemble and ResNet-50, respectively, averaged
over three different lighting conditions (Table 5). Similarly, for the right ocular
region, males obtained the highest average accuracy of 94.9% and the lowest
of 89.27% for ResNet-50 and Ensemble, respectively. However, females obtained
the highest of 77.93% and the lowest of 65.83% for MobileNet-v2 and ResNet-50,
respectively (see Table 7).

Table 8. Gender classification accuracy rates of ResNet-50, MobileNet-V2 and their
ensemble across males (M) and females (F) in different lighting conditions, when trained
and tested on right eye images acquired using Oppo.

ResNet-50 MobileNet-V2 Ensemble

M F Overall Acc. M F Overall Acc. M F Overall Acc.

Dark 92.45 67.47 80.04 81.97 90.82 86.33 90.36 77.9 84.19

Daylight 91.26 66.3 79.22 85.03 81.44 83.7 89.94 72.96 81.49

Office 95.86 67.91 82.21 92.36 76.38 84.63 95.6 71 83.59

FPR FNR FPR FNR FPR FNR

Dark 26.02 10.05 10.07 16.57 19.65 11.01

Daylight 26.97 11.65 17.91 15.52 23.11 12.12

Office 25.07 5.74 20.34 9.086 23.3 5.85

Average difference in the accuracy between males and females is 21.21% for
left ocular images acquired using Note-4. The average difference in the accuracy
between males and females is 21.75% for right ocular images acquired using
Note-4.

For Oppo, the average gender classification across different lighting conditions
is 79.17%, 77.8%, and 80.42% for ResNet-50, MobileNet-V2 and their ensemble,
respectively, when trained and tested on left ocular region (as can be seen from
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Table 6). Similarly for right ocular region, ResNet-50, MobileNet-v2 and their
ensemble obtained 80.49%, 84.89% and 83.09%, respectively (see Table 8).

Across gender for left ocular region acquired using Oppo; males obtained the
highest average accuracy of 95.4% and the lowest of 94.54% for MobileNet-V2
and ResNet-50, respectively. However, females obtained the highest of 65.13%
and the lowest of 59.19% for Ensemble and MobileNet-V2, respectively, averaged
over three different lighting conditions (refer Table 6). Similarly, for the right
ocular region, males obtained the highest average accuracy of 93.19% and the
lowest of 86.45% for ResNet-50 and MobileNet-v2, respectively. However, females
obtained the highest of 86.38% and the lowest of 67.23% for MobileNet-v2 and
ResNet-50, respectively (see Table 8). Better classification accuracy for Oppo
device is due to the higher resolution images of better quality compared to Note-
4. Also, in general, higher accuracy rates are obtained for samples acquired in
controlled lighting conditions, i.e., office light.

Average difference in the accuracy between males and females is 32.7% for
left ocular images acquired using Oppo. The average difference in the accuracy
between males and females is 14.68% for right ocular images for Oppo. Lowest
FPR (15.49%) and FNR (13.78%) are obtained for left ocular images under
dark lighting conditions acquired using Oppo. The lowest FPR (18.2%) and
FNR (6.8%) are obtained for left ocular images under office lighting conditions
for Note-4. Our results are in contrary to those obtained in [3] where females
outperformed males in gender classification based on ocular region. However, in
this study [3] ocular regions are cropped from Labeled Faces in the Wild dataset.

Further, based on manual inspection, we observed that covariates such as
eye-gazing, eyeglasses, obstructions, the presence of hair, and low lighting to be
the major factors contributing to the error rate of the gender classifier especially

Obstruction Closed eyelid Gazing

Poor lighting Eyeglasses Motion blur

Fig. 2. Example of covariates in ocular images of females, commonly available in mobile
environment, and attributing to the error rate of the gender classifiers.
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for females. Figure 2 shows some of the female sample eye images misclassified
by the gender classification models.

6 Conclusion

This paper evaluates the fairness of the mobile user authentication and gen-
der classification algorithms based on ocular region across males and females.
In contrary to the existing studies on face recognition, we obtained equivalent
authentication performance for males and females based on the ocular region
at lower FMR points (1−4) and an overall Area Under Curve (AUC). The rea-
son could be the robustness of the subject-specific templates of ocular region to
facial expression change, make-up, and facial morphological differences over face
biometrics. However, males outperformed females by a significant difference of
22.58% in gender classification. This error rate was mainly due to the presence
of covariates such as hair, eyeglasses, motion blur, and eye gazing. As a part of
future work, experiments will be extended on other ocular biometric datasets
captured in the near-infrared and visible spectrum across gender, race and age.
The impact of the covariates and multi-frame fusion in unequal accuracy rates
of the ocular-based gender classifiers will be quantified.
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