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Abstract. Following the success of VISOB 1.0 visible light ocular bio-
metrics competition at IEEE ICIP 2016, we organized VISOB 2.0 com-
petition at IEEE WCCI 2020. The aim of VISOB 2.0 competition was to
evaluate and compare the performance of ocular biometrics recognition
approaches in visible light using (a) stacks of five images captured in
burst mode and (b) subject-independent evaluation, where subjects do
not overlap between training and testing set. We received three submis-
sions in which the authors developed various deep learning based and
texture-analysis based methods. The best results were obtained by a
team from Federal University of Parana (Curitiba, Brazil), achieving an
Equal Error Rate (EER) of 5.25% in a subject-independent evaluation
setting.

1 Introduction

Biometric user verification in mobile devices has all but won the top spot as the
user access control method of choice [8,13]. Biometrics has brought convenience
and enhanced security to a wide range of applications such as user login, pay-
ments’, and eCommerce in general?. The use of biometrics in mobile devices is
termed as mobile biometrics [13].

Thanks to deep learning and advanced camera technologies, mobile face bio-
metrics has come a long way in terms of robustness, accuracy, and user experi-
ence. However, given the recent privacy concerns, especially amid the COVID-19
pandemic, and the resulting face-covering mandates, there is an intensified desire
for alternate solutions to face recognition [1,2]. According to a recent 2020 NIST
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study [9], the presence of face masks could cause face recognition systems to fail
up to 50%. Ocular biometrics offers a viable alternative to mobile face recognition
given that similar to face, the ocular band can be acquired using the front-facing
RGB camera of the mobile device. Ocular biometrics in and of itself has attracted
exceeding attention from the research community thanks to its accuracy, secu-
rity, and robustness against many facial expressions [12,16]. The ocular regions
that have been studied for their biometric utility include the iris [5], conjunctival
and episcleral vasculature [4], and the periocular region [7]. Several datasets have
been published capturing ocular images in the visible spectrum under various
conditions, including UBIRIS [11] (241 subjects), MICHE-I [3] (92 subjects), and
VISOB [10]. The last one offers the largest number of subjects (550) captured
in mobile environment. Part of this dataset was used for VISOB 1.0 ICIP 2016
ocular biometric recognition competition.

Following the success of our previous VISOB ICIP 2016 competition [14], we
organized VISOB 2.0 competition [10] as a part of the IEEE WCCI 2020 con-
ference using a different subset of the VISOB database. The differences between
VISOB dataset used in WCCI 2020 compared to ICIP 2016 version are given in
Table 1. In VISOB 2.0 competition, we extended the region of interest from the
tight eye crop (mainly iris, conjunctival, and episcleral vasculature) to larger peri-
ocular (a region encompassing the eye and the surrounding skin). The evaluation
protocol for VISOB 2.0 is subject-independent (akin to open-set for identifica-
tion), in which the subjects in the training and testing set do not overlap. This
is compared to the less challenging subject-dependent evaluation used in ICIP
VISOB 1.0 competition. More specifically, in VISOB 1.0 the 150 subjects in the
testing set overlapped with the 550 identities in the training set; while there are
no such overlapping identities between training and testing sets in VISOB 2.0.
Further, instead of single frame eye captures of VISOB 1.0, VISOB 2.0 samples
are comprised of stacks of five images captured in rapid succession (burst mode),
opening the door for multi-frame enhancements.

Table 1. Differences between VISOB 1.0 and VISOB 2.0 competition.

VISOB 1.0 VISOB 2.0
Devices iPhone, OPPO, Note 4  OPPO, Note 4
ROI Tight eye crops Larger periocular region
Data type Single frame image Stack of five images
Train-test identities | Overlapping Independent
Training set 550 subjects in Visit 1 | 150 subjects in Visit 1 and 2
Testing set 290 subjects in Visit 2 | 100 subjects in Visit 1 and 2

We note that multi-frame ocular biometrics in the visible spectrum has not
attracted much attention in the research community [15], which could be in part
due to a lack of public multi-frame datasets, something that VISOB 2.0 strives
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Fig. 1. Example eye images from VISOB 2.0, WCCI 2020 competition edition.

to overcome. Single-frame mobile captures from the front-facing “selfie” camera
may unexpectedly introduce degradation due to illumination variations, noise,
blur, and user to camera distance; all adversely affecting matching performance.
One way to mitigate this problem is by capturing multiple frames of the eye
in burst-mode, followed by multi-frame image enhancement. Frames may be
fused at the input level (e.g., using multi-frame image enhancement and super-
resolution techniques) or at the feature or score level for enhanced matching
performance (e.g. a multi-match system) (Fig. 1).

2 VISOB 2.0 Dataset and Protocol

VISOB 2.0 Dataset: WCCI 2020 VISOB 2.0 competition VISOB Dataset is
publicly available?, and consists of stacks of eye images captured using the burst
mode by two mobile devices: Samsung Note 4 and Oppo N1. During the data
collection, the volunteers were asked to take their selfie images in two visits,
2 to 4 weeks apart from each other. The selfie-like images were captured with
the participant holding the phone naturally, using front-facing camera of the
mobile devices under three lighting conditions: daylight, indoor (office) lighting,
and dim indoors in two sessions (about 10 to 15min apart). The ocular burst
stacks were cropped from full face frames. The burst sequences were selected if
correlation coefficient between the center frame and the remaining four images
was greater than 90% (i.e. no excessive motion). We detected the face and eye
landmarks using DIib library [6]. The eye crops were generated such that the
width and height of the crop is 2.5x that of the eye’s corner to corner width.

Protocol: VISOB 2.0, WCCI 2020 edition, consists of captures from 150 identi-
ties. Both left and right eyes from two visits were provided to the participants.
Data characteristics is given in Table2. Also, we provided images from visit 1
and visit 2 (24 weeks apart) under earlier mentioned three lighting conditions
in order to keep the focus on the long-term verification and cross-illumination

3 https://sce.umkc.edu/research-sites/cibit /dataset.html/.
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Table 2. Number of VISOB 2.0 training images provided to the challenge participants.

Device | Lighting condition | Visit 1 | Visit 2
Note 4 | Office light 4,542 6,138
Dim indoors 4,788 6,158
Daylight 4,868 6,148
OPPO | Office light 7,848 | 10,546
Dim indoors 5,138 7,076
Daylight 5,314 6,864

comparisons. No image enhancement was applied to the data so that the partic-
ipants could perform end-to-end learning to obtain the best fusion of biometrics
information and multi-frame image enhancement from the burst of input images.
In order to evaluate the submissions according to real-life scenarios, we set up
this competition in a subject independent environment. For the competition,
the participants were simply asked to submit a model that generates the match
score from a pair of images (simple reference-probe comparison). Table 3 shows
18 experiments with 3.6M comparisons across different lighting conditions at the
evaluation stage. We used Equal Error Rate (EER), ROC Area Under the Curve
(AUC), and Genuine Match Rates (GMR) at 1072, 1073, and 10~* False Match
Rates (FMR) to evaluate accuracies.

3 Summary of Participants’ Algorithms

Department of Informatics, Federal University of Parana (UFPR), Curitiba, PR,
Brazil: Zanlorensi et al.’s submitted model is an ensemble of five ResNet-50
models pre-trained on the VGG-Face dataset proposed in [17]. Each ResNet-50
was fine-tuned using a softmax loss through 30 epochs on the periocular images
from VISOB 2.0 training subset. The last fully connected layer from the original
architecture was removed and replaced by two fully connected layers. The first
layer is the feature layer containing 256 neurons, and the last one is the prediction
layer consisting of 300 neurons as the number of classes in the training set (left
and right eyes from 150 subjects). Eventually, the prediction layer was removed,
and the output of the feature layer was taken as the deep feature vector for
each input image. For each stack of five images, the five ResNet-50 ensemble
generates a combined feature vector of length 1280 (5x256). The authors used
cosine distance similarity to generate a match score and compare template-test
ocular image pairs.

Bennett University, India: Ritesh Vyas’ submission employed hand-crafted fea-
tures, namely directional threshold local binary patterns (DTLBP) and a wavelet
transform for feature extraction. This was the only non-deep learning approach
submitted to the competition. The authors used Daubechies, an orthogonal
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Table 3. Data distribution for the 18 experiments performed on the test set, as used
by the organizers to evaluate the submitted methods.

Device | Experiment number | Enrollment | Verification | # of Comparison
Note 4| 1 Dim Dim 82,322
2 Dim Daylight 116,028
3 Dim Office 123,168
4 Daylight | Dim 105,614
5 Daylight Daylight 153,416
6 Daylight Office 184,512
7 Office Dim 99, 684
8 Office Daylight 143,716
9 Office Office 169, 890
OPPO | 10 Dim Dim 184, 360
11 Dim Daylight 190, 444
12 Dim Office 303, 686
13 Daylight | Dim 178,418
14 Daylight Daylight 184,438
15 Daylight Office 294, 356
16 Office Dim 290, 082
17 Office Daylight 332,696
18 Office Office 494,492
Total | 3,631, 322

Table 4. Details of the algorithm submitted to the IEEE WCCI VISOB 2.0 competi-
tion.

Participant | Feature extraction | Matcher/Classifier

Team 1 ResNet-50 Cosine

Team 2 DTLBP Cosine

Team 3 GoogleNet Euclidean distance + LSTM

wavelet, to facilitates the multi-resolution analysis. The local texture represen-
tation operator captures the unique intensity variations of the periocular image.
DTLBP is more robust to noise and is able to extract more distinctive fea-
ture representation than the local binary pattern (LBP). Chi-square distance
was utilized to compare features from two stacks of images, followed by score
normalization.

Anonymous Participant: The authors used a GoogleNet pre-trained on the
ImageNet dataset to extract the representation features. Euclidean distance
was employed to calculate the similarity between pairs of periocular images.
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Following the distance calculation, the scores were used to train Long Short
Term Memory (LSTM) model to predict if the pair of images belong to the
same individual.

4 Result and Discussion

Table4 shows the details of the three algorithms submitted to the competi-
tion. Experiments were setup as subject independent (open-set-like). All the
algorithms consisted of a feature extractor and a similarity-based matcher. The
former extracts the feature representation of the image, and the latter computes
the match score between two data samples (enrollment and verification). T'wo
out of the three submissions employed deep learning based approaches.

Table 5 shows the EER and AUC of the competition’s 18 experiments using
Note4 and OPPO N1 challenge data for the three submitted algorithms (note
that OPPO N1 has a better camera). Figure2 shows the average GMRs at
different FMRs in 18 experiments. These values are calculated by taking the
average of GMRs from the 18 experiments. It can be easily seen that team 1
outperformed the other two teams by a large margin. The best result obtained by
team 1 for Note 4 is 5.256% EER and 0.988 AUC for the 9th experiment (office
versus office), shown in the result table. For OPPO N1, team 1 achieved the
highest performance for dim light versus dim light condition with 6.394% EER
and 0.984 AUC. Three experiments with enrollment and verification under the
same lighting condition (experiment 10, 14, and 18) generally obtained slightly
better performance than the other experiments. This implies cross illumination
comparison degrades the performance of the model submitted by team 1.

As shown in Table 5, team 2 achieved the 2nd best place in our competition.
Using a similar cosine matcher as team 1, team 2 utilized a non-deep learning
based textural feature extractor, DTLBP. The lowest EER for team 2 was 27.05%
for Note 4 and 26.208% for OPPO N1 device in the office versus office lighting
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Fig. 2. GMR% at 1072, 102, and 10~* FMR of the three submissions.
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Table 5. EER and AUC of the 9 experiments for three submissions, Note 4 device.

Team 1 Team 2 Team 3
AUC EER (%) | AUC |EER (%) | AUC | EER (%)
1 10.98 7.462 0.715|35.014 0.597 | 42.074
2 10.952| 10.025 |0.625|40.468 0.57 |44.688
3 10978 6.659 |0.614|42.153 0.583 | 43.435
4 10.955| 11.456 |0.615|41.499 0.568 | 44.41
5 10971 7.763 1 0.767|30.679 0.604 | 40.685
6 [0.985 6.722 |0.716 | 34.403 0.585 | 42.514
7 10.951| 12.102 |0.605 |43.651 0.557 | 46.085
8 10.968 8.063 |0.722]34.309 0.582 | 42.686
9 [0.988 5.256 |0.804|27.05 0.629 | 39.772
10/0.984| 6.394 |0.732|34.334 0.61 |40.301
11]0.961 9.397 | 0.628 | 40.362 0.549 | 44.943
12/0.974| 8.082 |0.622|40.898 0.568 | 43.705
1310.971 8.282 0.623|41.993 0.551 | 45.411
1410965 | 8.112 |0.776 |29.697 0.573 | 42.46
15/0.979| 6.672 |0.745 31.911 0.548 | 45.137
160959 | 9.757 |0.603 | 42.945 0.535 | 46.679
1710.961 8.654 | 0.746 | 31.785 0.541 | 45.698
1810.978| 6.487 |0.819|26.208 0.581 | 42.047

setting. However, the model performance degraded significantly for other exper-
iments with EER fluctuating from 30% to 43%. It appears that the non-deep
learning features from DTLBP are not as robust against changes in illumination.
Team 3’s model did not obtain satisfactory results for any of the experiments.

5 Conclusion

Ocular biometric is becoming an attractive alternative to face recognition in the
mobile environment, especially due to occlusion caused by masks worn during
the COVID-19 pandemic. We organized the VISOB 2.0 competition at IEEE
WCCI 2020 conference to further advance the state-of-the-art in such ocular
recognition methods, with a focus on multi-frame captures. We performed a
thorough evaluation of three ocular recognition algorithms submitted to our
VISOB 2.0 Challenge Competition. VISOB 2.0 dataset consists of stacks of five
ocular images captured in burst mode using the front-facing camera from two
different smartphones. From the obtained test results, it is obvious that the deep
learning approach could obtain better results in our more challenging subject-
independent evaluation settings. The comparison across different illumination
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settings showed adverse effects on the performance of all three submissions.
These results can serve as a reference for future research and development in
multi-frame RGB ocular recognition.
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