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Abstract. Ubiquitous and real-time person authentication has become
critical after the breakthrough of all kind of services provided via mobile
devices. In this context, face technologies can provide reliable and robust
user authentication, given the availability of cameras in these devices, as
well as their widespread use in everyday applications. The rapid devel-
opment of deep Convolutional Neural Networks (CNNs) has resulted
in many accurate face verification architectures. However, their typi-
cal size (hundreds of megabytes) makes them infeasible to be incorpo-
rated in downloadable mobile applications where the entire file typically
may not exceed 100 Mb. Accordingly, we address the challenge of devel-
oping a lightweight face recognition network of just a few megabytes
that can operate with sufficient accuracy in comparison to much larger
models. The network also should be able to operate under different
poses, given the variability naturally observed in uncontrolled environ-
ments where mobile devices are typically used. In this paper, we adapt
the lightweight SqueezeNet model, of just 4.4 MB, to effectively pro-
vide cross-pose face recognition. After trained on the MS-Celeb-1M and
VGGFace2 databases, our model achieves an EER of 1.23% on the diffi-
cult frontal vs. profile comparison, and 0.54% on profile vs. profile images.
Under less extreme variations involving frontal images in any of the enrol-
ment/query images pair, EER is pushed down to <0.3%, and the FRR
at FAR = 0.1% to less than 1%. This makes our light model suitable for
face recognition where at least acquisition of the enrolment image can
be controlled. At the cost of a slight degradation in performance, we also
test an even lighter model (of just 2.5 MB) where regular convolutions
are replaced with depth-wise separable convolutions.

Keywords: Face recognition · Mobile biometrics · CNNs

1 Introduction

All kind of services are migrating from physical to digital domains. Mobiles
have become data hubs, storing sensitive data like payment information,
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photos, emails or passwords [1]. In this context, biometric technologies hold
a great promise to provide reliable and robust user authentication using the sen-
sors embedded in such devices [14]. But in order for algorithms to operate with
sufficient accuracy, they need to be adapted to the limited processing resources
of mobile devices. Data templates also have to be small if they are to be trans-
mitted. On top of it, mobile environments usually imply little control in the
acquisition (e.g. on-the-move or on-the-go), leading to huge variability in data
quality.

In this work, we are interested in face technologies in mobile environments.
Face verification is increasingly used in applications such as device unlock, mobile
payments, login to applications, etc. Recent developments involve deep learning
[18]. Given enough data, they generate classifiers with impressive performance in
unconstrained scenarios with high variability. However, state-of-the-art solutions
are built upon big deep Convolutional Neural Networks (CNNs), e.g. [8], with
dozens of millions of parameters and models that typically occupy hundreds of
megabytes. Such a big size and the computational resources that such networks
require make them unfeasible for embedded mobile applications.

In recent years, lighter CNN architectures have been proposed for com-
mon visual tasks, e.g. MobileNet [10], MobileNetV2 [17], ShuffleNet [22] or
SqueezeNet [12]. Several works have bench-marked some of these networks for
face recognition [4,6,16]. Even if they employ training databases that contain
images captured under a wide range of variations, these works have not specifi-
cally assessed performance across different poses. In this work, our main contri-
bution is therefore a novel lightweight face recognition network which is tested
against a database specifically designed to explore pose variations [3]. We base
our developments on SqueezeNet, which is a much lighter architecture than the
other networks. To the best of our knowledge, this is the first work testing deep
face recognition performance specifically under different poses and in mobile
environments. With a database of 11040 images from 368 subjects, our experi-
ments show that the proposed network compares well against two larger bench-
mark networks having a size >30 times bigger and >20 times more parameters.

2 Related Works

Lightweight CNNs employ different techniques to achieve less parameters and
faster processing, such as point-wise convolution, depth-wise separable convolu-
tion, and bottleneck layers. Point-wise convolutions consist of 1 × 1 filters with a
depth equal to the number of input channels, and it is used to reduce or augment
the number of channels. Depth-wise separable convolution splits convolution in
two steps, the first one performing lightweight filtering by using a single con-
volutional filter per input channel, followed by a 1 × 1 point-wise convolution
that carries out linear combinations of the input channels. For single convolu-
tional filters of 3 × 3, depth-wise separable convolution achieves a computational
reduction of 8–9 times in comparison to standard convolution, with a small cost
in accuracy only [10]. Bottleneck layers consist on obtaining a representation of
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Table 1. Top: proposed lightweight models in the literature for face recognition. Bot-
tom: networks evaluated in the present paper. (*) Inference times are as reported in the
respective papers, so they are not fully comparable. The hardware used in the reported
studies includes a Qualcomm Snapdragon 820 mobile CPU @ 2.2 GHz [4], an Intel
i7-6850K CPU @ 3.6GHz [6], and an Intel i7-7700HQ CPU @ 2.80 GHz [16]. The latter
also carries out a comparison of different devices, including high-end GPUs, with infer-
ence times reduced around one order of magnitude. Please refer to the original papers
for details. Inference in this paper is done with an Intel i7-8650U CPU @ 1.9GHz.

Network Input size Layers Model size Parameters Vector size Inference time

Existing lightweight CNN architectures for face recognition

LightCNN [19] 128 × 128 29 n/a 12.6M 256 n/a

MobileFaceNets [4] 112 × 112 50 4 MB 0.99M 256 24 ms (*)

MobiFace [6] 112 × 112 45 11.3 MB n/a 512 28 ms (*)

ShuffleFaceNet [16] 112 × 112 n/a 10.5 MB 2.6M 128 29.1 ms (*)

SeesawFaceNets [21] 112 × 112 50 n/a 1.3M 512 n/a

Networks evaluated in the present paper

SqueezeFacePoseNet 113 × 113 18 4.41 MB 1.24M 1000 37.7 ms

+GDC 113 × 113 18 5.01 MB 1.4M 1000 38.7 ms

+DWC 113 × 113 18 2.5 MB 0.69M 1000 36.4 ms

+DWC+GDC 113 × 113 18 3.1 MB 0.86M 1000 36.9 ms

ResNet50ft [3] 224 × 224 50 146 MB 25.6M 2048 0.16 s

SENet50ft [3] 224 × 224 50 155 MB 28.1M 2048 0.21 s

the input with reduced dimensionality before processing it with a larger amount
of filters that usually have bigger spatial dimensions as well.

SqueezeNet is one of the early works presenting an architecture with fewer
parameters and a smaller size (1.24M parameters, 4.6 MB, and 18 convolu-
tional layers). The authors proposed 1 × 1 point-wise convolutions with squeeze
and expand modules that follow the bottleneck concept. Later, MobileNet (4.M
parameters) and MobileNetV2 (3.5M parameters, 13 MB, and 53 convolutional
layers) were proposed. The former uses faster depth-wise and point-wise convo-
lutions, and the latter uses bottlenecks and inverted residual structures. Inverted
residual structures consist of adding a shortcut between bottleneck layers, sim-
ilar to residual connections [8], that allows to reuse features through the net-
work and to improve the ability of a gradient to propagate across multiple lay-
ers. Lastly, ShuffleNet (1.4M parameters, 6.3 MB, and 50 convolutional layers)
employs point-wise group convolution and channel shuffle to reduce the compu-
tational cost.

Some works have designed light face recognition models based on these or
other architectures (Table 1). To carry out biometric verification, they typically
use as feature vector the output before the fully-connected part. The authors
in [19] presented LightCNN, with 29 convolutional layers and residual connec-
tions, which has 12.6M parameters. With a compact vector of 256 elements, they
achieved 99.33% verification accuracy on the LFW database. MobileFaceNets [4]
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is based on MobileNetV2 but with smaller expansion factors on bottleneck lay-
ers, obtaining a network of 0.99M parameters and 4 MB. The authors introduced
Global Depth-wise Convolution (GDC) to substitute the standard Global Aver-
age Pooling (GAP) at the end of the network. The motivation is that GAP
treats all pixels of the last channels equally, but in face recognition, the center
pixels should not have the same role than corner pixels. They also used PReLU
as non-linearity, and fast down-sampling at the beginning of the network. With
a vector of 256 element, the reported accuracy on LFW was 99.55%. MobiFace
[6] is also based on MobileNetV2. Besides fast down-sampling and PReLU, they
change GAP by a fully-connected layer in the last stage of the embedding to
allow learning of different weights for each spatial region of the last channels.
With a network of 11.3 MB and a vector of 512 elements, the reported accuracy
on LFW was 99.73%. ShuffleNet is used as base for ShuffleFaceNet [16]. Here
the authors also use PReLU, and replace GAP with GDC. They test a different
number of channels in each block, and the network with the best speed-accuracy
trade-off has a size of 10.5 MB and 2.6M parameters, with a feature model of
128 elements. The reported accuracy on LFW is of 99.67%. Lastly, the work
[21] presented SeesawFaceNets, based on seesaw blocks [20]. Based on inverted
residual bottleneck blocks, seesaw blocks replace point-wise convolutions with
uneven group convolutions and channel permute/shuffle operations. The author
also added Squeeze-and-Excitation (SE) [11], and used Swish as non-linearity. SE
blocks explicitly model channel relationships in order to adaptively recalibrate
channel-wise feature responses, and they can be integrated with many architec-
tures, improving their representation power. With a network of 1.3M parameters
and vectors of 512 elements, the author reported an accuracy on LFW of 99.7%.

3 Network Architecture

As back-bone model, we employ SqueezeNet [12]. This is the smallest architec-
ture among the generic light CNNs mentioned. With only 1.24M parameters and
4.6 MB in its uncompressed version, it matched AlexNet accuracy on ImageNet
with 50x fewer parameters. Its building brick, called fire module (Fig. 1), con-
tains two layers: a squeeze layer and an expand layer. The squeeze layer uses
1 × 1 (point-wise) filters as a bottleneck to reduce dimensionality of the fea-
ture maps that will be processed in the expand layer with (more costly) 3 × 3
filters. Also, to achieve further parameter reduction, some filters in the expand
layer are of 1 × 1 instead of 3 × 3. The squeezing (bottleneck) and expansion
behavior is common in CNNs, helping to reduce the amount of parameters while
keeping the same feature map size between the input and output [17]. In addi-
tion, SqueezeNet uses late downsampling, so many convolution layers have large
activation maps. Intuitively, this should lead to a higher accuracy. The architec-
ture of the employed network is shown in Table 2, which mirrors [12] with slight
changes.

The network has been modified to employ an input size of 113 × 113 × 3. It
starts with a convolutional layer with 64 filters of 3 × 3 × 3 (the original paper
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uses 96 filters), followed by 8 fire modules. The stride of the first convolutional
layer has been changed from 2 to 1, so the rest of the network can remain
unchanged. Then, the network ends with a convolutional layer with 1000 filters of
1 × 1 × 512. ReLU is applied after each convolutional layer, and dropout of 50%
is applied after the last fire module. All convolutional layers have stride 1, and all
max-pooling layers are of 3 × 3 and stride 2. As it can be observed, the number of
filters in each fire module increases gradually. Also, the network uses GAP, which
carries out down-sampling by computing the average of each input channel.
This reduces the input size to the classification layer. After GAP, we add a fully
connected layer that matches as output size the number of classes of the training
database. Batch-normalization and dropout at 50% is also added to counteract
over-fitting in the fully connected layer due to the high number of training classes
(35K and 8.6K). We will refer to this network as SqueezeFacePoseNet. To achieve
an even smaller model, we will test the replacement of standard convolution with
depth-wise separable convolution in all 3 × 3 filters, and we will also evaluate
the replacement of GAP with GDC. The size and amount of parameters of the
different combinations is shown in Table 1, bottom.

1x1 filters 1x1 filters
3x3 filters

squeeze
expand

ReLUReLU

Fig. 1. Internal architecture of a fire module. In this example, the squeeze layer has
three 1 × 1 filters, and the expand layer has four 1 × 1 and four 3 × 3 filters. Adapted
from [12].

We also evaluate the CNNs used in [3] to assess face recognition performance
with the VGGFace2 database. They use ResNet50 [8] and SE-ResNet50 [11] as
backbone architectures, both with 50 convolutional layers, and ending with a
GAP layer with produces a vector of 2048 elements before the fully connected
layer. ResNet networks presented the concept of residual connections to ease
the training of CNNs. The models employed in this paper1 are initialized from
scratch, then trained on the MS-Celeb-1M [7] dataset, and further fine-tuned on
the VGGFace2 dataset. We will refer to these as ResNet50ft and SENet50ft.

4 Database and Experimental Protocol

We use the VGGFace2 dataset, with 3.31M images of 9131 celebrities, and an
average of 363.6 images per person [3]. The images, downloaded from the Inter-
net, show large variations in pose, age, ethnicity, lightning and background. The
database is divided into 8631 training classes (3.14M images), and the remaining

1 https://github.com/ox-vgg/vgg face2.

https://github.com/ox-vgg/vgg_face2
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Table 2. Architecture of the network used. C is the number of training classes.

Layer Output size #1 × 1 squeeze #1 × 1 expand #3 × 3 expand

input 1132 × 3 – – –

conv1 1132 × 64 – – –

maxpool1 562 × 64 – – –

fire2 562 × 128 16 64 64

fire3 562 × 128 16 64 64

fire4 562 × 256 32 128 128

maxpool4 272 × 256 – – –

fire5 272 × 256 32 128 128

fire6 272 × 384 48 192 192

fire7 272 × 384 48 192 192

fire8 272 × 512 64 256 256

maxpool8 132 × 512 – – –

fire9 132 × 512 64 256 256

dropout9 132 × 512 – – –

conv10 132 × 1000 – – –

averagepool10 12×1000 – – –

batchnorm10 12×1000 – – –

dropout10 12×1000 – – –

fc 12× C – – –

softmax 12× C – – –

500 for testing. To enable recognition across different pose, a subset of 368 sub-
jects from the test set is provided (VGGFace2-Pose for short), with 10 images
per pose (frontal, three-quarter, and profile), totalling 11040 images.

To further improve recognition performance of our mobile network, we also
use the RetinaFace cleaned set of the MS-Celeb-1M database [7] to pre-train our
model (MS1M for short). Face images are pre-processed to a size of 112 × 112 by
five facial landmarks provided by RetinaFace [5]. In total, there are 5.1M images
of 93.4K identities. While MS1M has a larger number of images, its intra-identity
variation is limited due to an average of 81 images per person. For this reason, we
investigate the benefit of first pre-training on a dataset with a large number of

Table 3. Number of biometric verification scores.

Template SAME-POSE CROSS-POSE

Genuine Impostor Genuine Impostor

1 image 368 × (9+8+...+1) = 16560 368 × 100 = 36800 368 × 10 × 10 = 36800 368 × 100 = 36800

5 images 368 × 1 = 368 368 × 100 = 36800 368 × 2 × 2 = 1472 368 × 100 = 36800
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VGGFace2 pose templates from three
viewpoints (frontal, three-quarter, and
profile, arranged by row). Image from [3].

MS-Celeb-1M from three users (by row)
and three profiles (by column: frontal (1-
2), three-quarter (3-4), and profile (5)).

VGGFace2 training images with random crop.

Fig. 2. Example images of the databases employed.

images (MS1M), then fine-tune with more intra-class diversity (VGGFace2). This
is the protocol in [3], and it has been shown to provide enhanced performance, in
comparison to training the models only with VGGFace2. Some example images
of these databases are shown in Fig. 2.

Our network is trained for biometric identification using the soft-max func-
tion. The network is initialized using ImageNet weights, since it has been shown
that such transfer-learning strategy can provide equal or better performance
than if initialized from scratch, while converging much faster [15]. For training,
the bounding box of VGGFace2 images are resized, so the shorter side has 256
pixels, then a 224 × 224 region is randomly cropped [3]. To accommodate to
the input size of the CNN, images of both databases are scaled to 113 × 113.
SGDM is used as optimizer, with mini-batches of 128. The initial learning rate
is 0.01, which is decreased to 0.005, 0.001, and 0.0001 when the validation loss
plateaus. Also, the learning rate of newly added layers is multiplied by 10 during
the epochs that the global learning rate is 0.01. Two percent of images of each
user in the training set are set aside for validation. To speed-up training and
reduce parameters of the fully connected layer dedicated to under-represented
classes, we remove users from MS1M with less than 70 images, resulting in 35016
users and 3.16M images. This ensures also that at least one image per user is
available in the validation set. All experiments have been done in a stationary
computer with an i9-9900 processor, 64 Gb RAM, and a NVIDIA RTX 2080 Ti
GPU. We carry out training using Matlab r2019a, while the implementations of
ResNet50ft and SENet50ft are run using MatConvNet.
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We carry out verification experiments with the 368 subjects of VGGFace2-
Pose. To enable comparison with state-of-the-art, the test protocol follows the
procedure of [3]. A template is defined for each user, consisting of five faces with
the same pose, so two templates are available per user and per pose. A template is
represented by a single vector, which is computed by averaging the descriptors
given by the CNN of the faces in the template set. To test the robustness of
the employed networks, we also carry out experiments using only one image as
template. During testing, VGGFace2 images are resized, so the shorter side has
256 pixels. A 224 × 224 crop of the center is then done (instead of a random crop),
followed by a resize to 113 × 113. To extract a face descriptor, the last layers
of our network trained in identification mode are removed, and the features are
extracted from the GAP layer, having dimensionality 1000. A distance measure
(χ2 in our case) is then used to obtain the similarity between two templates.
With ResNet50ft and SENet50ft architectures, we use as descriptor the output
of the layer adjacent to the classification layer, with dimensionality 2048. Also,
ResNet50ft and SENet50ft employ input images of 224 × 224, so VGGFace2
images are kept in this size when testing with these two networks.

Frontal Frontal

SAME-POSE COMPARISONS

Frontal Three-quater Frontal Profile

CROSS-POSE COMPARISONS

Three-quaterThree-quater Profile Profile

ProfileThree-quater

Fig. 3. Evaluation protocols: same-pose (left) and cross-pose comparisons (right).

5 Results

5.1 Same-Pose Comparisons

We first report experiments of same-pose comparisons, i.e. comparing only tem-
plates generated with images having the same pose (Fig. 3, left). Genuine trials
are done by comparing each template of a user to the remaining templates of the
same user, avoiding symmetric comparisons. Concerning impostor experiments,
the first template of a user is used as enrolment template, and compared with
the second template of the next 100 users. Table 3 (left) shows the total number
of scores with this protocol. Recall than when templates are generated using 5
images, there are only two templates available per user and per pose. On the
other hand, when templates are generated with only one image, there are ten
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Fig. 4. SqueezeFacePoseNet: Face verification results (same-pose comparisons). Better
in colour (Color figure online).

Fig. 5. ResNet50ft and SENet50ft (same-pose comparisons). Better in colour (Color
figure online).

templates per user and per pose. Face verification results following this protocol
are given in Figs. 4 and 5. Also, Table 4, shows the EER values of the same-pose
experiments in the second and fourth sub-columns.

A first observation is that our SqueezeFacePoseNet model provides in general
better results without the inclusion of Global Depth-wise Convolution (GDC).
This is in contrast to some previous studies where GDC is reported to provide
a better performance [4,6]. It should be mention though that the authors of
our baseline networks kept the GAP layer in ResNet50ft and SENet50ft models
[3]. One possible reason of these results is that in training with VGGFace2, the
face region is randomly cropped from the detected bounding box [3], leading to
images where faces are not aligned (Fig. 2c). This may serve as an ‘augmentation’
strategy, making counterproductive the use of GDC to learn different weights for
each spatial region, since faces are not spatially aligned during training. The use
of depth-wise separable convolution (DWC) in SqueezeFacePoseNet also results
in a slight decrease of performance. This is to be expected [10], although it should
be taken into account that adding DWC to our network reduces its model size
by about 60% (Table 1).

Among all the networks evaluated, SENet50ft clearly stands out, specially
when templates are generated with only one image (left part of Table 4), which
is a much adverse case than the combination of five images (right part). The
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Fig. 6. SqueezeFacePoseNet: Face verification results (cross-pose comparisons). Better
in colour (Color figure online).

Fig. 7. ResNet50ft and SENet50ft (cross-pose comparisons). Better in colour (color
figure online).

superiority of SENet50ft over ResNet50ft for face recognition is also observed in
the paper where they were presented [3], due to the inclusion of Squeeze-and-
Excitation blocks. Regarding SqueezeFacePoseNet, its performance is compara-
tively worse. Even in that case, we believe that it obtains meritorious results,
considering that it employs images of 113 × 113 (instead of 224 × 224), its size is
>30 times smaller than ResNet50ft and SENet50ft, and it has >20 times fewer
parameters. The good results of SqueezeFacePoseNet are specially evident when
using templates of five images, in whose case its EER is <0.55% for any given
pose, and with frontal images it is just 0.27%. With the lighter SqueezeFace-
PoseNet+DWC version, the EER of same-pose comparisons is below 1.1%, and
just 0.39% with frontal images.

By looking at the different poses, we observe that performance decreases
slightly in profile vs. profile comparisons with all networks. Even in this case,
where only half of the face is visible, using templates of five images provides very
good performance with any given network (EER < 0.55%). For the other two
poses, SqueezeFacePoseNet gives a meritorious EER of 0.27/0.06%, and an order
of magnitude less is given by the baseline networks. If templates of one image are
used, our network worsens by a factor of ∼1.9 only w.r.t. ResNet50ft/SENet50ft.
An interesting phenomena also with all network is that the three-quarter vs.
three-quarter case provides better performance than the frontal vs. frontal.
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Table 4. Face verification results on the VGGFace2-Pose database (EER%). F =
Frontal View. 3/4 = Three-Quarter. P = Profile. The best result of each column is
marked in bold.

Recognition network One face image per template Five face images per template

Same-pose Cross-pose Same-pose Cross-pose

F-F 3/4-3/4 P-P F-3/4 3/4-P F-P F-F 3/4-3/4 P-P F-3/4 3/4-P F-P

SqueezeFacePoseNet 6.39 5.47 7.88 6.09 7.02 8.15 0.27 0.06 0.54 0.2 0.88 1.23

+GDC 8.67 7.18 9.18 8.06 9 10.59 0.27 0.08 0.37 0.15 0.75 1.29

+DWC 8.28 7.77 12.27 8.11 11.08 12.03 0.39 0.54 1.11 0.47 1.98 2.85

+DWC+GDC 10.07 9.11 14.04 9.86 12.67 14.24 0.81 0.61 1.63 0.68 1.82 3.39

ResNet50ft 4.14 3.13 5.16 3.68 4.25 4.99 0.01 0.02 0.27 0.07 0.14 0.14

SENet50ft 3.86 2.87 4.16 3.36 3.71 4.48 0.02 0.02 0.27 0.07 0.2 0.14

It is also worth noting the substantial improvement observed when five images
are used to generate user’s templates (right part of Table 4) in comparison to
using one (left part). This points out that collecting just five images of a user is
sufficient to obtain good performance across different poses with the networks
employed. Even in a higher security scenario (e.g. FAR = 0.1%), the FRR of
SqueezeFacePoseNet is below 1% in frontal vs. frontal and three-quarter vs.
three-quarter cases, and of ∼2% with the lighter SqueezeFacePoseNet+DW (see
Fig. 4). It should be considered though that the images of any user are mostly
captured in different moments and they contain a very diverse variability, so
the model generated when combining them is probably richer than if they were
taken consecutively (e.g. from a video). In this sense, it could be expected that
the improvement would not be so high if for example we combine several shots
taken consecutively, although confirming this would need extra experiments.

5.2 Cross-Pose Comparisons

We now carry out cross-pose verification experiments. Pair-wise comparisons are
done between templates generated with images of different poses (Fig. 3, right).
We follow the same protocol for scores generation as in Sect. 5.1, resulting in
the amount indicated in Table 3 (right). Face verification results of cross-pose
experiments are given in Figs. 6 and 7. Also, Table 4 shows the EER values of
the cross-pose experiments in the third and fifth sub-columns.

In a similar vein as Sect. 5.1, SqueezeFacePoseNet works better in gen-
eral without Global Depth-wise Convolution (GDC), and a slight performance
decrease is seen when using depth-wise separable convolutions (DWC). Also,
SENet50ft stands out. With SqueezeFacePoseNet, results are up to one order of
magnitude worse with templates of five images, and only ∼1.9 times worse with
templates of one image. Still, the EER of our network for cross-pose experiments
is between 0.2–1.23% when richer models of five images per user are employed.

Regarding the different types of poses, the worst performance is seen when
there is maximum variation between the templates being compared (frontal vs.
profile). This is to be expected, given the higher variability of this combination.
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Nevertheless, it should be highlighted the meritorious performance of any of the
networks when templates of five images are used, with EER ranging between
0.14–1.23% for this difficult cross-pose situation. The best performance is always
observed in the frontal vs. three-quarter case, and the three-quarter vs. profile
case stands in the middle of the other two. From these results, it can be concluded
that it is not the amount of pose difference between templates that matters, but
that the images appear as much frontal as possible. In this sense, if we compare
the frontal vs. frontal and frontal vs. three-quarter cases, their performance is
not so different (and sometimes the frontal vs. three-quarter case is better). In a
similar vein, the frontal vs. profile is sometimes better than the profile vs. profile
case. This reinforces our above observation that, in very difficult lateral poses,
it is probably better to have frontal images if possible in one of the templates,
rather than having all images with the same profile pose.

Similarly as Sect. 5.1, using five images to generate templates is a very effec-
tive way to cope with cross-pose situations. Its performance compared to using
one image as template is significantly better (left vs. right part of Table 4), with
improvements of one order of magnitude or more for any network. In higher secu-
rity situations (e.g. FAR = 0.1%), ResNet50ft and SENet50ft provide impressive
FRRs below 0.5% for any cross-pose combination, while SqueezeFacePoseNet
ranks between 0.4–10% depending on the case.

5.3 Effect of Training Database

We now investigate the effect of the training set in our mobile architecture
(Table 5), with all networks started from ImageNet pre-training, and trained
from biometric identification as described in Sect. 4. In case that only one
database is used for training, it can be seen that better results are obtained
if the model is trained on a database with more samples per user (VGGFace2),
rather than on a database with more samples and more users overall but with
less samples per user (MS1M). But the biggest benefit in most cases is when the
model is trained first on MS1M, and then fine-tuned on VGGFace2 (row ‘both’).
This is in line with the results in [3]. The biggest advantage is obtained when
only one image is used to generate a user template, with improvements of up to
28% in comparison to training on VGGFace2 only. The effect is more diluted
when five images are combined to create a user template, specially in cross-pose
experiments. In this case, it is slightly better to train only on VGGFace2. How-
ever, it is not always the case that such amount of images are always available
to generate a user template, e.g. in forensics [13].

6 Conclusion

We are interested in the development of a lightweight deep network architecture
capable of providing accurate cross-pose face recognition under the restrictions
of mobile architectures. For this purpose, we have adapted a very light model of
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Table 5. Effect of the training database in SqueezeFacePoseNet (EER%). F = Frontal
View. 3/4 = Three-Quarter. P = Profile. The best result of each column is marked
in bold. Performance variation of the ‘both’ w.r.t. the ‘VGGFace2’ row is given in
brackets.

Training data One face image per template Five face images per template

Same-pose Cross-pose Same-pose Cross-pose

F-F 3/4-3/4 P-P F-3/4 3/4-P F-P F-F 3/4-3/4 P-P F-3/4 3/4-P F-P

MS1M 16.82 16.23 20.24 17.45 21.24 24.19 1.17 2.17 3.25 1.7 5.24 7.01

VGGFace2 8.93 6.97 8.34 8.35 8.16 10.35 0.27 0.27 0.64 0.2 0.55 1.09

Both 6.39 (−28%) 5.47 (−22%) 7.88 (−6%) 6.09 (−27%) 7.02 (−14%) 8.15 (−21%) 0.27 (−) 0.06 (−78%) 0.54 (−16%) 0.2 (−) 0.88 (+60%) 1.23 (+13%)

only 4.41 MB [12] to operate with small face images of 113 × 113 pixels. Train-
ing is done using the large-scale MS-Celeb-1M [7] and VGGFace2 [3] datasets.
VGGFace2 (3.31M images, 9.1K identities) is a dataset with a rich variation
of imaging conditions. Being a large-scale database, it is designed to have a
larger number of images per user as well (364 on average) in comparison to
other databases. MS-Celeb-1M contains a larger number of images (3.16M in
our experiments), but a larger number of identities as well (35K), so its number
of images per identity is smaller. Following recommendations [3], we combine
a large database (MS-Celeb-1M) and a database with more intra-class diver-
sity (VGGFace2) to train the recognition network. This has shown to provide
increased performance in comparison to using only one of them (Table 5).

To achieve further reductions in model size, we test the replacement of stan-
dard convolutions with depth-wise separable convolutions [10], leading to a net-
work of just 2.5 MB. We also test Global Depth-wise Convolution (GDC) in
substitution of the standard Global Average Pooling (GAP), since some works
report that it provides better face recognition performance [4,6]. The employed
architecture is bench-marked against two state-of-the-art architectures [3] with
a size >30 times bigger and >20 times more parameters (Table 1). We evaluate
two verification scenarios, consisting of using a different number of face images
to generate a user template. In one case, a template consists of a combination
of five face images with the same pose, following the evaluation protocol of [3].
In the second case, we consider the much more difficult case of employing only
one image to generate a user template. Different pose combinations between
enrolment and query templates are tested (Fig. 3).

Obviously, the use of five face images to create a user template provides
a much more better performance, with improvements of up to two orders of
magnitude in some cases. Also, in our experiments, we have not observed better
performance by using Global Depth-wise Convolution, but the opposite. We
speculate that this may be because training images of the VGGFace2 database
are obtained by randomly cropping the face bounding box, so faces are not
spatially aligned (Fig. 2c). In this sense, trying to learn different weights for each
spatial region may be counterproductive. In addition, as expected [10], the use
of depth-wise separable convolution results in a slight decrease of performance.
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Even if our light architecture does not outperform the state-of-the-art net-
works, it obtains meritorious results even under severe pose variations between
enrolment and query templates. For example, the comparison of frontal vs. pro-
file images gives an EER of 1.23%. Also, the comparison of profile vs. profile
images gives an EER of 0.54%, even if just half of the face is visible in this
case. These results are with a template of five face images, which is revealed as a
very effective way to improve cross-pose recognition performance. With only one
face image per template, the performance of our network goes up to 8.15/7.88%
respectively in the two mentioned cases. In less extreme cases of pose variability,
performance of our network is even better, for example: 0.88% (three-quarter vs.
profile view), 0.2% (frontal vs. three-quarter), or 0.27% (frontal vs. frontal).

A number of combinations to create enrolment and query templates would
be of interest, which will be the source of future work. For example, if video
is available, a collection of frames could be combined for user template gen-
eration, probably selecting those with near to frontal pose as well. How many
images per template are necessary to obtain accurate performance is also worth
to study. In some scenarios like forensics [13], query data may consist of only one
image with an arbitrary pose, but several images per suspect may be available
in the enrolment database. Therefore, one-query vs. multiple-enrolment images
is also of interest to evaluate. Also, in our protocol, a template is generated
using only images of the same pose. Combining images of multiple poses in the
same template could be a way to create a richer user model, further improving
performance.

To improve the performance of our mobile model, we are also looking into the
use of residual connections [8] and pre-activation of convolutional layers inside
residual blocks [9]. Giving the current context where face engines are forced to
work with images of people wearing masks, we are also evaluating the accuracy
of our model when using partial images containing only the ocular regions [2].
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