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Abstract. Recent studies show that physiological data can detect changes inmen-
tal effort, making way for the development of wearable sensors to monitor mental
effort in school, work, and at home. We have yet to explore how such a device
would work with a single participant over an extended time duration. We used a
longitudinal case study design with ~38 h of data to explore the efficacy of elec-
trodermal activity, skin temperature, and heart rate for classifying mental effort.
We utilized a 2-state Markov switching regression model to understand the effi-
cacy of these physiological measures for predicting self-reported mental effort
during logged activities. On average, a model with state-dependent relationships
predicted within one unit of reported mental effort (training RMSE = 0.4, test-
ing RMSE = 0.7). This automated sensing of mental effort can have applications
in various domains including student engagement detection and cognitive state
assessment in drivers, pilots, and caregivers.

Keywords: Cognitive load ·Wearable sensor ·Mental effort ·Machine
learning · Cognitive assessment

1 Introduction

Researchers often strive to measure how focused someone is on a task, or how much
mental effort they are putting into it. One domain where this is an important question
is education and the study of learning. For more than three decades many researchers
interested in this question, or related questions, have relied on a prominent theory called
CognitiveLoadTheory (CLT; [1–3]).According toCLT,we canputmental effort towards
learning the salient material, known as intrinsic cognitive load, or towards other features
of the instruction that do not support the learning task, known as extraneous cognitive
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load [1, 3, 4]. Researchers suggest that the complexity of the task and the learner’s level of
prior knowledge in the subject determine the amount of mental effort that will be needed
to learn the material and thus determine the intrinsic cognitive load, whereas mental
effort put into parsing non-supporting elements of the instruction, such as interesting but
ultimately unrelated stories, or visually searching for references needed to understand
components of the learning materials, determine the extraneous cognitive load [1–4].
Since the working memory is limited in both capacity [5, 6] and duration [1, 3], CLT
suggests that it is important to minimize the mental effort learners have to expend on
tasks that are not essential to learning the material [7].

Cognitive load theory is well-established in the education literature, with a number
of highly cited papers centering on the theory (e.g., [7–9]). Unsurprisingly, CLT has
been used to theoretically support a number of specific task design principles, such as
the worked example effect, the redundancy effect, and the split-attention effect [2, 4],
and has become widespread outside of the educational psychology literature, appearing,
for example, in the medical education literature as well [10–12]. The notion of cognitive
load is an important theoretical paradigm in many types of educational research, but a
lingering question persists in the CLT literature: how do we measure cognitive load?

The construct of cognitive load, as explained by CLT, is relatable to many; however,
the measurement of such a construct has been a psychometric challenge for more than
a decade. Researchers have used methods as varied as self-reports [13], eye-tracking
measures [14], secondary task techniques [15], or physiological data [16]. Outside of
the education literature researchers have measured a similar construct, mental workload,
using similar methodologies like self-reports [17] or physiological measures [18] like
facial skin temperature [19].

Recently, perhaps due to the increasing accessibility of wearable sensors or the
psychometric issues associated with current methods for cognitive load assessment [20–
22], researchers have been using physiological measurements and investigating their
relation to learning relevant outcomes. Some of this work has shown promising results.
For example, in relation to learning relevant processes, [23] used heart rate variability as
an indicator of sustained attention. In addition, [24] measured electrodermal activity and
examined these data in relation to self-reported emotional engagement. They found that
students who were more engaged showed more frequently high levels of electrodermal
activity. Taking a multimodal physiological approach, [25] differentiated between when
students worked on high, moderate, and low mental effort activities, and further were
able to predict a user’s self-reported mental focus. It is noteworthy, however, that not all
studies have shown such promising results. For example, examining task complexity in
relation to physiological measures, [26] found that electrodermal activity and heart rate
mean scores did not differ depending on the complexity of the task.

As noted, the use of wearable sensors to collect physiological data in relation to
education-relevant outcomes is becoming more widespread in the literature. While there
have been some promising results, the literature also shows some null results, highlight-
ing the complexity of this area of work. When looking at recent studies [20–26], an
important missing piece is understanding how we can use these data to track mental
effort in an individual over extended periods of time, and the diagnostic utility of easily-
obtainable physiological measures like EDA, skin temperature, and heart rate towards
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this goal. In this case study, we utilize a longitudinal interpretable machine learning app-
roach to understand how these data can be used to track the mental effort of an individual
student in the context of both school activities and activities of daily living.

2 Methods

2.1 Study Design

In this study we sought to understand how EDA, skin temperature, and heart rate can be
used to learn trends in mental effort for a single participant, and the extent to which we
can model this in a robust way. We were first interested in using interpretable machine
learningmodels to understand relationships between the participant’s EDA, skin temper-
ature, and heart rate measures and her reported mental effort. Second, we were interested
in the diagnostic strength of these measures, and their efficacy in predictingmental effort
in the context of future activities. To satisfy these goals, we used a longitudinal n = 1
case study design [27]. The goal of a case study is to generate rich description of a
single case, which typically constitutes a single participant or entity [28]. Since our aim
in this study was to evaluate the efficacy of a device for long-term monitoring of men-
tal effort, it made sense to focus on a single participant over an extended time period.
Researchers who place a premium on generalizability across contexts argue that a case
study is disadvantaged by its focus within a single specific context [28]. However, [28]
argues that this focus on a specific context is a strength in that it supports more accurate
generalization to similar contexts. With the fields of psychology and medicine focusing
less on giving general answers applying to everyone, andmore on individualizing care, it
is little surprise that the n= 1 design has increased in popularity in the medical research
community [29, 30].

2.2 Description of the Case and Instrumentation

Since the focus of this study was to detect mental effort associated with school-related
activities as well as activities of daily living, we chose an undergraduate university
student as the case. This student was 19 years of age. She was a Psychology major
with a concentration in Neuroscience in the second year of her undergraduate degree.
Her primary hobbies included painting and spending time with her dog. Through the
study, she identifiedher school-related activities, painting, learning to groomher dogwith
clippers and scissors, and watching brain games with her family as activities constituting
high mental effort, and spent 48% of her time engaging in these types of activities. The
remainder of her time was spent on low self-reported mental effort activities including
eating, talking on the phone, watching television, driving, running errands, napping,
and walking her dog. A total of 37 h, 33 min, and 34 s of data were collected. At a
sampling rate of one sample per second, this constituted 135,214 total observations.
These data were collected over approximately 3 weeks during the last half of the Spring
2020 semester.

The methodology relied on matching physiological data for EDA, skin temperature,
and heart rate to self-reported data for mental effort dedicated to specific activities. EDA,
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skin temperature, and heart rate data were collected using the Empatica E4 wristband.
The E4 measures blood volume pressure, heart rate, interbeat interval, skin temperature,
and 3-axis acceleration. The E4 sampled EDA at 4 Hz, skin temperature at 4 Hz, and
calculated heart rate (1 Hz) based on the BVP signal (64 Hz). In order to minimize noise
in the data, we elected to downsample the EDA and skin temperature signals to 1 Hz in
order to match the heart rate signal.

The participant was asked to place the E4 band on her wrist approximately 3 cm from
the base of the hand. She indicated that she wore the device on her right wrist since she
was left-handed. As she engaged in different activities throughout the day while wearing
the device, she logged them in a journal along with assigning a measure of mental effort
to each activity. Mental effort was self-reported on a Likert scale of 1–4, where a “1”
indicated very low effort, a “2” indicated low effort, a “3” indicated high effort, and a “4”
indicated very high effort. Individual activities varied in length from under a minute to
over an hour. During the course of her activities, the student’s data transitioned between
low (1 and 2) and high (3 and 4) mental effort states 30 times.

2.3 Markov Switching Regression Model

The goal of modeling was two-fold: (1) to generate longitudinal predictions for mental
effort and evaluate their robustness, and (2) to understand the role ofmeasured EDA, skin
temperature, and heart rate in generating these predictions. In light of these goals, we
utilized the Markov switching dynamic regression model [31], which is an interpretable
machine learning model that describes how an outcome changes its state over time. At
their most basic level, Markov models predict a current state based on the previous state
and a transition probabilitymatrix.Markov switchingmodels build upon this by allowing
incorporation of state-specific relationships, thereby improving our understanding of
how the physiological parameters relate to mental effort within each state.

Given our interest in a device that is able to distinguish between high and low states of
mental effort, we utilized a 2-state Markov switching model. We tested models with four
hierarchical levels of complexity: (1) a 2-state intercept-only model, (2) a 2-state model
which held the effects of EDA, heart rate, and skin temperature constant across state, (3)
a 2-state model which allowed the effects of EDA, heart rate, and skin temperature to
switch across states, and (4) a 2-state model allowing for switching effects and variances.
The likelihood ratio testwas used to test the null hypothesis that adding an additional level
of complexity did not improve model fit (95% confidence level used). The generalized
r-square was calculated from the ratio of deviance values from the null and alternative
models as a measure of the extent to which the alternative model improved fit over the
null model.

Upon arriving at the best model using the above procedure, our interest shifted to
evaluating the model’s ability to provide robust temporal predictions. For validation, we
fit the model to the first 22 h (58%) of the data, and tested that model on the final 16 h
(42%) of the data. The root mean square error and mean absolute error were used to
compare the fit of the rawoutput between the training and testing sets.We also discretized
the reported mental effort and output to 2 states in order to evaluate the model’s strength
as a classifier based on its precision, recall, and F1 measure for the training and testing
sets.
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3 Results

3.1 Descriptive Analysis

The participant spent 9 h 18 min and 29 s in activities requiring very low mental effort
and 10 h 8 min and 6 s in activities requiring low mental effort. 12 h 48 min and 46 s
were spent at high mental effort, and 5 h 18 min and 13 s were spent at very high mental
effort. Small but significant differences in EDA, skin temperature, and heart rate were
found between each level of mental effort (Table 1).

Table 1. Average values for EDA, skin temperature, and heart rate at each reported level ofmental
effort

Mental Effort Time (s) EDA (μS) Temperature (°C) Heart Rate (bpm)

Mean SD Mean SD Mean SD

1 33,509 0.12 0.08 32.55 1.56 94.74 17.42

2 36,486 0.12 0.06 31.70 2.64 97.79 21.50

3 46,126 0.15 0.18 32.30 1.80 91.65 17.59

4 19,093 0.13 0.04 32.40 1.93 92.55 16.14

Total 135,214 0.13 0.12 32.21 2.05 94.20 18.67

A MANOVA omnibus test indicated at least one significant difference in the mul-
tivariate mean across levels of mental effort (Wilk’s � = 0.94, F9,329061 = 948.97, p
<< 0.001, η2

partial = 0.021). Univariate ANOVA tests indicated that skin temperature
exhibited the largest differences between levels of mental effort (F3,135210 = 1159.92,
p<<0.001, η2

partial = 0.025). EDA (F3,135210 = 649.63, p<<0.001, η2
partial = 0.014)

and heart rate (F3,135210 = 810.04, p<<0.001, η2
partial = 0.018) also exhibited signifi-

cant differences, but the effect sizes were less than that for skin temperature. Due to the
large number of observations, Scheffe tests indicated that all differences between sub-
sequent levels of mental effort were significant at the 99% confidence level. However,
given the longitudinal nature of the data, it was difficult to specify how the physiolog-
ical data support classification of high and low mental effort states over time using the
MANOVA procedure.

3.2 Longitudinal Modeling of Mental Effort Using Physiological Data

Contribution of Physiological Measures: The log-likelihood tests (Table 2) suggested
that the most complex model, allowing effects and variances to switch across states,
provided the best fit to the data, and offered a significant improvement over the intercept-
only null model (R2 = 0.023, χ2

partial, df=7 = 4195.0, p<<0.001).

Adding EDA, skin temperature, and heart rate as constant effects to the 2-state
intercept-only model resulted in a significant improvement in the model (R2 = 0.012,



Longitudinal Classification of Mental Effort Using Electrodermal Activity 91

Table 2. Hypothesis tests for significance of change in model fit as model complexity increased.
Type 1 tests were used for calculating R2

partial and χ2
partial. R2 and χ2 were calculated with

respect to the intercept-only null model

Two-state Markov model R2 χ2 R2
partial χ2

partial

Intercept-Only (k = 5)

Intercept + Constant effects (k = 8) 0.012 2200.4* 0.012 2200.4*

Intercept + Switching effects (k = 11) 0.021 3838.2* 0.0090 1637.8*

Intercept + Switching effects and variances (k = 12) 0.023 4195.0* 0.0020 356.8*

*p«0.001

χ2
df=3 = 2200.4, p<<0.001). Allowing the effects of EDA, skin temperature, and heart

rate to switch between states 1 and 2 resulted in a further improvement (R2
partial =

0.009, χ2
partial, df=3 = 1637.8, p<<0.001). Finally, allowing variances to switch across

the two states resulted in a smaller, but nonetheless significant, improvement in model
fit (R2

partial = 0.002, χ2
partial, df=1 = 356.8, p<<0.001).

The 2-state model with state-dependent effects and variances (Table 3) showed that
State 1 was associated with lowmental effort (Intercept= 1.508, SE= 0.002, z= 800.4,
p<<0.001), and State 2 was associated with high mental effort (Intercept= 3.296, SE=
0.002, z= 1823.7, p<<0.001). With this qualification, we can begin to understand how
this student’s EDA, skin temperature, and heart rate changed with mental effort within
these two states as well as across the two states. Within State 1, an increase in mental
effort was accompanied by a decrease in skin temperature and EDA, and an increase in
heart rate. Skin temperature provided the strongest diagnostic for mental activity (Coef
= –0.089, SE= 0.002, z= –52.0), followed by heart rate (Coef= 0.042, SE= 0.002, z
= 24.2). EDA was significant (Coef= –0.034, SE= 0.003, z= –11.0), but nonetheless
had aweaker effect size than skin temperature and heart rate. This ordering of importance
matched the conclusions from the MANOVA test.

Upon transition to State 2, EDA retained its negative relationship with mental effort
(Coef= –0.025, SE= 0.001, z= –17.1), and heart rate retained its positive relationship
(Coef = 0.016, SE = 0.002, z = 8.1). However, skin temperature switched to a being
positive indicator of mental effort (Coef = 0.018, SE = 0.002, z = 8.9) in State 2. The
ordering of importance also changed from State 1. When the participant entered State
2, EDA became the strongest diagnostic, followed by skin temperature and heart rate.

Utility for Prediction. From the perspective of correct classification, our data indicate
that the Markov switching regression model has high predictive utility both on the
training and testing sets. The model predicted whether the participant was in a high or
low state of mental effort with high accuracy (Accuracytrain = 0.9995, F1train = 0.9995,
Accuracytest = 0.9996, F1test = 0.9996). However, much of this was due to the fact that
reported mental effort in association with certain activities was stable and sustained over
extended time periods. This is illustrated by the model probabilities: given an initial
state, the probability of staying in the same state was 0.99975, and the probability of
transitioning to the other statewas 0.00025. Thismeans that when themodel encountered
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Table 3. Parameter estimates for the 2-state Markov switching model with switching effects and
variances

Mental Effort Feature Coef SE z

State 1

EDA −0.034 0.003 −11.0

TEMP −0.089 0.002 −52.0

HR 0.042 0.002 24.2

Intercept 1.508 0.002 800.4

Variance 0.488 0.001

State 2

EDA −0.025 0.001 −17.1

TEMP 0.018 0.002 8.9

HR 0.016 0.002 8.1

Intercept 3.296 0.002 1823.7

Variance 0.454 0.001

Transition p11 0.99976 0.00006

Probabilities p21 0.00025 0.00006

a transition from one level of mental effort to another, it tended to misclassify the
initial observation within the new activity. However, once the model observed that initial
observation, it tended to classify the rest of the observations correctly until it encountered
another transition. It is for this reason that the Intercept-Only model (RMSE = 0.48,
MAE = 0.46) predicted nearly as well as the Switching Effects and Variances model
(RMSE = 0.47, MAE = 0.45) despite its lack of explanatory utility. The Switching
Effects and Variances model predicted the testing set (RMSEtest = 0.70, MAEtest =
0.61) slightly less accurately than the training set (RMSEtrain = 0.40, MAEtrain = 0.32),
illustrating some deterioration in performance when predicting into the future. However,
these measures of fit sat within one unit of reportedmental effort, illustrating themodel’s
usefulness for classification of discrete states of mental effort both in the training and
testing sets.

4 Discussion and Conclusions

Our findings suggest that the Markov switching model is useful as an explanatory tool
for understanding the diagnostic utility of EDA, skin temperature, and heart rate for
measuringmental effort. Providing that information about the participant’s previous state
is available, we can expect this model to performwell in predicting the participant’s state
at the next time point. This means that for extended activities, we will be able to discern
the participant’s level of mental effort at the next time point with reasonable certainty.
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However, the utility ofMarkovian assumptions reduces when we do not have knowledge
of the previous state, or if that knowledge is highly tentative. The utility of this framework
could be improved if it were combined with another machine learning approach which
is less sensitive to prior states. Previous work suggests that machine learning models
invoking the assumption that the data are independent and identically distributed (i.i.d.)
may be useful for detecting transitions between states [25]. For example, a simple logistic
regression model applied to this data set using EDA, skin temperature, and heart rate as
main effects (Accuracy= 0.55, F1= 0.50) was able to detect 2 of the 30 total transitions
in the data despite performing relatively poorly as a classifier. In this sense, traditional
machine learning approaches could be used to generate time-independent predictions,
and then the Markov model could act as a smoother over the temporal dimension which
would improve the coherence of predictions while a user is within a particular state of
mental effort. Our next steps include exploring linear dynamical systems and variants
that incorporate both the temporal information, as well as utilize the i.i.d. nature to be
able to detect both stability and transitions with high certainty.

Previous work has shown the promise of using physiological data collected from
wearable sensors to facilitate automated monitoring mental effort and cognitive load
[23–26], and [25] proposed the application of this framework toward development of
an Educational Fitness Sensor (EduFit) system to help students track the duration and
quality of their studies in real time. However, for EduFit to have utility as a personal
device, models have to work in less structured environments over relatively long time
durations. This study shows that EDA, skin temperature, and heart rate have diagnostic
utility in these types of less controlled settings. It has been argued that the EduFit system
would enable building of personal understanding of one’s study endeavors through inter-
pretable biofeedback and enablement of personal accountability [25]. Beyond engage-
ment in studies, we believe this type of systemmay also be useful in other contexts where
mental effort is important such as fields involving high-stakes operation of machinery.
Monitoring of mental effort may also be useful for detecting cognitive decline in geron-
tology contexts. Within any of these contexts, the ability to specify and train models
which are accurate and robust over time is essential if EduFit is to be useful, and our
data indicate that interpretable machine learning models specified for time series data
provide a step in the right direction.
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