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Abstract. The objective of this study is to evaluate and compare the
performance of a set of low-cost multi-modal head tracking systems incor-
porating facial gestures as a switching mechanism. The proposed systems
are aimed to enable severely disabled patients to access a computer. In
this paper, we are comparing RGB (2D) and RGB-D (3D) sensors for
both head tracking and facial gesture recognition. System evaluations
and usability assessment were carried out on 21 healthy individuals. Two
types of head tracking systems were compared - a web camera-based and
another using the Kinect sensor. The two facial switching mechanisms
were eye blink and eyebrows movement. Fitts’ Test is used to evaluate
the proposed systems. Movement Time (MT) was used to rank the per-
formance of the proposed systems. The Kinect-Eyebrows system had the
lowest MT, followed by the Kinect-Blink, Webcam-Blink and Webcam-
Eyebrows systems. The 3D Kinect systems performed better than the 2D
Vision systems for both gestures. Both Kinect systems have the lowest
MT and best performance, thus showing the advantage of using depth.

Keywords: Assistive technology · Facial gesture recognition · Fitts’
test · Eye blink detection · Eyebrow movement

1 Introduction

The World Health Organization (WHO) estimated that 1 billion people around
the world live with some form of disability [36]. Approximately 10 million people
in UK have disabilities with a neurological diagnosis. For a multitude of reasons,
the number of people with profound disability stemming from neurological dis-
orders is increasing with a resulting impact on their quality of life and that of
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their caregiver. The cost of caring for neuro-disabled persons in Europe has been
estimated as 795 Billion Euro [17]. The value of assistive technologies in improv-
ing the quality of life of people with disability and also reduce carer strain is
emphasized in a 2010 Royal College of Physicians Report [30].

For many individuals with disability access to a computer and/or commu-
nication aid may help mitigate the effect of communication impairments. Often
this can be achieved through the identification of suitable access sites e.g. hand,
foot, arm or head. Some patients, however, are profoundly disabled that they
might be unable to talk but can only make small head movements and facial
gestures such as eye blink or eyebrow movement. In some cases there may not
even be enough head movement to enable the use of an access device such as
a head tracker like SmartNav [2] and so the only remaining access site may be
small facial gestures. Although there are other options available - e.g. the use
of eye gaze, existing systems using eye gaze technology such as MyTobii [3] are
complex, expensive and set-up/configuration places a significant burden on both
the user and the caregiver.

The motivation for the work reported in this paper is the need for low-cost,
reliable head tracking with an automatic facial gesture recognition system to help
severely disabled users access electronic assistive technologies. The objective is
to develop a multi-modal head tracking system, which uses facial gestures as a
switching mechanism thus enabling severely disabled patients whose control is
restricted to small head movements and facial gestures to be able to access a
computer.

2 Background

Pistori [29], states that assistive devices using computer vision can have a great
impact in increasing the digital inclusion of people with special needs. Computer
vision can improve both the devices used for mobility i.e. controlling motorised
wheel chairs, sign language detection and head trackers.Similarly, Betke et al. [7],
describe the advances made in the development of assistive software and the use
of emerging technology can lead to the creation of intelligent interfaces using
both assistive technology and human computer interaction (HCI). The example
of the CameraMouse [9] is used as an interface system with different assistive
devices and software such as Midas Touch [6], Dasher [34] etc. are included to
highlight the use of HCI and assistive devices.

Abascal et al. [4], highlighted some opportunities and challenges that design-
ing human-computer interfaces suitable for the disabled can pose. For people
suffering from disabilities, HCI can be used to design better interfaces which
could be accessible to people with disabilities and thus improve socialisation,
better access to communication facilities and have a greater control over their
environment.
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2.1 Device Evaluation

Fitts’ test [14] was developed in 1954 to model human movement. The result of
the experiments showed that the rate of performance of the human motor system
is approximately constant over a wide range of movement amplitudes. Macken-
zie et al. [23], adapted the Fitts’ Law for assessing HCI. This work was later
embedded in an International Standard for HCI, ISO 9431-9:2000 [18] providing
guidelines for measuring the users’ performance, comfort and effort. The perfor-
mance of the device was measured by making the user perform tasks using the
device. There are six types of tasks - one-direction, multi-directional, dragging,
free-hand tracing (drawing), and, hand input, grasp and park (homing/device
switching). ISO 9431-9:2000 [18] requires that the input device be tested for at
least 2 different Index of Difficulty (ID). Index of Difficulty (ID) is a measure of
the difficulty of the task [5]. In Douglas et al. [12], the validity and practicality
of the ISO framework using both multi-directional and the one-direction Fitts’
Tests for two devices namely a touch-pad and a joystick was investigated.

2.2 Gesture Detection

In this paper, the interest is in processing video information to recognise blink
and eyebrow movement gestures. The detected gestures can be to emulate a
mouse click or a switch action to access and control a computer/communication
aid.

Grauman et al. [15] proposed two systems called BlinkLink and
EyebrowsClicker. The BlinkLink software tracked both the motion within the
eye region and the eye region itself. The EyebrowsClicker tracked the eyebrows
region and detected the rising and falling of the eyebrows. To initialise the loca-
tion of the eye and eyebrows regions, the user has to perform the gestures and
by analysing the area of motion on the face, the respective regions are detected.
A template of each region is generated. The correlation score of the eye region
and a template of both the closed eye and open eye were compared to detect an
eye blink. For eyebrows gesture, the distance from the eyes and the eyebrows are
monitored to detect the rise and fall motion of the eyebrows. Blink detection had
an overall success rate of around 95.6% and was tested on 15 healthy individuals
and one person suffering from Traumatic Brain Injury (TBI). EyebrowsClicker
had an overall success rate or 89% and it was tested with six individuals, but
the software had to be reinstated twice during the data capture session because
the tracking of the eyebrows was lost. There has been no further published work
on this system.

Malik et al. [25] proposed a blink detection method using histogram of Local
Binary Patterns (LBP) [27]. A template of open eye was generated using the
average histogram of LBP from a sample of 50 images of an open eye. The
histogram of LBP of images of the eye region were compared against the template
using the Kullback-Leibler Divergence (KLD) method. In KLD, the distance
between two distribution is zero only if the distributions are identical. KLD
was found to be robust against both the precision of the eye detection and
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the variation in the window size of the detected eye region. The eye region are
obtained using the Viola-Jones [33] algorithm implemented in OpenCV. The
proposed algorithm was tested against the ZJU Eye blink Database [28] and
resulted in a 99.2% blink detection rate. Missimer et al. [26] proposed a blink
detection algorithm based on the analysis of the differences in three consecutive
images. Blobs are generated from the merging of two difference images produced.
Three points are used for tracking, the centre of the upper lip and the upper part
of both eyebrows. In addition, optical flow is used to track these three points.
The eye templates are generated based on the tracked points and used to train
the system. The system is reported to having a success rate of 96.6% and was
tested on 20 healthy individuals.

Yunqi et al. [37] proposed an eye blink detection algorithm which was used
in a drowsiness driver warning system. The proposed system used Haar-like [32]
features and AdaBoost to detect the face of the user. Some pre-processing was
performed on the image and an edge detection algorithm was used to find the eye
corners, the iris and the upper eyelid for each eye. The curvature of the upper
eyelid was compared with the line connecting the two eye corners and if most
of the upper eyelid curvature was under this line, the eye was considered closed.
The algorithm was tested on images captured during a real driving session and
94% accuracy was obtained for the eye state detection.

In Zhang et al. [38], proposed a Gaze based assistive application on a smart-
phone to enable the user to communicate. The application can recognise six ges-
tures from both eyes namely look up, look down, look right, look left, look center
and closed eyes. The algorithm used OpenCV [8] and Dlib-ML [21]. Before using
the device, calibration must be performed to create templates for each gesture.
The template is created by making the users perform the gesture and capturing
the image of the eye region when the action is performed. The algorithm detected
the gestures with an accuracy of 86% on average. The accuracy rate decreased to
80.4% for people wearing glasses, increased to 89.0% for people wearing contact
lenses and increased to 89.7% for people without glasses.

In Val et al. [11], eye blinks are used to control a robot. An infra-red emitter
and an optical sensor were used to detect the eye blink. The blinks are used
to navigate the robotic assistive aid, for example a right eye blink would cause
the robot turn right and a left eye blink would make the robot turn left. A
combination of the left blink followed by a right blink would cause the robot
stop. In Krolak et al. [22], the proposed method uses two active contour [20]
models - one for each eye - for detecting eye blinks. Haar-like features [32] are
used to detect the face and the location of the eyes are determined using known
geometrical proportion of the human face.

In Tuisku et al. [31], the evaluation of a system called Face Interface was con-
ducted. The system used voluntary gaze direction for moving the cursor around
the screen and facial muscle activation for the selecting objects on a computer
screen. Face Interface used two different muscle activation - frowning and rais-
ing the eyebrows. A series of points were presented to the user. The time to
complete the tasks and the accuracy of the activation were used as performance
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measure. The pointing tasks were conducted using three different target diam-
eters (i.e. 25, 30, 40 mm), seven distances (i.e., 60, 120, 180, 240, 260, 450, and
520 mm), and eight pointing angles namely (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦,
and 315◦). It was found that for distances between 60 mm and 260 mm, tasks
performed using the raising eyebrow selection technique were faster than those
using the frowning technique. Also, the overall time taken to complete the tasks
were 2.4 s for the frowning technique and 1.6 s for the raising technique. The IP
of the frowning techniques was 1.9 bits/s and 5.4 bits/s for the eyebrow raising
technique.

The systems reported here were limited in that they would only work with
frontal facial images and were not robust in coping with posture changes. The
work reported here aims to address these shortcomings by making use of the
depth data available from RGB-D sensors.

3 Materials and Methods

The systems evaluated in this work incorporate a camera and an algorithm for
tracking the head movement and detection of the eye blink or eyebrow movement
facial gestures. The camera is either the Microsoft Kinect for Windows [1] sensor
which can provide 3D (RGB-D) data or a Logitech web camera which can only
provide 2D (RGB) data. Raw data is extracted in the form of images and depth
maps. The efficacy of head tracking and gesture recognition of 3D vision-based
system is compared to 2D vision-based systems using a modified Fitts’ test.

3.1 Device Evaluation

Fitts’ Test. Fitts originally proposed a method to model the human hand
movement in order to improve human-machine interactions [13]. Each task has
an ID which is based on the size of the target and the distance of the target from
the starting point. The ID represents the cognitive-motor challenge imposed on
the human to accomplish the task and is measured in bits as shown in Eq. (1).

ID = log2(
D

W
+ 1) (1)

where D represents the distance from the starting point to the target and W is
the width of the target.

MT = a + b× ID (2)

The relationship between MT and ID is shown as a linear relationship where
a is the y-intercept and b is the gradient of the line represented in Eq. (2). The
Index of Performance (IP ) in bits/second of a device is given in Eq. (3).

IP =
1
b

(3)

where b is the gradient of the line described in Eq. (3). A positive value of IP
indicates that the device gets more difficult to use as the interaction becomes
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more challenging. Equation (4) is used to calculate the Effective Throughput
(TPe) in bits/second.

TPe =
IDe

MT
(4)

where MT is the mean movement time, in seconds, for all trials within the
same condition. It represents the overall efficiency of the device in facilitating
interactions.

IDe = log2(
D

We
+ 1) (5)

IDe, is the effective index of difficulty, in bits, and is calculated from the distance
(D) from the start location to the target and We, the effective width of the target.
We, is the effective width of the target and it is calculated from the observed
distribution of the target selection coordinates.

We = 4.133 × SD (6)

where SD is the standard deviation of the selection coordinates [12].
The experiments showed that the rate of performance of the human motor

system is approximately constant over a wide range of movement amplitudes.
Fitts’ Law [14,23] states that MT should increase with an increase in the ID
i.e. as the difficulty of the task increases, the time taken to complete the task
also increases. Fitts’ Law was adapted in Mackenzie et al. [23], to assess HCI
devices. Therefore, it was thought Fitts’ test is an appropriate tool for assessing
the performance of the head tracking and gesture recognition system.

3.2 Gesture Detection

Fig. 1. Algorithm to detect blink and eyebrows movements.

Figure 1 shows an overview of the 3D head tracking and facial gesture recognition
system. The facial gesture recognition system is the same for both the 2D vision
system and the 3D Kinect system. Depth data is used only to filter the region
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of interest when processing the facial image - only objects within a meter of the
3D sensor were included in the region of interest and all other background is
removed before further processing.

The facial gesture recognition system used the RGB data from the sensors.
Facial areas of interest such as the head, eyes region, left eye and right eye are
detected using a Haar-Cascade [32]. To detect a blink, closure of both eyes has
to be detected for a period of 1 s or more and then return to the open state. If
closure of only one eye is detected, the system assumes there is no blink. Only
the transition from open eye to close eye and to open eye again is recognised as
a blink.

In the case of the eyebrows detection, the two states of the eyebrows (raised,
down) are monitored. In the eyebrows raised state the facial eyebrows muscles
are contracted in order to raise the eyebrows and the down state, the muscles are
relaxed and the eyebrows revert to their original location. The eyebrows region
is detected using the location above the eye region. The state of the eyebrows
is initially set to down. To recognise eyebrows movement both eyebrows have to
be raised for a period of 1 s or more and subsequently return to the down state.
Only the transition from down to raised and then to the down state again will
be recognised as a valid eyebrows movement.

4 Experimentation

4.1 Setup

Fig. 2. Experimental set-up.

The participant was asked to perform a series of Fitts’ Tests [14,24]. The par-
ticipants were allowed to repeat the gestures until the click action was detected
and thus this caused the movement time to increase. The Fitts’ Test was used
to evaluate two devices: a 2D vision based head tracker using the Logitech web
camera and a 3D head tracking system using the Kinect device. The experiment
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was performed using the two facial gestures (blink and eyebrows movement) as
a switching mechanism. It has been reported that spontaneous eye blink can
change from 20 to 30 blinks/min depending on the mental task the person is
performing [19], and can decrease to about 11 blinks per minute during visually
demanding tasks [35]. Therefore, the intentional blink time threshold was set to
1000 ms to distinguish between intentional and unintentional facial gestures and
to prevent spontaneous blinks from being detected. The activation time of the
eyebrows movement switch was also set to 1000 ms (Fig. 2).

Fig. 3. Target locations (incorporating 8 distinct movement orientations).

The screen used is a 17 in. LCD monitor with a resolution of 1280 by 1024
pixels. The target is selected at random from a set of pre-designated locations
as shown in Fig. 3 and presented to the participant. The participant then has to
move the cursor using head movement and select the target with the equivalent
of a mouse click using the different facial gestures being evaluated. Once a target
has been chosen, the participant has to move the cursor back to and select the
target at the central location on the screen. This ensures that the same start
point is used for each target selection. The choice of the stimulus target locations
are based on earlier work by Guness et al. where the points were configured to
perform a range of selection tasks with 8 target directions/orientations [16].

4.2 Sensors

Two sensors were used. The first was a standard Logitech web camera. The
web camera captured 640 × 480 pixel RGB images at a rate of 30 frames per
second. The second sensor was the Kinect for Windows sensor [1]. The Kinect
sensor consists of a structured light based depth sensor and an RGB sensor.
The Kinect sensor operates at a 30 Hz rate and generates 640 × 480 depth and
RGB images. The depth range of the Kinect sensor in default mode is 800 mm
to 4000 mm and in near mode is 500 mm to 3000 mm. In this experiment the
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Kinect sensor operated in near mode. Both the web camera and the Kinect
sensor were selected because they are relatively inexpensive devices that can be
readily obtained.

4.3 Depth Data

The depth data obtained from the Kinect sensor is used to reduce the search area
for the different Haar-Cascade features. This will reduce the computational load
and will avoid background distractions, such as people, movements and changes
in lighting and therefore increase the performance. A mask is created from the
depth data and the object within 1000 mm of the sensor is selected. The mask is
used on the colour image to remove all the objects which are more than 1000 mm
from the sensor.

5 Result

The experiment was carried out with 21 healthy individuals who completed the
tests with all 4 devices. The MT in Fitts’ Test is the time taken to move to
the target location from the starting point and performing the task. To be able
to compare the devices and the effect of the facial gesture, we have broken the
task in two. Task 1 involves moving the cursor to the target location using the
movement of the head. Task 2 encapsulates Task 1 and also involves selecting
the target by using one of the facial gestures as a switching mechanism.

In Figure 4, the Kinect-eyebrows has a lower MT that the Kinect-blink
system for an ID greater than 1.9 bits. Overall for Task 1, it can be seen that
the Kinect-eyebrows system has the lowest MT , followed by the Kinect-blink,
the webcam-blink and finally the webcam-eyebrows, which took the most time
to complete (Fig. 5).

Fig. 4. Fitts’ test result for Task 1 (movement to target).
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Fig. 5. Fitts’ test result for Task 2 (performing the facial gesture).

Table 1. Overall index of performance (IP ) and effective throughput (TPe) of tested
devices

Device Task 1 Task 2

IP Tpe IP Tpe

Webcam-Blink 0.36 0.74 0.32 0.41

(R2 =0.98) (R2 =0.78)

Webcam-Eyebrows 0.39 0.67 0.55 0.37

(R2 =0.90) (R2 =0.21)

Kinect-Blink 0.5 0.89 0.45 0.6

(R2 =0.89) (R2 =0.78)

Kinect-Eyebrows 0.68 0.95 0.67 0.64

(R2 =0.81) (R2 =0.48)

From Table 1, it can also be seen that both the IP and the TPe for moving the
cursor to the designated target (Task 1) were better than that of the combination
of moving and the click action (Task 2) using the different facial gestures for all
devices. This is to be expected as the clicking/selection method has an effect on
the performance and efficiency of the system used. Also, both the IP and TPe

of the 3D Kinect system were better than those of the 2D Vision system. R2 is
the coefficient of determination and measured as a percentage of how well the
data fits the linear model [10]. If we look at the R2 values Task 1 are higher
than those of Task 2, this would indicate that Task 1 follows the linear model
more closely than Task 2. Also, another interesting observation is the fact that
using the Blink gesture with both the web camera and the Kinect yield similar
R2 values whereas the R2 values of the Eyebrows movement gesture are lower.
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In Table 2, the IP for different devices are presented when performing Task 1
and a combination of Task 1 followed by Task 2 for different target orientations.

Table 2. IP of Task 1 and Task 2 in bits/second

Orientation IP of Task 1 (bits/second) IP of Task 2 (bits/second)

0 45 90 135 180 225 270 315 0 45 90 135 180 225 270 315

Webcam-Blink 0.51 0.56 0.42 0.52 0.48 0.4 0.49 0.56 0.63 0.91 0.44 0.12 0.28 0.38 0.7 0.47

Webcam-Eyebrows 0.94 0.29 1.43 0.67 0.84 1.57 0.83 0.57 0.34 −0.35 −0.73 3.74 0.1 0.13 0.22 1.07

Kinect-Blink 0.27 0.57 0.49 0.5 0.3 0.35 0.68 0.77 0.29 0.88 0.21 0.37 0.12 0.3 0.37 0.52

Kinect-Eyebrows 0.56 0.51 1.26 0.35 0.53 1.23 1.94 0.65 0.31 1.54 0.43 0.22 0.21 −5.41 2.82 1.1

Table 3. TPe of Task 1 and Task 2 in bits/second

Orientation TPe of Task 1 (bits/second) TPe of Task 2 (bits/second)

0 45 90 135 180 225 270 315 0 45 90 135 180 225 270 315

Webcam-Blink 0.67 0.88 0.67 0.8 0.81 0.59 0.88 0.69 0.41 0.45 0.39 0.34 0.47 0.33 0.44 0.41

Webcam-EyebrowsEyebrows 0.96 0.62 0.61 0.71 0.62 0.64 0.62 0.62 0.68 0.34 0.32 0.35 0.35 0.3 0.35 0.36

Kinect-Blink 0.82 0.8 0.91 0.88 0.73 0.83 1.04 0.98 0.45 0.54 0.63 0.64 0.51 0.62 0.71 0.64

Kinect-Eyebrows 0.85 0.99 1.12 0.78 0.79 0.9 1.39 0.92 0.54 0.55 0.68 0.44 0.54 0.63 1.06 0.67

A one-way ANOVA test was performed on the TPe for the different orienta-
tions and gestures of both Task 1 and Task 2. For the comparison by orientations,
p< 0.01 (p = 0.001 and p = 0.007) for Task 1 and Task 2, it can be said that there
is a significant difference between the mean of the different orientations i.e. the
TPe are different based on the orientation of the movement. For the comparison
by gesture, only Task 2 had p< 0.01 (p = 0.0093). This indicates that there is a
significant difference between the mean of the TPe based on the gesture being
performed. This would point out that there is a difference in the performance
of the two facial gestures being investigated. The mean TPe of Task 2 is greater
due to the increased challenge of both moving and selecting/clicking. Also, there
are no sufficient evidence of any difference between the means of TPe based on
the orientation and gesture for either Task 1 or Task 2. This would indicate the
gesture recognition for the sample used might be invariant to the orientation of
the task being performed.

6 Discussion

Using facial gestures as a switch is possible in real time but the use of such
gestures may cause a drop in the overall IP of the systems. IP and TPe values
in Table 1 using the four different systems were obtained with participants suc-
cessfully reaching and selecting all targets. As it can be seen in results for the
overall IP (Table 1), the R2 value which represents the goodness of fit of the
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fitted line for the Kinect 3D system is greater than 0.7 i.e. the line accounts for
more than 70% of the variance. In contrast, the Webcam-Eyebrows device R2 is
0.21, and thus accounts for only 21% of the variance. This could also indicate
that the presence of outliers has a large influence on the fitted line and thus
the gradient. As the IP calculation from Eq. (3) is based on the inverse of the
slope, it is also being influenced by outliers at very low and very high indices of
difficulty. It should be born in mind that each of the points in Figs. 4 and 5 are
obtained from the mean of data obtained from 21 users and 8 directions giving
64 data points. In the presence of such outliers relying on TPe as a measure of
performance might be better.

It can be seen that there is a decrease in the TPe of all the four different
devices after the switching action is included. The reduction in the TPe of the 2D
Vision system is 45% and 44% for the blink and eyebrows devices respectively.
Similarly, the decline in the TPe of the 3D Kinect system is 32% and 35%
for the blink and eyebrows devices respectively. The higher total TPe value
indicates that the Kinect system, utilizing 3D information, has resulted in better
performance when the two tasks of moving and selecting are combined and thus
improved the ease of use of the system as a whole. It has also been shown
that the TPe for Task 2 based on gesture are from different populations - with
eyebrows having a higher mean TPe. There is no evidence to support a difference
in performance based on sensor or device. This also supports the impact to the
improved performance of the gesture detection algorithm.

In addition, the facial gesture detection rate affected the MT for the different
devices. In this implementation of the Fitts’ test, the tasks were considered
completed only when the switch was activated and click action performed.

7 Conclusion

Both Kinect systems have lower MT and higher IP and TPe than the Web-
cam based systems thus showing that the introduction of the depth data had
a positive impact on the head tracking algorithm. This could be explained by
the ability to throw away unnecessary data at an early stage in processing using
depth information and thereby speeding up subsequent stages to create a more
smooth experience for the users. In this work, we have looked at only blink and
eyebrows movement gestures, further work will have to be carried out on addi-
tional gestures such as mouth opening/closing and tongue movement. We now
intend to conduct translational research with neurological patients.
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