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Abstract. We propose a novel approach to localize a 3D object from
the intensity and depth information images provided by a Time-of-Flight
(ToF) sensor. Our method builds on two convolutional neural networks
(CNNs). The first one uses raw depth and intensity images as input,
to segment the floor pixels, from which the extrinsic parameters of the
camera are estimated. The second CNN is in charge of segmenting the
object-of-interest so as to align its point cloud with a reference model.
As a main innovation, the object segmentation exploits the calibration
estimated from the prediction of the first CNN to represent the geometric
depth information in a coordinate system that is attached to the ground,
and is thus independent of the camera elevation. In practice, both the
height of pixels with respect to the ground, and the orientation of nor-
mals to the point cloud are provided as input to the second CNN.

Our experiments, dealing with bed localization in nursing homes and
hospitals, demonstrate that our proposed floor-aware approach improves
segmentation and localization accuracy by a significant margin compared
to a conventional CNN architecture, ignoring calibration and height
maps, but also compared to PointNet++.
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1 Introduction

In hospitals and nursing homes, the number of nurses at night is largely insuf-
ficient to keep a permanent eye on every patient or senior. Automatic human
behavior analysis is therefore required to help with the detection of bed exits
and falls, to alert the medical staff as soon as possible.

In this context, the Time-of-Flight (ToF) camera offers the following non-
negligible advantages: it provides a depth map, in addition to the reflected
intensity, and, given its active nature, is relatively independent of lighting con-
ditions. These advantages come with greatly reduced image resolution, and a
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shorter range. Hence, ToFs appear especially suited for the monitoring of small
closed spaces like bedrooms and hospital rooms, especially at night-time. Detec-
tion of humans, often represented as moving blobs, from ToF image sequences
has been largely investigated [10,25,28]. However, turning those detections into
human behavior interpretation requires to position the camera with respect to
the scene, and to localize the objects the human interacts with. This preliminary
but critical step is often neglected, assuming that calibration and scene compo-
sition is encoded manually. An autonomous calibration would however facilitate
the deployment of systems in real-life conditions, and give the opportunity to
adjust the interpretation of movements to the displacement of key objects in the
scene.

Our work focuses on this calibration step, and investigates a use case that
aims at localizing the beds in rooms of nursing homes or hospitals. Beyond the
scope of this paper, this would typically be combined with human detection, for
bed exit and/or fall recognition.

In short, our approach to automatically calibrate the camera and position the
bed in a room, follows the steps illustrated in Fig. 1. It first segments the floor
based on a CNN fed with raw depth and intensity maps. This initial segmentation
allows us to estimate the ground plane equation in the coordinate system of the
camera, so that the depth information can be transformed to height information
with respect to the floor.

The second step of our method consists in segmenting the object-of-interest
by feeding a second CNN with the ToF intensity map, the height information,
and the field of vectors defining the local normals to the point cloud. The seg-
mented point cloud is then aligned with a model of the object, to localize the
object in the scene. Our method is validated on a practical case using real data.
This case considers the localization of beds in nursing homes and hospital rooms.
Our study results in a multifold contribution. Specifically, our work offers:

– Precise and automatic estimation of the floor plane position in the ToF cam-
era referential;

– Effective segmentation of the point cloud associated to the object of interest,
here the bed, using a 2D CNN. The approach is shown to outperform net-
works operating directly on point clouds like PointNet++ [22]. The method
is also shown to improve in accuracy when the network is fed with geometric
information represented in terms of height (with respect to the floor) and
local normals (defined in a referential aligned with the floor normal);

– Fast and reliable localization of the object of interest, thanks to the floor
plane knowledge, which reduces the degrees of freedom from 6 to 3 when
aligning the reference model with the segmented point cloud;

– The estimation of localization confidence, enabling the system to wait for
better observation conditions (no occlusions, see Fig. 3a and 3b) or for human
intervention.

This article is organized in 3 main sections. Section 2 surveys the state-of-
the-art related to object segmentation and localization. Section 3 then describes
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Fig. 1. Overview of our method. (1) The first CNN segments the floor based on the
intensity map (I) and spatial coordinates (XYZ) in the camera-centric viewpoint of
the ToF. (2) The normal to the ground plane is estimated from the segmented 3D
floor points, and is used to define a height map (H) and a field of local normals (hN)
represented in a referential obtained by rotating the ToF referential to make its Z axis
orthogonal to the ground plane. (3) The second CNN combines these (H) and (hN)
maps with the intensity map to segment the object-of-interest. (4) Segmented points
are aligned with the reference model, to localize the object. (5) A level of confidence
is assigned to the localization, by comparing the point cloud and the fitted model.

our method, and discusses its strengths and weaknesses compared to previous
works. Section 4 validates our method on a real-life use case.

2 State of the Art

The literature addressing object localization based on depth information (either
from RGB-D or ToF) considers two distinct methodologies. Some recent efforts,
similar to our works, adopt a CNN to identify the pixels belonging to the object,
and use the corresponding 3D points to compute the object position (Sect. 2.1).
Others directly process a 3D point cloud, using CNNs or graphs (Sect. 2.2 and
2.3). Using 2D segmentation, we identify the pixels belonging to the object, and
use the corresponding 3D points to compute the object position.

2.1 2D Convolutional Segmentation

The similarity between the signal, output by RGB-D and ToF makes it relevant
to extend the quite laconic SotA related to ToF segmentation [6,16], to the
broader literature related to RGB-D segmentation [2].

The segmentation methods using RGB-D signals as inputs of 2D CNNs differ
in the way they merge the color and depth signals. This fusion generally depends
on the chosen network architecture [4,11], and is sometimes even driven by a
squeeze-and-excite attention module [8,9].

However, our experiments (not presented here for conciseness) have revealed
that in the case of ToF data, there is no benefit to fusing Intensity and Depth
based on attention modules. We have therefore devised a straightforward and
computationally simpler fusion, described in Sect. 3.3.

A fundamental difference between our work and previous art lies in the
way the depth signal is represented to feed the CNN. Based on the automatic
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ground/floor plane parameters estimation, the depth is transformed into a height
value for each image pixel. Moreover the neighborhood of each 3D point is used
to compute a local normal to the point cloud, described in a referential aligned
with the floor normal. We show that this original representation improves the
CNN accuracy. This confirms the results reported in [3] regarding the use of a
geocentric representation, which encodes height above ground and angle with
gravity for each pixel, for the detection of objects with a pre-calibrated RGB-D
system combining CNN and SVM.

2.2 3D Convolutional Localization

3D Convolutional neural networks build on a voxelization of the point cloud.
They suffer either from the lack of resolution induced by the use of big voxels,
or from high sparsity in voxel information.

3D networks have first been considered for object localization in [17]. This
pioneering work uses a U-Net [23] structure (like the one used in this paper),
but substituting 2D for 3D convolutions. Quite recently, [7] has proposed to
combine the high-resolution 2D color information, from RGB-D data, with a 3D
neural network on point cloud data, leading to a precision gain of 2–3%. In our
applicative context, we show in Sect. 4.4 that ToF intensity images contribute
the least of all the input types, to the final segmentation decision.

[26] has trained a network on synthetic data to complete the voxels that
remain hidden when a single viewpoint is available. We have however observed
that networks trained on synthetic data did not transfer well to real-life ToF
data.

2.3 Segmentation and Localization Using Graph NNs

To circumvent the excessive computational cost of 3D convolutions dealing
with high voxel resolution, graph neural networks work on connected points
rather than on regular 2D or 3D matrices. Most implementations combine fully-
connected layers and specialized pooling layers. Most point-based segmentation
[13,14] and object localization [12,19,20,24] methods are based in part or in full
on PointNet [21] and PointNet++ [22]. Those approaches, although attractive
in the way they represent the input point cloud, still show a lack of accuracy
compared to convolutional methods on RGB-D and ToF images.

3 Floor Plan Estimation for Autonomous Object
Localization

To describe our method, we start by explaining the structure of our framework,
and then delve deeper in its building blocks.
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3.1 ToF Data

The ToF sensor gives us, for every pixel, information about reflected intensity
and depth, i.e. distance to the camera. Having access to the intrinsic parameters
of the camera, we can express depth in terms of 3D position relative to the
camera (XYZ). We can also estimate the normal vector to the point cloud surface
in each point in this same coordinate system.

3.2 Method Overview

Figure 1 depicts the five steps of our method:

Step 1. A first CNN uses the intensity and depth data to segment the floor
pixels.
Step 2. The floor’s plane equation in 3D space, relative to the camera, is
obtained via Singular Value Decomposition (SVD) on the 3D coordinates of
the floor pixels. The vector that is normal to the ground plane is defined
by the smallest singular value. To make our algorithm more robust towards
outliers, we embed SVD into a RANdom SAmpling Consensus (RANSAC)
algorithm.
Step 3. A second CNN segments the object-of-interest. Since the ground
plane equation is known, the height of every pixel can be computed from its
XYZ coordinates. We consider two alternatives to feed the neural network with
floor-aware geometrical information.
1. In the first alternative, the resulting pixel height map (H) is fed to the

network, together with the 3 components of the normal (hN) to the surface
point cloud in each point. Both H and hN are expressed in a referential
obtained by rotating the camera referential (first around Z, originally
pointing towards the scene, to make X horizontal, and then around the
X-axis) to align the Z-axis with the floor normal.

2. In the 2nd alternative, since the floor plane equation has been estimated,
the intensity (I) and height (H) information associated to the 3D point
cloud can be projected on the floor plane (see Fig. 6a). This provides a
bird’s-eye 2D view of the scene, which is independent of the actual camera
elevation (up to occlusions). We have trained a network to predict the
bed label from those two projections, respectively denoted proj(I) and
proj(H), taken as inputs.

Step 4. The coordinates of the segmented object’s 3D points are then fed
into a localization algorithm that aligns them with a reference model.
Step 5. The quality of the matching between the object points and the
aligned model is used as a localization confidence score, to detect cases of
heavy occlusion or incorrect segmentation, as shown in Fig. 3a and 3b.

It should be noted that the calibration step (the 2nd step in the list above)
allows us to move away from a camera-centric coordinate system towards a
floor-centric point-of-view. Hence, instead of expressing the data in a coordinate
system that is fully dependent on the camera placement, we express them in
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a referential that is independent of the camera elevation. This offers the two
following benefits:

– The object segmentation network learns the relationship between the geomet-
ric information and the object’s mask more easily (as we’ll show quantitatively
and qualitatively in Sect. 4)

– The degrees of freedom to consider during the localization step get reduced
from 6 (3 rotations, 3 translations) to 3 (1 rotation, 2 translations).

The remainder of this section, presents how the CNNs used in steps 1 and
3, respectively for floor and object segmentation, have been constructed and
trained. It also describes the implementation details for the localization step.

3.3 Floor and Object Segmentation (steps 1 and 3)

Fig. 2. Our MultiNet Network Architecture. The arrows depict convolutional layers.
When present, the multiplicative factor along the arrow defines the number of times
the convolutional block is repeated. The boxes represent the feature maps, the number
of channels are noted inside the box, the resolution outside. The architecture follows
the U-Net model, with the addition of multi-resolution inputs, and block repetitions
as shown in the figure. The different inputs are fused using a sum after an initial
convolutional block. This architecture is used for both floor and object segmentation.

To segment the point cloud, we use the U-Net [23] shaped network presented in
Fig. 2, and denoted MultiNet in the rest of the paper, since it is suited to handle
multiple types of inputs. U-Net adapts an auto-encoder structure by adding skip-
connections, which link feature maps of identical resolution from the encoder to
the decoder. This allows the direct transfer of high resolution information to the
decoding part, by avoiding the lower resolution network bottleneck.

Feature maps of identical resolution are said to be of the same level. Each
level’s structure, is based on residual blocks [5] followed by a Squeeze-and-Excite
module that weighs every feature map individually before their sum [8].
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The convolutional blocks are repeated, as indicated by the multiplicative
factors along the arrows in Fig. 2. Those repetition factors follow the parameters
recommended in [1,11,29].

Our networks are fed, as explained in the method overview, by a combination
of the following input types: intensity (1D), normal (3D), XYZ (3D), and height
(1D). To deal with different types of inputs we merge all inputs directly : every
input type is passed once through a convolutional layer, such that they all possess
the 32 feature maps. These feature maps are then summed once and fed to the
rest of the network at every level, through down-scaling.

3.4 Localization and Error Estimation (steps 4 and 5)

As explained in the method overview, the pixels labeled by our segmentation
network as being part of the object, i.e. the bed, are used to localize it in a
coordinate system where one axis is perpendicular to the floor, and the two
remaining axes are respectively parallel and perpendicular to the intersection of
the ToF image plane with the ground plane.

Since the bed has a simple shape we adopt a very basic localization approach
on a rasterized (discretized on a 5 cm2 resolution grid) 2D projection of the
segmented points on the ground plane.

As shown in Fig. 3c, a rectangular shape is considered to model the bed.
The center of mass and the principal direction, estimated via SVD, of the pro-
jected points are used to initialize the model alignment process. This procedure
consists in a local grid search and selects the model maximizing the estimated
intersection-over-union, denoted rIoUb, between the rasterized projected points
(aggregating close points) and the 2D rectangular shape defined by the searched
parameters.

Since it reflects the adequacy between the selected rectangular model and
the projected point cloud, the rIoUb of the 2D rectangular model is then used
as a confidence score to validate or reject the predicted bed localization (5th
step). It can be used to detect a wrong prediction, e.g. occurring when a bed is
occluded by a nurse, and repeat the process in better observation conditions.

4 Results and Analysis

This section first introduces our validation methodology, including use-case def-
inition, training strategy, and quantitative metrics used for evaluation. It then
considers floor and object segmentation, respectively in Sect. 4.2 and 4.3. Even-
tually, Sect. 4.4 considers an ablation study to assess the benefit resulting from
our proposed representation of the geometric information.

4.1 Validation Methodology

Use Case. Our method is evaluated on a ToF dataset, captured in nursing
homes and hospital rooms. Our objective is to position the bed in the room,
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Fig. 3. (a) Example of occlusion. (b) Example of wrong segmentation. (c) Example of
localization and error estimation. After the object segmentation, the image pixels are
projected onto the 2D plane of the floor. The points that were segmented as “bed”
are then extracted, and various transformations (2D translation and 1D rotation) are
tried until the final bounding box is found with the maximization of the IoU on a
discretized grid (rIoUb) between prediction and model (blue and small red points).
The intersection contains only the blue points, while the union contains blue and red
points (of all sizes). Best viewed in color. (Color figure online)

without any additional information but the intrinsic parameters of the camera
and the images it captures. To assess the performance of our system when it
is faced with a new room layout or style, we divide our dataset in 7 subsets
containing strictly different institutions (hospitals or nursing homes). We apply
cross-validation in order to systematically test the models on rooms that have
not been used during training.

Our database contains 3892 images of resolution 160 × 120. Those images
come from 85 rooms belonging to 11 institutions. On average, 45 images with
divers illumination, occlusions and (sometimes) bed positions are available per
room.

In order to train and validate our models, we use manually annotated data,
both for the device calibration and for the localization of the bed.1

1 The tool developed for annotation is available at https://github.com/ispgroupucl/
tofLabelImg.

https://github.com/ispgroupucl/tofLabelImg
https://github.com/ispgroupucl/tofLabelImg


210 A. Vanderschueren et al.

Training. During our cross-validation, we select 1 subset for testing, 1 subset
for validation and 5 for training. Cross-validation on the test set is used due to
the small number of different. We use data augmentation in the form of vertical
flips and random zooming. The images are then cropped and rescaled to fit a
128 × 128 network input resolution.

Normal vectors are estimated from the 10 closest neighbors that are within a
10 cm radius of each point. They are expressed in a floor-aware referential (hN)
as detailed in Sect. 3.2.

All our segmentation networks result from a hyper-parameter search evalu-
ated on each validation set. The average performance of all 7 subsets obtained
on the test set is then presented. The networks are trained using AdamW
[15], using a grid search to select the learning rate and the weight decay in{
1 × 10−3, 5 × 10−4, 1 × 10−4

}
and

{
1 × 10−4, 1 × 10−5, 1 × 10−6

}
respectively.

The learning rate is divided by 10 at epochs 23 and 40, while training lasts
for 80 epochs, with a fixed batch size of 32. We implement our segmentation
models using PyTorch [18] and have published our code at https://github.com/
ispgroupucl/tof2net. For the PointNet++ segmentation model, we use the model
described in [22] and implemented by [27]. We never start from a pre-trained
network as pre-training shows poor performance on our dataset in all cases.

Finally in order to avoid initialization biases, the values presented in every
table are always the average of 5 different runs.

Metrics. Distinct metrics are used to assess segmentation, calibration and bed
localization.

Segmentation predictions are evaluated using Intersection-over-Union
between predicted and ground-truth pixels. This metric is denoted IoU. Recall(

TP
TP+FN

)
and precision

(
TP

TP+FP

)
are also considered separately, to better understand

the nature of segmentation failures.
We evaluate the extrinsic camera calibration using absolute angles between

the ground normal predicted by our model and the ground truth.
Object localization is also evaluated using Intersection-over-Union, but

instead of comparing sets of pixels, we compute the intersection-over-union
between the 2D bounding-box obtained after localization and the ground truth,
projected on the estimated floor plane. This metric is denoted IoUb, with b refer-
ring to the fact that bounding boxes are compared. The projection on a common
plane is necessary to compensate for slight differences due to possible calibration
errors i.e. different ground plane equations.

In practice, IoUb that lie below 70% correspond to localization not sufficiently
accurate to support automatic behavior analysis, typically to detect when a
patient leaves the bed. Hence we consider 70% as a relevant localization quality
threshold, and evaluate our methods based on the Average Precision at this
threshold (AP@.7). In addition, the Area Under Curve (AUC@.7) measures the
correct localization predictions (true positives) as a function of the incorrect
ones (false positives) when scanning the confidence score given by the estimated
rIoUb, explained in Sect. 3.4.

https://github.com/ispgroupucl/tof2net
https://github.com/ispgroupucl/tof2net
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4.2 Floor Segmentation and Floor Normal Estimation

Table 1 compares the different floor segmentation models in terms of segmen-
tation and floor normal accuracy. It also presents the floor normal estimation
error obtained when applying RANSAC directly on the whole set of points (since
a majority of points are floor points, one might expect RANSAC will discard
outliers and estimate the ground plane equation without segmentation). We
observed that the global RANSAC performance is not sufficient for localization
purposes. With a mean error greater than 10◦ it would lead to a drop in IoUb of
more than 40%, as shown in Fig. 4.

Table 1. Floor segmentation and calibration
results.

Method Inputs1 IoU (%) ΔAngle (◦)

RANSAC XYZ – 13.2

PointNet++ XYZ+I 83.6 1.2

MultiNet I 75.6 3.3

MultiNet I+XYZ 87.2 1.1

Best results in bold
1 I denotes intensity, XYZ defines the 3D points
spatial coordinates in the ToF camera referential.

Fig. 4. Bed Localization bounding-
box Intersection-over-Union (IoUb)
dropoff as a function of the floor
normal direction estimation error.
The orange line is at 1.1, which cor-
responds to the mean error from
MultiNet-I+XYZ.

Looking at the segmentation IoUs, we see that PointNet++ has better accu-
racy than a convolutional network that only uses the intensity (I) as input
signal. However, adding the XYZ point coordinates (as defined in the coordinate
system of the camera) as input to the convolutional model is enough to surpass
PointNet++.

In terms of ground normal estimation, our proposed model leads to a mean
absolute error of 1.1◦, As can be seen in Fig. 4 this is precise enough for our use-
case. Indeed, the segmentation quality of our floor-aware CNNs (see Sect. 4.3)
remains nearly constant for calibration errors lower than 1. For errors greater
than 1.5–2 a substantial performance loss is observed. MultiNet-I+XYZ however
has a mean error of 1.1 positioning our approach as an acceptable solution that
won’t lead to a significant error propagation. We also note that even though the
segmentation maps made by PointNet++ is significantly worse than the ones
predicted by MultiNet-I+XYZ, the final floor normal error is only slightly worse
than MultiNet-I+XYZ.
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4.3 Bed Segmentation and Localization Accuracy

Table 2 summarizes the results of bed segmentation and localization for different
representations of the geometric information.

Segmentation. The object localization relies heavily on the object segmenta-
tion accuracy. For this reason we first compare the different methods in terms
of segmentation in the third column of Table 2. For all the MultiNets using
the H and/or hN representation of the geometric information, the floor calibra-
tion is the one produced with the MultiNet-I+XYZ from Sect. 4.3, thus possible
calibration errors have been propagated to the final numerical values.

Table 2. Bed segmentation and localization results

Method Inputs1 IoU(%) IoUb(%) AP@.7 AUC@.7

PointNet++ [22] XYZ+I 44.6 60.8 46.2 43.5

MultiNet I 65.3 67.1 60.0 58.6

MultiNet I+XYZ 69.9 75.4 76.2 74.7

MultiNet I+H 71.0 76.1 78.5 77.1

MultiNet I+H+hN 72.1 77.2 80.6 79.1

MultiNet proj(I)+proj(H) N/A 78.1 83.1 81.8

Best results in bold, 2nd best underlined
1I denotes intensity, XYZ spatial coordinates, H height, and hN the local normals,
defined in the floor-aligned referential, proj(X) the projection of X onto the
floor-aligned plane.

We were initially surprised by the very low accuracy of PointNet++, even
compared to the intensity-only MultiNet baseline. However, this can be explained
by the fact that the shape of the bed is more complex than the planar floor
geometry. In addition, ToF cameras are known to induce large measurement
disparities, making it harder for a geometry-based neural network to correctly
learn the object’s geometry.

Looking at our MultiNet methods, we see that accounting for the geometric
information systematically outperforms the single intensity baseline. Moreover,
our proposed representation of geometry in terms of H and hN improves the
conventional XYZ representation by more than 2%.

Figure 5 shows qualitative results. The results show the advantage of our
floor-aware approach (third column).

Localization. Table 2 also displays the metrics for bed localization. When
looking at the bounding-box IoUb or the average precision at a threshold of 0.7
IoUb (AP@.7), we observe the same trends as with the segmentation IoU. The
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Fig. 5. Qualitative results of segmentation and localization. The first three
columns show the segmentation results of PointNet++, MultiNet+I+XYZ, and Multi-
Net+I+H+hN. The last column shows the localization results for the same models in a
top view with height encoded in point color. Floor points have been removed for easier
visualization. PointNet++ has a tendency to correctly locate the bed in most cases,
but is unable to fully segment the bed. MultiNet+I+XYZ shows correct segmentation
in most cases, but has problems locating beds in complex locations, for example in
the third row. MultiNet+I+XYZ also suffers from oversegmentation, as shown in the
first and last rows. MultiNet+I+H+hN is able to segment most cases correctly, but can
suffer from biased segmentation for the localization, as in row 2 and 4. The last column
shows clearly that a correct segmentation leads to good localization. Best viewed in
color. (Color figure online)

gap between a formulation with and without floor calibration information is
however reduced to 1.8% for IoUb but widened to 4.4% for AP@.7 and AUC@.7.

The results obtained when feeding the network with the floor-plane pro-
jected intensity (proj(I)) and height (proj(H)) information of each 3D point
are shown in the last row of Table 2. The average quality of the localiza-
tion increases by another 0.9% compared to MultiNet+I+H+hN. However, when
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0 50 100 150 200 250

(a) (b)

Fig. 6. (a) Example of proj(H). Color indicating distance from floor. (b) Distribution
of IoUb for different models. From upper to lower: boxplot of the IoUb for I+XYZ, I+H+hN
and proj(I)+proj(H). The white cross indicates the mean of each distribution. We can
see that while the mean of the proj(I)+proj(H) model is higher, its median and 75th
percentile are lower.

Table 3. Ablation of the MultiNet trained on I+XYZ+H+N+hN

All Independent removal of

I N XYZ hN H

IoU 70.6 67.1 66.0 63.4 57.3 27.6

I denotes intensity, XYZ spatial coordi-
nates, H height, and N and hN local normals
in the camera or floor-aligned referential.

looking at Fig. 6b, the higher medians of I+XYZ and I+H+hN reflect a higher
number of bad bed localizations, but also a better bed localization whenever the
viewing conditions are ideal.

Finally, we consider the relation between AP@.7 and AUC@.7 to evaluate the
relevance of of our confidence threshold rIoUb. AUC@.7 denotes the area-under-
curve when plotting the percentage, compared to the whole set of samples, of
correct (meaning with IoUb > 0.7) localization as a function of the percentage of
samples above the confidence threshold, for a progressively increased confidence
threshold. By definition, this value is upper bounded by AP@.7, and gets close to
this upper bound when samples with correct (erroneous) localization correspond
to high (low) rIoUb confidence values.

4.4 Input Ablation

In order to strengthen the intuition that geometric information, and the way it
is presented is important, we now look at a network trained with every possible
input type: I+XYZ+N+H+hN. In that way, the network gets the opportunity to
select its preferred representation of the spatial information.

The Direct Fusion, explained in more details in Sect. 3, is the summation of
every input convolved once. Each input can thus individually be removed from
the sum. Doing this outright leads to activation-range scaling issues since the net-
work isn’t retrained. Thus every channel in the removed component is replaced
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by the mean of its activations. We do this for every input-type independently,
and present the results in Table 3.

The network is severely penalized when removing hN or H, which reveals that
it consistently prefers height-encoded information. This confirms our hypothesis
that a floor-aware encoding of the geometric information provides a representa-
tion that is easier to digest by the CNN.

5 Conclusion

We propose a method that successfully localizes beds in hospital and nursing
home rooms. Our method estimates the extrinsic parameters of the device in
order to have access to height maps and to normal vectors encoded in a referential
aligned with the floor normal. We extensively show that this way of encoding
ToF data leads to better performing CNNs. We recommend future work on input
analysis using both visualization and network-based input-importance learning.
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