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Abstract. Automated daily living activity recognition is a relevant task
since it allows to assess the health status of a subject both objectively
and remotely. Having a reliable measure is important since it gives pre-
cise indications to doctors and researchers interested in evaluating the
effectiveness of treatments or drugs (e.g., in the context of clinical stud-
ies). The possibility to perform this task remotely is more convenient
for the patients and acquired increasing importance not only due to the
current pandemic, but also because of the regularly growing population
of elderly people that could benefit from remote monitoring.

In this paper, first, we describe a novel wearable-device-based dataset
that contains data (1) of a high number of daily life activities, coming
from a real-life scenario, (2) recorded by applying multiple devices on dif-
ferent parts of the body, and (3) recorded with medical-grade devices at a
high sampling frequency. Then, second, we describe a machine learning-
based method for activity recognition. Our approach takes in input a
dataset and through multiple phases allows to recognise the activities
performed by the subjects with a good degree of accuracy (up to 0.92
expressed as F1 score depending on the location).

Keywords: Activity recognition · Wearable devices · Actigraph

1 Introduction

Recently an increasing interest in finding reliable methods for monitoring
patients suffering from different diseases (or simply elderly) emerged, in par-
ticular using remote and non-intrusive methods (e.g. [7,11,15]). Many diseases,
in fact, strongly impact daily life activities because of their effects (e.g., Multiple
Sclerosis, Pulmonary Arterial Hypertension, or Parkinson). A possible way to
assess the physical condition of a patient is based on assessing how much time is
spent on specific activities and how the amount of time dedicated on each activ-
ity changes over time (e.g., a subject can decide to stop vacuuming because of
the feeling of fatigue, or could need more time to eat because of hand tremors).
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While working on a possible method to create an activity recognition classi-
fier, starting from data recorded by wearable devices and in the context of a col-
laboration with a major pharmaceutical company (Janssen), we found the need
of creating a novel dataset regarding daily life activities. Indeed, by analysing
the state of the art concerning the public available datasets recorded with wear-
able devices, we noticed that in spite of the large interest on this topic, there is a
lack of datasets having, at the same time, the following characteristics: (1) con-
taining data of numerous and different daily life activities, (2) containing data
recorded using high-quality sensors (both concerning frequency and accuracy),
and (3) containing data from different synchronised devices positioned on dif-
ferent parts of the body. From the point of view of a researcher, this lack could
become an obstacle to perform more in-depth investigations and to conceive
more advanced approaches to the problem of the Activity Recognition using
wearable devices.

For this reason, in this work we present, as first contribution, the ongoing
effort of creating a novel dataset that meets the three characteristics mentioned
above.

Concerning the first characteristic, our dataset includes 17 different daily life
activities performed in real-life scenarios (e.g., eating, using laptop, handwrit-
ing, vacuuming, walking, going upstairs/downstairs). On the contrary, available
datasets often include a few activities (often 8 or less) or activities that are lim-
ited to a particular context (e.g., cooking, breakfast morning-routine, or walking
at different speeds only) [1,4,13,17].

Concerning the second characteristic, we recorded our dataset using profes-
sional devices produced by Actigraph1. These devices are medical-grade activ-
ity monitors that thanks to their characteristics and to their reliability, have
been broadly considered in different studies and for different purposes (e.g. [6],
[12]). More in detail, we have used two Actigraph GT9X Link, with a sampling
frequency 100 Hz and one Actigraph Centrepoint, with a sampling frequency
256 Hz, all of them relying on high-quality internal sensors (e.g., accelerometers,
gyroscopes, magnetometers). This is an important characteristic of our dataset
since, very often, the currently available datasets contain data recorded with
low cost (and precision) sensors like the ones included in Android smartphones,
with a sampling frequency 50 Hz (or lower) and non-certified accuracy of the
values provided [10,13,16]. The high frequency of these devices can be useful
for researchers in order to perform analysis by re-sampling data to different
frequencies.

Another strength of our dataset (third characteristic) lies in the fact that we
have placed the three aforementioned devices, synchronised together, on three
different parts of the participants’ bodies: dominant wrist, right side of the hip,
and right ankle (on the right side). Having synchronised data coming from dif-
ferent parts of the body, like in our dataset, would allow researchers to find
methods based on the correlation of these data, and thus creating more accurate
activity analysis or recognition approaches. On the contrary, existing datasets

1 ActiGraph, LLC (Pensacola, FL, USA), https://actigraphcorp.com/.

https://actigraphcorp.com/
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are usually focused on only one part of the body (e.g. pockets or the hip) [10,20].
The fact of wearing more devices could be quite annoying for a subject in real
settings: the trade-off between having more data and creating a discomfort for
the patient should be carefully analysed.

As a second contribution, in this paper we describe a machine learning (ML)
based method for the Activity Recognition. Our approach takes in input a
dataset and thought multiple phases allows to recognise the activities performed
by the subjects with a good degree of accuracy (up to 0.92 expressed as F1 score
depending on the location).

This paper is organised as follows: Sect. 2 describes the dataset collection
procedure and the structure of the obtained raw data. Section 3 briefly describes
the proposed approach that we have used to evaluate the predictability of the
activities using our dataset. Section 4 reports on the empirical evaluation of the
approach, while Sect. 5 reports related works and Sect. 6 concludes the paper.

2 Dataset of Daily Living Activities Creation

The creation of the Daily Living Activities dataset has been performed in three
main phases: (1) Data Recording, (2) Data Extraction, and (3) Data Labelling
and Cleaning. The final output is a labelled dataset containing the raw data of
17 daily living activities ready to be used by researchers for a variety of possible
studies. In the following of this section, we describe the three phases in detail.

2.1 Data Recording

To record our dataset, we followed a precise protocol that we defined and that
had been reviewed and approved by the ethical committee of the Department
in which the data recordings took place. Apart from the operational details on
the procedures to follow during data recordings, our protocol includes also a
step where each participant is asked to sign an informed consent: this allow us
to share, with the research community, all the data recorded and the physical
bio-metric characteristic of each participant. The dataset is currently available
online on our department website2 but we are working to share it on relevant
dataset repositories such as the UC Irvine Machine Learning Repository3 or on
the Harvard Dataverse4 so that it could also be indexed by specific search engines
(e.g. Google Dataset Search).

Participant Inclusion/Exclusion Criteria . The former includes the follow-
ing: (1) to be able to perform the request actions, (2) age of 18 and over, and (3) to
understand the purpose of the study and willing to participate in the study. On the
contrary, exclusion criteria include any planned surgery or procedures that would
interfere with the conduct of the study and any major mobility difficulties.

2 https://sepl.dibris.unige.it/2020-DailyActivityDataset.php.
3 https://archive.ics.uci.edu/ml/index.php.
4 https://dataverse.harvard.edu/.

https://sepl.dibris.unige.it/2020-DailyActivityDataset.php
https://archive.ics.uci.edu/ml/index.php
https://dataverse.harvard.edu/


174 M. Leotta et al.

Participants Characteristics. The preliminary version of our dataset cur-
rently includes data of 8 volunteers: males aged between 23–37, with a weight
between 52–90 kg and height between 172–186 cm. Regarding the dominant
hand, two subjects out of 8 were left-handed, while the other ones (6 out of
8) were right-handed. In the next months we expect to record the data of 25–30
additional participants. Detailed information (i.e. age, height, weight, dominant
hand) for each subject are reported within the dataset itself.

Activity Recording Procedure . During the data recording, we asked to all
the participants to perform the 17 different activities listed in Table 1. We split
the list of activities into two different sets, as in the Table 1: Set A and Set
B; the former have been performed for a fixed time, while the latter not. The
differences between the two sets lie mainly in the fact that activities in Set B
were constrained to a particular path or to a flight of stairs, while activities in
Set A were quite stationary and did not require the subjects to move along a
path. By depending on a fixed path, moreover, it is also possible to measure the
different walking speed (e.g. in term of meters/second or of steps/second) of the
subjects as an additional information. More in details, Set A activities have been
performed for more than 120 s (in general for about 150 s), and we included in
our dataset the central 120 s of each execution in order to obtain cleaner data. On
the other hand, Set B includes: Walking performed for 160 m (in at least 110 s);
Walking Fast performed for 205 m (in at least 110 s); and Going Downstairs,
Going Upstairs, Going Upstairs Fast performed using a single flight of stairs
with no intermediate floors between the steps for an average time of 40 s.

Table 1. List of activities performed

Set A Set A Set B

1. Relaxing on a chair 7. Brushing Teeth 13. Walking

2. Keyboard Typing 8. Sweeping 14. Walking Fast

3. Using the Laptop 9. Vacuuming 15. Going Downstairs

4. Handwriting 10. Eating (a soup) 16. Going Upstairs

5. Washing Hands 11. Dusting a surface 17. Going Upstairs Fast

6. Washing Face 12. Rubbing a surface

The participants have been followed and instructed during the data recording:
they have been told what activity should have been performed and some details
on it, but it has not been imposed to move exactly in a particular way5. We have
5 Regarding the possible variation of the subjects behaviour while performing activities

by knowing they were participating in an experiment (also known as Hawthorne
effect), it is important to note that (1) there have not been judgements on how well
subjects were performing activities, therefore they could behave in any way they
preferred, (2) due to the short amount of time spent in recording data, possible
variations in subjects behaviour happened in the entire recording (i.e. no effect on
possible train and test data sets).
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shown a WHO video6 on how to wash the hands and we have better explained
the difference between dusting and rubbing : respectively, dust a surface, or rub
to clean a really dirty surface. Even if the chosen activities are characterised by
relatively standard movements, as expected, we noticed that different subjects
had their own way to execute movements related to the activity. This is a positive
characteristic since it can help to understand the natural differences that can
occur when analysing and comparing different subjects. The only constraint
established during the data recording has been to always use the dominant hand
(i.e. the one where the device was placed) when performing those actions that
mostly involve a single arm movements (e.g. handling the vacuum/broom with
the dominant hand while vacuuming/sweeping). Otherwise, the signal recorded
from the wrist would have had no information regarding the pattern of the
dominant hand.

Devices and their Positioning . In the last years, Actigraph, a leading
provider of wearable physical activity and sleep monitoring solutions for the
global scientific community, proposed several actigraphy devices. In this work, we
used two Actigraph GT9X Link and one Actigraph Centrepoint Insight Watch.
They are activity monitors equipped with high precision and fast reading sen-
sors. In detail, both are equipped with a three-axial accelerometer while the
GT9X also includes a complete IMU (Inertial Measurement Unit7). The IMU is
an electronic chip capable of capturing position and rotation data for advanced
analyses. It contains a secondary accelerometer, a gyroscope, a magnetometer,
and a temperature sensor. Additional information on the two devices could be
found in the official web site8. Table 2 shows the kinds of sensors available in two
devices and the corresponding measurement units.

Table 2. Characteristics of the devices sensors

Device Sensor type Units of Measure

Both 3 axis primary accelerometer g

GT9X 3 axis secondary accelerometer g

GT9X 3 axis gyroscope degrees/s

GT9X 3 axis magnetometer microTesla (µT)

GT9X temperature sensor Celsius

The three wearable devices were worn by the participants as follows and with
the following settings:

6 “WHO: How to handwash? With soap and water”, https://www.youtube.com/
watch?v=3PmVJQUCm4E.

7 https://en.wikipedia.org/wiki/Inertial measurement unit.
8 Actigraph GT9X Link - https://actigraphcorp.com/actigraph-link/, Actigraph Cen-

trepoint Insight Watch - https://actigraphcorp.com/cpiw/.

https://www.youtube.com/watch?v=3PmVJQUCm4E
https://www.youtube.com/watch?v=3PmVJQUCm4E
https://en.wikipedia.org/wiki/Inertial_measurement_unit
https://actigraphcorp.com/actigraph-link/
https://actigraphcorp.com/cpiw/
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– 1 Actigraph Centrepoint at the dominant wrist. Accelerometer recording at
a sampling rate 256 Hz.

– 1 Actigraph GT9X Link at the right hip at the height of the iliac crest (using
the device belt clip). IMU (i.e., accelerometer, magnetometer, and gyroscope)
recording at a sampling rate 100 Hz.

– 1 Actigraph GT9X Link at the height of the right ankle placed, with the help
of the belt clip, on the subject’s right side of the shoe, over the malleolus.
IMU recording at a sampling rate 100 Hz.

Regarding the calibration of the devices, they have been precisely calibrated
(using the automated procedure of the device) at the beginning of each data
recording session.

Ground Truth Definition . The ground truth annotation has been performed
by the two first authors of this paper, in parallel, by following the subjects
performing activities, using a chronometer took note of the starting and ending
time of each activity. Moreover, while recording walking data researchers ensured
that the subjects were following a specific walking path so that we could retrieve
the average walking speed of the subjects for optional and additional tests.

2.2 Raw Data Extraction

After recording data with the subjects, we extracted the raw data from the
devices using the proprietary software system developed for Actigraph devices.
Then we exported the data as .csv files. The two kinds of devices that we used
were equipped with different sets of sensors, so the output of each kind of device
will be different. The .csv produced for the Actigraph GT9X Link, will contain
11 columns:

– ‘Timestamp’: timestamp of the sampled values
– ‘Accelerometer X, ‘Accelerometer Y’, ‘Accelerometer Z’ : instantaneous accel-

erations for each axis, measured in units of gravity (G)
– ‘Temperature’ : IMU temperature, in Celsius degree
– ‘Gyroscope X’, ‘Gyroscope Y’, ‘Gyroscope Z’ : instantaneous measure of the

gyroscope for each axis, measured in degrees/sec
– ‘Magnetometer X’, ‘Magnetometer Y’, ‘Magnetometer Z’ : instantaneous

measured magnetic field for each axis, measured in microTesla (mT)

For each row of the file, it is possible to find the sampled value at the specified
timestamp from each of the sensors and axis. The .csv file produced using data
recorded with the Actigraph Centrepoint, instead, will only have these columns:
‘Timestamp’, ‘Accelerometer X’, ‘Accelerometer Y’, ‘Accelerometer Z’.

2.3 Data Labelling and Cleaning

Thanks to the ground truth, we were able to label the data precisely. Labels
were associated with each row of the recorded data indicating which activity is
carried out in such instant. Basically, a new column has been attached to data,
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where for each row we had a number corresponding to the activity performed in
that instant (e.g., 1 is Relaxing, 2 is Keyboard Typing, ...).

During this data processing step, we also used a label to identify data that
had to be removed because it was not useful or that could lead to misleading
results (e.g., data recorded in between two different actions).

3 A Possible Approach to Daily Living Activity
Recognition

In this section, we describe in detail the steps composing our approach aimed at
recognising the activities performed by a subject wearing an actigraphy device.
The approach is based on the usage of Support Vector Machine (SVM). More
in detail, starting from the labelled raw data (e.g., from our dataset), the first
activity consists in a (1) features extraction phase, after which data will be
split into training and test data . Training data will be used for (2) tuning the
hyperparameter and (3) training the SVM model with the correct parameters. At
this point, the SVM model can be used for (4) recognising daily living activities
on novel unseen data. Thus we use test data to evaluate the accuracy of the
trained SVM model and, in general, of our approach. In the following subsections,
we will describe in detail the first three steps (1, 2, 3) while the fourth will be
described in Sect. 4. Our approach has been implemented using Python and with
the help of the Jupyter platform9; we relied on the Scikit-learn library10, also
known as sklearn, since it provides several instruments for data analysis that
were useful in our study.

3.1 Features Extraction

As done in other similar studies like the one of Staudenmayer et al. [14], we have
extracted the feature set made up of feature vectors and associated labels. To do
so, we have used the sliding window approach to compute the features, using only
the accelerometer data (however the approach can be simply extended to include
gyroscope and magnetometer data). In this phase, a sliding window passes over
the data and for each axis (X, Y, Z) we extract some measures on the data
contained in the window: mean, variance, standard deviation, median absolute
deviation, percentiles (10Th, 25Th, 75Th, 90Th). Having eight measures per axis
allows to compute 24 features for each window that composed the feature set
used in the evaluation, described in Sect. 4.

Data at the end of each activity recording is discarded when not enough for
building a window (i.e., the remaining data covers less time than the length of
the sliding window).

Regarding the sliding window, its length represents an important parameter
on which results could potentially highly depend. For this reason, in previous
experiments, we have performed some analysis to understand how the length of
9 https://jupyter.org/.

10 https://scikit-learn.org/.

https://jupyter.org/
https://scikit-learn.org/
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the window and the overlap between subsequent windows could affect accuracy.
After these tests, we have decided to use windows that were 2.0 s long, with 95%
of overlap each other. This value is motivated by the fact that typical human
periodic movements have a period of no more than two seconds (e.g., each step
during walking or hand movement during toothbrushing).

After the features extraction step, data is ready to be used in any ML algo-
rithm. For our approach, we have chosen to rely on Support Vector Machine
(SVM). SVM, in fact, has been already used to estimate physical activity from
accelerometers in the literature, showing good performances in this kind of task
(e.g., [5,21]). When using SVM data need to be standardised in order to obtain
better results. This is needed since SVM is based on the idea of finding the hyper-
plane that best divides different classes by maximising the distance between the
hyperplane and the data (i.e. Support Vectors), if one feature (i.e. one dimension
) has larger values than the others, it will prevail on the others when comput-
ing distances. This will not be a problem if we standardise data: we did so by
removing the mean and scaling to unit variance. Finally, to further prepare our
data to feed the algorithm, we have also split our data into training data and
test data: 75% and 25% of data of each activity, respectively.

3.2 Hyperparameter Tuning

SVM needs some parameters to be tuned in order to achieve the best result:
C and gamma, in combination with the different used kernels (Radial Basis
Function and Polynomial kernels). Focusing on the hyperparameter tuning, we
know that while constructing a machine learning model, a general goal is to
choose parameters such that we obtain a model that is able to learn, in the best
way, all information from the training data, while, at the same time, it should be
able to generalise well to new data. This problem of balancing these properties
is known as the Bias Variance Trade-off problem [18]. One possible way to find
the best model is to use the Cross Validation method [3].

Cross-Validation is a frequently used procedure for evaluating a model. The
basic idea is that training data are divided into complementary subsets; one
subset is used to train the model and we validate the results using the other
subset. To do so, we have decided to use the Grid Search method [2] for choosing
the best parameters for the algorithm. For each parameter of the algorithm, a list
of possible values is given in input to Grid Search. Basically, each combination
of the selected values generates a model that is then evaluated. The output of
Grid Search is then the list of chosen parameters that performed the best.

3.3 Training Model to Predict Data

After computing the best parameters for the Support Vector Machine model,
the next step has been to train the model with the training data and using the
previously found parameters, in order to conclude the process. Once the model
has been created, it was ready to be fed with new unseen data in order to output
its predictions. As explained before we have split, at the beginning, our whole
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processed data in training data and test data; the latter have been used for this
last step to evaluate the accuracy of the created model. In Sect. 4 we will analyse
the obtained results considering, separately, data of each body location.

4 Empirical Evaluation of the Approach

As a case study for showing one of the possible results achievable with our
dataset we report in this section the evaluation of our approach using the data
we collected. The research question we investigated is the following:
RQ: What is the accuracy of the proposed approach in classifying the activities
performed by a subject?
Note that in this preliminary study, we independently consider the three
devices/body locations. Moreover, we analyse only the performances of a person-
dependent model where the training is on a subject and the test on the same
subject.

4.1 Procedure

To answer our research question, first, we computed three confusion matrices for
each subject in our dataset (one matrix for each of the three devices employed).
More in detail, the values in each confusion matrix refer to the percentage of
processed data of a specific class Ca that have been predicted to belong to the
class Cb. More precisely, let us assume that we are reading the confusion matrix
starting from the first row, representing the class Ca: each value we see in this
row represents the percentage of data belonging to Ca that has been labelled as
belonging to the class of the corresponding column. A flawless result would be
represented as a matrix in which all the values on the diagonal are 100.0%, and
the other values are 0.0% meaning that all the unseen data have been classified
with the correct corresponding label.

Second, we averaged the eight confusion matrices (one per subjects) creating
a single confusion matrix for each considered body location. In this way, we
can answer our RQ by providing the average for each activity considered in our
dataset.

An important aspect to consider when judging the quality of the results in
the confusion matrices is that a baseline model that would randomly recognise
the activity could have an accuracy equal to the probability of assigning the
correct label that is: 1

#(classes) = 1
17 = 5.9%.

4.2 Results

In Fig. 1 it is possible to see the confusion matrix obtained using wrist data,
averaged over all eight subjects’ results. The overall mean F1 score obtained is
0.92± 0.03 (mean ± standard deviation). In general, we can say that the recog-
nition of most of the activities achieved good results (values on the diagonal
of the matrix are always greater than 0.74). In this case, the most noticeable
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outliers are in the wrong classifications of keyboard typing in using laptop, that
are indeed very similar activities. The same analysis can be valid for the clas-
sifications of sweeping and vacuuming. The lower accuracy values are obtained
in most of those activities that mostly involve legs movements (walking, going
downstairs/upstairs): those are indeed quite similar activities when “observed”
from the wrist.

Fig. 1. Average confusion matrix obtained with Wrist data

In Fig. 2 and Fig. 3 we present the confusion matrices obtained using, respec-
tively, hip and ankle data, averaged over all eight subjects results, for which it
is possible to perform similar considerations. The mean F1 score obtained with
hip data is 0.81 ± 0.04, while the mean F1 score obtained with ankle data is
0.75 ± 0.06.

Analysing these confusion matrices (Figs. 2 and 3, we noticed both expected
and unexpected results. In fact, as expected, since many performed activities
mostly involve peculiar movements of the arms (e.g. brushing teeth, washing
hands/face, sweeping), results obtained using hip and ankle data have a lower
mean accuracy than the results obtained using wrist data. For the same reason,
we were expecting to obtain low accuracy for the activities performed while
sitting or while not walking (e.g. using laptop, relaxing, handwriting) since the
hip and ankles are not involved in any movements. On the contrary, we achieved
quite high accuracies.

We further analysed our data in order to explain these results. By plotting
the accelerometer data, we noticed that there was a perceptible difference in
the values between such different activities even in the ankle and hip data. We
interpreted this as the fact that subjects, during data recording, unintentionally
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Fig. 2. Average Confusion Matrix obtained with Hip Data

Fig. 3. Average Confusion Matrix obtained with Ankle Data
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changed the orientation of the devices (e.g. by slightly moving a leg while sit-
ting). These involuntary movements were leading to noticeable changes in the
accelerometer values because of the variation in the orientation with respect to
the earth gravity g. We concluded that in some cases, the right classification
of activities happens not because of the peculiar characteristics of the activity
movements, but because of the particular orientation of the device.

Therefore, in order to avoid this problem, when dealing with both hip and
ankle data, we considered only activities that actively involve those parts of
the body. In particular, we selected: relaxing (as a stationary activity), sweep-
ing, vacuuming, dusting, rubbing, going downstairs, walking, walking fast, going
upstairs, going upstairs fast and excluded keyboard typing, using laptop, hand-
writing, hands washing, face washing, teeth brushing, eating.

We show the confusion matrices obtained with the latest reduced activity
set in Fig. 4 (regarding hip data) and Fig. 5 (regarding ankle data). In this case,
the mean F1 score obtained with hip data is 0.48 ± 0.02 (mean ± standard
deviation), and the mean F1 score obtained with ankle data is 0.47 ± 0.03.

Fig. 4. Average Confusion Matrix obtained with Hip Data, limited on hip-related
activities

In both confusion matrices (Figs. 4 and 5) with a limited set of activities, it is
clearly evident the scarce accuracy of the classifier in discerning from sweeping,
vacuuming, dusting and rubbing. Indeed, all of the four listed activities have
been performed by doing small and slow steps around the room when recording
data. Regarding the overall mean F1 scores it is clearly a consequence of the
wrong classification of the four activities previously listed. On the same topic,
we should also consider that by having fewer activities to be recognised, any
wrong activity classification will have a significant impact on the F1 score.

On the other hand, the classifier is able to recognise with a quite high accu-
racy (always over 78%) all the other activities and, in particular, the ones that
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Fig. 5. Average Confusion Matrix obtained with Ankle Data, limited on ankle-related
activities

required the subjects to walk and use stairs (walking, going downstairs, upstairs,
upstairs fast), in which both ankle and hip are more involved.

5 Related Works

In this section, we will briefly analyse related works, starting with the publicly
available datasets on activities recorded with wearable devices and then present-
ing some approaches to activity recognition.

Datasets. As briefly explained in Sect. 1, when looking for a publicly available
dataset, we have focused our analysis on three main criteria: (1) number and kind
of recorded activities, (2) reliability of the recorded data according to the used
device, and (3) which and how many parts of the body have been interested
during data recording. To the best of our knowledge, a dataset satisfying the
three aforementioned criteria is not currently available and this motivated our
proposal.

About the first criterion, it is possible to find datasets focused on specific
contexts of daily life: De la Torre et al. [17] presented a dataset on cooking
activities, while Chavarriaga et al. [4] proposed a dataset on activities performed
while preparing breakfast. On the other hand, it is also possible to find datasets
related to a wider list of activities. Possible examples are the work of Anguita
et al. [1], including more generic activities like sitting, standing, walking, walking
upstairs/downstairs or the work of Leutheuser et al. [8], including activities from
a daily life scenario (e.g., walking, vacuuming, washing dishes, lying, sitting). We
have noticed that many available datasets include quite similar activities such
as walking but at different speeds, or in different directions, sitting, standing or
lying. Micucci et al. [10], in fact, with their brief literature review, have found
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out that the most frequent activities included in daily life activities dataset are:
walking, standing and walking downstairs/upstairs.

Regarding the second criterion, a large number of the datasets that we have
analysed used data recorded with an Android smartphone, with a requested
sampling frequency 50 Hz (e.g. [1,13,16]). Nevertheless, according to the work
of Micucci et al., Android OS does not guarantee the consistency between the
requested and the effective frequency sampling rate, therefore, the acquisition
rate actually fluctuates during the acquisition [10]. This fact reduces, in our
opinion, the reliability of the recorded data. On the contrary, some datasets use
efficient devices with a high sampling frequency rate (>100 Hz) as the work of
Leutheuser et al. [8] or the work of Zhang et al. [20].

On the third criterion, during our investigation on existing datasets, we have
seen that some were focused only on one part of the body, particularly on pockets
or the hip. Possible examples are the works of Micucci et al. [10], Zhang et al. [20]
or Anguita et al. [1]. On the other hand, other available datasets include data
of multiple sensors on different parts of our body, usually including waist, wrist,
hip and ankle data. This is the case of the works of Sztyler et al. [16], Shoaib
et al. [13] or Leutheuser et al. [8]. In our opinion, having data retrieved from
different parts of our body would allow to achieve higher accuracy in activity
recognition purposes.

Approaches for Activity Recognition. Different approaches for classifying
daily-life activities using Machine Learning algorithms have been proposed in the
last years. Here we will consider three works that have similar scenarios to ours.
Indeed, all of the considered methods deal with a triaxial accelerometer worn on
the wrist by participants of the experiments while performing some activities.
All the devices used in the considered experiments recorded accelerations at a
frequency of 80–100 Hz.

The work of Zhang et al. [21] tried to classify 4 main categories of activities:
sedentary (lying, standing, PC working), household (window washing, sweeping,
etc.), walking and running at different speeds. Mannini et al. [9] tried to recog-
nise as well 4 categories of activities: ambulation, cycling, sedentary and other.
Yang et al. [19] has categories of activities more similar to our scenario: walk-
ing, running, scrubbing, standing, working at a computer, vacuuming, brushing
teeth and sitting. For what concerns the features, the ones used in all the exper-
iments are based on three different aspects: (1) time (mean, standard deviation,
mean absolute deviation, etc. of acceleration over time); (2) frequency spectrum
(first dominant frequencies and their power in some particular ranges - e.g. [0.6,
2.5] Hz) and, (3) wavelet, based on the Discrete Wavelet Transform, therefore
obtaining features linking both the frequency and the time domain.

Regarding the windows length, in the aforementioned works this parameter
was varying from 2.0 and 12.8 s, or, in term of number of samples, from 100
samples to 1152 (but taken at different frequencies). Those studies that compared
the performances over the same data but using different length for the windows
(e.g. [9]) have shown that longer windows would have meant higher performances,
but also that 4.0 s windows were sufficient to obtain acceptable results.
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Regarding the used ML algorithms, Zhang et al. [21] tested performances using
different algorithms (Decision Trees, Naive Bayes, Linear Regression, Support
Vector Machine, Neural Networks) showing that all the algorithms had good per-
formances (>95.0%), with the DT and SVM being the ones with better results.
Experiments in [9] used Support Vector Machine only, while in [19] a “neuro-
fuzzy” classifier (classifiable as a Neural Network) has been used. All of the
analysed algorithms in the documents were obtaining good and almost similar
results, despite of the used algorithms (overall accuracy always over 86%).
The major differences w.r.t. our approach regard: (1) the windows length (we
adopted shorter windows of 2.0 s) and, (2) the number of activities to be classified
(higher in our case).

6 Conclusions and Future Work

In this paper, we have presented the current progress concerning the creation
of a daily life activities dataset recorded while wearing multiple medical-grade
wearable devices. With the help of the proposed approach for activity recogni-
tion, we have shown an example of prospective results that researchers could
obtain using our dataset.

While being still incomplete (since we are working on recording the data
of additional subjects), our dataset has interesting characteristics that could
help researchers to perform deeper studies on the field of activity recognition.
Differently from already available datasets, ours contains data: (1) of numerous
daily life activities, (2) recorded using professional devices, and (3) of three
synchronised devices on wrist, hip and ankle. Thanks to these characteristics,
our dataset could help researchers to perform various kind of studies such as (1)
work on subject-independent models, (2) find possible correlations between data
of different sensors and different parts of the body while performing activities.

We have also described a preliminary approach to activity recognition and
evaluated it using data from our dataset. By considering independently each
device (i.e., body location), we have evaluated the predictions of a person-
dependent model. From our results we have seen that it is possible to train
a person-dependent model able to recognise the performed activities precisely,
since using wrist data we achieved an average overall accuracy of 0.92 expressed
as F1 score.

As future work, we are currently making progress on both the dataset and the
proposed approach. Regarding the dataset, in the next months we plan to add
data of 25–30 new subjects, in order to involve a more heterogeneous population
(e.g., including female subjects or subjects with different ages). Concerning the
proposed approach, we plan to evaluate and compare the accuracy of other clas-
sifiers (e.g. Random Forest, Neural Networks) or the influence derived from using
different parameters for windows length and overlap. Additionally, we are study-
ing the accuracy of a subject independent model, that would be able to recognise
activities performed by a new unseen person with no need of subject-related
training data. We will then compare the accuracy of our proposed approach
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with other already existing, by using our dataset as a benchmark. Moreover, in
our future work we plan to include in our dataset also subjects suffering from
physical impairments due to various diseases (e.g. Pulmonary Arterial Hyper-
tension, Multiple Sclerosis, Parkinson’s disease) or the advanced age. This could
also help researchers in better understanding and measuring the impact of such
conditions on the daily life.
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