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Abstract. In this paper we present a Convolutional Neural Network
for multilingual emotion recognition from spoken sentences. The pur-
pose of this work was to build a model capable of recognising emotions
combining textual and acoustic information compatible with multiple
languages. The model we derive has an end-to-end deep architecture,
hence it takes raw text and audio data and uses convolutional layers to
extract a hierarchy of classification features. Moreover, we show how the
trained model achieves good performances in different languages thanks
to the usage of multilingual unsupervised textual features. As an addi-
tional remark, it is worth to mention that our solution does not require
text and audio to be word- or phoneme-aligned. The proposed model,
PATHOSnet, was trained and evaluated on multiple corpora with dif-
ferent spoken languages (IEMOCAP, EmoFilm, SES and AESI). Before
training, we tuned the hyper-parameters solely on the IEMOCAP cor-
pus, which offers realistic audio recording and transcription of sentences
with emotional content in English. The final model turned out to provide
state-of-the-art performances on some of the selected data sets on the
four considered emotions.
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1 Introduction

In the psychological literature, emotions are defined as a complex set of bi-
directional interactions between physiological activation (arousal) and individ-
ual cognitive analysis (appraisal) [25]. This interaction generates affective expe-
riences, cognitive processes and physiological adjustments, leading to the acti-
vation of adaptive behaviour [31]. In this regard, it’s necessary to emphasise,
as highlighted by many authors, the importance of the adaptive nature of
emotions [11].
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Following this definition of emotions, literature highlights how an emotional
state is characterised by some changes at the physiological level [21]. Such
changes are an integral part of the emotion itself. Some physiological changes,
such as acceleration of the heartbeat, increase in blood pressure, sweating, often
occur without us being aware of them.

Specifically, the so-called non-verbal communication is a fundamental com-
munication and expressive channel for emotions, as it is less consciously con-
trollable. Examples of these non-verbal aspects are the para-linguistic ones, like
voice tone, speech rate, pauses, silences, etc. On the other side, the verbal com-
munication, with its linguistic aspects, is still a useful channel for the expression
of emotions.

Different approaches, leveraging Neural Networks (NNs), have already shown
that the combination of linguistic and para-linguistic clues can provide a useful
contribution in the task of emotion recognition [2,6,36]. In such works, linguis-
tic features have been mostly treated through pre-trained embedding models.
Acoustic features, on the other hand, have been selected from pre-defined ones.

With this work, we were interested in two main aspects. The first one is
understanding whether deep pre-trained features could lead to higher classifica-
tion accuracy; hence, for a multi-modal analysis like this, pre-trained features
for audio analysis should be used as well as pre-trained linguistic features. The
second aspect is exploring the effects of a single model working with multiple
languages at the same time; so, the multilingual model was built as an all-in-one
model by feeding it with different corpora in different languages at train time.

The multilingual approach resulted in a training phase on a wider corpus
which, in general, helps Deep Neural Networks (DNNs) to learn better features.
Such features turned out to be correctly compatible with a multiple language
environment as we expected. Notice that the multilingual approach allowed our
model to deal with the data scarcity, which often prevents DNNs from being
effectively trained.

Our classifier, called Parallel, Audio-Textual, Hybrid Organisation for emo-
tionS network (PATHOSnet) reached an accuracy of 80.4% on the IEMOCAP
[4] corpus (our main benchmark). The preceding best score of an automatic sys-
tem, working with the same modalities, was obtained by Atmaja and colleagues:
75.5% [2]. Human listeners achieved 70% on the four emotions considered for
this project, according to [6].

The rest of this paper is organised in the following sections. In Sect. 2 we
present the state of the art for speech emotion recognition using NNs. In Sect. 3
we describe the data collections we use to train and test our model. In Sect. 4
we describe the input features used to feed our model. In Sect. 5 we describe
the architecture of our model, for multilingual emotion recognition. In Sect. 6 we
explain how we approached the training and evaluation processes. In Sect. 7 we
report the results of the experiments and we comment on them. In Sect. 8 we
sum up our work and provide hints about possible future work.
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2 Related Works

In recent years speech emotion recognition has gained a lot of traction. Multi-
modal (audio, video and text) analysis has shown to be the correct way to
address this problem. In particular, NN-based solutions have shown to produce
better results. In fact, we’re mainly interested in this kind of models for emotion
recognition. Interested readers can refer to surveys [1], for other models.

For what concerns NN-based solutions, we noticed similar patterns in recent
years for emotion recognition, where researchers started to employ, where pos-
sible, multimodal analysis on text and audio, and sometimes on video, too.

These input modalities are usually treated though pre-computed features. In
particular, learnt semantic representations are used as linguistic features while
handcrafted features are used for the acoustic part. The works we referred to are
based on NNs and we considered as a main benchmark the IEMOCAP[4] corpus
for emotion recognition (more on this in Sect. 3).

The best recent solution on the IEMOCAP corpus leveraged Recurrent or
Bi-Directional Recurrent NNs (RNNs and BiRNN) [12,17,32], often including
also an attention mechanism [3]. One of the first work on IEMOCAP with RNNs,
however, reached only 54% classification accuracy [6], while a work proposing
BiLSTMs with attention mechanism reached an accuracy of 71.0% through lin-
guistic and acoustic analysis [36].

Even if useful to handle time series, the sequential structure of the RNNs
makes their computations really slow; in fact, they cannot be parallelised [37].
Differently, Convolutional NNs (CNNs) are faster and easy to parallelise. For
this reason, we implemented our NN using convolutional layers.

Authors of [24] proposed a deeper analysis of multimodal approaches for
sentiment and emotion analysis. In their work, they focused on modality fusion
and context usage. In particular, they found how the accuracy in the emotion
recognition of a single utterance can be improved when leveraging information
coming from the other utterances in the discourse. On IEMOCAP they reached
an accuracy of 76.5% using audio-video and text, and an accuracy of 76.1% using
solely audio and text. Even if this model produces impressive results, it relies on
the usage of contextual information (i.e., a discourse), that might be not always
available. Thus, we decided not to make use of such context information, working
on individual, isolated sentences.

To our knowledge, none of the available NN models for emotion recognition
applies a multilingual approach. Additionally, even if some of them are presented
as deep learning approaches, they still employ manually-selected features, com-
puted from the raw input, rather than resorting to deep models. With our work,
we address both of these two aspects.

3 Corpora

Neural Networks are a data-driven framework; as such, they require labelled
corpora to be trained on. For the purpose of this work, we considered different
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data sources in order to include different languages and use cases. In fact, it was
our main interest to train a multilingual model, in order to provide a single tool
available for everyone and cope with data scarcity. In particular, data scarcity
represents a strong barrier for some languages.

To train our network, we selected the following corpora:

– Interactive Emotional Dyadic Motion Capture Database (IEMOCAP) [4];
– Emotional speech from Films corpus (EmoFilm) [29];
– Spanish Emotional Speech database (SES) [28];
– Athens Emotional States Inventory (AESI) [5].

In Table 1 it is possible to find statistics about such corpora, in terms of available
samples, organised per-corpus and per-language.

The IEMOCAP corpus represents our main benchmark. It is the most com-
plete and best managed of the considered corpora, but it only provides English
samples. IEMOCAP employs both categorical [11] and a dimensional [13] rep-
resentations of emotions in audio-visual data. The IEMOCAP corpus has been
built recording ten actors in dyadic sessions, resulting in five sessions with two
subjects each. Actors were asked to perform two tasks: play three selected scripts
with clear emotional content, and improvise dialogues in hypothetical scenarios
designed to elicit specific emotions. For the purpose of this work, and considering
other works that used IEMOCAP, we selected only four basics emotions labels
to discriminate among. The selected emotions are Happiness, Anger, Sadness,
and Neutral.

The EmoFilm corpus contains samples in three different languages: English,
Italian and Spanish. This corpus was built carefully, manually selecting audio
recordings from a total of 43 movies. The search was conducted on the English
dubs of the considered movies. Once the clips were identified, Italian and Span-
ish audio tracks were cut at the same time stamps. Rare emotional labels were
excluded from the collection. As a result, 828 samples were retrieved (per-
language) and labelled with the following emotions: Happiness, Anger, Sadness,
Fear and Contempt. Fear was excluded from our work because there were enough
samples of the same kind in other corpora; Contempt was discarded because it is
generally not considered a basic emotion. No transcription was provided; for this
reason, we resorted to an ASR1 in order to have the textual content. This choice
not only made us closer to real usage scenario, but also helped us to retrieve
results that take into account possible transcription errors.

The SES corpus contains emotional speech recordings played by a professional
male actor speaking Spanish. The available emotional labels in this corpus were
Happiness, Anger, Sadness, Neural and Surprsie; the latter was excluded from
our work because there were enough samples of the same kind in other corpora.
The corpus is composed of several readings of the same neutral texts, displaying
different emotions. On one side this aspect is useful as it will help to enforce
the usage of acoustic features and prevent the model from sticking to a fixed
vocabulary of words for the classification. On the other we had to ensure that

1 https://gitlab.com/Jaco-Assistant/deepspeech-polyglot.

https://gitlab.com/Jaco-Assistant/deepspeech-polyglot
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the model does not rely solely on acoustic features, hence we carefully analysed
the results comparing the different corpora.

The AESI corpus is an audio-visual database for Greek emotion recognition.
This corpus contains 696 recorded utterances in the Greek language by 20 native
speakers. The emotional labels have been assessed through a survey. The samples
are labelled according to one of these emotions: Happiness, Anger, Sadness,
Neural and Fear. We included this corpus because we wanted to observe the
generalisation capabilities of the network on smaller corpora when still provided
with samples also in other languages.

IEMOCAP is the biggest of the considered corpora. As such, it was selected
as our main benchmark and guided the choice of the emotional labels.

Table 1. Number of available samples (total and per-class) organised per-corpus and
per-language

Corpus Language Number of samples

Emotion Total

Happiness Anger Sadness Neutral

IEMOCAP English 1041 1103 1084 1708 4936

EmoFilm English 70 77 74 0 221

Italian 94 73 93 0 260

Spanish 76 82 87 0 245

All languages 240 232 254 0 726

SES Spanish 732 725 728 1658 3843

AESI Greek 139 139 140 139 557

4 Features

As premised we considered two distinct yet complementary input modalities for
our network. On one side, we considered linguistic features, extracted from the
transcription of the spoken sentence. On the other side, we considered the deep
features extracted from the waveform of the spoken sentence. Both modalities
use task-agnostic input features; in fact, none of the two modules generating
features was specifically designed for emotion recognition. This was necessary
since none of the data sets contains enough samples to train a deep model from
scratch. Thus, in both cases, we retrieved pre-trained models, which we adapted
for our work.

4.1 Linguistic Features

The meaning of what is uttered by the speaker, contained in transcriptions,
represents an important piece of information for emotion recognition (i.e., the
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linguistic aspect). In fact, depending on the emotional context, certain words
can be related to an emotional state more than others. To extract the tex-
tual features, we relied on word embeddings, a vector semantics representation
[19] of words. Through word embeddings, every word is encoded as a vector
in a d-dimensional space where words with similar meaning are encoded closely.
Moreover, we trained the final network on multilingual embeddings, where words
from different languages with the same meaning, are mapped in the same point
in the embedding space. This was expected to help generalise across languages.
In general, we expected that this semantically meaningful encoding will help the
NN to associate similar meaning words to the same emotional state.

The embedded text is represented as a two-dimensional tensor, i.e. a matrix
obtained embedding all the words in the utterance. The tensor is characterised
by d columns, one for each dimension of the word embedding hyperspace, and
a number of rows that matches that of the words in the sentence. The columns
represent the sample’s features, while the rows constitute the time axis.

During the hyperparameter-tuning phase, our model was fed with English-
only embeddings. In particular, we used a GloVe model for word embeddings [30]
(with 300-dimensional vectors). As premised, we used a pre-trained model2. Sub-
sequently, the final model was trained with multilingual embeddings, by means
of MUSE framework [8,20]. These multilingual embeddings are obtained start-
ing from pre-trained FastText word embedding models [26] in different languages
(always with 300-dimensional vectors). The embeddings are then transformed so
that corresponding words in the different languages result in overlapping vectors.
As for the English model, we used pre-trained MUSE embeddings3.

4.2 Acoustic Features

We used acoustic features to capture the information about how a person is
talking (i.e., the para-linguistic aspect). The choice of deep acoustic features
represents a strong change with respect to previous work in emotion recognition.
In fact, to our knowledge, previous works relied solely on pre-defined acoustic
features [6]. Such features were manually selected to highlight the aspects of
the voice signal that were expected to correlate the most and to cope with
the reduced amount of samples. We decided, instead, to use a transfer learning
approach [38] and rely on the features extracted by deep models trained on huge
classification tasks.

The DNNs we employed to extract features were designed and trained using
the same concepts and huge audio classification data sets. In fact, they employed
the same architectures of image recognition NNs, adapted to take as input the
(mel-filtered) spectrogram of the vocal signal. Their basic idea is to threat the
spectrogram as an image and use 2-D CNNs to learn a feature hierarchy useful
for audio classification. Thanks to the use of a huge audio data set, the models
were able to produce very general features, which resulted to be transferrable

2 https://nlp.stanford.edu/projects/glove/.
3 https://github.com/facebookresearch/MUSE.

https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/MUSE
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across different tasks. This is the same approach used with image recognition
models trained on ImageNet [9]: the CNNs are trained as classifiers, then their
classification heads are removed to transfer the features to other image analysis
tasks.

We experimented with two different networks. The former was VGGish [16],
a variant of VGG [33], which is a NN for image recognition. VGGish was trained
on the AudioSet4 corpus [14]. The feature extraction variant takes as input a
64 bin log-scaled, mel-filtered spectrogram (computed with a window size of
25 ms and a hop size of 10 ms) and produces a 128-dimensional feature vector
for every non-overlapping 0.96 s window in the input. The latter network was
Thin ResNet-34 with GhostVLAD pooling layer [41], a variant of ResNet [15], a
NN for image recognition. This second feature extraction network takes as input
a 257 bin normalised spectrogram (computed with a window size of 25 ms and a
hop size of 16 ms) and produces a 512-dimensional feature vector for every non-
overlapping 0.045 s window in the input. We relied on a Keras5 implementation
for both VGGish6 and Thin ResNet-34 with GhostVLAD7.

The acoustic features are then represented similarly to the linguistic ones:
they are managed as a two-dimensional tensor. The row axis represents the time
dimension, the column axis represents the features (conceptually this is similar
to a spectrogram with its bins).

5 Model

The model we developed, called PATHOSnet and represented in Fig. 1, is a multi-
modal DNN for emotion recognition built upon transferred deep features. The
model is composed of two parallel branches, one for linguistic analysis and one
for acoustic analysis, which are later merged together. A high-level view of this
model is depicted in Sect. 5. These two symmetric branches are CNNs, composed
of 1-D convolutional and pooling layers. A depiction of such blocks is reported in
Sect. 5. We inserted each of the two blocks on top of the corresponding feature
extractor. The classifier on top is, instead, a fully-connected layer with a softmax
activation function over the four considered classes.

The convolutional blocks in the two branches are designed like those of a
ResNet [15] network, adapted for the 1-D scenario. To flatten the information
along the time axis and produce a single feature vector for each modality, we
relied on a Global Average Pooling (GAP) layer [22]; GAP not only allows to
“compress” spatial information, averaging along the time axis, but it does so
with a low computational effort (differently from attention-based solutions [27]).

To merge the two branches of the network we adopted a simple feature fusion
approach [1]: we concatenated the two feature vectors coming from the two sepa-
rate branches and learnt a fully connected transformation to combine the vectors
4 https://research.google.com/audioset/.
5 https://keras.io.
6 https://github.com/beasteers/VGGish.
7 https://github.com/taylorlu/ghostvlad-speaker.

https://research.google.com/audioset/
https://keras.io
https://github.com/beasteers/VGGish
https://github.com/taylorlu/ghostvlad-speaker
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Fig. 1. PATHOSnet internal structure.

directly into the class probabilities. In this way, acoustic features are not required
to be aligned with the textual ones. In fact, each branch takes care of embed-
ding the “temporal” information in its intermediate representation, removing
the time axis by the end of its transformation. This was a great advantage as
this kind of alignment either isn’t available or is difficult to obtain.

In order to enforce regularisation and avoid overfitting we adopted the spatial
dropout [35] and the batch normalisation [18]. Regularisation was also enforced
thanks to the GAP layer. Finally, to avoid overfitting we employed the early
stopping approach.

As an additional note, we want to point out that the DNN used to extract
the acoustic features is an integral part of PATHOSnet; in this way, we managed
to perform fine-tuning of its weights. In Sect. 6 we provided more details about
this part.

PATHOSnet is an example of so-called ensemble models. In our case, this
approach was useful as the textual-based and acoustic-based networks turned
out to be complementary. To build the ensemble, we removed the classifier on
top of the two networks, and learnt a new linear classification function on top
of the concatenated feature vectors.

The implementation of our model was realised through the Keras framework,
using Tensorflow8 as backend. The entire code, from feature extraction to the
NN was developed solely through the Python programming language.

8 https://www.tensorflow.org.

https://www.tensorflow.org
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6 Experiments

In our experiments, we followed the classic train-test steps adopted by NN frame-
works. The training process of the networks was divided into 2 steps:

1. train the convolutional blocks above a single couple of DNN for acoustic
features and word embeddings model. In this first phase the weights of the
acoustic DNN were “frozen”;

2. fine-tune the single networks “unlocking” the first layer of the DNN for
acoustic features (we experimented unlocking more layers but without good
results).

Testing was conducted on the same percentages of data from all the considered
corpora and languages.

We trained three separate versions of PATHOSnet:

1. We trained an English-only model on IEMOCAP. We used only VGGish
deep features for the acoustic part. We used GloVe word embeddings for the
linguistic part. We referred to this model as baseline;

2. We trained an English-only, ensemble model on IEMOCAP. We used both
VGGish and Thin ResNet-34 with GhostVLAD deep features for the acoustic
part. We used multilingual MUSE word embeddings for the linguistic part;
We referred to this model ensemble as PATHOSnet ;

3. We trained the multilingual ensemble model on all corpora. We used both
VGGish and Thin ResNet-34 with GhostVLAD deep features for the acoustic
part. We used multilingual MUSE word embeddings for the linguistic part.
We referred to this model ensemble as PATHOSnet (multilingual);

In order to provide more robust results, we resorted to 5-fold cross-validation.
In this way, a fifth of each corpus was used as the test set in all experiments.
Additionally, we further split (always corpus-wise) the training data into train
and validation sets (enabling to use early stopping). We used an 80–20% train-
validation split to further separate validation samples. Splitting was done ran-
domly but taking into account corpus and class sizes.

Before training the network on the multilingual corpora we performed hyper-
parameter tuning. This tuning was performed only on the IEMOCAP corpus,
and on a single model using English word embeddings and VGGish features.

The derived hyper-parameters are the following. We selected the RMSprop
[34] optimiser, with an initial learning rate l0 = 0.001; the learning rate was
decayed exponentially at each epoch e down to a minimum of 0.00001 using the
function in Eq. (1).

l (e) = max (l0 · exp (0.1 · e), 0.00001) (1)

During fine-tuning phases, the learning rate restarted from that of the last epoch.
The kernels in the convolutional blocks covered all a width of 3 time steps, the
linguistic branch used a feature size of 128, while the acoustic branch used a
feature size of 256. Each branch used two convolutional blocks. The network was
trained for 45 epochs at each step, using early stopping.
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7 Results

The main results are reported in Table 2. We reported the values from the
main classification metrics. As premised these values are obtained through cross-
validation, the scores of each fold are aggregated through a weighted mean on
the number of samples per class. In Fig. 2 are reported, instead, the confusion
matrices of the English ensemble model and the multilingual ensemble model
(for the latter we reported cumulative results as well as results divided across
corpora).

Fig. 2. Confusion matrices computed on the test sets of the considered corpora and
languages, plus the combined results. Values are averaged among the five folds. Legend:
Happiness (H), Anger (A), Sadness (S), Neutral (N).

The first remark we point out is that even the baseline model outperforms
the state of the art. This highlights how deep features transferred from another
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Table 2. Classification results of the proposed model. The reported baseline is from
the hyperparameters tuning phase (VGGish and GloVe features). All the reported
values from PATHOSnet are computed using the deep features ensemble model. All
the reported values are computed through a weighted average on the support of each
class. The metrics are accuracy (Acc.), precision (Prec.), recall (Rec.), F1-score (F1)
and Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC).

Model Language Corpus Metric (%)

Acc. Prec. Rec. F1 AUC

Humans [6] English IEMOCAP 70.0 – – – –

Atmaja’s (previous state of the art) English IEMOCAP 75.5 – – – –

Baseline English IEMOCAP 77.0 75.7 74.1 73.4 93.4

PATHOSnet English IEMOCAP 80.4 79.1 78.8 78.6 94.6

PATHOSnet (multilingual) English IEMOCAP 77.6 76.4 75.8 75.4 93.4

EmoFilm 39.4 47.6 45.5 40.7 70.1

Spanish EmoFilm 37.0 46.1 41.4 39.6 65.9

SES 91.2 92.8 92.7 92.7 99.2

Italian EmoFilm 37.7 38.8 37.7 34.3 67.8

Greek AESI 31.7 25.6 31.7 24.6 62.9

Cumulative 78.5 77.2 77.0 78.5 92.6

task are more useful than those manually selected. Moreover, with respect to
Atmaja’s work, we produced a way smaller network. In total this version of
PATHOSnet has a similar number of parameters (around 5 million) but only
slightly more of 1 million of them are trainable in our case (in Atmaja’s work
they were all trainable). These parameters are those of the convolutional blocks
and classification layer. The remaining parameters in PATHOSnet come from
the lower layers of VGGish, which we integrated into our network. Moreover, we
haven’t used any LSTM or attention mechanism but only convolutions, pooling
and a single dense layer. This underlined once again how the choice of correct
features is crucial to obtain better results.

For what concerns the ensemble model, it outperformed the baseline reaching
a weighted mean test accuracy of 80.4%. The score is weighed taking into account
samples in each data set and for each language of the data set. Judging from the
confusion matrix in Sect. 7, the usage of two models for deep acoustic features
and the FastText multilingual embeddings helped to better separate all classes.
From the confusion matrix, we see that the hardest class to separate is the
Neutral one; Anger and sadness are instead the easiest classes to separate. To
our knowledge, these are the best results ever obtained on the IEMOCAP corpus.

Finally, the ensemble for multilingual emotion recognition obtained on aver-
age, across languages, competitive results: the accuracy was higher than 78%
and all the other metrics confirm the goodness of the model (AUC is over 0.9).
However, the analysis on single languages, showed that in some cases the net-
work didn’t meet our expectations. Still, from the single languages scores, we
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saw that the model is still behaving better than random guessing. This can be
seen by the fact that the AUC is always higher than 0.5.

On sufficiently big data sets, the model still shows impressive generaliza-
tion capabilities across languages. This can be seen by the performances on
IEMOCAP for English (still better than the previous state of the art and our
baseline). On SES for Spanish, the same applies, the model achieves an accuracy
even higher of that on IEMOCAP.

On smaller data sets (EmoFilm and AESI) the multilingual network showed
lower scores. We believe that the lower results on EmoFilm are due to tran-
scription errors, introduced by the ASR. The model showed similar results in
terms of accuracy among the three languages of this data set. It is also clear
that Italian suffers from the lack of other samples with respect to English and
Spanish, judging by the fact that it has lower scores among the three. This,
however, shows again how linguistic features are important and strictly rely on
correct transcriptions. Finally, as for the Italian part of EmoFilm, AESI most
probably showed lower results because of the data scarcity. Interestingly, from
the confusion matrix in Sect. 7, we see that on the Greek language Neutral label
is never predicted and is most often misclassified as anger.

8 Conclusions

In this paper we presented the architecture of a multi-modal NN for multilin-
gual speech emotion recognition, which leverages linguistic and acoustic features.
Multilingual word embeddings was used to generate the linguistic features needed
by the network working on text. The network working on voice is trained through
transfer learning and fine-tuning, on top of different, pre-trained networks that
generate acoustic features. We then merged these two networks into an ensem-
ble model, to achieve a better classification accuracy. The model we presented
achieved the state of the art classification accuracy on different emotion recog-
nition corpora. Moreover, we trained a single model with different languages,
showing how it is possible to take multiple languages into account at the same
time.

The experiments we performed partly confirmed our hypotheses. Deep unsu-
pervised acoustic features are better than hand-crafted for emotion recognition.
Results on IEMOCAP and SES confirmed also that it is possible to obtain a
multilingual model, provided sufficiently big corpora for all languages. On this
same side, results on Italian EmoFilm and AESI showed that languages with
poor data sets are harder to integrate. Finally, results on EmoFilm showed how
badly the errors introduced by the ASR influence the recognition capabilities.

The first step we are going to do is investigating the source of the errors in
order to obtain acceptable results in all languages. In the future, we are planning
to improve and extend our model under multiple aspects. Even though “vanilla”
word embeddings seems to provide an efficient representation, we are interested
in observing the results using contextual embeddings [23]. Such representation
turned out to be very informative for many tasks [39,40], hence we can leverage
some the multilingual transformer models like BERT [10] or XLM [7].
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At the same time, we are also interested in extending the set of languages
we consider. Both the employed word embedding models and the suggested con-
textual embedding ones already support more languages than the ones we used,
hence what we will require are labelled corpora is such languages.

Finally, we plan to extend the emotion the model is able to handle, including
at least the six basic ones identified by Ekman [11]. Alternatively, we could resort
to continuous representations [13]; however, it would require feasible labelled
corpora for all the language we consider.
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