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Abstract. Intelligent monitoring systems and affective computing
applications have emerged in recent years to enhance healthcare. Exam-
ples of these applications include assessment of affective states such
as Major Depressive Disorder (MDD). MDD describes the constant
expression of certain emotions: negative emotions (low Valence) and
lack of interest (low Arousal). High-performing intelligent systems would
enhance MDD diagnosis in its early stages. In this paper, we present a
new deep neural network architecture, called EmoAudioNet, for emotion
and depression recognition from speech. Deep EmoAudioNet learns from
the time-frequency representation of the audio signal and the visual rep-
resentation of its spectrum of frequencies. Our model shows very promis-
ing results in predicting affect and depression. It works similarly or out-
performs the state-of-the-art methods according to several evaluation
metrics on RECOLA and on DAIC-WOZ datasets in predicting arousal,
valence, and depression. Code of EmoAudioNet is publicly available on
GitHub: https://github.com/AliceOTHMANI/EmoAudioNet.

Keywords: Emotional Intelligence · Socio-affective computing ·
Depression recognition · Speech emotion recognition · Healthcare
application · Deep learning.

1 Introduction

Artificial Emotional Intelligence (EI) or affective computing has attracted
increasing attention from the scientific community. Affective computing con-
sists of endowing machines with the ability to recognize, interpret, process and
simulate human affects. Giving machines skills of emotional intelligence is an
important key to enhance healthcare and further boost the medical assessment
of several mental disorders.
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Affect describes the experience of a human’s emotion resulting from an inter-
action with stimuli. Humans express an affect through facial, vocal, or gestural
behaviors. A happy or angry person will typically speak louder and faster, with
strong frequencies, while a sad or bored person will speak slower with low fre-
quencies. Emotional arousal and valence are the two main dimensional affects
used to describe emotions. Valence describes the level of pleasantness, while
arousal describes the intensity of excitement. A final method for measuring a
user’s affective state is to ask questions and to identify emotions during an
interaction. Several post-interaction questionnaires exist for measuring affective
states like the Patient Health Questionnaire 9 (PHQ-9) for depression recognition
and assessment. The PHQ is a self report questionnaire of nine clinical questions
where a score ranging from 0 to 23 is assigned to describe Major Depressive Dis-
order (MDD) severity level. MDD is a mental disease which affects more than
300 million people in the world [1], i.e., 3% of the worldwide population. The
psychiatric taxonomy classifies MDD among the low moods [2], i.e., a condition
characterised by a tiredness and a global physical, intellectual, social and emo-
tional slow-down. In this way, the speech of depressive subjects is slowed, the
pauses between two speakings are lengthened and the tone of the voice (prosody)
is more monotonous.

In this paper, a new deep neural networks architecture, called EmoAudioNet,
is proposed and evaluated for real-life affect and depression recognition from
speech. The remainder of this article is organised as follows. Section 2 intro-
duces related works with affect and depression recognition from speech. Section 3
introduces the motivations behind this work. Section 4 describes the details of
the overall proposed method. Section 5 describes the entire experiments and
the extensive experimental results. Finally, the conclusion and future work are
presented in Sect. 6.

2 Related Work

Several approaches are reported in the literature for affect and depression recog-
nition from speech. These methods can be generally categorized into two groups:
hand-crafted features-based approaches and deep learning-based approaches.

2.1 Handcrafted Features-Based Approaches

In this family of approaches, there are two main steps: feature extraction and
classification. An overview of handcrafted features-based approaches for affect
and depression assessment from speech is presented in Table 1.

Handcrafted Features. Acoustic Low-Level Descriptors (LDD) are extracted
from the audio signal. These LLD are grouped into four main categories: the
spectral LLD (Harmonic Model and Phase Distortion Mean (HMPDM0-24),
etc.), the cepstral LLD (Mel-Frequency Cepstral Coefficients (MFCC) [3,13],
etc.), the prosodic LLD (Formants [21], etc.), and the voice quality LLD
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(Jitter, and Shimmer [14], etc.). A set of statistical features are also calculated
(max, min, variance and standard deviation of LLD [4,12]). Low et al. [16] pro-
pose the experimentation of the Teager Energy Operator (TEO) based features.

A comparison of the performances of the prosodic, spectral, glottal (voice
quality), and TEO features for depression recognition is realized in [16] and it
demonstrates that the different features have similar accuracies. The fusion of
the prosodic LLD and the glottal LLD based models seems to not significantly
improve the results, or decreased them. However, the addition of the TEO fea-
tures improves the performances up to +31,35% for depressive male.

Classification of Handcrafted Features. Comparative analysis of the per-
formances of several classifiers in depression assessment and prediction indicate
that the use of an hybrid classifier using Gaussian Mixture Models (GMM) and
Support Vector Machines (SVM) model gave the best overall classification results
[6,16]. Different fusion methods, namely feature, score and decision fusion have
been also investigated in [6] and it has been demonstrated that: first, amongst the
fusion methods, score fusion performed better when combined with GMM, HFS
and MLP classifiers. Second, decision fusion worked best for SVM (both for raw
data and GMM models) and finally, feature fusion exhibited weak performance
compared to other fusion methods.

2.2 Deep Learning-Based Approaches

Recently, approaches based on deep learning have been proposed [8,23–30]. Sev-
eral handcrafted features are extracted from the audio signals and fed to the
deep neural networks, except in Jain [27] where only the MFCC are considered.
In other approaches, raw audio signals are fed to deep neural networks [19]. An
overview of deep learning-based methods for affect and depression assessment
from speech is presented in Table 2.

Several deep neural networks have been proposed. Some deep architectures
are based on feed-forward neural networks [11,20,24], some others are based on
convolutional neural networks such as [27] and [8] whereas some others are based
on recurrent neural networks such as [13] and [23]. A comparative study [25] of
some neural networks, BLSTM-MIL, BLSTM-RNN, BLSTM-CNN, CNN, DNN-
MIL and DNN, demonstrates that the BLSTM-MIL outperforms the other stud-
ied architectures. Whereas, in Jain [27], the Capsule Network is demonstrated as
the most efficient architecture, compared to the BLSTM with Attention mecha-
nism, CNN and LSTM-RNN. For the assessment of the level of depression using
the Patient Health Questionnaire 8 (PHQ-8), Yang et al. [8] exerts a DCNN. To
the best of our knowledge, their approach outperforms all the existing approaches
on DAIC-WOZ dataset.

3 Motivations and Contributions

Short-time spectral analysis is the most common way to characterize the
speech signal using MFCCs. However, audio signals in their time-frequency
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Table 1. Overview of shallow learning based methods for affect and depression assess-
ment from speech. (*) Results obtained over a group of females.

Ref Features Classification Dataset Metrics Value

Valstar et al. [3] prosodic + voice SVM + grid search + DAIC-WOZ F1-score 0.410 (0.582)

quality + spectral random forest Precision 0.267 (0.941)

Recall 0.889 (0.421)

RMSE (MAE) 7.78 (5.72)

Dhall et al. [14] energy + spectral +
voicing quality +
duration features

non-linear chi-square
kernel

AFEW 5.0 unavailable unavailable

Ringeval prosodic LLD + voice random forest SEWA RMSE 7.78

et al. [4] quality + spectral MAE 5.72

Haq et al. [15] energy + prosodic +
spectral + duration
features

Sequential Forward
Selection +
Sequential Backward
Selection + linear
discriminant analysis
+ Gaussian classifier
uses Bayes decision
theory

Natural speech
databases

Accuracy 66.5%

Jiang et al. [5] MFCC + prosodic + ensemble logistic
regression

hand-crafted Males accuracy 81.82%(70.19%*)

spectral LLD +
glottal

model for detecting dataset Males
sensitivity

78.13%(79.25%*)

features depression E
algorithm

Males specificity 85.29%(70.59%*)

Low et al. [16] teager energy
operator

Gaussian mixture
model +

hand-crafted Males accuracy 86.64%(78.87%*)

based features SVM dataset Males
sensitivity

80.83%(80.64%*)

Males specificity 92.45%(77.27%*)

Alghowinem
et al. [6]

energy + formants +
glottal features +
intensity + MFCC +
prosodic + spectral
+ voice quality

Gaussian mixture
model + SVM +
decision fusion

hand-crafted
dataset

Accuracy 91.67%

Valstar et al. [7] duration
features+energy

correlation based
feature

AViD- RMSE 14.12

local min/max
related function-
als+spectral+voicing
quality

selection + SVR +
5-flod
cross-validation loop

Corpus MAE 10.35

Valstar et al. [17] duration
features+energy

SVR AVEC2014 RMSE 11.521

local min/max
related function-
als+spectral+voicing
quality

MAE 8.934

Cummins et al. [9] MFCC + prosodic +
spectral centroid

SVM AVEC2013 Accuracy 82%

Lopez Otero energy + MFCC + SVR AVDLC RMSE (MAE) 8.88 (7,02)

et al. [10] prosodic + spectral

Meng et al. [18] spectral + energy PLS regression AVEC2013 RMSE 11.54

+ MFCC +
functionals

MAE 9.78

features + duration
features

CORR 0.42
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Table 2. Overview of deep learning based methods for affect and depression assessment
from speech.

Ref Features Classification Dataset Metrics Value

Yang et

al. [8]
spectral LLD +
cepstral

DCNN DAIC-WOZ Depressed female RMSE 4.590

LLD + prosodic LLD
+

Depressed female MAE 3.589

voice quality LLD + Not depressed female
RMSE

2.864

statistical functionals
+

Not depressed female
MAE

2.393

regression functionals Depressed male RMSE 1.802

Depressed male MAE 1.690

Not depressed male RMSE 2.827

Not depressed male MAE 2.575

Al Hanai
et al.

spectral LLD +
cepstral

LSTM-RNN DAIC F1-score 0.67

[23] LLD + prosodic LLD
+

Precision 1.00

voice quality LLD + Recall 0.50

functionals RMSE 10.03

MAE 7.60

Dham et

al. [24]
prosodic LLD + voice FF-NN AVEC2016 RMSE 7.631

quality LLD +
functionals + BoTW

MAE 6.2766

Salekin et

al. [25]
spectral LLD + MFCC
+

NN2Vec +
BLSTM-MIL

DAIC-WOZ F1-score 0.8544

functionals Accuracy 96.7%

Yang et

al. [26]
spectral LLD +
cepstral

DCNN-DNN DAIC-WOZ Female RMSE 5.669

LLD + prosodic LLD
+

Female MAE 4.597

voice quality LLD + Male RMSE 5.590

functionals Male MAE 5.107

Jain [27] MFCC Capsule Network VCTK corpus Accuracy 0.925

Chao et

al. [28]
spectral LLD +
cepstral LLD +
prosodic LLD

LSTM-RNN AVEC2014 unavailable unavailable

Gupta et

al. [29]
spectral LLD +
cepstral LLD +
prosodic LLD + voice
quality LLD +
functionals

DNN AViD-Corpus unavailable unavailable

Kang et

al. [30]
spectral LLD +
prosodic

DNN AVEC2014 RMSE 7.37

LLD + articulatory
features

SRI’s submitted
system to

MAE 5.87

AVEC2014 Pearson’s Product
Moment

0.800

median-way
score-level fusion

Correlation coefficient

Tzirakis
et al. [36]

raw signal CNN and 2-layers
LSTM

RECOLA loss function based on
CCC

.440(arousal)

.787(valence)

Tzirakis
et al. [19]

raw signal CNN and LSTM RECOLA CCC .686(arousal)

.261(valence)

Tzirakis
et al. [22]

raw signal CNN RECOLA CCC .699(arousal)

.311(valence)
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representations, often present interesting patterns in the visual domain [31].
The visual representation of the spectrum of frequencies of a signal using its
spectrogram shows a set of specific repetitive patterns. Surprisingly and to the
best of our knowledge, it has not been reported in the literature a deep neural
network architecture that combines information from time, frequency and visual
domains for emotion recognition.

The first contribution of this work is a new deep neural network architec-
ture, called EmoAudioNet, that aggregate responses from a short-time spectral
analysis and from time-frequency audio texture classification and that extract
deep features representations in a learned embedding space. In a second contri-
bution, we propose EmoAudioNet-based approach for instantaneous prediction
of spontaneous and continuous emotions from speech. In particular, our spe-
cific contributions are as follows: (i) an automatic clinical depression recognition
and assessment embedding network (ii) a small size two-stream CNNs to map
audio data into two types of continuous emotional dimensions namely, arousal
and valence and (iii) through experiments, it is shown that EmoAudioNet-based
features outperforms the state-of-the art methods for predicting depression on
DAIC-WOZ dataset and for predicting valence and arousal dimensions in terms
of Pearson’s Coefficient Correlation (PCC).

Algorithm 1 EmoAudioNet embedding network.
Given two feature extractors fΘ and fφ, number of training steps N .
for iteration in range(N) do

(Xwav,ywav) ← batch of input wav files and labels
eSpec ← fΘ(Xwav) Spectrogram features
eMFCC ← fφ(Xwav) MFCC features
fMFCCSpec ← [eMFCC, eSpec] Feature-level fusion
pMFCCSpec ← fθ(eMFCCSpec) Predict class probabilities
LMFCCSpec = cross entropy loss(pMFCCSpec,ywav)
Obtain all gradients Δall = ( ∂L

∂Θ
, ∂L

∂φ
)

(Θ, φ, θ) ← ADAM(Δall) Update feature extractor and output heads’ parameters
simultaneously

end

4 Proposed Method

We seek to learn a deep audio representation that is trainable end-to-end for emo-
tion recognition. To achieve that, we propose a novel deep neural network called
EmoAudioNet, which performs low-level and high-level features extraction and
aggregation function learning jointly (See Algorithm 1). Thus, the input audio
signal is fed to a small size two-stream CNNs that outputs the final classifica-
tion scores. A data augmentation step is considered to increase the amount of
data by adding slightly modified copies of already existing data. The structure of
EmoAudioNet presents three main parts as shown in Fig. 1: (i) An MFCC-based
CNN, (ii) A spectrogram-based CNN and (iii) the aggregation of the responses
of the MFCC-based and the spectrogram-based CNNs. In the following, more
details about the three parts are given.
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4.1 Data Augmentation

Adata augmentation step is considered to overcome theproblemof data scarcity by
increasing the quantity of training data and also to improve the model’s robustness
to noise. Two different types of audio augmentation techniques are performed: (1)
Adding noise: mix the audio signal with random noise. Each mix z is generated
using z = x + α× rand(x) where x is the audio signal and α is the noise factor. In
our experiments, α = 0.01, 0.02 and 0.03. (2) Pitch Shifting: lower the pitch of
the audio sample by 3 values (in semitones): (0.5, 2 and 5).

Fig. 1. The diagram of the proposed deep neural networks architecture called EmoAu-
dioNet. The output layer is dense layer of size n neurones with a Softmax activation
function. n is defined according to the task. When the task concerns binary depres-
sion classification, n= 2. When the task concerns depression severity level assessment,
n= 24. While, n = 10 for arousal or valence prediction.

4.2 Spectrogram-Based CNN Stream

The spectrogram-based CNN presents low-level features descriptor followed by
a high-level features descriptor. The Low-level features descriptor is the spectro-
gram of the input audio signal and it is computed as a sequence of Fast Fourier
Transform (FFT) of windowed audio segments. The audio signal is split into
256 segments and the spectrum of each segment is computed. The Hamming
window is applied to each segment. The spectrogram plot is a color image of
1900 × 1200 × 3. The image is resized to 224 × 224 × 3 before being fed to the
High-level features descriptor. The high-Level features descriptor is a deep CNN,
it takes as input the spectrogram of the audio signal. Its architecture, as shown
in Fig. 1, is composed by two same blocks of layers. Each block is composed of
a two-dimensional (2D) convolutional layer followed by a ReLU activation func-
tion, a second convolutional layer, a ReLU, a dropout and max pooling layer, a
third convolutional layer and last ReLU.
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4.3 MFCC-Based CNN Stream

The MFCC-based CNN presents also a low-level followed by high-level features
descriptors (see Fig. 1). The low-level features descriptor is the MFCC features
of the input audio. To extract them, the speech signal is first divided into frames
by applying a Hamming windowing function of 2.5 s at fixed intervals of 500 ms.
A cepstral feature vector is then generated and the Discrete Fourier Transform
(DFT) is computed for each frame. Only the logarithm of the amplitude spec-
trum is retained. The spectrum is after smoothed and 24 spectral components
into 44100 frequency bins are collected in the Mel frequency scale. The com-
ponents of the Mel-spectral vectors calculated for each frame are highly corre-
lated. Therefore, the Karhunen-Loeve (KL) transform is applied and is approx-
imated by the Discrete Cosine Transform (DCT). Finally, 177 cepstral features
are obtained for each frame. After the extraction of the MFCC features, they
are fed to the high-Level features descriptor which is a small size CNN. To avoid
overfitting problem, only two one-dimensional (1D) convolutional layers followed
by a ReLU activation function each are performed.

4.4 Aggregation of the Spectrogram-Based and MFCC-Based
Responses

Combining the responses of the two deep streams CNNs allows to study simul-
taneously the time-frequency representation and the texture-like time frequency
representation of the audio signal. The output of the spectrogram-based CNN
is a feature vector of size 1152, while the output of the MFCC-based CNN is a
feature vector of size 2816. The responses of the two networks are concatenated
and then fed to a fully connected layer in order to generate the label prediction
of the emotion levels.

5 Experiments and Results

5.1 Datasets

Two publicly available datasets are used to evaluate the performances of EmoAu-
dioNet:

Dataset for Affect Recognition Experiments: RECOLA dataset [32] is a
multimodal corpus of affective interactions in French. 46 subjects participated
to data recordings. Only 23 audio recordings of 5 min of interaction are made
publicly available and used in our experiments. Participants engaged in a remote
discussion according to a survival task and six annotators measured emotion
continuously on two dimensions: valence and arousal.

Dataset for Depression Recognition and Assessment Experiments:
DAIC-WOZ depression dataset [33] is introduced in the AVEC2017 challenge
[4] and it provides audio recordings of clinical interviews of 189 participants.
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Each recording is labeled by the PHQ-8 score and the PHQ-8 binary. The PHQ-
8 score defines the severity level of depression of the participant and the PHQ-8
binary defines whether the participant is depressed or not. For technical rea-
sons, only 182 audio recordings are used. The average length of the recordings
is 15 min with a fixed sampling rate of 16 kHz.

5.2 Experimental Setup

Spectrogram-based CNN Architecture: The number of channels of the
convolutional and pooling layers are both 128. While their filter size is 3 × 3.
RELU is used as activation function for all the layers. The stride of the max
pooling is 8. The dropout fraction is 0.1.

Table 3. RECOLA dataset results for prediction of arousal. The results obtained for
the development and the test sets in term of three metrics: the accuracy, the Pearson’s
Coefficient Correlation (PCC) and the Root Mean Square error (RMSE).

Development Test

Accuracy PCC RMSE Accuracy PCC RMSE

MFCC-based CNN 81.93% 0.8130 0.1501 70.23% 0.6981 0.2065

Spectrogram-based CNN 80.20% 0.8157 0.1314 75.65% 0.7673 0.2099

EmoAudioNet 94.49% 0.9521 0.0082 89.30% 0.9069 0.1229

Table 4. RECOLA dataset results for prediction of valence. The results obtained for
the development and the test sets in term of three metrics: the accuracy, the Pearson’s
Coefficient Correlation (PCC) and the Root Mean Square error (RMSE).

Development Test

Accuracy PCC RMSE Accuracy PCC RMSE

MFCC-based CNN 83.37% 0.8289 0.1405 71.12% 0.6965 0.2082

Spectrogram-based CNN 78.32% 0.7984 0.1446 73.81% 0.7598 0.2132

EmoAudioNet 95.42% 0.9568 0.0625 91.44% 0.9221 0.1118

MFCC-based CNN Architecture: The input is one-dimensional and of size
177 × 1. The filter size of its two convolutional layers is 5 × 1. RELU is used as
activation function for all the layers. The dropout fraction is 0.1 and the stride
of the max pooling is 8.

EmoAudioNet Architecture: The two features vectors are concatenated and
fed to a fully connected layer of n neurones activated with a Softmax function.
n is defined according to the task. When the task concerns binary depression
classification, n = 2. When the task concerns depression severity level assessment,
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Fig. 2. Confusion Matrice of EmoAudioNet generated on the DAIC-WOZ test set

n = 24. While, n = 10 for arousal or valence prediction. The ADAM optimizer is
used. The learning rate is set experimentally to 10e−5 and it reduced when the
loss value stops decreasing. The batch size is fixed to 100 samples. The number
of epochs for training is set to 500. An early stopping is performed when the
accuracy stops improving after 10 epochs.

5.3 Experimental Results on Spontaneous and Continuous Emotion
Recognition from Speech

Results of Three Proposed CNN Architectures. The experimental results
of the three proposed architectures on predicting arousal and valence are given
in Table 3 and Table 4. EmoAudioNet outperforms MFCC-based CNN and the
spectrogram-based CNN with an accuracy of 89% and 91% for predicting aroural
and valence respectively. The accuracy of the MFCC-based CNN is around 70%
and 71% for arousal and valence respectively. The spectrogram-based CNN is
slightly better than the MFCC-based CNN and its accuracy is 76% for predicting
arousal and 74% for predicting valence.

EmoAudioNet has a Pearson Coefficient Correlation (PCC) of 0.91 for pre-
dicting arousal and 0.92 for predicting valence, and has also a Root Mean Square
of Error (RMSE) of 0.12 for arousal’s prediction and 0.11 for valence’s prediction.

Comparisons of EmoAudioNet and the Stat-of-the Art Methods for
Arousal and Valence Prediction on RECOLA Dataset. As shown in
Table 5, EmoAudioNet model has the best PCC of 0.9069 for arousal prediction.
In term of the RMSE, the approach proposed by He et al. [12] outperforms all
the existing methods with a RMSE equal to 0.099 in predicting arousal.

For valence prediction, EmoAudioNet outperforms state-of-the-art in predict-
ing valence with a PCC of 0.9221 without any fine-tuning. While the proposed
approach by He et al. [12] has the best RMSE of 0.104.
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Table 5. Comparisons of EmoAudioNet and the state-of-the art methods for arousal
and valence prediction on RECOLA dataset.

Arousal Valence

Method PCC RMSE PCC RMSE

He et al. [12] 0.836 0.099 0.529 0.104

Ringeval et al. [11] 0.322 0.173 0.144 0.127

EmoAudioNet 0.9069 0.1229 0.9221 0.1118

5.4 Experimental Results on Automatic Clinical Depression
Recognition and Assessment

EmoAudioNet framework is evaluated on two tasks on the DAIC-WOZ corpus.
The first task is to predict depression from speech under the PHQ-8 binary. The
second task is to predict the depression severity levels under the PHQ-8 scores.

EmoAudioNet Performances on Depression Recognition Task. EmoAu-
dioNet is trained to predict the PHQ-8 binary (0 for non-depression and 1 for
depression). The performances are summarized in Fig. 2. The overall accuracy
achieved in predicting depression reaches 73.25% with an RMSE of 0.467. On the
test set, 60.52% of the samples are correctly labeled with non-depression, whereas,
only 12.73% are correctly diagnosed with depression. The low rate of correct clas-
sification of non-depression can be explained by the imbalance of the input data
on the DAIC-WOZ dataset and the small amount of the participants labeled as
depressed. F1 score is designed to deal with the non-uniform distribution of class
labels by giving a weighted average of precision and recall. The non-depression
F1 score reaches 82% while the depression F1 score reaches 49%. Almost half
of the samples predicted with depression are correctly classified with a precision
of 51.71%. The number of non-depression samples is twice the number of sam-
ples labeled with depression. Thus, adding more samples of depressed participants
would significantly increase the model’s ability to recognize depression.

EmoAudioNet Performances on Depression Severity Levels Prediction
Task. The depression severity levels are assessed by the PHQ-8 scores ranging
from 0 for non-depression to 23 for severe depression. The RMSE achieved when
predicting the PHQ-8 scores is 2.6 times better than the one achieved with the
depression recognition task. The test loss reaches 0.18 compared to a 0.1 RMSE
on the training set.

Comparisons of EmoAudioNet and the State-of-the Art Methods for
Depression Prediction on DAIC-WOZ Dataset. Table 6 compares the per-
formances of EmoAudioNet with the state-of-the-art approaches evaluated on the
DAIC-WOZ dataset. To the best of our knowledge, in the literature, the best per-
forming approach is the proposed approach in [25] with an F1 score of 85.44%
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Table 6. Comparisons of EmoAudioNet and the stat-of-the art methods for prediction
of depression on DAIC-WOZ dataset. (*) The results of the depression severity level
prediction task. (**) for non-depression. (‡) for depression. (Norm): Normalized RMSE

Method Accuracy RMSE F1 Score

Yang et al. [8] – 1.46 (*) –
(depressed male)

Yang et al. [26] – 5.59 (*) –
(male)

Valstar et al. [3] – 7.78 (*) –

Al Hanai et al. [23] – 10.03 –

Salekin et al. [25] 96.7% – 85.44%

Ma et al. [34] – – 70% (**)

50% (‡)
Rejaibi et al. [35] 76.27% 0.4 85% (**)

46% (‡)
- 0.168Norm (*) -

EmoAudioNet 73.25% 0.467 82% (**)

49% (‡)
- 0.18Norm|4.14 (*) -

and an accuracy of 96.7%. The proposed NN2Vec features with BLSTM-MIL clas-
sifier achieves this good performance thanks to the leave-one-speaker out cross-
validation approach. Comparing to the other proposed approaches where a simple
train-test split is performed, giving the model the opportunity to train on multiple
train-test splits increase the model performances especially in small datasets.

In the depression recognition task, the EmoAudioNet outperforms the pro-
posed architecture in [34] based on a Convolutional Neural Network followed by
a Long Short-Term Memory network. The non-depression F1 score achieved with
EmoAudioNet is better than the latter by 13% with the exact same depression
F1 score (50%).

Moreover, the EmoAudioNet outperforms the LSTM network in [35] in cor-
rectly classifying samples of depression. The depression F1 score achieved with
EmoAudioNet is higher than the MFCC-based RNN by 4%. Meanwhile, the
overall accuracy and loss achieved by the latter are better than EmoAudioNet
by 2.14% and 0.07 respectively. According to the summarized results of previous
works in Table 6, the best results achieved so far in the depression severity level
prediction task are obtained in [35]. The best normalized RMSE is achieved with
the LSTM network to reach 0.168. EmoAudioNet reaches almost the same loss
with a very low difference of 0.012. Our proposed architecture outperforms the
rest of the results in the literature with the lowest normalized RMSE of 0.18 in
predicting depression severity levels (PHQ-8 scores) on the DAIC-WOZ dataset.
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6 Conclusion and Future Work

In this paper, we proposed a new emotion and affect recognition methods
from speech based on deep neural networks called EmoAudioNet. The proposed
EmoAudioNet deep neural networks architecture is the aggregation of an MFCC-
based CNN and a spectrogram-based CNN, which studies the time-frequency
representation and the visual representation of the spectrum of frequencies of the
audio signal. EmoAudioNet gives promising results and it approaches or outper-
forms state-of-art approaches of continuous dimensional affect recognition and
automatic depression recognition from speech on RECOLA and DAIC-WOZ
databases. In future work, we are planning (1) to improve the EmoAudioNet
architecture with the given possible improvements in the discussion section and
(2) to use EmoAudioNet architecture to develop a computer-assisted application
for patient monitoring for mood disorders.
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