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Abstract. Supervised Machine Learning systems such as Convolutional
Neural Networks (CNNs) are known for their great need for labeled data.
However, in case of geospatial data and especially in terms of Airborne
Laserscanning (ALS) point clouds, labeled data is rather scarce, hin-
dering the application of such systems. Therefore, we rely on Active
Learning (AL) for significantly reducing necessary labels and we aim at
gaining a deeper understanding on its working principle for ALS point
clouds. Since the key element of AL is sampling of most informative
points, we compare different basic sampling strategies and try to fur-
ther improve them for geospatial data. While AL reduces total labeling
effort, the basic issue of experts doing this labor- and therefore cost-
intensive task remains. Therefore, we propose to outsource data anno-
tation to the crowd. However, when employing crowdworkers, labeling
errors are inevitable. As a remedy, we aim on selecting points, which
are easier for interpretation and evaluate the robustness of AL to label-
ing errors. Applying these strategies for different classifiers, we estimate
realistic segmentation results from crowdsourced data solely, only differ-
ing in Overall Accuracy by about 3% points compared to results based
on completely labeled dataset, which is demonstrated for two different
scenes.

Keywords: Active Learning · Crowdsourcing · 3D point clouds ·
Classification · Labeling · Random Forest · Sparse 3D CNN

1 Introduction

A paramount requirement of supervised Machine Learning (ML) systems is
labeled training data. Especially, since the renaissance of neural networks in the
form of Convolutional Neural Networks (CNNs) there is an increasing demand
for large pools of high-quality training data. In this context, huge effort was put
in establishing massive annotated data corpora such as ImageNet [7] and Cifar-
10 & Cifar-100 [18]. However, in the context of geospatial data such labeled
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datasets are rather scarce, which especially applies to 3D point clouds. One
publicly available dataset is the ISPRS Vaihingen 3D Semantic Labeling bench-
mark (V3D) [25], which was manually annotated by experts. This annotation
process is a highly labor-intensive and therefore costly task.

One method for significantly reducing the necessity of labeled training sam-
ples provided by human annotators is Active Learning (AL). The major goal
of AL is to maintain the performance of a ML system, while only focusing on
a subset of instances from a training pool inhering most information [28]. First
AL approaches focused on Support Vector Machines (SVMs) [6], which are well
suited for such approaches by design. Ertekin et al. [8] exploited the idea of
SVMs of only focusing on points close to the decision boundary by sampling
points to be labeled in the vicinity of already learned SVM hyperplanes. More
general methods for detecting most informative points focus on the predicted
a posteriori probability of a classifier making them more independent of the
ML model used. A comprehensive overview of these methods of the pre-Deep
Learning era is given by Settles [28]. When using CNNs, Gal and Ghahramani
[10] recommend to form Monte Carlo dropout ensembles in order to overcome
overestimation of a posteriori probabilities often observed in case of CNNs.

Regardless of the classifier used, AL selection criteria are typically designed
for requesting the label of one specific data point per iteration step based on
some informativeness measure [28]. However, retraining a classifier each time
one individual point is added to the training pool is computationally expensive
and will only marginally improve its performance, especially when employing
CNNs. Because of this, most commonly batch-mode AL is preferred [15,24]. On
the other hand, when adding multiple instances to the training pool based on
one classification process, it is very likely that all sampled points are similar in
terms of their representation in feature space. In order to increase the diversity
of selected samples to boost convergence of the AL process multiple methods
have been proposed [16,35].

While using AL for predicting land cover maps from hyperspectral imagery
was studied extensively [26,29], only few investigations were conducted on apply-
ing AL for the semantic segmentation of Airborne Laserscanning (ALS) point
clouds. Hui et al. [14] use a fully automated AL approach for filtering ground
points to derive digital terrain models, focusing on a binary segmentation. Li
and Pfeifer [19] rely on AL for predicting multiple land cover classes from ALS
data by automatic propagation of labels from an initial training dataset without
including human annotators. Luo et al. [23] present an approach for semantic
segmentation of Mobile Mapping point clouds employing a voxel-based higher
order Markov Random Field. Closest related to our method are the findings of
Lin et al. [20], who employ the PointNet++ architecture to ALS point clouds.
The authors realize a tile-based approach, where in each iteration step most
informative tiles are queried, fully labeled and added to the training pool.

All previously discussed works describe efficient means to reduce the total
amount of necessary labels, but these labels are typically still provided by an
expert. Our goal is not only to reduce effort of experts but to completely shift
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and outsource labeling effort to non-experts, namely to the crowd. It is already
proven that crowdsourcing is well suited for annotating geospatial data [31,32].
This enables running a fully automated human-in-the-loop [3] pipeline exploiting
capabilities of the online crowdsourcing platform Microworkers [13] as described
by Kölle et al. [17]. Such hybrid intelligence systems were also discussed by
Vaughan [30] for combining the individual strengths of both parties.

While in Kölle et al. [17] we mainly concentrated on the performance of the
human operator given by the crowd, the emphasis of this work lies on the role of
the machine. Therefore, our contributions can be summarized as follows: i) We
focus on a deeper understanding of applying AL to geospatial data represented
by ALS point clouds. ii) This includes a detailed comparison of different selec-
tion strategies provided in literature, which we enhance by different methods for
faster convergence. These strategies are applied for both a feature-driven Ran-
dom Forest (RF) [4] and a data-driven CNN approach. iii) While in literature
usually receiving true labels from an oracle is assumed, this hardly holds true
for actual labeling of data by experts and is especially unrealistic in case of paid
crowdworkers, where labeling errors are inevitable. We therefore test the robust-
ness of our approach, address it using a special sampling strategy and estimate
results, which are realistic for the crowd to reach.

2 Methodology

In typical ML scenarios Passive Learning (PL) is applied, where a previously
labeled data pool is used for training. In contrast to this, in AL a model is
actively involved in establishing such a training dataset. Precisely, after an initial
training step the classifier points out instances, which carry most information and
are therefore a reasonable addition to the training dataset justifying annotation
effort by a human operator. Thus, the inherent hypothesis is that only a small
subset of the dataset is required for sufficiently training a classifier.

Fig. 1. Visualization of Support Vectors of V3D training dataset (right) compared to
reference labeling (left). (Color figure online)

This is also the idea underlying the SVM. When training such a model, Sup-
port Vectors are determined, which define class-separating hyperplanes in feature
space. Only these Support Vectors are afterwards used in inference, which means
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Fig. 2. Derived pointwise scores of the first iteration step (left) and the last iteration
step (right). Color scale ranges from dark blue = low sampling priority to orange = high
sampling priority. Points missing on the right were selected and added to T . (Color
figure online)

that only those instances impact the performance of the trained model. When
further pursuing the concept of SVM, we assume that most informative samples
are always located in close proximity to the decision boundary. Instances located
here are most demanding to classify since they incorporate features of two or
more different classes. In context of ALS point clouds, such points naturally are
also situated on class borders in object space, so that delineation lines of indi-
vidual class occurrences can clearly be observed and compared to the reference
labeling in Fig. 1. Only 21.68% of provided training points were considered Sup-
port Vectors supporting the hypothesis that only a fraction of points needs to
be labeled. When used within PL, the SVM utilizes all instances in proximity of
the separating hyperplanes until exhaustion of such points.

However, in AL typically significantly fewer labels are required [15,19,24].
Precisely, only a subset of these points closest to the decision boundary is consti-
tuted iteratively. In every iteration step only a limited number of points that cur-
rently represent most uncertainty and therefore most information (see Sect. 2.2)
is drawn from an unlabeled training pool U , labeled by a so-called oracle O and
added to the training pool T . After retraining a classifier C based on expanded
T , C becomes much more certain when predicting on points of the remaining
training data set R = U \ T , which are similar to those recently added. There-
fore, sampling quasi-duplicates can be limited. Vice versa for our experiments
presented in Sect. 3 up to 81.21% of instances selected within the AL procedure
are actually Support Vectors. Selection of Non-Support Vectors mainly happens
in early iteration steps where easy to interpret points are queried, which are
however not included in T so far. The behavior of the AL process can also
be traced in Fig. 2, where the model’s uncertainty (measured by Eq. 1) of the
initial iteration step is compared to that of the last step (30 iteration steps
have been conducted). Both results underline that points in close proximity to
class boundaries in object space are most complex for automatic interpretation,
which persists throughout the complete iteration process. We can also observe
that in total the model becomes more confident in its decisions (e.g. points on
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roofs and vegetation becoming dark blue) and the uncertainty margin shrinks to
an extent of close to class boundaries.

Based on this conceptional foundation, we now address the main components
of AL: i) the employed classifier (Sect. 2.1), ii) the sampling strategy for detecting
most informative instances (Sect. 2.2) and iii) the employed oracle (Sect. 2.3).

2.1 Employed Classifiers

For enabling a feature-based RF classifier, a selection of handcrafted geometric
and radiometric features is taken from literature [2,5,33] and used within this
work (detailed description of features can be found in Haala et al. [12]). All
features are computed for each point considering spherical point neighborhoods
of 1, 2, 3 and 5 m, so that a multi-scale approach is realized. Employing the RF
classifier within the AL scenario is straightforward for its pointwise functionality.
We can simply transfer selected points from U to T and use points included in T
as individual instances since point neighborhoods were already sufficiently taken
into account in the preprocessing, i.e. feature computation. This is a fundamental
difference to employing a CNN approach, which we oppose to the RF classifier.

In contrast to applying PointNet++ as Lin et al. [20], we employ the voxel-
based Sparse Convolutional Neural Network (SCNN) [11], transferred for usage
on ALS point clouds by Schmohl and Sörgel [27]. Compared to this work, we
train slightly shallower networks (4 U-Net levels), which are more stable when
trained on such few labeled points. The obsolescent need of handcrafted features
in Deep Learning is not necessarily advantageous in case of AL, since in every
iteration step features need to be relearned or at least refined based on the newly
added training points. We therefore also have to include their (non-labeled)
surrounding points as input to the network for spatial context. Such points do
not directly contribute to the training loss, but assist feature learning/refinement
due to their passive presence. However, this is computationally more complex
than computing features only one time in advance of the AL loop as for the
RF. To reduce training effort, we initialize the network weights and learning
rate in each AL iteration step by adopting respective values from the previous
one, yielding faster convergence. For each step, we establish an ensemble of 5
differently weight-initialized models.

For dynamic adaption of learning rate and early stopping of the training
procedure, a validation dataset is required. In case of AL it is not reasonable
to exclude a pre-defined area of the training dataset for this, since the spatial
distribution of labeled points in the training set is not known before. Therefore,
in each iteration step we randomly pick 20% of points of each class from T
and use it to validate our model. Consequently, our validation dataset is more
related to the training dataset than in PL, but consists only of most informative
points, which are more demanding for classification than conventional validation
datasets mitigating this issue.
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2.2 Selection Strategies

When applying the trivial strategy of sampling points by randomly picking, it
is to be expected that a mixture of both most and low informative points will
be selected causing prolonged convergence time of the iteration process. Fur-
thermore, random sampling lacks applicability for highly inhomogeneous class
distributions, which are common for ALS point clouds. More directed strategies
aim at detecting points where the intrinsic confidence of the model is minimum
based on the a posteriori probability p(c|x) that point x belongs to class c. Since
strategies such as Least Certainty Sampling and Breaking Ties [28] only con-
sider a fraction of predictive information (provided that multi-class problem is
to be solved), we decide to rely on Entropy (E ). Points having greatest E are
considered to be informative, since E is maximum for an equal distribution of a
posteriori probabilities and minimum for one class having a p(c|x) of 1:

xE = argmax
x

−
∑

c

p(c|x) · log p(c|x) (1)

The aforementioned measures can be summarized as Query-by-Uncertainty [28].
When applying an ensemble classifier (e.g. RF), uncertainty can additionally be
measured as disagreement between different models pursuing the idea of Query-
by-Committee. This can be achieved by Vote Entropy (VE ) [1], where we assume
to have e ensemble members each predicting a posteriori probabilities for each
class placed in Pe. Each member is allowed to vote for one class (the one having
highest p(c|x)). These votings are then evaluated for each class establishing a
new distribution, which is normalized by the number of ensemble members Ne

and evaluated using the entropy formula:

xV E = argmax
x

−
∑

c

∑
e D(Pe, c)

Ne
· log

∑
e D(Pe, c)

Ne

where D(Pe, c) =

{
1, if argmax(Pe) = c

0, otherwise

(2)

The rationale of VE is that the class of one individual instance can be predicted
with high confidence as long as most ensemble members vote for this class even
if the maximum a posteriori probability is rather low.

For both VE and E, we can easily introduce a sampling method yielding a
more equal distribution of classes in the created training dataset, which can be
accomplished by individual class weighting. Precisely, these weights are calcu-
lated dynamically as ratio of the total number of points NT currently present
in T and the number of representatives of each class Nc at iteration step t
(wc(t) = NT (t)/Nc(t)). These weights are then multiplied by the individual
score of the respective class (E : p(c|x), VE :

∑
e D(Pe, c)/Ne) before inserting

into the entropy formula and referred to as wE and wVE respectively.
For efficiency reasons, we aim at selecting and adding multiple points per

iteration step to our training dataset according to pool-based AL. Since similar
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Fig. 3. Subsets of via E sampled points (cyan) from two exemplary iteration steps
visualized in the training point cloud colorized according to reference data. (Color
figure online)

points in feature space yield similar uncertainty scores, sampling quasi-duplicates
inhering same information is likely, when only considering this score. In case of
ALS point clouds such points typically appear as clusters in object space (see
Fig. 3), which is why increasing diversity is related to increasing the distance
between sampled points. Consequently, we consider the scores gained by any
selection strategy as priority list for creating Diversity in Object Space (DiOS ).
Based on the order in this list, points are transferred from R to T if the dis-
tance to all points previously selected within this iteration step is greater than
dDiOS . While such methods are commonly realized in feature space [16,34], this
procedure directly works in object space, which is of course mainly applicable
for geospatial data where an interpretable object space is present.

As a second method we resort to Diversity in Feature Space (DiFS ) accord-
ing to Zhdanov [35]. For this we aim at detecting clusters of similar points with
regard to their representation in feature space. For focusing on most informative
points, we additionally use the score of each instance derived by any of the afore-
mentioned selection strategies as individual weight and combine both measures
by running a weighted k-means clustering [21]. Afterwards, from every cluster
formed, we sample the same number of instances with the highest scores. In
order to reduce computational effort, for this procedure we only consider nDiFS

points having highest selection scores since we can assume that points yielding
low scores will not improve our model.

Considering our ultimate goal of crowdworkers labeling selected points, we
assume that increasing distance to the class boundary is helpful for a better
and unambiguous interpretability and helps avoiding weariness of crowdworkers
resulting in less labeling errors. As already seen in Fig. 2, in case of geospatial
data analysis spatial distance to class boundary is closely related to distance
to decision boundary. Therefore, we identify informative points by any of the
aforementioned measures and consider neighboring points for labeling instead.
Precisely, for Reducing Interpretation Uncertainty (RIU ) we use a spherical
neighborhood of radius dRIU centered in a selected point (seed point) and search
within this neighborhood for the lowest score. This point is then presented for
labeling instead of the original seed point. This procedure is exemplary visualized
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for different values of dRIU (i.e. max. distance from the seed point) in Fig. 4 and
demonstrates that distance to the class boundary can be efficiently increased.

Fig. 4. Increasing distance to decision boundary. Instead of the seed point (cyan), we
select a point further away from the class border, allowing maximum 3D radii dRIU of
1.5 m (yellow) and 4 m (pink) indicated by respective circles. (Color figure online)

2.3 Employed Oracle

In the context of the proposed human-in-the-loop pipeline, previous sections
focused on the role of the machine for querying most informative points, whereby
respective labels are intended to be received from a human annotator. However,
in most studies this operator is replaced by an omniscient oracle OO, which
always labels correctly according to the reference data. Especially for paid crowd-
sourcing relying on non-experts this assumption is not justified [32]. Lockhart
et al. [22] differentiate between two types of erroneous oracles, namely noisy and
confused oracles (ON and OC). The noisy oracle behavior ON applies both to
a human annotator, who has a well understanding of the task but randomly
misclassifies some points, and to a crowdworker, who is not paying attention
at all and, often observed in crowdsourcing [9], just picks classes randomly. A
confused oracle on the other hand misclassifies points by always confusing the
same classes (according to some distinct mapping), for instance Fence/Hedge vs.
Shrub or Roof vs. Façade. This problem occurs especially in AL where focus lies
on most informative points, which are situated on or near to class boundaries.

2.4 Datasets

We test our method on two different datasets of individual characteristics. A sub-
urban scene featuring single family houses and building blocks is represented by
the V3D dataset [25] (visualized in Fig. 1). This point cloud captured in August
2008 incorporates a total of 9 classes (see Table 2). The point density is about
4−8 pts/m2. In order to also derive color features the point cloud is colorized by
orthogonal projection of corresponding CIR images. As second dataset we rely on
an UAV LiDAR point cloud colorized by simultaneously acquired imagery and
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captured in March 2018 using the same flight mission parameters as in Haala
et al. [12], henceforth referred to as Hessigheim 3D (H3D)1. The point density
is about 800 pts/m2, but for efficiency reasons, spatial subsampling to a mini-
mum point distance of 0.3 m was applied. The point cloud representing a rural
village was manually annotated by the authors using a fine-grained class scheme
consisting of 12 classes (see Table 3). For both datasets the initial training set is
provided by the crowd as outlined in Kölle et al. [17].

3 Results

3.1 Comparison of Selection Strategies

For evaluating, which strategy for selecting most informative points works best,
we apply those presented in Sect. 2.2 on the V3D dataset in combination with
the RF classifier using 30 iteration steps and a batch size of 300. We rely on
an ensemble of 100 binary decision trees having a maximum depth of 18. The
performance throughout the iteration loop is depicted in Fig. 5 (left). We want
to stress that all our results are obtained after only labeling a small fraction
of 1.15% from U . Accuracies within this work are evaluated for a distinct test
dataset disjoint to the respective training dataset (i.e. samples are only drawn
from U).

Fig. 5. Comparison of different selection strategies in combination with our RF (left)
and our SCNN (right) classifier applied to the V3D dataset and evaluated according to
F1-scores. For reference, the dotted black line depicts the mean F1-score for PL using
the completely labeled dataset. (Color figure online)

Although the performance of random sampling rises steeply at first, it soon
settles at a mean F1-score of about 60%, since less frequent classes are not
1 Dataset will be made publicly available in early 2021.
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selected sufficiently. Later it is outperformed by sampling strategies such as
E or VE. These in turn are exceeded by the enhanced strategies by applying
individual class weights in each iteration step (wE and wVE ), since for every
class a sufficient almost equally distributed number of labeled points is obtained.
Nevertheless, one disadvantage of these weighting strategies is the resulting com-
paratively slow (but steady) increase in performance. Motivated by the strong
performance gain of random sampling in early iteration steps due to selecting
a greater bandwidth of points, we apply both DiOS using an empirically deter-
mined value for dDiOS of 5 m and DiFS, where we set nDiFS to 10.000 and form
300 clusters (see also Sect. 2.2). We analyze the effect of these two strategies for
wE, which has proven to be an efficient sampling strategy regarding the reach-
able accuracy in the later course of the iteration. Figure 5 (left) outlines that
both strategies of increasing diversity positively impact the performance of the
AL loop.

We want to stress that increasing diversity especially boosts the convergence
of the AL loop, which means that less iteration steps are necessary for reach-
ing the same performance of the trained model as if more iteration steps are
conducted. For instance, applying wE +DiFS achieves convergence after only
10 iteration steps. At this time, basic wE reaches a mean F1-score of about
10% points less. For reaching an accuracy similar to wE +DiFS, wE requires 10
iteration steps more and therefore additional labeling of 3000 points (10 itera-
tion steps and batch size of 300). Relative to DiFS, the DiOS strategy performs
slightly worse especially in the course of the first few iteration steps, but still
outperforms the baseline of pure wE.

3.2 Comparison of Employed Classifiers

For comparing our SCNN classifier to the RF we focus on the selection strategies
that have proven to be most effective (wE, wE +DiFS ), visualized in Fig. 5
(right), which is to be interpreted relative to Fig. 5 (left). Regarding these two
strategies, for both classifiers roughly the same number of iteration steps is
necessary for convergence. The performance of SCNN increases more steadily
and especially high-frequency oscillations do not occur because in contrast to
the RF, each model is only retrained in each iteration step and not trained from
scratch again. Although for our best strategy (wE +DiFS ) both classifiers reach
a similar accuracy, that of SCNN rises not as fast as for the RF (after 10 iteration
steps mean F1-score for RF: 67% vs. SCNN: 64%). Furthermore, SCNN fails to
exceed the accuracy of PL on the completely labeled dataset, which might be
due to overfitting regarding the sparsely labeled training dataset. Nevertheless,
the difference in Overall Accuracy (OA) between PL and AL is less than 3%
points (see Table 2).

3.3 Comparison of Different Oracle Types

All aforementioned results assume an oracle behaving like OO, which can
hardly be observed when working with real crowdworkers. For the more jus-
tified assumption of a noisy or a confused oracle we simulate 10%, 30%, 50%
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Table 1. Behavior of our confused oracle regarding the V3D dataset.

True label Powerl L. Veg I. Surf Car Fence Roof Façade Shrub Tree

Confused with Roof Fence Façade I. Surf Shrub Façade Roof Tree Shrub

and 100% erroneous labels received in both cases. For the noisy oracle ON we
randomly use any label (excluding the true one). Regarding the systematically
confused mapping of OC , we apply most observed confusions when employing
real crowdworkers as presented in Kölle et al. [17], which are summarized in
Table 1.

Fig. 6. Comparison of different AL-scenarios when relying on real crowdworkers for
the V3D dataset using RF and wE +DiFS (black line represents PL): simulated crowd
errors (left) and impact of increasing distance to the class border via RIU (right).
(Color figure online)

Fig. 7. Comparison of reachable accuracies (normalized confusion matrices) of the
crowd when using different values for dRIU . From left to right: dRIU = 0 m/1.5 m and
4 m. Accuracies are aggregated via majority vote from 3 acquisitions per point.
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This simulation is based on the RF classifier using wE +DiFS with a batch
size of 300 for sampling. As visualized in Fig. 6 (left), OO leads as expected
to one of the best performances of the AL loop together with ON (10%) and
OC(10%) demonstrating the robustness of our pipeline to a moderate number
of labeling errors. All other oracle behaviors naturally diminish accuracies to
some extent. Generally it is observable that the confused oracle is especially
harmful to the AL loop since systematic false labeling (e.g. according to Table 1)
is induced. For instance, the RF performs significantly better when the oracle
labels 50% of points randomly false compared to when only 30% of points are
labeled systematically false. Other mapping functions of malicious crowdworkers
(for instance, labeling all points same or according to any absurd function) are
not considered, since such workers can be easily identified using control tasks.

Since our proposed method for minimizing confused labeling (RIU ) is only
reasonable when the performance of the AL loop can be uphold, we simulate
respective AL runs in Fig. 6 (right). While increasing the distance to the class
border by maximum 1.5 m has no significant impact on the performance of the
AL iteration, dRIU = 4 m causes the mean F1-score to drop significantly. This
is due to selecting less informative samples (i.e. points further away from the
class boundary) or that points belonging to a different class than the seed point
are selected (see Fig. 4 (right) where with dRIU = 4 m a street point is selected
instead of a car point).

In order to evaluate whether this method helps crowdworkers labeling points,
we conducted three crowdsourcing campaigns using the same parameters as for
the simulation in Fig. 4 (right) and varied dRIU = 0 m/1.5 m/4 m. We offered
these jobs to the crowd using the Microworkers platform as discussed in Kölle
et al. [17]. Figure 7 proves our hypothesis that increasing distance to class bound-
aries is closely tied to label accuracy of crowdworkers. OA was improved from
68% for dRIU = 0 m to 86% for 1.5 m and to 94% for 4 m. For dRIU = 0 m typical
confusion is due to bivalent interpretation possibilities, for instance classes Roof
vs. Façade, Impervious Surface vs. Low Vegetation and Shrub vs. Fence/Hedge.
Confusion between Roof and Powerline is mainly caused by the sparsity of the
V3D dataset where powerlines are just single points in air difficult for interpre-
tation. Although the labeling accuracy of most classes improves when increasing
distance to decision boundary, this does not hold for class Shrub, which is either
confused with Low Vegetation in case of dRIU = 1.5 m or Tree for dRIU = 4 m.
This might rather be a problem of misunderstanding of this class and can there-
fore not be resolved by this strategy.

3.4 Estimation of Reachable Accuracies with Real Crowdworkers

Finally all previous findings are combined in order to estimate the performance
of our proposed human-in-the-loop pipeline for our two datasets (Table 2 and 3)
and classifiers (Table 2). In each table we compare the respective result of PL
on the completely labeled training dataset to AL using wE +DiFS, stepwise
adding RIU (dRIU = 1.5 m, for avoiding OC) and a noisy oracle ON (10%)
(noise assumed to be 10% following Kölle et al. [17] and Fig. 7). Table 2 outlines
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Table 2. Comparison of reachable accuracies [%] for different training approaches and
assumed oracles using RF and SCNN for the V3D dataset.

Method F1-score OA

Powerl L. Veg I. Surf Car Fence Roof Façade Shrub Tree

RF

PL 48.39 83.16 91.93 72.68 14.94 95.17 64.30 40.60 80.73 84.25

wE +DiFS 61.90 80.53 90.24 73.12 28.58 94.14 57.08 43.55 78.99 82.43

wE +DiFS +RIU 67.35 79.37 89.50 70.32 28.53 92.77 60.45 39.62 79.24 81.59

wE +DiFS +RIU +ON 68.85 79.44 90.16 69.43 27.44 92.64 58.06 36.66 77.00 81.17

SCNN

PL 42.11 81.40 91.11 72.15 41.22 94.10 59.65 48.87 83.88 83.86

wE +DiFS 60.57 79.31 88.59 72.28 24.92 91.21 55.34 43.44 80.16 81.13

wE +DiFS +RIU 63.02 79.52 89.62 75.03 26.33 91.18 54.41 38.45 78.27 80.91

wE +DiFS +RIU +ON 60.68 78.89 89.48 74.09 22.29 90.64 53.77 39.10 78.54 80.59

Table 3. Comparison of reachable accuracies [%] for different training approaches and
assumed oracles using RF for the H3D dataset.

Method F1-score OA

Powerl L. Veg I. Surf Car U. Fur Roof Façade Shrub Tree Gravel V. Surf Chim

PL 30.37 93.59 80.23 42.74 36.71 93.80 83.03 71.11 97.84 32.10 40.93 40.82 84.85

wE +DiFS 26.10 88.24 81.71 65.31 32.97 89.76 77.53 65.33 94.76 48.65 64.06 76.22 83.82

wE +DiFS +RIU 32.67 87.88 85.29 37.93 34.29 89.65 73.30 61.69 94.40 42.33 57.63 59.81 83.22

wE +DiFS +RIU

+ ON

36.00 86.70 82.74 38.73 26.90 90.08 73.85 60.96 93.54 48.48 56.14 58.75 82.22

that for the RF, wE +DiFS allows to achieve a segmentation result, which only
differs in OA by less than 2% points from PL while only requiring labeling of
1.15% of points from U (assuming unrealistic OO). When supporting the crowd
by RIU, our results still differ less than 3% points from the baseline result of PL
or only marginally worse when additionally adding ON . Compared to our RF
classifier, the SCNN yields a slightly bigger loss in OA when applying AL, which
is due to the aforementioned overfitting issue. Assuming real crowdworkers (i.e.
with RIU and ON ), respective accuracies are less diminished than for the RF.

For the H3D dataset (Table 3) except for nDiFS , which was increased to
100.000 due to the higher point count, all parameters are same as before. Here,
sampling and labeling of just 0.59% of U and assuming a realistic crowd oracle
only diminishes the OA by less than 3% points. We further observed that under-
represented classes such as Powerline, Gravel, Vertical Surface and Chimney
tend to perform better using AL strategies while the accuracies of overrepre-
sented classes decrease marginally. Independent of the dataset, when using AL
and considering a real crowd (last row in each table), the impact on classes
Façade, Shrub and Urban Furniture (H3D) is greatest. This is mainly due to the
great diversity within these classes. For example, with regard to Façade consider
any type of façade furniture such as balconies, signs and lamps. Such structures
might not be sufficiently sampled by AL and especially by RIU.
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4 Conclusion

Within this paper we have shown that AL is a well founded approach for cru-
cially reducing labeling effort for semantic segmentation, since annotation is
targeted to the most informative 3D points following a similar pattern as the
SVM. Basic AL sampling strategies can be purposefully enhanced by means of
increasing diversity within one batch when using pool-based AL, thereby further
boosting convergence of the iteration. Furthermore, we have proven that even
CNN approaches can efficiently work with minimum training datasets. Since our
ultimate goal is to shift labeling effort to the crowd, we aim to ease labeling for
non-experts using RIU in order to avoid systematic errors, for we have demon-
strated that especially the confused oracle greatly diminishes the performance
of AL. Although RIU allows to significantly improve accuracies achieved by the
crowd, labeling errors, which are of subjective nature and mainly caused by
individual class understanding (e.g. Tree vs. Shrub), can hardly be avoided.

This work provides an in-depth understanding of the AL part of our proposed
hybrid intelligence system where the machine learns solely from the crowd. In
order to fully integrate the crowd into the AL loop respective web tools as pre-
sented in Kölle et al. [17] are essential. Eventually, we estimate plausible segmen-
tation results for our classifiers (the machine) working together with real human
operators (the crowd). We demonstrate that when labeling 1.15% (V3D)/0.59%
(H3D) of available training points we can achieve an OA of only about 3% points
less compared to PL on the completely labeled training dataset.
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