
The Forchheim Image Database
for Camera Identification in the Wild

Benjamin Hadwiger and Christian Riess(B)

Multimedia Security Group, IT-Security Infrastructures Lab,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

{benjamin.hadwiger,christian.riess}@fau.de
https://www.cs1.tf.fau.de/research/multimedia-security/

Abstract. Image provenance can represent crucial knowledge in crimi-
nal investigation and journalistic fact checking. In the last two decades,
numerous algorithms have been proposed for obtaining information on
the source camera and distribution history of an image. For a fair rank-
ing of these techniques, it is important to rigorously assess their per-
formance on practically relevant test cases. To this end, a number of
datasets have been proposed. However, we argue that there is a gap in
existing databases: to our knowledge, there is currently no dataset that
simultaneously satisfies two goals, namely a) to cleanly separate scene
content and forensic traces, and b) to support realistic post-processing
like social media recompression.

In this work, we propose the Forchheim Image Database (FODB) to
close this gap. It consists of more than 23,000 images of 143 scenes by
27 smartphone cameras, and it allows to cleanly separate image content
from forensic artifacts. Each image is provided in 6 different qualities:
the original camera-native version, and five copies from social networks.
We demonstrate the usefulness of FODB in an evaluation of methods
for camera identification. We report three findings. First, the recently
proposed general-purpose EfficientNet remarkably outperforms several
dedicated forensic CNNs both on clean and compressed images. Second,
classifiers obtain a performance boost even on unknown post-processing
after augmentation by artificial degradations. Third, FODB’s clean sep-
aration of scene content and forensic traces imposes important, rigorous
boundary conditions for algorithm benchmarking.

Keywords: Camera identification · Benchmark dataset ·
Post-processing

1 Introduction

With the emergence of affordable smartphones, it became straightforward to
record images and videos and to share them via social networks. However, this
opportunity can also be abused for unlawful purposes. For instance, multime-
dia samples can depict illicit content like CSEM/CSAM, violate copyright, or
c© Springer Nature Switzerland AG 2021
A. Del Bimbo et al. (Eds.): ICPR 2020 Workshops, LNCS 12666, pp. 500–515, 2021.
https://doi.org/10.1007/978-3-030-68780-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68780-9_40&domain=pdf
http://orcid.org/0000-0003-0646-8993
http://orcid.org/0000-0002-5556-5338
https://doi.org/10.1007/978-3-030-68780-9_40

The Forchheim Image Database for Camera Identification in the Wild 501

Fig. 1. Example images from the Forchheim Image Database

be intentionally aimed at deceiving the viewer. In such cases, authorship and
authenticity of multimedia items can be a central question for criminal prosecu-
tion.

This motivated researchers to develop numerous image forensics algorithms
over the last two decades. Initial methods mostly model imaging artifacts [12,
19,20]. More recently, deep learning-based approaches [4,6,9,17,23,25,26,33,34]
achieve state-of-the-art results. These techniques enable a forensic analyst
to detect and localize manipulations [9,12,17,34], and to identify the source
device [4,19,20,26,33] or distribution history of images or videos [6,23,25]. In
this work, we limit our focus on the latter two tasks on images.

The assessment of the real-world applicability of algorithms requires con-
sistent evaluation protocols with standard benchmark datasets. In 2010, Gloe
and Böhme proposed the Dresden Image Database (DIDB) [15], the first large-
scale benchmark for camera identification algorithms. It consists of nearly 17,000
images of 73 devices depicting 83 scenes. All devices record the same scenes. This
is particularly important for aligning training/test splits with the scene content.
Doing so prevents the danger of opening a side channel through scene content,
which may lead to overly optimistic results [4,19].

The DIDB became one of the most important benchmark datasets in the
research community. However, it only consists of DSLR and compact cameras,
whereas today most images are recorded with smartphones. Also postprocessed
versions of the images from social network sharing are not part of this dataset.

More recently, Shullani et al. proposed VISION [29], an image and video
database for benchmarking forensic algorithms. It contains over 34,000 images
in total, from 35 smartphones and tablet cameras. A subset of the images has

502 B. Hadwiger and C. Riess

been shared through Facebook and Whatsapp. This enables to investigate the
impact of realistic post-processing on forensic traces.

A limitation of VISION is that the images show arbitrary scenes. Thus, a
training/test split by scenes is not possible. Moreover, the scenes of images from
the same camera are in some cases highly correlated. While this may be no issue
for methods that strictly operate on noise residuals (e.g., PRNU-based finger-
printing [20]), it can open a side-channel for end-to-end Convolutional Neural
Networks (CNNs), which potentially leads to overly optimistic evaluation results.

In this paper, we propose the Forchheim Image Database (FODB), a new
benchmark combining the advantages of DIDB and VISION. It consists of 143
scenes, each captured with 27 smartphone cameras. Each image has been shared
through the 5 social media apps by Facebook, Instagram, Telegram, Twitter, and
Whatsapp. This yields a total of over 23,000 JPEG images. Examples from the
database are shown in Fig. 1. FODB allows training/test splits without scene
overlap, and simultaneously supports robustness evaluations under real-world
post-processing. Hence, it allows rigorous camera association benchmarking on
real-world post-processing. To demonstrate the use of the dataset, we perform
a benchmark of CNN-based camera identification, which brings insights into
relative CNN performances, generalization to unseen post-processing, and per-
formance impacts of scene splitting. In summary, our main contributions are:

– We propose FODB, a new large-scale database for evaluating image forensics
algorithms in the wild. FODB is publicly available at:
https://faui1-files.cs.fau.de/public/mmsec/datasets/fodb/

– We employ EfficientNet [30] for camera identification on FODB and show
that it clearly outperforms targeted forensic CNNs for almost all qualities.

– We show that degradation during training significantly boosts robustness even
for unseen post-processing.

– We demonstrate the importance of scene splitting for learning-based camera
identification.

The remainder of the paper is organized as follows: We review image prove-
nance benchmarks in Sect. 2. The proposed database FODB is described in
Sect. 3. In Sect. 4, we describe our evaluation protocol for camera identification.
The results of this evaluation are presented in Sect. 5. Section 6 concludes the
paper.

2 Related Work

In a number of existing datasets, different cameras replicate the same set of
scenes. This allows to split the images into training and evaluation subsets such
that scenes are disjoint. The first large-scale forensic benchmark to support such
a splitting policy is the Dresden Image Database [15], as stated in the previous
section. Cheng et al. propose the NUS dataset [7], with 1,736 images of over 200
scenes, each recorded with 8 DSLR cameras. In another work [8], Cheng et al.

https://faui1-files.cs.fau.de/public/mmsec/datasets/fodb/

The Forchheim Image Database for Camera Identification in the Wild 503

recorded additional 944 indoor images. Also in this dataset, each scene is cap-
tured with each camera. Although the NUS dataset is presented as an illuminant
estimation benchmark, it can directly be used for camera identification, and the
acquisition protocols allow scene splitting similar to DIDB. Abdelhamed et al.
propose the Smartphone Image Denoising Dataset (SIDD) [2] of about 30,000
images. It consists of 10 indoor scenes under different settings captured with 5
smartphone cameras. The dataset targets image denoising, but can also be used
for benchmarking camera identification algorithms with proper scene splitting.

Nowadays, images are often distributed via social networks and by that
undergo compression to save memory and bandwidth. Therefore, it is important
to assess the performance of forensic algorithms in the presence of such post-
processing. Unfortunately, social network sharing has not been relevant during
conception of these three datasets. Hence, none of them comes with images that
have already been passed through social networks. While a user of the dataset
could in principle pass the images through social networks by herself (given per-
mission by its creators), it would still be a remarkably tedious procedure. For
example, we estimate that it would require at least a month of work to upload
and download the 17,000 DIDB images through various social networks due to
limitations on automated image uploading on most of their smartphone apps.

In 2018, the IEEE Signal Processing Society hosted a challenge for camera
model identification [1], which amongst other aspects addressed algorithm perfor-
mance under general post-processing.The training dataset consists of 2,750 images
of arbitrary scenes from 10 cameras. The test dataset contains original images,
as well as images that are recompressed with random JPEG quality, rescaling, or
gamma correction. In the VISION database by Shullani et al., around 7,500 images
of 35 smartphone cameras have been shared via Facebook in two qualities, and via
Whatsapp [29]. This yields around 30,000 images in 4 quality levels that enable
evaluations of the impact of post-processing. Guidice et al. propose a method for
detecting the social network and software used to share an image [14]. To this end,
they recorded images with 8 cameras of various types including 4 smartphones.
Then, they shared them via 10 social networks and two operating systems (OS) to
obtain 2,720 images. Caldelli et al. also investigate social network provenance [6].
They used 1,000 TIFF images from UCID [28], an earlier image retrieval database.
These images are compressed with different JPEG qualities and shared on 3 social
networks, which results in 30,000 images. However, all images in UCID stem from
a single camera, which does not allow for camera identification. Phan et al. investi-
gate traces of instant messenging apps and the host OS. They used 350 images out
of 35 devices from VISION and shared them either once or twice with three mes-
sengers and two OSs [25]. This leads to a total of 350 original, 2,100 single-shared
and 6,300 double-shared images. In a subsequent work, Phan et al. consider up to
three-fold sharing on social media platforms [24]. For this, they build two datasets.
The first one is based on the raw image database RAISE [10]. The images are com-
pressed in JPEG format and shared up to three times on three social networks,
which yields a total of 35,100 images. The second dataset is based on VISION.
Here, 510 images are shared up to three times, to obtain about additional 20,000
images.

504 B. Hadwiger and C. Riess

The above stated datasets [1,6,14,24,25,29] allow benchmarking social net-
work provenance algorithms. With the exception of the dataset by Caldelli et al.
which consists of only one source camera [6], they are also suitable for evaluating
camera identification algorithms and their robustness for simulated [1] and real-
world [14,24,25,29] post-processing. Two further large-scale camera identifica-
tion benchmarks are SOCRatES [13] and the Daxing Smartphone Identification
Dataset (DSID) [31]. SOCRatES contains 9,700 images by 103 smartphones of
60 models, and thus is currently the database with largest number of devices.
DSID consists of 43,400 images from 90 devices of 22 models, which currently is
to our knowledge the database with the most images and devices per model.

Unfortunately, none of these benchmark datasets supports scene splitting,
such that it is currently not possible to investigate social media-related arti-
facts on split scenes. However, we argue in line with previous works [4,19] that
scene splitting is important during evaluation. It removes by design the threat
of leaking side-channel information from the scene content into the evaluation.
Such leakage may lead to an overestimation of the performance, as we will show
in Sect. 5. The proposed Forchheim Image Database FODB closes this gap: it
jointly allows a rigorous scene splitting policy, and enables to investigate the
effect of social media post-processing on forensic algorithms.

3 The Forchheim Image Database

This section describes in detail the cameras, the acquisition protocol, the post-
processing and database structure of the proposed dataset. Table 1 lists the main
features of the smartphones. We use a total of 27 smartphone devices, consisting
of 25 different models from 9 brands. It includes two models with more than one
device, Samsung Galaxy A6 (devices 15 and 16) and Huawei P9 lite (devices 23
and 25). The smartphones run on Android or iOS and represent older and more
recent models (column “Date”) with a wide range of retail prices (not listed).
During image acquisition, we only use the main (i.e., rear) camera. All smart-
phones are configured to store images in JPEG format in the highest available
JPEG quality and highest available resolution. Focus, white-balance and High
Dynamic Range (HDR) imaging is set to automatic mode, where applicable.

All 143 scenes are captured in or near the town of Forchheim, Germany;
hence the name Forchheim Image Database. Each camera recorded one image
per scene. 10 images are missing or excluded due to technical or privacy issues,
resulting in 3, 861 − 10 = 3, 851 images. To assert diverse image content, we
mix indoor and outdoor, day and night, close-up and distant, and natural and
man-made scenes. Examples are shown in Fig. 1.

We refer to camera-native images as original (orig.). Additionally, we cre-
ated five post-processed versions of each image. For this, we installed the apps

The Forchheim Image Database for Camera Identification in the Wild 505

Table 1. Main features of smartphones in FODB

ID Brand Model OS Date

01 Motorola E3 Android 6.0 09/2016

02 LG Optimus L50 Android 4.4.2 06/2010

03 Wiko Lenny 2 Android 5.1 09/2014

04 LG G3 Android 5.0 07/2014

05 Apple iPhone 6s iOS 13.6 09/2015

06 LG G6 Android 9 05/2017

07 Motorola Z2 Play Android 8.0.0 08/2017

08 Motorola G8 Plus Android 9 10/2019

09 Samsung Galaxy S4 mini Android 4.4.4 05/2013

10 Samsung Galaxy J1 Android 4.4.4 01/2015

11 Samsung Galaxy J3 Android 5.1.1 01/2016

12 Samsung Galaxy Star 5280 Android 4.1.2 05/2013

13 Sony Xperia E5 Android 6.0 11/2016

14 Apple iPhone 3 iOS 7.1.2 06/2008

15 Samsung Galaxy A6 Android 10 05/2018

16 Samsung Galaxy A6 Android 10 05/2018

17 Apple iPhone 7 iOS 12.3.1 09/2016

18 Samsung Galaxy S4 Android 6.0.1 04/2013

19 Apple iPhone 8 Plus iOS 13.2 09/2017

20 Google Pixel 3 Android 9 11/2018

21 Google Nexus 5 Android 8.1.0 10/2015

22 BQ Aquaris X Android 8.1.0 05/2017

23 Huawei P9 lite Android 6.0 05/2016

24 Huawei P8 lite Android 5.0 04/2015

25 Huawei P9 lite Android 7.0 05/2016

26 Huawei P20 lite Android 8.0.0 04/2018

27 Google Pixel XL Android 10 10/2016

Facebook, Instagram, Telegram, Twitter and Whatsapp on each device1 and
manually shared all images. In the Facebook app, we uploaded the images of
each device to a dedicated photo album in default quality2. Then, we used the
functionality to download entire albums in the browser version of Facebook. Dur-
ing upload on Instagram, a user must select a square crop from an image, and

1 Exceptions: Devices 2, 12, 14, 24, 25 did not support some apps, hence we transferred
the images to other devices of the same OS (2, 12 → Device 8; 14 → Device 5; 24,
25 → Device 20) and shared all images from there.

2 Corresponding to “FBL” (Facebook low quality) in the VISION database.

506 B. Hadwiger and C. Riess

optionally a filter. We uploaded all images with default settings for cropping,
resulting in a center crop, and disabled any filters. For download we used the
open source tool “Instaloader” (Version 4.5.2)3. In the Twitter app, all images
were uploaded without filter, and downloaded via the Firefox browser plugin
“Twitter Media Downloader” (Version 0.1.4.16)4. For Telegram and Whatsapp,
the images of each device were sent to device 6 (LG G6), except for the images
of device 6 itself, which were sent to device 8 (Motorola G8 Plus). In this way,
the database contains a total of 6 · (27 · 143 − 10) = 23 106 JPEG images.

Social network and messenger sharing was executed one device after another,
to avoid confounding images of different devices. During sharing, the social net-
works and messengers non-trivially modify the image filenames, and metadata
is largely removed. For re-identifying the shown scene, we correlated the origi-
nal and post-processed images for each device individually. The originals were
first downscaled to match the size of the post-processed versions, and, in case
of Instagram, center cropped prior to downscaling. Only very few cases were
ambiguouos, which were manually labeled.

The database is hierarchically organized: at root level, images from each
device are in one directory D〈ID〉 〈Brand〉 〈Model〉 〈i〉, where ID, Brand and
Model are substituted according to Table 1, and i ∈ {1, 2} enumerates the
devices of a model. Each directory contains six provenance subdirectories orig,
facebook, instagram, telegram, twitter and whatsapp. These directories con-
tain the images of device ID, provenance prov and scene ID scene with the pat-
tern D〈ID〉 img 〈prov〉 〈scene〉.jpg, for example D06 img twitter 0030.jpg.

4 Camera Identification: Dataset Split, Methods,
and Training Augmentation

We demonstrate an application of FODB by studying the behavior of CNNs for
camera identification. This section describes the used methods and their training.

4.1 Dataset Splits

To create training, validation and test data, we split the set of 143 scenes S of
FODB into three disjoint sets Strain, Sval and Stest, and we set |Strain| = 97,
|Sval| = 18, |Stest| = 28. For camera models with more than one device, we
choose the device with the smallest ID, which yields NK = 25 cameras, and
hence 25 classes. Thus we obtain |Strain| · NK = 2425 training, |Sval| · NK = 450
validation and |Stest| · NK = 700 test images per post-processing quality.

4.2 Compared Methods

We reimplemented three CNN-based forensic methods for source camera iden-
tification. First, the method by Bondi et al., which we subsequently refer to as
3 https://instaloader.github.io/.
4 https://addons.mozilla.org/de/firefox/addon/tw-media-downloader/.

https://instaloader.github.io/
https://addons.mozilla.org/de/firefox/addon/tw-media-downloader/

The Forchheim Image Database for Camera Identification in the Wild 507

“BondiNet” [4]. Second, MISLnet by Bayar et al. [3] in its improved version as
the feature extractor in the work by Mayer et al. [22] by the same group. Third,
RemNet by Rafi et al. [26], which has been presented at the IEEE Signal Pro-
cessing Cup 2018. We additionally report results on EfficientNet-B5, a recently
proposed general-purpose CNN from the field of computer vision [30]. All models
are trained with crossentropy loss.

The input patch size of each CNN except MISLnet is set to 64 × 64 pixels.
The outputs of the CNNs are adapted to distinguish NK = 25 classes. Note that
the classes are balanced, and random guessing accuracy is N−1

K , i.e., 4%, on all
experiments on FODB.

Initial experiments with BondiNet using the parameters of the paper [4] led
to poor validation performance on FODB. Hence, we evaluate BondiNet for
the following set of hyperparameters, which led to significantly better valida-
tion results: Adam optimizer with α = 10−3, β1 = 0.9 and β2 = 0.999, no
weight decay, additional batch normalization after each convolution, and direct
classification using CNN outputs instead of using an SVM. For MISLnet, we
reimplemented the improved version of the same group [22]. The patch input
size is 256 × 256 pixels, and hence somewhat larger than for the remaining net-
works. We address this in the patch clustering described below. For RemNet, we
reimplemented the implementation as described in the paper.

For EfficientNet-B5, we use weights pretrained on ImageNet [11], and remove
the final classification layer of the pretrained network. Then, we add global
average pooling and a dense layer with NK = 25 output units and softmax
activation. The weights of the new classification layer are set with Glorot uniform
initialization [16]. During all experiments, we use Adam optimization [18] with
learning rate α = 10−3 and moments β1 = 0.9 and β2 = 0.999. Whenever the
validation loss stagnates for two consecutive epochs, the learning rate is halved,
and we apply early stopping.

To accomodate for differences in the input resolution of the networks, we
adopt the patch cluster strategy by Rafi et al. [26]. To this end, we consider
an image area of 256 × 256 pixels as a patch cluster. A patch cluster is consid-
ered to be non-informative if it mostly consists of homogeneous pixels, which is
determined by a heuristic quality criterion used by Bondi et al. [5, Eqn. (1)] and
Rafi et al. [26, Eqn. (7)],

Q(P) =
1
3

∑

c∈{R,G,B}
αβ(μc − μ2

c) + (1 − α)(1 − exp(γσc)) , (1)

where μc and σc denote the patch cluster mean and standard deviation in the
red, green, and blue color channels c, and α = 0.7, β = 4, γ = ln(0.01).

4.3 Matching the Network Input Resolutions

For evaluation, it is important to provide to each algorithm the same amount
of information. Thus, for both training and testing, we subdivide the image into

508 B. Hadwiger and C. Riess

non-overlapping 256×256 patch cluster candidates, and sort them by the quality
criterion Q(P). The top 100 candidates are used as patch clusters for the image.

For training, each selected patch cluster is used once per training epoch.
MISLnet obtains full patch clusters to match its 256 × 256 pixel inputs. The
remaining networks obtain a randomly selected 64 × 64 pixels subwindow per
cluster to match their input size. For validation, we use the same approach but
with fixed random seed to achieve a consistent comparison throughout all epochs.

For testing, we also feed a full 256 × 256 patch cluster to MISLnet. For
the remaining networks, we subdivide a patch cluster into 16 non-overlapping
patches of 64 × 64 pixels.

These results are used to report three metrics: camera identification accu-
racies on individual 64 × 64 patches (excluding MISLnet), accuracies on patch
clusters of 256 × 256 pixels, and accuracies for the whole image. For the per-
cluster accuracies, we directly calculate the accuracy for MISLnet’s 256 × 256
prediction. For the remaining networks, the patch cluster prediction k̂ is calcu-
lated via soft majority voting over all 64 × 64 patch predictions,

k̂ = argmax
k

∑

i∈I
yk
i , (2)

where yk
i denotes the k-th component of the CNN output for the i-th patch in

the cluster. The prediction for the whole image is analogously calculated via soft
majority voting over all individual CNN outputs on that image.

4.4 Training Augmentation

Throughout all training, we randomly apply horizontal flipping, vertical flipping,
and rotation by integer multiples of 90◦, with equal probability for each case.

For a subset of the experiments, we additionally apply artificial degrada-
tions (deg.) during training to increase the robustness of all CNNs against post-
processing. Prior to flipping or rotation, we rescale a training patch cluster with
probability 0.9. The rescaling factor is randomly drawn from a discrete distribu-
tion over the interval [0.25, . . . , 4]. In order to make upsampling and downsam-
pling equally likely, we rewrite the interval as [0.25 = 2−2, . . . , 2j , . . . , 4 = 22]
and subdivide the exponent j in 50 equally spaced samples. We draw from these
exponents with uniform probability. After flipping or rotation, we extract a
patch from the (rescaled or non-rescaled) cluster, and recompress it in JPEG
format with probability 0.9. The JPEG quality factor is uniformly chosen from
[100, 99, . . . , 10].

For the rather challenging experiments in Sect. 5.3 and Sect. 5.4, we try to
maximize the performance of RemNet and EfficientNet-B5 by pretraining on
DIDB’s 18 cameras. To this end, we use the DIDB training/validation split by
Bondi et al. [4]. Considering our four variants of RemNet and EfficientNet-B5
with and without artificial degradations, we investigate possible gains in valida-
tion performance when pre-training on DIDB. We apply artificial degradations
on DIDB only if the subsequent training on FODB also uses artificial degrada-
tions, in order to have these degradations either throughout the whole training

The Forchheim Image Database for Camera Identification in the Wild 509

Table 2. Averaged overall validation
performance for FODB and VISION,
with and without pretraining on DIDB.
Boldface shows the selected model vari-
ants based on validation loss.

Training parameters Validation dataset

FODB VISION

Model Degr. Pretr. Loss Acc. Loss Acc.

RemNet No No 0.1870 92.72 0.1898 93.90

RemNet No Yes 0.1885 92.86 0.1731 94.49

RemNet Yes No 2.4268 31.06 1.9586 42.67

RemNet Yes Yes 2.5735 26.07 1.9295 43.47

EN-B5 No No 0.1176 95.79 0.1465 95.91

EN-B5 No Yes 0.1178 95.62 0.1265 96.22

EN-B5 Yes No 1.6894 52.12 1.2410 63.68

EN-B5 Yes Yes 1.6756 52.77 1.2179 64.35

Table 3. Accuracy (in percent) for
closed-set camera identification on
camera-native FODB test images for
EfficientNet-B5 and CNN-based foren-
sic reference methods.

CNN Patch Cluster Image

BondiNet [4] 71.4 84.9 93.1

MISLnet [22] – 93.5 96.8

RemNet [26] 93.8 96.6 99.1

EfficientNet-B5 [30] 96.3 98.1 99.1

process or not at all. We then select for the experiments either the variant with
DIDB-pretraining or without depending on the validation loss. The results are
listed in Table 2. Boldface shows validation loss and accuracy of the selected
model. The column indicating validation on FODB is used in Sect. 5.3, the col-
umn indicating validation on VISION in Sect. 5.4.

5 Results

5.1 Performance Under Ideal Conditions

In this experiment, we benchmark CNNs for camera identification under ideal
conditions without any post-processing. During training, we only augment with
flipping and rotation, but not with resizing or JPEG recompression.

Table 3 shows the per-patch, per-cluster and per-image accuracies for the
original (camera-native) test images of FODB. EfficientNet-B5 consistently out-
performs the other CNNs for patches and clusters with accuracies of 96.3% and
98.1%, respectively. For image-level classification, RemNet and EfficientNet-B5
are on par with an accuracy of 99.1%. Majority voting improves individual pre-
dictions across all CNNs, which indicates some degree of statistical independence
of the prediction errors.

5.2 Robustness Against Known Post-processing

In this and all following experiments, we take a closer look at the two best
performing CNNs on clean images, RemNet and EfficientNet-B5, and evaluate
their robustness against post-processing.

We first determine the test accuracy on FODB for all combinations of rescal-
ing with factors ftest ∈ {0.25, 0.5, 0.8, 1.0, 1.25} and JPEG recompression with

510 B. Hadwiger and C. Riess

0.25 0.5 0.8 1.0 1.25

id
.

90
75

50
25

JP
E
G

Q
F

5.5 7.0 21.2 93.8 14.4

5.4 6.5 10.3 24.2 10.2

4.7 5.1 5.8 6.1 7.3

4.5 4.8 4.9 5.1 5.3

4.3 4.5 4.5 4.6 4.6
0

20

40

60

80

100

0.25 0.5 0.8 1.0 1.25

id
.

90
75

50
25

7.5 18.5 69.0 96.3 39.3

6.7 11.7 34.6 46.7 22.6

5.7 7.6 11.6 17.0 12.3

5.3 6.3 8.2 9.7 7.8

5.1 5.9 7.2 7.9 6.7
0

20

40

60

80

100

0.25 0.5 0.8 1.0 1.25

id
.

90
75

50
25

31.9 44.3 56.1 59.3 56.8

28.1 38.7 50.2 51.5 53.8

24.3 32.4 43.0 47.2 47.8

21.6 27.2 35.6 40.6 40.8

18.7 22.3 27.4 31.2 31.1
0

20

40

60

80

100

0.25 0.5 0.8 1.0 1.25

id
.

90
75

50
25

55.0 71.0 83.8 86.8 86.9

48.9 63.9 78.0 77.9 83.5

41.6 52.8 67.6 73.1 74.9

34.7 42.5 55.2 62.0 63.5

27.5 32.3 40.4 46.8 47.9
0

20

40

60

80

100

0.25 0.5 0.8 1.0 1.25

id
.

90
75

50
25

JP
E
G

Q
F

5.5 7.0 21.8 96.9 15.0

5.4 6.5 9.8 25.0 10.9

4.7 5.1 5.6 5.8 7.6

4.5 4.7 4.8 5.0 5.1

4.3 4.4 4.5 4.6 4.6
0

20

40

60

80

100

0.25 0.5 0.8 1.0 1.25

id
.

90
75

50
25

7.5 20.0 77.4 98.1 45.9

6.7 11.7 38.0 51.1 25.3

5.7 7.5 10.8 16.6 13.1

5.3 6.4 8.1 9.1 7.5

5.1 6.2 7.9 8.5 7.2
0

20

40

60

80

100

0.25 0.5 0.8 1.0 1.25

id
.

90
75

50
25

31.9 53.1 69.3 73.9 73.3

28.1 46.9 63.7 65.6 71.1

24.3 39.8 56.9 62.7 65.8

21.6 34.4 48.7 56.7 59.4

18.7 28.5 39.0 46.3 49.0
0

20

40

60

80

100

0.25 0.5 0.8 1.0 1.25

id
.

90
75

50
25

55.0 80.8 92.5 94.5 95.1

48.9 75.2 89.9 89.5 94.1

41.6 64.5 83.4 88.4 90.9

34.7 53.9 73.6 81.4 84.7

27.5 42.1 58.5 68.4 72.7
0

20

40

60

80

100

0.25 0.5 0.8 1.0 1.25
Rescaling Factor

id
.

90
75

50
25

JP
E
G

Q
F

4.3 7.3 22.0 99.1 13.8

4.5 6.0 8.2 24.5 10.6

4.2 4.7 4.7 4.6 6.6

3.9 3.9 4.3 4.3 4.3

3.7 3.9 4.0 4.2 4.2
0

20

40

60

80

100

(a) RemNet, no deg.

0.25 0.5 0.8 1.0 1.25
Rescaling Factor

id
.

90
75

50
25

8.1 22.3 87.5 99.1 52.2

7.2 11.7 41.9 56.3 26.6

5.8 7.5 8.9 15.0 14.0

5.6 6.8 7.6 7.3 6.8

4.5 5.5 8.2 8.5 7.2
0

20

40

60

80

100

(b) EN-B5, no deg.

0.25 0.5 0.8 1.0 1.25
Rescaling Factor

id
.

90
75

50
25

62.0 78.0 88.6 90.6 89.4

55.7 72.9 86.0 82.7 87.9

48.3 65.5 80.9 82.2 84.7

43.5 58.3 73.5 79.4 79.6

39.7 51.7 63.7 70.5 71.4
0

20

40

60

80

100

(c) RemNet, deg.

0.25 0.5 0.8 1.0 1.25
Rescaling Factor

id
.

90
75

50
25

87.2 95.0 97.0 97.8 98.0

83.7 94.1 96.7 95.8 97.4

77.3 88.3 96.0 96.5 96.7

68.8 81.7 91.7 94.4 95.7

61.0 73.2 84.2 89.2 90.4
0

20

40

60

80

100

(d) EN-B5, deg.

Fig. 2. Robustness against rescaling and JPEG recompression for predictions per patch
(first row), cluster (second row) and image (third row). Columns (a) and (b) show Rem-
Net and EfficientNet-B5 (EN-B5) accuracies without augmentation of degradations
during training. Columns (c) and (d) show RemNet and EfficientNet-B5 accuracies
with augmentation of degradations during training.

quality factors QFtest ∈ {id., 90, 75, 50, 25}. Factor 1.0, resp. id. (idempotent)
indicates no rescaling and no JPEG recompression. Note that rescaling is applied
to patch clusters prior to patch extraction, which quadratically scales the number
of patches for majority voting on patch clusters and images with ftest.

Figure 2a and Fig. 2b show the accuracies for RemNet and EfficientNet-B5.
From top to bottom are accuracies on patch level, cluster level, and image level.
Throughout all qualities, EfficientNet-B5 outperforms RemNet. In most cases,
majority voting again increases the accuracy. While accuracies for both CNNs
are almost perfect for camera-native images (ftest = 1.0, QFtest = id.) with
99.1%, it rapidly decreases on post-processed images. This is not surprising,
since only high quality images are used for training. The CNNs likely rely on
fragile high-frequent traces, which are attenuated by postprocessing [32].

We retrain both CNNs with artificial degradations as described in Sect. 4.4 to
improve the robustness against post-processing. The results for these retrained
CNNs are shown in Fig. 2c and Fig. 2d. Already at patch-level, the accuracies
of both CNNs are much more stable compared to training without degrada-
tions. For example, at ftest = 0.5, QFtest = 75, the test accuracies at patch-level
amount to 32.4% and 52.8% for both CNNs, compared to 5.1% and 7.6% without
these augmentations. Moreover, EfficientNet-B5 remarkably outperforms Rem-
Net. For example, the patch-level performance on clean images, is 56.1% for
RemNet and 83.8% for EfficientNet-B5. For both CNNs, majority voting further
significantly improves the performance. For image-level decisions and camera-
native images, the performance of EfficientNet-B5 trained with degradations

The Forchheim Image Database for Camera Identification in the Wild 511

Table 4. Test accuracies on FODB for camera-native and post-processed images. Top:
boldface shows the best accuracy per column for unknown post-processing. Bottom:
blue shows the oracle performance for known post-processing at training.

Training parameters Test dataset

orig FB IG TG TW WA

CNN Dataset Deg. Patch Image Patch Image Patch Image Patch Image Patch Image Patch Image

RemNet Orig No 93.8 99.1 4.0 3.6 4.2 4.2 4.5 4.3 5.5 4.7 4.2 3.9

RemNet Orig Yes 59.3 90.6 18.4 36.0 22.9 48.9 26.2 52.8 37.3 74.2 24.2 50.8

EN-B5 Orig No 96.3 99.1 4.9 4.6 5.7 5.6 5.7 5.3 10.8 9.8 7.0 6.8

EN-B5 Orig Yes 86.5 98.0 27.7 51.1 35.4 67.5 42.2 73.1 60.7 93.2 38.5 72.9

EN-B5 FB No 13.8 23.6 38.4 71.4 29.1 51.1 28.5 44.2 23.8 38.3 30.8 54.7

EN-B5 IG No 8.1 9.4 28.4 52.1 52.1 84.0 13.5 14.0 12.1 14.0 40.4 69.1

EN-B5 TG No 16.7 23.3 21.1 32.4 25.5 37.6 57.2 86.2 35.4 55.0 32.8 51.5

EN-B5 TW No 36.4 57.1 14.7 21.9 25.6 41.9 28.2 41.6 76.2 97.7 33.6 54.2

EN-B5 WA No 17.3 27.3 28.8 52.4 41.5 69.2 31.0 45.3 28.4 38.3 60.0 90.4

Table 5. Test accuracies on VISION for camera-native and post-processed images.
(a) Random split. (b) Splits on sorted images per camera. Top rows: boldface shows
the best accuracy per column for unknown post-processing. Bottom rows: blue shows
the oracle performance for known post-processing at training. LQ and HQ denote low
quality and high quality.

Training parameters Test dataset

Orig FB (LQ) FB (HQ) WA

Archit. Dataset Deg. Patch Image Patch Image Patch Image patch image

RemNet Orig No 93.9 98.6 4.6 4.1 6.4 7.2 9.2 12.8

RemNet Orig Yes 64.7 86.7 34.8 64.0 41.5 73.9 45.7 75.9

EN-B5 Orig No 95.9 99.2 4.9 5.9 8.3 8.7 10.2 11.8

EN-B5 Orig Yes 88.4 97.0 46.3 77.0 57.7 88.4 66.5 92.4

EN-B5 FB (LQ) No 8.8 14.3 64.6 88.5 22.3 33.0 28.9 40.7

EN-B5 FB (HQ) No 31.7 43.7 27.4 39.9 72.8 95.4 25.4 36.8

EN-B5 WA No 21.6 32.9 30.5 47.5 18.3 27.8 77.3 96.3

(a) Randomized per-device split

Training parameters Test dataset

Orig FB (LQ) FB (HQ) WA

Archit. Dataset Deg. Patch Image Patch Image Patch Image Patch Image

RemNet Orig No 87.5 93.2 3.7 4.8 4.7 5.5 5.5 7.4

RemNet Orig Yes 44.2 67.9 20.1 39.5 25.8 52.4 27.9 51.7

EN-B5 Orig No 87.8 93.9 3.6 4.5 7.0 7.4 6.9 8.6

EN-B5 Orig Yes 76.8 88.5 28.2 54.1 40.9 70.5 44.7 72.4

EN-B5 FB (LQ) No 7.3 10.8 42.3 67.6 16.8 26.3 20.7 29.1

EN-B5 FB (HQ) No 26.3 39.0 18.0 26.0 55.2 83.7 16.1 21.6

EN-B5 WA No 18.7 30.7 19.4 30.8 14.4 21.8 56.1 82.2

(b) Per-device split on images sorted by timestamp

(97.0%) is close to testing without degradations (99.1%). RemNet has difficul-
ties to fully benefit from augmentation with degraded images, with accuracies
dropping from 99.1% without degradations to 88.6% with degradations. We
hypothesize that this difference can in part be attributed to the significantly
larger capacity of EfficientNet-B5: while both CNNs perform comparably on

512 B. Hadwiger and C. Riess

the easier task of clean images, a CNN with larger capacity might be required
for additionally learning the traces of degraded images. Still, also the superior
EfficientNet-B5 shows an accuracy-robustness trade-off, a phenomenon that has
been observed for adversarial training before [27,32].

5.3 Robustness Against Unknown Real-World Post-processing

In this section, we evaluate the robustness of RemNet and EfficientNet-B5
against real-world post-processing by unknown algorithms and parameters, as it
occurs during social network sharing. We again train both CNNs once without
and once with degradations. The networks do not obtain social media images
for training.

We evaluate the selected models (see Table 2) on original and all five post-
processed versions of the test images (Facebook: FB, Instagram: IG, Tele-
gram: TG, Twitter: TW, Whatsapp: WA). The resulting accuracies are listed in
Table 4. When training without degradations, the networks can only excell on
original images, analogously to the previous experiments. Pretraining on DIDB
slightly improves the performance of EfficientNet-B5 on clean images. Augmen-
tation with artificial degradations significantly improves the performance of both
CNNs on all social network data, even though social media data itself was not
part of the training. Again, EfficientNet-B5 largely outperforms RemNet in all
experiments.

We perform an additional experiment as a reference for the impact of prior
knowledge on the data: we pretrained EfficientNet-B5 on DIDB with degrada-
tions. Additionally, we feed the social network images from the training set to
EfficientNet-B5 as an oracle for the test set degradations, and retrain without
further artificial degradation. Table 4 (bottom) shows that such strong prior
knowledge yields at image level accuracy gains from 4.5 p.p. for Twitter (with
baseline already 93.2%) up to 20.3 p.p. for Facebook.

5.4 Impact of Scene Splitting

We now analyze the influence of scene splitting on CNN-based camera identifi-
cation on the VISION dataset. The scene content is not constrained in several
datasets including VISION, which prevents splitting by scenes. Some per-device
image sets in VISION are highly correlated, such that randomized splitting
makes training and test sets likely to contain images of identical cameras with
similar content. We conjecture that scene content may open a side-channel that
CNNs are prone to exploit, which may lead to an overestimation of its general-
ization. We show empirical evidence for this conjecture in two experiments.

First, we randomly split the VISION images in training, validation and test
sets. We use the evaluation protocol by Marra et al. [21] and use the 29 unique
devices with random guessing accuracy of 29−1 = 3.45%.

Second, we make an attempt to improve the splitting strategy, and to further
separate image content between training and test set. To this end, we sort the
images of each device by their acquisition time using DateTimeOriginal from

The Forchheim Image Database for Camera Identification in the Wild 513

the EXIF file header, and split the dataset along the timeline of the images.
In this way, similar images recorded within a short period of time are likely to
be either in the training or test set, but not in both. This significantly reduces
overlap in image content between training and test set. Except of the splitting
policy, all settings are identical between both experiments.

Results for the first and second experiment are shown in Table 5a and
Table 5b. Performances drop significantly when moving from completely random
splits (Table 5a) to splits by timestamp (Table 5b). For example, on clean images
the accuracy of EfficientNet-B5 without degradation drops from 99.2% to 93.9%.
The performance of EfficientNet-B5 with degradation for Whatsapp-compressed
test images drops even by 20 p.p., from 92.4% to 72.4%. This discrepancy sug-
gests that scene content contributes to the results in Table 5a. Moreover, such a
side-channel may prevent the CNN from learning more relevant traces. We hence
believe that the results in Table 5b are closer to the performance that can be
expected in practice. These observations emphasize the importance of a rigorous
scene splitting as supported by FODB.

6 Conclusion

This work proposes the Forchheim Image Database (FODB) as a new benchmark
for image forensics algorithms under real-world post-processing. Our database
consists of more than 23,000 images of 143 scenes by 27 smartphone devices of
25 models and 9 brands. FODB combines clean training/validation/test data
splits by scene with a wide range of modern smartphone devices shared through
a total of five social network sites, which allows rigorous evaluations of forensic
algorithms on real-world image distortions. We demonstrate FODB’s usefulness
in an evaluation on the task of camera identification. Our results provide three
insights. First, the general-purpose network EfficientNet-B5 largely outperforms
three specialized CNNs. Second, EfficientNet-B5’s large capacity also fully bene-
fits from training data augmentation to generalize to unseen degradations. Third,
clean data splits by scenes can help to better predict generalization performance.

References

1. IEEE’s Signal Processing Society - Camera Model Identification. https://www.
kaggle.com/c/sp-society-camera-model-identification (2018), Accessed 26 Sept
2020

2. Abdelhamed, A., Lin, S., Brown, M.S.: A High-quality denoising dataset for smart-
phone cameras. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1692–1700 (2018)

3. Bayar, B., Stamm, M.C.: Constrained convolutional neural networks: a new app-
roach towards general purpose image manipulation detection. IEEE Trans. Inf.
Forensics Secur. 13, 2691–2706 (2018)

4. Bondi, L., Baroffio, L., Guera, D., Bestagini, P., Delp, E.J., Tubaro, S.: First steps
toward camera model identification with convolutional neural networks. IEEE Sig-
nal Process. Lett. 24, 259–263 (2017)

https://www.kaggle.com/c/sp-society-camera-model-identification
https://www.kaggle.com/c/sp-society-camera-model-identification

514 B. Hadwiger and C. Riess

5. Bondi, L., Güera, D., Baroffio, L., Bestagini, P., Delp, E.J., Tubaro, S.: A pre-
liminary study on convolutional neural networks for camera model identification.
Electron. Imaging 2017(7), 67–76 (2017)

6. Caldelli, R., Becarelli, R., Amerini, I.: Image origin classification based on social
network provenance. IEEE Trans. Inf. Forensics Secur. 12, 1299–1308 (2017)

7. Cheng, D., Prasad, D.K., Brown, M.S.: Illuminant estimation for color constancy:
why spatial-domain methods work and the role of the color distribution. JOSA A
31, 1049–1058 (2014)

8. Cheng, D., Price, B., Cohen, S., Brown, M.S.: Beyond white: ground truth colors
for color constancy correction. In: IEEE International Conference on Computer
Vision, pp. 298–306 (2015)

9. Cozzolino, D., Verdoliva, L.: Noiseprint: a CNN-based camera model fingerprint.
IEEE Trans. Inf. Forensics Secur., 144–159 (2019)

10. Dang-Nguyen, D.T., Pasquini, C., Conotter, V., Boato, G.: RAISE: a raw images
dataset for digital image forensics. In: ACM Multimedia Systems Conference, pp.
219–224 (2015)

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255 (2009)

12. Farid, H.: A survey of image forgery detection. IEEE Signal Process. Mag. 26,
16–25 (2009)

13. Galdi, C., Hartung, F., Dugelay, J.L.: SOCRatES: A database of realistic data for
SOurce camera REcognition on smartphones. In: ICPRAM, pp. 648–655 (2019)

14. Giudice, O., Paratore, A., Moltisanti, M., Battiato, S.: A classification engine for
image ballistics of social data. In: Battiato, S., Gallo, G., Schettini, R., Stanco,
F. (eds.) ICIAP 2017. LNCS, vol. 10485, pp. 625–636. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68548-9 57

15. Gloe, T., Böhme, R.: The dresden image database for benchmarking digital image
forensics. J. Digital Forensic Pract., 150–159 (2010)

16. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: International Conference on Artificial Intelligence and Statis-
tics, pp. 249–256 (2010)

17. Huh, M., Liu, A., Owens, A., Efros, A.A.: Fighting fake news: image splice detection
via learned self-consistency. In: European Conference on Computer Vision, pp.
101–117 (2018)

18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015)

19. Kirchner, M., Gloe, T.: Forensic camera model identification. In: Handbook of
Digital Forensics of Multimedia Data and Devices, pp. 329–374 (2015)

20. Lukas, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern
noise. IEEE Trans. Inf. Forensics Secur. 1, 205–214 (2006)

21. Marra, F., Gragnaniello, D., Verdoliva, L.: On the vulnerability of deep learning
to adversarial attacks for camera model identification. Signal Process. Image Com-
mun. 65, 240–248 (2018)

22. Mayer, O., Stamm, M.C.: Forensic similarity for digital images. IEEE Trans. Inf.
Forensics Secur. 15, 1331–1346 (2019)

23. Moreira, D., et al.: Image provenance analysis at scale. IEEE Trans. Image Process.
27, 6109–6123 (2018)

24. Phan, Q.T., Boato, G., Caldelli, R., Amerini, I.: Tracking multiple image sharing
on social networks. In: IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 8266–8270 (2019)

https://doi.org/10.1007/978-3-319-68548-9_57

The Forchheim Image Database for Camera Identification in the Wild 515

25. Phan, Q.T., Pasquini, C., Boato, G., De Natale, F.G.: Identifying image prove-
nance: an analysis of mobile instant messaging apps. In: IEEE International Work-
shop on Multimedia Signal Processing, pp. 1–6 (2018)

26. Rafi, A.M., Tonmoy, T.I., Kamal, U., Wu, Q.J., Hasan, M.K.: RemNet: remnant
convolutional neural network for camera model identification. Neural Comput.
Appl., 1–16 (2020)

27. Raghunathan, A., Xie, S.M., Yang, F., Duchi, J.C., Liang, P.: Adversarial Training
Can Hurt Generalization. arXiv preprint (2019)

28. Schaefer, G., Stich, M.: UCID: an uncompressed color image database. In: Storage
and Retrieval Methods and Applications for Multimedia, pp. 472–480 (2003)

29. Shullani, D., Fontani, M., Iuliani, M., Shaya, O.A., Piva, A.: VISION: a video and
image dataset for source identification. EURASIP J. Inf. Secur. 2017, 15 (2017)

30. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning, pp. 6105–6114 (2019)

31. Tian, H., Xiao, Y., Cao, G., Zhang, Y., Xu, Z., Zhao, Y.: Daxing smartphone
identification dataset. IEEE Access 7, 101046–101053 (2019)

32. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness May
Be at Odds with Accuracy. arXiv preprint (2018)

33. Yang, P., Baracchi, D., Ni, R., Zhao, Y., Argenti, F., Piva, A.: A survey of deep
learning-based source image forensics. J. Imaging 6, 9 (2020)

34. Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Learning rich features for image
manipulation detection. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1053–1061 (2018)

	The Forchheim Image Database for Camera Identification in the Wild
	1 Introduction
	2 Related Work
	3 The Forchheim Image Database
	4 Camera Identification: Dataset Split, Methods, and Training Augmentation
	4.1 Dataset Splits
	4.2 Compared Methods
	4.3 Matching the Network Input Resolutions
	4.4 Training Augmentation

	5 Results
	5.1 Performance Under Ideal Conditions
	5.2 Robustness Against Known Post-processing
	5.3 Robustness Against Unknown Real-World Post-processing
	5.4 Impact of Scene Splitting

	6 Conclusion
	References

