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Abstract. The question we answer with this paper is: ‘can we convert
a text document into an image to take advantage of image neural models
to classify text documents?’ To answer this question we present a novel
text classification method that converts a document into an encoded
image, using word embedding. The proposed approach computes the
Word2Vec word embedding of a text document, quantizes the embed-
ding, and arranges it into a 2D visual representation, as an RGB image.
Finally, visual embedding is categorized with state-of-the-art image clas-
sification models. We achieved competitive performance on well-known
benchmark text classification datasets. In addition, we evaluated our
proposed approach in a multimodal setting that allows text and image
information in the same feature space.

Keywords: Encoded text · Word embedding · Multimodal
classification

1 Introduction

Text classification is a common task in Natural Language Processing (NLP). Its
goal is to assign a label to a text document from a predefined set of classes. In
last decade, Convolutional Neural Networks (CNNs) have remarkably improved
performance in image classification [8,16,17] and researchers have successfully
transferred this success into text classification [1,20]. Image classification mod-
els [8,16] are adapted to accommodate text [1,7,20]. We, therefore, leverage
on the recent success in image classification and present a novel text classifica-
tion approach to cast text documents into a visual domain to categorize text
with image classification models. Our approach transforms text documents into
encoded images or visual embedding capitalizing on Word2Vec word embed-
ding which convert words into vectors of real numbers [9,11,14]. Typically word
embedding models are trained on large corpus of text documents to capture
semantic relationships among words. Thus these models can produce similar
word embeddings for words occurring in similar contexts. We exploit this well-
known fundamental property of word embedding models to transform a text
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document into a sequence of colours (visual embedding), obtaining an encoded
image, as shown in Fig. 1. Intuitively, semantically related words obtain similar
colours or encodings in the encoded image while uncorrelated words are repre-
sented with different colours. Interestingly, these visual embeddings are recog-
nized with state-of-the-art image classification models. In this paper, we present
a novel text classification approach to transform word emebedding of text doc-
uments into the visual domain. The choice to work with Word2Vec encoding
vectors transformed into pixels by splitting them in triplets is guided by two
main reasons:

1. we want to exploit existing image classification models to categorize text
documents;

2. as a consequence, we want to integrate the text within an image to trans-
form a text-only or images only classification problem, into a multimodal
classification problem using a single 2D data [12].

Fig. 1. We exploited a well-known property of word embedding models: semantically
correlated words obtain similar numerical representation. It turns out that if we inter-
pret real-valued vectors as a set of colours, it is easy for a visual system to cope with
relationships between words of a text document. It can be observed that green coloured
words are related to countries, while other words are represented with different colours.
(Color figure online)
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We evaluated the method on several large scale datasets obtaining promising
and comparable results. An earlier version of our encoding scheme was published
in ICDAR 2017 [2], where we used a different encoding technique that require
more space to encode a text document into an image. In this paper, we explore
various parameters associated with an encoding scheme. We extensively eval-
uated the improved encoding scheme on various benchmark datasets for text
classification. In addition, we evaluated the proposed approach in a multimodal
setting to fuse image and text in the same feature space to perform classification.

2 Related Work

Deep learning methods for text documents involved learning word vector repre-
sentations through neural language models [11,14]. These vector representations
serve as a foundation in our paper where word vectors are transformed into a
sequence of colors or visual embedding. The image classification model is trained
and tested on these visual embeddings. Kim [7] proposed a simple shallow neu-
ral network with one convolution layer followed by a max pooling layer over
time. Final classification is performed with one fully connected layer with drop-
out. The authors in [20] presented rather deep convolutional neural network
for text classification. The network is similar to the convolutional network in
computer vision [8]. Similarly, Conneau et al. [1] presented a deep architecture
that operates at character level with 29 convolutional layers to learn hierarchical
representations of text. The architecture is inspired by recent progress in com-
puter vision [4,15]. Johnson et al. [6] proposed a simple network architecture
by increasing the depth of the network without increasing computation costs.
This model performs text region embedding, which generalizes commonly used
word embedding. Though Word2vec is one of the state-of-the-art model for text
embedding, others approaches such as GloVe, ELMo, and BERT have improved
various NLP tasks. The BERT model used a relatively new transformer architec-
ture to compute word embedding and it has been shown to produce state-of-the-
art word embedding, achieving excellent performance. Yang et al. [19] proposed
the XLNet, a generalized autoregressive pretreatment method that exceeds the
limits of BERT thanks to its autoregressive formulation.

In this paper, we leverage on recent success in Computer Vision, but instead
of adapting deep neural network to be fed with raw text information, we propose
an approach that transforms word embedding into encoded text. Once we have
encoded text, we employed state-of-the-art deep neural architectures for text
classification.

3 Proposed Approach

In this section, we present our approach to transform Word2Vec word embedding
into the visual domain. In addition, we explained the understanding of CNNs
with the purposed approach.
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3.1 Encoding Scheme

The proposed encoding approach is based on Word2Vec word embedding [11].
We encode a word tk belonging to a document Di into an encoded image of size
W ×H. The approach uses a dictionary F (tk, vk) with each word tk associated
with a feature vector vk(tk) obtained from a trained version of Word2Vec word
embedding model. Given a word tk, we obtained a visual word t̂k having width
V that contains a subset of a feature vector, called superpixels (see example in
Fig. 2). A superpixel is a square area of size P × P pixels with a uniform color
that represents a sequence of contiguos features (vk,j , vk,j+1, vk,j+2) extracted
as a sub-vector of vk. We normalize each component vk,j to assume values in
the interval [0 . . . 255] with respect to k, then we interpret triplets from feature
vector vk as RGB sequence. For this very reason, we use feature vector with a
length multiple of 3. Our goal is to have a visual encoding that can be generic to
allow the use of existing CNN models; for example, the AlexNet has an 11 × 11
kernel in the input layer, which makes it very difficult to interpret visual words
with 1 × 1 superpixels (P = 1).

Fig. 2. In this example, the word “pizza” is encoded into a visual word t̂k based on
Word2Vec feature vector with length 15. This visual word can be transformed into
different shapes, varying the V parameter (in this example V = 2, 3, 6 superpixels)

The blank space s around each visual word t̂k plays an important role in the
encoding approach. We found out that the parameter s is directly related to the
shape of a visual word. For example, if V = 16 pixels then s must also have a
value close to 16 pixels to let the network understand where a word ends and
another begins.

3.2 Encoding Scheme with CNN

It is well understood that a CNN can learn to detect edges from image pix-
els in the first layer, then use the edges to detect trivial shapes in the next
layer, and then use these shapes to infer more complex shapes and objects in
higher layers [10]. Similarly, a CNN trained on our proposed visual embedding
may extract features from various convolutional layer (see example in Fig. 3).
We observed that the first convolutional layer recognizes some specific features
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of visual words associated with single or multiple superpixels. The remaining
CNN layers aggregate these simple activations to create increasingly complex
relationships between words or parts of a sentence in a text document. Figure 3
also highlights how the different convolutional layers of a CNN activate different
areas corresponding to single words (layers closest to the input) or sets of words
distributed over a 2-D space (layers closest to the output). This is a typical
behavior of deep models that work on images, while 1-D models that work on
text usually limit themselves to activating only words or word sequences.

Fig. 3. Starting from an encoded text document, the resulting image is classified by a
CNN model normally employed in image classification. The first convolutional layers
look some particular features of visual words while the remaining convolutional layers
can recognize sentences and increasingly complex concepts.

To numerically illustrate this concept, we use the receptive field of a CNN.
The receptive field r is defined as the region in the input space that a particular
CNN feature is looking at. For a convolution layer of a CNN, the size r of its
receptive field can be computed by the following formula:

rout = rin + (k − 1) · jin (1)

where k is the convolution kernel size and j is the distance between two con-
secutive features. Using the formula in Eq. 1 we can compute the size of the
receptive field of each convolution layer. For example, the five receptive field of
an AlexNet, showed in Fig. 4, have the following sizes: conv1 11 × 11, conv2
51 × 51, conv3 99 × 99, conv4 131 × 131 and con5 163 × 163. This means that
the conv1 of an AlexNet, recognizes a small subset of features represented by
superpixels, while the conv2 can recognize a visual word (depending on the con-
figuration used for the encoding), up to the con5 layer where a particular feature
can simultaneously analyze all the visual words available in the input image.
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Fig. 4. The receptive fields of the five convolution layers of an AlexNet. Each receptive
field is cut from a 256 × 256 image to analyze the quantity of visual words that each
conv layer is able to analyze on each pixel of its feature map.

4 Dataset

Zhang et al. [20] introduced several large-scale datasets which covers several
text classification tasks such as sentiment analysis, topic classification or news
categorization. In these datasets, the number of training samples varies from
several thousand to millions, which is considered ideal for deep learning-based
methods. In addition, we used 20 news-bydate dataset to test various parameters
associated with the encoding approach.

Fig. 5. On the left, five different designs for visual words (VW ) represented by 36
Word2Vec features, over the 20 news-bydate dataset. The width V of these words is
4 for the first two on the top and 6 for the rest. The first four visual words consist
of super pixels with different shapes to form particular visual words. On the right, a
comparison over these different shapes of visual words.

5 Experiments

The aim of these experiments is twofold: (i) evaluate configuration parameters
associated with the encoding approach; (ii) compare the proposed approach
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with other deep learning methods. (iii) to validate the proposed approach on
a real-world application scenario. In experiments, percentage error is used to
measure the classification performance. The encoding approach mentioned in
Sect. 3.1 produces encoded image that are used to train and test a CNN. We
used AlexNet [8] and Googlenet [17] architectures as base models from scratch.
We used a publicly available Word2Vec word embedding with default config-
uration parameters as in [11] to train word vectors on all datasets. Normally,
Word2Vec is trained on a large corpus and used in different contexts. However,
we trained this model with the same training set for each dataset.

5.1 Parameters Setting

We used 20 news-bydate dataset to perform a series of experiments with various
settings to find out the best configuration for the encoding scheme. In the first
experiment, we changed the space s among visual words and Word2Vec feature
length to identify relationships between these parameters. We obtained a lower
percentage error with higher values of s parameter and a higher number of
Word2Vec features as shown in Table 1. We observed that the length of feature
vector vk(tk) depends on the nature of the dataset. For example in Fig. 6, a text
document composed of a large number of words cannot be encoded completely
using a high number of Word2Vec features, because each visual word occupies
more space in the encoded image. Moreover, we found out that error does not
decrease linearly with the increase of Word2Vec features, as shown in Table 3.

Table 1. Comparison between CNNs trained with different configurations on our
proposed approach. The width V (in superpixels) of visual words is fixed while the
Word2Vec encoding vector size and space s (in pixel) varies. H is the height of visual
word obtained.

s V H w2v feat error (%)

4 4 1 12 7.63

8 4 1 12 5.93

12 4 1 12 4.45

16 4 1 12 4.83

4 4 2 24 6.94

8 4 2 24 5.60

12 4 2 24 5.15

16 4 2 24 4.75

4 4 3 36 6.72

8 4 3 36 5.30

12 4 3 36 4.40

16 4 3 36 4.77
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Fig. 6. Five encoded images obtained using different Word2Vec features length and
using the same document belonging to the 20news-bydate dataset. All the images are
encoded using space s = 12, superpixel size 4×4, image size = 256×256 and visual word
width V = 16. The two leftmost images contain all words in the document encoded
with 12 and 24 Word2Vec features respectively, while 3 rightmost encoded images with
36, 48 and 60 features length cannot encode entire documents.

We tested various shapes for visual words before selecting the best one, as
shown in Fig. 5 (on the left). We showed that the rectangular shaped visual words
obtained higher performance as highlighted in Fig. 5 (on the right). Moreover,
space s between visual words plays an important role in the classification, in fact
using a high value for the s parameter, the convolutional layer can effectively dis-
tinguish among visual words, also demonstrated from the results in Table 1. The
first level of a CNN (conv1 ) specializes convolution filters in the recognition of a
single superpixel as shown in Fig. 3. Hence, it is important to distinguish between
superpixels of different visual words by increasing the parameter s (Table 2).

These experiments led us to the conclusion that we have a trade-off between
the number of Word2Vec features to encode each word and the number of words
that can be represented in an image. Increasing the number of Word2Vec fea-
tures increases the space required in the encoded image to represent a single
word. Moreover, this aspect affects the maximum number of words that may
be encoded in an image. The choice of this parameter must be done consider-
ing the nature of the dataset, whether it is characterized by short or long text
documents. For our experiments, we used a value of 36 for Word2Vec features,
considering results presented in Table 3.

Table 2. Comparison of different parameters over the 20news-bydate dataset. In the
leftmost table we changed the size of the encoded image from 100 × 100 to 500 × 500
and the crop size is also changed by multiplying the image size with a constant i.e. 1.13.
Here sp stands for superpixel, w2v is for number of Word2Vec features, Mw stands for
Max number of visual words that an image can contain and #w is the number of text
documents in the test set having a greater number of words than Mw. We fixed the
remaining non-specified parameters as follow: s = 12, V = 4, sp = 4, image size= 256.

image size crop error

500 × 500 443 8.63

400x400 354 9.30

300x300 266 10.12

200x200 177 10.46

100x100 88 15.70

sp error

5x5 8.96

4x4 8.87

3x3 10.27

2x2 10.82

1x1 10.89

stride error

5 8.7

4 8.87

3 8.33

2 7.78

1 12.5

w2v Mw #w error

12 180 50% 9.32

24 140 64% 8.87

36 120 71% 7.20

48 100 79% 8.21

60 90 83% 20.66
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5.2 Data Augmentation

We encode the text document in an image to exploit the power of CNNs typi-
cally used in image classification. Usually, CNNs use “crop” data augmentation
technique to obtain robust models in image classification. This process has been
used in our experiments and we showed that increasing the number of training
samples by using the crop parameter, results are improved. During the training
phase, 10 random 227 × 227 crops are extracted from a 256 × 256 image (or
proportional crop for different image size, as reported in the leftmost Table 3)
and then fed to the network. During the testing phase, we extracted a 227× 227
patch from the center of the image. It is important to note that thanks to space
s introduced around the encoded words, the encoding of a text document in the
image is not changed by cropping. So, cropping is equivalent to producing many
images with the same encoding but with a shifted position.

The “stride” parameter is very primary in decreasing the complexity of the
network, however, this value must not be bigger than the superpixel size, because
larger values can skip too many pixels, which leads to information lost during
the convolution, invalidating results.

We showed that the mirror data augmentation technique, successfully used in
image classification, is not recommended here because it changes the semantics
of the encoded words and can deteriorate the classification performance. Results
are presented in Fig. 7.

Fig. 7. Classification error using data augmentation: (mirror and crop) over the 20
news-bydate test set.

5.3 Comparison with Other State-of-the-art Text Classification
Methods

We compared our approach with several state-of-the-art methods. Zhang et al.
[20] presented a detailed analysis of traditional and deep learning methods. From
their papers, we selected the best results and reported them in Table 4. In addi-
tion, we also compared our results with Conneau et al. [1] and Xiao et al. [18]. We
obtained comparable results on all the datasets used: DBPedia, Yahoo Answers!,
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Table 3. Comparison of different parameters over the 20 news-bydate dataset. Here
sp stands for superpixel, w2v is for number of Word2Vec features, Mw stands for Max
number of visual words that an image can contain and #w is the number of text
documents in the test set having a greater number of words than Mw. We fixed the
remaining non-specified parameters as follow: s = 12, V = 4, sp = 4, image size= 256.

sp error

5x5 8.96

4x4 8.87

3x3 10.27

2x2 10.82

1x1 10.89

stride error

5 8.7

4 8.87

3 8.33

2 7.78

1 12.5

w2v Mw #w error

12 180 50% 9.32

24 140 64% 8.87

36 120 71% 7.20

48 100 79% 8.21

60 90 83% 20.66

Amazon Polarity, AGnews, Amazon Full and Yelp Full. However, we obtained
a higher error on Sogou dataset due to the translation process explained in the
paper [20]. It is interesting to note that the papers [1,20] propose text adapted
variants of convolutional neural networks [4,8] developed for computer vision.
Therefore, we obtain similar results to these papers. However, there is a clear
performance gain compared to the hybrid of convolutional and recurrent net-
works [18].

Table 4. Testing error of our encoding approach on 8 datasets with Alexnet and
GoogleNet. The best results are shown in bold. XLNet is a very recent approach based
on BERT.

Model AG Sogou DBP. Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

Xiao et al. 8.64 4.83 1.43 5.51 38.18 28.26 40.77 5.87

Zhang et al. 7.64 2.81 1.31 4.36 37.95 28.80 40.43 4.93

Conneau et al. 8.67 3.18 1.29 4.28 35.28 26.57 37.00 4.28

Johnson and Zhang 6.87 1.84 0.88 2.64 30.58 23.90 34.81 3.32

Our encoding scheme +
AlexNet

9.19 8.02 1.36 11.55 49.00 25.00 43.75 3.12

Our encoding scheme +
GoogleNet

7.98 6.12 1.07 9.55 43.55 24.10 40.35 3.01

XLNet Yang et al. 4.45 – 0.60 1.37 27.05 – 31.67 2.11
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Table 5. Percentage errors on 20 news-bydate dataset with three different CNNs.

CNN architecture error

Encoding scheme + AlexNet 4.10

Encoding scheme + GoogleNet 3.81

Encoding scheme + ResNet 2.95

5.4 Comparison with State-of-the-Art CNNs

As expected, in Table 4 we performed better using GoogleNet, compared to
results obtained using the same configuration on a less powerful model like
AlexNet. We, therefore, conclude that recent state-of-the-art network architec-
tures, such as InceptionResNet or Residual Network would further improve the
performance of our proposed approach. To work successfully with large datasets
and powerful models, a high-end hardware and large training time are required,
thus we conducted experiments only on 20 news-bydate dataset with three
network architectures: AlexNet, GoogleNet and ResNet. Results are shown in
Table 5. We performed better with ResNet which represents one of the most
powerful network architecture.

6 Multimodal Application

We use two multimodal datasets to demonstrate that our proposed visual embed-
ding brings significant benefits to fuse encoded text with the corresponding image
information [3]. The first dataset named Ferramenta [3] consists of 88, 010 image
and text pairs split in 66, 141 and 21, 869 for train and for test sets respec-
tively, belonging to 52 classes. We used another publicly available dataset called
Amazon Product Data [5]. We randomly selected 10, 000 image and text pairs
belonging to 22 classes. Finally, we randomly selected 10, 000 image and text
pairs of each class dividing into train and test sets with 7, 500 and 2, 500 sam-
ples respectively.

We want to compare the classification of advertisement made in different
ways: using only the encoded text description, using only the image of the adver-
tisement and the fused combination. An example is shown in Fig. 8. The model
trained on images only for Amazon Product Data, we obtained the following first
two predictions: 77.42% Baby and 11.16% “Home and Kitchen” on this example.
While the model trained on the multimodal Amazon Product Data, we obtained
the following first two predictions: 100% Baby and 0% “Patio Lawn and Gar-
den” for the same example. This indicate that our visual embedding improves
classification performance compare to text or image only. Table 6 shows that
the combination of text and image into a single image, outperforms best result
obtained using only a single modality on Ferramenta and Amazon Product Data.
It also demonstrate that the combination of text and image into a single image,
outperforms best result obtained using only a single modality on both datasets.
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Fig. 8. An example of multimodal fusion from the Amazon dataset belonging to the
class “Baby”. (a) shows the original image, (b) is a blank image with the encoded
text only and (c) shows the image with the superimposition of the encoded text in
the upper part. The text in this example contains only the following 4 words “Kidco
Safeway white G2000”. The size of all images is 256 × 256.

Table 6. Percentage error between proposed approach and single sources.

Dataset Image Text Fused image

Ferramenta 7.64 12.1 5.16

Amazon product data 53.9 35.9 27.3

7 Conclusion

In this paper, we presented a new approach to classify text documents by trans-
forming the word encoding obtained with Word2Vec into RGB images that
maintain the same semantic information contained in the original text docu-
ment. The main objectives achieved are (1) the possibility of exploiting CNN
models for classifying images directly without any modification, obtaining com-
parative results; (2) have a tool to integrate semantics of the text directly into
the representative image of the text to solve a multimodal problem using a sin-
gle CNN [13]. Furthermore, we presented a detailed study of various parameters
associated with the coding scheme and obtained comparable results on vari-
ous datasets. As shown in the section dedicated to the experiments, the results
clearly show that we can further improve the text classification results by using
newer and more powerful deep neural models.
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