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Abstract. Scatter is a multivariate transform proposed in combination
with the Chi2 and MIA distinguishers at COSADE 2018. Its primary
motivation is to inherently deal with the misalignment and synchro-
nization issues that may decrease the efficiency of concrete side-channel
attacks. In this paper, we first show empirically that when compared
to natural competitors for first-order multivariate attacks (e.g., exploit-
ing linear regression on-the-fly), it does not bring improvements in the
(simulated and actual) implementation settings studied by its authors.
We then show that the same holds in the higher-order case: in most
practically-relevant settings, Scatter works best when combined with a
combination function mixing the leakage samples in a non-linear man-
ner, bringing it back to a situation where it does not improve standard
distinguishers.
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1 Introduction

Side-channel attacks are an important threat to the security of modern embedded
devices [MOP07]. Masking [CJRR99,GP99] and shuffling [HOM06,VMKS12] are
among the most investigated solutions to mitigate these attacks.

Informally, masking can be viewed as a data randomization which aims at
forcing the adversary to estimate higher-order statistical moments of the leakage
distributions; similarly, shuffling can be viewed as a time randomization which
aims at forcing the adversary to deal with information spread in multivariate dis-
tributions. As a result, evaluating a masked and/or shuffled implementation boils
down to a quest for simple and efficient tools enabling the analysis of higher-order
and multivariate statistical distributions. The literature typically divides such
distinguishers as profiled ones, like Template Attacks (TAs) [CRR02], where the
adversary can use a device he controls to build a leakage model, and non-profiled
ones, like Correlation Power Analysis (CPA) [BCO04], where the adversary uses
a hypothetical model based on engineering intuition.

The Scatter transform was introduced at COSADE 2018 [TGWC18].
Roughly, it is a multivariate pre-processing to use in combination with “generic-
emulating” distinguishers [WOS14], such as Mutual Information Analysis
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(MIA) [GBTP08] or the Chi2 test [MRSS18]. Its main motivation comes from
the observation that the efficiency of concrete side-channel attacks can be sig-
nificantly reduced in case of misaligned traces, which may be due to jitter in
the measurements or to dedicated countermeasures such as shuffling (or ran-
dom delays [CK10]). Scatter is claimed to efficiently deal with such synchro-
nization issues, while having potential for improving higher-order side-channel
attacks (e.g., against masked implementations) [TVW19]. Preliminary experi-
ments showed good features in these directions, but a comparison with compet-
ing distinguishers is missing.
In this paper, we complete this research in two directions.

We start by investigating the basic potential of Scatter for an efficient
exploitation of first-order multivariate leakages. For this purpose, our seed obser-
vation is that the COSADE 2018 paper mostly compared Scatter with univariate
CPA-based attacks. In this context, it appears natural that Scatter resists better
to misaligned traces, since the misalignment will typically spread the informa-
tive samples over multiple time dimensions (i.e., a multivariate distribution). We
therefore compare the efficiency of Scatter with a more natural competitor for
first-order multivariate attacks, namely the on-the-fly regression-based distin-
guisher described in [DPRS11]. We performed experiments against a simulated
shuffled implementation and a concrete jittery implementation, both similar to
the settings investigated in [TGWC18]. Our results suggest that the on-the-fly
regression always outperforms Scatter in these contexts.

We follow by studying the applicability of Scatter to masked implementations
where computations are performed on secret-shared data.

In this respect, we first show that Scatter’s basic (univariate) probabilistic
transform is inherently unable to characterize the higher-order multivariate sta-
tistical leakages of a masked implementation. Hence, the only possible option to
deal with such cases is (as usual) to generalize Scatter to multivariate distribu-
tions, either by estimating these distributions directly or by combining the leak-
age samples in a non-linear manner (see for example [PRB09,SVO+10]). Note
that the latter implies that Scatter cannot avoid the combinatorial explosion of
the number of samples to test in order to detect Points-of-Interest (POIs).

Our experiments next confirm the findings of Thiebeauld et al. that non-
linear combination functions are beneficial for the efficiency of higher-order
Scatter from a data complexity viewpoint [TVW19]. Since we are then back
to a situation where on-the-fly regression is applicable, we finally compare both
distinguishers and show empirically that, as in the first-order context, Scatter is
outperformed by linear regression in the simulated cases we studied.

Overall, we cannot preclude another useful application of Scatter. But in the
absence of theoretical or empirical arguments highlighting its interest over other
established distinguishers, we conclude that it currently lacks a use case.

Note that our study is limited to the investigation of Scatter in combination
with side-channel distinguishers (as it was proposed so far). One possible scope
for further investigation is the study of this probabilistic transform as a pre-
processing before leakage detection (e.g., with the Chi2 test [MRSS18]).
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Fig. 1. Scatter transform with MIA and Chi2 distinguishers: high-level view.

2 Background

2.1 Scatter Transform with Chi2/MIA Distinguishers

The Scatter transform applied to first-order leakages and combined with the Chi2

and MIA distinguishers is illustrated on the top of Figure 1. The basic idea is to
consider each d-dimension trace as d (one-dimension) samples, and to estimate
the distribution of these d samples thanks to histograms. The histograms are
then partitioned according to the key guess and a hypothetical leakage model
(e.g., the Hamming weight of an S-box output). The Chi2 or MIA distinguishers
are finally used to search for the correct key guess. More precisely:

1. We estimate histograms based on the amplitude of the sample points within
a window of size d. For each measured trace, we convert the d sample points
to an Nb-bin histogram. For an 8-bit oscilloscope, the max Nb is 256.

2. The “histogram traces” are then partitioned based on the key guess and
hypothetical leakage model. In this work we consider the Hamming weight
leakages of an AES S-box output. As a result, we obtain Nb × 9 × 256 parti-
tioned histogram traces (i.e., 9 Hamming weights, 256 key candidates).

3. We compute the distributions pdfg,h[u] using the partitioned histogram
traces, for each key guess g and corresponding Hamming weight hypothetical
leakage h, where u denotes the histogram value:
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pdfg,h[u] =
Accg,h[u]

Nb−1∑

u′=0

Accg,h[u′]

, (1)

in which Accg,h[u] is the total number of occurrences of value u for a key
guess g and its corresponding Hamming weight hypothetical leakage h.

4. The correct key guess gcorrect is distinguished by applying a generic-emulating
side-channel distinguisher to the estimated distributions pdfg,h[u].

Both the Chi2 and MIA distinguishers can be used in combination with the
Scatter transform in order to search for the correct key candidate.

The Chi2 distinguisher is based on Pearson’s X 2-test to perform a partition-
based DPA [SGV08]. When successful, the partition based on the correct key
guess should lead to the highest confidence level to reject the null hypothesis. In
the Scatter context, it estimates how much a distribution differs from a general
distribution (e.g., in our case study, the mean distribution of all 9 Hamming
weight leakage distributions for a key guess g and a value u)—the correct key
guess being expected to show the most significant difference. The Chi2 value is
computed according to the following formula:

X 2
g,h =

Nb−1∑

u=0

(pdfg,h[u] − 1
9 ·

8∑

h′=0

pdfg,h′ [u])2

1
9 ·

8∑

h′=0

pdfg,h′ [u]
· (2)

For each key guess, there are 9 Chi2 scores corresponding to 9 Hamming weights.
The logarithm sum of all 9 scores is then used as the final score.

The MIA distinguisher was introduced by Gierlichs et al. [GBTP08]. It is
based on estimating the mutual information between a hypothetical leakage
model and the actual leakages. Under a correct partitioning (i.e., the correct key
guess), it is expected that the largest mutual information should be observed for
the correct key candidate to distinguish the correct key guess from the wrong
ones. The MIA value is computed according to the following formula:

MIg =
8∑

h=0

P(Y = h) · (�1(g, h) − �2(h)), (3)

in which:

P(Y = h) =
1

n · 9
·
Nb−1∑

u=0

Accg,h[u], (4)

with n the number of traces collected and:

�1 (g, h) =
Nb−1∑

u=0

pdfg,h[u] · (pdfg,h[u]), (5)

�2 (h) =
Nb−1∑

u=0

(
1
9

·
8∑

h′=0

pdfg,h′ [u]) · log(
1
9

·
8∑

h′=0

pdfg,h′ [u]). (6)
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2.2 On-the-Fly Linear Regression

The use of linear regression for (profiled) side-channel attacks was introduced
by Schindler et al. [SLP05]. It was then extended to non-profiled key-recovery
attacks in [DPRS11]. We next denote this non-profiled extension as LRA.

Let us denote the leakage measurement as L. The target m-bit intermediate
value v (e.g., the S-box output in our case) is first decomposed according to
some basis. In the following, we will use the usual (linear) basis made of the 8
bits of v (v[m − 1], v[m − 2], . . . , v[0]). LRA then simply tests the linear relation
between the actual leakages and their approximation with this basis, thanks to
the coefficient of determination R2. More precisely:

1. We first compute (vĝ[m − 1], vĝ[m − 2], . . . , vĝ[0]) for each key guess ĝ and
each input plaintext & measurement Li, i = 0, 1, . . . , n − 1.

2. We then estimate the linear regression model between the measurement L
and the following approximation:

Lapp = βĝ,0 + βĝ,1 · vĝ[0] + . . . + βĝ,m · vĝ[m − 1] , (7)

using ordinary least square method to estimate the parameter βĝ,j .
3. We finally compute the coefficient of determination R2

ĝ for each key guess.
The correct key guess gcorrect is supposed to show the highest R2 value.

2.3 Selection of Parameters

The efficiency of the three aforementioned distinguishers is quite dependent on
the good selection of their parameters: number of bins for the Chi2 and MIA
distingsuihers, size of the basis for LRA. As already mentioned, our experiments
are based on LRA with a linear 9-element basis (the eight S-box output bits and a
constant), which is a standard choice for this distinguisher [SLP05]. For the Chi2

and MIA distinguishers, choosing the optimal number of bins is usually tricky.
We selected 9 and 25 bins in our experiments: 9 since it naturally corresponds
to Hamming weight leakages, 25 to assess the impact of more bins. We note
that this choice is expected to be slightly detrimental to the LRA distinguisher
(since under a Hamming weight assumption, a 2-element basis with the Hamming
weight of the S-box output should be even faster to estimate).

3 First-Order Experiments

We first investigate a simulated shuffled implementation, since this was the case
study put forward in the COSADE 2018 paper on Scatter. We continue by tar-
geting a real device of which the measurements are affected by a strong jitter,
preventing the good alignment of the traces around the leaking part.
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3.1 Setting #1: A Simulated Shuffled Implementation

Shuffling is a widely-used side-channel countermeasure [HOM06,VMKS12]. Its
main principle is to execute sensitive operations in a random order so that their
leakages are spread over a multivariate distribution. As a result, each single point
in time can correspond to the execution of various operations.

Shuffled implementations are the typical context in which Scatter’s multi-
variate transform was claimed to be a useful tool at COSADE 2018.

Implementation Settings. The main parameter influencing the security of
a shuffled implementation is the number of parallel operations which are ran-
domized. We next consider a default size of 16 (corresponding to the AES case)
and additionally experimented with a permutation of size 64, which could corre-
spond to the execution of 48 dummy S-boxes. In our default setup, a single POI
is leaking (corresponding to the target S-box execution) but we also considered
a case with four POIs (which does not reflect a concrete AES implementation
and was just aimed to understand the impact of a denser leakage in the Scat-
ter window). Finally, we used a Signal-to-Noise Ratio (SNR) of 10, 1 and 0.1,
reflecting low-noise, medium-noise and high-noise contexts [Man04]. The way we
generated simulated traces is similar to the Scatter paper. For a window size d
(i.e., the shuffling size in our experiments), we:

1. Choose the number of informative points (ni),
2. Pick up their location in the d possible positions uniformly at random,
3. Put random leakages (of the same shape) in all the other points,
4. Add Gaussian noise to the entire trace based on the chosen SNR.

Our simulations focus on Hamming weight leakages for the first-round first S-box
of an AES-128 encryption, namely HW(Sbox(p[0] ⊕ k[0])), where p[0] and k[0]
correspond to the first bytes of the 16-byte AES input and key, respectively.

For each simulation setting, we estimated the Success Rate (SR) of the differ-
ent attacks under investigation based on 100 independent experiments [SMY09].

Attack Results. The results of our experiments are in Fig. 2. We analyzed
a wide range of parameters reflecting the various settings in which the Scatter
transform could be exploited. As previously mentioned, we also evaluated this
transform with both the Chi2 and MIA distinguishers, using 9 and 25 bins. Those
are systematically compared with the LRA distinguisher (9-element basis).

In general, these experiments carry the expected intuitions regarding the
impact of our different parameters: decreasing the SNR makes the attacks more
difficult (i.e., when moving from the left of the figure to the right of the figure);
increasing d (i.e., the permutation size) makes the attacks more difficult (i.e.,
when moving from lines 1 and 2 to lines 3 and 4); increasing the number of POIs
makes the attack easier (i.e., when moving from line 1 to line 2 and from line 3
to line 4). More specifically related to Scatter:
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Fig. 2. Success rate on simulated shuffled implementations, with d the window size, ni

the number of POIs per window and various SNR values.
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– LRA always outperforms Scatter with both the Chi2 and MIA distinguishers,
no matter the permutation size, noise level and number of POIs;

– The performance gap between LRA and Scatter is getting bigger as the attacks
become more difficult (i.e., when the permutation size increases, the noise level
increases and the number of POIs decreases);

– Scatter with the MIA distinguisher performs slightly better than Scatter with
the Chi2 distinguisher (which is in line with the COSADE 2018 results).

– As for the impact of the number of bins for Scatter: more bins generally show
better results with lower noise and less bins generally works better with higher
noise. The latter is in line with the findings of [GBTP08].

3.2 Setting #2: A Concrete Jittery Implementation

We now extend our investigations to a real device, namely a software AES
implementation using a secure processor. Due to the variable internal clock,
the inserted random instructions during AES calculations, and the interrupts
caused by the running Android-like operating system (OS), the measured traces
are very jittery and we cannot really align the traces at the leaking time interval.
We study how well Scatter can handle this challenging scenario.

Implementation Settings. The target secure processor is a Cortex-M4 chip
running at 50 MHz next to a Qualcomm MSM8998 general processor which is
running an Android-like OS. The secure processor is used for cryptography cal-
culations and it communicates with the MSM8998 processor via UART (Uni-
versal Asynchronous Receiver/Transmitter) interface. The AES implementation
is unprotected except for the random instructions inserted during the AES exe-
cution. Interrupts are additionally caused by the running Android-like OS and
make the measured traces more noisy and hard-to-align. We measured 100,000
ElectroMagnetic (EM) traces on top of the secure processor using an EM probe,
with a LeCroy Waverunner 620Zi oscilloscope, at a sampling rate of 5 GHz.

During the measurements, we triggered the oscilloscope at the end of the
entire AES encryption command processing. The raw EM traces are noisy and
hardly show distinct patterns that can be used for alignment, as can be seen in
Fig. 3(a). We therefore used a simple correlation-based pre-processing in order
to better synchronize these EM traces, working as follows:
– Two intervals are chosen. First, a searching interval A that contains the oper-

ation to be synchronized is manually selected among all the traces. Next, a
smaller reference interval Bq specific to each trace q is also chosen.

– For each trace, we find the portion to be synchronized by using the second
window Bq to search over the whole interval A. The right portion is selected
as the one having the maximum correlation with the reference interval. If the
correlation is lower than a given threshold (chosen by the attacker/evaluator),
the trace is assumed not good enough and discarded.

After performing such an alignment, we were able to determine where the AES
computations occur by means of SEMA (Simple Electro Magnetic Analysis) and
CEMA (Correlation Electro Magnetic Analysis), as shown in Fig. 3(b).
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Fig. 3. 100 overlapped EM traces before alignment (a) and after alignment (b), and
target S-box estimated SNR (c).
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Attack Results. Our comparisons are based on 99,902 aligned EM traces focus-
ing on the leaking part (the other traces were discarded). As a first note, none
of the investigated distinguishers directly succeeded in recovering key bytes by
exploiting the leakage in the time domain. We then applied a Fast Fourier Trans-
form (FFT) in order to convert the traces into the frequency domain and to
mitigate the impact of misalignment. After this pre-processing, LRA was able
to recover all 16 key bytes of an AES state, but Scatter was not (neither with
the Chi2 nor with the MIA distinguishers). These results are illustrated in Fig. 4
where the success rate is estimated based on 100 independent experiments.

Fig. 4. Attacks against a real implementation with strong jitter.

4 Higher-Order Scatter

4.1 The Need of a Combination Function

We start with a simple negative result highlighting the need to generalize the
Scatter transform before application to higher-order side-channel attacks. For
this purpose, let us imagine that the two “clock cycles” represented at the top
of Fig. 1 correspond to the two shares of a masked sensitive variable x. Let us
further consider that this sensitive variable is one bit and can be written as
x = x1 ⊕ x2 with x1 picked up uniformly at random. Let us finally assume
that the adversary can obtain the leakage of the two shares x1 and x2, denoted
as l1 and l2: under Hamming weight leakages, we have l1 = x1 and l2 = x2,
meaning that the adversary can directly observe the shares. In this context,
1st-order probing security is guaranteed because the observation of either l1
or l2 does not reveal anything about x. By contrast, a second-order probing
attack is trivial since l1 ⊕ l2 = x. More interestingly, a second-order statistical
attack is also successful since the distribution of (l1, l2) when x = 0 is (0,0)
with probability 1

2 and (1,1) with probability 1
2 , while this distribution becomes

(0,1) with probability 1
2 and (1,0) with probability 1

2 when x = 1 (which has a
different variance).



100 Y. Zhou et al.

If we now apply the Scatter transform, each bivariate trace (l1, l2) is split into
two univariate traces l1 and l2, and histograms are built from these two traces.
As a result, the two traces (0,0) and (1,1) that correspond to the case x = 0
are turned into four traces 0, 0, 1, 1. Their histogram gives 0 with probability 1

2
and 1 probability 1

2 . Similarly, the two traces (0,1) and (1,0) that correspond to
the case x = 1 are turned into four traces 0, 1, 1, 0, leading to exactly the same
histogram. So directly applying the first-order Scatter transform to a masked
implementation cancels the differences between these distributions that can be
used to mount a successful second-order attack. The same example generalizes
to any number of shares and probing/statistical security order.

As usual in side-channel analysis, the solution to prevent this issue is to gen-
eralize the transform to higher-orders. There are essentially two solutions for
this purpose: either one considers all the pairs (and triples, quadruples, . . . )
of samples and applies a multivariate (e.g., Chi2 or MIA) distinguisher to it,
or one uses a combination function (e.g., the normalized product in the con-
text of Hamming weight leakages [PRB09,SVO+10]) and applies a (univariate
in the case of LRA or multivariate in the case of Scatter) distinguisher to its
output. As discussed for example in [BGP+11,MRSS18], directly considering all
the pairs (and triples, quadruples, . . . ) of samples and applying a multivariate
distinguisher is usually more expensive, due to the curse of dimensionality when
estimating multivariate distributions in a non-parametric manner. Our experi-
ments showed the same trend and so do the experiments of Thiebeauld et al.
in [TVW19].

As a result, we next consider higher-order attacks based on a combination
function illustrated at the bottom of Fig. 1. That is, in the second-order case we
will concretely investigate, we start by extending the original d-sample window
to a d2-sample window containing all the normalized product samples and then
apply the Scatter transform combined with the Chi2 or MIA distinguishers, or
LRA. Note that this solution suffers from the usual drawback that the cost
of finding the POIs in the traces grows exponentially in the number of shares
(and exactly the same would hold for the first aforementioned solution where a
multivariate distinguisher is applied to all the tuples of samples).1

4.2 Second-Order Simulated Experiments

Implementation Settings. We now complete the previous first-order exper-
iments with second-order simulations. We consider a 2-share implementation
where the adversary obtains the two Hamming weights corresponding to the
two shares of a target S-box’s output. Based on the previous observation that
Scatter tends to behave better in less challenging scenarios (and in order to limit

1 In the report on the second-order application of Scatter [TVW19], an optional pro-
jection of the histogram traces is considered. In our experiments, this projection
(just as the direct bivariate attacks) did not exhibit any improvement. This seems
natural in a simulated setting where the normalized product combination function
is known to be optimal [PRB09]. So we next ignore this optional projection.
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the cost of our simulations, which increases with the security levels), we selected
the following parameters: a permutation of size d = 4 with a single POI (i.e.,
ni = 1) and a SNR of 10, 1 and 0.25. For completeness, we also report results
with d = 16, 4 POIs (i.e., ni = 4) and a SNR of 10 and 1. We focused on
Scatter with the MIA distinguisher that was the best in class for our first-order
experiments. (This is also similar to what has been done in [TVW19]).

Attack Results. The results of our second-order experiments based on a nor-
malized product combination function are displayed in Fig. 5.

Observations are essentially similar to the first-order case: again, LRA sys-
tematically outperforms attacks based on Scatter and the more “challenging”
the implementation (e.g., the lower the SNR), the bigger the gap. This can be
explained by the fact that the product combining pre-processing generates traces
that can be exploited in a very similar way as an unprotected implementation
(up to the noise level that is amplified by the product operation).

Fig. 5. Simulated shuffled & masked implementation: (a) d = 4, ni = 1, SNR=10; (b)
d = 4, ni = 1, SNR=1; (c) d = 4, ni = 1, SNR=0.25; (d) d = 16, ni = 4, SNR=10; (e)
d = 16, ni = 4, SNR=1.

5 Conclusion

Exploiting the side-channel leakages of an implementation protected with jitter,
shuffling and/or masking is a challenging problem. The Scatter transform was
introduced at COSADE 2018 as a novel transform aimed to make such attacks
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more efficient. In this work, we nailed down its specificity and compare it with
a natural competitor for unprofiled multivariate side-channel analysis.

It turns out a standard on-the-fly application of linear regression leads to
more efficient attacks in many practically-relevant contexts, including all the
ones initially put forward by the Scatter authors. It is therefore an interesting
open problem to determine whether this transform can sometimes be a useful
ingredient in a side-channel security evaluation. The exhibition of a simulated
case where such a gain can be observed appears as a natural next to answer this
question. Without such a case, evaluators are left with the conclusion that it
currently does not improve over existing solutions.
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tion” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717,
pp. 158–172. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48059-5 15

https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-642-15031-9_7
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15


Scatter: A Missing Case? 103

HOM06. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation
resistant to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.)
ACNS 2006. LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006).
https://doi.org/10.1007/11767480 16

Man04. Mangard, S.: Hardware countermeasures against DPA – a statistical anal-
ysis of their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol.
2964, pp. 222–235. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24660-2 18

MOP07. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer,
Boston, MA (2007). https://doi.org/10.1007/978-0-387-38162-6

MRSS18. Moradi, A., Richter, B., Schneider, T., Standaert, F.-X.: Leakage detection
with the x2-test. IACR Trans. Cryptogr. Hardware Embed. Syst. 2018(1),
209–237 (2018)

PRB09. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order dif-
ferential power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

SGV08. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison
side-channel distinguishers: an empirical evaluation of statistical tests for
univariate side-channel attacks against two unprotected CMOS devices.
In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp.
253–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
00730-9 16

SLP05. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side
channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/
11545262 3

SMY09. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the anal-
ysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 26

SVO+10. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed,
M., Kasper, M., Mangard, S.: The world is not enough: another look on
second-order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 112–129. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 7

TGWC18. Thiebeauld, H., Gagnerot, G., Wurcker, A., Clavier, C.: SCATTER: a new
dimension in side-channel. In: Fan, J., Gierlichs, B. (eds.) COSADE 2018.
LNCS, vol. 10815, pp. 135–152. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-89641-0 8

TVW19. Thiebeauld, H., Vasselle, A., Wurcker, A.: Second-order scatter attack.
IACR Cryptol. ePrint Arch. 2019, 345 (2019)

VMKS12. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuf-
fling against side-channel attacks: a comprehensive study with cautionary
note. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 740–757. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 44

WOS14. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of Generic DPA...and
the magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366,
pp. 183–205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
04852-9 10

https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/978-3-540-24660-2_18
https://doi.org/10.1007/978-3-540-24660-2_18
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-642-00730-9_16
https://doi.org/10.1007/978-3-642-00730-9_16
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-17373-8_7
https://doi.org/10.1007/978-3-642-17373-8_7
https://doi.org/10.1007/978-3-319-89641-0_8
https://doi.org/10.1007/978-3-319-89641-0_8
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-319-04852-9_10
https://doi.org/10.1007/978-3-319-04852-9_10

	Scatter: a Missing Case?
	1 Introduction
	2 Background
	2.1 Scatter Transform with Chi2/MIA Distinguishers
	2.2 On-the-Fly Linear Regression
	2.3 Selection of Parameters

	3 First-Order Experiments
	3.1 Setting #1: A Simulated Shuffled Implementation
	3.2 Setting #2: A Concrete Jittery Implementation

	4 Higher-Order Scatter
	4.1 The Need of a Combination Function
	4.2 Second-Order Simulated Experiments

	5 Conclusion
	References




