
Guido Marco Bertoni
Francesco Regazzoni (Eds.)

LN
CS

 1
22

44 Constructive
Side-Channel Analysis
and Secure Design
11th International Workshop, COSADE 2020
Lugano, Switzerland, April 1–3, 2020
Revised Selected Papers

Lecture Notes in Computer Science 12244

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Guido Marco Bertoni • Francesco Regazzoni (Eds.)

Constructive
Side-Channel Analysis
and Secure Design
11th International Workshop, COSADE 2020
Lugano, Switzerland, April 1–3, 2020
Revised Selected Papers

123

Editors
Guido Marco Bertoni
RD
Security Pattern SRL
Brescia, Italy

Francesco Regazzoni
AlaRI
Università della Svizzera italiana
Lugano, Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-68772-4 ISBN 978-3-030-68773-1 (eBook)
https://doi.org/10.1007/978-3-030-68773-1

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-68773-1

Preface

It is our pleasure to welcome you to COSADE 2020, the 11th edition of the Interna-
tional Workshop on Constructive Side-Channel Analysis and Secure Design. The
conference was originally planned in Lugano, Switzerland, April 1–3, 2020. However,
the physical version of the conference had to be canceled due to COVID-19, and the
conference was turned into a virtual event. Since 2010, COSADE has provided a
well-established international platform for researchers, academics, and industry par-
ticipants to present their work and their current research topics in implementation
attacks, secure implementation, implementation attack-resilient architectures and
schemes, secure design and evaluation, and practical attacks, test platforms, and open
benchmarks.

COSADE 2020 was organized by Università della Svizzera italiana. This year, we
received 36 papers, each of which was assigned to 4 reviewers. All the submissions
went through a rigorous double-blind peer-review process. The Program Committee
included 35 members from 15 countries, selected among experts from academia and
industry in the areas of secure design, side channel attacks and countermeasures, and
architectures and protocols. Overall, the program committee returned 176 reviews.
During the decision process, 15 papers were selected for publication. These manu-
scripts are contained in these proceedings and the corresponding presentations were
part of the COSADE 2020 program. We would like to express our gratitude to the
program committee members and the 32 subreviewers for their reviews and for their
active participation in the paper discussion phase.

In addition to the 15 presentations of selected papers, the program of COSADE
2020 was completed by 2 keynotes and one industrial session. The first keynote was
titled “Tracking a Three Billion Dollar Bug with Electromagnetic Fault Injection” and
was given by Colin O’Flynn from NewAE Technology Inc. and Dalhousie University.
The talk explored a product safety incident through the lens of a hardware security
researcher using tools with which hardware security researchers are familiar. The
second keynote was titled “Security Aspects of CPSs: a Dive into Threat Modelling”
and was given by Davide Ariu from Pluribus One. The talk provided an introduction to
Threat Modeling, surveying possible Threat Modeling methodologies that can be
applied to Cyber-Physical Systems of Systems and discussing the main challenges
related to their application. The industrial session included three talks from Secure-IC
(“Catalyzr tool: an environment to get your software secure; application to
Post-Quantum Cryptography”), from Riscure (“Riscure tooling; ‘we love FI”’), and
from FortifyIQ (“Applying the best security and development practices to HW
security”).

We would like to thank the general chairs, Alberto Ferrante and Subhadeep Banik,
and the local organizers, Liliana Sampietro and Nadia Ruggiero-Ciresa, from
Università della Svizzera italiana, for the local organization. We would also like to
thank the two Web administrators, Helmut Häfner and Lothar Hellmeier of the

University of Stuttgart, for maintaining the COSADE website for 2020. We are very
grateful for the financial support received from our generous sponsors Hasler Stiftung,
FortiyfIQ, NewAE Technology Inc., Riscure, Secure-IC, PQShield, and Rambus
Cryptography Research.

October 2020 Guido Marco Bertoni
Francesco Regazzoni

vi Preface

Organization

Steering Committee

Jean-Luc Danger Télécom Paris, France
Werner Schindler Bundesamt für Sicherheit in der Informationstechnik

(BSI), Germany

General Chairs

Alberto Ferrante ALaRI - USI, Switzerland
Subhadeep Banik EPFL, Switzerland

Program Committee Chairs

Guido Marco Bertoni Security Pattern, Italy
Francesco Regazzoni ALaRI - USI, Switzerland

Program Committee

Divya Arora Intel, USA
Reza Azarderakhsh Florida Atlantic University, USA
Josep Balasch KU Leuven, Belgium
Goerg T. Becker ESMT, Germany
Sonia Belaïd CryptoExperts, France
Davide Bellizia UCL Crypto Group, Belgium
Shivam Bhasin Nanyang Technological University, Singapore
Elke De Mulder Rambus Cryptography Research, USA
Fabrizio De Santis Siemens AG, Germany
Baris Ege Riscure, The Netherlands
Wieland Fischer Infineon Technologies, Germany
Samaneh Ghandali Google, USA
Jorge Guajardo Bosch, USA
Sylvain Guilley Secure-IC, France
Tim Güneysu Ruhr-Universität Bochum, Germany
Annelie Heuser CNRS, IRISA, France
Naofumi Homma Tohoku University, Japan
James Howe PQShield, UK
Jens-Peter Kaps George Mason University, USA
Michael Kasper Fraunhofer Singapore, Singapore
Elif Bilge Kavun The University of Sheffield, UK
Osnat Keren Bar-Ilan University, Israel
Roel Maes Intrinsic ID, The Netherlands

Pedro Massolino Radboud University, The Netherlands
Marcel Medwed NXP Semiconductors, Austria
Debdeep Mukhopadhyay IIT Kharagpur, India
Makoto Nagata Kobe University, Japan
Paolo Palmieri University College Cork, Ireland
Colin O’Flynn NewAE Technology Inc., Canada
Gerardo Pelosi Politecnico di Milano, Italy
Ilia Polian Universität Stuttgart, Germany
Kazuo Sakiyama The University of Electro-Communications, Japan
Johanna Sepúlveda Airbus, Germany
Patrick Schaumont Worcester Polytechnic Institute, USA
Georg Sigl TU Munich, Germany
Marc Stöttinger Continental AG, Germany
Ruggero Susella STMicroelectronics, Italy

Additional Reviewers

Abubakr Abdulgadir
Manaar Alam
Florian Bache
Jakub Breier
Olivier Bronchain
Lauren De Meyer
William Diehl
Farnoud Farahmand
Michael Gruber
Dirmanto Jap
Pantea Kiaei
Kris Kwiatkowski
Yohei Hori
Yang Li
Silvia Mella
Julien Montmasson

Thorben Moos
Adriaan Peetermans
Jan Richter-Brockmann
Sayandeep Saha
Thomas Schamberger
Tobias Schneider
Hermann Seuschek
Hadi Soleimany
Patrick Struck
Lars Tebelmann
Jan Thoma
Rei Ueno
Florian Unterstein
Gilles Van Assche
Ville Yli-Mäyry
Fan Zhang

viii Organization

Contents

Fault and Side Channel Attacks

Persistent Fault Analysis with Few Encryptions . 3
Sébastien Carré, Sylvain Guilley, and Olivier Rioul

A Template Attack to Reconstruct the Input of SHA-3 on an 8-Bit Device. . . 25
Shih-Chun You and Markus G. Kuhn

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes . . . 43
Rei Ueno, Kazuhide Fukushima, Yuto Nakano, Shinsaku Kiyomoto,
and Naofumi Homma

Side-Channel Analysis Methodologies

Wavelet Scattering Transform and Ensemble Methods
for Side-Channel Analysis . 71

Gabriel Destouet, Cécile Dumas, Anne Frassati, and Valérie Perrier

Scatter: a Missing Case?. 90
Yuanyuan Zhou, Sébastien Duval, and François-Xavier Standaert

Augmenting Leakage Detection Using Bootstrapping. 104
Yuan Yao, Michael Tunstall, Elke De Mulder, Anton Kochepasov,
and Patrick Schaumont

Evaluation of Attacks and Security

Security Assessment of White-Box Design Submissions of the CHES 2017
CTF Challenge . 123

Estuardo Alpirez Bock and Alexander Treff

On the Implementation Efficiency of Linear Regression-Based
Side-Channel Attacks . 147

Maamar Ouladj, Sylvain Guilley, and Emmanuel Prouff

Side-Channel Attacks and Deep Learning

Kilroy Was Here: The First Step Towards Explainability of Neural
Networks in Profiled Side-Channel Analysis. 175

Daan van der Valk, Stjepan Picek, and Shivam Bhasin

Online Performance Evaluation of Deep Learning Networks for Profiled
Side-Channel Analysis . 200

Damien Robissout, Gabriel Zaid, Brice Colombier, Lilian Bossuet,
and Amaury Habrard

Primitives and Tools for Physical Attacks Resistance

Custom Instruction Support for Modular Defense Against Side-Channel
and Fault Attacks . 221

Pantea Kiaei, Darius Mercadier, Pierre-Evariste Dagand,
Karine Heydemann, and Patrick Schaumont

Processor Anchor to Increase the Robustness Against Fault Injection
and Cyber Attacks. 254

Jean-Luc Danger, Adrien Facon, Sylvain Guilley, Karine Heydemann,
Ulrich Kühne, Abdelmalek Si Merabet, Michaël Timbert,
and Baptiste Pecatte

Integrating Side Channel Security in the FPGA Hardware Design Flow 275
Alessandro Barenghi, Matteo Brevi, William Fornaciari,
Gerardo Pelosi, and Davide Zoni

Side-Channel Countermeasures

Self-secured PUF: Protecting the Loop PUF by Masking 293
Lars Tebelmann, Jean-Luc Danger, and Michael Pehl

Leakage-Resilient Authenticated Encryption from Leakage-Resilient
Pseudorandom Functions . 315

Juliane Krämer and Patrick Struck

Author Index . 339

x Contents

Fault and Side Channel Attacks

Persistent Fault Analysis with Few
Encryptions

Sébastien Carré1,2, Sylvain Guilley1,2,3(B), and Olivier Rioul2

1 Secure-IC S.A.S., Think Ahead Business Line, Paris, France
sylvain.guilley@secure-ic.com

2 LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
3 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

Abstract. Persistent fault analysis (PFA) consists in guessing block
cipher secret keys by biasing their substitution box. This paper improves
the original attack of Zhang et al. on AES-128 presented at CHES 2018.
By a thorough analysis, the exact probability distribution of the cipher-
text (under a uniformly distributed plaintext) is derived, and the maxi-
mum likelihood key recovery estimator is computed exactly. Its expres-
sion is turned into an attack algorithm, which is shown to be twice more
efficient in terms of number of required encryptions than the original
attack of Zhang et al. This algorithm is also optimized from a computa-
tional complexity standpoint. In addition, our optimal attack is naturally
amenable to key enumeration, which expedites full 16-bytes key extrac-
tion. Various tradeoffs between data and computational complexities are
investigated.

Keywords: Persistent fault analysis · Substitution box · Maximum
likelihood distinguisher · Key enumeration

1 Introduction

Cryptographic algorithms are generally “mathematically secure”. As an exam-
ple, the current best mathematical attack on AES cryptosystem is the biclique
attack [4] that has a complexity of 2254.4 for AES-256. However, the imple-
mentation of a cryptographic algorithm can leak information that can greatly
reduce the complexity of attacks. For example, any implementation for which the
encryption time or the power consumption depends on the secret key gives the
attacker some sensitive information about that key. Attacks exploiting physical
leakages are known as side-channel attacks. Another class of attacks, known as
fault attacks [1,5,7,12], deliberately creates errors in the cryptographic algorithm
to help the attacker find the secret key. There are many types of fault attacks.
Differential fault attacks [3,8,16,18,21] compare a faulted ciphertext with a cor-
rect one. Statistical fault attacks [10] perform multiple faulted encryptions to get
sensitive information through statistical tools. Persistent fault attacks [6,20,23]
consist in making a fault that remains persistent during the whole encryption
c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 3–24, 2021.
https://doi.org/10.1007/978-3-030-68773-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_1

4 S. Carré et al.

and across several consecutive encryptions. Persistent fault injection can be
performed in various ways: laser injection [19], which requires a local access
and which is possibly expensive; RowHammer attack [2,9,11,14,17] or Plunder-
Volt [13] which can be triggered remotely and which do not require any expensive
laboratory equipment. Combining fault attacks with side-channel attacks subse-
quently gives an attacker the ability to break a cryptosystem in a very efficient
way.

1.1 Zhang et al.’s Attack

The attack of Zhang et al. [23] focuses on injecting a fault in the SBOX of AES
that is used to perform the SubBytes operation. Such a fault eliminates an ele-
ment y− of the SBOX and creates a new one y+ �= y− instead. As a consequence,
the element y+ appears twice in the SBOX after the fault injection. This results
in a bias on the output of the SubBytes operation: Assuming a uniformly dis-
tributed input, the value y− cannot be observed at all as the output, while the
value y+ is observed with a higher probability of 2/256; other values are observed
with an unchanged probability of 1/256. The resulting output probability dis-
tribution D is then

D : P(y) =

⎧
⎨

⎩

0 if y = y−,
2/256 if y = y+,
1/256 otherwise.

(1)

The attack of Zhang et al. [23] requires enough encryptions to obtain an empirical
distribution where only one element per byte is not observed, as shown in Fig. 1.
From such never observed byte value x−, the key byte can be obtained as k =
x− ⊕ y−.

Because each AES round gives a 16-byte output and consumes a 16-byte key,
there are 16 possible biased distributions for an AES output, which only differ
by the key byte value. In Fig. 1, each subplot represents one byte distribution
among the 16 bytes of an AES ciphertext.

Thus, for the attack of Zhang et al. to work, the number of required encryp-
tions should be such that all values are observed but one. This is an instance of
the coupon collector problem. Figure 2 shows the success rate of the reproduced
Zhang et al. [23] attack to recover a full 128 bits AES key. Their attack typi-
cally requires more than 2500 encryptions to obtain the AES master key with
probability ≥ 80%.

1.2 Contributions

The Zhang et al. [23] attack assumes a uniform distribution at the input of the
last round SBOX. Since the faulted SBOX is used in each AES round, it is not
obvious that this uniformity assumption actually holds. In this paper, we assume
that the fault location and the fault value are known by the attacker. We first
give a formal proof of uniformity at the input of the last round SBOX, thanks

Persistent Fault Analysis with Few Encryptions 5

Fig. 1. Empirical distributions for each byte of the ciphertext. The bias depends on
the last round key value.

Fig. 2. Success rate of the Zhang et al. attack over 1000 retries to recover the complete
AES key. With such a strategy, the attacker needs at least 2500 encryptions to obtain
the AES master key with probability ≥ 80%.

6 S. Carré et al.

to a property of the MixColumns operation. Then, under this assumption, the
maximum likelihood estimator for n encryptions is determined and an efficient
attack algorithm is derived from this estimator. The maximum likelihood prin-
ciple aims at maximizing the probability of obtaining the correct key.

The attack of Zhang et al. only exploits the only element x− that is never
observed, but does not exploit the fact that another element is more likely to be
observed than the others. When relatively few encrypted messages are collected,
there may be more than one element not observed. Therefore, there are as many
key candidates as unobserved elements, which are equally likely. To prevent these
limitations, we leverage the maximum likelihood principle to optimize the attack.

The proposed attack improves the state-of-the-art performance by reducing
the required number of encryptions. Less encryptions can still give the correct key
without having to use a full instance of the coupon collector problem. Specifically,
about 1000 encryptions are required to get a success rate of 80% with our strategy
compared to about 2500 encryptions for the attack of Zhang et al. Besides, we
detail a computationally efficient version of the attack algorithm.

Reducing the number of encryptions is important in a product evaluation
context that uses, for instance, the Common Criteria (ISO/IEC 15408) since it
influences the quotation. Indeed, in Common Criteria parlance, the quotation is
a score which results from a combination of different factors, including time for
trace collection and time for analysis.

More important, our result allows to calibrate one countermeasure against a
persistent fault analysis: We derive a lower bound on the number of encryptions
to successfully extract the correct key and the designer can simply refresh the key
more frequently than this bound to avoid such attack. The number of encryptions
can further be reduced thanks to a key enumeration algorithm. Our analysis is
very amenable to such enumeration since it provides likelihoods to each subkey.

This paper also improves the proposed attack using various techniques such
as key byte enumeration and key combination, exploring multiple strategies for
each technique.

The attack presented in this paper is optimal for full key recovery since it
is optimal at byte level in term of number of traces and also computationally
optimal at the combination level of all bytes.

1.3 Outline

This paper is organized as follows. Section 2 mathematically shows that, even if
the SubBytes operation gives a biased distribution due to a persistent fault, this
bias is eventually cancelled by the MixColumns operation. Section 3 improves
Zhang et al. attack: An algorithm to find the most probable key for each last
round key is developed in Subsect. 3.1. Then, multiple combination strategies
are discussed in Subsects. 3.2 and 3.3 in order to find the complete last round
key and eventually the master key. Subsection 3.4 compares the success rate of
our approaches compared to the one of Zhang et al. Section 4 concludes and
gives some perspectives.

Persistent Fault Analysis with Few Encryptions 7

2 Bias Cancelling Effect of MixColumns

The attack of Zhang et al. is possible provided the distribution of the last round
SubBytes operation is uniformly distributed. This assumption is not obvious
since the output of SBOX in each AES round is not uniformly distributed due
to the persistent fault which biases the SBOX. Proposition 1 shows that, in the
context of this paper, the MixColumns operation returns a uniform distribution
even for a biased input (output of corrupted SubBytes). Therefore, as AES con-
sists in alternations between SubBytes and MixColumns (and other functions
such as ShiftRows and AddRoundKey which do not change the distributions),
provided the plaintext is uniformly distributed, so is the output of each Mix-
Columns at every round.

Lemma 1 (Convolutional Identity). For any u ∈ F256, we have
∑

b∈F256

D(b)D(u − b) =
1

256

(
1 + D(u + y+) − D(u + y−)

)
. (2)

where y− and y+ were defined in Subsect. 1.1.

Proof. Observe that (1) writes D(b) = 1
256 (1 + 1{y+}(b) − 1{y−}(b)). Therefore

256
∑

b∈F256

D(b)D(u − b) =
∑

b∈F256

(1 + 1{y+}(b) − 1{y−}(b))D(u − b)

=
∑

b∈F256

D(u − b) + D(u + y+) − D(u + y−)

= 1 + D(u + y+) − D(u + y−)

��
Lemma 2 (Uniformity of the AES State Bytes). If the plaintext is uni-
formly distributed, then any intermediate variable in the AES algorithm is also
uniformly distributed.

Proof. AES being a Substitution-Permutation Network (SPN), each operation
is bijective on the states. Therefore, uniformity property is maintained from the
plaintext down to any intermediate state. ��
Corollary 1 (Uniformity Implies Independence). Provided the AES plain-
text is uniformly distributed, all bits or bytes at any stage of the algorithm are
mutually independent.

Therefore, under the hypothesis of plaintext uniformity, the input bytes of the
MixColumns operation are independent.

Proposition 1 (Bias Cancelling Effect of MixColumns). Let y−, y+ ∈
F256 and distribution D be defined by Eq. (1). Let B0, B1, B2, B3 ∈ F256 be
four bytes representing an AES state column before a MixColumns operation,
independent and identically distributed according to distribution D. Then each
byte Z0, Z1, Z2, Z3 ∈ F256 representing an AES state column after a MixColumns
operation is uniformly distributed.

8 S. Carré et al.

Proof. For any z ∈ F256, given the assumed independence of B0, B1, B2, B3:

P(Z0 = z) = P(02B0 + 03B1 + B2 + B3 = z)

=
∑

b0,b1,b2∈F256

P(02b0+03b1+b2+B3=z|B0=b0, B1=b1, B2=b2)D(b0)D(b1)D(b2)

=
∑

b0∈F256

D(b0)
∑

b1∈F256

D(b1)
∑

b2∈F256

D(b2)P(B3 = z − 02b0 − 03b1 − b2)

=
∑

b0∈F256

D(b0)
∑

b1∈F256

D(b1)
∑

b2∈F256

D(b2)D(z − 02b0 − 03b1 − b2). (3)

where the + (XOR) sign denotes addition (same as subtraction) in F256. Using
Lemma 1, Eq. (3) is simplified by collapsing the sums using Eq. (2). Each sum
(lefthand-side of Eq. (2)) generates three terms (righthand-side of Eq. (2)), and
the first constant term further simplifies by noting that

∑
b∈F256

D(u − b) = 1.
After three recursive applications of Eq. (2), Eq. (3) becomes:

P(Z0 = z) =
1

256
+

1
2563

⎡

⎢
⎢
⎣

D(z+02y++03y++y+) −D(z+02y−+03y++y+)
− D(z+02y++03y−+y+) −D(z+02y++03y++y−)
+ D(z+02y−+03y−+y+) +D(z+02y−+03y++y−)
+ D(z+02y++03y−+y−) −D(z+02y−+03y−+y−)

⎤

⎥
⎥
⎦

where we observe that the terms in D pairwise cancel, as per:

D(z + 02y+ + 03y+ + y+) = D(z + 0) = D(z + 02y− + 03y− + y−),
D(z + 02y− + 03y+ + y+) = D(z + 02(y+ + y−)) = D(z + 02y+ + 03y− + y−),
D(z + 02y+ + 03y− + y+) = D(z + 03(y+ + y−)) = D(z + 02y− + 03y+ + y−),
D(z + 02y− + 03y− + y+) = D(z + y+ + y−) = D(z + 02y+ + 03y+ + y−).

Hence P(Z0 = z) = 1/256, the uniform distribution. ��
The independence hypothesis in Proposition 1 assumes the rounds prior to

the last round are executing the genuine AES, so that Lemma 2 applies, and
yields the independence between any tuple of bytes in an AES intermediate
state.

This proposition considerably simplifies the modeling of the problem, and
allows us to derive exact results in the sequel. Additionally, the obtained uni-
formity at the output of the MixColumns operation, despite SubBytes is not
uniform (after persistent fault), makes it possible to prove that, provided the
plaintext is uniformly distributed, all configurations are explored, hence attack
success rate does reach 100% asymptotically.

This proposition also shows that only one MixColumns operation is required
to cancel the bias. This is confirmed by taking many observations and building
the empirical distribution from these observations as shown in Fig. 3 where each
element indeed appears to have the same probability to be observed. This means
that one can consider the input of the last round as being uniformly distributed,
no matter where the persistent fault occurred.

Persistent Fault Analysis with Few Encryptions 9

Fig. 3. Empirical distribution of a byte of an AES state after a MixColumns operation
that takes a small biased input given by distribution D of Proposition 1.

3 Improvement Using Maximum Likelihood

This section explains how the Zhang et al. attack can be improved. First of all,
the most likely key value for each byte of the last round key is extracted. In
this step, each key per byte of the last round key is ranked from the most to
the least probable. Then, a combination strategy is used to guess each byte of
the last round key in a complete 128-bit last round key. Eventually, the correct
master AES key is extracted from that last round key. Note that the value of
the last round key is not necessarily the correct one, typically when the key
schedule uses the faulted SBOX. This situation can be considered marginal,
since most of the time, the keys are scheduled once, then reused multiple times.
Hence, if the permanent fault in the SBOX occurs after the key is scheduled,
then the round keys are correct, and the master key can be recovered from the
last round key. Otherwise, the key schedule can also be inverted, although with
some uncertainty: when a key byte is equal to y+, then the two antecedents shall
be considered when inversing the round of the key schedule. The number of
possible master keys is in the order of 2

256 × 16 × 10 (< 2), which is manageable
to enumerate.

3.1 Optimal Distinguisher

In this section, n AES encryptions are used to find the most probable key. For
pedagogical reasons, only the first byte of an AES ciphertext is considered in this
section, but other bytes are treated in a similar way. For the same reason, only
the first byte of the last round key is considered. In this section, the term key
refers to one byte of the last round key of AES. Precisely, this section focuses on
the extraction of the last round key. From these n encryptions, n bytes x1, . . . , xn,
that can be viewed as elements of F256, are observed.

10 S. Carré et al.

Maximum Likelihood Optimality. This section shows that the application
of the MLE is optimal in the sense that it maximizes the attack success rate in
a Bayesian context.

Figure 4 summarizes the idea of the attack until the success to find one byte
of the last round key. In this illustration, y− = 0x63 and y+ = 0x41. This section

Fig. 4. Fault model and attack principle for this paper (with y− = 0x63, y+ = 0x41).

first assumes that each possible key is equally probable before any observation,
meaning that P(k) = 1/256 for each of the 256 possible keys k. Note that the
fault also alters the round keys since the key scheduler uses SBOX. However, the
biased output of an SBOX in the key scheduler is added to a uniform random
variable in F256 before to output a round key. This eventually gives uniformly
distributed round keys. Thus, even with the fault, it makes sense to assume a
uniform distributed key for each of the AES round before any observations. Then,
these probabilities are updated after the observations. This is then a Bayesian
context of statistical inference in which this paper is written.

Finding the most probable key k means finding the key that maximizes
the conditional probability P(k | x1, . . . , xn) for observations x1, . . . , xn. This
is a well known problem in a Bayesian context known as Maximum a posteri-
ori (MAP) estimator that is a generalisation of Maximum Likelihood Estimator
(MLE). These estimators are defined in the Definition 1.

Definition 1 (MAP and MLE). Given a joint distribution of k, x1, . . . , xn

of such distribution, we define two estimators:

– Maximum A Posteriori (MAP) estimator k̂MAP = arg max
k

P(k | x1, . . . , xn).

– Maximum Likelihood Estimator (MLE) k̂MLE = arg max
k

P(x1, . . . , xn | k).

Persistent Fault Analysis with Few Encryptions 11

For uniformly distributed key hypotheses the estimators coincide:

Lemma 3 (MAP=MLE for Uniform Distribution). In a Bayesian con-
text, k̂MAP = k̂MLE for a uniform a priori distribution of k.

Lemma 3 is a classical result but we include its proof for completeness.

Proof. MAP is defined as k̂MAP = arg max
k

P(k | x1, . . . , xn). By Bayes’ formula,

this also writes

k̂MAP = arg max
k

P(x1, . . . , xn | k)P(k)
P(x1, . . . , xn)

= arg max
k

P(x1, . . . , xn | k)P(k)

since P(x1, . . . , xn) does not depend on k. Moreover, for a uniform a priori dis-
tribution, P(k) is constant and, therefore,

k̂MAP = arg max
k

P(x1, . . . , xn | k) = k̂MLE .

��
Since we assume that, before any observation, each possible key has the same

probability, MLE is used to compute the MAP and find the most probable key.
The choice of using MLE instead of directly computing MAP is motivated by
the fact that, since observations are independent, computing P(x1, . . . , xn | k)
is much easier that computing P(k | x1, . . . , xn), since the former simplifies to
a product P(xi | k) = D(xi ⊕ k) for all 1 ≤ i ≤ n. This distribution can be
extended for multiple observations. Such distribution is given in the Lemma 4.

Lemma 4 (Computation of the Likelihoods). Given k, y−, y+ ∈ F256, y− �=
y+,

P(x1, . . . , xn | k) =

{
0 if ∃i, 1 ≤ i ≤ n | xi ⊕ k = y−,

2mk,2−8n otherwise

where mk,2 = #{i ∈ {1, . . . , n} | xi ⊕ k = y+}.
Proof. Since the observations are conditionally independent given k, one has
P(x1, . . . , xn | k) =

∏n
i=1 P(xi | k) =

∏n
i=1 D(xi ⊕ k). This product is equal to

zero if at least one D(xi ⊕ k) is equal to zero. For a given k, there is only one
element xi for which D(xi ⊕ k) = 0 since it can only happen when xi ⊕ k = y−
where y− is the only element that is never observed at the output of the SBOX
due to the fault. If no such term is equal to zero, then there are two options:

– if xi ⊕ k = y+, then D(xi ⊕ k) = 2
256 since y+ appears twice at the output of

the faulted SBOX;
– otherwise, xi ⊕ k �= y+ and xi ⊕ k �= y−. Thus xi ⊕ k only appears exactly

once in the faulted SBOX and D(xi⊕k) = 1
256 , which happens for 254 SBOX

unique outputs.

12 S. Carré et al.

Thus, P(x1, . . . , xn | k) is equal to

n∏

i=1

P(xi | k) =

⎛

⎝
∏

i|xi⊕k=y−

0

⎞

⎠

⎛

⎝
∏

i|xi⊕k=y+

2
256

⎞

⎠

⎛

⎝
∏

i|xi⊕k �∈{y−,y+}

1
256

⎞

⎠

= (0)mk,0

(
1

256

)mk,1
(

2
256

)mk,2

=
{

0 if ∃i | xi ⊕ k = y−,(
1

256

)mk,1
(

2
256

)mk,2 otherwise

where we have noted mk,0 = #{i | xi⊕k = y−}, , and mk,2 = #{i | xi⊕k = y+}.
Note that mk,0 + mk,1 + mk,2 = n. Moreover, when P(x1, . . . , xn | k) �= 0, one
has mk,0 = 0, thus mk,1 = n − mk,2. Therefore, when there is no i, 1 ≤ i ≤ n,
such that xi ⊕ k = y−, one has

P(x1, . . . , xn | k) =
(

1
256

)n−mk,2
(

2
256

)mk,2

=
1

256n
2mk,2 = 2mk,2−8n.

��
From Lemma 4, a two-step strategy is developed to find the correct key:

1. Eliminate keys that have the value x ⊕ y− for each observation x since the
probability to observe such element is null;

2. Among the remaining keys, declare the most likely key to be the one that has
the value x+ ⊕ y+, for an observation x+ that appears the most often among
all the observations. Indeed, x+ is the value that should appear the largest
number of times, owing to Lemma 4.

This strategy is optimal in the sense that it maximizes the likelihood. We
now go one step further by applying the strategy without actually computing the
probabilities. The computationally efficient strategy is exposed in our Proposi-
tion 2.

Proposition 2 (Operational MLE Computation for PFA). Consider n
observations of ciphertext bytes {x1, . . . , xn}, and known PFA characteristic val-
ues y−, y+ ∈ F256, y− �= y+. Define

A = {x ⊕ y− | x ∈ F256 − {x1, . . . , xn}}
Bj = {i ∈ {1, . . . , n} | xi = j and xi ⊕ y+ ∈ A} (0 ≤ j ≤ 255)

We have k̂MLE ∈ A, and k̂MLE is the index of Bj which is the largest set, i.e.,
k̂MLE = arg maxj(#{Bj}).

Proof. First, note that {x ∈ F256 − {x1, . . . , xn}}} and {x ∈ {x1, . . . , xn}}} are
complementary sets. This implies that A and are complementary. Since P(xj |
k) = 0 for xj ⊕ k = y−, then value k �= xj ⊕ y−. Thus, k̂MLE ∈ A.

For the second point, we note that Bm contains the element that is the most
often observed for which the condition xm ⊕ y+ ∈ A holds. In other word, xm is
the most often observed value after removing elements xi such that xi ⊕ y− = k.

Persistent Fault Analysis with Few Encryptions 13

The proof then consists in showing that the maximum likelihood estimator
is given by eliminating values k such that xi ⊕ k = y− and for which xi appears
the most often. Let k̂ = arg maxk P(x1, . . . , xn | k) be the maximum likelihood
estimator. The values of k such as xi ⊕ k = y− for at least one observation
give P(x1, . . . , xn; k) = 0. Such keys can then be eliminated from the maximiza-
tion. Since m
→ 2m−8n is strictly increasing in variable m ∈ N, we have that
arg maxk 2mk,2−8n = arg maxk mk,2, i.e., the most likely key values are the values
k that maximize mk,2 (amongst k values which have not been ruled out). ��

Note that the set A contains all the possible keys. Thus, all impossible keys
have been eliminated to get this set. This is the first remarkable point of our
strategy. The elements contained in each class Bj are chosen in such a way that
they match with a possible key. For the correct key, one observation has to
appear the most often compared to the others. This observation can then be
found by taking the class Bj that has the maximum number of elements. This
is the second peculiarity of our strategy.

Based on Proposition 2, Algorithm 1 consists in eliminating the impossible
keys and selecting the most likely one through the most observed value. Note
that line 5 of this algorithm counts the number of times a key, related to an
observation, can be observed and also takes care to only select possible keys by
using the term A[xi ⊕ y−] that is equal 0 for the key k = xi ⊕ y−. At line 2,
the algorithm discards a key candidate if the value k = xi ⊕ y− is not already
in set A. Therefore, the set of impossible keys is increasing with respect to the
inclusion. When all the 255 unique values of the ciphertexts xi have been seen,
the set A has cardinality 255, and the algorithm returns the key (in a singleton).
As a corollary, when the correct key is found, more ciphertexts do not alter the
outcome of the attack. This behavior differs from that of side-channel attacks
where the measurements are noisy (e.g., powerline attacks, etc.).

Algorithm 1: Algorithm to extract the most likely key
input : The SBOX erased value y− ∈ {0, . . . , 255}, the SBOX duplicated value

y+ �= y−, and n observations (x1, . . . , xn) of ciphertext bytes.
output: Most likely key

1 h[256] ← 0, . . . , 0 // Histogram storing the occurrence count of a

possible key. Notice that h[j] = #{Bj} as per proposition 2

2 A[256] ← 1, . . . , 1 // Indicator of the set of possible keys. A[k] = 1 if

k is a possible key, otherwise A[k] = 0
3 for i ∈ {1, . . . , n} do // Iterating on the observations

4 A[xi ⊕ y−] ← 0 // Eliminate impossible key xi ⊕ y−. This builds the

set A of proposition 2

5 h[xi ⊕ y+] ← A[xi ⊕ y+] × (h[xi ⊕ y+] + 1) // Among the remaining keys,

count the ones that appear the most

6 return arg maxj h[j] // Returns a list in case of ex æquo keys

14 S. Carré et al.

Fig. 5. P(k̂ = k) for one byte of multiple last round key of AES, averaged over 1 000
tries.

In our case, k is an AES last round key and an observation is a byte resulting
from an encryption. We evaluate the number of required encryptions for all of
the 256 possible keys. Figure 5 gives the success rate. The maximum likelihood
estimator is known to be consistent. Thus, P(k̂ = k) = 1 for enough observations,
where k is the correct key. For clarity, only 7 keys are represented in this figure.
However, the 256 possible keys follow the same trend.

Figure 6 shows how many key bytes remain, averaged over 1000 set of plain-
texts, possible as a function of the number of encryptions by considering only
the keys that are eliminated from the first figure or the keys that maximize the
likelihood. Note that, some keys have the same likelihood and, thus, multiple key
can maximize the likelihood. Note that the number of keys that maximizes the
likelihood can locally increase but will eventually decrease down to 1. For less
than 800 encryptions, the figure shows that more than 15 keys byte candidates
are possible.

A Note About Guessing Entropy. Another approach to find a key k such as
P(x1, . . . , xn | k) is maximal from n observations is to use the guessing entropy
defined as GE =

∑256
i=1 kP(x1, . . . , xn | k) where {P(x1, . . . , xn | k)} are sorted in

decreasing order. Due to this sort, the guessing entropy is approximately equal
to 1 if P(x1, . . . , xn | k) is the biggest probability and other are small relatively
to it. We thus estimate the number of observations required to get GE = 1
and observe that the guessing entropy becomes equal to 1 between 1200 and
1400 observations meaning that we require between 1200 and 1400 observations
to be able to get the AES master key. This mean that, between 1200 to 1400
encryptions are required to get the correct key.

Persistent Fault Analysis with Few Encryptions 15

Fig. 6. Remaining values of one byte of last round keys after eliminating impossible
keys (blue) and remaining values of one byte of last round keys that maximize the
likelihood (black), averaged over 1000 tries. The line y = 256 − x is represented as
a reference, to illustrate the optimistic situation where one values of one byte of a
last round key hypothesis is ruled out at each new encryption (never twice the same
ciphertext byte).

3.2 Key Byte Ranking

Algorithm 1 returns not one unique value of a byte of the last round key, but
a set of values of a byte of the last round key (since there are possibly ties in
the likelihood values). Full 128 bits key can be reconstructed using key rank-
ing algorithms, such as [22]. Indeed, one byproduct of our attack is that, in
addition to be optimal, it is based on MLE, hence can sort out key candidates
based on probabilities. Therefore, key ranking algorithms apply in a straight-
forward manner. In most cases, this requires to modifying Algorithm 1 so that
instead of returning the most probable value of a byte of the last round key (the
arg maxj h[j] at line 6), it returns the most probable value of a byte of the last
round key sorted with decreasing probabilities.

3.3 Combination of Several Key Bytes to Reconstruct the Full Key

In case not enough observations are available, the key byte ranking (Sect. 3.2)
can fail to rank the keys correctly. In order to get around this limitation, a
combination algorithm is given in this section.

The complete last round key can be recovered by combining key byte candi-
dates in an empirical algorithm consisting in 16 imbricated loops. The first loop
(outer loop) iterates over the candidates of the first key byte. The second loop
iterates over the candidates for the second key byte and so on. Noting Ni the
number of candidates for the last round key byte i, the total number of candi-
dates for the whole last round key is N =

∏16
i=1 Ni. This product can be very

16 S. Carré et al.

large and can induce a high time complexity of the attack. For instance, for 100
candidates per byte of the last round key, we have N = 10016 last round key
candidates. More specifically, assuming the key byte rank algorithm gives the
correct key byte as the first candidate for key bytes except the first one, then
the attacker has to test between 2 × 10015 and 10016 last round key candidates
which is not practical.

One strategy to mitigate this issue is to only test a predefined maximum
number of key byte candidates. This assumes that the key byte rank algorithm
is efficient enough. For instance, assuming that the key byte rank algorithm
always rank the correct key byte between the first and the third rank, the time
complexity is then reduced from N = 10016 to N = 316. While this assumption
is not always met, for each key byte candidate, the first key byte candidate is
often the correct one and only very few key byte candidates are not correctly
ranked. Thus we can consider only the first key byte candidate for most of the
bytes and only iterate over the few other bytes. Due to this observation, our
strategy consists in building the last round key candidates through 16 stages.

The first stage consists in trying all possibilities for only one byte over the
16 bytes. This gives a maximum of 16 × 256 = 4096 possibilities. At this stage,
each of the 15 other key byte candidates is fixed to the first candidate. Those
15 bytes are called small varying bytes. If the full 128 bits key is not found, the
second stage is used.

The second stage consists in trying all possibilities for two bytes among all
combinations of two bytes among the 16 bytes. This gives a maximum number
of testing key equal to 16 × 15 × 2562. At this stage, each of the 14 other key
byte candidates is fixed to the first candidate. Those 14 bytes are called small
varying byte. If the full 128 bits key is not found, the third stage is used.

All stages are built along the same scheme for at most
∑n=16

k=1
16!

(16−k)!256k

keys to test. Even if this appears to be a huge number, in practice the correct
key is found in the first stages. To reduce again the time complexity, we can limit
the number of byte candidates to pi for byte i instead of 256. The parameter pi
is chosen experimentally to optimize the time it takes to perform the attack can
be performed in a relatively short time.

For each stage, the small varying bytes were fixed to the first candidates. A
more general strategy consists in choosing the first n candidates instead of the
first. In such case, the maximum number of tested key is 16!

(16−i)!p
i
iα

16−i
i per stage

where αi is the value of the small varying bytes.
Table 1 gives the time required to perform the attack and get the AES master

key, according to the number of stages and the number of small varying bytes.
The rows describe the number of stages that is used to perform the attack. The
stages are used in order. For example, for 3 stages, the stage 1, 2 and 3 are used
one after the other. The columns describe the value of the small varying bytes.
For a small varying byte equal to 1, we used p1 = 256, p2 = 256, p3 = 108,
p4 = 17, p5 = 6, p6 = 3 and p7 = 1. For a small varying byte equal to 2 we used
p1 = 256, p2 = 33, p3 = 5 in the same idea to not test an excessive number of
keys. For the same reason, the stage 4 to 7 is not used in this case. For a small

Persistent Fault Analysis with Few Encryptions 17

Table 1. Time, expressed in second, required to perform the attack and get the 16-
bytes AES-128 master key, as a function of the number of stages used (in rows) and
the value of the small varying byte (in columns).

1 2 3

1 256/0.005 s 256/0.291 s 18/7.652 s

2 256/0.067 s 33/4.376 s –

3 108/2.424 s 5/5.947 s –

4 17/2.887 s – –

5 6/2.975 s – –

6 3/2.993 s – –

7 2/3.022 s – –

varying byte count equal to 3, we use only one stage with p1 = 18. Each cell of
the table reminds pi before the time ti in the format pi/ti.

Figure 7 gives a comparison of success rates, according to the number of
stages and the value of the small varying byte in the same configuration given by
Table 1. Only two stages is quite efficient compared to the success rate illustrated
in Fig. 2. The figure shows that the best curve in term of number of encryption
is for small varying byte equal to 2 with only 3 stages with 1371 encryptions.

Fig. 7. Our MLE attacks for the complete last round key of AES— Comparison of
success rates, according to the number of used stages. The value of small varying bytes
is taken equal to 1 (plain line), 2 (dotted line), and 3 (semi dotted line). One color by
number of stage is used, respectively red, green, blue, black, yellow, cyan, purple for 1,
2, 3, 4, 5, 6, 7 stages. Note that the result of stages six and seven are almost identical.
(Color figure online)

18 S. Carré et al.

3.4 Efficiencies of Key Byte Rank and Combination Algorithms

In order to test the efficiency of the key byte rank and combination algorithms,
we compare multiple strategies that are combinations of three tactics:

1. Using the key byte algorithm or not. If the key byte algorithm is not used,
the key byte candidates are tested in the order of the non observed values.

2. Getting ciphertexts until the histograms are full, meaning that all possible
values are observed, or not. If we do not require the histograms to be full, we
limit the number of candidates and stages with the better strategy discussed
before that consists in using only three stages.

3. Using the combination algorithm or not.

This leads to 23 = 8 possible strategies. However, there are 22 = 4 strategies,
for which we get enough encryption to fill the empirical histograms, that yield
the same results. Indeed, in such cases, there is only one key byte candidate and
then testing all candidates is the same than testing only one candidate. Moreover,
and for the same reason, using the key byte rank algorithm necessarily gives the
same results whether used or not. This reduces 4 strategies to only 1 and thus
only 5 strategies remain.

We also note that, if we do not use the key byte rank algorithm and if we do
not ensure a full histogram, then the success rate does not depend whether we
use the combination algorithm or not. This shows the importance of a key byte
rank and it is also due to the fact that our combination algorithm relies on the
results of this key byte rank.

Thus four strategies remain. They are listed hereafter:

Strategy 1. Use the key byte ranking algorithm; Do not require to fill his-
tograms; Use the combination algorithm.

Strategy 2. Use the key byte ranking algorithm; Do not require to fill his-
tograms; Do not use the combination algorithm.

Strategy 3. Do not use the key byte ranking algorithm; Do not require to fill
histograms.

Strategy 4. Require to fill histograms. As far as we understand, this strategy
is the one used by Zhang et al. [23].

Figure 8 (top) gives the success rates over 1000 tries of the four strategies.
The last one, in blue, is the worst since it necessarily requires more encryptions
to fill histograms. The best one, in black color, is the most efficient one and is also
the one that uses the key byte rank algorithm and the combination algorithm.
Not using the combination algorithm is less efficient as shown by the red curve,
but is still better than the green curve that shows the strategy that does not use
the key byte ranking algorithm. One can note that the combination algorithm
greatly improves the efficiency.

Each curve of the top figure of 8 is obtained by computing an average over
1000 curves where each of the 1000 curves describes a success rate for a given
plaintext. For each of those 1000 curves, the success rate becomes equal to one
more or less rapidely. The repartition of when the success rate is equal to 1

Persistent Fault Analysis with Few Encryptions 19

Fig. 8. Our MLE attacks for the complete last round key of AES—Success rates of
strategies 1 to 4 over 1000 tries (top). Distribution of minimum number of encryptions
over 1000 tries (bottom). Less than 1000 encryptions are required with the first strategy
whereas more than 2000 are required for the last one. The smallest dispersion is reached
for the first strategy whereas the worst one is reached by strategy four where no ranking
algorithm is used.

over those 1000 curves are given by the bottom of the Fig. 8 that shows the
distribution of minimum number of encryptions over 1000 tries. On this figure,
mean μ and standard deviation σ are also given. Less than 1000 encryptions are
required with the first strategy whereas more than 2000 are required for the last
one. Also the best dispersion is reached for the first strategy and the worst one
is reached on strategy four where no ranking algorithm is used. Strategy 1 is
thus relevant to go further than the theoretical number encryption induced by
the Coupon Collector Problem and discussed by Zhang et al. [23].

20 S. Carré et al.

3.5 Comparison with the Tool of Veyrat-Charvillon et al. [22]

Our methodology to combine bytes can be compared to the C++ tool of Veyrat-
Charvillon et al., which implements the maximum likelihood algorithm to give
the rank of the full 16-byte key based on the distribution of each individual
key byte. This tool is pessimistic, in that, in case of ties (recall black curve in
Fig. 6), it provides the largest rank. While the tool of Veyrat-Charvillon et al.
is generally more efficient, our strategy focuses in reducing the time for small
number of encryptions. For instance, getting the AES last round key with 893
encryptions requires about 20 min where the tool of Veyrat-Charvillon et al.
takes about 3 h.

Fig. 9. Comparison between the combination algorithm described in paper with the
tool of Veyrat-Charvillon et al. for one trace (no average)

Figure 9 shows the rank of the correct key estimated by the tool of Veyrat-
Charvillon et al. and our method. For less than 903 encryptions our method gives
the correct key at a lower rank compared to the tool of Veyrat-Charvillon et al.

4 Conclusion and Perspectives

4.1 Conclusion

In this paper, we revisited the fault attack that makes a permanent fault in the
AES SBOX and we improve it by using multiple techniques including estimation
theory, rank and key combination algorithms. With enough observations, if one
focuses on the most observed value x+, the most likely key will be k = x+ ⊕
y+. Some observations can have exactly or approximately the same number of
occurrences among the overall observations. In such case, since an observation x
cannot be equal to k ⊕ y−, one can eliminate some keys. The strategy developed
in this paper, and derived from the maximum likelihood analysis, to find the
correct key therefore consists in two steps:

Persistent Fault Analysis with Few Encryptions 21

1. eliminate keys that have the value x ⊕ y− for each observation x;
2. declare the most likely key among the remaining keys to be the one that has

the value x+ ⊕ y+, for an observation x+, that appears the most often.

The key byte rank algorithm uses maximum likelihood estimation and guess-
ing entropy. Various techniques have been experimented to build combination
algorithms such as using imbricated loops, truncating the number of key byte
candidates or to a more specific strategy that uses so-called stages.

After recalling some basics about how AES encryption works and how AES
round keys are derived from the master key, the paper shows how a single byte
fault can affect the final ciphertext. This fault can be stepped on at any time of
the encryption. The attacker can also permanently fault the SBOX before or after
key scheduling. The fault is only assumed to be persistent for all encryptions.
The paper first assumes that an attacker can encrypt any messages, that are not
necessarily chosen, in order to get an ideal empirical distribution for each of the
16 bytes of the ciphertext. In the state-of-the-art, more than 2000 encryptions
were required to get such ideal distribution for each byte of the last round key.
The attack in this paper works because the MixColumns operation is performed
on all of the AES rounds but the last one. From those distributions, the paper
explains how an attacker can find the last round of AES by analysing only the
ciphertexts. Since the fault can affect the key scheduler, this last round key can
be wrong but the paper shows that an attacker can still get the correct master
key from a wrong last round key, and then derives the correct round keys.

The attack was further improved by considering non ideal empirical distribu-
tions. This was done by using a key rank algorithm for multiple key candidates
with a combination algorithm that combines each potential byte of the last round
key to get a complete round key. On average, less than 922 encryptions to get the
AES master key with a high probability was necessary. In order to check whether
the correct key is found, one can decrypt a ciphertext and check whether the
resulting plaintext does make sense.

4.2 Perspectives

TBOX. In this paper, we focused on the faults on AES SBOX. Some imple-
mentations of AES use tables called TBOX to perform jointly the SubBytes and
the MixColumns operations [15, Sec. 5.2.1, page 18]. Cryptographic libraries
that implement AES with TBOX uses 4 tables of 256 elements. Each of those
elements has 4 bytes size and those tables are used for all AES rounds except
the last one since it does not require the MixColumns operation. For the last
round, some implementations use a fifth table whereas others, like OpenSSL,
mask 3 of the 4 bytes of the TBOX elements in order to only use the SubBytes
operation out of the TBOX. In cryptographic libraries that use TBOX, two cases
are possible to perform the attack described in this paper. These two cases are
discussed here for future works.

In the first case, an attacker can try to target the SubBytes operation imple-
mented by the TBOX. To reach this aim on implementations that uses 5 tables,

22 S. Carré et al.

an attacker can only target the fifth table that does not implement the Mix-
Columns operation. For implementations that only use 4 tables, an attacker can
only target 1/4 of the tables. Note that for implementations that only uses 4
tables, one fault per table has to be made in order to get the same effect with
a single fault on an SBOX table. If one only targets one table it actually only
targets one column of an AES state and thus, 4 bytes of a key.

In the second case, an attacker targets the MixColumns operation imple-
mented by the TBOX. In such cases, we do not observe any bias for all of
the bytes of the ciphertexts. However, we observe a bias on column of an
AES states. The attack described in this document could then be adapted at
column-level instead of byte-level. However, since a column represents 232 possi-
ble values instead of 28 for a byte, more encryptions are required. If we assume
that the number of encryptions is proportional to the number of values, and
since we need 1371 encryption for an analysis at a byte level, we then need
1371 × 232/28 = 23001563136 encryptions. We could also need a more efficient
key rank algorithm since we will have to test more keys.

Knowledge About the Fault. This paper considers that the location of the
fault in the SBOX and also the value of the fault are known. In other words,
it is assumed that the values y− and y+ are known by the attacker. Based on
this assumption, if uniform byte values were submitted to each sbox, then the
attack would converge in 255 plaintexts (because, at each newly observed byte
c, the attacker knows that c ⊕ y− is not a valid key byte). This is depicted by
the curve y = 256 − x in Fig. 6. This assumption was originally accepted in the
case of a rowhammer attacker on a shared SBOX where the attacker can read
the fault in memory. This assumption is invalid on some implementations, such
as the AES-NI instruction set, where the SBOX is not exposed to the user (it
can for instance be some firmware). Without the knowledge of y− and y+, one
can still use a ranking algorithm to get the most likely value of y+ ⊕ y−. Only
256 guess values are required to guess y−, and y+ will directly follow from the
most likely value of y+ ⊕ y− when analyzing the ciphertext distribution.

4.3 Note Added After Revision of the Accepted Paper

We became aware of the recent work “Persistent Fault Attack in Practice” [24].
This paper elaborates on the attack converge speed and attributes it to MLE.
Our work does further in that we mathematically derive the attack from the
MLE. Besides, we show the merit of exploiting the likelihood for each key candi-
date to enumerate them by decreasing probability, thereby further speeding up
the attack. This results in “strategy 1”, whereas [24] consists in the strategy we
called “strategy 2”.

Persistent Fault Analysis with Few Encryptions 23

References

1. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

2. Bhattacharya, S., Mukhopadhyay, D.: Curious case of rowhammer: flipping secret
exponent bits using timing analysis. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 602–624. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53140-2 29

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

4. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 19

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

6. Caforio, A., Banik, S.: A study of persistent fault analysis. In: Bhasin, S., Mendel-
son, A., Nandi, M. (eds.) SPACE 2019. LNCS, vol. 11947, pp. 13–33. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-35869-3 4

7. Carré, S., Desjardins, M., Facon, A., Guilley, S.: OpenSSL Bellcore’s protection
helps fault attack. In: Novotný, M., Konofaos, N., Skavhaug, A. (eds.) 21st Euromi-
cro Conference on Digital System Design, DSD 2018, Prague, Czech Republic,
29–31 August 2018, pp. 500–507. IEEE Computer Society (2018)

8. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. In:
Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45203-4 23

9. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in JavaScript. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300–321. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40667-1 15

10. Jain, S., Agrawal, V.D.: Statistical fault analysis. IEEE Design Test Comput. 2(1),
38–44 (1985)

11. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of dram disturbance errors. SIGARCH Comput. Archit. News 42(3), 361–
372 (2014)

12. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
sensitivity analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 320–334. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15031-9 22

13. Murdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Gruss, D., Piessens, F.:
Plundervolt: software-based fault injection attacks against Intel SGX. Tracked as
CVE-2019-11157 (2020)

14. Mutlu, O., Kim, J.S.: Rowhammer: a retrospective (2019). arXiv:1904.09724
[cs.CR]

15. NIST. AES Proposal: Rijndael (now FIPS PUB 197), 9 April 2003. http://csrc.
nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf. Accessed 19 Apr 2020

https://doi.org/10.1007/978-3-662-53140-2_29
https://doi.org/10.1007/978-3-662-53140-2_29
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-030-35869-3_4
https://doi.org/10.1007/978-3-540-45203-4_23
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-642-15031-9_22
https://doi.org/10.1007/978-3-642-15031-9_22
http://arxiv.org/abs/1904.09724
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

24 S. Carré et al.

16. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6 7

17. Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip Feng
Shui: hammering a needle in the software stack. In: 25th USENIX Security Sym-
posium (USENIX Security 16), pp. 1–18. USENIX Association, Austin, August
2016

18. Rivain, M.: Differential fault analysis on DES middle rounds. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 457–469. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04138-9 32

19. Roscian, C., Dutertre, J.M., Tria, A.: Frontside laser fault injection on cryptosys-
tems - application to the AES’ last round. In: 2013 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp. 119–124, June 2013

20. Schmidt, J.M., Hutter, M., Plos, T.: Optical fault attacks on AES: a threat in violet.
In: 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pp. 13–22, September 2009

21. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21040-2 15

22. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38348-9 8

23. Zhang, F., et al.: Persistent fault analysis on block ciphers. IACR Trans. Cryptogr.
Hardware Embed. Syst. 2018(3), 150–172 (2018)

24. Zhang, F., et al.: Persistent fault attack in practice. IACR Trans. Cryptogr. Hard-
ware Embed. Syst. 2020(2), 172–195 (2020)

https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1007/978-3-642-04138-9_32
https://doi.org/10.1007/978-3-642-21040-2_15
https://doi.org/10.1007/978-3-642-21040-2_15
https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/978-3-642-38348-9_8

A Template Attack to Reconstruct the
Input of SHA-3 on an 8-Bit Device

Shih-Chun You and Markus G. Kuhn(B)

Department of Computer Science and Technology, University of Cambridge,
Cambridge CB3 0FD, UK

{scy27,mgk25}@cl.cam.ac.uk

Abstract. We present an enumeration procedure based on a template
attack to recover the complete input text of a SHA-3 implementation
on an 8-bit microprocessor from a single trace of a power-analysis side
channel. This attack targets 600 bytes of triple-redundant internal state
in each invocation of the permutation used by SHA-3. We first build
templates that can generate for each of these bytes a rank table of all
256 candidates. The templates we obtained for our 8-bit target CPU
nearly identified the correct value of most target bytes directly, rather
than just gathering information about their Hamming weights. We then
search the full intermediate state of the Keccak permutation to elimi-
nate remaining uncertainties about the recovered byte values. From the
resulting intermediate states we finally reconstruct both the input and
output of SHA-3 and verify the output. In our experimental evaluation
of this procedure we achieved success rates higher than 99%.

Keywords: Template attack · SHA-3 · Keccak · Enumeration trees

1 Introduction

In 2015, the National Institute of Standards and Technology (NIST) standard-
ized Secure Hash Algorithm 3 (SHA-3) [16], which is based on the Keccak sponge
function and the Keccak-f permutation designed by Bertoni et al. [2,3]. Keccak-
f consists of multiple rounds, each of which consists of five steps known as θ,
ρ, π, χ and ι. The Keccak-f permutation is not only the main building block
of the SHA-3 family of hash functions, but is also used in the SHAKE family
of extendable-output functions, and can be used in many other contexts, such
as key-derivation functions, message-authentication codes, and key-agreement
schemes (e.g., NewHope [1]), where either its inputs or outputs can be confiden-
tial data for which side-channel attacks may be a concern.

Previous papers discussed side-channel attacks to recover keys used in the
generation of Keccak-based message authentication codes (MAC-Keccak). Taha
and Schaumont mainly used Differential Power Analysis (DPA) to attack step θ

S.-C. You—Supported by the Cambridge Trust and the Ministry of Education, Taiwan.

c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 25–42, 2021.
https://doi.org/10.1007/978-3-030-68773-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_2

26 S.-C. You and M. G. Kuhn

to recover a fixed-length key and discussed the relationship between key-length
and the DPA resilience of MAC-Keccak [23]. They later applied similar attacks
to recovering MAC-Keccak keys with arbitrary length [22]. Luo et al. modified
this attack to determine the intermediate state after a complete round of Keccak-
f [10], applying DPA after the non-linear step χ.

Such DPA-style attacks can effectively recover a MAC-Keccak key K, but
they do not extend to other applications where there is no fixed key K, as they
require leakage traces of many thousand repeated executions of SHA-3(K‖M)
with known variable input message M . For example, a DPA-style attack could
not reconstruct the complete input of MAC-Keccak. Instead, we focus here on
attacking a single invocation of Keccak-f in order to reconstruct both its input
and output. To achieve this, we require a template attack (TA) [4]. We then use
this capability to demonstrate recovery of a complete SHA-3 input given a single
power trace and then verify the results with the given output of SHA-3. Our
technique therefore not only can recover MAC-Keccak keys of arbitrary length
without prior knowledge of the message M . It naturally also extends to other
Keccak-f applications with confidential inputs or outputs, such as random-bit
generation.

Since each step of the Keccak-f permutation is invertible, given its full output
state we can calculate the input state of the step. Likewise, if we can determine a
complete intermediate state, we can calculate from that both the input and out-
put of the entire permutation. Having reconstructed the output of one Keccak-f
invocation and the input of the next, we merely have to XOR these together in
order to reconstruct one block of input of a SHA-3 execution.

We first tried to use the template attack to determine the value of every byte
in a single full intermediate state. However, there is no room for mistakes: the dif-
fusion of Keccak-f means that even a single bit error will result in a completely
different input or output. Therefore, we combined a kind of template attack
with an enumeration technique around the mathematical structure of Keccak-f
to correct errors. We first use a template attack to estimate the likelihood of
each of the 256 possible values of each byte in three consecutive intermediate
states. Since the state of Keccak-f contains 200 bytes (1600 bits), there will be
200 per-byte rank tables associated with each observed intermediate state, that
is 600 rank tables in total. In a pair of (nearly) consecutive intermediate states,
each byte will only depend on a small number of bytes in neighboring states: the
avalanche effect takes multiple rounds to come into effect. This makes it pos-
sible to eliminate errors by combining likelihood information from neighboring
intermediate states and using the result to build rank tables for combinations of
bytes. We repeat this until we obtain the (top of the) rank table for the entire
state.

In this paper, we discuss the details of the template attack we performed on
SHA-3 to obtain rank tables of all bytes of three consecutive intermediate states
(Sect. 4), and then present the search procedure we used to recover the com-
plete intermediate states (Sect. 5). Finally, we evaluate the success probability
of recovering the inputs of SHA-3 by this method (Sect. 5.4).

A Template Attack to Reconstruct the Input of SHA-3 on an 8-Bit Device 27

2 Preliminaries and Notation

2.1 Keccak-f [1600] and SHA-3

Our terminology and notation related to SHA-3 and the Keccak-f permuta-
tion closely follow NIST FIPS 202 [16]. The SHA-3 algorithm is based on the
Keccak-f [1600] permutation, which consists of a sequence of five steps that iter-
ates 24 times on a 1600-bit state.

Each of the steps θ, ρ, π, χ and ι results in an intermediate state of 1600
bits. In this paper, we refer to these intermediate states as αω, α′

ω, βω and β′
ω

as follows:

Input θ−→ α0
ρ,π−−→ α′

0
χ−→ β0

ι−→ β′
0

θ−→ α1
ρ,π−−→ · · · χ−→ β23

ι−→ Output

The round index ω runs from 0 to 23 in Keccak-f [1600]. We use the term
intermediate byte to refer to one of the 200 bytes in an intermediate state of
Keccak-f [1600]. The SHA-3 standard describes these states as a 5 × 5 × 64-bit
cube with an x, y and z axis. Since we used an 8-bit processor in our exper-
iments, we refer to the 64 bits along the z axis as 8 bytes. For example, we
describe an intermediate byte in state α0 as α0[i, j, k], where i, j, k are the x, y,
z coordinates with 0 ≤ i ≤ 4, 0 ≤ j ≤ 4, 0 ≤ k ≤ 7. The least significant bit in
this byte we denote by α0[i, j, k][0] and its most significant bit by α0[i, j, k][7].
We call the five bytes with the same y and z coordinates a byte row, and the 25
bytes with the same z coordinate a byte slice.

All five steps in a Keccak-f [1600] round are practical to invert [2] and the
Keccak team provides C++ implementations of the corresponding inverse func-
tions [9]. In other words, the input, output, and all intermediate states of a
Keccak-f [1600] execution can be converted into each other efficiently.

Fig. 1. The diagram of the Keccak sponge function from NIST FIPS 202 [16]. In this
diagram, N is the arbitrary-length input sequence and Z is the d-bit output sequence.

The Keccak[c](N, d) function is based on the Keccak-f [1600] permutation
[16]. It first “absorbs” an arbitrary-length input bit sequence into its internal

28 S.-C. You and M. G. Kuhn

state and then can “squeeze” out an arbitrary-length output bit sequence, and so
is described as a “sponge function”. Figure 1 shows how Keccak[c](N, d) absorbs
the input bit string N and squeezes out a d-bit result. Input message N is first
padded and then split into blocks of r = 1600−c bits, where parameter c is called
the capacity and parameter r the rate. The input and output of Keccak-f [1600]
each consist of r + c = 1600 bits, which we denote accordingly by R‖C. After
all r-bit blocks have been absorbed, in the squeezing stage the output sequence
is generated by concatenating the R fragment being output by each iteration of
Keccak-f [1600] until the concatenated sequence is at least of the required length
d, and it is then truncated to d bits.

The SHA-3 family is finally defined for input messages M using Keccak[c]
for the output sizes d ∈ {224, 256, 384, 512} bits as

SHA3-d(M) = Keccak[2d](M‖01, d).

In addition, SHA-3 defines two extendable-output functions (XOFs) as

SHAKE128(M,d) = Keccak[256](M‖1111, d)
SHAKE256(M,d) = Keccak[512](M‖1111, d)

where users have free choice over the output length d.
We ran all experiments in this paper on SHA3-512(M) because this is the

SHA-3 algorithm with the largest capacity c, i.e. the largest security margin.
The technique works equally well on the other SHA-3 algorithms.

2.2 Template Attack

The Traditional Template Attack. Chari et al. introduced a powerful side-
channel exploitation technique called Template Attack (TA) [4]. It consists of two
stages, profiling and attack. During profiling, we build templates that model the
leakage traces of different candidate secrets from traces recorded while a known
secret is processed. Then, we record an attack trace while an unknown secret
is processed. We compare that with all the templates, and predict the secret as
the candidate with the template most similar to the attack trace.

In this approach, attackers need to collect a sizable number of profiling traces.
These will be separated into subsets according to the secret value targeted. If we
target one intermediate byte, the number of subsets will be 256. From the trace
subset corresponding to intermediate byte b, we construct a template consisting
of an expected trace x̄b ∈ R

m and a covariance matrix Sb ∈ R
m×m, as

x̄b =
1
nb

nb∑

t=1

xb,t, Sb =
1

nb − 1

nb∑

t=1

(xb,t − x̄b)(xb,t − x̄b)T,

where nb is the number of profiling traces in this subset, and xb,t is the tth

profiling trace with corresponding intermediate byte b, each trace containing m
points in time.

A Template Attack to Reconstruct the Input of SHA-3 on an 8-Bit Device 29

Later, when we obtain an attack trace xa, we can calculate as a likelihood
function a probability-density value for each template with

f(xa|x̄b,Sb) =
1√

(2π)m|Sb|
exp

(
−1

2
(xa − x̄b)TS−1

b (xa − x̄b)
)

.

Then we can sort the 256 results into a rank table, where the top entry is the
most likely candidate.

The Template Attack with Stochastic Models. The previous approach,
where the arithmetic mean of the traces in each subset is used to estimate their
expected value, needs a large total number of profiling traces. Based on the
stochastic model F9 by Schindler et al. [19], Choudary and Kuhn used an alter-
native solution [6]. They treat each bit, b[0] to b[7], in the targeted intermediate
byte as an independent variable and then use multivariate linear regression to
calculate coefficients c0 to c7 and a constant c8 for predicting the expected values
of single points on a trace as x̂b =

∑7
l=0(b[l] · cl) + c8 and equivalently as

x̂b =
7∑

l=0

(b[l] · cl) + c8

for an entire trace, where c0, . . . , c8 ∈ Rm are the vectors of coefficients and
constants previously estimated by multivariate linear regression.

They also modified the way to calculate the covariance matrices Sb as

Sb =
1

nb − 1

nb∑

t=1

(xb,t − x̂b)(xb,t − x̂b)T, Spooled =
1

∑255
b=0 nb

255∑

b=0

(nb − 1)Sb.

Instead of a different Sb in each template, they used one single pooled covari-
ance matrix estimate, Spooled, which is the weighted average of the Sb, because
previous studies [8,17] had suggested this is a more effective estimate when the
actual covariance matrix can be assumed to be independent of the targeted value
b. The function to calculate the probability density value then becomes

f(xa|x̂b,Spooled) =
1√

(2π)m|Spooled|
exp

(
−1

2
(xa − x̂b)TS−1

pooled(xa − x̂b)
)

.

Data Compression with Linear Discriminant Analysis. Choudary and
Kuhn also integrated Fisher’s Linear Discriminant Analysis (LDA), as proposed
by Standaert and Archambeau [20], into their approach [6]. This is a procedure
to project the traces onto a subspace with higher signal-to-noise ratio (SNR), as
determined by two covariance matrices B and Σ, where B is the inter-class scat-
ter representing the signal, while Σ is the total intra-class scatter representing

30 S.-C. You and M. G. Kuhn

the noise. When recovering 8-bit secrets, these two matrices can be calculated
from the profiling traces as

B =
1

∑255
b=0 nb

255∑

b=0

nb(x̂b − x̄)(x̂b − x̄)T,

Σ =
1

∑255
b=0 nb

255∑

b=0

nb∑

t=1

(xb,t − x̂b)(xb,t − x̂b)T = Spooled,

where x̄ = 256−1
∑255

b=0 x̂b = c8 + 1
2

∑7
l=0 cl is the arithmetic mean of the

expected values x̂b.
We then build a matrix A ∈ R

m×m′
where the columns are the m′ normalized

eigenvectors of the matrix Σ−1B corresponding to its m′ largest eigenvalues (see
also [7, footnote 6]). The LDA projection of a raw trace xa onto the resulting
m′-dimensional subspace is then xproj = ATxa.

In our experiments, we follow Choudary and Kuhn’s approach [6] as outlined
above, firstly using multivariate linear regression to build matrices Σ and B,
secondly calculating the projection matrix A, then using that to project all
profiling traces onto the subspace with high SNR. From these projected traces,
we then build very compact templates, again using multivariate linear regression.
The resulting template information consists of a new covariance matrix Sproj ∈
R

m′×m′
, 256 new expected traces x̂b,proj ∈ R

m′
, along with A.

2.3 Combining Multiple Likelihood Tables

With ideal templates, attackers should find the full state of a secret by simply
taking the most likely candidate from each part of the secret and concatenating
them. However, template attacks are noise sensitive, so the correct candidate
will not always top the rank table. Therefore, Veyrat-Charvillon et al. intro-
duced an optimal key enumeration algorithm to search the correct key across
several ranked likelihood tables of the sub-keys of AES [24]. Given two rank
tables in descending order of likelihood, each with 28 values, there will be 216

possible combinations. Their approach searches the 216 possible combinations in
descending order of their joint likelihood until the correct combination is found,
without calculating the joint likelihoods of all 216 combinations. They general-
ized this method using a recursive tree structure that combines two tables at a
time to combine the results of more than two rank tables. With this algorithm,
it becomes practical to search the correct combination of the sub-keys when cor-
rect candidates do not top the tables. This increases the noise resiliency of the
attack significantly.

We applied their method in our experiments to enumerate the intermediate
states instead of any key. We will refer to their tree-structured algorithm as an
enumeration tree in this paper.

A Template Attack to Reconstruct the Input of SHA-3 on an 8-Bit Device 31

Fig. 2. The procedure to reconstruct SHA-3 inputs by template attack: 1© reconstruct
an intermediate state of the last Keccak-f [1600] permutation and calculate its input
and output; 2© verify the correctness by checking whether the first 512 bits in the
output match the SHA3-512 output; 3© repeat 1© on other permutations but 4© verify
the correctness by checking whether the C of the output matches that of the input
in the following permutation; 5© XOR the R of the two consecutive permutations to
calculate each part of the SHA-3 input; 6© in the special case of the first r bits of the
SHA-3 input, that part is identical to the R part of the input of the first Keccak-f [1600]
permutation and 7© the C part of that permutation should be c 0 bits; 8© concatenate
each part to form the complete SHA-3 input with padding.

3 Attack Strategy

Because of the invertibility of every step in Keccak, attackers can access not only
the output but also the input of a Keccak-f [1600] permutation once they obtain
any intermediate state. Figure 2 depicts how we can use this to recover an input
of SHA3-512.

First, we use template attacks to reconstruct all the bytes in an intermediate
state of the last Keccak-f [1600] permutation. After, for example, state α′

0 is
reconstructed, we can calculate the inverses of π, ρ, and θ to find out the input
of this Keccak-f [1600] permutation, and then its output. We can verify the
correctness of the latter by checking whether its first 512 bits match the SHA3-
512 output.

Second, we can repeat what we have done on the last Keccak-f [1600] per-
mutation for its predecessor, and verify the correctness of its output by checking
whether its last c = 1024 bits C match those of the input of its successor. The
input of the first Keccak-f [1600] permutation has C equal to an all-zero string.

Third, we can calculate each part of the SHA-3 input by XOR-ing the R part
of the input and the output of two consecutive Keccak-f [1600] permutations.
In the special case of the first r bits of the SHA-3 input, that is identical to

32 S.-C. You and M. G. Kuhn

the R part of the input of the first Keccak-f [1600] permutation. Finally, after
concatenating all the parts and removing the padding, the input of SHA3-512 is
recovered.

To target SHAKE128 or SHAKE256, we only need to attack permutations
in the absorbing stage, as the squeezing stage fully depends on the output of the
former, and recall that SHAKE uses slightly different padding.

4 Template Attack on SHA-3

Now the problem remains how to successfully recover at least one intermediate
state in each invocation of the Keccak-f [1600] permutation in the SHA3-512
procedure by template attack. We chose the intermediate states α′

0, β0, and α1

to build our templates, in order to cover a non-linear step (χ) while limiting the
dependency on bits from other slices. (Any other choice of target round should
work equally well.)

4.1 Target Hardware Device and Measurement Setup

Our SHA3-512 implementation is based on the Keccak-f [1600] implementation
in the official C reference code, the Extended Keccak Code Package [25]. We ran
it on a power-analysis test board designed by Choudary [5, Section 2.2.2].

The target processor is the 8-bit microcontroller ATxmega256A3U [12]. We
supply it with an 2 MHz square wave clock signal generated by a National Instru-
ments PXIe-5423 [15] wave generator that is configured to use the same reference
clock as the NI PXIe-5160 [14] oscilloscope that we used to record the traces of
power consumption. This way, with a sampling rate of 250 MHz, each clock
cycle contains exactly 125 data points, with phase jitter about 8 ps standard
deviation. The power supply was an NI PXI-4110 [13].

We recorded 32 000 profiling traces and 1000 evaluation traces of the Keccak-
f [1600] permutation with random inputs to build the templates and evaluate
their quality. For testing, we also recorded two sets of SHA3-512 traces. The
first one contains 1000 random inputs with length shorter than 71 bytes, so
it needs one Keccak-f [1600] permutation to absorb the input. The second set
contains 1000 random inputs whose lengths range from 216 to 287 bytes, so they
need four Keccak-f [1600] permutations to be absorbed. Since our target states
are α′

0, β0, and α1, we only recorded the traces covering the power consumption
of the first two rounds of one Keccak-f [1600] permutation, and each raw trace
contained 40 000 clock cycles or 5 000 000 samples.

4.2 Interesting Clock Cycle Detection

Since our raw traces were too long for building templates directly, we first deter-
mined the clock cycles that contain information about the targeted intermediate
states, which in the Keccak-f [1600] permutation each contain 200 intermediate
bytes. We tested each clock cycle to find out whether it is related to any of the

A Template Attack to Reconstruct the Input of SHA-3 on an 8-Bit Device 33

intermediate bytes we target. We used the 8 bits in the intermediate bytes as 8
binary variables in a multivariate linear regression to analyze their correlation
with the peak current in each clock cycle.

Fig. 3. Comparison of the highest R2 coefficient and SNR value in each clock cycle.

We decided whether the correlation is sufficiently high via the coefficient of
determination (R2), as estimated by the regression. The clock cycles with R2

higher than a threshold were added to the set of interesting clock cycles. Since
traditionally the interval −0.3 < R < 0.3 indicates a variable of low correlation,
we selected clock cycles based on the threshold R2 > 0.09. The multivariate
linear regression and R2 were calculated using the LinearRegression class in
the Python library scikit-learn [18]. Figure 3 shows the resulting highest R2

value occuring in each clock cycle, along with SNR value [11]

SNR(s) =
∑255

b=0 nb(x̄b[s] − x̄[s])2
∑255

b=0

∑nb

t=0(xb,t[s] − x̄b[s])2

at each per-clock-cycle peak time s. (Our R2 > 0.09 threshold is approximately
equivalent to an SNR > 7 threshold.)

Let A′
0,[i,j,k] be the set of interesting clock cycles for intermediate byte

α′
0[i, j, k], B0,[i,j,k] that of β0[i, j, k], and A1,[i,j,k] that of α1[i, j, k]. The clock

cycles that leak these 3 × 200 = 600 intermediate bytes should be sufficient for
building working templates, but we found a method to consider more clock cycles
at the same time. Between the intermediate states α0 and α′

0 are the steps ρ and
π, which are both transposition steps. We give an example here how the eight
bits in α′

0[2, 1, 1] match those from up to two bytes in α0:

α′
0[2, 1, 1][0] = α0[0, 2, 0][5], α′

0[2, 1, 1][1] = α0[0, 2, 0][6],
α′
0[2, 1, 1][2] = α0[0, 2, 0][7], α′

0[2, 1, 1][3] = α0[0, 2, 1][0],
α′
0[2, 1, 1][4] = α0[0, 2, 1][1], α′

0[2, 1, 1][5] = α0[0, 2, 1][2],
α′
0[2, 1, 1][6] = α0[0, 2, 1][3], α′

0[2, 1, 1][7] = α0[0, 2, 1][4].

Therefore we extend the set of interesting clock cycles for α′
0[2, 1, 1] from A′

0,[2,1,1]

to A′
0,[2,1,1] ∪A0,[0,2,0] ∪A0,[0,2,1]. This similarly applies to the intermediate state

α1, but the other way round.

34 S.-C. You and M. G. Kuhn

Table 1. The number of interesting clock cycles for each byte in α′
0[i, j, k] (left) and

β0[i, j, k] (right). The numbers for α1 (omitted here) look similar to those for α′
0.

(i, j) k

0 1 2 3 4 5 6 7

(0, 0) 36 38 33 33 32 33 42 33

(1, 0) 112 114 102 96 100 109 98 106

(2, 0) 107 103 96 96 98 103 94 98

(3, 0) 115 122 103 84 78 89 92 103

(4, 0) 134 124 82 74 74 87 95 100

(0, 1) 110 116 102 94 80 91 93 105

(1, 1) 109 117 95 83 77 88 97 102

(2, 1) 107 87 75 75 72 82 94 108

(3, 1) 109 109 96 93 97 102 92 100

(4, 1) 118 112 97 93 88 106 122 121

(0, 2) 90 75 75 73 69 70 84 97

(1, 2) 113 99 82 73 77 85 98 110

(2, 2) 86 86 94 85 70 69 76 81

(3, 2) 50 38 35 33 32 30 51 37

(4, 2) 103 99 87 71 65 72 80 100

(0, 3) 99 101 98 91 82 88 91 97

(1, 3) 108 112 104 99 95 97 97 103

(2, 3) 110 99 77 73 70 78 89 96

(3, 3) 127 114 79 70 73 87 89 99

(4, 3) 44 44 45 41 46 45 60 45

(0, 4) 127 119 104 98 97 112 127 125

(1, 4) 117 109 98 92 96 110 112 111

(2, 4) 115 110 100 103 94 89 94 98

(3, 4) 87 88 88 87 98 95 86 83

(4, 4) 93 87 89 83 72 80 90 104

(i, j) k

0 1 2 3 4 5 6 7

(0, 0) 34 39 34 31 30 29 37 33

(1, 0) 25 26 23 23 30 26 32 27

(2, 0) 28 28 25 29 27 24 31 30

(3, 0) 26 32 30 25 27 24 34 28

(4, 0) 29 38 24 25 24 24 31 30

(0, 1) 27 25 25 27 24 24 34 29

(1, 1) 27 29 23 25 23 24 34 29

(2, 1) 27 28 23 25 24 27 36 37

(3, 1) 26 30 25 26 28 29 34 31

(4, 1) 30 29 24 27 28 22 34 35

(0, 2) 27 27 23 24 23 23 35 34

(1, 2) 30 24 22 24 21 21 29 30

(2, 2) 27 28 28 25 21 21 30 28

(3, 2) 32 24 23 24 23 23 30 31

(4, 2) 28 28 21 23 21 23 29 29

(0, 3) 28 26 26 29 26 26 33 28

(1, 3) 25 25 22 26 27 28 32 28

(2, 3) 32 26 23 25 25 25 35 33

(3, 3) 31 36 22 28 24 25 35 30

(4, 3) 30 29 25 27 29 29 45 34

(0, 4) 28 36 23 27 24 26 36 36

(1, 4) 27 32 25 25 27 29 42 30

(2, 4) 28 32 26 31 31 25 35 30

(3, 4) 27 29 25 30 28 22 35 28

(4, 4) 26 33 26 30 56 32 35 40

Table 1 lists the number of interesting clock cycles selected for each interme-
diate byte after that extension. In state α′

0, the numbers in lanes (0, 0), (3, 2),
and (4, 3) are smaller because step ρ rotates the bits in these lanes by multiples
of eight. For example, we always have α′

0[3, 2, 0] = α0[4, 3, 7], which implies that
A′

0,[3,2,0] = A0,[4,3,7] = A′
0,[3,2,0] ∪ A0,[4,3,7], and that does not extend the set of

clock cycles.

4.3 Building Templates

Pre-processing. When targeting a specific byte, we select only the samples
in the interesting clock cycle set of this byte. For example, when building the
template for α′

0[2, 1, 1], the profiling traces reassembled this way cover 87 clock
cycles with 87 × 125 = 10875 samples.

Since the 125 samples per clock cycle still lead to too long execution times
for building the templates, we reduced the sampling rate further by a factor 5,
averaging five consecutive samples into a new sample.

A Template Attack to Reconstruct the Input of SHA-3 on an 8-Bit Device 35

Templates with LDA Compression. After the detection and pre-processing
steps, we now have shorter traces for building templates for each of 600 bytes. We
apply Choudary et al.’s method [6] (see Sect. 2.2). In the LDA compression, we
chose only the first m′ = 8 eigenvectors to form the projection matrices since the
other eigenvalues are negligible. Besides the projection matrices, our templates
therefore contain 8 × 8 covariance matrices and 8-point expected traces.

4.4 Evaluating the Quality of Templates

Having built the templates, we use the 1000 evaluation traces to estimate tem-
plate quality, resulting in 600 rank tables for each evaluation trace.

As figures of merit, we use both the first-order success rate and the guessing
entropy as defined by Standaert et al [21]. Table 2 shows the resulting success
rates for states α′

0 and β0, i.e. the fraction of these 1000 evaluation where the
correct candidate topped the rank table. Table 3 shows the guessing entropy for
each byte of states α′

0 and β0, i.e. the average rank of the correct candidates in
these 1000 evaluations (top rank = 1).

5 Searching the Correct Intermediate States

The results of the template evaluations show that it is improbable that all 200
bytes of an intermediate state can be directly recovered by combining only the
top-ranking candidates. Therefore attackers will need a search scheme to find the

Table 2. Success rates on α′
0[i, j, k] (left) and β0[i, j, k] (right). The rates for α1 (omit-

ted here) look similar to those for α′
0.

(i, j) k

0 1 2 3 4 5 6 7

(0, 0) 0.924 0.924 0.598 0.749 0.485 0.542 0.946 0.931

(1, 0) 0.995 0.994 0.931 0.957 0.971 0.965 0.999 0.991

(2, 0) 0.993 0.978 0.937 0.936 0.963 0.918 0.981 0.992

(3, 0) 0.999 0.997 0.983 0.787 0.771 0.878 0.967 0.969

(4, 0) 0.999 0.999 0.769 0.736 0.669 0.831 0.979 0.995

(0, 1) 1.000 1.000 0.982 0.956 0.846 0.780 0.999 0.986

(1, 1) 0.995 0.997 0.931 0.905 0.794 0.903 0.984 0.991

(2, 1) 1.000 0.925 0.811 0.819 0.655 0.879 0.987 0.998

(3, 1) 0.997 0.978 0.923 0.946 0.995 0.949 0.988 0.988

(4, 1) 1.000 0.975 0.877 0.921 0.896 0.943 0.998 1.000

(0, 2) 0.998 0.951 0.829 0.803 0.657 0.695 0.999 1.000

(1, 2) 0.998 0.997 0.836 0.726 0.669 0.838 0.995 0.998

(2, 2) 0.972 0.989 0.984 0.853 0.719 0.664 0.969 0.990

(3, 2) 0.998 0.816 0.642 0.536 0.579 0.616 0.973 0.991

(4, 2) 0.997 0.977 0.810 0.679 0.677 0.747 0.984 0.997

(0, 3) 1.000 1.000 0.968 0.945 0.816 0.846 0.994 0.980

(1, 3) 0.990 0.996 0.941 0.979 0.959 0.945 0.988 0.994

(2, 3) 0.999 0.942 0.823 0.728 0.703 0.658 0.986 1.000

(3, 3) 0.999 1.000 0.732 0.715 0.632 0.834 0.964 0.994

(4, 3) 0.911 0.878 0.791 0.759 0.850 0.972 0.997 0.987

(0, 4) 1.000 1.000 0.897 0.889 0.880 0.961 1.000 1.000

(1, 4) 1.000 0.998 0.879 0.895 0.896 0.978 1.000 0.991

(2, 4) 0.992 0.996 0.935 0.984 0.984 0.749 0.970 0.991

(3, 4) 0.982 0.939 0.905 0.977 0.992 0.832 0.972 0.989

(4, 4) 0.991 0.947 0.914 0.959 0.727 0.768 0.999 1.000

(i, j) k

0 1 2 3 4 5 6 7

(0, 0) 0.803 0.872 0.718 0.587 0.413 0.528 0.801 0.677

(1, 0) 0.530 0.654 0.255 0.226 0.354 0.274 0.522 0.314

(2, 0) 0.487 0.592 0.334 0.262 0.263 0.355 0.475 0.351

(3, 0) 0.529 0.683 0.309 0.220 0.294 0.275 0.498 0.355

(4, 0) 0.526 0.651 0.299 0.207 0.235 0.351 0.490 0.353

(0, 1) 0.373 0.365 0.286 0.305 0.274 0.306 0.536 0.483

(1, 1) 0.293 0.348 0.327 0.280 0.272 0.376 0.608 0.449

(2, 1) 0.259 0.353 0.262 0.240 0.291 0.298 0.596 0.533

(3, 1) 0.290 0.346 0.290 0.267 0.352 0.376 0.544 0.485

(4, 1) 0.358 0.385 0.295 0.390 0.362 0.259 0.619 0.437

(0, 2) 0.277 0.300 0.340 0.322 0.200 0.263 0.569 0.325

(1, 2) 0.289 0.300 0.309 0.354 0.216 0.259 0.553 0.341

(2, 2) 0.224 0.299 0.339 0.358 0.197 0.258 0.541 0.281

(3, 2) 0.275 0.244 0.327 0.269 0.233 0.270 0.508 0.341

(4, 2) 0.284 0.230 0.236 0.293 0.173 0.263 0.530 0.315

(0, 3) 0.301 0.252 0.291 0.289 0.444 0.319 0.638 0.374

(1, 3) 0.312 0.256 0.260 0.257 0.438 0.344 0.700 0.336

(2, 3) 0.383 0.225 0.274 0.268 0.347 0.328 0.661 0.396

(3, 3) 0.379 0.285 0.270 0.265 0.311 0.307 0.695 0.340

(4, 3) 0.337 0.262 0.260 0.247 0.425 0.340 0.696 0.401

(0, 4) 0.351 0.413 0.241 0.225 0.256 0.326 0.612 0.474

(1, 4) 0.338 0.393 0.260 0.216 0.228 0.332 0.593 0.332

(2, 4) 0.299 0.350 0.282 0.299 0.302 0.318 0.616 0.493

(3, 4) 0.303 0.326 0.271 0.290 0.253 0.262 0.649 0.400

(4, 4) 0.319 0.783 0.528 0.516 0.828 0.601 0.587 0.670

36 S.-C. You and M. G. Kuhn

Table 3. Guessing entropy on α′
0[i, j, k] (left) and β0[i, j, k] (right). The entropy for

α1 (omitted here) look similar to those for α′
0.

(i, j) k

0 1 2 3 4 5 6 7

(0, 0) 1.095 1.109 2.336 1.616 3.215 2.592 1.074 1.096

(1, 0) 1.005 1.006 1.085 1.049 1.033 1.048 1.001 1.009

(2, 0) 1.007 1.024 1.074 1.070 1.044 1.102 1.022 1.008

(3, 0) 1.001 1.003 1.018 1.377 1.424 1.185 1.035 1.034

(4, 0) 1.001 1.001 1.452 1.575 1.680 1.297 1.028 1.005

(0, 1) 1.000 1.000 1.021 1.053 1.255 1.440 1.002 1.014

(1, 1) 1.005 1.003 1.084 1.127 1.353 1.147 1.020 1.009

(2, 1) 1.000 1.089 1.325 1.347 1.756 1.208 1.014 1.002

(3, 1) 1.003 1.022 1.092 1.066 1.006 1.056 1.013 1.012

(4, 1) 1.000 1.027 1.187 1.107 1.158 1.076 1.002 1.000

(0, 2) 1.003 1.057 1.294 1.377 1.833 1.819 1.001 1.000

(1, 2) 1.002 1.003 1.275 1.565 1.670 1.269 1.005 1.002

(2, 2) 1.031 1.012 1.020 1.274 1.625 1.947 1.035 1.010

(3, 2) 1.002 1.341 2.042 2.546 2.370 2.100 1.027 1.009

(4, 2) 1.003 1.026 1.395 1.709 1.832 1.508 1.019 1.003

(0, 3) 1.000 1.000 1.035 1.075 1.297 1.294 1.008 1.026

(1, 3) 1.010 1.004 1.068 1.024 1.053 1.072 1.012 1.008

(2, 3) 1.001 1.072 1.355 1.575 1.710 1.812 1.015 1.000

(3, 3) 1.001 1.000 1.594 1.618 1.959 1.324 1.050 1.006

(4, 3) 1.121 1.194 1.443 1.525 1.301 1.054 1.003 1.013

(0, 4) 1.000 1.000 1.140 1.175 1.156 1.054 1.000 1.000

(1, 4) 1.000 1.002 1.216 1.177 1.142 1.024 1.000 1.009

(2, 4) 1.010 1.005 1.083 1.020 1.022 1.491 1.030 1.009

(3, 4) 1.023 1.078 1.131 1.028 1.008 1.318 1.032 1.012

(4, 4) 1.009 1.060 1.122 1.052 1.652 1.492 1.001 1.000

(i, j) k

0 1 2 3 4 5 6 7

(0, 0) 1.296 1.178 1.622 2.351 3.931 2.629 1.391 1.715

(1, 0) 2.643 1.954 7.313 9.001 5.537 7.692 2.752 5.906

(2, 0) 2.675 2.241 4.973 8.000 6.842 4.567 2.914 4.949

(3, 0) 2.371 1.778 7.058 8.803 6.444 6.724 2.959 5.089

(4, 0) 2.433 1.794 6.284 9.404 6.959 4.883 3.105 5.764

(0, 1) 4.583 5.037 6.780 7.534 5.965 6.288 2.697 3.360

(1, 1) 6.258 5.443 5.074 7.012 7.183 4.046 2.053 3.480

(2, 1) 6.325 5.132 7.682 8.731 6.660 6.622 2.468 2.980

(3, 1) 6.103 5.088 6.765 7.806 5.521 4.701 2.317 3.210

(4, 1) 5.267 4.972 6.526 5.000 4.129 7.227 2.214 3.897

(0, 2) 7.704 6.183 5.059 5.273 9.640 7.801 2.431 6.919

(1, 2) 5.800 7.270 6.671 4.691 9.212 6.722 2.723 5.457

(2, 2) 8.800 7.315 5.902 4.676 9.164 7.875 2.852 7.929

(3, 2) 6.875 8.534 6.677 6.691 8.061 8.670 2.906 6.216

(4, 2) 7.238 8.397 8.326 6.095 9.477 9.050 2.687 7.163

(0, 3) 5.747 7.825 6.600 6.936 3.231 5.893 2.140 4.747

(1, 3) 5.547 8.029 7.555 7.707 3.502 5.444 1.716 5.898

(2, 3) 4.549 8.766 7.473 6.990 4.631 5.860 1.899 3.982

(3, 3) 4.746 6.739 7.764 7.300 5.486 6.208 1.648 5.044

(4, 3) 5.313 8.414 8.048 7.751 3.531 5.413 1.796 4.470

(0, 4) 5.294 3.874 7.979 9.418 8.310 6.139 2.309 3.309

(1, 4) 5.309 3.939 7.766 8.770 7.162 6.030 2.335 5.722

(2, 4) 5.261 4.359 6.343 6.365 6.494 6.079 2.259 3.364

(3, 4) 6.766 4.995 7.510 7.268 7.313 7.794 1.929 4.508

(4, 4) 5.753 1.355 2.426 3.045 1.295 2.164 2.393 2.405

correct combination of high-ranking candidates. One obvious choice is to build
an enumeration tree [24] to successively combine the rank tables for individual
target bytes into tables for larger byte sequences, until the high-ranking com-
binations of all 200 bytes of an intermediate state are determined. While this
approach is practical to search for moderately-sized states (e.g., 16-byte AES
keys), we found that, when it comes to our much larger 200-byte states, it would
still require unrealistically accurate templates for the search time to be tolerable.

To avoid directly combining the rank tables of our 200 target bytes, we built
a three-layer scheme that can gradually combine the probabilistic information
available about these bytes into a full state. In addition, rather than targeting
just 200 bytes, our scheme actually takes 600 rank tables into consideration,
to consider per-byte likelihoods from three intermediate states: α′

0, β0, and α1.
At the bottom, Layer 1 first merges the rank tables associated with five bytes
in the same byte row, updates the likelihood of each combination, and then
generates in total 40 new rank tables that cover entire byte rows. Layer 2 then
combines five byte rows in the same byte slice, updates their likelihood values,
and then generates eight new rank tables for byte slices. Finally, Layer 3 just
concatenates the eight top candidates from each byte-slice rank table, and verifies
the correctness of the resulting full intermediate state.

A Template Attack to Reconstruct the Input of SHA-3 on an 8-Bit Device 37

5.1 Layer 1: Generating Tables for Byte Rows

Between the intermediate states α′
0 and β0 is step χ. It can be calculated within

a byte row, without any influence from other byte rows, which allows us to split
the combination of these intermediate states into 40 mutually independent parts.
Therefore we can combine per-byte rank tables using a practical enumeration
tree that covers only five bytes at a time. We use the first byte row (j = 0, k = 0)
here to demonstrate this.

First, we initialize the number T of combinations we want to collect in the
resulting byte-row rank table to T = 2500. The five bytes of state α′

0 in the
first byte row are α′

0[0, 0, 0], α′
0[1, 0, 0], α′

0[2, 0, 0], α′
0[3, 0, 0], α′

0[4, 0, 0], and we
use the five variables A′

0, A
′
1, A

′
2, A

′
3, A

′
4 to represent their values. As likelihood

functions we use the Gaussian multivariate probability-density values provided
by the template attack: L(α′

0[0, 0, 0] = A′
0) = fα′

0[0,0,0](xproj|x̂A′
0
,proj,Sproj),

etc. With the rank tables of these five bytes, we build an enumeration tree to
search the first T combinations in descending order of joint likelihood of a byte
row. Assuming independence, our first estimate of their joint likelihood is

Lrow(α′
0[·, 0, 0] = (A′

0, A
′
1, A

′
2, A

′
3, A

′
4)) :=

4∏

i=0

L(α′
0[i, 0, 0] = A′

i).

Now the top-T combinations and their corresponding joint likelihoods form a
truncated rank table for this byte row.

For these T combinations, we calculate the values of state β0 in this byte row
as

(B0, B1, B2, B3, B4) = χ(A′
0, A

′
1, A

′
2, A

′
3, A

′
4).

Since we also have ranked likelihood tables for all bytes in state β0, we now can
similarly calculate the likelihood for any combination (B0, B1, B2, B3, B4), and
update the above top-T joint likelihoods by multiplying with the likelihood of
β0, that is

Lnew
row (α′

0[·, 0, 0] = (A′
0, A

′
1, A

′
2, A

′
3, A

′
4)) :=
4∏

i=0

L(α′
0[i, 0, 0] = A′

i)L(β0[i, 0, 0] = Bi).

Then, we sort these T combinations again in descending order of their
updated joint likelihood, and obtain the new rank table of this byte row.

5.2 Layer 2: Generating Tables for Byte Slices

We then use a method similar to Layer 1 to combine five byte-row rank tables into
a byte-slice rank table. We use here the first byte slice (k = 0) to demonstrate
this. Let R′

j represent a byte row value of state α′
0[·, j, 0] in this byte slice, such

that it contains five bytes, where R′
j = (A′

0,j , A
′
1,j , A

′
2,j , A

′
3,j , A

′
4,j).

38 S.-C. You and M. G. Kuhn

We use the rank tables of the five byte rows again to build an enumeration
tree, and search the first T combinations in descending order of joint likelihood
of a byte slice. Number T is as in Layer 1. Our initial joint likelihood estimate
for a byte slice is

Lslice(α′
0[·, ·, 0] = (R′

0, R
′
1, R

′
2, R

′
3, R

′
4)) :=

4∏

j=0

Lnew
row (α′

0[·, j, 0] = R′
j) =

4∏

j=0

4∏

i=0

L(α′
0[i, j, 0] = A′

i,j)L(β0[i, j, 0] = Bi,j).

Similar as in Layer 1, we now update these joint likelihoods by taking the
rank tables of α1 into account. We use variable Ai,j to represent the candidates
of intermediate byte α1[i, j, 0], and with Rj = (A0,j , A1,j , A2,j , A3,j , A4,j) have

(R0, R1, R2, R3, R4) = θ∗(ι∗0,k(χ(R′
0), χ(R′

1), χ(R′
2), χ(R′

3), χ(R′
4)), τ),

where ι∗0,k is ι in round 0 with input and output truncated to byte slice k, and
θ∗(. . . , τ) is θ applied to just one byte slice, where τ ∈ {0, 1}5 represents the
five bits of column-parity information taken by θ from the previous byte slice.
Since step χ operates within a byte row, it will not use any data outside the byte
slice. Likewise, step ι XORs with a round constant, so it too is independent of
other byte slices. However, when executing step θ on only a byte slice, we will
lack information about five bits, because bit rotations are involved in step θ and
hence these five bits come from another byte slice. Without that information τ ,
step θ∗ on only one byte slice will have 32 possible outcomes. It is reasonable
to choose the combination τ that maximizes the joint likelihood of α1[·, ·, 0],
which is

max
τ∈{0,1}5

4∏

j=0

4∏

i=0

L(α1[i, j, 0] = Ai,j).

Then, we can update the joint likelihood of this byte slice by multiplying with
the joint likelihood of α1, that is

Lnew
slice(α

′
0[·, ·, 0] = (R′

0, R
′
1, R

′
2, R

′
3, R

′
4)) :=

4∏

j=0

4∏

i=0

L(α′
0[i, j, 0] = A′

i,j)L(β0[i, j, 0] = Bi,j)L(α1[i, j, 0] = Ai,j).

We then again sort these T combinations in descending order of the updated
joint likelihoods to form a new rank table for this byte slice.

5.3 Layer 3: Consistency Checking

In Layer 3, we could again form an enumeration tree to combine the top-T
entries in the eight byte-slice rank tables from Layer 2 into a single top-T rank
table of the full 200-byte state. In practice, however, we found that this was
never necessary, as in all our experiments if a byte-slice rank table contained

A Template Attack to Reconstruct the Input of SHA-3 on an 8-Bit Device 39

the correct combination, it was already ranked top. Therefore, Layer 3 actually
only needed to concatenate the top-ranked combinations from all eight byte-slice
tables together and then can calculate the corresponding input and output of
the Keccak-f [1600] permutation. Then, we can check consistency of these with
available SHA-3 data, as described in Sect. 3 and Fig. 2.

If the top combination fails that consistency check, most likely the correct
candidate was already missing in the tables produced by layers 1 or 2. Therefore
we quadruple T and restart the search from Layer 1 in such cases (see Fig. 4).
(In our experiments, we gave up after still not finding a correct solution with
T = 640 000, but this limit can of course be raised given sufficient computing
resources.)

Fig. 4. The procedure to combine a full state from 600 tables.

5.4 Results

SHA3-512 with Only One Keccak−f [1600] Invocation. We first evaluated
our attack using 1000 test traces of SHA3-512 executions, each with a random
input shorter than 72 bytes. This is the simplest case, where a SHA3-512 execu-
tion invokes Keccak-f [1600] only once to digest the input. We only need to apply
the template attack here to obtain the 600 rank tables of intermediate bytes in
that one Keccak-f [1600] invocation, apply our three-layer search to find the
correct combination, and calculate the input and output of the Keccak-f [1600]
invocation. Its correctness can be verified by checking whether the first 512 bits
of the output match the SHA-3 output and whether the last 1024 bits of the
input are all zero. If both checks pass, the input of SHA-3 can be reconstructed
by removing the padding from the first 576 bits of the recovered Keccak-f [1600]
input.

In these 1000 tests, we successfully reconstructed the SHA3-512 input 999
times, while we failed to recover one remaining one even with T = 640 000.

40 S.-C. You and M. G. Kuhn

The number of additional traces for which we recovered the correct input was
for each T value

T 2500 10 000 40 000 160 000 640 000 failed
new traces recovered 873 77 33 11 5 1

cumulative %age 87.3 95.0 98.3 99.4 99.9 100
CPU time avr. [s] 8.20 24.98 90.53 431.35 2605.88 N/A
CPU time std. [s] 0.23 0.44 1.70 7.65 23.86 N/A

SHA3-512 with Multiple Keccak−f [1600] Invocations. Generally, where
the input is longer than 72 bytes, it takes multiple Keccak-f [1600] invocations to
digest. There we need to use the templates to obtain the 600 rank tables of the
three intermediates states in every invocation, and we then start the three-layer
search for each, from the last invocation to the first. We verify the correctness
and calculate the SHA-3 input as described in Sect. 3.

While the success probability for each Keccak-f [1600] invocation is the same,
the success rate of reconstructing the entire SHA-3 input should drop with
increasing number of invocations, as the failure to recover the state of any
Keccak-f [1600] invocation means that two SHA-3 input blocks cannot be recov-
ered. If the success rate of reconstructing the state of one Keccak-f [1600] permu-
tation is p, then the success rate of reconstructing SHA3-512 inputs of L bytes
length will be p�L+1

72 �.
We also tried to recover SHA3-512 inputs ranging from 216 bytes to 287 bytes,

where Keccak-f [1600] was invoked four times. Of 1000 attempted traces, we suc-
cessfully reconstructed the SHA-3 input 999 times, while in the only unsuccessful
one the search failed for one invocation of the permutation. While we would nor-
mally expect the success rate of attacking SHA-3 with shorter input to be higher
than with longer inputs, in these experiments the success rates were both too
close to 1 to be distinguishable.

6 Discussion and Conclusion

Search time and success rate may be optimized further by adjusting the rank-
table length T for each byte row or slice separately, depending on the relative
likelihoods involved. So far we used the same T for all 40 byte rows in Layer 1
and all eight byte slices. From the numbers in Table 2, it is evident that the
success rates are much better for some byte locations, and for these, smaller
initial values of T may lead to a faster hit.

Our method could be extended by also building templates of intermediate
states in later rounds, such as a combination of α′

1, β1, α2. When attackers
fail to recover the state in the first round, they could then try to search other
rounds and do a similar search as they have done in the first round. Although ι
is different in each round, there may be scope for reusing at least some templates
across rounds. In total there should be 23 combinations of intermediate states
that attackers could target using our search method.

A Template Attack to Reconstruct the Input of SHA-3 on an 8-Bit Device 41

With our method, we demonstrated that it is practical to recon-
struct the inputs of an unprotected SHA-3 software implementation on an
ATxmega256A3U 8-bit microcontroller using a template attack, even where the
templates fail to rank some correct bytes highest. In future work, we hope to
extend this attack procedure to work on 32-bit devices, where the success rates
of templates can be far worse.

References

1. Alkim, E., et al.: NewHope: Algorithm specifications and supporting documenta-
tion (2019). https://newhopecrypto.org/

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference (2011)
3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,

Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

5. Choudary, M.O.: Efficient multivariate statistical techniques for extracting secrets
from electronic devices. Technical Report, UCAM-CL-TR-878, PhD thesis, Uni-
versity of Cambridge (2015)

6. Choudary, M.O., Kuhn, M.G.: Efficient stochastic methods: profiled attacks beyond
8 bits. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 85–103.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16763-3 6

7. Choudary, M.O., Kuhn, M.G.: Efficient, portable template attacks. IEEE Trans.
Inf. Forensics Secur. 13(2), 490–501 (2018)

8. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

9. KeccakTools. https://github.com/KeccakTeam/KeccakTools
10. Luo, P., Fei, Y., Fang, X., Ding, A.A., Kaeli, D.R., Leeser, M.: Side-channel analysis

of MAC-Keccak hardware implementations. In: Proceedings of the Fourth Work-
shop on Hardware and Architectural Support for Security and Privacy (HASP
2015). Association for Computing Machinery (2015)

11. Mangard, S.: Hardware countermeasures against DPA – a statistical analysis of
their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24660-
2 18

12. Microchip: ATxmega256A3U. Accessed Feb 2020, https://www.microchip.com/
wwwproducts/en/atxmega256a3u

13. National Instruments: PXI-4110 programmable power supply. http://www.ni.com/
en-gb/support/model.pxi-4110.html

14. National Instruments: PXIe-5160 oscilloscope. http://www.ni.com/en-gb/
support/model.pxie-5160.html

15. National Instruments: PXIe-5423 waveform generator. http://www.ni.com/en-gb/
support/model.pxie-5423.html

16. NIST: SHA-3 standard: permutation-based hash and extendable-output functions
(2015). http://dx.doi.org/10.6028/NIST.FIPS.202, FIPS PUB 202

https://newhopecrypto.org/
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-16763-3_6
https://doi.org/10.1007/978-3-319-08302-5_17
https://github.com/KeccakTeam/KeccakTools
https://doi.org/10.1007/978-3-540-24660-2_18
https://doi.org/10.1007/978-3-540-24660-2_18
https://www.microchip.com/wwwproducts/en/atxmega256a3u
https://www.microchip.com/wwwproducts/en/atxmega256a3u
http://www.ni.com/en-gb/support/model.pxi-4110.html
http://www.ni.com/en-gb/support/model.pxi-4110.html
http://www.ni.com/en-gb/support/model.pxie-5160.html
http://www.ni.com/en-gb/support/model.pxie-5160.html
http://www.ni.com/en-gb/support/model.pxie-5423.html
http://www.ni.com/en-gb/support/model.pxie-5423.html
http://dx.doi.org/10.6028/NIST.FIPS.202

42 S.-C. You and M. G. Kuhn

17. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: power analysis and
templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23951-9 14

18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

19. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

20. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 26

21. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

22. Taha, M., Schaumont, P.: Differential power analysis of MAC-Keccak at any key-
length. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp.
68–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41383-4 5

23. Taha, M., Schaumont, P.: Side-channel analysis of MAC-Keccak. In: 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), pp.
125–130. IEEE (2013)

24. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35999-6 25

25. Extended Keccak code package. https://github.com/XKCP/XKCP, Accessed
April 2019, lib/low/KeccakP-1600/Compact64/KeccakP-1600-compact64.c

https://doi.org/10.1007/978-3-642-23951-9_14
https://doi.org/10.1007/978-3-642-23951-9_14
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-41383-4_5
https://doi.org/10.1007/978-3-642-35999-6_25
https://github.com/XKCP/XKCP

Single-Trace Side-Channel Analysis
on Polynomial-Based MAC Schemes

Rei Ueno1(B), Kazuhide Fukushima2, Yuto Nakano2, Shinsaku Kiyomoto2,
and Naofumi Homma1

1 Research Institute of Electrical Communication, Tohoku University,
2–1–1 Katahira, Aoba-ku, Sendai-shi 980-8577, Japan

{ueno,homma}@riec.tohoku.ac.jp
2 KDDI Research, Inc., Ohara 2–1–15, Fujumino-shi, Saitama 356-8502, Japan

Abstract. This paper presents the first side-channel analysis (SCA) on
polynomial-based message authentication code (MAC) schemes which is
applicable to Poly1305. Typical SCAs (e.g., simple power analysis (SPA)
and differential power analysis (DPA)) and conventional attacks on
GCM/GMAC that focus on the first multiplication result in the univer-
sal hashing (i.e., polynomial evaluation) cannot be applied to Poly1305
owing to one-time keys and the structure of prime-field multiplication.
On the other hand, the proposed attack retrieves the hash key from a
single side-channel trace (e.g., a power/EM trace given by one execution)
with a non-negligible probability and is applicable to polynomial-based
MAC schemes implemented on an 8-bit micro-controller. The proposed
attack allows the attacker to forge the authentication tag even if the hash
key is a one-time key. The basic idea of the proposed attack is to exploit
the addition in polynomial-based MAC schemes. Since the output or one
input of the addition in these MAC schemes is known, we can efficiently
estimate the unknown operands of addition, and then retrieve the hash
key by the polynomial factorizations with the estimated candidates. This
study also shows a cost-effective countermeasure for ChaCha20-Poly1305
using a combination of a lightweight masked Poly1305 and first-order
mask conversion from Boolean to arithmetic.

Keywords: ChaCha20-Poly1305 · Polynomial hash function · Message
authentication code · Authenticated encryption · Side-channel analysis

1 Introduction

Authenticated encryption (AE) has been widely deployed in many cryptographic
protocols and secure systems. AE is a kind of symmetric cryptography that
securely combines a symmetric encryption with message authentication code
(MAC) for checking its integrity. The use of AE makes it possible not only
to prevent eavesdropping on the common communication channel but also to
detect any malicious or accidental modification of messages. While some con-
ventional encryption schemes without authenticity are not robust to ciphertext
c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 43–67, 2021.
https://doi.org/10.1007/978-3-030-68773-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_3

44 R. Ueno et al.

tampering, AE can achieve higher security thanks to the capability of authentic-
ity verification. AE is expected to be implemented on even resource-constrained
devices assumed to be used for Internet-of-Things (IoT) applications. Notably,
the new version of Transport Layer Security (TLS) [Res18], which is a repre-
sentative cryptographic protocol, no longer employs symmetric encryption with-
out authenticity owing to the existence of numerous attacks on TLS exploiting
the CBC-related modes (e.g., CBC HMAC) such as BEAST and Lucky Thir-
teen [DR11,AFP13]. Thus, it is increasingly important to implement AEs effi-
ciently and securely.

Many AEs use a symmetric encryption and tag generation function (i.e.,
MAC) in a combination. Many modern MAC schemes follow the Wegman-Carter
construction: the message is first converted to a short hash value using universal
hashing with a secret key [WC81]. Especially, universal hashing based on polyno-
mial evaluation over a Galois Field (GF), namely, the polynomial hash function
is known to be useful for constructing an efficient MAC. AES-GCM [MV05] and
ChaCha20-Poly1305 [Lan15] are typical AEs that use a polynomial hash function
for the tag generation. AES-GCM is the de facto standard AE specified by the
National Institution of Standards and Technology (NIST) [Dwo07]. ChaCha20-
Poly1305, which is based on a stream cipher ChaCha20 [Ber18] and a MAC based
on a polynomial hash function over GF (2130 −5) (i.e., Poly1305) [Ber05], is now
popular and is used in, for example, TLS and Google Chrome. While AES-GCM
can achieve a high throughput using hardware acceleration, including AES-NI
equipped on many Intel and AMD processors, ChaCha20-Poly1305 can be effi-
ciently implemented with a constant time on low-end and/or application-specific
processors without AES-NI (e.g., low-end ARM and AVR micro-controllers).
This is because ChaCha20 is an ARX cipher and Poly1305 is basically imple-
mented using arithmetic operations without carry-less multiplication (CLMUL)
instruction set. In the CAESAR project [Cry16] and NIST Lightweight Cryptog-
raphy (LWC) [NIS19], which are an international competition involving AE, the
constructions of AES-GCM and ChaCha20-Poly1305 have a significant impact
on CAESAR candidates. Thus, implementation studies on such AEs using poly-
nomial hash function are important from both practical and academic perspec-
tives.

The above AEs are currently considered to be secure against the existing
cryptanalyses. [HP08,IOM12,PC15]. On the other hand, there is a possibility
of side-channel analysis (SCA) [KJJ99] on these AEs. In particular, it is quite
likely that ChaCha20-Poly1305 could be deployed in many embedded systems,
including smart cards, which can be a major target of SCA. Therefore, the eval-
uation of SCA resistance/vulnerability is essential, and the development of SCA-
resistant ChaCha20-Poly1305 modules is required. Until now, some differential
power analyses (DPAs) and correlation power analysis (CPA) on ChaCha20
have been reported [JB17,AFM17], and several SCA-resistant modules for ARX
ciphers including ChaCha20 have also been studied [BSMG17,JPS18]. On the
other hand, to the best of the authors’ knowledge, there has been no report
of SCA on Poly1305. Although the ciphertext cannot be decrypted using the

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes 45

keys of Poly1305 alone, an attacker who retrieves the keys can forge authentica-
tion tags, which can be a critical vulnerability in the context of AEs. Thus, the
evaluation of the SCA security of Poly1305 is essential.

This study presents the first single-trace SCA on polynomial-based MACs,
successfully retrieving hash keys of Poly1305 and forging its authentication
tag. While some attacks on the tag generation of AES-GCM (i.e., GMAC)
have been proposed [BFG+14,BCF+15,OUHA18], these attacks are not appli-
cable to Poly1305 owing to the difference between GFs used in these MACs
(i.e., binary field GF (2128) and prime field GF (2130 − 5)). In addition, since
ChaCha20-Poly1305 uses one-time keys for tag generation, it is essentially dif-
ficult to apply conventional SCAs using a statistical mean including DPAs and
the above attacks on GCM/GMAC [BFG+14,BCF+15,OUHA18] to Poly1305.
On the other hand, the proposed attack retrieves the hash key of Poly1305 from
side-channel information during one computation of Poly1305. The new algo-
rithms exploit side-channel information of the final addition of a hash value and
a key or the addition of an intermediate value and input block. The proposed
algorithms efficiently estimate the candidates of intermediate value by exploiting
the conditions of existence and non-existence of carry-propagation/generation.
A notable feature of the proposed attack is its applicability to other known
polynomial-based MAC schemes such as GCM/GMAC, hash127 [Ber99], CWC-
HASH [KVW03], and Sophie Germain Counter Mode (SGCM) [Saa11] in prin-
ciple. We demonstrate the feasibility of the attack through simulations. In this
study, we assume the implementation of Poly1305 on an 8-bit low-end micro-
controller without AES-NI, As in [HS13], ChaCha20-Poly1305 is likely to be
implemented on such an embedded microprocessor for applications others than
TLS because of its advantage on performance, while TLS is not much frequently
implemented on embedded microprocessors. The results show that the hash key
of ChaCha20-Poly1305 can be retrieved with a practical level of computational
complexity and non-negligible probability. Finally, we present a cost-effective
countermeasure against the proposed attack. Assuming that symmetric cipher
encryption is protected by masking if Poly1305 is protected, the presented coun-
termeasure employs a combination of a lightweight masked Poly1305 inspired by
a masked GMAC in [OUHA18] and a first-order mask conversion from Boolean
to arithmetic masking [Gou01]. This can be efficiently computed with 128-bit
random number generation and only seven elementary operations.

2 Preliminaries and Related Works

2.1 Basic Notation

Mathematical notation in this paper for Poly1305 and MAC of AES-GCM (i.e.,
GMAC) is defined as follows. H, S, and T denote the 16-byte hash key, key
for final addition, and output tag, respectively. A denotes the input to MAC
and consists of 16-byte input blocks given by A1, A2, . . . , Ai, . . . , An, where n is
the number of input blocks. Let Xi = A1H

i + A2H
i−1 + · · · + AiH be the i-th

intermediate value in polynomial evaluation. Let Wi = (2128 + Ai) + Xi−1 be

46 R. Ueno et al.

the output of the i-th addition. In addition, let U be the output of polynomial
evaluation (i.e., U = Xn). Finally, let hj , sj , tj , ai,j , xi,j , wi,j , and uj be the j-th
byte of H, S, T , Ai, Xi, Wi, and U , respectively. Here, each variable denoted
by uppercase letter is basically an element of the prime field GF (2130 − 5) and
binary field GF (2128) for Poly1305 and GMAC, respectively, and the addition
of 2128 to Ai in Poly1305 is omitted if it is not essential.

2.2 Authenticated Encryptions Based on Polynomial Hash Function

AEs are typically constructed on the basis of generic composition (GC), which
combines a symmetric encryption (e.g., block cipher mode of operation and
additive stream cipher) with a MAC for tag generation [BN00,BN08,BN18].
While an AE based on a composition of an encryption and a MAC (i.e., GC)
formally uses two distinct keys for symmetric encryption and MAC, a key for
the MAC is frequently generated from symmetric encryption using another key
in many practical AEs, including ChaCha20-Poly1305, AES-GCM, and many
CAESAR candidates. Here, ChaCha20-Poly1305 and AES-GCM employ a MAC
based on polynomial hash function, where the output (authentication) tag T is
described as

T = S � U, (1)

U =
n∑

i=1

AiH
n−i+1, (2)

where H, S, and Ai are the hash key, key for final addition, and i-th input block,
respectively. Here, the operator � in Eq. (1) denotes an Abelian group operation
(e.g., bit-parallel-XOR and addition modulo 2α (where α is an integer) or a
prime) and Eq. (2) is applied over a field. For its practical implementation, U in
Eq. (2) is usually rewritten in the recurrence form as follows:

U = Xn, (3)
Xi = (Ai + Xi−1)H (1 ≤ i ≤ n), (4)
X0 = 0. (5)

In the following, we describe the algorithmic overview of ChaCha20-Poly1305.
ChaCha20-Poly1305 is an AE based on a composition of an encryption

and a MAC, that uses an ARX stream cipher ChaCha20 as encryption and
a polynomial-based MAC Poly1305 for tag generation. Algorithm 1 is its algo-
rithmic description, where D, P, and C denote the associated data, plaintext,
and ciphertext, respectively. In addition, Pl and Cl (1 ≤ l ≤ m) denote the l-th
256-bit block of P and C, respectively, where m is the number of 256-bit blocks
of P. ChaCha20 consists of a 256-byte state and updates the state using the
QuarterRound function. The initial state is defined by a secret key, an initial
vector (given a as nonce), and a counter value l, ChaCha20 generates a 256-bit
key stream after applying QuarterRound to the state 20 times. At Line 3, we

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes 47

Algorithm 1. ChaCha20-Poly1305
Input: Associated data D, plaintext P, 256-bit secret key K, 96-bit initial vector V

Output: Ciphertext C, authentication tag T

1: Function ChaCha20-Poly1305(D, P, K, V)

2: int l ← 0;

3: (H, S) ← ChaCha20-core(K, V, l);

4: l ← l + 1;

5: while l ≤ m do

6: Cl ← Pl ⊕ ChaCha20-core(K, V, l);

7: l ← l + 1;

8: end while

9: A ← (D, C, (len(D)||len(C)));
10: T ← Poly1305(A, H, S);

11: return (D, C, T);

12: end Function

generate the first key stream (H,S) used for Poly1305. The following key streams
generated at Lines 5–8 are XORed with plaintext and ciphertext during encryp-
tion and decryption, respectively. This means that both H and S are one-time
keys in ChaCha20-Poly1305, unlike AES-GCM. At Line 9, we format D and C
for the input (i.e., A) of Poly1305, where (len(D)||len(C)) is a value derived by
concatenating the lengths of D and C (each of which is given by eight bytes).
Note that each block of A is a 16-byte value while that of C is a 32-byte value.
Next, the tag T is computed from A, H, and S by Poly1305.

Algorithm 2 describes Poly1305, which generates an authentication tag T
from input message blocks A1, A2, . . . , An, H, and S based on polynomial evalu-
ation over GF (2130−5). In Poly1305, H is first masked (i.e., bit-parallel-ANDed)
with 0x0ffffffc0ffffffc0ffffffc0fffffff, which indicates that the 29th–34th, 61st–66th,
93rd–98th, and 125th–128th bits of H are fixed to zero and H is considered as a
106-bit value. At Lines 4–6, we perform polynomial evaluation over GF (2130−5)
as represented by Eqs. (3)–(5). Here, each 16-byte input block is padded to 17
bytes by appending 0x01 to the most significant byte1, which corresponds to the
addition of 2128 at Line 5. After computing Xn, T is generated by the sum of
Xn and S modulo 2128. Note that this final addition is not over GF (2130 − 5).

2.3 The Problem of Unforgeability

For preserving unforgeability, both the hash key H and the key S should be
secret. If the attacker retrieves either of these keys, she can forge the authen-
tication tag, which can be a critical vulnerability for AEs. For example, with
AES-GCM, it is known that an attacker can make victims perform a compro-
mised HTTPS authentication that redirects to malicious websites by deceiving
the authentication provided by TLS [BZD+16]. In addition, if the encryption is

1 In the case of ChaCha20-Poly1305, if the final blocks of D and C are given with b
bytes shorter than 16 bytes, 0x01 is appended to the (b + 1)-th byte and the rest is
padded with zeros.

48 R. Ueno et al.

Algorithm 2. Poly1305
Input: Message A, hash key H, key S

Output: Authentication tag T

1: Function Poly1305(A, H, S)

2: H ← H & 0x0ffffffc0ffffffc0ffffffc0fffffff;

3: X0 ← 0;

4: for i from 1 to n do

5: Xi ← ((2128 + Ai) + Xi−1)H mod 2130 − 5; � GF (2130 − 5) polynomial evaluation

6: end for

7: T ← (S + Xn) mod 2128; � Final addition (not over GF (2130 − 5))

8: return T ;

9: end Function

given as a block cipher in CTR-mode or stream cipher, the adversary can con-
trol the difference between the correct and forged plaintexts [PC15]. Therefore,
AE modules should never expose H and S in addition to the root secret key in
symmetric encryption.

To preserve the secrecy of H, another key S should be a nonce and should not
be reused. Otherwise, Joux’s forbidden attack, which was originally proposed for
GCM and used to retrieve H by exploiting nonce reuse, is a threat [Jou06]. If
the attacker observes authentication tags for two different messages generated
by an identical S, she can immediately retrieve H as follows. Let T and T ′ be
the tags for messages A1, A2, . . . , An and A′

1, A
′
2, . . . , A

′
n generated using H and

S. The attacker first computes the difference between two tags as

T − T ′ =
n∑

i=1

(Ai − A′
i)H

n−i+1. (6)

Here, Eq. (6) contains only H as an indeterminate variable. Because there are
at most n roots over the GF, the attacker reduces the number of candidates for
H to at most n if she solves this univariate equation.

In the case of AES-GCM, since S is generated from the AES encryption
result of the initial vector, the initial vector should be a nonce and should not
be reused. Otherwise, once the attacker retrieves H, she can perform universal
forgery (i.e., forge tags for any messages) because H is fixed for the same root
secret key. Such universal forgery is catastrophic for an AE. On the other hand,
this attack is infeasible and is not a threat if the system is correctly implemented
with respect to nonce. In addition, this attack is far less effective for ChaCha20-
Poly1305 because H is a one-time key, which indicates that retrieving H in
ChaCha20-Poly1305 makes sense only for the reused nonce. Thus, an attack
using only one computation result can be a greater threat, which allows forging
tags without the above limitation.

2.4 Conventional SCAs on Polynomial Hash Function

ChaCha20-Poly1305 and AES-GCM consist of symmetric encryption and MAC
schemes. So far, many SCAs on ChaCha20 and AES and their countermeasures

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes 49

have been studied. On the other hand, only a few SCAs on GCM are known as
attacks on polynomial-based MAC schemes [BFG+14,BCF+15,OUHA18].

The state-of-the-art attacks [BCF+15,OUHA18] focus on the first multipli-
cation of GMAC (i.e., X1 = A1H) for many different A1. The attacker constructs
a system of equations with errors over GF (2) (i.e., a learning parity with noise
(LPN) problem) with 128 variables (i.e., bits of H) from Hamming weight (HW)
of X1 estimated from side-channel information and solves the LPN problem to
obtain H. However, this attack is not applicable to Poly1305 for the following
reasons. Such attacks require many traces to construct an LPN problem that can
be solved with a practical level of computational complexity. Since the hash key
of ChaCha20-Poly1305 is used only once, in contrast to AES-GCM, an attacker
cannot construct such an LPN problem. Though the attacker may be able to
obtain the HWs of many different X1 from a fixed H if Poly1305 is combined with
a 128-bit block cipher mode of operation such as Poly1305-AES [Ber05], Even if
the attacker obtains the HWs of different X1 in Poly1305, it is impossible to con-
struct the LPN problem from multiplication over the prime field GF (2130 − 5).
Instead, she may construct a univariate learning with error (LWE) problem over
GF (2130−5); however, there is no known method/tool for solving such problems
over a large GF.

Other conventional SCAs such as simple power analysis (SPA) and DPA
are also inapplicable to Poly1305. There is basically no branch that can be
an SPA-leakage during polynomial evaluation. DPAs are not appropriate owing
to its one-time hash key. In addition, since a GF multiplication diffuses a
hash key to a whole intermediate value, the divide-and-conquer approach of
DPAs is not available. Although there is more sophisticated SCAs on symmet-
ric keys such as algebraic SCA (ASCA) [RS09,RSVC09], and soft analytical
SCA (SASCA) [VCGS14], their applicability to and effectiveness on Poly1305
are unknown. In fact, existing SAT solvers would have difficulty in handling the
logical expression of such large multipliers [Dre04].

3 Proposed Attack on ChaCha20-Poly1305

3.1 Attack Description

This section presents the proposed side-channel analysis (SCA) on ChaCha20-
Poly1305 implemented on low-end micro-controllers. The proposed SCA uses
only one trace of Poly1305 computation and therefore can adapt the use
case of ChaCha20-Poly1305 in practice. In this attack, we employ the HW
model as a leakage model under the assumption that the attacker accu-
rately obtains the byte-wise HWs of intermediate values, H, and S by side-
channel information, from the target 8-bit micro-controller. This assumption has
been used and experimentally validated in many previous works [Man03,RS09,
RSVC09,CMW14,KUH+17,OUHA18], especially for low-end micro-controllers.
For example, according to [OUHA18], the side-channel information from a low-
end smart card can be observed with a good signal-to-noise ratio (SNR) of 107.9
in a laboratory setting.

50 R. Ueno et al.

In contrast to the previous attack on GCM, the proposed attack focuses on
the final addition of S and U (= Xn) or the intermediate addition of Wi =
(2128 + Ai) + Xi−1 during polynomial evaluation. We first observe side-channel
information (i.e., single power/EM trace) as an online step. We then perform
the following three offline steps: (a) obtain candidates for U or Xi using the
new algorithm exploiting byte-wise HWs of intermediate values, (b) compute
the hypothetical H corresponding to each candidate of U using a polynomial
factorization, and (c) check whether the hypothetical H is correct. At (a), we
can reduce byte-wise candidates of intermediate value to approximately 50 in
average. Then, at (b), we can further reduce the byte-wise candidates to around
20 on the basis of the proposed algorithm. At (c), we finally obtain the 130-
bit-wise candidates by combining the byte-wise candidates in a non-redundant
manner according to another algorithm.

3.2 Side-Channel Analysis on Final Addition

In Step (a), our attack is performed in a slightly different way depending on
whether we focus on final addition or intermediate addition during polynomial
evaluation. We first describe the attack focusing on the final addition, where we
obtain possible candidates of U using the byte-wise HWs of S and U obtained
from side-channel information. Since the attacks on final and intermediate addi-
tion is almost same, see Appendix for the description of the attack on intermedi-
ate addition. The basic idea is to inversely compute the HW of S from guessed U
and the output of final addition (i.e., T) which is observable to the attacker, and
compare the hypothetical HW of S with the estimated one from side-channel
information. Thus, the attacker makes a set of lists containing possible byte-wise
candidates. However, we cannot observe the existence/non-existence of carry sig-
nals in the final addition. In other words, we should consider all cases of carry-in
and/or carry-out propagation at the j-th byte addition. Therefore, it is difficult
to sufficiently reduce the candidate space unless the existence/non-existence of
carry propagations is appropriately considered. To handle the existence/non-
existence of carry-in and carry-out propagation efficiently, we introduce the fol-
lowing proposition.

Proposition 1 Let uj and sj (0 ≤ sj < 28 and 0 ≤ uj < 28) be the two input
operands of j-th byte addition, and let tj (0 ≤ tj < 28) be the j-th byte output.
When there is no carry-in signal to the j-th byte, the carry-out signal to the
(j + 1)-th byte occurs if and only if tj < uj.

Proof. Let us consider the case in which the carry-out signal to the (j + 1)-byte
occurs (i.e., the value of the carry-out signal is 1). In this case, the addition is
represented by uj +sj = tj +28, which is followed by sj = tj −uj +28. With the
range of sj , the above equation is rewritten to an inequality of 0 ≤ tj −uj +28 <
28, and therefore, tj −uj < 0, which means tj < uj . We then consider the case in
which the carry-out signal does not occur (i.e., the value of the carry-out signal
is 0). In this case, the addition is represented by uj + sj = tj . Similarly to the
above, we derive 0 ≤ tj − uj < 28, and therefore, tj ≥ uj .

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes 51

We derive a similar proposition when there is the carry-in signal (i.e., the
value of the carry-in signal is 1) from the representations of uj + sj +1 = tj +28

and uj + sj + 1 = tj , except for the case in which tj = 0. If tj = 0, then the
carry-out signal always occurs because uj + sj + 1 should be greater than 0. By
means of Proposition 1, we can distinguish the existence/non-existence of carry
signals at the (j + 1)-th byte from tj and a guessed uj , and finally derive the
candidate for U without any redundancy.

Algorithm 3 derives the list of candidates for U from T and side-channel
information, where L(S) and L(U) indicates the side-channel information of S
and U , respectively. Lines 2 and 3 first obtain the byte-wise HWs of U and S
from the corresponding side-channel information, respectively. Note that U is a
17-byte value over GF (2130 − 5). In Algorithm 3, HW (x) denotes the HW of x.
Line 4 initializes Ω0,0, Ω0,1, Ω1,0, and Ω1,1, each of which is a list of lists for
candidates for U . The j-th list of Ωy,z contains candidates for the j-th byte of
U , where the carry-in signal from the (j − 1)-th byte and the carry-out signal
to the (j + 1)-th byte are assumed to be y and z (y, z ∈ {0, 1}), respectively.
Such classification is used for eventually deriving the candidates for U by the
combination of byte-wise candidates.

The main loop at Lines 5–39 is performed 16 times. In this loop, Line 6
initializes lists Ω

(j)
0,0, Ω

(j)
0,1, Ω

(j)
1,0, and Ω

(j)
1,1, storing the candidates for the j-th

byte of U at the j-th loop. The lists correspond to the j-th elements of Ω0,0,
Ω0,1, Ω1,0, and Ω1,1, respectively. Lines 7–11 calculate t′j corresponding to uj+sj

when the carry-in signal is 1. Basically t′j is given by tj − 1. If tj = 0, then t′j
becomes 255 because uj + sj + 1 should not be less than zero.

Lines 12–37 inversely calculate HW (sj) from tj (or t′j) and the guessed uj

and then obtain the candidates of uj by comparing the hypothetical HW (sj)
and the estimated one from side-channel information, where {d ∈ Z | HW (d) =
HW (uj) and 0 ≤ d < 28} at Line 12 denotes a set containing all possi-
ble integers whose HW equals HW (uj) (e.g., if HW (uj) = 1, it is given by
{1, 2, 4, 8, 16, 32, 64, 128}). Lines 13–16, 17–21, 23–30, and 31–34 acquire the can-
didates when the (carry-in value, carry-out value) is (0, 1), (0, 0), (1, 1), and (1,
0), respectively. Here, Ω

(j)
y,z.append(g) indicates an operation adding an element

g to the end of list Ω
(j)
y,z. Note that Ω

(1)
1,1 and Ω

(1)
1,0 should be empty lists because

the carry-in value to the first byte should be 0. In addition, Lines 27–30 corre-
spond to the aforementioned special case of tj = 0 with a carry-in signal. After
filtering the all-guessed uj according to HW (sj), the resulting list of candidates
(i.e., Ω

(j)
y,z) is the j-th element of Ωy,z.

Finally, Line 40 combines the byte-wise candidates and obtains the resulting
list of candidates for U . Here, we should use this combination with consider-
ing carry-generations and propagations at each byte. Figure 1 shows the trellis
diagram of the combination of byte-wise lists considering carry-generations and
propagations. We should combine Ω

(j−1)
0,0 and Ω

(j−1)
1,0 with Ω

(j)
0,0 and Ω

(j)
0,1 as

denoted by solid arrows which represent that neither carry-generation nor prop-
agation occurs between the (j −1)-th and j-th bytes. On the other hand, Ω

(j−1)
0,1

52 R. Ueno et al.

Algorithm 3. Side-channel analysis on final addition
Input: Authentication tag T , side-channel informations L(U) and L(S)
Output: List Ω (containing candidates for U)

1: Function DeriveCandidatesFrom(T, L(U), L(S))

2: list of int [HW (u1), HW (u2), . . . , HW (u17)] ← EstimateByteWiseHWsFrom(L(U));

3: list of int [HW (s1), HW (s2), . . . , HW (s16)] ← EstimateByteWiseHWsFrom(L(S));
4: list of list Ω0,0 ← []; list of list Ω0,1 ← []; list of list Ω1,0 ← []; list of list

Ω1,1 ← [];
5: for j from 1 to 16 do

6: list of int Ω
(j)
0,0 ← []; list of int Ω

(j)
0,1 ← []; list of int Ω

(j)
1,0 ← []; list of int

Ω
(j)
1,1 ← [];

7: if tj = 0 then

8: int t′j ← 28 − 1;
9: else

10: int t′j ← tj − 1;

11: end if
12: for each g ∈ {d ∈ Z | HW (d) = HW (uj) and 0 ≤ d < 28} do

13: if g > tj then � If carry-in is 0 and carry-out is 1
14: if HW (tj − g + 28) = HW (sj) then

15: Ω
(j)
0,1.append(g);

16: end if
17: else � If carry-in is 0 and carry-out is 0
18: if HW (tj − g) = HW (sj) then

19: Ω
(j)
0,0.append(g);

20: end if
21: end if

22: if j �= 1 then
23: if g > t′j then � If carry-in is 1 and carry-out is 1

24: if HW (t′j − g + 28) = HW (sj) then

25: Ω
(j)
1,1.append(g);

26: end if
27: else if t′j = 255 then

28: if HW (t′j − g) = HW (sj) then

29: Ω
(j)
1,1.append(g);

30: end if
31: else � If carry-in is 1 and carry-out is 0
32: if HW (t′j − g) = HW (sj) then

33: Ω
(j)
1,0.append(g);

34: end if

35: end if
36: end if
37: end for

38: Ω0,0.append(Ω
(j)
0,0); Ω0,1.append(Ω

(j)
0,1); Ω1,0.append(Ω

(j)
1,0); Ω1,1.append(Ω

(j)
1,1);

39: end for

40: list of int Ω ← CombineByteWiseCandidates(Ω0,0,Ω0,1,Ω1,0,Ω1,1, HW (s17));
41: return Ω;

42: end Function

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes 53

and Ω
(j−1)
1,1 should be combined with Ω

(j)
1,0 and Ω

(j)
1,1 as denoted by dashed arrows

which represent that either carry-generation or carry-propagation occurs at the
(j − 1)-th byte.

0,0
(1)

0,1
(1)

0,0
(2)

0,1
(2)

1,0
(2)

1,1
(2)

0,0
(3)

0,1
(3)

1,0
(3)

1,1
(3)

0,0
(4)

0,1
(4)

1,0
(4)

1,1
(4)

0,0
(16)

0,1
(16)

1,0
(16)

1,1
(16)

: Without carry-generation nor carry-propagation

: With carry-generation or carry-propagation

Fig. 1. Trellis diagram for combining byte-wise candidates.

Algorithm 4 combines the lists of byte-wise candidates as a list of candidate
integers on the basis of Fig. 1. Lines 2–6 correspond to the aforementioned com-
bination of byte-wise candidates, where Ωz′ × Ω

(j)
y,z denotes the direct product

(z′ ∈ {0, 1}). Since the candidates for U are computed from the first byte (i.e.,
j = 1) in ascending order, Line 2 sets Ω

(1)
0,0 and Ω

(1)
0,1 as the initial list of inter-

mediate buffer lists Ω0 and Ω1, respectively. In the j-th loop at Lines 3–8, Ωz′

corresponds to the list of candidate integers given from the first to the j-th bytes
such that the carry-out value to the (j +1)-th byte should be z′. In other words,
Lines 5 and 6 correspond to the computation flow given by solid and dashed
arrows in Fig. 1, respectively. Since the carry-in value to first byte should always
be 0, two intermediate buffers Ω0 and Ω1 are enough to combine the byte-wise
candidates in accordance with Fig. 1. In addition, while U is a 130-bit (i.e.,
17-byte) value, we can know the value of 17-th byte according to HW (u17) as
Lines 10–16. If HW (u17) is 0 or 2, u17 should be determined as 0x00 or 0x03,
respectively. Therefore, when u17 = 0x03, 2128 +2129 is added to each candidate
of Ω0 and Ω1 at Line 15. If HW (u17) = 1, u17 should be either 0x01 or 0x02,
which is represented by adding either 2128 or 2129 to the candidates at Line 13.

The computational complexity of Algorithm 3 is evaluated with the number
of byte-wise guesses at the main loop (i.e., Lines 5–39). The number of elements
in {d ∈ Z | HW (d) = HW (uj) and 0 ≤ d < 28} at Line 12 is less than 28.
Since the byte-wise guesses are performed for 16 bytes, we perform the guesses
at most 28 · 16 = 212 times, which is a trivial number. On the other hand,

54 R. Ueno et al.

Algorithm 4. Derive list of candidates of U from byte-wise candidates
Input: Lists of byte-wise candidates Ω0,0, Ω0,1, Ω1,0, Ω1,1, HW of 17th byte HW (u17)

Output: List of candidates for U

1: Function CombineByteWiseCandidates(Ω0,0, Ω0,1, Ω1,0, Ω1,1, HW (u17))

2: List of int Ω0 ← Ω
(1)
0,0; List of int Ω1 ← Ω

(1)
0,1;

3: for j from 2 to 16 do

4: list of int Ω
(j)
0 ; list of int Ω

(j)
1 ;

5: Ω
(j)
0 ← {e0+28j ·e(j)

0,0 | (e0, e
(j)
0,0) ∈ Ω0 ×Ω

(j)
0,0} ∪ {e1+28j ·e(j)

1,0 | (e1, e
(j)
1,0) ∈ Ω1 ×Ω

(j)
1,0};

6: Ω
(j)
1 ← {e0+28j ·e(j)

0,1 | (e0, e
(j)
0,1) ∈ Ω0 ×Ω

(j)
0,1} ∪ {e1+28j ·e(j)

1,1 | (e1, e
(j)
1,1) ∈ Ω1 ×Ω

(j)
1,1};

7: Ω0 ← Ω
(j)
0 ; Ω1 ← Ω

(j)
1 ;

8: end for

9: list of int Ω;

10: if HW (u17) = 0 then

11: Ω ← Ω0 ∪ Ω1;

12: else if HW (u17) = 1 then

13: Ω ← {e0+2128 | e0 ∈ Ω0} ∪ {e0+2129 | e0 ∈ Ω0} ∪ {e1+2128 | e1 ∈ Ω1} ∪ {e1+2129 |
e1 ∈ Ω1};

14: else if HW (u17) = 2 then

15: Ω ← {e0 + 2128 + 2129 | e0 ∈ Ω0} ∪ {e1 + 2128 + 2129 | e1 ∈ Ω1};
16: end if

17: return Ω;

18: end Function

although the computational complexity of Algorithm 4 heavily depends on the
resulting number of candidates for U , it does not matter in Step (a) because the
candidates for U can be combined from the list of byte-wise candidates in Steps
(b) and (c) on-the-fly. The resulting number of candidates is evaluated below.

3.3 Exhaustive Polynomial Factorization

In Step (b), we perform the polynomial factorization of A1H
i−1+A2H

i−2+· · ·+
Ai−1H − Xi−1 (2 ≤ i ≤ n + 1) over GF (2130 − 5) for all candidates for Xi−1 in
order to derive the corresponding hypothetical key(s) H, like in Joux’s forbidden
attack. Here, i = n+1 corresponds to the attack on final addition. We here choose
i such that the number of remaining candidates for Xi−1 is the smallest. Finally,
in Step (c), we check whether the hypothetical H is the correct key, which can be
done by computing the intermediate values X1,X2, . . . , Xn with the hypothetical
H and compare their HWs with the corresponding HWs estimated from side-
channel information. Thus, we can determine the only correct key H, if the
exhaustive polynomial factorization in Step (b) is feasible.

3.4 Feasibility Evaluation

The feasibility of the proposed attack is evaluated through an experimental
simulation. We first evaluate the candidates for U obtained from Algorithm 3,
which is equal to the (worst-case) number of required polynomial factorizations
in Step (b). We generate 10,000,000 authentication tags with random messages
and keys and obtain the byte-wise HWs of each pair of S and U by a simulation.

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes 55

Number of remaining candidates (log2)

0 10 20 30 40 50 60 70
0

2

4

6

8

Fr
eq

ue
nc

y

Fig. 2. Histogram of number of remaining candidates.

Figure 2 shows the resulting histogram, where the horizontal axis denotes the
number of candidates of U remaining after Step (a) on a logarithmic scale and
the vertical axis denotes the frequency. In addition, Table 1 displays the fre-
quency. The number of candidates for each byte of U is reduced to approxi-
mately 20 in average. The number of resulting candidates for U combined based
on Fig. 1 is less than just a product of the number of byte-wise candidates
because we appropriately consider the condition of carry-propagation and gen-
eration in Algorithms 3 and 4. We confirmed that we can obtain the similar
result for Xi−1 by using Algorithm 7. We then randomly generate 1,000 (i − 1)-
th degree polynomials whose coefficients are in the form of Poly1305 in order
to evaluate the required time for polynomial factorizations for Step (b). Table 2
shows the average time for factoring an (i − 1)-th degree polynomial. Here, we
used an open-source computer algebra software Risa/Asir [asi] on a Linux PC
with an Intel Xeon Gold 6144 processor and 384GB of memory to perform the
polynomial factorization.

From Fig. 2 (Table 1) and Table 2, we can estimate the expected time for
the proposed attack because the computational time of Algorithm 3 and Step
(c) is trivial compared to the exhaustive polynomial factorization of Step (b).
For example, if i − 1 = 2, the polynomial factorization using a single core is
completed within about 24 min for 220 candidates and 13 h for 225 candidates.
In addition, the attacker can perform the exhaustive polynomial factorization
in parallel using multi-cores. Hence, the time required for the attack is given
by (time per polynomial factorization) × (number of remaining candidates after
Step (a))/(number of cores for polynomial factorization). Roughly, 210–220 cores
are currently available for (a cluster of) commercial/off-the-shelf high-end servers
or cloud servers provided in a machine-as-a-service (MaaS) such as Amazon EC2
and Google GCP. Therefore, the attack would be feasible using high-end servers

56 R. Ueno et al.

Table 1. Frequency of number of remaining candidates (number of candidates is given
in log2)

Candidates 0–23 24 25 26 27 28 29 30

Frequency 2∗ 4 10 24 40 105 195 461

Candidates 31 32 33 34 35 36 37 38

Frequency 825 1,568 2,803 5,045 8,900 14,959 24,731 39,105

Candidates 39 40 41 42 43 44 45 46

Frequency 60,474 91,598 133,605 188,692 259,208 344,179 441,076 546,027

Candidates 47 48 49 50 51 52 53 54

Frequency 652,036 747,325 822,649 866,532 874,554 838,187 763,422 656,229

Candidates 55 56 57 58 59 60 61 62

Frequency 529,021 400,212 282,278 184,218 109,778 60,218 29,115 12,994

Candidates 63 64 65 66 67 68 69 70–128

Frequency 5,097 1,790 535 133 31 8 2 0∗
∗ In total

Table 2. Average time for factoring (i − 1)-th degree polynomial

Degree of polynomial i − 1 2 4 8 16 32 64 128

Average time (ms) 1.4 3.0 6.8 20.0 76.4 327.5 1,180

even if 240–245 candidates remain after Step (a), respectively. In this sense,
according to Table 1, the probabilities of successful tag forgery using a high-end
server at a computational cost of less than 230 for a core is given by approximately
2.5% and 52.5% if the number of available cores is 210 and 220, respectively.
This probability is non-negligible because this probability is considered for the
all addition in one Poly1305 computation. More precisely, we can retrieve the
correct hash key if we find an attackable Xi−1 among 1 ≤ i ≤ n. In addition, the
attacker may observe the side-channel information many times until she finds an
attackable one, although our attack uses only one trace. Let v be the number of
observation of side-channel information of Poly1305 tag generation and let n̄ be
the average of the input block length among v tags. The expected probability
psuccess for at least one success of the proposed attack within e factorizations
during v observations is expressed by

psuccess = 1 − (1 − cmf(e))vn̄, (7)

where cmf(e) denotes the probability that the acceptable number of candidates
after the side-channel analysis on final or intermediate addition should be less-
than e, and cmf(e) is derived as the cumulative mass function corresponding to
Fig. 2 (and Table 1). Table 3 illustrates the relation between the success proba-
bility, cmf(e) (related to the computational cost), and vn̄ (related to the number
of observation of addition in Poly1305). From Table 3, we can confirm that we
successfully perform forgery at least one tag of Poly1305 via the proposed side-
channel attack with practical computational cost and probability. For example,

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes 57

Table 3. Success probability psuccess for various e and vn̄ (%)

vn̄

10 100 1,000 10,000 100,000

e 225 <7.00 × 10−4 <7.00 × 10−3 <7.00 × 10−2 5.98 × 10−1 5.82

230 3.80 × 10−2 3.79 × 10−1 3.72 31.6 97.8

235 1.10 10.5 67.0 >99.9 >99.9

240 14.8 79.9 >99.9 >99.9 >99.9

245 71.4 >99.9 >99.9 >99.9 >99.9

250 99.7 >99.9 >99.9 >99.9 >99.9

if we can observe more than 1,000 additions in Poly1305, 230 and 235 polyno-
mial factorizations would be sufficient to forge at least one tag with probabilities
of more than 3.72% and 67.0%, respectively. Given that the polynomial factor-
ization is parallelizable as mentioned before, we can confirm that the proposed
attack is feasible within a practical span of time with non-negligible probability.

3.5 Application to Open-Source Poly1305 Implementation

In this subsection, we consider the application of the proposed attack to an
open-source Poly1305 implementation. In this paper, we refer to μNaCl (micro
Networking and Cryptography library) [HS19], which is an open-source library
of cryptographic software including Poly1305 and is involved in a publication of
[HS13].

In the implementation, the reduction by 2130 − 5 after multiplication is in
a lazy manner for an efficient computation. An integer F ∈ [0, (2130 − 5)2) is
equal to 5F1 + F0 modulo 2130 − 5, where F1 and F0 are integer in the range of
[0, 2130) such that F = 2130F1 + F0. Let F ′

1 and F ′
0 be 17- and 16-byte integers

such that F = 2128F ′
1 + F ′

0, respectively. According to the above property, the
reduction of F by 2130 − 5 is efficiently calculated by F0 + F ′′

1 + (F ′′
1 � 2) on

8-bit micro-controllers, where F ′′
1 is an integer satisfying 4�F ′

1/4� (= 4F1) and
(F ′′

1 � 2) denotes a two-bit shift to right. Since the reduction result is given as
a 133-bit integer (and the result of following addition becomes 134-bit), another
reduction to [0, 2130 − 5) should be performed before the final addition (called
“freeze” operation).

Our attack on final addition can be applied to this implementation, because
the generated tag should be fully reduced regardless of the representation of
intermediate values. In addition, our attack on intermediate addition can be
also available with an additional computational cost of 22–23 as described in
Appendix. Thus, our attack can be still practical and can be performed with a
non-negligible complexity according to Eq. (7) (and Table 3).

58 R. Ueno et al.

4 Discussion

4.1 Noise Tolerance

Our attack requires a good signal-to-noise ratio (SNR) for the observation
such that the HWs of the bytes of interest is correctly estimated. Many previ-
ous works [Man03,RS09,RSVC09,CMW14,KUH+17,OUHA18] showed that the
side-channel information of low-end micro-controllers can be observed with such
SNR values; and therefore, the HWs of values stored in registers are accurately
estimated, which implies that our single-trace attack is practical and realistic.

On the other hand, there is a possibility that the attack is feasible even if
the HWs observed from side-channel information include some noise. The use of
likelihood estimation for HWs at Lines 2 and 3 in Algorithm 3 (resp. Algorithm 7)
would be a possible extension for improving the noise tolerance [RS09]. More
concretely, the byte-wise HWs of U and S (resp. Xi−1 and Wi) are ranked
using the maximum likelihood estimation, and the proposed attack is iterated in
accordance with the rank until the correct H is found. For example, according
to [OUHA18], the side-channel information from a low-end smart card can be
observed with an SNR of 107.9 in a laboratory setting. This SNR is good enough
to perform the proposed attack, because the correct HWs of U and S (resp. Xi−1

and Wi) would be highly ranked.
Another possible extension for improving the noise tolerance may be based

on a belief propagation technique which derives the candidates for U or Xi−1

as a probability mass function. In the attack on final addition, we first derive
the distribution of byte-wise candidates for U and S from side-channel infor-
mation [VCGS14]. Like [PPM17], we then perform a belief propagation from
the byte-wise U and S to T by replacing Lines 14–16, 18–20, 23–30, and 32–34
in Algorithm 3 with a belief propagation for byte-wise candidate, and inversely
propagate the distribution of T to U with a known value T . Thus, we derive the
probability mass function representing U . The attack on the i-th intermediate
addition may be also extended in the same manner. However, straightforward
belief propagation for larger-than 128-bit adders would be infeasible because
there are many conditional probability calculations owing to the existence/non-
existence of carry-generation/propagation (i.e., intersections) as shown in Fig. 1,
while a method approximating the conditional probability calculation might be
available. Establishing and evaluating a concrete algorithm based on such a
belief propagation technique for the 128-bit adder, which can be a noise-tolerant
alternative of Algorithms 3 and 7, could be a future research avenue.

4.2 Applicability and Generality of the Proposed Attack

Our attack can be extended and applied to other known polynomial-based
MAC schemes in principle, where the final addition is basically given by an
Abelian group operation or polynomial evaluation is performed over a GF. This
Abelian operation is typically defined as addition modulo 2α (e.g., Poly1305), bit-
parallel-XOR (e.g., GCM/GMAC), or addition over a prime field (e.g., SGCM).

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes 59

SGCM has the same structure as GCM and Poly1305, except that GF is replaced
with a prime field GF (p) where p (= 2128 + 12451) is the prime corresponding
to a Sophie Germain prime (p−1)/2 = 2127 +6225. While the authenticated tag
of SGCM is given by the sum of U and S modulo p, Algorithms 3, 4, and 7 are
sufficiently applicable to SGCM that we can easily consider the existence/non-
existence of reduction of modulo p by means similar to Proposition 1.

On the other hand, the proposed attack requires the assembly-level informa-
tion of the target software in order to estimate HWs of interest from side-channel
information. However, there are many devices running open-source software and
the attacker can easily obtain the assembly code of target software with cross
compilation. Thus, the scenario of our attack is sufficiently realistic, especially
in the context of the IoT.

Another important assumption of the proposed attack is that the attack in
this study focuses on an 8-bit micro-controller as the attack target. Proposi-
tion 1 and Algorithms 3, 4, and 7 themselves are easily extended to an attack
on 16- and 32-bit micro-controllers, where we employ the 16-bit- and 32-bit-wise
HW models (and “EstimateByteWiseHWsFrom” at Lines 2 and 3 is accordingly
changed), change the unit of each data value (i.e., 28 is replaced with 216 and
232), and change the number of iterations of j from 16 (= 128/8) to 8 (= 128/16)
and 4 (= 128/32), respectively. In such cases, the computational complexities
(i.e., the total number of 16-bit- and 32-bit-wise guesses) is given by 216 ·8 = 219

and 232 ·4 = 234, respectively. However, it seems difficult to reduce the candidates
for U and Xi−1 to less than 264 using Algorithm 3 because the side-channel infor-
mation from such micro-controllers (i.e., the 16-bit- and 32-bit-wise HWs) is less
informative than that from 8-bit micro-controllers (i.e., 8-bit-wise HWs). More
precisely, the number of remaining candidates is distributed mainly at around
275 and 2100 when attacking 16-bit and 32-bit micro-controllers, respectively. In
addition, measurement with a good SNR from 16-bit and 32-bit micro-controllers
is more difficult than that from 8-bit micro-controllers. In summary, the proposed
attack is infeasible for micro-controllers larger than 8-bit ones so far, and such
extensions remain for future work.

4.3 Countermeasures

Conventional software masking schemes can be applied to polynomial-based
MAC schemes to prevent the proposed attack if the polynomial evaluation and
final addition employ an identical GF. In this case, the Ishai-Sahai-Wagner (ISW)
scheme [ISW03], domain-oriented masking (DOM) [GMK16], and unified mask-
ing approach (UMA) [GM18] are typical examples. However, the applications
of such masking schemes require large overheads in the case of schemes over a
large GF. In addition, when we apply the above additive masking schemes to
polynomial-based MAC schemes, calculation of unmask value would require a
large computational cost because the secret hash key is multiplied to intermedi-
ate values, while the secret key is added in most symmetric ciphers.

A possible cost-effective masking-based countermeasure for GCM/GMAC
was proposed in [OUHA18]. It uses masking for intermediate values (but not

60 R. Ueno et al.

for H), precomputation of unmasked value, and an offset of S − SH and its
correction. It was shown that the masking scheme can protect GCM/GMAC
from SCAs with overheads of 1 + log2(n) multiplications and n + 1 additions
over GF (2128) and a 128-bit random value as the initial randomness. However,
the above masking scheme cannot be applied to Poly1305 because Poly1305
employs polynomial evaluation over GF (2130 − 5) and final addition modulo
2128. This indicates that the mask and offset values should be converted from
GF (2130 − 5) to Z/2128Z, while such a conversion algorithm is not known.

Addressing the above issues, we discuss a cost-effective countermeasure appli-
cable directly to Poly1305. The proposed attack on final addition cannot be
applied if either S or U is protected as the attack using only U (= Xn) or S
is infeasible. Masking either S or U is sufficient for protecting the final addi-
tion of Poly1305. Here, we assume that ChaCha20 should be protected when
protecting Poly1305, and therefore the output of ChaCha20 (i.e., H and S) is
masked. QuarterRound of ChaCha20 performs the operations in the order of
modular addition, bit-parallel-XOR, and rotation. This indicates that S is gen-
erated with a Boolean mask if masking is applied to ChaCha20. Therefore, we
consider a countermeasure using the mask of S from a masked ChaCha20 and
Boolean-to-arithmetic mask conversion [Gou01,BCZ18] for the final addition and
a masked polynomial evaluation to prevent the attack on the i-th addition.

Algorithm 5 is the algorithmic description of a masking-based ChaCha20-
Poly1305 resistant to the proposed attack, where H(B), S(B), and C

(B)
l denote H,

S, and Cl masked with M
(B)
H , M

(B)
S , and M

(B)
Cl

, respectively (i.e., H(B) = H⊕M
(B)
H

and the same for S and Cl). In contrast, S(Z) and T (Z) denote S and T with
arithmetic masks M

(Z)
S and M

(Z)
T (i.e., S(Z) = S + M

(Z)
S mod 2128 and T (Z) =

T +M
(Z)
T mod 2128), respectively. Here, M

(Z)
T = M

(Z)
S because T (Z) = S(Z)+U =

S + U + M
(Z)
S = T + M

(Z)
S mod 2128. In Algorithm 5, we use masked ChaCha20

(e.g., based on [JPS18]) for generating H(B), S(B), and key stream for encryption
with a Boolean mask. While H(B) and C

(B)
l are immediately unmasked, the

pair of S(B) and M
(B)
S is converted to the pair of S(Z) and M

(Z)
S , that is, the

arithmetic-masked S. After computing the arithmetic-masked tag T (Z) using a
masked Poly1305 with S(Z) instead of S, the output tag T is finally generated
by unmasking T (Z) with M

(Z)
T (= M

(Z)
S).

Algorithm 6 displays the proposed masked Poly1305. Here, X
(F)
0 and X

(F)
n

denotes the masked X0 and Xn with a prime-field mask M
(F)
X0

and M
(F)
Xn

, respec-

tively. At Line 4, we generate an initial prime-field mask M
(F)
X0

. At Line 5, we
apply the prime-field mask to the first intermediate value X0. In Lines 6–8, we
perform the masked polynomial evaluation over GF (2130 − 5), where Xi−1 (and
Wi) is always masked with M

(F)
X0

Hi (i.e., X
(F)
i−1 = Xi + M

(F)
X0

Hi); and therefore,
the proposed attack on the i-th addition cannot be applied. After the masked
polynomial evaluation, at Line 9, we calculate an unmask value M

(F)
Xn

directly

from M
(F)
X0

and H, without computing unmask values for intermediate values
X1,X2, . . . , Xn−1. Such a method is known to be useful for efficient unmask value

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes 61

Algorithm 5. Masked ChaCha20-Poly1305
Input: Associated data D, plaintext P, 256-bit secret key K, 96-bit initial vector V

Output: Ciphertext C, authentication tag T

1: Function MaskedChaCha20-Poly1305(D, P, K, V)

2: int l ← 0;

3: ((H(B), M
(B)
H), (S(B), M

(B)
S)) ← MaskedChaCha20-core(K, V, l);

4: H ← H(B) ⊕ M
(B)
H ; � Unmask H(B)

5: l ← l + 1;

6: while l ≤ m do

7: (C
(B)
l , M

(B)
Cl

) ← Pl ⊕ MaskedChaCha20-core(K, V, l);

8: Cl ← C
(B)
l ⊕ M

(B)
Cl

; � Unmask C
(B)
l

9: l ← l + 1;

10: end while

11: A ← (D, C, (len(D)||len(C)));
12: (S(Z), M

(Z)
S) ← BooleanToArithmeticMaskConversion(S(B), M

(B)
S)

13: T (Z) ← MaskedPoly1305(A, H, S(Z));

14: T ← (T (Z) + M
(Z)
T) mod 2128; � Unmask T with M

(Z)
T = M

(Z)
S

15: return (D, C, T);

16: end Function

Algorithm 6. Masked Poly1305
Input: Message A, hash key H, masked key S(Z)

Output: Masked authentication tag T (Z)

1: Function MaskedPoly1305(A, H, S(Z))

2: H ← H & 0x0ffffffc0ffffffc0ffffffc0fffffff;

3: X0 ← 0;

4: M
(F)
X0

$←− GF (2130 − 5); � Initial prime-field mask generation

5: X
(F)
0 ← X0 − M

(F)
X0

; � Initial masking over GF (2130 − 5)

6: for i from 1 to n do

7: X
(F)
i ← ((2128 + Ai) + X

(F)
i−1)H mod 2130 − 5; � Masked polynomial evaluation over

GF (2130 − 5)

8: end for

9: M
(F)
Xn

← M
(F)
X0

Hn; � Unmask value calculation

10: Xn ← X(F)
n + M

(F)
Xn

; � Unmask Xn

11: T (Z) ← (S(Z) + Xn) mod 2128; � Masked final addition (not over GF (2130 − 5))

12: return T (Z);

13: end Function

calculation with 1 + log2(n) multiplications by the left-to-right binary method.
In addition, this method erases the joint leakage of masked and unmask val-
ues, which might be exploited2. We then unmask Xn and compute the masked
authentication tag T (Z) from the masked key S(Z) and Xn. The proposed attack
on final addition is also impossible thanks to the masked key.

In Algorithm 5, the overhead of the protection of Poly1305 (excluding that
of ChaCha20) is given by the cost of mask conversion from Boolean to Z/2128Z

2 On the other hand, if it is required to prevent side-channel leakage of Hi

during the computation of Hn, we should compute M
(F)
Xn

in the order of

M
(F)
X0

H,M
(F)
X0

H2, . . . ,M
(F)
X0

Hn, which is realized by n multiplications.

62 R. Ueno et al.

(i.e., arithmetic) and the overhead of masked Poly1305. The Boolean-to-
arithmetic mask conversion is efficiently computed in the case of a small number
of shares (i.e., security order) even if the bit length is large. In particular, in
first-order security, the mask conversion from Boolean to arithmetic can be per-
formed only with a 128-bit random number, five bit-parallel-XORs, and two
subtractions [Gou01]. Since first-order protection should be enough for prevent-
ing the proposed attack, the overhead for protecting S is small and negligible
compared to the ChaCha20-Poly1305 computation itself. Even if a higher-order
masking is applied to ChaCha20, the first-order mask conversion should be per-
formed for the sake of efficient computation because the attacker cannot perform
DPAs on the conversion in the scenario of ChaCha20-Poly1305. On the other
hand, the proposed masked Poly1305 requires an overhead of a 130-bit random
number generation, one addition, one subtraction, and 1+log2(n) multiplications
over GF (2130 − 5). This overhead is meaningfully smaller for a large GF than
the aforementioned common masking schemes as described in [OUHA18]. The
countermeasure is also available if Poly1305 is combined with another symmetric
encryption scheme which is not ChaCha20.

The proposed countermeasure is also resistant to higher-order-like attacks
which combine the leakage of some X

(F)
i ’s. Each Xi should be masked with a

distinct mask M
(F)
X0

Hi. Since i is unique for Xi and computation of intermediate

unmask values (i.e., M
(F)
Xi

) is avoidable, we cannot cancel the effect of M
(F)
X0

by

any combination of leakage of X
(F)
i without knowledge of H. Note that we cannot

discuss the resistance of our countermeasure to other type of attacks (e.g.., DPA)
because no other side-channel attack applicable Poly1305 has been known so far.

5 Conclusion

In this study, we proposed the first single-trace SCA on the polynomial-based
MAC schemes that is applicable to Poly1305. While the conventional attacks
on GCM/GMAC cannot be applied to Poly1305 due to their one-time keys
and the difference of GFs, the proposed attack retrieves the hash key from a
single-trace with a non-negligible probability, allowing the attacker to forge the
authentication tag. The proposed attack focuses on the final addition or the
intermediate addition during polynomial evaluation. Because the output of final
addition or one input operand of the intermediate addition is observable to
the attacker, our new algorithms can efficiently estimate the operands of these
additions. We also presented a cost-effective countermeasure using a combination
of the first-order mask conversion from Boolean to arithmetic masking and new
masked Poly1305.

A further reduction of computational complexity including noise tolerance
remains for future work, which should makes it feasible to apply our attack to
other larger platform and major scenarios (e.g., TLS). It is also interesting to
investigate the applications of the new algorithm to other schemes.

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes 63

Appendix: Side-Channel Analysis on Intermediate
Addition

We then describe the attack focusing on the i-th intermediate addition of Xi−1

and Ai (i.e., Wi = (2128+Ai)+Xi−1). In contrast to final addition, while the out-
put of i-th addition (i.e., Wi) is a secret value, the attacker knows Ai. Therefore,
similarly to Algorithm 3, we can make a list of candidates for Xi−1 by calcu-
lating HW (wi,j) from ai,j and guessed xi−1,j and comparing the hypothetical
HW (wi,j) with the estimated one from side-channel information. Algorithm 7
calculates a list of candidates for Xi−1. Algorithm 7 is basically derived by invert-
ing the sign of g and 28 in Algorithm 3 since Algorithm 7 is considered as a variant
of Algorithm 3 where Wi − Xi−1 = Ai corresponds S + U = T . In addition, the
special case ai,j = 0 is removed because a′

i,j at Line 7, which is a value represent-
ing that carry-in value is one, is calculated by adding one, but not by subtracting
one. At Lines 29–38, we perform the loop for 17th byte. The 17th loop should be
simplified because the 17th bytes of Xi and Wi should have limited value repre-
sented by only two bits and there should be no carry-propagation/generation to
the 18th byte. At Line 39, we combine byte-wise candidates for Xi−1 by “Com-
bineByteWiseCandidatesEval,” which basically performs Algorithm 4, but the
output is given by Ω0 ∪ Ω1 and Lines 10–16 are skipped because the addition is
performed upto the 17th byte. Note that the main loop in Algorithm 7 and Com-
bineByteWiseCandidatesEval is performed until j = 17, but the computational
cost of Algorithm 7 is almost equal to Algorithm 3.

Major concern about attacking the i-th addition is that the addition is per-
formed over GF (2130 − 5), namely, reduction by 2130 − 5 may be applied to the
result of addition and we cannot correctly estimate Wi. However, our attack can
be still applied to many practical implementation where a reduction is applied
only to the multiplication result, but not to the addition result. (Actually, the
reduction is not always applied to the result of addition in many practical imple-
mentation.)

In addition, some implementation employs an efficient reduction exploiting
the property of Mersenne-like prime after multiplication, which indicates that
multiplication result is reduced in a kind of lazy manner and Xi−1 is given by
more-than 130 bits. Let us consider the open-source implementation in [HS19] as
well as Section 3.5. The implementation employs a lazy reduction and 133- and
134-bit representation for intermediate values. More precisely, the multiplication
result is not fully reduced by 2130 − 5, Xi−1 is not given as a 130-bit value as
described in Sect. 3.5, but is 133-bit (and Wi is 134-bit). Our algorithms are still
applied to this implementation by modifying the upper bound of d at Line 33
to 25, because Algorithm 7 only assumes that Xi−1 and Wi are 17-byte values
and there should be no carry-propagation/generation to 18-th byte. Due to the
redundancy, the number of candidates for Xi−1 after applying Algorithm 7 may
be greater than the evaluation in Sect. 3.4 (i.e., Fig. 2 and Table 1). However, we
confirmed that the number of candidates is only about 22–23 times greater than
that given in Sect. 3.4 in average case by a simulation. Thus, our attack can be

64 R. Ueno et al.

Algorithm 7. Side-channel analysis on i-th addition
Input: The i-th input block Ai, side-channel informations L(Xi−1) and L(Wi)

Output: List Ω (containing candidates for Xi−1)

1: Function DeriveCandidatesFrom(Ai, L(Xi−1), L(Wi))

2: list of int [HW (xi−1,1), . . . , HW (xi−1,17)] ← EstimateByteWiseHWsFrom(L(Xi−1));

3: list of int [HW (wi,1), . . . , HW (wi,17)] ← EstimateByteWiseHWsFrom(L(Wi));

4: list of list Ω0,0 ← []; list of list Ω0,1 ← []; list of list Ω1,0 ← []; list of list Ω1,1 ← [];

5: for j from 1 to 16 do

6: list of int Ω
(j)
0,0 ← []; list of int Ω

(j)
0,1 ← []; list of int Ω

(j)
1,0 ← []; list of int Ω

(j)
1,1 ← [];

7: int a′
i,j ← ai,j + 1;

8: for each g ∈ {d ∈ Z | HW (d) = HW (xi−1,j) and 0 ≤ d < 28} do

9: if ai,j + g ≥ 28 then � If carry-in is 0 and carry-out is 1

10: if HW (ai,j + g − 28) = HW (wi,j) then

11: Ω
(j)
0,1.append(g);

12: end if

13: else � If carry-in is 0 and carry-out is 0

14: if HW (ai,j + g) = HW (wi,j) then

15: Ω
(j)
0,0.append(g);

16: end if

17: end if

18: if j
= 1 then

19: if a′
i,j + g ≥ 28 then � If carry-in is 1 and carry-out is 1

20: if HW (a′
i,j + g − 28) = HW (wi,j) then

21: Ω
(j)
1,1.append(g);

22: end if

23: else � If carry-in is 1 and carry-out is 0

24: if HW (a′
i,j + g) = HW (wi,j) then

25: Ω
(j)
1,0.append(g);

26: end if

27: end if

28: end if

29: end for

30: Ω0,0.append(Ω
(j)
0,0); Ω0,1.append(Ω

(j)
0,1); Ω1,0.append(Ω

(j)
1,0); Ω1,1.append(Ω

(j)
1,1);

31: end for

32: list of int Ω
(17)
0,0 ← []; list of int Ω

(17)
1,0 ← []; � 17th loop

33: for each g ∈ {d ∈ Z | HW (d) = HW (xi−1,17) and 0 ≤ d < 22} do

34: if HW (g + 1) = HW (wi,17) then � If carry-in is 0

35: Ω
(17)
0,0 .append(g);

36: end if

37: if HW (g + 2) = HW (wi,17) then � If carry-in is 1

38: Ω
(17)
1,0 .append(g);

39: end if

40: end for

41: Ω0,0.append(Ω
(17)
0,0); Ω1,0.append(Ω

(17)
1,0);

42: list of int Ω ← CombineByteWiseCandidatesEval(Ω0,0, Ω0,1, Ω1,0, Ω1,1);

43: return Ω;

44: end Function

still practical and can be performed with a non-negligible complexity according
to Eq. (7) (and Table 3).

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes 65

References

AFM17. Adomnicai, A., Fournier, J.J.A., Masson, L.: Bricklayer attack: a side-
channel analysis on the ChaCha quarter round. In: Patra, A., Smart, N.P. (eds.)
INDOCRYPT 2017. LNCS, vol. 10698, pp. 65–84. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-71667-1 4

AFP13. Al Fardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: IEEE Symposium on Security and Privacy (S&P), pp. 526–540.
IEEE (2013)

asi. Risa/Asir (Kobe distribution) download page. http://www.math.kobe-u.ac.jp/
Asir/asir.html

BCF+15. Beläıd, S., Coron, J.-S., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Prouff,
E.: Improved side-channel analysis of finite-field multiplication. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 395–415. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 20

BCZ18. Bettale, L., Coron, J.-S., Zeitoun, R.: Improved high-order conversion from
Boolean to arithmetic masking. IACR Trans. Cryptogr. Hardware Embed. Syst.
(TCHES) 22–45 (2018)

Ber99. Bernstein, D.J.: Guaranteed message authentication faster than MD5 (1999).
http://cr.yp.to/antiforgery/hash127-abs.pdf

Ber05. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11502760 3

Ber18. Bernstein, D.J.: ChaCha, a variant of Salsa20, October 2018. http://cr.yp.to/
chacha/chacha-20080128.pdf

BFG+14. Beläıd, S., Fouque, P.-A., Gérard, B.: Side-channel analysis of multiplica-
tions in GF(2128). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 306–325. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8 17

BN00. Bellare, M., Namprempre, C.: Authenticated encryption: relations among
notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

BN08. Bellare, N., Namprempre, C.: Authenticated encryption: relations among nota-
tions and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008)

BN18. Bellare, N., Namprempre, C.: Authenticated encryption: Relations among nota-
tions and analysis of the generic composition paradigm (full version), October 2018.
https://cseweb.ucsd.edu/∼mihir/papers/oem.pdf

BSMG17. Bache, F., Schneider, T., Moradi, A., Güneysu, T.: SPARX–a side-channel
protected processor for ARX-based cryptography. In: Design, Automation and Test
in Europe Conference and Exhibition (DATE), pp. 990–995. IEEE (2017)

BZD+16. Böck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: Nonce-
disrespecting adversaries: practical forgery attacks on GCM in TLS. In: 10th
USENIX Workshop on Offensive Technologies (WOOT 2016), pp. 1–13. USENIX
Association (2016)

CMW14. Clavier, C., Marion, D., Wurcker, A.: Simple power analysis on AES key
expansion revisited. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol.
8731, pp. 279–297. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44709-3 16

https://doi.org/10.1007/978-3-319-71667-1_4
https://doi.org/10.1007/978-3-319-71667-1_4
http://www.math.kobe-u.ac.jp/Asir/asir.html
http://www.math.kobe-u.ac.jp/Asir/asir.html
https://doi.org/10.1007/978-3-662-48324-4_20
http://cr.yp.to/antiforgery/hash127-abs.pdf
https://doi.org/10.1007/11502760_3
http://cr.yp.to/chacha/chacha-20080128.pdf
http://cr.yp.to/chacha/chacha-20080128.pdf
https://doi.org/10.1007/978-3-662-45608-8_17
https://doi.org/10.1007/978-3-662-45608-8_17
https://doi.org/10.1007/3-540-44448-3_41
https://cseweb.ucsd.edu/~mihir/papers/oem.pdf
https://doi.org/10.1007/978-3-662-44709-3_16
https://doi.org/10.1007/978-3-662-44709-3_16

66 R. Ueno et al.

Cry16. Cryptographic competitions. CAESAR: Competition for authenticated encryp-
tion: Security, applicability, and robustness (2016). https://competitions.cr.yp.to/
caesar.html

DR11. Duong, T., Rizzo, J.: Here come the ⊕ ninjas (2011). https://www.nist.gov/
Dre04. Drechsler, R. (ed.): Advanced Formal Verification. Kluwer Academic Publish-

ers, Amsterdam (2004)
Dwo07. Dworlin, M.: NIST special publication 800–38D–recommendation for block

cipher modes of operation: Galois/Counter Mode (GCM) and GMAC. Technical
report, National Institute of Standards and Technology (NIST) (2007). http://dl.
acm.org/citation.cfm?id=2206251

GM18. Gross, H., Mangard, S.: A unified masking approach. J. Cryptogr. Eng. 8(2),
109–124 (2018). https://doi.org/10.1007/s13389-018-0184-y

GMK16. Gross, H., Mangard, S., Korak, T.: Domain-oriented masking: compact
masked hardware implementations with arbitrary protection order. In: ACM Work-
shop on Theory of Implementation Security, p. 3 (2016)

Gou01. Goubin, L.: A sound method for switching between Boolean and arithmetic
masking. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 3–15. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 2

HP08. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function
based MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
144–161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 9

HS13. Hutter, M., Schwabe, P.: NaCl on 8-Bit AVR microcontrollers. In: Youssef, A.,
Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 156–
172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7 9

HS19. Hutter, M., Schwabe, P.: µNaCl–the networking and cryptography library for
microcontrollers, May 2019. https://munacl.cryptojedi.org/index.shtml

IOM12. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
31–49. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 3

ISW03. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

JB17. Jungk, B., Bhasin, S.: Don’t fall into a trap: physical side-channel analysis of
ChaCha20-Poly1305. In: Design, Automation and Test in Europe Conference and
Exhibition (DATE), pp. 1110–1115. IEEE (2017)

Jou06. Joux, A.: A authentication failures in NIST version of GCM (2006). http://csrc.
nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38 Series-Drafts/
GCM/Joux comments.pdf

JPS18. Jungk, B., Petri, R., Stöttinger, M.: Efficient side-channel protections of ARX
ciphers. IACR Trans. Cryptogr. Hardware Embed. Syst. (TCHES) 627–653 (2018)

KJJ99. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1 25

KUH+17. Kawai, W., Ueno, R., Homma, N., Aoki, T., Fukushima, K., Kiyomoto, S.:
Practical power analysis on KCipher-2 software on low-end microcontrollers. In:
IEEE European Symposium on Security and Privacy Workshops (EuroSPW) on
Secuity for Embedded and Mobile Systems (SEMS), pp. 113–121 (2017)

KVW03. Kohno, T., Viega, J., Whiting, D.: CWC: A high-performance conventional
authenticated encryption mode. IACR ePrint Archives: Report 2003/106 (2003).
https://eprint.iacr.org/2003/106

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html
https://www.nist.gov/
http://dl.acm.org/citation.cfm?id=2206251
http://dl.acm.org/citation.cfm?id=2206251
https://doi.org/10.1007/s13389-018-0184-y
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/978-3-540-85174-5_9
https://doi.org/10.1007/978-3-642-38553-7_9
https://munacl.cryptojedi.org/index.shtml
https://doi.org/10.1007/978-3-642-32009-5_3
https://doi.org/10.1007/978-3-540-45146-4_27
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://eprint.iacr.org/2003/106

Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes 67

Lan15. Langley, A.: RFC 7539 - ChaCha20 and Poly1305 for IETF protocols - IETF
tools (2015). https://tools.ietf.org/html/rfc7539

Man03. Mangard, S.: A simple power-analysis (SPA) attack on implementations of the
AES key expansion. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
343–358. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36552-4 24

MV05. McGrew, D.A., Viega, J.: The Galois/Counter Mode of operation (GCM)
(2005). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/gcm-revised-
spec.pdf

NIS19. NIST: Lightweight cryptography (2019). https://csrc.nist.gov/projects/
lightweight-cryptography

OUHA18. Oshida, H., Ueno, R., Homma, N., Aoki, T.: On masked Galois-field multi-
plication for authenticated encryption resistant to side channel analysis. In: Fan, J.,
Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 44–57. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89641-0 3

PC15. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-
based MAC schemes. J. Cryptol. 28(4), 769–795 (2015)

PPM17. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on
masked lattice-based encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 513–533. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66787-4 25

Res18. Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.3. Internet
Engineering Task Force (IETF), RFC 8446, October 2018. https://datatracker.ietf.
org/doc/rfc8446/

RS09. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F.,
Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5 29

RSVC09. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04138-9 8

Saa11. Saarinen, M.-J.O.: SGCM: The Sophie Germain counter mode. IACR ePrint
Archives: Report 2011/326 (2011). https://eprint.iacr.org/2011/326

VCGS14. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-
channel attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8873, pp. 282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45611-8 15

WC81. Wegman, M.N., Lawrence Carter, J.: New hash functions and their use in
authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

https://tools.ietf.org/html/rfc7539
https://doi.org/10.1007/3-540-36552-4_24
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/gcm-revised-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/gcm-revised-spec.pdf
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://doi.org/10.1007/978-3-319-89641-0_3
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://datatracker.ietf.org/doc/rfc8446/
https://datatracker.ietf.org/doc/rfc8446/
https://doi.org/10.1007/978-3-642-16342-5_29
https://doi.org/10.1007/978-3-642-04138-9_8
https://doi.org/10.1007/978-3-642-04138-9_8
https://eprint.iacr.org/2011/326
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15

Side-Channel Analysis Methodologies

Wavelet Scattering Transform
and Ensemble Methods

for Side-Channel Analysis

Gabriel Destouet1,2(B), Cécile Dumas1, Anne Frassati1, and Valérie Perrier2

1 Univ. Grenoble Alpes, CEA, LETI, DSYS, CESTI, 38000 Grenoble, France
{gabriel.destouet,cecile.dumas,anne.frassati}@cea.fr

2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
valerie.perrier@univ-grenoble-alpes.fr

Abstract. Recent works in side-channel analysis have been fully relying
on training classification models to recover sensitive information from
traces. However, the knowledge of an attacker or an evaluator is not
taken into account and poorly captured by solely training a classifier
on signals. This paper proposes to inject prior information in prepro-
cessing and classification in order to increase the performance of side-
channel attacks (SCA). First we propose to use the Wavelet Scatter-
ing Transform, recently proposed by Mallat, for mapping traces into a
time-frequency space which is stable under small translation and dif-
feomorphism. That way, we address the issues of desynchronization and
deformation generally present in signals for SCA. The second part of
our paper extends the canonical attacks over byte and Hamming weight
by introducing a more general attack. Classifiers are trained on different
labelings of the sensitive variable and combined by minimizing a cross-
entropy criterion so as to find the best labeling strategy. With these two
key ideas, we successfully increase the performance of Template Attacks
on artificially desynchronized traces and signals from a jitter-protected
implementation.

Keywords: Side-channel analysis · Time-frequency analysis · Wavelet
Scattering Transforms · Machine learning · Ensemble methods ·
Template Attack

1 Introduction

The signal analysis of current consumption and electromagnetic radiations
(EM) from electronic components can leak compromising information. A whole
research area and an industry have been developed around the task of assessing
the security of electronic devices. Since the first attacks, the countermeasures

Univ. Grenoble Alpes, CNRS, Grenoble INP—Institute of Engineering Univ. Grenoble
Alpes.

c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 71–89, 2021.
https://doi.org/10.1007/978-3-030-68773-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_4

72 G. Destouet et al.

and conversely the attacks have been constantly improved in order to cut the
leak of sensitive information to potential eavesdropper. In the community of
side-channel analysis (SCA), profiled-attacks make use of open-samples so as to
derive an optimal strategy to retrieve information on similar devices.

These attacks are critical when cryptographic algorithms are involved. It
has been shown with the first Template Attacks [1], known in machine learning
as Quadratic Discriminant Analysis (QDA) [2], that cryptographic keys can be
recovered by training a QDA on traces acquired during an algorithm execution.
From a machine learning perspective, the attacker would like to maximize his
chance to retrieve the right cryptographic key, or at least to lower the time-cost
of a brute force attack by ordering potential keys according to their likelihood.
He would have to choose a classification model that links signals with a sensitive
information depending on the key, and to train this classifier on the open-sample
with the hope that the model will generalize well on other devices with unknown
keys. The training requires a search for parameters of the classifier, e.g. covari-
ances matrices and means in the case of a QDA, or weights for neural networks.
This search is usually driven by optimizing a criterion that evaluates the per-
formance of the classifier and can be helped by any prior information about
the device (i.e the physical phenomena involved, a leakage model, etc.) which
constraints the space of parameters or structurally modifies how the criterion is
evaluated.

Given a classification model, we are interested in ways of increasing the per-
formance of attacks by injecting prior information either during preprocessing
with time-frequency analyses or during classification.

The main motivation for pushing time-frequency preprocessing is to con-
sider bases of analysis in which traces are represented in terms of elementary
signals whose characteristics are closer to emanations from physical phenom-
ena. The usual raw temporal representation from the acquisition phase, i.e the
projection of the analogous signal on a dirac basis, is inconsistent with the dura-
tion of transients in electric currents. In the case of SCA, we do not know a
priori neither what form the signals leaking sensitive information have, nor at
which time scales the sensitive variable are manipulated. However we know that
the physical processes involved are non-stationary and lasting in time, e.g. the
current consumption of a CMOS during a switch. Thus it seems reasonable to
analyze signals with a basis of functions which at least respect these properties.
Decomposing traces into elementary signals is an intuitive process, it is usually
performed in signals realignment by intercorrelating traces with selected pat-
terns. This procedure is a projection on a basis composed of translated versions
of these patterns and is a particular case of time-frequency analysis by using a
custom basis of functions. But this usually needs a know-how and it becomes dif-
ficult to select patterns in deformed and translated traces from jitter-protected
implementation.

In order to improve the performance of profiled attacks, most recent works
have been comparing different machine learning methods for the classifica-
tion of traces in SCA but only few of them have considered time-frequency
preprocessing. Historically Templates attacks from [1] fit multivariate Gaussian

Wavelet Scattering Transform and Ensemble Methods 73

distributions to clusters of fixed temporal points of interest. With the introduc-
tion of neural networks, most deep learning based works such as [3–5] presented
networks trained on temporal representations, with the exception of the paper
[6] in which a convolutional neural network is trained on 2D spectrograms. Other
methods such as [7] make use of histograms of amplitudes of temporal points in
order to characterize patterns for realignment and attacks. This method requires
a correct filtering of signals since the presence of a low frequency noise can pro-
duce a shift in histograms and do not take into account deformations of pat-
terns. It has been early shown by [8] that EM signals of various cryptographic
implementations can be analyzed (by-hand) in the Fourier domain and differen-
tial electromagnetic attacks (DEMA) can be successfully carried with carefully
chosen frequency bands. Non-profiled attacks, which usually need a theoretical
leakage model so as to replace the profiling phase, have proven efficiency when
considering time-frequency representation. The spectrogram representation used
in Differential Frequency Analysis in [9–11] transposes Differential Power analy-
sis in the time-frequency domain: these works showed that sensitive information
is more easily retrieved by decomposing traces into temporally localized Fourier
atoms. Discrete wavelet transform has been used in [12] for compressing traces
and improving DPA attacks with synchronized traces. The authors of [13] used
it to realign traces with a simulated annealing method. The work of [14] and [15]
improved it by providing more efficient methods inspired by speech recognition
methods and image analysis. However, the main difficulties with spectrogram
and wavelet transform are their instability respectively under small deformation
and translation.

The first idea of this paper is to use the wavelet scattering transform by
Mallat in [16,17] to tackle these issues. This transform maps signals in a time-
frequency space, stable under small time-shifts and deformations. This prepro-
cessing provides an in-depth analysis of signals while being formally established
to address these problems.

Side-channel attacks also depend on the classification goal we fixed for the
classifier. Generally, it is not clear how a sensitive variable from a cryptographic
algorithm leaks into traces and if the classifier is able to recover it.

Most works in SCA usually consider only one specific leakage model, histor-
ically the Hamming weight of sensitive variables or the variable itself. However
it is known that bits are actually leaking dissymmetrically, suggesting that the
leak is of complex nature, for example Suzuki et al. in [18] proposed leakage mod-
els that consider operations on bits in CMOS logic circuits to explain biases in
power consumption. Schindler et al. in [19] make a linear regression of the leakage
model by assuming that the deterministic part of signals can be approximated
by a weighted sum of a basis of functions defined on the algorithm variables.
More generally the leakage is an unknown function of the manipulated sensitive
variables.

Consequently, the second idea is to act on the goal we fixed for the classifier:
we propose to target partitions of the sensitive information in order to find the
best strategy of attack. By combining clues retrieved on different partitions,

74 G. Destouet et al.

we can reduce the number of likely values and recover the sensitive variable.
The attack becomes less dependent to a specific leakage model while giving
information about how subsets of values are leaking in traces. This involves
combining probabilities from classifiers and refers to Ensemble method [20] in
machine learning.

Contribution

First, we propose to use the Wavelet Scattering Transform as preprocessing so as
to provide a stable representation for analyzing misaligned and deformed signals,
to the best of our knowledge this transform has not been used before in SCA.
Then we develop a combination procedure of classifiers trained on partitions of
the sensitive variable’s values so as to compare and find efficient strategies of
attacks.

These two approaches can be used with any type of classifiers, whose relations
with traces can be arbitrary complex. We demonstrate that these steps success-
fully increase the performance of Template Attacks on the ASCAD database and
on a jitter-protected SoC.

The paper is organized as follow: in Sect. 2 the problem of profiled side-
channel attacks is reminded, the Wavelet Scattering Transform and its prop-
erties are introduced for preprocessing traces in SCA in Sect. 3, a combination
procedure for finding the leakage model is developed Sect. 4 and finally attack
results on ASCAD and traces from jitter-protected SoC are presented in Sect. 5.

2 Problem Statement

A procedure g is computing a sensitive variable Z with a plaintext E and a key
K. During its execution, the procedure is leaking signals X, or traces, e.g. EM
or current consumption signals. Traces have a finite size noted d, thus X ∈ R

d.
From the perspective of the attacker, all of these variables are considered as
random and written uppercase. In the following, calligraphic letters such as X
refers to the set of possible values of the random variable X. Realizations of
random variable is noted with lowercase letter, thus x is a realization of X.

The procedure g(. ,K) : E → Z is assumed to be bijective and maps the set
of plaintexts E to the set of sensitive variables Z. A profiled attack consists of
training a classifier y on signals X to recover Z, which gives clues on K given
E. The training requires a set of observations labelized with their associated
sensitive variable, we notes Dt the set of data acquired from the open-sample
which consists of tuple Dt ={(x1, z1), ... , (xNt

, zNt
)} with Nt being the size of the

training set. An attack set Da ={x1, ... , xNa
} of size Na has a fixed key k∗ and

allows us to evaluate the performance of the classifier. Here it is assumed that
plaintexts are always known, thus for each realization (xi, zi) ∈ Dt or xi ∈ Da

a plaintext ei is associated. The classifier y is trained on Dt in order to have
an approximation of P(Z|X). During an attack, we can get an estimation of the
target key k∗ with a realization xi ∈ Da:

P(K =k|X =xi) = P(Z =g(ei, k)|X =xi) (1)

Wavelet Scattering Transform and Ensemble Methods 75

However, if the quality of estimations are too poor, one-shot estimation of the
key k is in general not enough, i.e given an observation xi, k∗ �= argmaxk̂ P(K =
k̂|X = xi). Thus the attacker has to use many observations to obtain better
predictions:

P(K =k|Da) =
Na∏

i=1

P(Z =g(ei, k)|X =xi) (2)

After sorting {P(K = kj |Da)}kj∈K in decreasing order, the rank is defined
as the position of P(K = k∗|Da) in the sorted list P(K = ki|Da) > ... > P(K =
kj |Da). In the following, the guessing entropy [21] is estimated by taking the
empirical mean of rank values obtained for many attacks. Note that the less
attack data Na is required to have a low rank, the better is the attack.

The attack involves the task of estimating the posterior P(Z|X) or the like-
lihood P(X|Z) from the data. It requires a preprocessing of the observed traces
X and a statistical learning algorithm to learn P(Z|X).

3 Time-Frequency Analysis with the Wavelet Scattering
Transform

In this section, we will present common Time-Frequency transformations used
for preprocessing traces in SCA, their limits in the case of deformed and mis-
aligned signals, and we will introduce the Wavelet Scattering Transform of Mallat
[16,17]. In the following, we assume that the attacker acquired traces in the form
of vectors x ∈ R

d, where d is the number of temporal points.

3.1 Some Time-Frequency Representations

Analysis in a Dirac Basis (i.e the Raw Temporal Representation). The
sampled trace x from the analogous signal xa, x(p)=xa(pT) with T the sampling
period, can be represented as follow, for each time index p we have:

x(p) =
∫

xa(t)δ(t − pT)dt (3)

This is the projection of xa on a Dirac basis {δpT }0≤p≤d−1. The continuous
approximation x̃ of xa can be represented as a sum of weighted Dirac functions:

x̃ =
∑

p

x(p)δpT (4)

This approximation is completely characterized by {x(p)}0≤p≤d−1 which are
assumed to be infinitely concentrated at time pT where Fs =1/T is the sampling
rate. In the following, we equivalently use either the continuous form x̃ or the
vector x to formulate Time-Frequency transformations.

76 G. Destouet et al.

Discrete Fourier Transform. With the canonical inner product on C
d, the

Discrete Fourier Transform is the projection on periodic signals {e2iπk/d}0≤k≤d−1

and reverses the analysis made in a Dirac basis, i.e instead of considering x as a
sum of time-concentrated signals, the discrete Fourier Transform interprets x as
being composed of periodic signals with an infinitely small frequency bandwidth.
If we note x̂ the Discrete Fourier Transform of x we have for each time index p
and frequency k:

x̂(k) = (x|e2iπk/d) =
∑

p

x(p)e−2iπkp/d (5)

x(p) =
1
d

∑

k

(x|e2iπk/d)e2iπkp/d =
1
d

∑

k

x̂(k)e2iπkp/d (6)

Dirac and Fourier bases interpret x as being composed of signals concen-
trated respectively in time and in frequency. However, the sensitive information
in SCA’s traces are contained in transient patterns, which are not well captured
by these two transforms. Thus we would like to use this prior knowledge and to
interpret x with elementary signals of finite duration and frequency bandwidth.

Short Time Fourier Transform. Time-frequency representations such
as the short-time Fourier transform (STFT) analyze signals with a basis
{wme2iπp/d}m,p composed of modulated versions of a window function wm(n)=
w(n−m), where n is the time index and m a translation coefficient. The temporal
scale and the frequency bandwidth of the window function w give the precision
of analysis in the time-frequency space. It concentrates the signal energy into
time-frequency boxes of fix area a(t, f)=σtσf where σt and σf are the temporal
and frequency supports of w and remain constant (see Fig. 2). Gabor transforms
[22] optimize the concentration of the signal energy into time-frequency boxes
by using Gaussian windows.

Wavelet Transform. The basis used in Wavelet Transform (WT) {ψu,s}u,s

is composed of scaled and translated versions ψu,s(t) = 1√
s
ψ(t−u

s) of a mother
wavelet ψ, where respectively u and s are translation and dilation coefficients. In
order to compute the projection over all translation coefficients u and for a given
dilation coefficient s, the signal x̃ is convoluted with ψs = 1√

s
ψ(t

s). To facilitate
notation, we formulate the projection on the continuous approximation x̃:

(x̃|ψu,s) =
∫

x̃(t)
1√
s
ψ∗(

t − u

s
)dt = x̃ ∗ ψs(u) (7)

where x∗ is the complex conjugate of x, x(t) = x∗(−t), ∗ is the convolutional
operator and the inner product is defined on L2(C). In order to pave the time-
frequency plane, the dilation coefficient has to be varied and is usually sampled
on a dyadic scale s=2−j with j ∈ N. If we note f0 the center frequency of the

Wavelet Scattering Transform and Ensemble Methods 77

mother wavelet, the center frequency of its j-th dilated version is approximately
at f0/2j . This is due to the scaling property of the Fourier Transform:

FT (ψs)(f) =
√

sFT (ψ)(sf) (8)

where FT is the Fourier Transform. When changing the dilation coefficient s
the bandwidth σf inversely varies with the temporal support σt, thus allowing
variations of the shape of the area a(t, f)=σt(t)σf (f) across the time-frequency
plane.

Translation Invariance and Stability Under Diffeomorphism. In the
case of SCA, where a device can produce distorted traces and misalignment due
to countermeasures such as jitter effects, we claim that a good representation
Φx of the traces x should be stable under small translation and deformation.

Let x1, x2 be two acquired traces, we say that x1 is a deformed version of
x2 if there exists a diffeomorphism τ(t) (an invertible transformation) such that
x1(t)=x2(τ(t)).

A practical example in SCA is given Fig. 1 where two patterns from EM
signals are plotted. Although both signals contain the same cryptographic infor-
mation, we notice a translation of the temporal and frequency structures. In
fact, the transformations presented above are unstable for temporal translation
δτ > σt/2 and frequency variation δf > σf/2, where σt and σf are respectively
the temporal and frequency widths covered by an element of a basis. In Fig. 2,
we have illustrated the time-frequency space coverage of the bases used in WT
and STFT. WT is robust to small deformations but not translation invariant,
while the spectrogram is translation invariant but not stable by deformations.

Identifying a diffeomorphism between traces is a difficult task and we better
find an operator Φ that makes the two signals “collide” in the sense that Φx ≈
ΦLτx where Lτ denotes the deformation operator induced by the diffeomorphism
τ . According to [16], the operator Φ should be designed with respect to the two
following properties:

– Φ is translation invariant, i.e for c ∈ R and Lcx(t)=x(t − c):

Φx = ΦLcx

– Moreover, Φ is stable by diffeomorphism, i.e it is Lipschitz continuous to the
action of a C2-diffeomorphism τ . For τ ∈ C2(R), Lτx(t) = x(t − τ(t)) and
C ∈ R

+:

‖Φx − ΦLτx‖ ≤ C‖x‖(‖∂τ

∂t
‖∞ + ‖∂2τ

∂t2
‖∞) (9)

Wavelet Scattering transforms proposed in [16] provide these useful mathe-
matical properties we claim relevant to analyze signals in SCA, it will be exten-
sively used in our experiments and are presented hereafter.

78 G. Destouet et al.

0.00 0.25 0.50 0.75 1.00
- 60
- 40
- 20

0
20
40
60

Time

0.005 0.010 0.015 0.020 0.025 0.030
0.00

0.01

0.02

0.03

0.04

0.05

Normalized frequency

Fig. 1. Jitter effect and deformation taken from Jit signals (see Sect. 5.2). Two temporal
patterns are plotted on the top with their associated Fourier Transform on the bottom.
The deformation between these patterns is characterized here by a frequency shift of
some components (e.g. at frequency = 0.026) in the Fourier spectrum.

F
re

qu
en

cy

TimeWavelet
transform

STFT

Fig. 2. Illustration of WT and STFT, the black spot is the frequency component we
would like to capture. Under the action of translation the spot moves horizontally and
under small dilation it moves vertically. Each box is a time-frequency area sized by
each elementary signal of the transform.

3.2 The Wavelet Scattering Transform

In order to have such properties, Mallat proposes in [16,17] cascading continuous
wavelet transforms defined here in continuous form with x ∈ L2(R) , ψ ∈ L2(C)
by:

W [λ]x(u) = x ∗ ψλ =
∫

x(t)
1√
λ

ψ∗(
u − t

λ
)dt (10)

where ∗ is the convolutional operator and ψ is a mother wavelet (a zero mean
function). Each wavelet ψλ parametrized with scales λ is followed by a non-linear
operation | . | and averaged on a time domain of 2J samples with AJx=x ∗ φ2J .
The windowed scattering transform SJ of a signal x over a path p=(λ1, ..., λm)
with λi > 2−J is defined by:

Wavelet Scattering Transform and Ensemble Methods 79

SJ [p]x = |||x ∗ ψλ1 | ∗ ψλ2 |... ∗ ψλm
| ∗ φ2J

= |W [λm] ... |W [λ2] |W [λ1]x||| ∗ φ2J

= AJ |W [λm] ... |W [λ2] |W [λ1]x|||
= AJU [λm] ... U [λ2]U [λ1]x (11)

Fig. 3. A two-level wavelet scattering transform

With U [λ]x = |W [λ]x| = |x ∗ ψλ| and AJx = x ∗ φ2J . In practice the windowed
scattering transform is calculated on a path subset ΩJ,m for which a maximum
length m of paths p ∈ ΩJ,m is set and with scales λ > 2−J , meaning that
the Wavelet Transform only captures frequencies superior than 2−J and the
remaining spectral energy will be captured by φ2J . An example of scattering is
displayed on Fig. 3.

While wavelet transforms provide stability under the action of small diffeo-
morphism, the nonlinear operation and the integration over time give translation
invariance. Cascading wavelet transforms allows to recover high frequencies lost
when averaging the absolute values of coefficients of previous wavelet transforms.

Depending on the spectral richness of signals we use wavelets on dyadic scales
2−j , 0≤j<J or on intermediate scales 2−j/Q, 0≤j<JQ where Q defines the number
of wavelets used by octave of frequencies. In the following, the Wavelet Scattering
Transform are implemented with the python software proposed in [23]. Morlet
wavelets are used for the first and second levels, and the whole transform is
characterized by three parameters: the scale 2J of averaging J ≥ 2, J ∈ N,
the number of wavelets by octave Q ≥ 1, Q ∈ N and the number of levels of
the scattering transform m ∈ {1, 2}. To tune such parameters, we propose the
following rules of thumb: choose J proportionally with the amount of translation
(i.e jitter) present in signals, Q in proportion to the desired discrimination at
high frequency. If J is set too high, a second level m=2 is required to retrieve the
information lost.

80 G. Destouet et al.

4 A Combination Procedure for Ensemble Methods
in SCA

For the task of classification in SCA, one label is usually considered to provide
an estimation of a sensitive variable Z. Here we focus on the space of targeted
class values with multiple classifiers trained on L different labelings {Cl}1≤l≤L,
each labeling giving clues on the sensitive variable z with a probability P(Z =
z|Cl =cl).

Classification of the sensitive variables considered in SCA lends itself well to
partition our target space Z ∈ Z in complementary regions. We denote βl the
partition function that associates each z to a label cl ∈ Cl, such that βl(z)=cl and
β(z)=(c1, ..., cL)=c ∈ C. For example, if z is the byte 0x12 and β is composed
of labelings respectively over Z8, Hamming weight and the first big-endian bit
value, then β(0x12)=(0x12, 2, 0).

Here we consider the labelings Cl to be conditionally independent and note
Θ the global classifier over all Cl we have: P(C = c|X = x,Θ) =

∏
l P(Cl =

cl|X = x,Θ). For clarity’s sake, we will drop the notation for the conditional
dependence over the model and keep a simplified notation P(C = c|X = x)
instead of P(C =c|X =x,Θ).

We assume here that β is bijective. Given a signal x, an estimation for z is
given by:

log(P(Z =z|X =x)) = log(P(C =β(z)|X =x)) (12)

=
∑

l

logP(Cl =βl(z)|X =x)) (13)

A set of L classifiers {y1, . . . , yL} are trained accordingly to partitions βl and
give predictions P(Cl = βl(z)|X = x). Once each classifier is trained, their pre-
dictions can be naively summed, in which case a soft voting (SV) is performed;
or a classifier-specific weight can be applied to each classifier depending on its
performance, that is a weighted soft voting (WSV). Remark that SV is a partic-
ular case of WSV where weights are all equal. If we note yl(z, x) = log(P(Cl =
βl(z)|X = x)) the vote accorded to the classifier l for the value z of Z, and
y(z, x)=

∑
l wlyl(z, x) the weighted vote with wl ∈ R. We can iteratively find a

weight vector w ∈ R
L such that the following cross-entropy loss is minimized:

Lwsv(X,Z) = − 1
Nt

∑

(xi,zi)∈Dt

P(Z =zi)y(zi, xi) (14)

= − 1
Nt

∑

(xi,zi)∈Dt

∑

l

wlP(Z =zi) log(P(Cl =βl(zi)|x=xi)) (15)

To illustrate our approach, we consider the case where signals x are Gaus-
sian distributed with the same covariance matrix. This is equivalent to choosing
Linear Discriminant Analysis as classifiers [2], we have:

yl(z, x)=log(
1
R

e(x−μl(z))
tΣ(x−μl(z)))

Wavelet Scattering Transform and Ensemble Methods 81

With R the normalization factor, μl(z) the mean value of signals for the labeling
l and the label value z, and Σ the inverse covariance matrix. We assume a
balanced dataset, i.e P(Z =zi) = p is constant, and constraint weights such that∑

l wl =1, we get:

Lwsv(X,Z) =− p

Nt

∑

(xi,zi)∈D

∑

l

wl

(
(xi−μl(zi))tΣ(xi−μl(zi))−log(R)

)
(16)

=− p

Nt

∑

(xi,zi)∈D

(
(xi−μ∗(zi))tΣ(xi−μ∗(zi))+cμ(zi)−log(R)

)
(17)

∝ log(
∏

(xi,zi)∈D

1
R

e(−(xi−μ∗(zi))
tΣ(xi−μ∗(zi)))) (18)

where μ∗ =
∑

l wlμl and cμ =
∑

l wlμ
t
lΣμl −

∑
l,k wlwkμt

lΣμk that depends on
estimated means μl, on weights wl and on the inverse covariance matrix Σ. In
the Gaussian distributed case with a fixed covariance matrix, we can see that the
minimization of Lwsv(X,Z) is equivalent to minimizing (xi−

∑
l wlμl(zi))tΣ(xi−∑

l wlμl(zi)) which is a simple linear regression with parameters w.
Our combination procedure can be seen as a generalization of the Linear

Regression Analysis of Schindler et al. [19] where no assumption is made on
the linearity of the leakage model. Arbitrary complex classifiers can be used
to draw relations between signals and labels and the relevance of such relation
can be evaluated by minimizing the cross-entropy criterion, i.e classifiers with
the highest weights are the most relevant. To obtain the overall estimation,
log probabilities are linearly summed according to a simple Bayes rule, in case
classifiers output scores, a logistic regression layer [2] can be added and trained
to get probabilities.

As remarked Zhou in [20, Chap 4.3.5.2] the global score obtained after min-
imization can be worse than considering the best classifier in the model. This
procedure is interesting when no knowledge about the leakage model is avail-
able and can be iteratively improved by removing bad classifiers, i.e when their
weights are too low.

In practice, classifiers are individually trained on their associated labeling
Cl and their predictions are combined after minimizing (15) with the weight
vector w.

5 Experiments

In this section, we integrate the two previous methods presented Sects. 3 and
4 to perform attacks on desynchronized traces from ASCAD and signals from
jitter-protected SoC. Attack results are compared with other preprocessings:
raw temporal signals and spectrogram of traces. We also study the effect of
optimizing the weights of the combination procedure (15) on attack results.

82 G. Destouet et al.

5.1 Method Used

We propose the method displayed on Fig. 4. First, traces are preprocessed with
the Wavelet Scattering Transform (WST), then a PCA is applied to reduce the
dimension and finally QDA classifiers trained on predefined labelings Cl outputs
predictions which are merged with a Weighted Soft Voting (WSV) (15).

The set of classifiers is trained on canonical partitions, i.e identity on z,
Hamming weight and bit values:

{Id : z → z, HW : z → HW(z), Biti : z → (z � i) & 1 ∀i ∈ {0, 1, . . . , 7}}

The optimal weights of the combination procedure are found by iterating a
state of the art gradient descent algorithm AMSGrad [24].

WST PCA

QDA on Z

QDA on HW

QDA on bit0
WSV

QDA on bit7

Our model

PCA/QDA

Fig. 4. Illustration of the global method in black with the Wavelet Scattering Trans-
form (WST) and the Weighted Soft Voting (WSV) from Sects. 3 and 4. We also depicted
in green a standard Template Attack with PCA. We replace the WST with the modulus
of a Short-Time Fourier Transform (see Sect. 3.1) when comparing with Spectrogram
preprocessing.

5.2 Datasets

The ASCAD dataset [5] is composed of EM traces emitted from a device running
a masked AES implementation, an artificial jitter is simulated by randomly
translating traces with an uniformly distributed random variable δN ∼ U{0, N}.
Three sets of traces are available, the first one ASCAD0 is composed of aligned
traces while ASCAD50 and ASCAD100 are desynchronized respectively with δ50
and δ100. We tested our model on all three sets but for purpose of clarity we
present results with δ100 and δ0. The targets are the outputs of the third SBox
processing of the first round of AES. Each set consists of 60, 000 traces of 700
points.

The second dataset noted Jit is composed of traces acquired from an AES
hardware implementation on a modern secure smartcard with a strong jitter.
The Sboxes are processed sequentially and all traces start with the processing of
the first byte while the rest of the SBox processing is misaligned. In total 160, 000
traces of 8, 192 points were acquired, 150, 000 (or 75, 000) traces have random

Wavelet Scattering Transform and Ensemble Methods 83

keys and are used for the training set. 10, 000 traces with a fix key are used for
the attack set. The targets are the output from the second SBox processing. An
example of deformations and translation in Jit signals is displayed on Fig. 1.

5.3 Choosing the Parameters

Hyperparameters for the preprocessing with Wavelet Scattering Transform and
Spectrogram are chosen accordingly to the dataset and attack results.

For ASCAD, we used 54, 000 traces for the training set and 6,000 traces for
the attack set. For the scattering transform, traces are first upsampled to 1, 024
points, we fixed Q = 1 since a fine resolution between high frequency bands is not
required. We obtained good results with time scales J = 3 and J = 7, and limited
the scattering transform to one layer m = 1. For Spectrogram preprocessing,
traces are also upsampled to 1, 024. The best result in terms of guessing entropy
is obtained with a sliding window of 128 points which corresponds to a time
scale of 88 in the original traces, the overlap was set to 64.

For Jit, we considered a restrained dataset of 75, 000 traces since spectrogram
and raw representation had too many features to fit the whole dataset in memory
and to perform the PCA based dimension reduction. We managed to fit traces
preprocessed with WST in memory when considering the whole training set of
size 150, 000. For WST, we expected the Jit dataset to have a strong jitter so we
set the following parameters J = 10, Q = 8, m = 2 which gave preprocessed traces
of size 2, 992. For spectrogram, we used a sliding window of size 1, 024 with an
overlap of 512 which gave spectrogram of 7, 680 features.

For each dataset we limited the PCA to 50 components which corresponds to
the number of components used for SoA template attack combined with a PCA
on aligned temporal traces. When minimizing the loss function (15), we stopped
the gradient descent after 200 iterations.

5.4 Results

In order to evaluate our model, we performed our attack on 3 folds. For each fold
an intermediate guessing entropy (GE) measure [21] is calculated by averaging
100 rank curves obtained by shuffling the order of traces in Eq. (2). The final
guessing entropy is obtained by averaging the guessing entropy of the three folds.

In the following we use the following notations: SV and WSV (15) when
respectively a soft voting and weighted soft voting is applied with all the classi-
fiers, SumBits a soft voting with the classifiers on bits, Z when considering only
the classification on the byte and HW with the hamming weight. “Temp”,“Spec”
and “Scat” respectively denote the raw temporal representation, the Spectro-
gram preprocessing and the Wavelet Scattering Transform. Attack results on
SumBits, Z, HW and SV are used to characterize the performance of each pre-
processing. The rank gap between SV and WSV indicates the efficiency of the
combination procedure (15) for merging prediction of differently performing clas-
sifiers. We displayed on Table 1, the weights obtained after optimizing the WSV

84 G. Destouet et al.

and the number of attack traces required to have a guessing entropy of 40 (NGE40)
when considering classifier individually (Z and HW), with SumBits, SV and
WSV.

Results for ASCAD are displayed Fig. 5 and on Table 1. When no desynchro-
nization is present, preprocessings with a small time scale of analysis perform the
best: attack results on SumBits are almost identical when considering WST with
J = 3, spectrograms and raw temporal traces; the same WST performs slightly
better for Z and SV. Intriguingly the effect of desynchronization on attack results
in ASCAD100 strongly varies with labelings. The large scale WST with J = 7 per-
forms the best on Z and SV and shows its robustness to desynchronization; the
attack on SumBits is better with spectograms and might be due to the overlap
between frames of analysis. The combination procedure resulted differently: it
decreased the rank of SV of 2, 000 with spectograms preprocessing and of only
5 with WST. Globally, as expected the WSV is better than SV and makes all
models converge to rank 1 except for temporal attacks on ASCAD100.

In presence of a strong jitter and deformations in Jit, spectrogram and tem-
poral attacks indubitably fail for any classifier while preprocessing with WST
provides better attack results and becomes possible on SumBits (see Fig. 6 and
Table 1). On Jit, the WSV performed well and decreased the rank of SV for
WST of approximately 1, 600.

The weights of the WSV seem to be correlated with the guessing entropy of
classifiers, e.g. when considering temporal attacks we see that weights on bits
are higher than weights on H or Z. On ASCAD, the weights for the WST seem
to be more distributed among classifiers and could explain why the weighted
soft voting did not converged as well as for Spectrogram preprocessing where the
classifier over Z was heavily penalized. In other words, the iterative optimization
of WSV seems to be facilitated with classifiers of unbalanced performance. We
also notice the fact that bits are leaking dissymmetrically as proposed by Suzuki
et al. in [18], e.g. on ASCAD the classifier on bit0 has a higher weight than
the average on bits (SumBits), while on Jit the weight on bit7 is higher when
considering successful models (Scattering with Jit 75k and 150k).

From our results on these datasets and given QDAs as classification mod-
els, Z and HW leakage models are globally disadvantaged when looking at the
guessing entropy and the weights associated. The WSV has approximated a
leakage model that relies more on individual bits. The difference of performance
between Sumbits, Z and HW is also explained by the number of samples required
to estimate the parameters of QDAs, which makes attacks on individual bits
more stable since less parameters are required. Thus a trade-off has to be made
on the number of components for the PCA: while a high number of compo-
nents increases the number of parameters to estimate, the attack results can
be improved by selecting more eigenvectors with lower eigenvalues and better
discriminating power.

Wavelet Scattering Transform and Ensemble Methods 85

100 101 102 103
0

20

40

60

80

100

120

N traces

G
E

temp desync 0
temp desync 100
scat desync 0 J=3 Q=1
scat desync 100 J=3 Q=1
scat desync 0 J=7 Q=1
scat desync 100 J=7 Q=1
spec desync 0 J=7
spec desync 100 J=7

100 101 102 103
0

20

40

60

80

100

120

N traces

G
E

100 101 102 103
0

20

40

60

80

100

120

N traces

G
E

100 101 102 103
0

20

40

60

80

100

120

N traces

G
E

Fig. 5. Guessing entropy as a function of the number of attack traces on ASCAD with
classifiers trained on Z, SumBits, with naive combination of prediction (SV) and with
WSV.

5.5 Visualizing Leakages

We previously showed results in terms of guessing entropy. Now, one could won-
der how does the leakage look like in traces from the point of view of the QDA
classifiers. We propose here an easy computation of a SNR score on the pre-
processed traces by taking into account the covariances and means estimated
during training. It is also possible to compute a SNR score without consider-
ing classifiers with an analysis of variance (ANOVA). For each classifier l we
compute a SNR score in the subspace induced by the PCA with a projection
P ∈ R

d×p, where p is the number of components chosen for the PCA and d
is the original dimension.1 Each QDA classifier is defined by means μl,i ∈ R

p

and covariances matrices Σl,i ∈ R
p×p for each label values cl,i, ∀i. We note

SNRs
l ∈ R

p and SNRo
l ∈ R

d respectively the SNR in the subspace and in the
original space before the PCA, we have:

SNRs
l [r] =

Vari

[
μl,i[r]

]

Ei

[
Diag(Σl,i)[r]

] , r = 1, . . . , p

SNRo
l = (P SNRs

l).ˆ2 (19)

where .ˆ defines the entry-wise power. This score (19) gives some indication on
the temporal and frequency aspects of the leakage. We computed some visual-
1 After preprocessing, wavelet scattering transform and spectrogram representations

are vectorized before the PCA.

86 G. Destouet et al.

0 2500 5000 7500 10000
0

20

40

60

80

100

120

N traces

G
E

temp N_t=75k
scat N_t=75k
scat N_t=150k
spec N_t=75k

0 2500 5000 7500 10000
0

20

40

60

80

100

120

N traces

G
E

0 2500 5000 7500 10000
0

20

40

60

80

100

120

N traces

G
E

0 2500 5000 7500 10000
0

20

40

60

80

100

120

N traces

G
E

Fig. 6. Guessing entropy as a function of the number of attack traces on Jit with
classifiers for Z, SumBits, with naive combination of prediction (SV) and with WSV.
Nt is the number of traces used for training.

Table 1. For each preprocessing: number of traces for a guessing entropy of 40 (NGE40)
when considering individual classifiers with labeling over Z and H, with a soft voting
over bits noted SumBits, with a overall Soft Voting SV and finally with a Weighted
Soft Voting. We also indicated the weights of the classifiers obtained after optimizing
the WSV for classifiers over Z, H, some individual bits and their average for SumBits.
For ASCAD100: we displayed the results obtained with a WST with J= 7 and Q = 1.
For Jit: results with training on 75, 000 and 150, 000 traces.

Dataset Preprocessing Z H Bit0 Bit4 Bit7 SumBits SV WSV

ASCAD100 Temp w <0.01 <0.01 0.29 0.18 0.19 0.19

NGE40 ∞ ∞ – – – 485 ∞ 1465

Spec w 0.02 0.22 0.39 0.31 0.32 0.31

NGE40 3527 3392 – – – 57 2126 242

Scat w 0.29 0.15 0.32 0.23 0.21 0.20

NGE40 676 675 – – – 70 428 423

Jit 75k Temp w <0.01 0.15 0.34 0.43 0.34 0.39

NGE40 ∞ ∞ – – – ∞ ∞ ∞
Spec w 0.08 0.17 0.20 0.27 0.25 0.24

NGE40 ∞ ∞ – – – ∞ ∞ ∞
Scat w 0.19 0.18 0.42 0.48 0.48 0.47

NGE40 9371 8851 – – – 1561 6102 4513

Jit 150k Scat w 0.11 0.12 0.41 0.41 0.48 0.45

NGE40 7837 8023 – – – 884 3770 2149

Wavelet Scattering Transform and Ensemble Methods 87

izations of this score for attacks on Jit respectively in Fig. 7. Remark that these
analyses can be perturbed by the subspace induced by the PCA’s eigenvectors.
When the SNR is high we suppose that it gives some indication about how
signals are leaking information. For SumBits we summed the SNR scores.

9.2e- 02, 1.1e- 02

1.0e- 01, 3.4e- 04

1.0e- 01, 1.1e- 02

1.0e- 01, 2.2e- 02

1.1e- 01, 3.4e- 04

1.1e- 01, 5.5e- 03

1.1e- 01, 1.1e- 02

1.1e- 01, 2.2e- 02

1.8e- 01, 5.5e- 03

1.8e- 01, 1.1e- 02

m=2

Fr
eq

ue
nc

y
pa

th

0 2000 4000 6000 8000
8.1e- 03

8.8e- 03

9.6e- 03

1.0e- 02

1.1e- 02

1.8e- 02

1.9e- 02

2.3e- 02

2.5e- 02

3.2e- 02

m=1

Time index

Fr
eq

ue
nc

y

9.2e- 02, 1.1e- 02

1.0e- 01, 3.4e- 04

1.0e- 01, 1.1e- 02

1.0e- 01, 2.2e- 02

1.1e- 01, 5.5e- 03

1.1e- 01, 1.1e- 02

1.1e- 01, 2.2e- 02

1.3e- 01, 2.2e- 02

1.4e- 01, 1.1e- 02

1.7e- 01, 1.1e- 02

m=2

Fr
eq

ue
nc

y
pa

th

0 2000 4000 6000 8000
0

8.8e- 03

1.0e- 02

1.1e- 02

1.2e- 02

1.4e- 02

1.5e- 02

1.9e- 02

2.3e- 02

3.2e- 02

m=1

Time index

Fr
eq

ue
nc

y

Fig. 7. Leakage visualization on Jit. On top the second level of the WST. Below the
first level of the WST. We selected the top 10 frequency bands (and frequency paths
for the second level) that contains the highest values of SNR. Amplitudes are scaled
between 0 and 1.

On Jit Fig. 7, the SNR visualization with the scattering transform positions
the leakage around time index 2,000 when considering SumBits and Z. The two-
level scattering transform has proven useful, the SNR score indicates for bits
that the frequency band 1.0e-01 is leaking. For Z the 1.1e0-1 frequency path
gives clues about a leakage around time index 8,000, which is also shown but
more discretely at the first level for z or for both level with SumBits.

6 Conclusion

Independently of choosing a classification model, we proposed two ways of inject-
ing prior information in preprocessing and classification in order to easily increase
the performance of SCA.

First, we address the problem of desynchronization and deformation generally
encountered in side-channel analysis by using Wavelet Scattering Transform as a
preprocessing step. This transform maps traces in a time-frequency space stable
under translation and small deformation. In contrast with other time-frequency
representations, such as Spectrogram and Wavelet Transform, it provides robust
representations which are easily implemented and configured according to jitter
effects present in traces and their spectral richness.

88 G. Destouet et al.

Secondly, based on the fact that in general the leakage model is an unknown
function of the sensitive variable, we proposed a way of resolving this by consider-
ing various labelings of the sensitive variable. For that, we train classifiers on dif-
ferent partitions of the sensitive variable‘s values and combine their predictions.
Our combination method involves finding a weight vector which assesses the
contribution of each classifier in the global prediction. To this end, the weights
are found by iteratively minimizing a cross-entropy criterion.

These two propositions have been evaluated by integrating them in a
new attack method, which successfully increased the performance of Template
Attacks on artificially desynchronized traces and signals from a jitter-protected
implementation. The wavelet scattering transform improves the performance
of Template Attacks when jitter effects and distortion are present in traces.
Although, we restricted ourself to Template Attacks as classification models, this
preprocessing could be particularly interesting when followed by more complex
classifiers, e.g. a convolutional neural network. We argue that it could reduce
the amount of data required to normally make any classifier robust under small
translation and deformations. The experimental results showed that the com-
bination procedure makes attacks successful as long as some classifiers manage
to get information from partitions of the sensitive variable. While specifying a
fixed leakage model constraints the classifier to a given goal, the proposed com-
bination procedure allows an attacker to test various leakage models and quickly
evaluate which ones he should focus on.

References

1. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

2. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

3. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

4. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

5. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. Cryp-
tology ePrint Archive, Report 2018/053 (2018)

6. Yang, G., Li, H., Ming, J., Zhou, Y.: Convolutional neural network based side-
channel attacks in time-frequency representations. In: Bilgin, B., Fischer, J.-B.
(eds.) CARDIS 2018. LNCS, vol. 11389, pp. 1–17. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-15462-2 1

https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-030-15462-2_1
https://doi.org/10.1007/978-3-030-15462-2_1

Wavelet Scattering Transform and Ensemble Methods 89

7. Thiebeauld, H., Gagnerot, G., Wurcker, A., Clavier, C.: SCATTER: a new dimen-
sion in side-channel. In: Fan, J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol.
10815, pp. 135–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89641-0 8

8. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 4

9. Plos, T., Hutter, M., Feldhofer, M.: Evaluation of side-channel preprocessing tech-
niques on cryptographic-enabled HF and UHF RFID-tag prototypes. In: Workshop
on RFID Security, pp. 114–127 (2008)

10. Gebotys, C.H., Ho, S., Tiu, C.C.: EM analysis of Rijndael and ECC on a wireless
Java-based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
250–264. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 19

11. Belgarric, P., et al.: Time-frequency analysis for second-order attacks. In: Francil-
lon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 108–122. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 8

12. Debande, N., Souissi, Y., Aabid, M.A.E., Guilley, S., Danger, J.: Wavelet transform
based pre-processing for side channel analysis. In: 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture Workshops, pp. 32–38 (2012)

13. Charvet, X., Pelletier, H.: Improving the DPA attack using wavelet transform. In:
NIST Physical Security Testing Workshop, vol. 46 (2005)

14. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power
analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol.
6558, pp. 104–119. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19074-2 8

15. Muijrers, R.A., van Woudenberg, J.G.J., Batina, L.: RAM: rapid alignment
method. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 266–282. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-27257-8 17

16. Mallat, S.: Group invariant scattering. Commun. Pure Appl. Math. 65(10), 1331–
1398 (2012)

17. Andén, J., Mallat, S.: Deep scattering spectrum. IEEE Trans. Signal Process.
62(16), 4114–4128 (2014)

18. Suzuki, D., Saeki, M., Ichikawa, T.: DPA leakage models for CMOS logic circuits.
In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 366–382. Springer,
Heidelberg (2005). https://doi.org/10.1007/11545262 27

19. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

20. Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms. Chapman and
Hall/CRC, Boca Raton (2012)

21. Massey, J.L.: Guessing and entropy. In: Proceedings of 1994 IEEE International
Symposium on Information Theory, p. 204. IEEE (1994)

22. Gabor, D.: Theory of communication. Part 1: the analysis of information. J. Inst.
Electr. Eng.-Part III Radio Commun. Eng. 93(26), 429–441 (1946)

23. Andreux, M., et al.: Kymatio: scattering transforms in Python. CoRR,
abs/1812.11214 (2018)

24. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. In: 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, 30 April–3 May 2018, Conference Track Proceedings (2018)

https://doi.org/10.1007/978-3-319-89641-0_8
https://doi.org/10.1007/978-3-319-89641-0_8
https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/11545262_19
https://doi.org/10.1007/978-3-319-08302-5_8
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-642-27257-8_17
https://doi.org/10.1007/11545262_27
https://doi.org/10.1007/11545262_3

Scatter: a Missing Case?

Yuanyuan Zhou1,2(B), Sébastien Duval1, and François-Xavier Standaert1

1 UCLouvain, Crypto Group, Louvain-la-Neuve, Belgium
zhou@brightsight.com

2 Brightsight BV, Delft, The Netherlands

Abstract. Scatter is a multivariate transform proposed in combination
with the Chi2 and MIA distinguishers at COSADE 2018. Its primary
motivation is to inherently deal with the misalignment and synchro-
nization issues that may decrease the efficiency of concrete side-channel
attacks. In this paper, we first show empirically that when compared
to natural competitors for first-order multivariate attacks (e.g., exploit-
ing linear regression on-the-fly), it does not bring improvements in the
(simulated and actual) implementation settings studied by its authors.
We then show that the same holds in the higher-order case: in most
practically-relevant settings, Scatter works best when combined with a
combination function mixing the leakage samples in a non-linear man-
ner, bringing it back to a situation where it does not improve standard
distinguishers.

Keywords: Side-channel analysis · Scatter Transform · Shuffling ·
Masking

1 Introduction

Side-channel attacks are an important threat to the security of modern embedded
devices [MOP07]. Masking [CJRR99,GP99] and shuffling [HOM06,VMKS12] are
among the most investigated solutions to mitigate these attacks.

Informally, masking can be viewed as a data randomization which aims at
forcing the adversary to estimate higher-order statistical moments of the leakage
distributions; similarly, shuffling can be viewed as a time randomization which
aims at forcing the adversary to deal with information spread in multivariate dis-
tributions. As a result, evaluating a masked and/or shuffled implementation boils
down to a quest for simple and efficient tools enabling the analysis of higher-order
and multivariate statistical distributions. The literature typically divides such
distinguishers as profiled ones, like Template Attacks (TAs) [CRR02], where the
adversary can use a device he controls to build a leakage model, and non-profiled
ones, like Correlation Power Analysis (CPA) [BCO04], where the adversary uses
a hypothetical model based on engineering intuition.

The Scatter transform was introduced at COSADE 2018 [TGWC18].
Roughly, it is a multivariate pre-processing to use in combination with “generic-
emulating” distinguishers [WOS14], such as Mutual Information Analysis
c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 90–103, 2021.
https://doi.org/10.1007/978-3-030-68773-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_5

Scatter: A Missing Case? 91

(MIA) [GBTP08] or the Chi2 test [MRSS18]. Its main motivation comes from
the observation that the efficiency of concrete side-channel attacks can be sig-
nificantly reduced in case of misaligned traces, which may be due to jitter in
the measurements or to dedicated countermeasures such as shuffling (or ran-
dom delays [CK10]). Scatter is claimed to efficiently deal with such synchro-
nization issues, while having potential for improving higher-order side-channel
attacks (e.g., against masked implementations) [TVW19]. Preliminary experi-
ments showed good features in these directions, but a comparison with compet-
ing distinguishers is missing.
In this paper, we complete this research in two directions.

We start by investigating the basic potential of Scatter for an efficient
exploitation of first-order multivariate leakages. For this purpose, our seed obser-
vation is that the COSADE 2018 paper mostly compared Scatter with univariate
CPA-based attacks. In this context, it appears natural that Scatter resists better
to misaligned traces, since the misalignment will typically spread the informa-
tive samples over multiple time dimensions (i.e., a multivariate distribution). We
therefore compare the efficiency of Scatter with a more natural competitor for
first-order multivariate attacks, namely the on-the-fly regression-based distin-
guisher described in [DPRS11]. We performed experiments against a simulated
shuffled implementation and a concrete jittery implementation, both similar to
the settings investigated in [TGWC18]. Our results suggest that the on-the-fly
regression always outperforms Scatter in these contexts.

We follow by studying the applicability of Scatter to masked implementations
where computations are performed on secret-shared data.

In this respect, we first show that Scatter’s basic (univariate) probabilistic
transform is inherently unable to characterize the higher-order multivariate sta-
tistical leakages of a masked implementation. Hence, the only possible option to
deal with such cases is (as usual) to generalize Scatter to multivariate distribu-
tions, either by estimating these distributions directly or by combining the leak-
age samples in a non-linear manner (see for example [PRB09,SVO+10]). Note
that the latter implies that Scatter cannot avoid the combinatorial explosion of
the number of samples to test in order to detect Points-of-Interest (POIs).

Our experiments next confirm the findings of Thiebeauld et al. that non-
linear combination functions are beneficial for the efficiency of higher-order
Scatter from a data complexity viewpoint [TVW19]. Since we are then back
to a situation where on-the-fly regression is applicable, we finally compare both
distinguishers and show empirically that, as in the first-order context, Scatter is
outperformed by linear regression in the simulated cases we studied.

Overall, we cannot preclude another useful application of Scatter. But in the
absence of theoretical or empirical arguments highlighting its interest over other
established distinguishers, we conclude that it currently lacks a use case.

Note that our study is limited to the investigation of Scatter in combination
with side-channel distinguishers (as it was proposed so far). One possible scope
for further investigation is the study of this probabilistic transform as a pre-
processing before leakage detection (e.g., with the Chi2 test [MRSS18]).

92 Y. Zhou et al.

Fig. 1. Scatter transform with MIA and Chi2 distinguishers: high-level view.

2 Background

2.1 Scatter Transform with Chi2/MIA Distinguishers

The Scatter transform applied to first-order leakages and combined with the Chi2

and MIA distinguishers is illustrated on the top of Figure 1. The basic idea is to
consider each d-dimension trace as d (one-dimension) samples, and to estimate
the distribution of these d samples thanks to histograms. The histograms are
then partitioned according to the key guess and a hypothetical leakage model
(e.g., the Hamming weight of an S-box output). The Chi2 or MIA distinguishers
are finally used to search for the correct key guess. More precisely:

1. We estimate histograms based on the amplitude of the sample points within
a window of size d. For each measured trace, we convert the d sample points
to an Nb-bin histogram. For an 8-bit oscilloscope, the max Nb is 256.

2. The “histogram traces” are then partitioned based on the key guess and
hypothetical leakage model. In this work we consider the Hamming weight
leakages of an AES S-box output. As a result, we obtain Nb × 9 × 256 parti-
tioned histogram traces (i.e., 9 Hamming weights, 256 key candidates).

3. We compute the distributions pdfg,h[u] using the partitioned histogram
traces, for each key guess g and corresponding Hamming weight hypothetical
leakage h, where u denotes the histogram value:

Scatter: A Missing Case? 93

pdfg,h[u] =
Accg,h[u]

Nb−1∑

u′=0

Accg,h[u′]

, (1)

in which Accg,h[u] is the total number of occurrences of value u for a key
guess g and its corresponding Hamming weight hypothetical leakage h.

4. The correct key guess gcorrect is distinguished by applying a generic-emulating
side-channel distinguisher to the estimated distributions pdfg,h[u].

Both the Chi2 and MIA distinguishers can be used in combination with the
Scatter transform in order to search for the correct key candidate.

The Chi2 distinguisher is based on Pearson’s X 2-test to perform a partition-
based DPA [SGV08]. When successful, the partition based on the correct key
guess should lead to the highest confidence level to reject the null hypothesis. In
the Scatter context, it estimates how much a distribution differs from a general
distribution (e.g., in our case study, the mean distribution of all 9 Hamming
weight leakage distributions for a key guess g and a value u)—the correct key
guess being expected to show the most significant difference. The Chi2 value is
computed according to the following formula:

X 2
g,h =

Nb−1∑

u=0

(pdfg,h[u] − 1
9 ·

8∑

h′=0

pdfg,h′ [u])2

1
9 ·

8∑

h′=0

pdfg,h′ [u]
· (2)

For each key guess, there are 9 Chi2 scores corresponding to 9 Hamming weights.
The logarithm sum of all 9 scores is then used as the final score.

The MIA distinguisher was introduced by Gierlichs et al. [GBTP08]. It is
based on estimating the mutual information between a hypothetical leakage
model and the actual leakages. Under a correct partitioning (i.e., the correct key
guess), it is expected that the largest mutual information should be observed for
the correct key candidate to distinguish the correct key guess from the wrong
ones. The MIA value is computed according to the following formula:

MIg =
8∑

h=0

P(Y = h) · (�1(g, h) − �2(h)), (3)

in which:

P(Y = h) =
1

n · 9
·
Nb−1∑

u=0

Accg,h[u], (4)

with n the number of traces collected and:

�1 (g, h) =
Nb−1∑

u=0

pdfg,h[u] · (pdfg,h[u]), (5)

�2 (h) =
Nb−1∑

u=0

(
1
9

·
8∑

h′=0

pdfg,h′ [u]) · log(
1
9

·
8∑

h′=0

pdfg,h′ [u]). (6)

94 Y. Zhou et al.

2.2 On-the-Fly Linear Regression

The use of linear regression for (profiled) side-channel attacks was introduced
by Schindler et al. [SLP05]. It was then extended to non-profiled key-recovery
attacks in [DPRS11]. We next denote this non-profiled extension as LRA.

Let us denote the leakage measurement as L. The target m-bit intermediate
value v (e.g., the S-box output in our case) is first decomposed according to
some basis. In the following, we will use the usual (linear) basis made of the 8
bits of v (v[m − 1], v[m − 2], . . . , v[0]). LRA then simply tests the linear relation
between the actual leakages and their approximation with this basis, thanks to
the coefficient of determination R2. More precisely:

1. We first compute (vĝ[m − 1], vĝ[m − 2], . . . , vĝ[0]) for each key guess ĝ and
each input plaintext & measurement Li, i = 0, 1, . . . , n − 1.

2. We then estimate the linear regression model between the measurement L
and the following approximation:

Lapp = βĝ,0 + βĝ,1 · vĝ[0] + . . . + βĝ,m · vĝ[m − 1] , (7)

using ordinary least square method to estimate the parameter βĝ,j .
3. We finally compute the coefficient of determination R2

ĝ for each key guess.
The correct key guess gcorrect is supposed to show the highest R2 value.

2.3 Selection of Parameters

The efficiency of the three aforementioned distinguishers is quite dependent on
the good selection of their parameters: number of bins for the Chi2 and MIA
distingsuihers, size of the basis for LRA. As already mentioned, our experiments
are based on LRA with a linear 9-element basis (the eight S-box output bits and a
constant), which is a standard choice for this distinguisher [SLP05]. For the Chi2

and MIA distinguishers, choosing the optimal number of bins is usually tricky.
We selected 9 and 25 bins in our experiments: 9 since it naturally corresponds
to Hamming weight leakages, 25 to assess the impact of more bins. We note
that this choice is expected to be slightly detrimental to the LRA distinguisher
(since under a Hamming weight assumption, a 2-element basis with the Hamming
weight of the S-box output should be even faster to estimate).

3 First-Order Experiments

We first investigate a simulated shuffled implementation, since this was the case
study put forward in the COSADE 2018 paper on Scatter. We continue by tar-
geting a real device of which the measurements are affected by a strong jitter,
preventing the good alignment of the traces around the leaking part.

Scatter: A Missing Case? 95

3.1 Setting #1: A Simulated Shuffled Implementation

Shuffling is a widely-used side-channel countermeasure [HOM06,VMKS12]. Its
main principle is to execute sensitive operations in a random order so that their
leakages are spread over a multivariate distribution. As a result, each single point
in time can correspond to the execution of various operations.

Shuffled implementations are the typical context in which Scatter’s multi-
variate transform was claimed to be a useful tool at COSADE 2018.

Implementation Settings. The main parameter influencing the security of
a shuffled implementation is the number of parallel operations which are ran-
domized. We next consider a default size of 16 (corresponding to the AES case)
and additionally experimented with a permutation of size 64, which could corre-
spond to the execution of 48 dummy S-boxes. In our default setup, a single POI
is leaking (corresponding to the target S-box execution) but we also considered
a case with four POIs (which does not reflect a concrete AES implementation
and was just aimed to understand the impact of a denser leakage in the Scat-
ter window). Finally, we used a Signal-to-Noise Ratio (SNR) of 10, 1 and 0.1,
reflecting low-noise, medium-noise and high-noise contexts [Man04]. The way we
generated simulated traces is similar to the Scatter paper. For a window size d
(i.e., the shuffling size in our experiments), we:

1. Choose the number of informative points (ni),
2. Pick up their location in the d possible positions uniformly at random,
3. Put random leakages (of the same shape) in all the other points,
4. Add Gaussian noise to the entire trace based on the chosen SNR.

Our simulations focus on Hamming weight leakages for the first-round first S-box
of an AES-128 encryption, namely HW(Sbox(p[0] ⊕ k[0])), where p[0] and k[0]
correspond to the first bytes of the 16-byte AES input and key, respectively.

For each simulation setting, we estimated the Success Rate (SR) of the differ-
ent attacks under investigation based on 100 independent experiments [SMY09].

Attack Results. The results of our experiments are in Fig. 2. We analyzed
a wide range of parameters reflecting the various settings in which the Scatter
transform could be exploited. As previously mentioned, we also evaluated this
transform with both the Chi2 and MIA distinguishers, using 9 and 25 bins. Those
are systematically compared with the LRA distinguisher (9-element basis).

In general, these experiments carry the expected intuitions regarding the
impact of our different parameters: decreasing the SNR makes the attacks more
difficult (i.e., when moving from the left of the figure to the right of the figure);
increasing d (i.e., the permutation size) makes the attacks more difficult (i.e.,
when moving from lines 1 and 2 to lines 3 and 4); increasing the number of POIs
makes the attack easier (i.e., when moving from line 1 to line 2 and from line 3
to line 4). More specifically related to Scatter:

96 Y. Zhou et al.

Fig. 2. Success rate on simulated shuffled implementations, with d the window size, ni

the number of POIs per window and various SNR values.

Scatter: A Missing Case? 97

– LRA always outperforms Scatter with both the Chi2 and MIA distinguishers,
no matter the permutation size, noise level and number of POIs;

– The performance gap between LRA and Scatter is getting bigger as the attacks
become more difficult (i.e., when the permutation size increases, the noise level
increases and the number of POIs decreases);

– Scatter with the MIA distinguisher performs slightly better than Scatter with
the Chi2 distinguisher (which is in line with the COSADE 2018 results).

– As for the impact of the number of bins for Scatter: more bins generally show
better results with lower noise and less bins generally works better with higher
noise. The latter is in line with the findings of [GBTP08].

3.2 Setting #2: A Concrete Jittery Implementation

We now extend our investigations to a real device, namely a software AES
implementation using a secure processor. Due to the variable internal clock,
the inserted random instructions during AES calculations, and the interrupts
caused by the running Android-like operating system (OS), the measured traces
are very jittery and we cannot really align the traces at the leaking time interval.
We study how well Scatter can handle this challenging scenario.

Implementation Settings. The target secure processor is a Cortex-M4 chip
running at 50 MHz next to a Qualcomm MSM8998 general processor which is
running an Android-like OS. The secure processor is used for cryptography cal-
culations and it communicates with the MSM8998 processor via UART (Uni-
versal Asynchronous Receiver/Transmitter) interface. The AES implementation
is unprotected except for the random instructions inserted during the AES exe-
cution. Interrupts are additionally caused by the running Android-like OS and
make the measured traces more noisy and hard-to-align. We measured 100,000
ElectroMagnetic (EM) traces on top of the secure processor using an EM probe,
with a LeCroy Waverunner 620Zi oscilloscope, at a sampling rate of 5 GHz.

During the measurements, we triggered the oscilloscope at the end of the
entire AES encryption command processing. The raw EM traces are noisy and
hardly show distinct patterns that can be used for alignment, as can be seen in
Fig. 3(a). We therefore used a simple correlation-based pre-processing in order
to better synchronize these EM traces, working as follows:
– Two intervals are chosen. First, a searching interval A that contains the oper-

ation to be synchronized is manually selected among all the traces. Next, a
smaller reference interval Bq specific to each trace q is also chosen.

– For each trace, we find the portion to be synchronized by using the second
window Bq to search over the whole interval A. The right portion is selected
as the one having the maximum correlation with the reference interval. If the
correlation is lower than a given threshold (chosen by the attacker/evaluator),
the trace is assumed not good enough and discarded.

After performing such an alignment, we were able to determine where the AES
computations occur by means of SEMA (Simple Electro Magnetic Analysis) and
CEMA (Correlation Electro Magnetic Analysis), as shown in Fig. 3(b).

98 Y. Zhou et al.

Fig. 3. 100 overlapped EM traces before alignment (a) and after alignment (b), and
target S-box estimated SNR (c).

Scatter: A Missing Case? 99

Attack Results. Our comparisons are based on 99,902 aligned EM traces focus-
ing on the leaking part (the other traces were discarded). As a first note, none
of the investigated distinguishers directly succeeded in recovering key bytes by
exploiting the leakage in the time domain. We then applied a Fast Fourier Trans-
form (FFT) in order to convert the traces into the frequency domain and to
mitigate the impact of misalignment. After this pre-processing, LRA was able
to recover all 16 key bytes of an AES state, but Scatter was not (neither with
the Chi2 nor with the MIA distinguishers). These results are illustrated in Fig. 4
where the success rate is estimated based on 100 independent experiments.

Fig. 4. Attacks against a real implementation with strong jitter.

4 Higher-Order Scatter

4.1 The Need of a Combination Function

We start with a simple negative result highlighting the need to generalize the
Scatter transform before application to higher-order side-channel attacks. For
this purpose, let us imagine that the two “clock cycles” represented at the top
of Fig. 1 correspond to the two shares of a masked sensitive variable x. Let us
further consider that this sensitive variable is one bit and can be written as
x = x1 ⊕ x2 with x1 picked up uniformly at random. Let us finally assume
that the adversary can obtain the leakage of the two shares x1 and x2, denoted
as l1 and l2: under Hamming weight leakages, we have l1 = x1 and l2 = x2,
meaning that the adversary can directly observe the shares. In this context,
1st-order probing security is guaranteed because the observation of either l1
or l2 does not reveal anything about x. By contrast, a second-order probing
attack is trivial since l1 ⊕ l2 = x. More interestingly, a second-order statistical
attack is also successful since the distribution of (l1, l2) when x = 0 is (0,0)
with probability 1

2 and (1,1) with probability 1
2 , while this distribution becomes

(0,1) with probability 1
2 and (1,0) with probability 1

2 when x = 1 (which has a
different variance).

100 Y. Zhou et al.

If we now apply the Scatter transform, each bivariate trace (l1, l2) is split into
two univariate traces l1 and l2, and histograms are built from these two traces.
As a result, the two traces (0,0) and (1,1) that correspond to the case x = 0
are turned into four traces 0, 0, 1, 1. Their histogram gives 0 with probability 1

2
and 1 probability 1

2 . Similarly, the two traces (0,1) and (1,0) that correspond to
the case x = 1 are turned into four traces 0, 1, 1, 0, leading to exactly the same
histogram. So directly applying the first-order Scatter transform to a masked
implementation cancels the differences between these distributions that can be
used to mount a successful second-order attack. The same example generalizes
to any number of shares and probing/statistical security order.

As usual in side-channel analysis, the solution to prevent this issue is to gen-
eralize the transform to higher-orders. There are essentially two solutions for
this purpose: either one considers all the pairs (and triples, quadruples, . . .)
of samples and applies a multivariate (e.g., Chi2 or MIA) distinguisher to it,
or one uses a combination function (e.g., the normalized product in the con-
text of Hamming weight leakages [PRB09,SVO+10]) and applies a (univariate
in the case of LRA or multivariate in the case of Scatter) distinguisher to its
output. As discussed for example in [BGP+11,MRSS18], directly considering all
the pairs (and triples, quadruples, . . .) of samples and applying a multivariate
distinguisher is usually more expensive, due to the curse of dimensionality when
estimating multivariate distributions in a non-parametric manner. Our experi-
ments showed the same trend and so do the experiments of Thiebeauld et al.
in [TVW19].

As a result, we next consider higher-order attacks based on a combination
function illustrated at the bottom of Fig. 1. That is, in the second-order case we
will concretely investigate, we start by extending the original d-sample window
to a d2-sample window containing all the normalized product samples and then
apply the Scatter transform combined with the Chi2 or MIA distinguishers, or
LRA. Note that this solution suffers from the usual drawback that the cost
of finding the POIs in the traces grows exponentially in the number of shares
(and exactly the same would hold for the first aforementioned solution where a
multivariate distinguisher is applied to all the tuples of samples).1

4.2 Second-Order Simulated Experiments

Implementation Settings. We now complete the previous first-order exper-
iments with second-order simulations. We consider a 2-share implementation
where the adversary obtains the two Hamming weights corresponding to the
two shares of a target S-box’s output. Based on the previous observation that
Scatter tends to behave better in less challenging scenarios (and in order to limit

1 In the report on the second-order application of Scatter [TVW19], an optional pro-
jection of the histogram traces is considered. In our experiments, this projection
(just as the direct bivariate attacks) did not exhibit any improvement. This seems
natural in a simulated setting where the normalized product combination function
is known to be optimal [PRB09]. So we next ignore this optional projection.

Scatter: A Missing Case? 101

the cost of our simulations, which increases with the security levels), we selected
the following parameters: a permutation of size d = 4 with a single POI (i.e.,
ni = 1) and a SNR of 10, 1 and 0.25. For completeness, we also report results
with d = 16, 4 POIs (i.e., ni = 4) and a SNR of 10 and 1. We focused on
Scatter with the MIA distinguisher that was the best in class for our first-order
experiments. (This is also similar to what has been done in [TVW19]).

Attack Results. The results of our second-order experiments based on a nor-
malized product combination function are displayed in Fig. 5.

Observations are essentially similar to the first-order case: again, LRA sys-
tematically outperforms attacks based on Scatter and the more “challenging”
the implementation (e.g., the lower the SNR), the bigger the gap. This can be
explained by the fact that the product combining pre-processing generates traces
that can be exploited in a very similar way as an unprotected implementation
(up to the noise level that is amplified by the product operation).

Fig. 5. Simulated shuffled & masked implementation: (a) d = 4, ni = 1, SNR=10; (b)
d = 4, ni = 1, SNR=1; (c) d = 4, ni = 1, SNR=0.25; (d) d = 16, ni = 4, SNR=10; (e)
d = 16, ni = 4, SNR=1.

5 Conclusion

Exploiting the side-channel leakages of an implementation protected with jitter,
shuffling and/or masking is a challenging problem. The Scatter transform was
introduced at COSADE 2018 as a novel transform aimed to make such attacks

102 Y. Zhou et al.

more efficient. In this work, we nailed down its specificity and compare it with
a natural competitor for unprofiled multivariate side-channel analysis.

It turns out a standard on-the-fly application of linear regression leads to
more efficient attacks in many practically-relevant contexts, including all the
ones initially put forward by the Scatter authors. It is therefore an interesting
open problem to determine whether this transform can sometimes be a useful
ingredient in a side-channel security evaluation. The exhibition of a simulated
case where such a gain can be observed appears as a natural next to answer this
question. Without such a case, evaluators are left with the conclusion that it
currently does not improve over existing solutions.

Acknowledgments. François-Xavier Standaert is a senior research associate of the
Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been funded in
parts by the ERC project SWORD (Grant Number 724725), the H2020 project REAS-
SURE and the UCLouvain ARC project NANOSEC.

References

BCO04. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage
model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28632-5 2

BGP+11. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-
Charvillon, N.: Mutual information analysis: a comprehensive study. J.
Cryptol. 24(2), 269–291 (2011)

CJRR99. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48405-1 26

CK10. Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay
countermeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.)
CHES 2010. LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15031-9 7

CRR02. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç,
K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Hei-
delberg (2003). https://doi.org/10.1007/3-540-36400-5 3

DPRS11. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel
attacks and leakage modeling. J. Cryptogr. Eng. 1(2), 123–144 (2011)

GBTP08. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information anal-
ysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
426–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85053-3 27

GP99. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplica-
tion” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717,
pp. 158–172. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48059-5 15

https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-642-15031-9_7
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15

Scatter: A Missing Case? 103

HOM06. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation
resistant to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.)
ACNS 2006. LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006).
https://doi.org/10.1007/11767480 16

Man04. Mangard, S.: Hardware countermeasures against DPA – a statistical anal-
ysis of their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol.
2964, pp. 222–235. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24660-2 18

MOP07. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer,
Boston, MA (2007). https://doi.org/10.1007/978-0-387-38162-6

MRSS18. Moradi, A., Richter, B., Schneider, T., Standaert, F.-X.: Leakage detection
with the x2-test. IACR Trans. Cryptogr. Hardware Embed. Syst. 2018(1),
209–237 (2018)

PRB09. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order dif-
ferential power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

SGV08. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison
side-channel distinguishers: an empirical evaluation of statistical tests for
univariate side-channel attacks against two unprotected CMOS devices.
In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp.
253–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
00730-9 16

SLP05. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side
channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/
11545262 3

SMY09. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the anal-
ysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 26

SVO+10. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed,
M., Kasper, M., Mangard, S.: The world is not enough: another look on
second-order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 112–129. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 7

TGWC18. Thiebeauld, H., Gagnerot, G., Wurcker, A., Clavier, C.: SCATTER: a new
dimension in side-channel. In: Fan, J., Gierlichs, B. (eds.) COSADE 2018.
LNCS, vol. 10815, pp. 135–152. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-89641-0 8

TVW19. Thiebeauld, H., Vasselle, A., Wurcker, A.: Second-order scatter attack.
IACR Cryptol. ePrint Arch. 2019, 345 (2019)

VMKS12. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuf-
fling against side-channel attacks: a comprehensive study with cautionary
note. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 740–757. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 44

WOS14. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of Generic DPA...and
the magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366,
pp. 183–205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
04852-9 10

https://doi.org/10.1007/11767480_16
https://doi.org/10.1007/978-3-540-24660-2_18
https://doi.org/10.1007/978-3-540-24660-2_18
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-642-00730-9_16
https://doi.org/10.1007/978-3-642-00730-9_16
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-17373-8_7
https://doi.org/10.1007/978-3-642-17373-8_7
https://doi.org/10.1007/978-3-319-89641-0_8
https://doi.org/10.1007/978-3-319-89641-0_8
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-319-04852-9_10
https://doi.org/10.1007/978-3-319-04852-9_10

Augmenting Leakage Detection Using
Bootstrapping

Yuan Yao1(B), Michael Tunstall2, Elke De Mulder2, Anton Kochepasov2,
and Patrick Schaumont1

1 Virginia Tech, Blacksburg, VA 24060, USA
{yuan9,schaum}@vt.edu

2 Rambus Cryptography Research, 425 Market Street, 11th Floor,
San Francisco, CA 94105, USA

{michael.tunstall,elke.demulder,anton.kochepasov}@cryptography.com

Abstract. Side-channel leakage detection methods based on statistical
tests, such as t-test or χ2-test, provide a high confidence in the presence
of leakage with a large number of traces. However, practical limitations
on testing time and equipment may set an upper-bound on the number
of traces available, turning the number of traces into a limiting factor in
side-channel leakage detection. We describe a statistical technique, based
on statistical bootstrapping, that significantly improves the effectiveness
of leakage detection using a limited set of traces. Bootstrapping generates
additional sample sets from an initial set by assuming that it is represen-
tative of the entire population. The additional sample sets are then used
to conduct additional leakage detection tests, and we show how to com-
bine the results of these tests. The proposed technique, applied to side-
channel leakage detection, can significantly reduce the number of traces
required to detect leakage by one, or more orders of magnitude. Further-
more, for an existing measured sample set, the method can significantly
increase the confidence of existing leakage hypotheses over a traditional
(non-bootstrap) leakage detection test. This paper introduces the boot-
strapping technique for leakage detection, applies it to three practical
cases, and describes techniques for its efficient computation.

Keywords: Side-channel analysis · Leakage detection · Bootstrapping

1 Introduction

Testing the side-channel leakage of a design is a challenging task. The test
requires careful planning of an experiment to measure a side-channel, such as
the power consumption, followed by analysis of the measurements. The objective
of the analysis is to detect side-channel leakage within a reasonable amount of
time. Traditionally, the analysis was done using a side-channel analysis attack
such as Differential Power Analysis [8]. However, the number of attacks and pos-
sible attack targets in a typical cryptographic implementation can be very large.

c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 104–119, 2021.
https://doi.org/10.1007/978-3-030-68773-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_6

Bootstrapping Leakage Detection 105

Therefore, it becomes desirable to formulate the analysis in a generic manner
independent of specific attacks for a side-channel leakage assessment. The most
popular among those assessments is Test Vector Leakage Assessment (TLVA),
proposed in 2011 by Goodwill et al. [6]. TVLA uses Welch’s t-test, under a null
hypothesis that no leakage is present, in a pointwise comparison of two sets
of power consumption traces. In a non-specific TVLA test, the two sets corre-
spond to power traces under a constant (plaintext) input on the one hand, and
power traces under a random (plaintext) input on the other hand. Any t-statistic
greater than 4.5σ (corresponding to a false positive rate of 1×10−5) would indi-
cate the presence of leakage. A known, but accepted, disadvantage of TVLA is
that the test does not establish a relationship between leakage and exploitabil-
ity. Hence, side-channel leakage confirmed by TVLA does not imply that the
leakage can be efficiently exploited by a side-channel attack. An example of a
difficult-to-exploit side-channel leakage would occur during the middle round
of a cipher, since an efficient side-channel attack such as DPA would typically
require side-channel leakage in the initial and/or final round of the cipher.

While TVLA is widely used for research and testing, it brings its own unique
challenges. False negatives occur when the measurements contain side-channel
information but TVLA fails to detect it. This can have several causes. First,
TVLA confirms side-channel leakage by demonstrating a statistically meaningful
difference-of-means between two sets of measurements. If the amount of side-
channel leakage is small, that difference of means will be small as well. The
number of measurements in that case may be insufficient to discern a meaningful
difference. Second, the measurements could be very noisy and have a low Signal-
to-Noise Ration (SNR) [9,18]) and, again, the number of measurements may be
too small to detect a statistically meaningful difference.

The risk of a false negative in TVLA can be minimized by increasing the
number of measurements or by enhancing the test by, for example, using multiple
input vectors for the fixed set [2,15]. Another strategy is to deploy a fixed-versus-
fixed TVLA test [15] (as opposed to fixed-versus-random). This will reduce the
algorithmic noise but it has the added drawback that some leakage may not
show up due to the choice of inputs. Ideally, the confidence in the outcome of
the evaluation can be improved by repeating the TVLA test multiple times over
new measurements.

Hence, all known techniques that reduce the number of false negatives for
TVLA require an increase in the total number of measurements. This is prob-
lematic, since the number of measurements is typically limited in practice by the
available testing time.

In this work, we seek to reduce the number of false negatives in TVLA, with-
out the need for more physical measurements, or, looking at it from a different
angle, we aim to decrease the number of measurements needed for detecting leak-
age. We base our work on statistical bootstrapping, a computer-based technique
for statistical inference proposed by Efron [5]. Bootstrapping starts from an ini-
tial sample set, which is assumed to be representative of the population. The
bootstrapping procedure infers population parameters by repeated re-sampling

106 Y. Yao et al.

of the initial sample set and by analyzing the resulting re-sampled data sets.
Applied to side-channel leakage detection, we aim to decide if the population,
corresponding to the set of power traces, shows side-channel leakage at a given
confidence level. To demonstrate this hypothesis, we make use of an initial sam-
ple of a limited set of power traces and use the bootstrapping method. Our
results show that bootstrapping based leakage detection reduces the size of the
sample (i.e., the number of traces required) by at least one order of magnitude
while maintaining the same confidence level.

We first demonstrate the proposed methodology using simulations, where we
control the amount of leakage that is present. We then further demonstrate our
findings by analyzing three practical implementations, including a software AES
with Boolean masking, an unprotected hardware AES and a lightly protected
hardware AES. In addition to this experimental work, we also describe the lim-
itations of the proposed bootstrap method. Finally, we discuss an optimized
technique to compute leakage detection parameters using bootstrapping on an
initial sample. Our proposed technique enhances earlier work that computes the
test statistics using trace histograms instead of individual traces [13].

This paper is organized as follows. Section 2 introduces several preliminary
concepts: the Welch’s t-test, the bootstrapping mechanism, and the Kolmogorov-
Smirnov test. Section 3 applies bootstrapping to the leakage detection problem.
We discuss results based on simulations and a variety of software and hardware
implementations. Section 4 clarifies the limitations of bootstrapping. Section 5
describes a technique for the efficient implementation of bootstrapping applied
to TVLA. We then conclude the paper.

2 Preliminaries

We first provide an introduction to the methods we will use throughout the text.

2.1 Leakage Detection Using Welch’s t-test

Welch’s t-test is a statistical test used to compare sample means of two sets with,
possibly, unequal variance but still under the assumption of normality. The out-
put of the test provides a test statistic which can be combined with a threshold
to validate the null hypothesis H0 that both sets have equal means, or state
there is no evidence supporting the null hypothesis so the alternative hypothesis
Ha holds. We consider sets A,B of size nA, nB , with means μA, μB and standard
deviation σA, σB , respectively. With these notations, the null hypothesis and the
alternative hypothesis are noted as follows,

H0 : μA = μB Ha : μA �= μB (1)

and the t-statistic is calculated with the following formula:

ψ =
μA − μB√
σA

2

nA
+ σB

2

nB

(2)

Bootstrapping Leakage Detection 107

where ψ ∼ t(0, ν) with ν degrees of freedom. In practice, we use the result that
the t-distribution is asymptotically equivalent to the standard normal distribu-
tion as the degrees of freedom increase, i.e. we can assume ψ ∼ N(0, 1). We then
transform the t-statistic into a p-value using the Cumulative Density Function
(CDF) to argue about the validity of H0.

Goodwill et al. [6] proposed to use Welch’s t-test to detect leakage in imple-
mentations of cryptographic algorithms by comparing two sets of side-channel
acquisitions. One set would be acquired with fixed input and the other with
random input. Welch’s t-test can be computed point-wise on the acquisitions. A
null hypothesis is formulated at each point individually assuming independence
of the points. Intuitively, one can see that if the means of those two sets (or
the distributions) are not equal, the power consumption is data-dependent and
could potentially leak information.

Goodwill et al. [6] proposed a Type I error, i.e.a false positive, rate of 1×10−5,
meaning the two-tailed p-value p < 1×10−5 would stipulate there is no evidence
H0 is true. This corresponds to an absolute value of |ψ| > 4.5. In practice,
Welch’s t-test is applied point-wise across a set of acquisitions so the probability
of seeing at least one Type I error is significantly larger than 1 × 10−5. Ding
et al. [18] proposed adjusting the threshold by taking the trace length (total
number of points in a measurement) into consideration. For ease of expression,
we will use the threshold defined by Goodwill et al. [6], but a different threshold
may be appropriate when applying our method.

2.2 The Bootstrapping Method

The bootstrapping method is a computation-based statistical tool proposed by
Efron [5] to make inferences about a population parameter based on a sam-
ple set. It is typically used to estimate statistical distributions and to quantify
uncertainty, under the assumption that the sample set is representative of the
population.

Given a set of observations Sobs consisting of n samples, {s1, . . . , sn}, from
a given population we can apply bootstrapping by repeated sampling, with
replacement, from Sobs. This process can be repeated b times, producing b sets
{S′

1, . . . , S
′
b}, where b is chosen arbitrarily. More explicitly, we detail this process

in Algorithm 1, where we define the operation R←− as taking a random sample
from a set. Statistical tests can then be applied to each of these sets producing
a set of statistics, which can allow a better analysis than just relying on the
observed set Sorig.

Pattengale et al. [11] recommended repeating this process 100–500 times to
get a robust description of the distribution of the population. In our work, we
show that far fewer iterations are required for leakage detection.

108 Y. Yao et al.

Algorithm 1: Generating Bootstrapping Sets
Input: Sobs = {s1, . . . , sn} with n, b ∈ Z>0

Output: {S′
1, . . . , S

′
b}

1 for i = 1 to b do
2 for i = 1 to n do

3 s′
j

R←− {s1, . . . , sn} ;
4 end
5 S′

i ← {s′
1, . . . , s

′
n} ;

6 end

7 return {S′
1, . . . , S

′
b}

2.3 Kolmogorov-Smirnov Test

In this paper, we also apply the one-sample Kolmogorov-Smirnov test (KS test),
which is a measure of the difference between a sample distribution and a defined
distribution. The null hypothesis of the test H0 is that the samples come from
the defined distribution, with the alternative hypothesis Ha that the samples
have a different distribution.

Let (s1, s2, ..., sn) be the samples in a data-set. For any number x, the empir-
ical distribution function value is the fraction of the data that is smaller than
x:

Fn(t) =
1
n

n∑
i=1

I{
sj ≤ x

} (3)

Where I is the indicator function. The test statistic D exploits the maximum
distance of the empirical distribution from the sampled distribution and the
defined distribution:

D = sup
x

|Fn(x) − G(x)| (4)

Where G computes the CDF of the defined distribution and sup is the supremum
function. After getting the D statistic for the KS-test, the corresponding p-
value can be calculated from the CDF of the one-sample Kolmogorov-Smirnov
distribution.

3 Applying Bootstrapping to Leakage Detection

In this section, we describe how we apply bootstrapping to leakage detection.
Without loss of generality, we discuss our results using Welch’s t-test, since the
same method could be applied to any other test that produces a p-value. That
is, similar improvements would be seen if one were to use other statistical tests,
such as the χ2 test [10], Hoteling’s T 2-test or Diagonal-test(D-test) [4].

Let Sobs = {s1, . . . , sn} be the set of n acquisitions to be used in a leakage
detection test, as described in Sect. 2.1. Each si, for i ∈ {1, . . . , n}, consists of
an acquisition and the corresponding metadata indicating whether it belongs to

Bootstrapping Leakage Detection 109

set A or B. We apply bootstrapping, as shown in Algorithm 1, to Sobs to provide
b sample sets {S′

1, . . . , S
′
b}, where the choice of b is arbitrary. We then conduct

Welch’s t-test on each set and compute the resulting p-value, giving {p′
1, . . . , p

′
b}.

Each p-value represents a test with

H0 : no leakage Ha : leakage (5)

and we wish to combine the p-values to test this null hypothesis. Figure 1 demon-
strates the proposed methodology.

Fig. 1. Bootstrap leakage detection enhancement

In general, the p-value is a measure of evidence on whether the null hypothesis
is true, where a p-value close to 0 can be taken as a lack of evidence that the null
hypothesis is true, and that the alternate hypothesis may be true. By definition,
if the null hypothesis is true then the p-value is uniformly distributed over the
interval [0, 1]. It has been shown that the p-value distribution is highly skewed
when the alternative hypothesis is true [7].

In this work, we use the distribution of the p-values {p′
1, . . . , p

′
b} to evaluate

whether there is evidence that the null hypotheses are true. That is, if the null
hypotheses are true then

{p′
1, . . . , p

′
b} ∼ U(0, 1).

We can test whether this is the case using the one-sample Kolmogorov-Smirnov
test to compare {p′

1, . . . , p
′
b} to a uniform distribution. In the KS-test we have

the null hypothesis that the data-set is drawn from the defined distribution, and
the alternate hypothesis that it is not. That is,

H0 : {p′
1, . . . , p

′
b} ∼ U(0, 1) and Ha : {p′

1, . . . , p
′
b} �∼ U(0, 1). (6)

110 Y. Yao et al.

The resultant KS test statistic reflects the similarity of the distribution of the
p-values with the uniform distribution. That is, we use the KS-test to combine
{p′

1, . . . , p
′
b} to a single p-value to test the null hypothesis:

H0 : no leakage Ha : leakage (7)

As proposed by Goodwill et al. [6], we shall assume the significance level α of
1×10−5, and reject the null hypothesis if the p-value return by the KS-test gives
p < 1 × 10−5.

3.1 Simulating Leakage Detection

To demonstrate the effectiveness of our method we simulated a single sample,
i.e.a simulated acquisition with a trace length of one. We generated sets of data
where the sample is the Hamming weight of an 8-bit value with added Gaussian
noise to achieve a signal-to-noise ratio of 1 dB. This simulates the setup in the
practical environment where the traces are noisy and multiple traces are needed
for the t-test to reach the threshold used to indicate leakage.

In Fig. 2, we show how the t-statistic, converted to a p-value, produced by
TVLA evolves as the number of traces increases, compared to the evolution of
the p-values produced by the KS test on the p-values generated by Bootstrap-
ping, as described above. As proposed by Moradi et al. [10], we plot the negative
logarithm base 10 of the p-value in both cases. This allows for simple compar-
ison and the 4.5σ threshold becomes 5. In our simulation, a straightforward
implementation of the TVLA will show leakage after 1600 traces. If we apply
bootstrapping we can see the leakage from 200 to 400 traces, depending on the
number of iterations of the bootstrapping method that is applied.

Fig. 2. The evolution of the p-value with increasing number of traces for TVLA (left)
and with bootstrapping (right) using simulated traces

To demonstrate why this occurs we generated three sets of single-point traces:
Trace-set-A is calculated as the fixed value 5. Trace-set-B and Trace-set-C are
calculated from the Hamming weights of 8-bit random values. As above, we
added Gaussian noise to achieve a signal-to-noise ratio of 1 dB. In Fig. 3, we can

Bootstrapping Leakage Detection 111

see two plots of frequency versus p-value, where the p-values are generated from
5000 iterations of the bootstrapping method on 1000 samples. The left plot is
the result of applying bootstrapping to TVLA between Trace-set-A and Trace-
set-B, and the right plot from applying bootstrap enhanced TVLA to Trace-
set-B and Trace-set-C. These tests represent the fixed-versus-random case and
a comparison case of random-versus-random. In each case the resulting p-values
are grouped into bins defined by dividing up the interval [0, 1] into 100 equally
sized bins. The difference in the observed distributions is quite striking.

Fig. 3. The sample distribution of the p-values taken from 5000 iterations of the boot-
strapping method applied to samples where a the null hypothesis is false (left) and true
(right)

3.2 Experimental Results

We then performed experiments to evaluate the practical benefits of boot-
strapped enhanced TVLA on a variety of implementations and platforms.

Software AES with Boolean masking. The first experiment is an application
of the proposed test to a näıve implementation of a Boolean masked AES on
an NXP LPC2124, a 16/32 bit ARM7TDMI-S chip. The implementation was
a straightforward 8-bit implementation making use of randomized masked
tables for the S-box and the xtime operations. As noted by Balash et al. [2],
such implementations are unlikely to be secure. Measurements were acquired
with a Langer RF −U2, 5−2 electromagnetic probe over a decoupling capac-
itor using a PicoScope 3206D at 400 MS/s with 200 MHz bandwidth. The
results of applying bootstrapping to TVLA compared to a straightforward
application of TVLA are given in Fig. 4. A straightforward implementation
of TVLA shows leakage after around 800 traces. In comparison, we can detect
leakage from 60 to 90 traces using Bootstrapping, depending on the number
of iterations of the bootstrapping method that is applied.

Unprotected hardware AES. Our next target was a straightforward single
round per clock cycle hardware implementation, i.e.all 16 S-boxes are com-
puted in parallel, on a Xilinx Kintex-7 FPGA. We used a custom FPGA pro-
totyping board where we measured the voltage drop across a measurement

112 Y. Yao et al.

Fig. 4. The evolution of the p-value with increasing number of traces for TVLA (left)
and with bootstrapping (right) applied to an implementation of AES in software

resistor using a Tektronix DPO7104C at 1 GS/s. The results of applying
bootstrapping to TVLA compared to a straightforward application of TVLA
are given in Fig. 5. We only need, at most, around 70 traces to detect the
leakage using bootstrapping, while 1000 traces are needed for straightforward
TVLA.

Fig. 5. The evolution of the p-value with increasing number of traces for TVLA (left)
and with bootstrapping (right) applied to an unprotected implementation of AES on
an FPGA

Lightly protected hardware AES. Our last target was an AES implementa-
tion protected with a dual-rail countermeasure with no regard to glitches [16]
implemented on the same FPGA platform as the unprotected AES implemen-
tation, described above. As previously, we used a custom FPGA prototyping
board where we measured the voltage drop across a measurement resistor
using a Tektronix DPO7104C at 1 GS/s. Figure 6 shows the results of apply-
ing bootstrapping to TVLA compared to a straightforward application of
TVLA. Similar to previous cases, significant acceleration of leakage detection
can be observed when applying Bootstrapping.

Bootstrapping Leakage Detection 113

Fig. 6. The evolution of the p-value with increasing number of traces for TVLA (left)
and with bootstrapping (right)

In the three experiments presented above, we can see that the bootstrapping
method reduces the number of traces required to detect leakage by at least one
order of magnitude in all cases. Or, were we to use all the measurements, we
would get with a high certainty all the leaking points this set could uncover. For
the first two targets presented there is some modest variation in the required
number of traces required to see leakage as we increase the number of iterations
of the bootstrapping method. However, for the third target (lightly protected
hardware AES) the difference is much larger. If bootstrapping is applied 10
times we require 450 traces to detect leakage, whereas we only require 40 traces
if bootstrapping is applied 100 times. Both of these numbers stand in stark
contrast to the number of traces required by a straightforward TVLA, which is in
the order of 1× 104. This highlights that Bootstrapping significantly accelerates
leakage detection.

4 Limitations

The idea of the bootstrap technique is to get an estimate of the deviation of a
sample statistic from the true value of the statistic, and relies on the indepen-
dence of the samples to do so. It does not allow one to extrapolate information
from the underlying data if it is not represented in the acquired set. What it can
do is give us some assurance on the test statistic and its variation to give more
accurate picture. That is, if the collected data set is representative of the underly-
ing distribution, re-sampling will help produce a more accurate statistical analy-
sis. There exists limitations of this technique, as demonstrated in Fig. 7. The top
left plot shows the result of a straightforward fixed-versus-random TVLA test,
as described in Sect. 2.1, on 5 × 105 traces, where the t-test statistic is turned
into a p-value under the null hypothesis that there is no leakage. From this pic-
ture, it is clear that some points are already crossing the 4.5σ line (i.e. where
− log10 p = 5), while other points are getting close to the line. As has been clear
from the literature, the results of a t-test are greatly affected by the signal-to-
noise ratio of the measurements, and reliably identifying false negatives and false
positives is problematic. The bottom right plot shows the bootstrapping method

114 Y. Yao et al.

applied b = 5 times to the same 5 × 105 traces (we note recommendations on
b are significantly larger in literature [11]). This demonstrates that we get a lot
more assurance on the points that do not provide evidence the null hypothesis
is correct and all points which showed leakage in the original figure are present.
The top right plot shows the result of bootstrapping a 1000 traces with b = 20,
and the bottom left plot shows the result of a bootstrapping of 5000 traces with
bootstrapping method applied b = 5 times. Neither of these figures are showing
the peak around sample point 30 visible in the top left plot indicating that the
underlying data is not sufficiently representative of the full set because we have
restricted the number of traces. However, we do have peaks at other points that
are not visible in the entire set, again caused by bias in the smaller number of
traces. While bootstrapping can allow one to determine if leakage is visible on a
smaller number of traces, it is subject to bias in the acquired traces.

Fig. 7. The negative log of p-value returned by the TVLA test for a fixed-versus-random
t-test with 50000 traces (top left), 1000 traces with 20 iterations of the bootstrapping
method (top right), 5000 traces with 5 iterations of the bootstrapping method (bottom
left) and 50000 traces with 5 iterations of the bootstrapping method (bottom right)

Bootstrapping Leakage Detection 115

5 Implementation Details

Algorithm 2: Updating H
Input: H with elements eijkl where i ∈ {1, . . . , c}, j ∈ {1, . . . , q},

k ∈ {1, . . . , m}, l ∈ {1, . . . , 2r}, a set of n traces S = {s1, . . . , sn}
with st = {st1, . . . , stm} for t ∈ 1, . . . , n and associated classifier
values zti for each of the classifications. For ease of notation,
classifier values will be in 1, . . . , q rather than the actual value.

Output: H
1 for t = 1 to n do
2 for i = 1 to c do
3 for k = 1 to m do
4 j ← ci ;
5 l ← st,k ;
6 ei,j,k,l ← ei,j,k,l + 1 ;
7 end
8 end
9 end

10 return H

Statistical processing for side-channel analysis can be computationally intensive
and, since bootstrapping runs a statistical analysis multiple times, the process
can be even more demanding. The most straightforward approach to computing
statistical tests is to store all the acquisitions to a hard disk, read the measure-
ments, run the data through the algorithm of interest and compute the results.
Another approach is to use one-pass algorithms, which find the required sta-
tistical characteristics during acquisition. Implementations of this concept vary
from having all the statistics ready and updating them on-the-fly to updating an
accumulator for each new sample and computing results on demand [12–14,17].

Our bootstrapping method requires calculating different statistical tests (i.e.,
Welch’s t-test and KS-test), which use statistical moments and observed frequen-
cies. Hence, we chose a histogram approach, where the histogram contains all the
information about the sample distribution that becomes available while acquir-
ing traces and, therefore, describes the sample distributions. It is then possible
to derive properties appropriate for both tests as required. Our statistical tech-
nique is based on the work by Reparaz et al. [13]. However, we describe in more
detail how to implement it using a tensor and how to apply the technique for
statistics other than the t-statistic.

We assume that the leakage assessment is performed over a set of observed
samples S with n traces of m sample points with c classifications. Each sample
point in the measurement has r meaningful bits, corresponding to 2r integer
values, which are used as indices of counter bins. Each classification should have
q sets of histograms, where q is the number of bins required to cover each pos-
sible classifier value. This approach can be represented as a 4-dimensional set

116 Y. Yao et al.

ZcZqZmZ2r . We shall denote an instance of this set as H. An element of H is
denoted eijkl where i ∈ {1, . . . , c}, j ∈ {1, . . . , q}, k ∈ {1, . . . , m}, l ∈ {1, . . . , 2r}.
For example, in an evaluation of the non-specific fixed-versus-random test, we
have c = 1 and q = 2. If we would wish to conduct a correlation power analy-
sis [3] on an 8-bit intermediate state with the hamming weight model we would
have a separate classifier with c = 256 and q = 9.

Before acquiring data one would set H to all zeros and update H after each
acquisition of n traces with using Algorithm 2. At any given moment, the results
of the statistical tests can be rapidly computed from H.

In this approach, the first two statistical moments, μ and σ2, with respective
elements μijk and σ2

ijk, for Welch’s t-test become:

μijk =
1

Nijk

2r∑
l=1

ei,j,k,ll

σ2
ijk =

1
Nijk − 1

2b∑
l=1

ei,j,k,l(l − μijk)2
(8)

where Nij =
∑2r

l=1 ei,j,1,l.
The CDF function d, which is used to define the sampled distribution, see

(3), and to compute the KS test, for each point k, classifier i and classifier value
j becomes:

dijkl =
l∑

s=1

ei,j,k,s. (9)

Note that it is easy to compute more statistics in a straightforward way. As an
example, the correlation traces ρ with elements rik, representing the k-th point
in the i-th trace, are computed from H as shown in Eq. (10).

We define a mean and variance trace as the first two statistical moments of
the trace samples, split by classifiers, with respective elements μik and σ2

ik. We
define the mean and variance of the classifiers as the μ′

i and σ′
i
2. The pointwise

covariance of the traces and classifiers is defined as covik with the number of
traces defined as N .

Bootstrapping Leakage Detection 117

N =
q∑

j=1

2r∑
�=1

e1,j,1,l

μik =
1
N

q∑
j=1

2r∑
�=1

� ei,j,k,l

σ2
ik =

1
N

q∑
j=1

2r∑
�=1

Hi,j,k,l(� − μik)2

μ′
i =

1
N

q∑
j=1

2r∑
�=1

� ei,j,1,l

σ′
i
2 =

1
N

q∑
j=1

2r∑
�=1

ei,j,1,l(� − μ′
ij)

2

covik =
q∑

j=1

2r∑
�=1

� ei,j,k,l

rik =
(covik − μik μ′

i)√
σikσ′

i

(10)

Equations (8), (9) and (10) use the notation used in Algorithm 2, where i
is a classifier index, j is a bin, k is a trace sample point, and l is a counter bin
index.

This approach has been implemented as a native code python module, com-
piled from cython code to C code to a dynamically linked DLL. The Intel MKL
library has been used to derive the required statistics. The space H has an
element type represented by a 32-bit unsigned integer, which establishes the
memory requirement for H as 4 × c × q × m · 2r bytes. This would allow one to
process up to 4 billion traces, which is typically more than sufficient to evaluate
leakage. It is important to note that the size of H should be small enough to
fit within CPU L3 cache, which is typically 5, 7 or 15 MB. This implementation
strategy allowed us to efficiently evaluate the bootstrapping method.

The speed increase achieved by using bootstrapping is highly dependent on
the collection speed. For fast implementations, analysis may take around the
same amount of time as the time required to collect all the acquisitions. For some
other implementations, where inputs have to be provided for each acquisition,
e.g.over a serial port, the time required to collect all the acquisitions can be
considerably slower than the subsequent analysis. As noted by Reparaz et al. [13],
the speedup of using histograms is a factor of 500 times faster than a regular
implementation of the t-statistic calculation, assuming that the acquisitions fit
within CPU L3 cache. If we consider bootstrapping, one can argue that an
order of magnitude fewer traces are required to get the same information, which
will mean that the time required to collect all the acquisitions will decrease by
same amount, at the cost of running b bootstrapped regular tests fewer traces.

118 Y. Yao et al.

Fortunately, as shown above, we do not require b to be very large to get significant
results, and in general it does make sense to apply bootstrapping.

6 Conclusion

In this paper, we describe how to use bootstrapping to augment side-channel
leakage detection tests by repeated sampling with replacement from an acquired
set of traces and combining the results of each set. Simulations and experi-
ments show that even a small number of iterations of the bootstrapping method
present significant improvements over straightforward TVLA [6]. The bootstrap-
ping method presented above can be applied to other statistical leakage detection
methods [4,10], and we would likewise expect a similar increase in performance
at the cost of extra calculation time. We also show an efficient way of computing
the necessary statistics to compensate for the extra calculation time, based on
methods described by Reparaz et al. [13].

Recent work by Bache et al. [1] proposed a somewhat similar approach to our
work, although without the application of bootstrapping. They describe using
the confidence interval, instead of a single p-value/t-statistic, to improve the
assurance of the presence, or absence, of leakage. The confidence interval pro-
vides the error-probability for a false negative. However, the confidence interval
makes it harder for an evaluator to make a judgment about leakage, when com-
pared to the pass/fail criteria used in straightforward TVLA. In comparison,
applying bootstrapping to TVLA, as we describe, provides a single pass/fail
parameter from combining p-values, making the results easier to interpret than
those provided by the method presented by Bache et al. [1]. Moreover, since
applying bootstrapping extracts more information from an existing set of acqui-
sitions, applying bootstrapping to TVLA improves the data-efficiency in leak-
age detection. That is, it can predict/detect leakage with fewer acquisitions. In
comparison, the accuracy of the method presented by Bache et al. using the
confidence interval is highly dependent on the number of acquisitions.

Acknowledgement. This research was supported in part by National Science Foun-
dation Award 1617203. The authors would like to thank anonymous reviewers for their
valuable feedback.

References

1. Bache, F., Plump, C., Güneysu, T.: Confident leakage assessment—a side-channel
evaluation framework based on confidence intervals. In: DATE 2018, pp. 1117–
1122. IEEE (2018)

2. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3 5

https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5

Bootstrapping Leakage Detection 119

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

4. Bronchain, O., Schneider, T., Standaert, F.X.: Multi-tuple leakage detection and
the dependent signal issue. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2, 318–345 (2019)

5. Efron, B.: Bootstrap methods: another look at the jackknife. Annl. Stat. 7(1), 1–26
(1979)

6. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-
channel resistance validation. NIST non-invasive attack testing workshop. 7, 115–
136 (2011)

7. Hung, H.J., O’Neill, R.T., Bauer, P., Kohne, K.: The behavior of the p-value when
the alternative hypothesis is true. Biometrics, 11–22 (1997)

8. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

9. Mangard, S., Oswald, E., Standaert, F.X.: One for all-all for one: unifying standard
differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

10. Moradi, A., Richter, B., Schneider, T., Standaert, F.X.: Leakage detection with the
χ2-test. IACR Trans. Cryptographic Hardware and Embedded Systems 1, 209–237
(2018)

11. Pattengale, N.D., Alipour, M., Bininda-Emonds, O.R.P., Moret, B.M.E., Sta-
matakis, A.: How many bootstrap replicates are necessary? J. Comput. Biol. 17(3),
337–354 (2010)

12. Pebay, P.P.: Formulas for robust, one-pass parallel computation of covariances
and arbitrary-order statistical moments. Tech. rep, Sandia National Laboratories
(2008)

13. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Fast leakage assessment. In: Fischer,
W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 387–399. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 19

14. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

15. Standaert, F.-X.: How (Not) to use welch’s T-test in side-channel security evalu-
ations. In: Bilgin, B., Fischer, J.-B. (eds.) CARDIS 2018. LNCS, vol. 11389, pp.
65–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15462-2 5

16. Tiri, K., Verbauwhede, I.: Securing encryption algorithms against DPA at the logic
level: next generation smart card technology. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6 11

17. Welford, B.: Note on a method for calculating corrected sums of squares and prod-
ucts. Technometrics 4(3), 419–420 (1962)

18. Zhang, L., Ding, A.A., Durvaux, F., Standaert, F.X., Fei, Y.: Towards sound and
optimal leakage detection procedure. IACR Cryptology ePrint Archive 2017, 287
(2017)

https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-319-66787-4_19
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-030-15462-2_5
https://doi.org/10.1007/978-3-540-45238-6_11

Evaluation of Attacks and Security

Security Assessment of White-Box Design
Submissions of the CHES 2017 CTF

Challenge

Estuardo Alpirez Bock1(B) and Alexander Treff2

1 Aalto University, Espoo, Finland
estuardo.alpirezbock@aalto.fi

2 University of Lübeck, Lübeck, Germany
alexander.treff@student.uni-luebeck.de

Abstract. In 2017, the first CHES Capture the Flag Challenge was
organized in an effort to promote good design candidates for white-box
cryptography. In particular, the challenge assessed the security of the
designs with regard to key extraction attacks. A total of 94 candidate
programs were submitted, and all of them were broken eventually. Even
though most candidates were broken within a few hours, some candidates
remained robust against key extraction attacks for several days, and even
weeks. In this paper, we perform a qualitative analysis on all candidates
submitted to the CHES 2017 Capture the Flag Challenge. We test the
robustness of each challenge against different types of attacks, such as
automated attacks, extensions thereof and reverse engineering attacks.
We are able to classify each challenge depending on their robustness
against these attacks, highlighting how challenges vulnerable to auto-
mated attacks can be broken in a very short amount of time, while more
robust challenges demand for big reverse engineering efforts and therefore
for more time from the adversaries. Besides classifying the robustness of
each challenge, we also give data regarding their size and efficiency and
explain how some of the more robust challenges could actually provide
acceptable levels of security for some real-life applications.

Keywords: White-box cryptography · Capture the flag · Differential
computation analysis · Differential fault analysis

1 Introduction

White-box cryptography was introduced by Chow, Eisen, Johnson and van
Oorschot (CEJO [16,17]) as a method for implementing cryptographic software
running in insecure environments. In the white-box attack model, an adversary is
assumed to be in full control of the execution environment of an implementation
and to have complete access to the implementation code. White-box cryptogra-
phy aims to implement cryptographic programs in such way that they remain
secure in such attack scenarios.
c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 123–146, 2021.
https://doi.org/10.1007/978-3-030-68773-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_7

124 E. Alpirez Bock and A. Treff

The original use case of white-box cryptography concerned digital rights man-
agement (DRM) applications. In recent years, white-box cryptography regained
popularity with the introduction of host card emulation (HCE) in Android 4.4.
HCE introduces the possibility to handle near field communication (NFC) traffic
via software programs, running in the CPU in a mobile phone. In this context,
applications using NFC protocols can be implemented in software only, which
provides advantages in terms of cost, efficiency and upgrading of the programs.
In this line, NFC protocols running on HCE have been embraced by the pay-
ment industry and white-box cryptography has been suggested as a software
countermeasure technique for protecting cryptographic keys in mobile payment
applications (see e.g. [24,43]).

In the meantime, a branch of academic research has been dedicated to con-
structing secure white-box implementations. Initial steps have been taken on
formally defining security notions for white-box cryptography, i.e. on defining
which security goals should be achieved by a white-box cryptographic scheme
[21,25]. An important and necessary security goal for white-box cryptography is
the property of security against key extraction (or unbreakability as defined in
[21]). Namely, given that in the white-box attack model an adversary is assumed
to have complete access to an implementation code, it is important that the
adversary is still unable to extract the value of the embedded secret key of that
implementation. To approach this goal, many design frameworks follow the ini-
tial proposal from CEJO, where the authors suggest to implement a cipher as a
network of pre calculated look-up tables. The look-up tables correspond to calcu-
lation steps of the cipher and these steps are dependent on the value of the secret
key. To stop an adversary from easily deriving the value of the secret key from the
look-up tables, the entries of the look-up tables are usually encoded via a com-
bination of wide linear encodings and narrow non-linear encodings (see [36] for a
detailed description of this design framework for AES implementations). Follow-
ing this line, white-box constructions for DES [17,35] and AES [5,15,16,30,45]
have been proposed, but subsequently broken by [26,29,44] and [8,22,34,37,38],
respectively. As it turns out, many proposed constructions were shown to be
vulnerable against key extraction attacks, performed via algebraic or differential
cryptanalysis.

In recent years, a new branch of grey-box attacks on white-box cryptographic
implementations was introduced, putting forward the differential computation
and differential fault analysis attacks [3]. The differential computation analysis
(DCA) corresponds to the software counterpart of the differential power anal-
ysis (DPA) attack performed on hardware cryptographic implementations [32].
Similarly, the differential fault analysis (DFA) on white-box programs is per-
formed in the same way as fault injection attacks are performed on hardware
implementations [7,13]. The introduction of the DCA and DFA attacks lead to
a new branch of automated attacks on white-box implementations. The most
attractive advantage of such automated attacks is that they allow an adversary
to extract the secret key from numerous white-box implementations, with little
to no need of reverse engineering efforts. The adversary thereby does not need

Security Assessment of White-Box Design Submissions 125

to know internal details of the implementations under attack, and can simply
run a script on the white-box program, collecting data which is later analysed
via statistical methods and reveals key dependencies. Extensions and generaliza-
tions of the DCA attack have been presented in [3,12,40]. As these works show
(and as we confirm in this paper), popular design frameworks for implementing
white-box cryptography are specially vulnerable to such automated attacks.

1.1 CHES 2017 Capture the Flag Challenge

In an effort to promote good design candidates for white-box cryptography,
the ECRYPT-CSA consortium organized the white-box competition CHES 2017
Capture the Flag Challenge [23], and a second edition was later organized by
Cybercrypt in 2019 [20]. In the 2017 competition, designers were invited to
submit white-box implementations of AES-128, which should thereby remain
robust against key extraction attacks. The source code of the submitted pro-
grams should be no bigger than 50 MB in size, with the executable being no
bigger than 20 MB. Finally, submitted programs should need no longer than
1 s per each execution, i.e. for performing an encryption. On the other side,
attackers were invited to try to break submitted candidate implementations by
extracting their embedded secret keys. Note that attackers would have access to
the source code of the implementations. In this competition, a program would
be ranked according to the amount of time it remained unbroken: the longest
a program would remain unbroken, the higher rank it became. A total of 94
candidate programs were submitted and all candidates were broken eventually.
Most candidates remained unbroken for less than a day after their submission.
Interestingly however, a number of candidates remained unbroken for several
days, with the winning candidate resisting key extraction attacks for a total of
28 days. It is fair to assume that candidate implementation which were broken
within hours were vulnerable to automated attacks, while longer lived candi-
dates initially provided resistance against such attacks, and demanded bigger
reverse-engineering efforts from the attackers.

The table below summarizes the results obtained for the 5 highest ranked
challenges, with challenge 777 being ranked the highest as it remained robust
for a total of 28 days. Besides remaining robust for several days, some of these
candidates also provide interesting numbers with regard to their size and effi-
ciency. For instance the second ranked challenge, challenge 815, remained robust
for 12 days and had thereby a size of 18 MB and an execution time of 0.07 s.
This challenge is 10 MB smaller and notably faster than the winning challenge.
Similarly, challenge 854, 5th ranked, remained robust for 8 days had a size of
11 MB and an execution time of 0.23 s.

The results shown in the white-box competition regarding the highest ranked
candidates invite for some optimism in the research field of white-box cryptogra-
phy.1 While studies of white-box cryptography aim to construct programs which
remain secure against a polynomial time adversary, a reasonable level of security

1 In fact during the 2019 edition, a total of 3 candidates remained unbroken.

126 E. Alpirez Bock and A. Treff

Rank Challenge ID Size Speed Days unbroken

1 777 28 MB 0.37 s 28

2 815 18 MB 0.07 s 12

3 753 23 MB 0.16 s 11

4 877 32 MB 0.004 s 10

5 845 11 MB 0.23 s 8

for some real-life applications could be achieved via white-box programs which
remain robust for at least several days. Namely, since we are considering crypto-
graphic programs implemented completely in software, one could take advantage
of a software renewal characteristic and update the white-box programs on a
regular basis. In this case, we could consider an adversary who invests several
days on reverse engineering a white-box implementation running on an applica-
tion. However before the adversary manages to extract the secret key from the
implementation, the application could be updated with a new white-box pro-
gram using a new secret key. This would cancel out the efforts performed by an
attacker up to that point, and force him to start all over again. Note however that
for this approach to work as expected, each updated white-box implementation
needs to be compiled according to different and independent design frameworks,
such that what the adversary learns while analyzing the first design does not
help him in any way when analyzing future versions of the program. Moreover,
white-box designs could already be updated as soon as any design mistakes or
vulnerabilities are spotted, or after a security breach is discovered. In case that
a breach is discovered and an attacker manages to break one implementation,
we can aim to quickly update all designs with a new version of the program.
Here, even if the attacker managed to break one program, he still does not gain
so much from it as we manage to update and protect all other programs.

1.2 Our Contribution

In this paper, we take a closer look at each candidate implementation submitted
to the CHES 2017 Capture the Flag Challenge. As all candidates were eventually
broken during the competition, we know that they are not completely resistant
against key extraction attacks. In this paper however, we want to understand how
each challenge can be broken and we analyze each implementation by perform-
ing a selected line of attacks on them. This way we perform a study regarding
the size, speed and robustness of each candidate implementation. We test their
vulnerability against automated attacks such as the traditional DCA and DFA.
For performing automated attacks, we use the frameworks provided by the Side-
Channel Marvels2 and Jlsca3, which we describe as part of this work. Via our
analysis, we are able to classify the challenges in the following four groups: (1)

2 https://github.com/SideChannelMarvels.
3 https://github.com/Riscure/Jlsca.

https://github.com/SideChannelMarvels
https://github.com/Riscure/Jlsca

Security Assessment of White-Box Design Submissions 127

challenges which are vulnerable to DCA attacks, (2) challenges which are vul-
nerable to DFA attacks, (3) challenges which are vulnerable to extended versions
of DCA attacks, such as second order DCA and finally (4) challenges which are
resistant to automated attacks and demand bigger reverse engineering efforts
from the adversaries. This classification gives insights on the amount of time
needed for extracting the key from each implementation. Namely, running a tra-
ditional automated attack usually demands only some minutes, while extended
versions of the automated attacks demand several hours and reverse engineering
attacks demand for days and in some cases even multiple weeks.

We explain how some of these challenges are initially resistant to these
attacks, but are then easily modified such that automated attacks against them
are bearable. We also show how we extend a traditional DCA attack to a second
order DCA attack in order to extract the key from a masked implementation.
Finally, we give insights to the challenges that were not vulnerable to such attacks
and which provided higher layers of security. Our success performing the attacks
on the challenges stands in line with the robustness many challenges showed
during the competition. Namely as we show, automated attacks were successful
on a large group of challenges, which were the lowest ranked challenges in the
competition. Similarly, the highest ranked challenges demanded bigger efforts
from the adversaries and could not be simply broken via automated attacks.
Finally, we give a short overview on the results of the 2019 edition of the compe-
tition. We leave a detailed analysis of the designs submitted to the 2019 edition
as future work.

Successively to our survey, we describe how robust white-box implementa-
tions might be useful for some real-life applications as long as we are able to
upgrade them on a regular basis. We explain how the property of scalability and
a considerable gap between the compilation time of a program and the time an
attacker needs for breaking it need to be considered.

The rest of this paper is structured as follows. In Sect. 2 we describe the tools
used for performing our analyses on the design candidates. More precisely, we
describe the scripts we use for running DCA, DFA and variations of those attacks.
In Sect. 3 we describe the results we obtain from our security assessment, where
we classify the design candidates according to the attacks they are vulnerable to
and we discuss interesting aspects of the most robust candidates. We conclude
the paper in Sect. 4 with a discussion on how robust white-box candidates can
provide a reasonable level of security for real life applications.

2 Tooling

In this section, we describe the attack tools used for analyzing the design can-
didates of the competition. Each candidate was first analyzed via DCA. If no
successful key recovery was performed, we would follow to attack via DFA. In
case none of these two attacks was successful, we would turn back to reverse
engineering part of the implementation code of the design under attack to try
to adjust it such that our tooling worked on the design.

128 E. Alpirez Bock and A. Treff

2.1 Preprocessing the Source Code

In the competition, designers were required to hand in the source code of their
candidate implementations. Attackers could therefore also analyze the source
code in order to perform key extraction attacks. For this reason, robust candi-
date implementations obfuscated not only the control flow of the cryptographic
operations, but also the source code of the implementation. Some candidates
managed to prevent commonly used text editors from parsing the file by using
very long lines. Some candidates also included specific sequences of bytes that
only a subset of editors and compilers would handle correctly. For example,
relaxed brown contains a line consisting of 31 588 characters (see Fig. 1). More-
over, the code hides a function definition between two huge arrays, presumably
by using specific control characters such that the function is visible to the com-
piler, but is hidden when analyzed in the editor.

Fig. 1. Fragments of the source code of relaxed brown. The left side shows the code
visible when opening it on a text editor. It looks as if the code consists only of a com-
ment. However, the comment line containing the ‘k ’ expands to the right and consists
of 31 588 characters hiding two function calls and almost all other characters are white
spaces. The right side shows the code after preprocessing it with clang-format (the
function strcpyn contains the actual AES code).

A second example is the winning challenge adoring poitras which can be
successfully compiled using gcc, but cannot be compiled using clang. We use
clang-format to parse source files in an automated way to generate a modified,
yet functionally equivalent source file that does not contain any of these tricks
and is easier to understand.

2.2 Tooling for DCA

We perform the DCA attack as described in Sect. 3 of [3]. We use a custom Intel
PIN4 plugin specifically adapted to the competition rules. That is, our plugin is
4 https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-

tool.

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

Security Assessment of White-Box Design Submissions 129

hooked to the call AES 128 encrypt to acquire computation traces that exactly
resemble the actual encryption function. These traces are then converted to a
Riscure Inspector Trace set files (TRS) via a python library trsfile5 such that
they can be analyzed using Jlsca6. We annotate the computation trace with both
the program input and output to be able to launch the attack from either the
input or output values.

Jlsca. Jlsca is an open-source side-channel toolbox written in Julia by Cees-
Bart Breunesse that allows to perform highly optimized differential computation
analysis on software execution traces. It supports different leakage models, e.g.
the Klemsa model where we also consider 240 AES dual ciphers as described
in [6]. Dual ciphers of AES use different SBoxes throughout the computation
but yield the same result as a standard AES at the end of the computations.
More specifically, they can be seen as isomorphisms of AES, which are not based
on the Rijndael Sboxes. Instead, the dual ciphers implement alternative Sboxes
and additional computations are later performed on intermediate values, such
that the dual ciphers are functional equivalent to a standard AES cipher. We
refer to the Diploma thesis of Jakub Klemsa [31] for a more detailed explanation
and analysis of dual ciphers. Some submitted challenges were implementing dual
ciphers of AES. For such implementations, the SideChannelMarvels’ Daredevil
does not reveal the correct key. Namely, Daredevil is configured such that it
targets standard Rijndael Sboxes, so the predicted Sbox outputs do not match
when attacking dual cipher implementations. Jlsca on the other hand predicts
the intermediate values for all possible Sboxes and hence reveals the correct key
for challenges implementing dual ciphers as well.

Jlsca also implements optimization techniques such as Duplicate Column
Removal (DCR) and Conditional Sample Reduction (CSR). Such techniques
enable us to check these 240 dual ciphers in the same amount of time (or even
less) than Daredevil needs for running the analysis. For a more detailed dis-
cussion on the above mentioned reduction techniques, we refer to the paper by
Breunesse, Kizhvatov, Muijrers and Spruyt [14].

Analyzing a Single Computation Trace. Some implementations generated
very long traces, e.g. determined goldwasser or friendly wing. In some cases,
we were still able to launch the attack after some (very) limited manual effort in
locating the first (or last) round. We configured our tracing tool to allow tracing
just a specific region of interest by giving lower and upper bounds of sample
indices, thus speeding up the trace acquisition process. Sometimes, we were not
able to launch an automated DCA attack because the traces were too long and
we weren’t successful in locating a usable subset of samples of manageable size.
In cases this was not working, this was mostly caused by the design artificially
extending the execution time, for example by using a virtualization technique

5 https://github.com/Riscure/python-trsfile.
6 https://github.com/Riscure/Jlsca.

https://github.com/Riscure/python-trsfile
https://github.com/Riscure/Jlsca

130 E. Alpirez Bock and A. Treff

(see [42] for insights on the virtualization technique and a generic approach on
how to recover a devirtualized code from a virtualized one). Specifically Tigress7

was used in favour of code obfuscation throughout the competition (see e.g.
relaxed allen). Our experience shows that automated DFA might be more
feasible in these cases as one usually will find a fault-sensitive look-up table
using the corresponding DFA scripts in a reasonable amount of time.

2.3 Tooling for DFA

We perform the DFA attack as described in Sect. 7 of [3]. We use the JeanGrey
tool from the (open source) SideChannelMarvels repository. This tool induces
faults by randomly flipping bits of different regions of the binary. In some cases,
we perform the DFA manually. That is, we inspect the source code and induce
faults by flipping bits in specific lines of code. As an example: state[0] ^= 1;
is used to flip one bit of a byte belonging to some state array.

3 Security Assessment and Classification

We evaluate the robustness of the design candidates by testing automated attacks
(DCA and DFA) on them, as well as modifications of such attacks. Our aim is
to find out how many candidates can actually be broken via automated attacks
and without big reverse engineering efforts. We classify the candidates in two
main groups: one group for automated vulnerable and one group for automated
resistant. These groups should reflect the difficulty an adversary might have when
attempting to break each white-box and the time we can expect each white-box
to remain unbroken. This also holds for recovery from a successful attack: if an
attacker succeeds at breaking an implementation using an automated attack,
a new implementation based on the same design can be broken by the same
automated attack. If on the other hand reverse engineering efforts are needed,
even a slightly different design already requires adaptations to the attack. In the
end of this section, we focus on the automated resistant candidates and classify
them according to their size and speed. Some candidates achieve robustness but
demand high numbers in terms of size and execution time. Other candidates,
on the other hand, reflect more useful designs as they provide a good trade-off
between efficiency and security.

In the following, we describe our assessment process. Given a candidate imple-
mentation, we first assess its security via DCA. If we are able to extract the key
from that implementation via DCA, we classify the given candidate under auto-
mated vulnerable, and in a subgroup thereof which we call DCA vulnerable. If no
successful DCA attack can be performed, we run a DFA attack on the implemen-
tation and in case of success, we classify the candidate under DFA vulnerable.
Note that in some cases, a white-box design might resist a traditional DCA
attack by implementing masking countermeasures. In this case a higher order

7 http://tigress.cs.arizona.edu/.

http://tigress.cs.arizona.edu/

Security Assessment of White-Box Design Submissions 131

DCA might be a successful way of attacking [10,12]. Therefore, if neither first
order DCA or DFA succeeds, we perform a second order DCA. Note that the
second order DCA can also be implemented in an automated way as we explain
later in this section.

A total of 94 challenges were submitted. One of these challenges,
thirsty aryabhata, was not a valid submission as it didn’t implement any AES
operation. For this reason, our studies consider a total of 93 challenges.

3.1 DCA Vulnerable Designs

A total of 50 design candidates were vulnerable to a traditional DCA attack,
which we could perform in a completely automated way. That is, we were able
to extract the key from all 50 designs by simply running the DCA script, with
no need of adapting it for any implementation. All of these designs were broken
within minutes during the competition. In fact, a large number of these submis-
sions were not even white-box designs. 37 designs were reference AES implemen-
tations (or similar) which did not implement any white-box countermeasures. 19
of these 37 designs were submitted by chaes and were all implemented using
a total of six lookup tables each consisting of 256 entries from which the key
can be retrieved directly by looking at the right offset. The remaining 13 can-
didates did implement white-box countermeasures, such as code obfuscation or
they were table based implementations (e.g. following the approach proposed by
CEJO [16]).

Table 1 lists the design candidates vulnerable to the DCA attack which
showed at least minimal effort of implementing countermeasures – reference
implementations were omitted to improve readability. In the table we rank the
candidates according to the time they remained unbroken during the compe-
tition, where the candidate implementation on the top remained unbroken for
the longest and the candidate at the bottom remained unbroken for the shortest
period of time. We use the same ranking approach for the other tables shown
in this paper. Note however that this ranking does not necessarily reflect the
robustness of an implementation in comparison to other implementations listed
in the same table. Namely in some cases, candidate designs remained unbro-
ken for certain amounts of time due to the competition setup, and not due to
the robustness of their implementations (see Sect. 3.2). In the table, the entry
size gives the size of the source code of the implementation in megabytes. Run-
time gives the time in milliseconds needed for one execution of the program, i.e.
for performing one encryption. Time unbroken indicates the time (hours) the
implementation remained unbroken during the competition time.

Besides the 50 candidates mentioned above, 5 further candidates could be
broken via DCA after manually performing some simple modifications on the
source code of the programs. These candidates implemented countermeasures
against the DCA attack such as dummy operations which led to a misalign-
ment of the software traces, or implementation of the round functions in a non
constant way. That is, the sequence of the operations was performed differently
depending on the input message to be encrypted. However, in most of these

132 E. Alpirez Bock and A. Treff

Table 1. DCA vulnerable designs. ε corresponds to a runtime of less than 0.01 ms.

Rank Name Id Size Runtime Time unbroken

1 focused gary 20 17.044 0.24 08:01

2 cranky mccarthy 27 17.912 5.35 05:19

3 famous stonebraker 55 1.336 0.02 04:29

4 youthful hawking 150 18.509 0.34 03:23

5 elastic brahmagupta 146 12.415 0.02 00:51

6 hopeful liskov 3 4.702 ε 00:47

7 thirsty fermat 57 8.404 2.21 00:44

8 happy yalow 60 5.002 0.07 00:28

9 nostalgic noether 61 4.97 0.07 00:26

10 lucid roentgen 24 4.777 1.17 00:22

11 modest clarke 30 7.559 1.26 00:18

12 zealous ardinghelli 31 7.572 1.23 00:12

13 stupefied varahamihira 16 4.704 ε 00:11

cases, the code was not heavily obfuscated on source level, and particularly the
algorithmic part was usually of magnitudes smaller than the data part of the
code (tables, etc.). Therefore, it was simple to identify the specific non-constant
logic or dummy operations by hand. For some challenges, the difference plots
were used to estimate the position where the non-constant code is being placed
(i.e., it occurs on all rounds vs. only on the last round).

We then modified the codes in a way that they would have a constant run-
time, which enabled us to perform a DCA attack. As an example, we show in
Fig. 2 fragments of the candidate pensive shaw, which included instructions for
increasing the number of operations in order to artificially enlarge trace files and
slow down the attacking process.

Table 2 lists the five challenges we could attack via DCA after small modifi-
cations. Some design candidates implemented virtualization, but it was simple
to de-virtualize the code and make it run without the virtualization layer.

Table 2. DCA vulnerable designs after minimal modifications

Rank Name Id Size Runtime Time
unbroken

Notes

1 dreamy fermi 754 1.328 0.33 17:24 Dummy code removal

2 relaxed brown 852 18.461 121.93 05:32 Devirtualization

3 reverent beaver 48 6.187 1.12 01:51 Variable to constant rewrite

4 cool cori 791 1.61 37.16 00:15 Dummy code removal

5 pensive shaw 778 1.518 82.34 00:12 Dummy code removal

Security Assessment of White-Box Design Submissions 133

Fig. 2. Source code of pensive shaw. The code contains a computationally expensive
function cT(), yielding always the same result. We dump the value and replace the
function by its result. This reduces runtime and trace size to a minimum, making DCA
feasible again.

3.2 DFA Vulnerable Designs

DFA was only applied for analyzing candidate designs resistant against the
DCA attack. Namely, some designs implemented virtualization layers, where
the encryption program uses a virtual machine to execute part of the code [41].
In this context, virtualization made it difficult to implement a traditional DCA
attack as it artificially blew up the number of samples per trace. Instead of a
single atomic operation, a large sequence of operations emulating this atomic
operation is being traced when virtualization is implemented. However in some
cases, virtualization did not represent a countermeasure against DFA, since DFA
works by inducing faults at the right spot of computation. Instead of inducing
a fault (e.g., flipping a single bit) on the aforementioned atomic operation, the
fault is induced at some point of the corresponding (large) sequence of opera-
tions. The fault is propagated throughout the computation, yielding the desired
effect on the output. The following 14 designs could be broken using the Jean-
Grey tool from the SideChannelMarvels repository. We could break each design
by simply running the script for (at most) one hour.

Note that half of the designs in Table 3 were broken within minutes after they
were submitted to the competition. Interestingly the first 3 designs remained
unbroken for over three hours, with the first challenge remaining unbroken for
5:46 h. The reason why some of these challenges remained unbroken for several
hours during the competition might have more to do with the setting of the
competition, and less with the robustness of the challenges themselves. Namely
during the competition, some attackers used automated scripts for constantly
checking if new challenges were submitted. The scripts would immediately down-
load the challenges upon their submission and attack them via DFA or DCA in
an automated way. This way, some attackers were able to break many challenges
within minutes. However the submission server implemented challenge-response
tests such as Captchas in order to stop the scripts from working in such a fully
automated way (see Philippe Teuwen’s talk during the WhibOx 2019 Workshop
for notes on his experience attacking the challenges during the 2017 competi-

134 E. Alpirez Bock and A. Treff

Table 3. Automated DFA vulnerable designs

Rank Name Id Size Runtime Time unbroken Notes

1 compassionate albattani 816 26.135 174.66 05:46 Virtualized

2 xenodochial northcutt 106 21.969 5.16 04:09

3 smart ardinghelli 846 3.016 367.99 03:09 Virtualized

4 musing lalande 813 2.562 147.38 02:42 Virtualized

5 frosty hypatia 812 2.575 206.28 02:11 Virtualized

6 dazzling panini 46 38.911 4.67 01:17

7 angry jones 880 2.97 337.37 00:55 Virtualized

8 determined goldwasser 34 19.987 3.607 00:50

9 relaxed allen 755 13.274 16.13 00:32 Virtualized

10 smart lamarr 749 13.159 11.79 00:22 Virtualized

11 friendly lewin 811 2.605 0.216 00:21 Virtualized

12 friendly edison 35 21.902 3.12 00:17

13 quirky mayer 142 8.305 0.87 00:16

14 dazzling neumann 143 8.302 0.99 00:03

tion [39]). One might assume that the attackers were not always able to react
quickly to such challenge-response tests. This could explain why some challenges
in Table 3 remained unbroken for several hours, while we were able to break
them within an hour during our studies. Additionally, there might have been
cases where a large number of challenges were submitted at the same time, thus
delaying the automated assessment of some challenges.

Manual DFA. Some submissions implemented classic DFA countermeasures,
such as redundant computations (see e.g. [1,28]). Given such countermeasures, it
was not possible to run the DFA script from the SideChannelMarvels repository
in a fully automated way. However for some challenges, it was easy to deactivate
such countermeasures manually as their implementations were not highly obfus-
cated. An example can be seen in Fig. 3, where we show part of the source code of
silly feynman. The program implements countermeasures checking for faulty
computations, but it is easy to locate the lines of the code which implement
these countermeasures. Table 4 lists 7 challenges which we successfully attacked
via a manual DFA. For these challenges, we either removed lines of the code such
that our DFA script would run successfully, or we added specific lines of code
which would help us identify the correct spots for injecting faults. We explain
the second approach below.

For some design candidates, running the DFA script did not work accordingly
due to the static nature of how JeanGrey works. JeanGrey modifies the binary
file prior to attempting to perform the DFA attack. The script XORs regions of
the binary file using a type of binary search to iteratively find the correct spot

Security Assessment of White-Box Design Submissions 135

Fig. 3. Source code of silly feynman. The code included comments explaining the pur-
pose of the functions defined. This made it very easy to locate functions implementing
DFA countermeasures, such as redundant computation.

to induce a fault by reacting to the outcome of the modification. This approach
works well when manipulating actual data such as lookup tables or when just a
simple adjustment of control flow is needed to induce useful faulty outputs. How-
ever, this approach often does not yield a useful result when a more complicated
control flow change is needed. To deal with these shortcomings, we opted for a
slightly more complicated, yet non-automated approach for locating the correct
spot for inducing faults, which we refer to as conditional fault injection. Condi-
tional fault injection consisted on altering the source code in such way that we
would keep track of some internal variable (e.g. a counter), and we would inject
a fault only after the value of that variable would reach some threshold. The idea
here is that the repeated execution of some lines of code usually corresponds to
the execution of some round function and the value of the variable could help
us recognize the round that is being executed. For instance, one can observe
an internal loop counter which starts, say, at value 0 and reaches a value of 60
000 after all AES rounds have been computed. This internal loop counter might
already belong to the implementation itself or we can add it manually. The first
45 000 iterations will most probably not yield any useful fault injection, as we
usually target the eighth or ninth round for injecting faults. On the other hand,
one may assume that targeting one of the remaining 15 000 iterations might
yield a useful fault injection which can then be done in an automated way using
the internal counter as a trigger.

We implemented the approach mentioned above by adding a few lines to
the corresponding implementations, specifically crafted to the specific imple-
mentation, as outlined in Fig. 4. One important aspect to consider is that these
modifications do not need to work for any specific input. It suffices to obtain
correctly faulted outputs for one specific plaintext-ciphertext pair chosen before-

136 E. Alpirez Bock and A. Treff

hand to compute the last round key. In those cases, we took advantage of the fact
that we had access to the corresponding source code of the design candidates.
Namely in some cases a relatively simple inspection of the source code helped
us locate the precise spots for injecting faults and performing a successful DFA
attack.

Fig. 4. Example for conditional fault injection. We add code to skip a specific loop
iteration. The exact iteration is given as a parameter to enable automated search of
useful values by repeated execution.

Table 4. Manual DFA vulnerable designs. The top challenge festive jennings earned
one strawberry point during the competition.

Rank Name Id Size Runtime Time
unbroken

Notes/

1 festive jennings 11 23.716 0.09 24:01 Brute-forced last 4 bytes

2 eloquent indiana 52 14.897 23.80 24:00 Attacked loop structure

3 nifty heisenberg 48 14.650 3.48 18:23 Removed DFA protection

4 vigilant wescoff 12 3.465 92.74 10:59 Faulted 32-byte state array

5 friendly wing 132 22.606 18.19 02:05 Attacked loop structure

6 silly feynman 742 0.072 0.10 01:09 Removed DFA protection

7 agitated wilson 141 11.599 43.43 01:01

Note that all challenges listed in Table 4 remained unbroken during the com-
petition for at least one hour. This suggests that attackers also needed to first
inspect the code and implement some changes before actually attacking them or
extracting their secrets. This assumption is more evident when focusing on the
top four challenges, which remained unbroken for 11 to 24 h. The top challenge
festive jennings even managed to gain one strawberry point during the com-
petition, which was awarded if the challenge managed to remain unbroken for
at least 24 h.

Security Assessment of White-Box Design Submissions 137

3.3 Second Order DCA

We were unable to recover the key of design candidate priceless stallman via
DCA or DFA attacks. In particular, it achieved resistance against DCA via a
masking scheme, where intermediate values were masked with different shares for
each input plaintext. We were able, however, to successfully attack this design
candidate via second order DCA [12]. As it is known for higher-order DCA,
the number of samples used for performing an analysis increases quadratically
compared to a first order DCA attack. This is due to the nature that all possible
combinations of samples are evaluated, which results in a total number of n(n−
1)/2 samples for second-order analysis compared to n samples for first-order
analysis. Using optimization techniques such as DCR and CSR [14], this number
can be heavily reduced and higher-order attacks become feasible. Figure 5 shows
a difference plot for the given challenge, showing periods of execution where the
data is heavily changed. Locating such regions helped us identify the correct
spot for recording software execution traces and perform a second order DCA.
We ran our analysis for about 8 h in order to extract the first 8 key bytes in
parallel. Afterwards, the analysis for the other 8 key bytes ran for another 8 h
resulting in a total runtime of about 16 h using Jlsca. Table 5 summarizes some
details of the implementation.

Fig. 5. Difference plot for priceless stallman. Accumulation of dark spots indicates
a change of data and control flow whereas green regions resemble constant parts of the
implementation. We successfully recovered the key using a second-order analysis of the
first quarter of the heavily changing region in the beginning (approx. 20 000 samples).

Interestingly, this challenge only remained unbroken for a bit more than one
hour during the competition. We assume that a more efficient attack path can
be taken to obtain the secret key, such as possibly a variation of a DFA attack.
Namely, such masking countermeasures, where the shares are determined by the
input message, do not imply robustness against DFA since some input plaintext

138 E. Alpirez Bock and A. Treff

Table 5. Second order DCA vulnerable design

Rank Name Id Size Runtime Time unbroken Notes

1 priceless stallman 738 5.386 0.29 01:18 Implements masking

m will always use the same masking. Thus in theory, one could perform a DFA,
since one always uses the same input message and injects different faults. We refer
to [10] for alternative attack strategies on masked white-box implementations.

3.4 Automated Resistant Challenges

A total of 16 challenges remained resistant to our attempts using DCA and DFA
attacks. 12 of these challenges earned strawberry points during the competition
time. These challenges implemented notably stronger layers of obfuscation, such
that we were not able to remove the virtualization or masking techniques as
described in the previous sections. Table 6 lists the candidate challenges that we
were not able to break. The first part of the table shows the candidates which
earned points during the competition, i.e. which remained unbroken for at least
24 h. The bottom part of the table consists of candidates which did not earn any
points. Note however that the candidates in the bottom part of the table also
remained unbroken for a considerable amount of time, possibly confirming that
those candidates also provide some robustness against automated attacks.

Given that most of these challenges remained unbroken for a considerable
time during the competition phase, it is fair to assume that attackers were forced
to invest considerable reverse engineering efforts for breaking them. Consider for
instance the winning candidate adoring poitras, which remained unbroken for
28 days. This challenge was submitted by the CryptoLux8 team consisting of
Biryukov and Udovenko and was subsequently broken by the CryptoExperts9

team consisting of Goubin, Paillier, Rivain and Wang. In [27] the CryptoExperts
team provides a step-by-step guide on their approach applied for breaking the
challenge. Their main techniques were based on reverse engineering and algebraic
attacks. The authors explain that the code uses different obfuscation techniques
such as name obfuscation (giving each function and variable random, unrelated
names) and virtualization. Additionally, the source code consists of many func-
tions which are never used (up to 80%). This was probably implemented with
the goal of making it difficult for an attacker to deobfuscate the code. In fact,
the process of deobfuscating and cleaning the code such that it consists only of
functions which are actually used demands large efforts as it can only be done
manually. Once this is done, more generalized methodologies can be followed in
order to break such obscure implementations (the authors list further steps such
as single static analysis, transformation of the circuit, circuit minimization, data
dependency analysis, etc.).

8 https://www.cryptolux.org/index.php/Home.
9 https://www.cryptoexperts.com/technologies/white-box/.

https://www.cryptolux.org/index.php/Home
https://www.cryptoexperts.com/technologies/white-box/

Security Assessment of White-Box Design Submissions 139

Table 6. Unbroken candidates. The first part of the table consists of challenges which
earned points during the competition phase. sad goldstine was the smallest challenge
from those which earned any points.

Rank Name Id Size Runtime Time
unbroken

Notes

1 adoring poitras 777 27.252 379.83 685:42 Winning challenge

2 competent agnesi 815 17.359 6.923 290:15

3 bright morse 753 22.649 163.14 283:50

4 vibrant goldberg 877 30.126 5.15 254:59

5 hungry clarke 845 10.925 230.76 196:44

6 jolly davinci 751 18.299 47.77 190:09

7 nervous montalcini 644 16.17 0.07 139:19 Fastest challenge

8 sad goldstine 786 10.401 143.83 61:09 Smallest challenge*

9 mystifying galileo 84 19.236 114.59 32:33

10 elastic bell 49 20.709 261.05 27:11

11 practical franklin 49 15.527 2.58 24:01

12 agitated ritchie 44 22.946 20.33 24:00

13 clever hoover 32 18.319 0.97 20:14

14 gallant ramanujan 153 0.898 0.04 15:15

15 peaceful williams 47 11.950 2.29 11:47

16 eager golick 572 38.146 83.53 06:22

The high levels of obfuscation applied to adoring poitras certainly
implied high costs in terms of size and efficiency of the design. While
adoring poitras was the strongest design in terms of robustness, other designs
presented better numbers in terms of size and efficiency, while also achiev-
ing a notable level of robustness. For instance the 7th ranked challenge
nervous montalcini was notably faster than all other designs listed in Table 6.
Thereby, nervous montalcini remained unbroken for 5 days. In terms of size,
the 5th and 8th ranked challenges were notably smaller than the rest, with
sizes of 10.9 and 10.4 MB respectively. Note that the 5th ranked challenge,
hungry clarke remained unbroken for more than 8 days. Figure 6 plots the top
7 ranked implementations of Table 6 according to their size and execution time.
The legend displays the corresponding challenge names with the number of days
they remained unbroken during the competition. These 7 challenges remained
unbroken for at least 5 days, which was significantly longer than for the rest of
the challenges.

As we observe in this plot, the winning challenge adoring poitras largely
demands a longer execution time than the rest. In terms of size, only
vibrant goldberg is slightly larger than adoring poitras. Out of these 7
designs, challenge 7, nervous montalcini is the fastest one and challenge
5, hungry clarke, is by far the smallest one. These two challenges however

140 E. Alpirez Bock and A. Treff

Fig. 6. Overview of the most robust candidates with regard to their size and execution
time

remained unbroken for only 8 and 6 days respectively. On the other hand, the sec-
ond ranked candidate, competent agnesi, remained unbroken for up to 12 days
while providing relatively good numbers in terms of size and efficiency, specially
when comparing it with the winning challenge.

A design such as competent agnesi provides very useful steps towards white-
box implementations for real life applications due to its positive numbers in terms
of size and efficiency. Namely in some scenarios, it might be useful for a white-box
design to remain unbroken for 12 days, as long as one can update it regularly. As
mentioned before, if one chooses this avenue for achieving security, further atten-
tion should be placed on how the updated versions are compiled. Namely, if the
recompiled version of the white-box program is similar to the first one, an adver-
sary might need much less time to attack the recompiled version. This is because
while analyzing the first program, the adversary learns a lot about the struc-
ture, countermeasures and obfuscation techniques implemented by the program.
If the recompiled program applies the same techniques, the adversary already
has an advantage as he knows how the recompiled white-box can be analyzed.
The CryptoExperts team also makes this observation when saying that breaking
a re-compiled version of adoring poitras (i.e. a program generated with the
same compiler, but using a different key and different randomness) would cer-
tainly demand less time. The authors point out that a lot of the time needed for
breaking the challenge was spent trying out different reverse-engineering tech-
niques and attack strategies which turned out to be ineffective. Therefore when
analyzing a re-compiled version of adoring poitras, the authors would at least
already know which attack strategies do not work for that class of implementa-

Security Assessment of White-Box Design Submissions 141

tions. Moreover, part of their analyses could even be automated, which would
reduce the attacking time even more.

3.5 2019 Edition of the White-Box Competition

In 2019 Cybercrypt organized a second edition of the white-box capture the flag
challenge [20]. Here, designers were again invited to submit candidate implemen-
tations and attackers were challenged with breaking them by extracting their
embedded secret keys. Additionally, candidate designs were also assessed with
regard to their one-wayness property (see [21]). That is, the white-box encryp-
tion programs should not allow one to decrypt. This property was assessed in
the competition by asking the attackers to find a pre-image for certain target
ciphertexts. In this competition, the efficiency of the programs was also assessed.
Namely, the more efficient a program was, the most points it would obtain when
remaining robust over time. Efficiency was measured with regard to the running
time, code size and memory consumption of the programs.

A total of 27 challenges were submitted. 22 of these challenges resisted key
extraction attacks for at least one day, where some of those challenges were
submitted in the early stages of the competition. Impressively, 3 challenges sub-
mitted by the CryptoLux team remained unbroken during the competition time:
hopeful kirch, goofy lichterman and elegant turing. Later after the com-
petition ended, all three challenges were broken by the CryptoExperts team
(hopeful kirch) and by the whiteCryption10 team (goofy lichterman and
elegant turing) [19]. However, they could only be broken 30, 50 and 51 days
after their publication. In comparison to the 2017 edition, the 2019 edition of the
white-box competition showed big improvements in terms of the security levels
achieved by the submitted candidates.

4 Real-Life Usefulness of White-Box Cryptography

In light of the state-of-the-art of academic research on white-box cryptography
for AES presented in this paper, the practical usefulness of white-box cryptog-
raphy is not immediate. In this section, we explore relevant parameters for the
usefulness of white-box cryptography in practice.

Mitigating Attacks. There is a substantial difference between white-box imple-
mentations that can be attacked by automated attacks and those that require
substantial amounts of human reverse-engineering. As discussed in the last
section, white-box designs vulnerable to automated attacks could be broken
within minutes. However if one has a design paradigm that reliably generates
white-box implementations that require substantial reverse-engineering, then one
can achieve a meaningful level of security. Here, we can expect an adversary to
need a large amount of time for breaking the white-box design, and we can opt

10 https://www.intertrust.com/products/application-shielding/.

https://www.intertrust.com/products/application-shielding/

142 E. Alpirez Bock and A. Treff

to regularly updating the design implementation. As one only needs to update
software, renewability cycles can be short and thus avoid reverse-engineering
attacks.

A second important consideration for attack mitigation is the scalability of
an attack, as we have mentioned before. That is, reverse-engineering one instance
of a white-box implementation of generation X should not allow the attacker to
implement an automated attack that, with limited modifications, can attack all
instances of generation X. That is, for each new instance, the attacker should
again spend a considerable amount of reverse-engineering effort.

White-Box Implementations Robust Against Code-Lifting Attacks. The designs
submitted to the CHES 2017 CTF Challenge aim to achieve robustness against
key extraction attacks. However in practice, white-box designs also implement
countermeasures against code-lifting attacks, where an adversary simply copies
a white-box design and runs it on an device of their choice. In the literature
(and in practice) properties achieved by white-box designs as means to counter
code-lifting attacks include the following: (1) incompressibility [21,25], where a
program is implemented such that it cannot be compressed and it only remains
functional on its complete form. The idea is that if the program is implemented
in a very large size, then transmitting it over the network should be difficult,
making it thus difficult for an adversary to copy it and run it on a device of its
choice. (2) Hardware-binding [2,4], where a program is configured such that it is
only functional on a precise hardware device. And (3) application-binding [2,18],
where a program should only be functional within a precise application. Here,
robustness against code-lifting can be aimed if the application implements, for
instance, authentication operations.

If the white-box under attack effectively implements one of these countermea-
sures, an adversary might need a significantly larger amount of time to attack
it. Namely in many cases, an adversary executes and analyzes the white-box
on a device of his choice. This is specially relevant when performing DCA or
DFA attacks where the adversary collects data over several executions of the
code. However the binding countermeasure would stop him from conducting
such analyses so easily and would to the least force the adversary to first reverse
engineer the program such that it can run on the device of the adversary.

Side-Stepping Attacks. Another way to side-step the powerful key extraction
attacks on white-box implementations is to use non-standard ciphers, as an
alternative to AES or DES (see e.g. [9,11,33]). We are not aware of this avenue
being widely followed in practical applications.

Protection Techniques Not Specific to White-Box Cryptography. Further anti-
reverse engineering techniques, such as binary packers or self-modifying code
would certainly increase the robustness of a white-box program, specially regard-
ing to its binary file. We note however that these techniques could not be con-
sidered within the white-box competition. Namely, designers were required to

Security Assessment of White-Box Design Submissions 143

upload the source code of their design candidates, written in plain C without
any further includes, linked libraries or application of binary packers.

Acknowledgments. The analyses presented in this work were carried out while
Alexander Treff was an intern at Riscure B.V., where he was advised by Albert Spruyt
and Kevin Valk, which he hereby acknowledges. The authors are grateful to Cees-Bart
Breunesse and Ilya Kizhvatov, who provided additional support during the internship.
The authors would like to thank Chris Brzuska and Wil Michiels for their helpful
feedback during the preparation of this paper.

References

1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Shahmirzadi, A.R., Schellenberg, F.,
Schneider, T.: Impeccable circuits. Cryptology ePrint Archive, Report 2018/203
(2018). https://eprint.iacr.org/2018/203

2. Alpirez Bock, E., Amadori, A., Brzuska, C., Michiels, W.: On the security goals
of white-box cryptography. Cryptology ePrint Archive, Report 2020/104 (2020).
https://eprint.iacr.org/2020/104

3. Alpirez Bock, E., et al.: White-box cryptography: don’t forget about grey-box
attacks. J. Cryptol. 32(4), 1095–1143 (2019)

4. Alpirez Bock, E., Brzuska, C., Fischlin, M., Janson, C., Michiels, W.: Secu-
rity reductions for white-box key-storage in mobile payments. Cryptology ePrint
Archive, Report 2019/1014 (2019). https://eprint.iacr.org/2019/1014

5. Baek, C.H., Cheon, J.H., Hong, H.: White-box AES implementation revisited. J.
Commun. Netw. 18(3), 273–287 (2016)

6. Barkan, E., Biham, E.: In how many ways can you write Rijndael? In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36178-2 10

7. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

8. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

9. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp.
63–84. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 4

10. Biryukov, A., Udovenko, A.: Attacks and countermeasures for white-box designs.
In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273,
pp. 373–402. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-
3 13

11. Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptogra-
phy: optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 126–158. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 5

https://eprint.iacr.org/2018/203
https://eprint.iacr.org/2020/104
https://eprint.iacr.org/2019/1014
https://doi.org/10.1007/3-540-36178-2_10
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-662-45611-8_4
https://doi.org/10.1007/978-3-030-03329-3_13
https://doi.org/10.1007/978-3-030-03329-3_13
https://doi.org/10.1007/978-3-662-53887-6_5

144 E. Alpirez Bock and A. Treff

12. Bogdanov, A., Rivain, M., Vejre, P.S., Wang, J.: Higher-order DCA against stan-
dard side-channel countermeasures. In: Polian, I., Stöttinger, M. (eds.) COSADE
2019. LNCS, vol. 11421, pp. 118–141. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-16350-1 8

13. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

14. Breunesse, C.-B., Kizhvatov, I., Muijrers, R., Spruyt, A.: Towards fully automated
analysis of whiteboxes: Perfect dimensionality reduction for perfect leakage. Cryp-
tology ePrint Archive, Report 2018/095 (2018). https://eprint.iacr.org/2018/095

15. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: Another attempt.
Cryptology ePrint Archive, Report 2006/468 (2006). http://eprint.iacr.org/2006/
468

16. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

17. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

18. Cooijmans, T., de Ruiter, J., Poll, E.: Analysis of secure key storage solutions on
android. In: Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & #38; Mobile Devices, SPSM ’14, pp. 11–20. ACM (2014)

19. CryptoLux: White-box cryptography. https://www.cryptolux.org/index.php/
Whitebox cryptography

20. cybercrypt: CHES 2019 capture the flag challenge - the whibox contest - 2nd edn.
(2019). https://www.cyber-crypt.com/whibox-contest/

21. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 247–264. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 13

22. Derbez, P., Fouque, P.-A., Lambin, B., Minaud, B.: On recovering affine encod-
ings in white-box implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(3), 121–149 (2018)

23. ECRYPT: CHES 2017 capture the flag challenge - the whibox contest (2017).
https://whibox.cr.yp.to/

24. EMV Mobile Payment: Software-based mobile payment security requirements
v1.2 (2019). https://www.emvco.com/wp-content/uploads/documents/EMVCo-
SBMP-16-G01-V1.2 SBMP Security Requirements.pdf

25. Fouque, P.-A., Karpman, P., Kirchner, P., Minaud, B.: Efficient and provable white-
box primitives. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS,
vol. 10031, pp. 159–188. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53887-6 6

26. Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box DES
implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 278–295. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77360-3 18

https://doi.org/10.1007/978-3-030-16350-1_8
https://doi.org/10.1007/978-3-030-16350-1_8
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://eprint.iacr.org/2018/095
http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://www.cryptolux.org/index.php/Whitebox_cryptography
https://www.cryptolux.org/index.php/Whitebox_cryptography
https://www.cyber-crypt.com/whibox-contest/
https://doi.org/10.1007/978-3-662-43414-7_13
https://doi.org/10.1007/978-3-662-43414-7_13
https://whibox.cr.yp.to/
https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.pdf
https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.pdf
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-540-77360-3_18
https://doi.org/10.1007/978-3-540-77360-3_18

Security Assessment of White-Box Design Submissions 145

27. Goubin, L., Paillier, P., Rivain, M., Wang, J.: How to reveal the secrets of an
obscure white-box implementation. J. Cryptogr. Eng. 10(1), 49–66 (2019). https://
doi.org/10.1007/s13389-019-00207-5

28. Guo, X., Karri, R.: Invariance-based concurrent error detection for advanced
encryption standard. In: Proceedings of the 49th Annual Design Automation Con-
ference, DAC ’12, pp. 573–578, New York, NY, USA, 2012. ACM

29. Jacob, M., Boneh, D., Felten, E.: Attacking an obfuscated cipher by injecting
faults. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 16–31. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5 2

30. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24209-0 19

31. Klemsa, J.: Side-channel attack analysis of AES white-box schemes. Master’s
thesis, Czech Technical University in Prague (2016). https://github.com/fakub/
DiplomaThesis

32. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

33. Kwon, J., Lee, B., Lee, J., Moon, D.: FPL: white-box secure block cipher using
parallel table look-ups. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp.
106–128. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3 6

34. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 14

35. Link, H.E., Neumann, W.D.: Clarifying obfuscation: Improving the security of
white-box encoding. Cryptology ePrint Archive, Report 2004/025 (2004). http://
eprint.iacr.org/2004/025

36. Muir, J.A.: A tutorial on white-box AES. Cryptology ePrint Archive, Report
2013/104 (2013). http://eprint.iacr.org/2013/104

37. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35999-6 3

38. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8 21

39. Teuwen, P.: Grey-box attacks, four years later. 2019 WhibOx Workshop, Darm-
stadt, Germany. https://www.cryptoexperts.com/whibox2019/slides-whibox2019/
Philippe Teuwen.pdf

40. Rivain, M., Wang, J.: Analysis and improvement of differential computation attacks
against internally-encoded white-box implementations. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2019(2), 225–255 (2019)

41. Rolles, R.: Unpacking virtualization obfuscators. In: Proceedings of the 3rd
USENIX Conference on Offensive Technologies, WOOT’09, p. 1, Berkeley, CA,
USA, 2009. USENIX Association

42. Salwan, J., Bardin, S., Potet, M.-L.: Symbolic deobfuscation: from virtualized code
back to the original. In: Giuffrida, C., Bardin, S., Blanc, G. (eds.) DIMVA 2018.
LNCS, vol. 10885, pp. 372–392. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93411-2 17

https://doi.org/10.1007/s13389-019-00207-5
https://doi.org/10.1007/s13389-019-00207-5
https://doi.org/10.1007/978-3-540-44993-5_2
https://doi.org/10.1007/978-3-642-24209-0_19
https://github.com/fakub/DiplomaThesis
https://github.com/fakub/DiplomaThesis
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-030-40186-3_6
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
http://eprint.iacr.org/2004/025
http://eprint.iacr.org/2004/025
http://eprint.iacr.org/2013/104
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21
https://www.cryptoexperts.com/whibox2019/slides-whibox2019/Philippe_Teuwen.pdf
https://www.cryptoexperts.com/whibox2019/slides-whibox2019/Philippe_Teuwen.pdf
https://doi.org/10.1007/978-3-319-93411-2_17
https://doi.org/10.1007/978-3-319-93411-2_17

146 E. Alpirez Bock and A. Treff

43. Smart Card Alliance Mobile and NFC Council. Host card emulation 101. white
paper (2014). https://www.securetechalliance.org/wp-content/uploads/HCE-101-
WP-FINAL-081114-clean.pdf

44. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77360-3 17

45. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2009 2nd Inter-
national Conference on Computer Science and Its Applications, pp. 1–6. IEEE
Computer Society (2009)

https://www.securetechalliance.org/wp-content/uploads/HCE-101-WP-FINAL-081114-clean.pdf
https://www.securetechalliance.org/wp-content/uploads/HCE-101-WP-FINAL-081114-clean.pdf
https://doi.org/10.1007/978-3-540-77360-3_17

On the Implementation Efficiency of
Linear Regression-Based Side-Channel

Attacks

Maamar Ouladj1(B), Sylvain Guilley2,3, and Emmanuel Prouff4,5

1 LAGA, UMR 7539, CNRS, Université de Paris VIII,
2 Rue de la liberté, 93200 Saint Denis, France

maamar.ouladj@etud.univ-paris8.fr
2 TELECOM-ParisTech, Crypto Group, Paris Cedex 13, France Secure-IC S.A.S.,

Rennes, France
3 Secure-IC S.A.S., Think Ahead Business Line, Paris, France

4 Sorbonne Universités, UPMC Univ Paris 06, POLSYS, UMR 7606, LIP6, F-75005
Paris, France

5 ANSSI, Paris, France
emmanuel.prouff@ssi.gouv.fr

Abstract. Cryptographic protocol implementations in both software
and hardware leak sensitive information during their execution. Side-
channel attacks (SCA) consist in analyzing this information in order to
reveal the secret parameters of the protocols. Among the different SCA
introduced in the literature, the Linear Regression Analysis (LRA) has
been argued to be particularly interesting when few information is avail-
able on the hardware architecture of the device executing the protocol
(e.g. if the so called Hamming weight model does not hold).

However, the computing complexity of the existing LRA implementa-
tion is high, which explains why other techniques like e.g. the Correlation
Power Analysis (CPA) is often preferred in practice.

This paper aims improving the LRA implementation complexity (in
memory space and computation) against both unprotected and pro-
tected implementations in uni- and multi-variate contexts. In addition
we exhibit the relationship between the LRA and the Numerical Normal
Form (NNF), which has been originally introduced in the field of Boolean
functions. Thanks to this relationship, we deduce the polynomial degree
of the normalized product combination of the arithmetic masking. Our
improvements have been assessed using simulated leakage of a running
AES.

Keywords: Side-channel analysis · Linear Regression Analysis ·
Stochastic model · Modular addition masking · Spectral approach

1 Introduction

1.1 Context: Side-Channel Analysis

Since the seminal paper on side-channel attacks (SCA) by Kocher et al. [16],
several improvements have been published. The most efficient SCA to date is
c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 147–172, 2021.
https://doi.org/10.1007/978-3-030-68773-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_8

148 M. Ouladj et al.

the Template Attack (TA) [6]. This method is split into two phases, that is a
profiling and a matching stage. An important weakness of this attack is the large
number of measurements required during the profiling stage. This requirement is
due to the need of an accurate estimation of the probability densities of different
instances of leakage [30]. Another limitation of TA is that it requires the access
to an open copy of the target device to conduct the profiling phase with known
secret parameters. To overcome this inconvenience, Schindler introduced a new
stochastic approach, that consists in approximating probability densities [29]. In
fact, even if the stochastic approach is less efficient than the Template Attack
(TA), it has the advantage that it requires less traces in the profiling stage than
TA [30] and that it can be turned into non-profiled attacks [9]. Since the publica-
tion of [29], several researches studied the stochastic approach as an SCA [3,28].

1.2 State-of-the-Art’s Review

In the original paper published by Schindler et al. [29], the LRA is presented
with a profiling step, as an alternative to the Template Attack [6,11]. In [11], the
authors state the ability of the stochastic attack to “learn” quickly from a smaller
number of samples than the Template Attack. A profiling attack using multivari-
ate regression analysis, followed by a Pearson correlation coefficient processing,
is presented in [35]. The authors of this paper have shown empirically that this
approach is more efficient than the conventional stochastic model attack.

In [9], it has been shown that the LRA can be carried out without a profil-
ing stage. In this paper, authors argued that the LRA can be conducted in the
uni-variate context like the Correlation Power Analysis (CPA) [2]. The advan-
tage of this suggestion is that the LRA needs less assumptions than CPA. The
relationship between the CPA and the stochastic approach is studied in [27].

Recently, LRA applied to XOR operations has been studied using the Ham-
ming weight and the distance models by the authors of [10]. They found that in
many common scenarios, LRA is a more efficient tool than CPA.

Subsequently, extensions of LRA to protected implementations are studied
in [8,19,30]. Using the later paper, authors of [21] address the question of the
LRA efficiency processing. Our paper provides a near exponential improvement
of the LRA computing time and an exponential improvement of memory space
compared with [21]. Our improvements apply to the LRA either with or without
a profiling phase, knowing the subkey during the profiling phase or not.

Recently, the authors of [12] suggested to use the Walsh-Hadamard orthog-
onal basis to characterize the leakage. The authors of this paper improve the
processing time on this particular basis. Our improvements are held indepen-
dently from the basis.

1.3 Contributions

Let us assume that N observations (�li)0≤i≤N−1 (d-dimensional traces) have been
measured during the processing of an operation F (xi, k) where F and the xi are
assumed to be known and where k is a target secret assumed to be constant.

On the Implementation Efficiency of LRA-Based SCA 149

Moreover, let L denote the N × d-matrix whose rows are the �li’s. The stochastic
approach essentially consists in modeling, for each key candidate k̂, the leakage
L according to a basis parametrized by k̂. The core idea is that a good choice of
the basis should imply that the modeling achieves best accuracy when the key
guess k̂ is correct.

Let us denote by Mk̂ the N ×s-matrix whose rows correspond to the evalua-
tion of the s basis functions in the values F (xi, k̂). All of the previously published

papers suggest to compute the matrix Pk̂

.=
(
Mk̂

TMk̂

)−1

Mk̂
T in order to carry

out the coefficients of the leakage on the chosen basis. Then Mk̂Pk̂L is computed
as an estimator of the leakage (or directly

(
Mk̂Pk̂

)
L) as shown in Algorithm 1.

This processing is the bottleneck of the LRA processing, because it is repeated
for all guessed subkeys k̂.

Let us denote by n the bit-length of k̂ and xi. Even though the authors of [8]
and [21] give some computation improvements, the complexity of their algorithm
is O(23n) in the space memory and O(23n ×d) in the processing time. Our paper
provides further significant improvements in both of them; the required memory
space becomes O(s×2n) and the processing time reduced to O(sn2nd). In what
follows, we summarize our contributions.

First, an invariant computation of matrices is exhibited (the matrix(
Mk̂

TMk̂

)−1

is independent from the guessed subkey k̂), thereby avoiding 2n−1
repeated computations. In particular, only one matrix inversion is required dur-
ing the whole attack, which leads to a significant reduction in the processing
time.

Second, a relationship between stochastic model expressions for the guessed
subkey 0 and an arbitrary guessed subkey k̂ is exhibited (namely, between M0P0

and Mk̂Pk̂). This relationship allows for drastic improvements both in the pre-
processing time and in the memory space required to carry out an LRA. Thanks
to this relation, only one product matrix is needed for all possible subkeys k.

Third, we exhibit a spectral approach to further accelerate LRA computa-
tions (Algorithm 4 instead of Algorithm 1). This allows for a near exponential
computational improvement (a time attack factor is reduced from 2n to n). For
reference, the use of the spectral approach in SCAs was introduced in [13]. In
what follows, we provide a further improvement of ratio 2n/s both in the space
memory and the processing time (Algorithm 2 instead of Algorithm 4).

Fourth, we extend those improvements in the higher-order masking context
(Sect. 4). For our experimental validation, two masking methods are challenged,
namely the Boolean masking and the 2n-modular additive masking [18].

Finally, we exhibit, for the first time the relationship between the LRA and
the Numerical Normal Form (NNF) [5] of the leakage function. In fact, in order
to carry out a higher order (H-O) SCA, an optimal combination between the
shares leakages must be found (see [20] for more details). If the noise variance
is high, the optimal combination is the normalized product, independently from
the masking technique [4]. Thanks to the relation between the NNF and the
LRA, we show that it is possible to exhibit the polynomial expression of this

150 M. Ouladj et al.

combination against the first-order additive masking. In fact, knowing such a
polynomial expression is useful for the H-O CPA. Also, knowing the degree of
the polynomial is useful for the adversary to choose the basis used in the LRA.

1.4 Outline

In Sect. 2, a mathematical modelization of the problem is presented. In Sect. 3, we
develop our contributions in a monovariate context (where the sensitive variable
is not shared). In Sect. 4, we extend them to multivariate contexts (i.e. when
masking countermeasure is applied). In Sect. 5, we verify our contributions on
simulated AES traces. Finally, we conclude our study in Sect. 6.

2 Mathematical Modelization

2.1 Notations

Throughout this work we use the same notations of the related paper [21]. Ran-
dom variables are denoted by large letters. A realization of a random variable
(ex. X) is denoted by the corresponding lowercase letter (ex. x). A sample of
several observations of X is denoted by (xi)i. Sometimes it is viewed as a vector.
The notation (xi)i ←↩ X means the initialization of the set (xi)i from X. E[X]
and σ[X] denote respectively the mean and the standard deviation of X.

The notation �X denotes column vectors and �X[u] denotes its uth coordinate.
Calligraphic letters will be used to denote matrices, such that the elements of
a matrix M will be denoted by M[i][j]. Furthermore its uth column is denoted
by �M[u] and its ith line denoted by �MT[i]. The symbols ·2 and

√·, applied to
vectors and matrices, denote respectively the square and the square root off all
the vector/matrix coordinates.

During the attack, we consider that the adversary targets the manipulation of
a single sensitive variable Z. Our results can be directly extended to the general
case, where several variables are targeted in parallel. The sensitive variable Z
depends on a public variable X (typically a plaintext or ciphertext) and on
a secret subkey k such that Z = F (X, k) where F : F

n
2 × F

n
2 −→ F

m
2 . The

bit-lengths n and m depend on the cryptographic algorithm and the device
architecture. Typically Z = sbox(X ⊕ k), such that sbox denotes a substitution
box and ⊕ denotes the bitwise addition.

The attack is carried out with N traces�l0, . . . ,�lN−1. Each �li ←↩ �L corresponds
to the processing of zi = F (xi, k), such that xi ←↩ X and zi ←↩ Z. The number
of samples per traces (instantaneous leakage points) is denoted by d.

2.2 Description of Stochastic Attacks

LRA consists first in choosing a basis of s functions (mp)0≤p≤s−1, such that
m0 is a constant function (typically equal to 1). For each subkey guess k̂, the
adversary constructs an (N ×s)−prediction matrix

(
Mk̂[i][p] .= mp(ẑi)

)
i,p

, such

On the Implementation Efficiency of LRA-Based SCA 151

that ẑi = F (xi, k̂) is the guessed value of the sensitive variable corresponding to
the plaintext xi. For example, if one aims at regressing the leakage as a linear
combination of the bits of the ẑi’s, then for this basis one has s = 9, m0(z) = 1
and mp(z) returning the pth bit of z.

The comparison of this matrix with the set of d-dimensional leakage traces
(�li)i ←↩ �L is carried out by linear regression of each coordinate of (�li) in the
basis formed by the rows of Mk̂. Namely, a real-valued (s × d)-matrix βk̂ with
column vectors �βk̂[1], . . . , �βk̂[d] are estimated in order to minimize the error when
approximating �L[u] by (Mk̂ × βk̂)[u]. The vector �βk̂[u] is defined, for each time
sample u and each guess k̂, such that [31, Theo. 3]:

�βk̂[u] = (Mk̂
TMk̂)−1Mk̂

T �L[u], (1)

where L is a (N × d)−matrix, whose rows are the �
li

T vectors, and where �L[u]
denotes the uth column of the matrix L.

As defined in [21], to quantify the estimation error, the goodness of fit model
is used and the correlation coefficient of determination R is computed for each
u. R is defined by R

.= 1 − SSR/
−−→
SST , where

−−→
SST denotes the leakage Total

Sum of Squares and SSR denotes the leakage Residual Sum of Squares [21].
Let us remind that the dimension of Mk̂ is N×s. So carrying out LRA naively

on the real traces is difficult and even impossible in presence of countermeasures
(a large number N of measurements is required) with high dimension d. One
can show that the attack efficiency is unchanged if it is performed over the
averaged leakages per class (the averaged leakage equals (1

#i:xi=x

∑
i:xi=x

�li)x∈F
n
2
,

if (#i : xi = x) �= 0, and it equals 0 else) instead of over rough traces [8]. Thanks
to this improvement, the size of Mk̂ is reduced from O(N × s) to O(2n × s). We
recall that N (which is the number of traces involved in the attack, e.g. N = 106)
is often much greater than 2n (the number of possible subkeys, e.g. 2n = 256).

Algorithm 1 shows the LRA processing on the averaged leakages per sensitive
variable value, as suggested in the literature ([8] and [31]). As we can see from
this algorithm, for each guessed subkey k̂, the attack can be conducted by pre-
processing Pk̂ = (Mk̂

TMk̂)−1Mk̂
T once, then by computing the weights of

linear regression �βk̂[u] = Pk̂ × �L[u] for each u, and eventually by computing the
leakage estimation �Ek̂[u] = Mk̂Pk̂ × �L[u]. Remember that the overall complexity
of the inversion is about O(s2.373) using Optimized Coppersmith–Winograd-like
algorithm [37]. So, the time complexity of the pre-processing of the 2n matrices
Pk̂ is about O(2n × (s2.373 + 2n × s2)) and that of the vectors �βk̂[u] is about
O(22n × s × d) multiplications.

Since the adversary does not need the coefficients of �βk̂[u] explicitly, during
a non-profiled attack, one can pre-process Gk̂ = Mk̂Pk̂ once, then straightfor-
wardly compute the leakage estimation �Ek̂[u] = Gk̂ × �L[u], for each u. So, we
can save one matrix product per (k̂, u) [21]. Whether using this optimization or
not, the LRA is still difficult (even impossible against higher-order masking). In
fact, one must pre-compute and save 2n matrices Gk̂ and compute one matrices’

152 M. Ouladj et al.

Input :
– a set of d-dimensional leakage (�li)1≤i≤N and the corresponding plaintexts

(xi)1≤i≤N ,
– a set of model functions (mp)p≤s.

Output : The candidate subkey k̂

1 for i ← 0 to N − 1 do // Processing of the leakage Total Sum of Squares (
−−→
SST)

2 μ �L ← μ �L + �li

3 ν �L ← ν �L + �li
2

4
−−→
SST ← ν �L − 1

N
μ2

�L
5 for k̂ ← 0 to 2n − 1 do // Pre-processing of the 2n prediction matrices Mk̂ and Pk̂

6 for p ← 0 to s do
7 for x ← 0 to 2n − 1 do

8 Mk̂[x][p] ← mp[F (x, k̂)]

9 Pk̂ ←
(
MT

k̂
× Mk̂

)−1 × MT
k̂

10 for i ← 0 to N − 1 do // Computation of the coalesced matrix L
11 �LT[xi] = �LT[xi] + li
12 count[xi]=count[xi]+1

13 for x ← 0 to 2n − 1 do
14 if count[x] then

15 �LT[x] = �LT[x]/count[x]

16 for k̂ ← 0 to 2n − 1 do // Test hyp. k̂ for all leakage coordinates

17 for u ← 0 to d − 1 do // Instantaneous attack (at time u)

18 �β ← Pk̂ × �L[u]

19 �E [u] ← Mk̂ × �β // �E[u] = Mk̂ ×
(

MT
k̂

× Mk̂

)−1
× MT

k̂
× �L[u]: Estimator of

�L[u]

20 SSR ← 0
21 for x ← 0 to 2n − 1 do // Computation of the Residual Sum of Squares (SSR)

22 SSR ← SSR + (E [x][u] − L[x][u])2

23 R[k̂][u] ← 1 − SSR−−→
SST [u]

// coefficient of determination [8]

24 return argmaxk̂

(
maxuR[k̂][u]

)

Algorithm 1: Linear Regression Analysis with coalescence (without using the
Proposition 3 and 4).

product �Ek̂[u] = Gk̂ × �L[u] for each pair (k̂, u). So, the pre-processing time com-
plexity of the 2n matrices Gk̂ is about O(s2.373 × 2n + 22n × s2 + 23n × s) and
that of the estimators �Ek̂[u] is about O(23n × d) multiplications.

On the Implementation Efficiency of LRA-Based SCA 153

To circumvent these bottlenecks, an LRA study with some important
improvements in term of memory space and processing time will be provided
in the following sections. These improvements concern both scenarios with and
without processing of the regression weights �βk̂[u].

3 LRA Study and Improvements of Its Implementation

As previously recalled, in practice the LRA is carried out over the leakages aver-
aged according to the value of the corresponding sensitive variable (or equiva-
lently according to the value of the corresponding message). This approach was
first put forward by [8,31] and [21] and is called ‘coalesced ’ in [34]. One of the
advantages of averaging the leakage is that, as long as N ≥ 2n, it leads to less
memory space and more processing time efficiency.

In fact, as studied in the followed Subsect. 3.1, carrying out an SCA with or
without averaging traces are asymptotically equivalent.

3.1 Difference Between SCAs with and Without Coalescence

Let us first study the difference between the distribution of rough traces and
that of the averaged ones per class (a so called coalescence approach). From
Cochran’s Theorem [7] one has the following proposition:

Proposition 1 (simplified version of Cochran’s Theorem). Let
(li)0≤i≤N−1 be N univariate observations of a random variable L that follows
a normal distribution N (μ, σ). Let μ̂ and σ̂2 be respectively the estimators of μ

and σ2 defined by μ̂ = 1
N

∑N−1
i=0 li, and σ̂2 = 1

N

∑N−1
i=0 (li − E[L])2. Then, one

has:

– μ̂ and σ̂2 are independents random variables,
– μ̂ ∼ N (μ, σ/

√
N) and nσ̂

σ2 ∼ χ2(N − 1).

Proposition 2. Under the additive independent noise assumption, carrying out
an SCA with or without coalescence are asymptotically equivalent.

To compare the efficiency of an SCA with and without coalescence, let us
consider that, under the additive independent noise assumption, the adversary
knows the leakage model. In this situation both CPA and covariance distinguish-
ers are the optimal distinguishers [14]. To prove Proposition 2, we limit ourselves
to these two optimal distinguishers.

Proof. See the Appendix A (that uses Cochran’s Theorem). 	

Due to this asymptotic equivalence between SCAs with and without coa-
lescence, LRA (introduced first with coalescence) tends toward LRA without
coalescence, as it will be also shown experimentally in Sect. 5.

In the rest of this paper we study the LRA with coalescence, hence assuming
that the adversary does not directly attack using the N traces �li but using their

154 M. Ouladj et al.

averaged (coalesced) version (let define nj
.= #{xi = j; 0 ≤ i ≤ N − 1}, the

averaged trace equals 1
nj

∑N
xi=j

�li, if nj �= 0, and it equals 0 else). To simplify

the notations, the 2n averaged traces are still denoted by �li and the dimension
N in the definition of the matrices Mk̂, Pk̂, Gk̂ and L is replaced by 2n. Namely,
the matrix Mk̂ dimension becomes 2n × s instead of N × s and the matrix L
dimension becomes 2n × d instead of N × d and similarly for all the derived
matrices and vectors. Those new matrices shall be called coalesced in the sequel.

3.2 LRA with Assumption of Equal Images Under Different
Subkeys

An important property, that holds true for the most key mixing based crypto-
graphic functions, is introduced in [31].

Definition 1. (Equal Images under different Subkeys (EIS) [31,
Def. 2]). Let V denotes an arbitrary set and let φ:{0, 1}n × {0, 1}n′ → V be a
function, such that for every subkey k all φ({0, 1}n × {k}) ⊆ V are equal. We
say that the function F has the “Equal Images under different Subkeys (EIS)”
property if a function F : V → R exists such that F = F ◦ φ.

A more specific case is when F (x, k) depends only on x ⊕ k as in common
block ciphers (i.e. on ciphers as DES [22] and AES [23]). Other cases are the
2n-modular addition (mod (2n)), and the 22

m

+ 1-modular multiplication of
non-zero numbers, such that m = 1,2,3,4 (22

m

+ 1 are the Fermat numbers).
The first important contribution of our paper is the following proposition.

Proposition 3. Using the coalescence, let H .= Mk̂
TMk̂, Pk̂

.=
(Mk̂

TMk̂)−1Mk̂
T and Gk̂

.= Mk̂Pk̂, such that Mk̂ is as defined above. Under
the EIS assumption:

1. H is independent from the guessed subkey k̂.
2. If the leakage function depends only on x ⊕ k̂, then for every (j, k̂) we have:

Mk̂[j][.] = M0[j ⊕ k̂][.]

and,

(a) Pk̂[i][j] = P0[i][j ⊕ k̂]
(b) Gk̂[i][j] = G0[i ⊕ k̂][j ⊕ k̂]

Proof. 1. From the EIS assumption,

Hk̂[i][j] =
2n−1∑
x=0

Mk̂
T[i][x]Mk̂[x][j] =

2n−1∑
x=0

mi[F (x, k̂)]mj [F (x, k̂)]

=
2n−1∑
y=0

mi[F (y, 0̂)]mj [F (y, 0̂)] = H0[i][j]

On the Implementation Efficiency of LRA-Based SCA 155

If the leakage only depends on x ⊕ k, then

Hk̂[i][j] =
2n−1∑
x=0

Mk̂
T[i][x]Mk̂[x][j] =

2n−1∑
x=0

M0
T[i][x ⊕ k̂]M0[x ⊕ k̂][j]

=
2n−1∑
y=0

M0
T[i][y]M0[y][j] = H0[i][j] ; such that y = x ⊕ k̂.

2. (a)

Pk̂[i][j] = (H−1 × Mk̂
T)[i][j] =

s−1∑
p=0

H−1[i][p]Mk̂
T[p][j]

=
s−1∑
p=0

H−1[i][p]M0
T[p][j ⊕ k̂] = P0[i][j ⊕ k̂].

2. (b)

Gk̂[i][j] = (Mk̂ × Pk̂)[i][j] =
s−1∑
p=0

Mk̂[i][p]Pk̂[p][j]

=
s−1∑
p=0

M0[i ⊕ k̂][p]P0[p][j ⊕ k̂] = G0[i ⊕ k̂][j ⊕ k̂].

	

Proposition 3 implies a significant time and memory gain. First, only one matrix
H0 has to be computed and inverted instead of 2n.

Second, for each time simple u, if we need the weight �βk̂[u] returned by the
linear regression, then we just need to first pre-process the single matrix P0. All
the other 2n −1 matrices Pk̂ can be directly deduced using Proposition 3 instead
of pre-processing and saving 2n matrices products. Afterwards, for every guessed
subkey k̂ and for each time sample u, one matrices’ product needs to be carried
out to get the coefficients �βk̂[u] = Pk̂

�L[u].
Third, similarly to above, to conduct LRA without computing �βk̂[u] vectors,

the adversary needs first to pre-process a single matrix G0. All the other 2n

matrices Gk̂ can be directly deduced using Proposition 3 instead of 2n matrices
products pre-processings and savings, as suggested in [21]. Then for every guessed
subkey k̂ and for each time sample u, one matrix product has to be carried out
to compute �Ek̂[u] = Gk̂

�L[u]. In fact, whether this improvement is used or not,
the estimator’s computing is still difficult.

3.3 Spectral Approach Computation to Speed up LRA (with EIS)

In this section, we will show that the LRA processing can still be improved.
Indeed, instead of computing coefficients �βk̂[u] (resp. vectors �Ek̂[u]) for each
subkey k̂, only one computation is sufficient, as shown in the sequel.

Let us first recall the definition of a convolution product that we need.

156 M. Ouladj et al.

Definition 2. Let (S,⊕) be a group of size 2n. Let g, h be two functions from S

to R. A convolution product between g and h is a function denoted by g ⊗ h and
defined from S to R such that for every k ∈ S, (g ⊗ h)(k) =

∑
j∈S

g(j)h(j ⊕ k).

To naively evaluate the convolution product for all possible values of k, one
needs O(22n) multiplications. Let us also denote a so-called functions’ product
by g • h such that g • h(j) = g(j)h(j). It is nothing but a coordinate-wise
product. Furthermore, we denote by WHT the Walsh-Hadamard Transform,
which is nothing but the Fourier Transform over the group (S,⊕). A flowgraph
for computing WHT for n = 3 is added in Appendix C. It is noteworthy that
WHT is the inverse of itself. An important property of the convolution product
is that, for every k ∈ S, we have:

g ⊗ h(k) = WHT−1 (WHT (g) • WHT (h)) (k). (2)

Thanks to this property, one can evaluate the convolution product in all
possible values k in once, with an overall complexity of O(n2n) instead of O(22n).

Proposition 4. With the same previous notations, if F (x, k) = F (x ⊕ k) for
every possible values of x and k, then we have:

1. βk̂[i][u] = WHT−1
(
WHT (P0[i][.]) • WHT (�L[u])

)
(k̂)

2. Ek̂[i][u] = WHT−1
(
WHT (G0[i ⊕ k̂][.]) • WHT (�L[u])

)
(k̂),

where:

– P0[i][.] denotes the ith line of the matrix P0,
– �L[u] denotes the uth column of the matrix L,

Proof. 1.

βk̂[i][u] = (Pk̂L[u])[i] =
2n∑

j=0

Pk̂[i][j]L[j][u] =
2n∑

j=0

P0[i][j ⊕ k̂]L[j][u]

= P0[i][.] ⊗ �L[u](k̂) = WHT−1
(
WHT (P0[i][.]) • WHT (�L[u])

)
(k̂),

by seeing the line P0[i][.] and the vector �L[u]) as function evaluation tables.
2. Similarly,

Ek̂[i][u] = (Gk̂
�L[u])[i] =

2n−1∑
j=0

G0[i ⊕ k̂][j ⊕ k̂]L[j][u] = G0[i ⊕ k̂][.] ⊗ �L[u](k̂)

= WHT−1
(
WHT (G0[i ⊕ k̂][.]) • WHT (�L[u])

)
(k̂).

	

So, Proposition 4 allows us to further save time. Indeed if we need the �βk̂[u]
coefficients, we first need to pre-process only one matrix P0. Then we compute
WHT (P0[i][.]) for each line 0 ≤ i ≤ s − 1, only once. Then we also compute

On the Implementation Efficiency of LRA-Based SCA 157

WHT (�L[u]) only once. Then for each line 0 ≤ i ≤ s − 1, we compute the vector
WHT−1

(
WHT (P0[i][.]) • WHT (�L[u])

)
. In fact, according to Proposition 4, for

each k̂ the coefficient �βk̂[i][u] is the k̂th scalar of the last vector. So, no matrix
product should be done to compute the coefficient βk̂[i][u]. The overall time
complexity of the pre-processing is about O(s2.373 + 2n × s2 + s×n2n) and that
of vectors �βk̂[u] computation is about O((n + 1)2n × s × d). So, the vectors’
�βk̂[u] computation has an overall complexity of O((n + 1)2n × s × d) instead of
O(22n × s × d).

Similarly, to conduct LRA without computing the �βk̂[u] vectors, the adver-
sary needs first to pre-process only one matrix G0. Then she pre-processes a
WHT for each line 0 ≤ i ≤ 2n − 1 of G0. Then she modifies the leakage vec-
tor �L[u] by WHT (�L[u]). Then she modifies each line 0 ≤ i ≤ 2n − 1 of G0

by the vector WHT−1(WHT (G0[i][.]) • WHT (�L[u])) (only a coordinate-wise
product and a processing of WHT−1 to do per line). Finally, for each guessed
subkey k and each plaintext 0 ≤ i ≤ 2n − 1, the estimated leakage Ek̂[i][u]
is just a scalar of the updated matrix G0. Namely it is the current value of
G0[i ⊕ k̂][k̂]. So, no matrix product must be done during the estimated leakage
matrix Ek̂ computation. The overall time complexity of the pre-processing is
about O(s2.373 + 2n+1 × s2 + n22n) and that of the estimated leakage matrix
Ek̂ computation is about O((n2n + (n + 1)22n)d). So, the estimated leakage
matrix’s Ek̂ computation has an overall complexity of O((n + 1)22n × d) instead
of O(23n ×d). Algorithm 4 in Appendix B shows LRA processing with this spec-
tral approach.

3.4 Further Improvement

The new bottleneck of the last algorithm (Algorithm 4) is the lines 19–20. To
avoid computing 2n Walsh-Hadamard Transform inverse WHT−1, one can see
that lines from 19 to 24 aim to compute the error square quadratic norm∥∥∥ �L[u] − �Ek̂[u]

∥∥∥
2

. In fact, the LRA aims to minimize this error. One can min-
imize it otherwise:

∥∥∥ �L[u] − �Ek̂[u]
∥∥∥
2

=
2n−1∑
i=0

(L[i][u] − Ek̂[i][u])2

=
2n−1∑
i=0

L[i][u]2 +
2n−1∑
i=0

Ek̂[i][u]2 − 2
2n−1∑
i=0

L[i][u]Ek̂[i][u]

First,
∑2n−1

i=0 L[i][u]2 is clearly independent from k̂.
Second, since the symmetric matrix Gk̂ is idempotent (i.e. Gk̂

TGk̂ = Gk̂), so

158 M. Ouladj et al.

2n−1∑
i=0

Ek̂[i][u]2 =
2n−1∑
i=0

(Gk̂
�L[u])[i]2 =

2n−1∑
i=0

((Gk̂
�L[u])

T
[i]) × ((Gk̂

�L[u])[i])

= (Gk̂
�L[u])

T × ((Gk̂
�L[u])) = �L[u]

TGk̂
TGk̂

�L[u] = �L[u]
TGk̂

�L[u]

=
2n−1∑
i=0

L[i][u]Ek̂[i][u]

Finally, we have
∥∥∥ �L[u] − �Ek̂[u]

∥∥∥
2

=
∑2n−1

i=0 L[i][u]2 −
∑2n−1

i=0 L[i][u]Ek̂

[i][u]. So, minimizing the estimation error is equivalent to maximizing∑2n−1
i=0 L[i][u]Ek̂[i][u].
Recall that Gk̂ = Mk̂(Mk̂

TMk̂)−1Mk̂
T. Since (Mk̂

TMk̂) is a positive
defined matrix, one can factorize it by Cholesky’s decomposition into a matrix
product T TT , such that T is an s × s upper triangular matrix [17]. So, let us
define by Uk̂ the matrix T T−1Mk̂

T. Then, we have Gk̂ = Uk̂
TUk̂ and,

2n−1∑
i=0

L[i][u]Ek̂[i][u] = �L[u]
TGk̂

�L[u] = (Uk̂
�L[u])

T
(Uk̂

�L) =
∥∥∥Uk̂

�L[u]
∥∥∥
2

.

So, minimizing the error square quadratic norm is equivalent to maximizing∥∥∥Uk̂
�L[u]

∥∥∥
2

. Moreover, one can show that Uk̂[.][j] = U0[.][j ⊕ k̂]. Hence, we have:

∥∥∥Uk̂
�L[u]

∥∥∥
2

=
s−1∑
p=0

(
(Uk̂

�L[u])[p]
)2

=
s−1∑
p=0

⎛
⎝

2n−1∑
j=0

U0[p][j ⊕ k̂]L[j][u]

⎞
⎠

2

=
s−1∑
p=0

(
U0[p][.] ⊗ �L[u](k̂)

)2

=
s−1∑
p=0

(
WHT−1

(
WHT (U0[p][.]) • WHT (�L[u])

)
(k̂)

)2

So,
∥∥∥Uk̂

�L[u]
∥∥∥
2

=
∥∥∥WHT−1

(
WHT (U0[.][.]) • WHT (�L[u])

)
(k̂)

∥∥∥
2

, (3)

such that WHT (U0[.][.]) denotes WHT for each line of the matrix U0.
Finally, one can carry out the LRA by saving only one matrix U0 of dimension

s×2n, then computing WHT (U0[.][.]), and processing for each u the convolution
of each line with the leakage vector according to Eq. (3). The obtained key by the
LRA is the column index that has the highest norm in the result matrix. One can
easily sow that the correlation coefficient of determination R

.= 1 − SSR/
−−→
SST

it nothing but
∥∥∥Uk̂

�L[u]
∥∥∥
2

/SST [u].
Algorithm 2 shows the most efficient LRA processing that we have obtained,

thanks to (1) the coalescence, (2) the last transformation using Uk̂, and (3) the

On the Implementation Efficiency of LRA-Based SCA 159

spectral approach. In fact Algorithm 2 is 2n/s times more efficient than Algo-
rithm4 both in space memory and processing time. Tables 1 and 2 summarize
the LRA best complexities, with and without computing �βk̂[u] vectors, respec-
tively. The third lines give our improvement in the AES case of study (n = 8)
for basis size s = 9.

It is noteworthy that all our results that assume the group operation ⊕ over
the set {0, 1}n (i.e. F (x, k) = F (x⊕k)) hold true for any other group operation �
as long as Walsh-Hadamard Transform is replaced by Fourier Transform (FFT)
on this group ({0, 1}n,�). For example, if the operation is +(mod (2n)), then
Cyclical Fourier Transform must replace Walsh-Hadamard Transform (WHT).

It is also noteworthy that to increase the numerical stability of the least
square estimation, authors of [12,30] advise to select an orthogonal basis.
Another advantage of our improvements is that is independent from the cho-
sen basis.

Furthermore, our improvements relate to the LRA either with or without a
profiling phase, either knowing the subkey during the profiling phase or not.

3.5 Incremental Implementation of LRA

Incremental implementation of LRA means the carrying out of an LRA using
some set of traces, then update its computation when a new trace is added,
and so on. From Algorithm4 one can see that the instructions 5–10 should
be carried out only once. All the other instructions can easily be implemented
incrementally according to the new added leakage traces. It is useful to note
that the instructions 18–20 can also be implemented incrementally, due to the
linearity of WHT and the bi-linearity of the coordinate-wise product (•).

4 Extension of the Improvements to the Protected
Implementations by Masking

Let us consider a leaking cryptographic device protected by masking. Let t
denotes a strictly positive integer. The protection by a masking of order t con-
sists in dividing each sensitive variable Z into t + 1 shares Z0,..., Zt. In practice
at least two different kinds of masking can be used; the Boolean masking and the
arithmetic masking [18]. While the Boolean masking is compatible with linear
Boolean functions, the arithmetic masking is compatible with arithmetic opera-
tions such as the modular addition in IDEA and TEA Algorithms [36]. Without
loss of generality, we assume that the u-th sample in the measured leakage �L
corresponds to the u-th share of the sensitive variable Z, such that 0 ≤ u ≤ t.
Let the deterministic part of the leakage �L (namely E[�L|(Zu)u]) be denoted by
�Y . In order to recover information on Z, an adversary must combine the leakages
on all the t + 1 shares in a so-called (t + 1)-th higher-order SCA.

In order to conduct a higher-order attack, many combination functions
(which aim at combining the leakages of the different shares to form a new
exploitable signal) were proposed in the literature [15,24,32]. According to [4,25],

160 M. Ouladj et al.

Input :

– a set of d-dimensional leakage (�li)0≤i≤N−1 and the corresponding plaintexts
(xi)0≤i≤N−1,

– a set of model functions (mp)p≤s.

Output : The candidate subkey k̂

1 for i ← 0 to N − 1 do // Processing of the leakage Total Sum of Squares (
−−→
SST)

2 μ �L ← μ �L + �li

3 ν �L ← ν �L + �li
2

4
−−→
SST ← ν �L − 1

N
μ2

�L
5 for p ← 0 to s do // Pre-processing of the unique prediction matrix M0

6 for x ← 0 to 2n − 1 do

7 M0[x][p] ← mp[F (x, 0̂)]

8 U0 ← T T−1M0
T

// T .
=

(
Cholesky

(
MT

0 × M0

))−1

9 for p ← 0 to s do // Pre-processing WHT of the lines of matrix U0

10 U0[p][.] ← WHT (U0[p][.])

11 for i ← 0 to N − 1 do // Computation of the coalesced matrix �L
12 �LT[xi] = �LT[xi] + li
13 count[xi]=count[xi]+1

14 for x ← 0 to 2n − 1 do
15 if count[x] then

16 �LT[x] = �LT[x]/count[x]

17 for u ← 0 to d − 1 do // Instantaneous attack (at time u)

18
−→
W L[u] ← WHT (�L[u])

19 for p ← 0 to s − 1 do // Computation of the error according to Eq. (3)

20 U0[p][.] ← WHT −1
(
U0[p][.] • −→

W L[u]
)

21 for k̂ ← 0 to 2n − 1 do // Test hyp. k̂ for all leakage coordinates

22 SSR ← 0
23 for p ← 0 to s − 1 do // Computation of the Residual Sum of Squares (SSR)

24 SSR ← SSR +
(
U0[p][k̂]

)2

25 R[k̂][u] ← SSR−−→
SST [u]

// coefficient of determination [8]

26 return argmaxk̂

(
maxuR[k̂][u]

)

Algorithm 2: The most efficient LRA thanks to the spectral approach.

On the Implementation Efficiency of LRA-Based SCA 161

Table 1. Space memory and executing time complexities with computing �β.

Memory P pre-processing �β processing

Old implementations s × 22n s2.373 × 2n + 22n × s2 22n × s × d

Our implementation s × 2n s2.373 + 2n × s2 + s × n2n (n + 1)2n × s × d

AES (n = 8) with s = 9 256 times 136 times 28 times

Table 2. Space memory and executing time complexities without computing �β.

Memory Pre-processing �E processing

Old implementations 23n s2.373 × 2n + 22n × s2 + 23n × s 23n × d

Our implementation s × 2n s2.373 + 2n−1 × s2 + s × n2n (n + s(n + 1))2nd

AES (n = 8) with s = 9 7282 times 5426 times 736 times

for a high noise, the optimal combination technique against masking is the nor-
malized product (for a first-order masking: (�L[0]−E[�L[0]])(�L[1]−E[�L[1]])), and
this combination function should be accompanied by an optimal model (for a
first-order masking: E[(�Yk̂[0] − E[�Y [0]])(�Yk̂[1] − E[�Y [1]])| Z]). While the LRA is
carried out on the combination leakage, as suggested in [8], all the ideas devel-
oped in the previous sections to improve the LRA efficiency can straightforwardly
be applied on the protected implementations. In Subsect. 5.3, we experimentally
show through several examples that the effectiveness of LRA against masked
implementations stays unchanged when applying our improvements (the timing
and the memory complexities are significantly improved).

4.1 Normalized Product Combination Against Arithmetic Masking

Since the construction of a proper SCA leakage model is at least as important as
the selection of a good distinguisher [9], in this subsection we assess the optimal
leakage model of the multiplication combination against arithmetic masking.

Recall that in practice the n-variables polynomials’ basis is the most used
basis in the LRA-based SCAs. In such a case, LRA consists in projecting the
leakage function �LT[.] on the polynomials’ basis. Our core idea is that for any
function f defined from {0, . . . 2n −1} to R such that for each Z ∈ {0, . . . 2n −1}
the value f(Z) is known, the Numerical Normal Form (NNF) [5] consists to
project f also on this polynomials’ basis. So, in H-O attacks knowing the poly-
nomial projection of the model (or at least knowing its degree), the (normalized)
multiplication combination allows the adversary to choose the optimal polyno-
mials’ basis for LRA. In fact, if one uses the polynomials’ basis, which is the
most used in LRA, the expected coefficients �βk̂[u] are non other then the coeffi-
cients of the Numerical Normal Form (NNF) [5] of �E [u]. That means LRA does
nothing but regresses the NNF of the Leakage function when a polynomials’
basis is used.

162 M. Ouladj et al.

Thanks to [26, Lemma 1], one knows that if the leakage follows the Hamming
weight model, then the combination against the tth-order Boolean masking is a
degree 1 polynomial. Namely it equals (− 1

2)t
(∑

i zi − n
2

)
, such that (zi)i=0...7

denotes the bits of the sensitive value Z. This important result holds for the
Boolean masking but it does not hold for the arithmetic masking.

For the modular addition masking, let the combination function f
.=

E[(hw(Z +R)−E[hw(Z + R)])(hw(R)−E[hw(R)]) mod 256| Z]. In fact thanks
to the Numerical Normal Form of the function f denoted f̃ , one can show that
it is a degree 2 polynomial of Z’s bits. Namely f̃ = 4608 +

∑
i (2i − 256)zi +∑

i,j;i<j (28+i−jzizj). Similarly, if the leakage follows the Hamming weight
model, the optimal combination of t shares (t < 9) for such masking is a tth-
degree polynomial. To exhibit this result, one should compute f(Z) for each pos-
sible value Z, then carry out the NNF of f using Algorithm 3 obtained from [5].

Input : f , n.
Output : f as its f̃

1

2 for i ← 0 to n − 1 do
3 b ← 0
4 repeat
5 for x ← b to b + 2i − 1 do
6 f [x + 2i] ← f [x + 2i] − f [x]

7 b ← b + 2i+1

8 until b = 2n

Algorithm 3: Numerical Normal Form [5].

5 Experiments

During our experiments two simulated leakage models are studied by:

1. The Hamming weight model:
∑7

zi=0 zi,
2. A degree 2 polynomial model:

∑7
zi=0 zi + 1

2

∑6
zi=0

∑7
zj=zi+1 zizj .

In both of them we added a zero-mean additive Gaussian noise, with different
standard deviation values σ. In this work we compare CPA with coalescence,
CPA, LRA with coalescence and LRA as long as its carrying out is possible. All
these attacks are targeting the sbox output of the first AES round.

We assess different attacks both against unprotected implementations and
against implementations protected by the Boolean masking or arithmetic mask-
ing. In the different scenarios, we assume that, with the exception of the additive
independent noise, the CPA’s adversary knows the leakage model. The effective-
ness of our attacks is assessed by processing success rates (SR) according to the
numbers of traces (#measurements) [33].

On the Implementation Efficiency of LRA-Based SCA 163

5.1 LRA with and Without Spectral Approach

First, we assess the efficiency of LRA with and without the spectral approach.
Figure 1 shows that there is no difference between them in term of success rate,
in all scenarios (protected/unprotected implementations with 1 or 2 degree poly-
nomial leakage model). So, thanks to our improvements, one can conduct LRA
without loss in the effectiveness, while it is significantly faster, with less memory
space (as shown theoretically in Tables 1, 2 and experimentally in Tables 3, 4).

Table 3. Space memory & executing time of LRA with computing �β; AES use case.

Memory P pre-processing �β processing

Old implementations 589824 floats 58 × 10−3 s 8.297 × 10−3 s

Our implementation 2304 floats 0, 445 × 10−3 s 0.332 × 10−3 s

AES (n = 8) with s = 9 256 times 130 times 25 times

Table 4. Space memory & executing time of LRA without computing �β; AES use case.

Memory Pre-processing �E processing

Old implementations 16777216 floats 1.63 s 0.236 s

Our implementation 2304 floats 0.329× 10−3 s 0.333× 10−3 s

AES (n = 8) with s = 9 7282 times 4954 times 709 times

5.2 SCAs with and Without Coalescence

The coalescence approach leads to more efficient attacks in term of computing
time. Figure 1 shows that there is a big difference between attacks with and
without coalescence, in term of success rate. In fact, as shown in Subsect. 3.1
and explained in Appendix A, the coalescence approach requires to have asymp-
totically the same number ni of messages xi per class. This assumption does
not hold if the attack requires few leakages/messages, that is the case for these
figures (σ = 0).

In order to show the asymptotic equivalence between the SCAs with and
without coalescence, one can study their success rates for high covariance noise.
Figure 2 and 3, show this asymptotic equivalence when the noise is high.

5.3 LRA Against Higher-Order Masking

To study the efficiency of the SCA attacks against masking (especially LRA with
our computing improvements), comparisons between the first order Boolean and
the arithmetic masking (more precisely the addition modulo 28) are carried out

164 M. Ouladj et al.

Fig. 1. Success rate of CPA and LRA (with/without our implementation improve-
ments) according to the number of measurements, such that σ = 0.

Fig. 2. Success rate of CPA and LRA (with/without coalescence) with basis size 9,
against unprotected implementation, according to the number of measurements, such
that the leakage is simulated to the Hamming weight model.

on the AES Sbox. Even if the modular addition masking is not useful for AES
Sbox, we study its efficiency over it in order to compare both masking techniques
against same attacks on the same Sbox. In these attacks we use the normalized
multiplicative combination.

On the Implementation Efficiency of LRA-Based SCA 165

Fig. 3. Success rate of CPA and LRA (with our implementation improvements) with
basis size 37, against unprotected implementation, according to the number of mea-
surements, such that the leakage is simulated to degree 2 polynomial model.

Fig. 4. Success rate of CPA and LRA (with our implementation improvements) with
basis size 9, against 1st order masking implementation, according to the number of
measurements, such that the leakage is simulated to the Hamming weight model.

As shown in Fig. 4 and 5, and as explained in Subsect. 4.1, the 9-size basis is
suitable for the multiplication combination against Boolean masking. One can
see that, against Boolean masking, the LRA is more efficient if the 9-size basis
is used (right of Fig. 4) than that if the 37-size basis is used (right of Fig. 5).

166 M. Ouladj et al.

In contrast, for the modular addition arithmetic masking, the suitable basis
is a 37-size basis, which corresponds to degree 2 polynomial leakage function.
One can see that, against arithmetic masking, LRA is less efficient if the 9-size
basis is used (left of Fig. 4) than that if the 37-size basis is used (left of Fig. 5).
Furthermore, Fig. 5 shows that the optimal leakage model of the normalized
multiplicative combination is 4608 +

∑
i (2i − 256)zi +

∑
i,j;i<j (28+i−jzizj) as

exhibited in Sect. 4.1, thanks to the NNF. It labeled by optimal CPA in Fig. 5.

Fig. 5. Success rate of CPA and LRA (with our implementation improvements) with
basis size 37, against 1st order masking implementation, according to the number of
measurements, such that the leakage is simulated to the Hamming weight model.

6 Conclusion and Perspectives

In this paper we studied the use of coalescence both in LRA, in CPA and in
covariance distinguishers. We also show that coalescence can accelerate the com-
putation of LRA distinguisher, even in presence of masking countermeasure. Our
study provides breakthrough improvements both in memory space and in run-
ning time required to carry out the LRA. Furthermore we exhibit the polynomial
form of the normalized product combination which is useful in SCA against

On the Implementation Efficiency of LRA-Based SCA 167

masking, especially for LRA. It is the first time when LRA is related to the
Numerical Normal Form (NNF).

We believe that this work democratize the use of LRA and that it leads to
further research results in the field of parametric side-channel attacks.

A Proof of Proposition 2

Proof. Under the additive independent noise assumption, the leakage �li is divided
into two independent parts, such that �li = E[�L|xi] + bi, where E[�L|xi] is the
determinist part and bi is the noise. Let us denote the leakage model used in
the attack by gk(xi) (that corresponds to the sensitive variable Z = xi ⊕ k, for
example). So, the covariance distinguisher is:

1
N

N−1∑
i=0

gk(xi) · �li =
1
N

N−1∑
i=0

gk(xi) ·
(
E[�L|xi] + bi

)

=
1
N

N−1∑
i=0

gk(xi) · E[�L|xi] +
1
N

N−1∑
i=0

gk(xi) · bi

=
1
N

2n−1∑
j=0

nj · gk(j) · E[�L|j] +
1
N

2n−1∑
j=0

gk(j) · (
∑
xi=j

bi),

Such that nj = #{xi; xi = j}.
By regrouping bi in the classes (j), one can note

∑
xi=j bi by

∑nj

c=1 bj,c. So,
the covariance distinguisher becomes:

1
N

N−1∑
i=0

gk(xi) · �li =
1
N

2n−1∑
j=0

nj · gk(j) · E[�L|j] +
1
N

2n−1∑
j=0

gk(j) · (
nj∑

c=1

bj,c)

=
1
2n

2n−1∑
j=0

nj2n

N
· gk(j) ·

(
E[�L|j] +

∑nj

c=1 bj,c

nj

)
,

such that the coalesced traces of the jth class is: 1
nj

∑
xi=j

�li = E[�L|j] +
∑nj

c=1 bj,c
nj

if nj �= 0 (the coalesced traces equals 0 if nj = 0). So, up to a weight

factor per class (nj2
n

N), the traces being coalesced or not, we have the same

distinguisher with a different noise variance
(∑nj

c=1 bj,c
nj

instead of bj

)
.

168 M. Ouladj et al.

In fact, studying the rough traces distribution means studying a random
variable with a fix standard deviation σ and an arbitrary number N of traces. If
the required number of traces N is large, one has to consider all of them, which
is difficult (even impossible in high noise variance and countermeasures). By the
Law of Large Numbers (LLN), doing the coalescence, with equal probabilities of
each possible message p = 1

2n , gives nj2
n

N tending towards 1. Furthermore, in such
a case the number of the artificial traces (grouped by class) is at most 2n, and
according to Cochran Theorem 1, the noise standard deviation becomes

√
σ
nj

.

That leads to a possible (even a fast) attack processing. Finally we conclude
that carrying out the attack with averaging traces means reducing the standard
deviation of the artificial random variable (by averaging traces per j values)
instead of increasing the number of rough traces.

Furthermore, since the Cochran theorem holds for the Gaussian random vec-
tors, the averaging traces by class principle can be applied in the multidimen-
sional analysis, as in [34].

The asymptotic equivalence between SCA with and without coalesced traces
holds also for CPA. This comes as a consequence of the following important
property of Pearson’s correlation coefficient:

Proposition 5. ([25, Prop. 5]). Let �L and X be two random variables. Then,
for every function gk defined over Z, we have

ρ(gk(X), �L) = ρ
(
gk(X), E

[
�L|X

])
× ρ

(
E

[
�L|X

]
, �L

)
(4)

So, an adversary that carrying out a CPA on leakage traces �li ←↩ �L with a
leakage model function gk(xi), such that xi ←↩ X, will estimate ρ(gk(X), �L) =
ρ

(
gk(X), E

[
�L|X

])
× ρ

(
E

[
�L|X

]
, �L

)
. Since ρ

(
E

[
�L|X

]
, �L

)
is independent

from k, she can carry out a CPA by only estimating ρ
(
gk(X), E

[
�L|X

])
. This

approach holds if and only if the adversary has a good estimator of E
[
�L|X

]
.

This estimator can be obtained by simply averaging the traces per xi values.
In other terms, the adversary can carry out a CPA over the coalesced mea-
surements by processing ρ

(
gk(X), E

[
�L|X

])
instead of carrying it out with the

rough traces by processing ρ(gk(X), �L). So one can conclude the asymptotic
equivalence between SCA with and without coalescence. 	

B LRA Algorithm 4

On the Implementation Efficiency of LRA-Based SCA 169

Input :
– a set of d-dimensional leakage (�li)0≤i≤N−1 and the corresponding plaintexts

(xi)0≤i≤N−1,
– a set of model functions (mp)p≤s.

Output : The candidate subkey k̂

1 for i ← 0 to N − 1 do // Processing of the leakage Total Sum of Squares (
−−→
SST)

2 μ �L ← μ �L + �li

3 ν �L ← ν �L + �li
2

4
−−→
SST ← ν �L − 1

N
μ2

�L
5 for p ← 0 to s do // Pre-processing of the unique prediction matrix M0

6 for x ← 0 to 2n − 1 do

7 M0[x][p] ← mp[F (x, 0̂)]

8 G0 ← M0 ×
(
MT

0 × M0

)−1 × MT
0

9 for i ← 0 to 2n − 1 do // Pre-processing WHT of the lines of matrix G0

10 G0[i][.] ← WHT (G0[i][.])

11 for i ← 0 to N − 1 do // Computation of the coalesced matrix �L
12 �LT[xi] = �LT[xi] + li
13 count[xi]=count[xi]+1

14 for x ← 0 to 2n − 1 do
15 if count[x] then

16 �LT[x] = �LT[x]/count[x]

17 for u ← 0 to d − 1 do // Instantaneous attack (at time u)

18
−→
W L[u] ← WHT (�L[u])

19 for x ← 0 to 2n − 1 do // Computation of the estimator �E[u] according to Proposition 4

20 �E [x][.] ← WHT −1
(
G0[x][.] • −→

W L[u]
)

21 for k̂ ← 0 to 2n − 1 do // Test hyp. k̂ for all leakage coordinates

22 SSR ← 0
23 for x ← 0 to 2n − 1 do // Computation of the Residual Sum of Squares (SSR)

24 SSR ← SSR +
(
E [x ⊕ k̂][k̂] − L[x][u]

)2

25 R[k̂][u] ← 1 − SSR−−→
SST [u]

// coefficient of determination [8]

26 return argmaxk̂

(
maxuR[k̂][u]

)

Algorithm 4: Linear Regression Analysis with coalescence and the spectral
approach.

170 M. Ouladj et al.

C WHT Algorithm

Up to a coefficient 1√
2n

, an example of WHT processing for n = 3 is illustrated
in Fig. 6.

Fig. 6. Flowgraph for computing WHT for n = 3.

References

1. Batina, L., Robshaw, M. (eds.): CHES 2014. LNCS, vol. 8731. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44709-3

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

3. Bruneau, N., Carlet, C., Guilley, S., Heuser, A., Prouff, E., Rioul, O.: Stochastic
collision attack. IEEE Trans. Inf. Forensics Secur. 12(9), 2090–2104 (2017)

4. Bruneau, N., Guilley, S., Heuser, A., Rioul, O.: Masks will fall off. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 344–365. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 19

5. Carlet, C., Guillot, P.: A new representation of Boolean functions. In: Fossorier,
M., Imai, H., Lin, S., Poli, A. (eds.) AAECC 1999. LNCS, vol. 1719, pp. 94–103.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46796-3 10

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

7. Cochran, W.G.: The distribution of quadratic forms in a normal system, with
application to the analysis of covariance. In: Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 30, pp. 178–191 (1934)

8. Dabosville, G., Doget, J., Prouff, E.: A new second-order side channel attack based
on linear regression. IEEE Trans. Comput. 62(8), 1629–1640 (2013)

9. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. J. Cryptograph. Eng. 1(2), 123–144 (2011). https://doi.org/
10.1007/s13389-011-0010-2

10. Shan, F., Wang, Z., Wei, F., Guoai, X., Wang, A.: Linear regression side chan-
nel attack applied on constant XOR. IACR Cryptology ePrint Archive 2017:1217
(2017)

11. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006). https://doi.org/10.1007/11894063 2

https://doi.org/10.1007/978-3-662-44709-3
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-662-45608-8_19
https://doi.org/10.1007/3-540-46796-3_10
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/s13389-011-0010-2
https://doi.org/10.1007/s13389-011-0010-2
https://doi.org/10.1007/11894063_2

On the Implementation Efficiency of LRA-Based SCA 171

12. Guilley, S., Heuser, A., Ming, T., Rioul, O.: Stochastic side-channel leakage analysis
via orthonormal decomposition. In: Farshim, P., Simion, E. (eds.) SecITC 2017.
LNCS, vol. 10543, pp. 12–27. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-69284-5 2

13. Guillot, P., Millérioux, G., Dravie, B., El Mrabet, N.: Spectral approach for cor-
relation power analysis. In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2017.
LNCS, vol. 10194, pp. 238–253. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-55589-8 16

14. Heuser, A., Rioul, O., Guilley, S.: Good is not good enough - deriving optimal
distinguishers from communication theory. In: Batina and Robshaw [1], pp. 55–74

15. Joye, M., Paillier, P., Schoenmakers, B.: On second-order differential power anal-
ysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 293–308.
Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 22

16. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

17. Krishnamoorthy, A., Menon, D.: Matrix inversion using Cholesky decomposition.
In: 2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applica-
tions (SPA), pp. 70–72, September 2013. ISBN 978-83-62065-17-2, INSPEC Acces-
sion Number: 14041759, Electronic ISSN 2326-0319, Print ISSN 2326-0262

18. Lemke, K., Schramm, K., Paar, C.: DPA on n-bit sized boolean and arithmetic
operations and its application to IDEA, RC6, and the HMAC-Construction. In:
Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 205–219.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 15

19. Lemke-Rust, K., Paar, C.: Analyzing side channel leakage of masked implemen-
tations with stochastic methods. In: Biskup, J., López, J. (eds.) ESORICS 2007.
LNCS, vol. 4734, pp. 454–468. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74835-9 30

20. Lomné, V., Prouff, E., Rivain, M., Roche, T., Thillard, A.: How to estimate the
success rate of higher-order side-channel attacks. In: Batina and Robshaw [1], pp.
35–54

21. Lomné, V., Prouff, E., Roche, T.: Behind the scene of side channel attacks. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 506–525. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 26

22. NIST/ITL/CSD. Data Encryption Standard. FIPS PUB 46–3, October 1999.
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

23. NIST/ITL/CSD. Advanced Encryption Standard (AES). FIPS PUB 197,
November 2001. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf (also
ISO/IEC 18033–3:2010)

24. Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006). https://doi.org/10.1007/11967668 16

25. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

26. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04138-9 13

https://doi.org/10.1007/978-3-319-69284-5_2
https://doi.org/10.1007/978-3-319-69284-5_2
https://doi.org/10.1007/978-3-319-55589-8_16
https://doi.org/10.1007/978-3-319-55589-8_16
https://doi.org/10.1007/11545262_22
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-28632-5_15
https://doi.org/10.1007/978-3-540-74835-9_30
https://doi.org/10.1007/978-3-540-74835-9_30
https://doi.org/10.1007/978-3-642-42033-7_26
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://doi.org/10.1007/11967668_16
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-642-04138-9_13

172 M. Ouladj et al.

27. De Santis, F., Kasper, M., Mangard, S., Sigl, G., Stein, O., Stöttinger, M.: On the
relationship between correlation power analysis and the stochastic approach: an
ASIC designer perspective. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013.
LNCS, vol. 8250, pp. 215–226. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-03515-4 14

28. Schaub, A., et al.: Attacking suggest boxes in web applications over HTTPS using
side-channel stochastic algorithms. In: Lopez, J., Ray, I., Crispo, B. (eds.) CRiSIS
2014. LNCS, vol. 8924, pp. 116–130. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-17127-2 8

29. Schindler, W.: On the optimization of side-channel attacks by advanced stochastic
methods. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 85–103. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 7

30. Schindler, W.: Advanced stochastic methods in side channel analysis on block
ciphers in the presence of masking. J. Math. Cryptol. 2(3), 291–310. (2008).
https://doi.org/10.1515/JMC.2008.013, ISSN (Online) 1862-2984. ISSN (Print)
1862-2976

31. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

32. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006). https://
doi.org/10.1007/11605805 14

33. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

34. Under submission. On the power of template attacks in highly multivariate context
35. Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Profiling attack using multivariate

regression analysis. IEICE Electron. Express 7(15), 1139–1144 (2010)
36. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel,

B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60590-8 29

37. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: STOC
2012 Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Com-
puting, New York, USA, 19–22 May 2012, pp. 887–898, May 2012

https://doi.org/10.1007/978-3-319-03515-4_14
https://doi.org/10.1007/978-3-319-03515-4_14
https://doi.org/10.1007/978-3-319-17127-2_8
https://doi.org/10.1007/978-3-319-17127-2_8
https://doi.org/10.1007/978-3-540-30580-4_7
https://doi.org/10.1515/JMC.2008.013
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/11605805_14
https://doi.org/10.1007/11605805_14
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/3-540-60590-8_29

Side-Channel Attacks and Deep
Learning

Kilroy Was Here: The First Step Towards
Explainability of Neural Networks
in Profiled Side-Channel Analysis

Daan van der Valk1, Stjepan Picek1(B), and Shivam Bhasin2

1 Delft University of Technology, Delft, The Netherlands
daan@dvandervalk.nl, s.picek@tudelft.nl

2 Physical Analysis and Cryptographic Engineering,
Temasek Laboratories at Nanyang Technological University, Singapore, Singapore

sbhasin@ntu.edu.sg

Abstract. While several works have explored the application of deep
learning for efficient profiled side-channel analysis, explainability, or, in
other words, what neural networks learn remains a rather untouched
topic. As a first step, this paper explores the Singular Vector Canonical
Correlation Analysis (SVCCA) tool to interpret what neural networks
learn while training on different side-channel datasets, by concentrating
on deep layers of the network. Information from SVCCA can help, to an
extent, with several practical problems in a profiled side-channel analysis
like portability issue and criteria to choose a number of layers/neurons
to fight portability, provide insight on the correct size of training dataset
and detect deceptive conditions like over-specialization of networks.

Keywords: Side-channel analysis · Deep learning · Neural networks ·
Representation learning

1 Introduction

Profiled side-channel analysis (SCA) represents the worst-case security analysis
by considering the most powerful side-channel attacker with access to an open
(since the keys are chosen/known by the attacker) clone device. In recent years,
machine learning techniques, and especially deep learning techniques, became
a standard choice for profiled attacks as they allow very good performance
where even targets protected with countermeasures can be broken [2,8]. As
such, the progress from the first paper considering convolutional neural net-
works in 2016 [10] is tremendous. Besides “only” improving the performance of
our attacks, we should also aim to understand and explain the machine learn-
ing process and models it produces. This problem is commonly known as the
explainability problem in machine learning.

Unfortunately, explainability is a difficult problem. It is a central problem
in a large part of machine learning research, and yet, it is far from solved [5].

c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 175–199, 2021.
https://doi.org/10.1007/978-3-030-68773-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_9

176 D. van der Valk et al.

One aspect of explainability is the representation learning where one tries to
understand why a certain representation of a problem (i.e., how the problem is
represented in the layers of a deep learning algorithm) is better than some other
representation. By understanding this, we can select a good representation that
makes the subsequent learning problem easier. More precisely, the supervised
learning with feed-forward neural networks performs a type of representation
learning [5]. The last layer gives information about the classes, while every hidden
layer should ideally find a representation that will make the classification process
easier.

While this problem is interesting, it is also very difficult to define the represen-
tation of a neuron. Naively, one could define a table of all possible input/output
mappings for a neuron (and then do this for the whole network). The problem is
then that such tables would be huge and impractical to make conclusions. Conse-
quently, we must consider techniques that allow us to capture relevant informa-
tion while not requiring too much information. There are only a handful of works
that are (relatively) successful in devising tools for investigating the internal rep-
resentations, as discussed in Sect. 2.3. To the best of our knowledge, there are
no results in representation learning for the domain of side-channel analysis. In
the side-channel domain, we have distinctive challenges due to countermeasures
and portability (settings where an attacker has no access to measurements from
the device under attack to conduct a training but only to measurements from
a similar or clone device). Therefore, it is important to consider different kinds
of data, e.g., protected vs. unprotected implementations, or device A vs. device
B. So, instead of just focusing on explaining the classifiers’ predictions, it is also
useful to compare the representations learned by different profiling models.

In this paper, we use the Singular Vector Canonical Correlation Analysis
(SVCCA) [22] technique to inspect internal representations learned by two pop-
ular types of neural networks: multilayer perceptron and convolutional neural
networks. While usually research works concentrate on what can be done with
the information at the input (such as feature selection, see, e.g., [18]) or the
information at the output of a neural network (accuracy, success rate, guess-
ing entropy [23]), we take a different path and ask what useful information can
be obtained from the middle (hidden layers) in the neural network. We ana-
lyze several SCA datasets, and we show that, indeed, different datasets have
different internal representations. We see that changing the leakage model or
adding/removing countermeasures can result in significantly different internal
representations. Additionally, with such a tool, we can better understand the
learning process dynamics, which can help design more appropriate architec-
tures. We then concentrate on the portability where we compare internal rep-
resentations when the clone and attack devices are different and have different
keys. Our results show we can gain insights about the internal representations of
different SCA datasets. Such knowledge can then be used to design better neu-
ral network architectures, e.g., how to select the number of neurons in a layer,
the number of layers, and the training dataset size. Finally, we show the hid-
den layers learn about labels despite never being explicitly provided with that
information.

Explainability of Neural Networks in Profiled Side-Channel Analysis 177

2 Background

2.1 Multilayer Perceptron and Convolutional Neural Networks

The multilayer perceptron (MLP) algorithm is a feed-forward neural network
that maps sets of inputs onto sets of appropriate outputs. An MLP consists of
multiple layers (one input layer, one output layer, and at least one hidden layer)
of nodes in a directed graph, where each layer is fully connected to the next one,
and training of the network is done with the backpropagation algorithm.

CNNs are similar to ordinary neural networks (e.g., feed-forward networks
like multilayer perceptron): they consist of several layers, and each layer is made
up of neurons. CNNs use three main types of layers: convolutional layers, pooling
layers, and fully-connected layers.

2.2 Comparison of Neural Networks and SVCCA Methodology

Raghu et al. proposed Singular Vector Canonical Correlation Analysis to com-
pare two layers in a network, based on the neurons’ activation outputs [22]. By
doing so, they were able to compare the learned representations from two neu-
ral networks in a way that is invariant to affine transformation (thus, allowing
comparison between different layers and networks) and fast to compute.

SVCCA uses the following definitions:

Definition 1. A neuron i is defined by the output it generates over a
dataset X = x1, . . . , xN . The ith neuron of layer l is represented by zli =
(zli(x1), . . . , zli(xN)). Here, zli(xj) indicates the output (a single number) of the
neuron for data sample xj. Thus, a neuron is a vector in R

N .

Such an output is also called an activation vector: it stores the neuron’s
outcome after the activation function is applied, for all N data samples that
are fed as inputs to the neural network. For convolutional layers, we treat every
output of the as a separate neuron. This means cj , the number of outputs in a
layer, is defined as

cj = input size · kernel width · number of channels, (1)

for a convolutional layer j. For a fully-connected layer, cj is simply the number
of neurons in that layer.

Definition 2. A layer j is defined as the subspace spanned by its neurons, i.e.,
a subspace in R

N × R
cj . It is constructed as a N × cj matrix, where cj is the

number of outputs in layer j where layer j is lj = zlj1 , . . . , zljcj .

Based on this definition, the SVCCA algorithm compares two layers l1 and l2.
It operates on two matrices, each having an entry per neuron per data sample
(trace). The layers can have a different number of neurons, but there should
be an equal number of samples N used to compare the layers. After the layers
have been trained, and their outputs have been stored as l1 and l2, the SVCCA
procedure for layer comparison works as follows:

178 D. van der Valk et al.

1. Singular Value (SV) decomposition of both layers separately. For both layers
l1 and l2, their singular value (SV) decompositions are computed and out-
putted as l′1 ⊂ l1 and l′2 ⊂ l2. This transformation represents the same data
in another form: matrices l′1 and l′2 will still have N rows (one row per data
sample), but contain L′

1 ≤ c1 and L′
2 ≤ c2 columns, respectively. With this

transformation, a preset percentage of the variance is explained. After this
step, two reduced subspaces l′1 ⊂ l1 and l′2 ⊂ l2 are used as inputs for the
next step.

2. Canonical Correlation Analysis (CCA) computes the linear transformations
on l′1, l

′
2 to maximize correlation, which results in an ordered set of SVCCA

components. These operations can be defined as matrices WX and WY to
operate on l′1 and l′2, respectively. The outputted subspaces l̃1 = WX l′1 and
l̃2 = WY l′2 are maximally correlated. Consequently, the algorithm returns the
following outputs:

– CCA components: the number of components is min(L′
1, L

′
2), the smallest

dimension of the SVD-reduced layers. For each component, there is:
• The value of the CCA component for both of the networks, for each

trace in the comparison dataset. oim(xj) denotes the value of the ith
component for profiling model m for data sample xj ;

• the correlations corrs = ρ1, . . . , ρmin(L′
1,L

′
2)

, which indicate how well
each component correlates between both layers.

– To express the output of SVCCA in a single metric, the SVCCA similarity
ρ represents how well the representations of two layers are aligned with
each other:

ρ =
1

min(m1,m2)

∑

i

ρi. (2)

Note that the first step of the algorithm, Singular Value Decomposition, is
the backbone of Principal Component Analysis (PCA), which is commonly used
in machine learning for data reduction but also in profiled side-channel analysis.
The SVCCA steps are depicted in Fig. 1. The produced correlations corrs and
the average correlation ρ will be used as a metric to evaluate common knowledge.
Common knowledge describes the similarity between the layers’ representations.
If two layers have common knowledge, that means their layer representations are
similar and vice versa. SVCCA can be used on any layer regardless of its position
in the neural network architecture. Still, it does not make sense to consider the
input layer (as there is nothing done yet) and the output layer (as this is what
is commonly evaluated through various metrics).

2.3 Related Work

Templates [3] were proposed as the first profiled side-channel analysis and widely
used over the years. It is shown that templates are optimal from the information-
theoretic point of view if the assumed leakage model is correct, and the adversary
has access to a sufficient number of traces [3]. In practical settings with limited
profiling traces and added noise, machine learning algorithms can perform better

Explainability of Neural Networks in Profiled Side-Channel Analysis 179

Fig. 1. Overview of the operations in SVCCA. As input, it takes the activation vectors
from both layers, containing each neuron’s output for all samples in the dataset. The
singular vector decomposition (SVD) is applied to both layers individually, resulting in
a (reduced) matrix per layer. These matrices are compared using Canonical Correla-
tion Analysis (CCA), which is a linear transformation that maximizes the correlation
between both layers. Both the correlations (from high to low correlation) and the values
of the components, per sample in the dataset, are outputted.

than templates [20]. Maghrebi et al. [10] first started with a comparison of deep
neural networks (DNN) with classical machine learning and templates and its
application to break masking countermeasure using convolution neural networks.
DNN was further shown to break jitter based countermeasures [2]. Later, Kim
et al. [8] used Gaussian noise-based regularization to break protected implemen-
tation in as low as three traces.

Some works have also explored other aspects of DNN for side-channel analysis
rather than just attack performance. The conflict of the standard metrics used in
side-channel (success rate, guessing entropy) and machine learning (loss, accu-
racy) is studied in [19]. Picek et al. considered limiting the number of traces for
the profiling phase to better evaluate the attack performance [17]. Deep learning
model generalization and understanding exploiting the class probabilities pro-
vided by the output layer was proposed in [14]. Several works have looked into
the interpretation of the profiling model learned by a DNN after training to
extract the interesting features by evaluation of input activation gradient [11],
occlusion techniques [7], layer-wise backpropagation [15], and sensitivity anal-
ysis [25] as a metric. These techniques consider every feature’s contribution to
the output of the last layer, i.e., to the prediction. These techniques are not
aimed at comparing different layers in a neural network. The performance of
machine learning techniques can also be cast as the robustness problem where
one explores how different perturbations influence their performance [16]. Despite
these attempts, there is still little known about the inner working of neural net-
works in the domain of side-channel analysis.

Considering general research in the deep learning domain, certain efforts have
been made to explain predictions of black-box techniques better, typically focus-
ing on insight in prediction decisions. This includes rule extraction, visual rep-
resentations, feature importance, sensitivity analysis, and activation maximiza-
tion [6]. Note, some of these techniques are used in profiling SCA, as discussed
in the paragraph above. In 2017, Raghu et al. proposed Singular Vector Canon-
ical Correlation Analysis to compare two layers in a network [22]. The authors
used this technique to measure the intrinsic dimensionality of layers, to explore

180 D. van der Valk et al.

learning dynamics throughout training, to show where class-specific information
in networks is formed, and to suggest new training regimes. In the follow-up
research, Morcos et al. further developed and tested the SVCCA methodol-
ogy [13]. There, the authors use projection weighted CCA to understand neural
networks and their internal representations. This technique is based on SVCCA
but enables further differentiation between signal and noise.

3 Establishing a Baseline

3.1 DPAcontest V4 Dataset

DPAcontest v4 (DPAv4) provides measurements of a masked AES software
implementation [24]. As the masking is found to leak first-order information [12],
the mask can be considered as known and dataset as unprotected one. The leak-
age model equals:

Y (k∗) = Sbox[Pi ⊕ k∗] ⊕ M︸︷︷︸
known mask

, (3)

where Pi is a plaintext byte where we choose to attack the first byte, i.e., i =
1. The measurements consist of 3 000 features around the S-box part of the
algorithm execution, and in total, there is 100 000 traces available. This dataset is
available at http://www.dpacontest.org/v4/. We denote this dataset as “DPAv4
(unmasked)”. Additionally, we can also ignore the information about the mask
and consider the dataset as being protected. Then, Eq. (3) changes to:

Y (k∗) = Sbox[PT1 ⊕ k∗]. (4)

Here, we simply classify by considering the output of the first S-box. In the rest
of this paper, we denote this setting as “DPAv4 (ignoring masks)”.

3.2 Comparison Datasets

To get a better picture of what SVCCA outcomes mean, we compare profiling
models for DPAv4 with several other datasets. These include a dataset from
another field, a set of generated “side-channel” measurements, and random data.

CIFAR-10 Dataset. We use the CIFAR-10 dataset as a reference problem
from the computer vision domain [9]. It consists of 50 000 training and 10 000
test images. Each image consists of 32 × 32 pixels in 3 channels (colors); for
this comparison, we “flatten” those to obtain 3 076 features. CIFAR-10 is an
interesting dataset for our comparison, as 1) it is from a completely different
domain, so no patterns are expected to overlap between DPAv4 and CIFAR-
10, 2) a neural network can be built with a very similar architecture: it has
3 076 features and ten classes (quite close to the 3 000 features around the S-box
computation of DPAv4, where we can select nine classes (HW leakage model)),
and 3) it was also used in the SVCCA paper [22] as a baseline.

http://www.dpacontest.org/v4/

Explainability of Neural Networks in Profiled Side-Channel Analysis 181

Generated Traces. To further compare with similar data, we generated a
random dataset similar to the DPAv4 dataset and has common assumptions
about side-channel measurements: 1) there are 3 000 features: 2 900 are drawn
completely random from the standard normal distribution. The other 100 are
semi-random (for all classes, a class mean is computed for each of the 100 semi-
random features. For these 100 features, for some sample i, feature j is drawn:
xi,j = 0.5 · N(0, 1)+0.5 ·μk,j where k is the class of sample i and μk,j indicates
this class k’s mean for feature j), and 2) the columns are shuffled randomly.
Note, although artificial, this dataset follows the Gaussian noise distribution.

Random “Outputs” Dataset. Finally, instead of computing activation vec-
tors from some neural network layer, a matrix of the same size is randomly
generated. As this has no relation with deep learning representations, we expect
to see no common knowledge with other datasets. All entries are randomly drawn
from the standard normal distribution (∼ N(0, 1)).

Fig. 2. Results for baseline experiment A, the SVCCA comparison between a pro-
filing model trained on DPAv4 (HW) and several other profiling models. A detailed
description of these settings is listed in Table 1.

3.3 Experimental Setup

To test the SVCCA methodology, we compare small MLP instances with (nearly)
the same architecture.

We consider only a very simple MLP with a single hidden layer, consist-
ing of 100 neurons with the ReLU activation function. The next layer is the
output layer, having either 9 (DPAv4 HW, Generated), 10 (CIFAR-10), or 256
(DPAv4 intermediate value) classes/neurons. The output layer uses the Softmax
activation function. The profiling models are trained to minimize the categori-
cal cross-entropy loss, using the Adam optimizer, and the training runs for 50
epochs. All profiling models are trained on 25 000 measurements.

Note that all networks have 3 000 inputs, except for those trained on CIFAR-
10, which have 3 076. The comparison data is either padded with zeros at the

182 D. van der Valk et al.

end (when there are not enough features) or cropped at the end (when there are
too many features) to adjust for this feature number mismatch. The profiling
models generally performed well after training, with close to 100% accuracy for
the DPAv4 and Generated dataset and roughly 50% accuracy for the CIFAR-10
dataset. The comparison given here is conducted between the only hidden layer
of each profiling model. For each of the scenarios, an MLP is randomly initialized
and trained. We list all considered settings in Table 1. It compares a profiling
model trained on the first 25 000 DPAv4 traces, with labels as described by the
unmasked leakage model (Eq. (3), in the HW leakage model) with itself and
several other profiling models.

Table 1. Baseline experiment A: a single network trained on the DPAv4 dataset in
the HW leakage model compared with itself and several other profiling models. The
comparisons are based on the networks’ hidden layer outputs, using all 100 000 traces
in the DPAv4 dataset. Random “activation vectors” are not network outputs, but are
randomly drawn from the standard normal distribution.

Network 1 Network 2 Scenario

Dataset Indexes Leakage model

DPAv4 (unmasked),

HW leakage model,

trained on indexes

0–25 000

DPAv4

(unmasked)

0–25 000 HW A1 Same network

0–25 000 HW A2 Different initialization

25 000–50 000 HW A3 Different part of dataset

0–25 000 Value A4 More classes (value leakage

model)

DPAv4

(ignoring masks)

0–25 000 HW A5 Different leakage model:

ignoring masks

0–25 000 Value A6 Different leakage model:

ignoring masks

CIFAR-10 0–25 000 – A7 Different dataset: CIFAR-10

Generated 0–25 000 – A8 Different dataset: generated

traces

Random “activation vectors” A9 Comparison with random

data

The resulting SVCCA correlations are shown in Fig. 2. For each comparison,
the entire DPAv4 dataset is used to generate the profiling models’ activation
vectors. The blue line indicates the comparison with the same network’s outputs
(A1). As expected, it shows a perfect correlation (ρi = 1 for all i).

We give a comparison with an MLP trained on the same data, but with a
different random initialization of the profiling model’s weights before training
(A2, orange line, ρ = 0.5646). The green line (A3) compares with another net-
work, trained on the different 25 000 traces from DPAv4, showing a slightly lower
correlation (ρ = 0.5404). A slight modification of the original network’s prob-
lem is the change from the HW leakage model to the intermediate value leakage
model (A4, ρ = 0.4162). Based on the same data, a network can also learn the
original S-box output (i.e., Eq. (4)) in the HW (A5, ρ = 0.3992) or the interme-
diate value leakage model (A6, ρ = 0.3287). A5 and A6 are interesting datasets
as they depict the significant impact of adding a masking countermeasure on

Explainability of Neural Networks in Profiled Side-Channel Analysis 183

common knowledge (and internal representation of models). Although these
DPAv4-related profiling models still show some similarities with the original
profiling model, we observe a stronger similarity between the original profiling
model and some unrelated profiling models. In particular, we see a slightly higher
correlation with the CIFAR-10 profiling model (A7, ρ = 0.4429) when compared
to the profiling models with/without masking. Roughly on the same levels as the
others, we see a similarity with the profiling model trained on generated data
(A8, ρ = 0.4031). As expected, we see almost no correlation with a completely
random vector drawn from the standard normal distribution (A9, ρ = 0.0271).
Here we do not give guessing entropy results, as for the datasets outside SCA,
it does not make sense to consider the key ranking (as there is no key).

Label-Based Inspection. To further investigate SVCCA, Fig. 3 shows the val-
ues of the first component for each of the scenarios in Fig. 2 – except the first
one, as identical profiling models result in identical outcomes. While the profil-
ing model 1 remains fixed in Fig. 3, the blue lines indicate profiling model 1’s
SVCCA-transformed output, which depends on the profiling model to which it
is compared. As SVCCA finds the best linear mapping to align the two profiling
models’ outputs, each graph shows different values for profiling model 1. Along
the x-axis, 100 samples are randomly selected for all nine classes in the HW leak-
age model. The y-axis shows the first SVCCA component value per data sample.
Notice that SVCCA is purely based on the activation vectors, in this case, of
the hidden layer. SVCCA is not based on class labels, but interestingly enough,
we can see a relationship between the class labels and the first component value
for some scenarios. Besides considering the first component, one can also use
other SVCCA components, but the most correlated information is contained in
the first one. Next, we require a definition for the relation between an SVCCA
component and the class label. For this, the following correlation metric suffices:

Definition 3. The class-correlation of some experiment E for two profiling
models (m ∈ [1, 2]) for an ordered list of class labels Y is ρEY, m equals the Pear-
son correlation between the first SVCCA component, based on experiment E, and
the class labels Y , for one of the two compared profiling models m.

Here, Y represents the labels of DPAv4 where the known mask is removed
(Eq. (3)) in the HW leakage model. We observe that when different MLPs are
trained on exactly the same data, there is a very high correlation with the
class label for both networks (Fig. 3a, ρA2

Y, 1 = −0.9824, ρA2
Y, 2 = −0.9827). This

means that the strongest pattern (i.e., the first component) that SVCCA finds
among the hidden layer’s outputs, are highly correlated with the class labels
learned by the networks. When training on similar, but not identical data, we
see a comparable situation (Fig. 3b, ρA3

Y, 1 = −0.9826, ρA3
Y, 2 = −0.9820). In the

next scenario, we compare with a profiling model trained with identical data,
but taking intermediate values, instead of HW as labels. Notice that these 256
classes are “encapsulated” in the nine HW classes. For example, value “42”

184 D. van der Valk et al.

Fig. 3. First SVCCA component for comparisons as described in Table 1 and shown in
Fig. 2. Along the x-axis, data samples are sorted according to class label; for each class,
100 samples are randomly selected. The y-axis indicates the value of the first SVCCA
component for these samples. When training in the same leakage model (regardless
of being HW or intermediate value), a strong correlation between the class label and
SVCCA component is observed.

Explainability of Neural Networks in Profiled Side-Channel Analysis 185

always maps to the Hamming weight “3”. Figure 3c shows the result: again,
we see a high correlation between the first component values for both profiling
models, and the HW class label ρA4

Y, 1 = −0.9895, ρA4
Y, 2 = −0.9885. In other

scenarios, we see lower correlations between the first SVCCA component and
labels. When comparing with a profiling model trained for DPAv4 HW labels,
while ignoring the mask (Eq. (4)), we see no significant relation between the
component values and the class labels (Fig. 3d, ρA5

Y, 1 = 0.0371, ρA5
Y, 2 = 0.0356).

Clearly, the most similar patterns in these layers say nothing meaningful about
the samples’ classes. Similar lack of correlation is observed in Figs. 3d until 3h.
We see that internal representation is extremely similar for profiling models
trained on similar data and the same leakage model. This does not depend on
the choice of the leakage model. Although SVCCA is not provided with class
labels, the underlying patterns it finds show that the MLPs have an extremely
similar internal representation, aiming for large class separability. Based on the
obtained results, we observe the following:

– Changing the parts of the dataset used in training has a similar effect as
changing the initialization values. Both changes have little impact on internal
representation, which indicates one should not be too worried about such
changes (compared to some other possible changes).

– When comparing networks trained with the HW leakage model to those on
the intermediate value leakage model, the inner representation can be similar.

– The effect of having or not having a masking countermeasure influences the
internal representation of a profiling model significantly.

– Certain correlation is to be expected even when comparing very different
datasets (as seen for DPAv4 and CIFAR-10).

– Simply looking at the correlation values can be misleading as the datasets
that are closer from the domain perspective (DPAv4 with and without masks)
can differ more than datasets that are completely non-related (DPAv4 and
CIFAR-10).

– Although SVCCA is independent of class labels, its components can be highly
correlated with the labels.

– It is difficult to know if the common knowledge is high because the small
networks have less knowledge (expressiveness) in general, or because there is
indeed information they share.

– To conclude, we can use SVCCA to compare internal representations of dif-
ferent profiling models. Unfortunately, SVCCA is not a reliable measure for
comparing arbitrary datasets as we can see correlation differences, but we
cannot estimate how significant is that difference in practice.

4 Portability

In the previous section, we concluded that SVCCA is not suitable for comparing
neural networks trained on entirely different datasets. In realistic scenarios in
SCA, we use two different devices for profiling and attacking (commonly known
as portability), where those devices are similar, which means that the acquired

186 D. van der Valk et al.

datasets should be similar. Several works have explored the portability issue for
deep learning attacks and concluded it represents a problem for their perfor-
mance [1,4].

4.1 Datasets and Experimental Setup

We use data from several devices running AES-128 in software. The target device
is an 8-bit AVR microcontroller running at 16MHz. The devices are not pro-
tected with any countermeasures, and we attack the first S-box of the first round.
For each copy of the device, there are 50 000 traces where each trace has 600
features. We use three datasets with the following relationship among them:

– Datasets 1 and 2 are taken from different devices but have the same key.
– Datasets 1 and 3 are taken from different devices and use different keys.
– Datasets 2 and 3 are taken from the same device but have different keys.

To allow a meaningful comparison, we use the neural network architectures
as proposed in [1]:

– MLP: a small multilayer perceptron with three hidden layers, having 50, 25,
and 50 neurons. The input layer consists of 50 features, which are selected
based on the Pearson correlation.

– MLP2: a multilayer perceptron with four hidden layers, having 500 neurons
each. For this architecture, all 600 features are used.

– CNN: a convolutional neural network with one convolutional block and two
fully-connected layers. The convolutional layer has a filter size of 64 and kernel
11. We use the average pooling layer with pooling size two and stride two. The
fully-connected layers have 128 neurons each. Again, we use all 600 features.

All algorithms aim to optimize the categorical cross-entropy, with a batch
size of 256, and RMSProp optimizer. For multilayer perceptron, we train for 50
epochs and use a learning rate of 0.001, while for CNN, we train for 125 epochs
and use a learning rate of 0.0001. These hyperparameter values are based on [21].
Following the scenarios from [1], we train those networks with either 10 000, or
40 000 training examples. Due to the lack of space, some of the figures are given
in Appendix A, and when presenting guessing entropy results, we show only the
10 000 or 40 000 training traces scenario. The guessing entropy (GE) metric is
the average number of successive guesses required to determine the true value
of a secret key, where one ranks all possible key values from the most likely one
to the least likely one. Then, low GE means low entropy and, thus, a successful
attack. Note that with GE, we give comparisons for each combination of the
train/test dataset.

4.2 Results

Figure 4 shows a comparison of several MLP profiling models in the intermediate
value leakage model for different hidden layers. Comparing networks trained on

Explainability of Neural Networks in Profiled Side-Channel Analysis 187

Fig. 4. Correlation results for MLP in the intermediate value leakage model for hidden
layers 1 and 3. Other hidden layers are given in Fig. 9. GE results for 10 000 traces.

different datasets (1 vs. 2, 1 vs. 3, and 2 vs. 3) seems to result in a homogeneous
amount of common knowledge (i.e., the internal representation is very similar
despite changing the devices/keys). Also, the training set size seems not to influ-
ence the correlation between networks. MLP’s small architecture may explain
this: the networks roughly learn the same function, which approximates the
training data but do not overfit. Finally, we see that all neurons are involved in
every layer, which indicates those neurons indeed carry the information relevant
for the internal representation. There is a faster drop in the correlation value for
the hidden layer three, which indicates one could use fewer neurons in that layer
without limiting the internal representation. We omitted the results for the HW
leakage model as they produce very similar results. When considering the GE
results, we show comparisons for every combination of the datasets with 10 000

188 D. van der Valk et al.

traces. We can observe that the results are similar, indicating that small differ-
ences in the hidden layers’ correlation values also result in the small differences
in the attack performance as one would expect. If each hidden layer learns a
similar representation, then the whole profiling model should perform similarly
from the GE perspective. For 40 000 traces, we observed similar behavior.

For the MLP2 architecture, we show results for the HW leakage model in
Fig. 5 and for the intermediate value leakage model in Fig. 6. When considering
the HW leakage model, in the first layer, we see that the correlation is much lower
when using a larger training set size. This could indicate that with a larger net-
work like MLP2, the neurons fit much more precisely around the training data.
Although [1] reports better performance for larger neural networks, specialization
leads there to a divergence from profiling models learning other (large) datasets.
This also suggests that one could benefit from using smaller training set sizes
when in portability settings, as those will result in less specialization. This is
also following observations made by Bhasin et al. [1]. Here, by specialization, we
consider the phenomenon where a part of the network learns the feature repre-
sentation for a specific dataset. We formalize the notion of over-specialization in
the context of portability.

Definition 4. Over-specialization is an effect where a neural network (or a part
of it) learns to generalize only for a specific dataset and cannot generalize for
other datasets, as seen in portability.

If a neural network overfits, it also over-specializes, but the converse is not nec-
essarily true. Indeed, one can easily have a neural network that generalizes well
for the unseen data from the same dataset (device/key), but will not generalize
to another device/key setting.

The results for hidden layers 2 and 3 indicate that the learned representations
can differ significantly, signifying that portability can represent a problem for
deep learning. Interestingly, we also see that the number of SVCCA components
is much lower than the number of neurons, which means we do not require
so many neurons in these layers to capture data’s internal representation. For
hidden layer 3, there is an even larger influence of over-specialization if we use
more training examples. The fourth hidden layer also requires a much smaller
number of neurons as this is the last layer before the output layer, where there
are nine classes (thus, having a smaller number of neurons also makes sense).
Finally, we see the largest part of the specialization is happening in the middle
layers. As at the last hidden layer, correlations are similar, we can expect also
similar results for GE, which is confirmed in Figs. 5c and 5d.

When considering the intermediate value leakage model (Fig. 6), we see the
findings are somewhat similar to those for the HW leakage model. In the first
hidden layer, the internal representations are very similar and using all neurons.
This indicates that the first hidden layer’s internal representation still did not
manage to pinpoint on finer differences in the datasets. Already in the second
hidden layer, there is a significant drop in correlation for datasets using 40 000
in the training phase. This confirms that having more measurements could lead
to over-specialization, resulting in worse performance in portability settings.

Explainability of Neural Networks in Profiled Side-Channel Analysis 189

Fig. 5. Correlation results for MLP2 in the Hamming weight leakage model for hidden
layers 1 and 4. Other hidden layers are given in Fig. 10. GE results for 10 000 and 40 000
traces.

190 D. van der Valk et al.

The last hidden layer shows a relatively stable behavior but with quite a fast
drop in the correlation. Consequently, some of the settings with a bad correlation
in the previous layer managed to improve their internal representation, but it
is still quite low for most of the SVCCA components, which indicates potential
problems for the classification process. Interestingly, we see several scenarios for
hidden layers 2 to 4, where we do not need 500 neurons. We do not observe
significant differences (for certain scenarios) between layers 2, 3, and 4, which
means there is no added benefit of having those layers. Consequently, it could
be beneficial to explore smaller architectures here. Finally, we remark that the
specialization occurs in the middle layers, similar to the HW scenario. Naturally,
the effect is smaller here as we use more classes, and to specialize, we also need
more training examples.

From the GE graphs, we observe similar behavior over datasets. Still, we do
see larger performance differences when compared to the MLP or MLP2 in the
HW leakage model scenarios. This can be explained by the fact that there are
more differences among representations in the middle layers. Nevertheless, as the
last hidden layer gives similar correlation levels, it is expected that GE results
should not differ significantly. We observe that the GE result differs more for the
intermediate value leakage model (compared to the HW leakage model), which
is expected as more classes and different representations of the middle layers are
more difficult to be completely aligned in the last hidden layer only. Notice the
effect of over-specialization when training with dataset 1 and attacking dataset
3. Indeed, for 10 000 traces, we see GE is lower. On the other hand, for 40 000
traces, GE improves rapidly with the increase in the number of attack traces.

In Fig. 7, we depict the results for MLP2 first and last hidden layer, when
correlating the class labels and the first SVCCA component. As before, along
the x-axis, data samples are sorted according to the class label. For each class,
100 samples are randomly selected. The y-axis indicates the value of the first
SVCCA component for these samples. Since we consider the intermediate value
leakage model, 256 classes are encapsulated in the Hamming weight classes. We
can see the values of the first SVCCA component to increase as going toward
deeper hidden layers. Additionally, while the values are generally well correlated,
we see certain differences, especially apparent in the last hidden layer. So, while
the layers managed to learn about the labels, one could expect potential attack
performance issues due to over-specialization with training sets.

Finally, we investigate the results for the CNN architecture. We remark that
we omit the convolutional layer due to practical limitations. While the number
of parameters in convolutional layers is low, they produce massive activation
vectors. For example, the CNNs’ first layers outputs are roughly 750 times larger
than those of the MLP, taking more than 28 GB to store a single convolution
activation vector. In Fig. 8, we depict results for the second fully-connected layers
for both the HW and intermediate value leakage models. When considering the
HW leakage model, we see that the internal representations are similar, and we
require fewer neurons than used. This means that the portability setting does
not produce many issues in the HW leakage model and that one fully-connected

Explainability of Neural Networks in Profiled Side-Channel Analysis 191

Fig. 6. Correlation results for MLP2 in the intermediate value leakage model for hidden
layers 1 and 4. Other hidden layers are given in Fig. 11. GE results for 10 000 and 40 000
traces.

192 D. van der Valk et al.

Fig. 7. Label-based inspection for MLP2 when both devices and keys differ, interme-
diate value leakage model for hidden layers 1 and 4. Other hidden layers are given in
Fig. 12.

layer could suffice. The correlation is higher for the intermediate value leakage
model, especially for the smaller training set size. Additionally, the first fully-
connected layer needs fewer neurons than the second one. Again, we observe
the problem reported by Bhasin et al. [1] that having too much training data
can cause over-specialization in portability scenarios. As the correlation behaves
similarly in both layers (while decreasing faster for the second layer), we can
assume that only a single hidden layer would be sufficient. Finally, we notice that
the first fully-connected layer tends to specialize more. This is aligned with the
MLP2 scenario results, where we also noticed middle layers to specialize more.
For CNNs and the HW leakage model, the behavior is similar to the previous
cases: small differences in the fully-connected layers result in small differences
in GE. On the other hand, for the intermediate value leakage model, we notice
that both fully-connected layers differ in the level of common knowledge, and
this also results in different GE performance.

Based on the obtained results, we make the following observations:

– There is some common knowledge (shared inner representation) across net-
works that were trained on very similar data. We observe a similar level of
common knowledge across the portability scenarios; it does not matter much
whether the device, key, or both, are changed.

– When looking from a portability perspective, one should be careful not to
train neural networks with too much data (leading to over-specialization of
certain hidden layers). The SVCCA correlations decrease when networks are
trained with more data, thus allowing to conclude about the needed number
of training examples.

– SVCCA indicates that the middle layers (e.g., hidden layers two and three in
MLP2) specialize more than the first and last hidden layers.

– SVCCA can indicate the required number of layers and neurons.
– SVCCA components can be highly correlated with the class labels in the

portability setting.
– Similar common knowledge in all hidden layers leads to a similar GE.
– Differences in the middle hidden layers can be reduced by the last hidden

layer, resulting in only smaller differences in GE.

Explainability of Neural Networks in Profiled Side-Channel Analysis 193

Fig. 8. Correlation results for CNN for the second fully-connected layer. Other hidden
layer is given in Fig. 13. GE results for 10 000 traces.

194 D. van der Valk et al.

– More complex leakage models (i.e., with more classes) result in larger GE
differences if there are differences among the representations of hidden layers.

– SVCCA differences in the last hidden layer also result in different GE.

Finally, our results indicate certain advantages and disadvantages of SVCCA.
Most importantly, it is not possible to use SVCCA (as a sole tool) to design a
neural network for profiled SCA, but rather it can be used to give insights into
the neural network’s behavior. The main advantages of SVCCA are:

– The method allows comparing similarity across layers, independently of out-
put shape and context (i.e., type of data processed by the neural network).

– It shows the largest possible correlation when the inputs are linearly trans-
formed.

– It is invariant to affine transformations: no re-scaling or ordering the most
important neurons is required.

– The method enables dissecting the similarity for particular samples or classes.

On the downside, SVCCA has the following shortcomings:

– Its results are difficult to interpret: there is no formal relationship with the
networks’ performance, only the similarity is measured. Also, some context
of other SVCCA outcomes (i.e., Fig. 2) is required to understand whether the
correlation is meaningful.

– The method does not find non-linear relations: when changing the learned
function (e.g., adding a mask), no significant correlation is found.

– SVCCA is computationally intensive when comparing convolutional layers,
as the outputs have large dimensions.

5 Conclusions and Future Work

This paper uses the SVCCA tool and shows that there is common knowledge
between various datasets. While this tool is far from perfect, it still provides a
great deal of useful information. As an example, there seems to be more common
knowledge between the HW or intermediate value leakage models than when con-
sidering datasets with and without countermeasures. This indicates that while
we can hope to use the same neural networks for the HW/intermediate value
leakage models, the same networks for both protected and unprotected scenar-
ios will have a much more challenging task. Next, we observe how information
about the class labels is captured by SVCC, but also how the information about
the correlation for SVCCA components can help us in the design of the attacks
by selecting the more appropriate number of hidden layers and the number of
neurons, as well as the training set size. In future work, we will concentrate on
SVCCA for convolutional layers as this information should further help in under-
standing the dynamics of internal representation within the profiling model.

Acknowledgment. The authors acknowledge the support from the ’National Inte-
grated Centre of Evaluation’ (NICE); a facility of Cyber Security Agency, Singapore
(CSA).

Explainability of Neural Networks in Profiled Side-Channel Analysis 195

A Additional Figures

In this section, we depict the results for hidden layers we omitted from the paper’s
main body due to their similar behavior as those already presented. In Fig. 9,
we depict the correlation results for the second hidden layer of an MLP in the
intermediate value leakage model. Similarly, Fig. 10 shows results for the MLP2
architecture, the Hamming weight leakage model for hidden layers 2 and 3.

Fig. 9. Correlation results for MLP in the intermediate value leakage model for the
second hidden layer.

Fig. 10. Correlation results for MLP2 in the Hamming weight leakage model for hidden
layers 2 and 3.

196 D. van der Valk et al.

In Fig. 12, we show the results for the label-based inspection approach for the
MLP2 architecture. We consider a scenario where both device and keys differ
for the intermediate value leakage model for hidden layers 2 and 3.

Fig. 11. Correlation results for MLP2 in the intermediate value leakage model for
hidden layers 2 and 3.

Fig. 12. Label-based inspection for MLP2 when both devices and keys differ, interme-
diate value leakage model for hidden layers 2 and 3.

Figure 13 gives correlation results for CNN for the first fully-connected layers
for both the Hamming weight and intermediate value leakage models.

Explainability of Neural Networks in Profiled Side-Channel Analysis 197

Fig. 13. Correlation results for CNN for the first fully-connected layer.

References

1. Bhasin, S., Jap, D., Chattopadhyay, A., Picek, S., Heuser, A., Ranjan Shrivastwa,
R.: Mind the portability: a warriors guide through realistic profiled side-channel
analysis. Cryptology ePrint Archive, Report 2019/661 (2019). https://eprint.iacr.
org/2019/661

2. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmen-
tation against Jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66787-4 3

3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

4. Das, D., Golder, A., Danial, J., Ghosh, S., Raychowdhury, A., Sen, S.: X-DeepSCA:
cross-device deep learning side channel attack. In: Proceedings of the 56th Annual
Design Automation Conference 2019 on - DAC 2019, vol. 1, pp. 1–6. ACM Press,
New York (2019)

5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

6. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51(5)
(2018). https://doi.org/10.1145/3236009

https://eprint.iacr.org/2019/661
https://eprint.iacr.org/2019/661
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1145/3236009

198 D. van der Valk et al.

7. Hettwer, B., Gehrer, S., Tim, G.: Deep neural network attribution methods for
leakage analysis and symmetric key recovery. CoRR, pp. 1–17 (2019)

8. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleash-
ing the power of convolutional neural networks for profiled side-channel analysis.
IACR Trans. Cryptograph. Hardw. Embedded Syst. 2019(3), 148–179 (2019)

9. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian Institute for Advanced
Research) (2009). http://www.cs.toronto.edu/∼kriz/cifar.html

10. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

11. Masure, L., Dumas, C., Prouff, E.: Gradient visualization for general character-
ization in profiling attacks. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019.
LNCS, vol. 11421, pp. 145–167. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-16350-1 9

12. Moradi, A., Guilley, S., Heuser, A.: Detecting hidden leakages. In: Boureanu, I.,
Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 324–342.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5 20

13. Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural
networks with canonical correlation. In: Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information
Processing Systems 31, pp. 5727–5736. Curran Associates, Inc. (2018)

14. Perin, G.: Deep learning model generalization in side-channel analysis. Cryptology
ePrint Archive, Report 2019/978 (2019). https://eprint.iacr.org/2019/978

15. Perin, G., Ege, B., Chmielewski, L.: Neural network model assessment for side-
channel analysis. Cryptology ePrint Archive, Report 2019/722 (2019). https://
eprint.iacr.org/2019/722

16. Picek, S., Heuser, A., Alippi, C., Regazzoni, F.: When theory meets practice: a
framework for robust profiled side-channel analysis. Cryptology ePrint Archive,
Report 2018/1123 (2018). https://eprint.iacr.org/2018/1123

17. Picek, S., Heuser, A., Guilley, S.: Profiling side-channel analysis in the restricted
attacker framework. Cryptology ePrint Archive, Report 2019/168 (2019). https://
eprint.iacr.org/2019/168

18. Picek, S., Heuser, A., Jovic, A., Batina, L.: A systematic evaluation of profiling
through focused feature selection. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 1–14 (2019). https://doi.org/10.1109/TVLSI.2019.2937365

19. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class
imbalance and conflicting metrics with machine learning for side-channel eval-
uations. IACR Trans. Cryptograph. Hardw. Embedded Syst. 2019(1), 209–237
(2018). https://tches.iacr.org/index.php/TCHES/article/view/7339

20. Picek, S., et al.: Side-channel analysis and machine learning: a practical perspective.
In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4095–
4102. IEEE (2017)

21. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ascad database. Cryptol-
ogy ePrint Archive, Report 2018/053 (2018). https://eprint.iacr.org/2018/053

22. Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: singular vector
canonical correlation analysis for deep learning dynamics and interpretability. In:
Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp.
6076–6085. Curran Associates, Inc. (2017)

http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-319-07536-5_20
https://eprint.iacr.org/2019/978
https://eprint.iacr.org/2019/722
https://eprint.iacr.org/2019/722
https://eprint.iacr.org/2018/1123
https://eprint.iacr.org/2019/168
https://eprint.iacr.org/2019/168
https://doi.org/10.1109/TVLSI.2019.2937365
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://eprint.iacr.org/2018/053

Explainability of Neural Networks in Profiled Side-Channel Analysis 199

23. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

24. TELECOM ParisTech SEN research group: DPA Contest (4th edition) (2011).
http://www.dpacontest.org/v4/index.php

25. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity
analysis. IACR Trans. Cryptograph. Hardw. Embedded Syst. 2019(2), 107–131
(2019). https://tches.iacr.org/index.php/TCHES/article/view/7387

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
http://www.dpacontest.org/v4/index.php
https://tches.iacr.org/index.php/TCHES/article/view/7387

Online Performance Evaluation of Deep
Learning Networks for Profiled

Side-Channel Analysis

Damien Robissout1(B), Gabriel Zaid1,2, Brice Colombier1, Lilian Bossuet1,
and Amaury Habrard1

1 University of Lyon, UJM-Saint-Etienne, CNRS Laboratoire Hubert Curien UMR
5516F-42023, Saint-Etienne, France

{damien.robissout,gabriel.zaid,brice.colombier,
lilian.bossuet,amaury.habrard}@univ-st-etienne.fr

2 Thales ITSEF, Toulouse, France
gabriel.zaid@thalesgroup.com

Abstract. Deep learning based side-channel analysis has seen a rise in
popularity over the last few years. A lot of work is done to understand the
inner workings of the neural networks used to perform the attacks and a
lot is still left to do. However, finding a metric suitable for evaluating the
capacity of the neural networks is an open problem that is discussed in
many articles. We propose an answer to this problem by introducing an
online evaluation metric dedicated to the context of side-channel analysis
and use it to perform early stopping on existing convolutional neural
networks found in the literature. This metric compares the performance
of a network on the training set and on the validation set to detect
underfitting and overfitting. Consequently, we improve the performance
of the networks by finding their best training epoch and thus reduce the
number of traces used by 30%. The training time is also reduced for most
of the networks considered.

Keywords: Side-channel attacks · Metrics · Deep learning ·
Underfitting · Overfitting

1 Introduction

Side-channel attacks are a class of cryptographic attacks in which an adver-
sary exploit vulnerabilities of a system by analyzing its physical properties,
such as the power consumption [8] or electromagnetic emanations [1], to reveal
secret information. The implementation of a cryptographic algorithm involves
the manipulation of sensitive variables which depend on the secret. This is the
base concept behind side-channel attacks, among which we find profiling attacks.
In this scenario, an adversary has access to a test device on which he can choose
the plaintext and the secret key. With that information, he is able to estimate
the conditional distribution associated with the sensitive variable of interest. On
c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 200–218, 2021.
https://doi.org/10.1007/978-3-030-68773-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_10

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 201

a target device containing a secret to retrieve, the adversary can then predict the
actual sensitive value and reveal the secret. In 2002, the first profiling attacks,
named template attacks, were introduced by Chari et al. [4] but their proposal
was limited by its computational complexity.

Very similar to profiling attacks, deep learning algorithms were inevitably
applied in the side-channel context. Indeed, some articles have shown the robust-
ness of convolutional neural networks (CNNs) to the most common countermea-
sures, namely masking [10,11] and desynchronization [3,16]. One of their main
advantages is that they do not require pre-processing of the traces. The training
process, through which the network learns to solve one specific problem, con-
sists in two phases [5]: the forward propagation and the backward propagation.
Given an input, the aim of the forward propagation is to feed training examples
to the network in the forward direction by processing successive linear and non-
linear transformations in order to predict a value related to the input. Once this
is done, the backward propagation measures the error between the predictions
and the correct output and tries to reduce it by updating the parameters that
compose the network.

To evaluate the training process and its performance, classical deep learning
metrics can be used. One of the most popular is the accuracy. Unfortunately, as
Picek et al. have shown [12], this metric is poorly suited in the context of side-
channel analysis. Using the accuracy tends to favor the class with the highest
output probability. This solution cannot be considered, in side-channel analysis,
because the classifiers are often only loosely correlated with the true classification
because of the very small leakage information present in the traces used for
learning. Then, to perform a successful attack, the adversary must combine the
classification results obtained for multiple traces to extract the estimate of the
true class.

Contributions. In this article, we evaluate the ability of a network to generalize
the knowledge found in the learning samples. By comparing the performance on
the training set, containing the examples used by the network to learn, and the
validation set, containing examples the network has never seen before, we get
an insight into how well the network performs on new examples. Our proposed
metric, called Δd

train,val, is derived from the success rate [14], commonly used
in side-channel analysis. Defined as the number of successful attacks over 100
realizations, the success rate is a suitable metric to evaluate the performance of
attacks compared to the accuracy, which corresponds to taking into account only
one trace to perform only one attack. By measuring the number of traces that
are needed to get a successful dth order success rate on the training and the vali-
dation sets, we can accurately evaluate the ability of the network to generalize its
knowledge. We confirm the relevance of our metric by applying it on the ASCAD
public dataset [13]. Using Δd

train,val has two benefits: during training, this metric
can be used to detect the internal state of the network (underfitting/overfitting)
and to find the best number of epochs to perform early stopping [5]. Further-
more, Δd

train,val helps to compare the performance between the networks once

202 D. Robissout et al.

they are trained. Therefore, it allows us to optimize the performance of a network
used for side-channel analysis.

Article Organization. The article is organized as follows. Section 2 is dedicated
to the neural networks and evaluation metrics used in the article. After defining
the machine learning approach for evaluating the generalization capacity of a
network, Sect. 3 defines a new evaluation metric, called Δd

train,val, which mea-
sures this generalization in the context of side-channel analysis. This new metric
is applied on the public dataset ASCAD [13] and its main CNN architecture
in Sect. 4 and then compared against the only comparable existing metric, the
guessing entropy bias variance decomposition [15]. Finally in Sect. 5, we dis-
cuss some future works that could be investigated and conclude on the results
presented in the article.

2 Preliminaries

2.1 Notations

Let calligraphic letters X denote sets, the corresponding capital letters X (resp.
bold capital letters) denote random variables (resp. random vectors T) and the
lowercase x (resp. t) denote their realizations. The i-th entry of a vector t is
written as t[i].

A side-channel trace is a random vector T ∈ R
D where D defines the dimen-

sion of the trace. The targeted sensitive variable is Z = f(P,K) where f denotes
a cryptographic primitive, P (∈ P) denotes a public variable (e.g.. plaintext or
ciphertext) and K (∈ K) denotes a part of the key (e.g.. byte) that an adversary
tries to retrieve. Z takes values in Z = {s1, ..., s|Z|}. Let us denotes k∗ the secret
key used by the cryptographic algorithm.

2.2 Profiling Attacks

A profiling attack is performed in two stages: a profiling phase and a matching
phase. During the profiling phase, an adversary has access to a test device on
which he can control the input and the secret key of the cryptographic algorithm.
He uses this knowledge to find the relevant leakages depending on the sensitive
variable Z. The adversary builds a model F : RD → R

|Z| that estimates the
probability Pr[T|Z = z] from a profiling set T = {(t0, z0), . . . , (tNp−1, zNp−1)}
of size Np.

Once the model F is built, in the matching phase, the adversary estimates
which intermediate value is processed. By predicting this sensitive variable and
knowing the public variable used during the encryption, the adversary can com-
pute a score vector, based on F (ti), i ∈ [[0, Na − 1]], for each trace included in a
dataset of Na attack traces. The key candidate with the highest values will be
defined as the recovered key.

To evaluate the performance related to the estimations, we can classify all the
key candidates into a vector of size |K|, denoted g = (g1, g2, ..., g|K|), following

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 203

their resulting probability. We consider g1 as the most likely candidate and g|K|
as the least likely one. Let us denote g(k∗[b]) the actual position of the bth byte
of the secret key in g. This position is called rank. In side-channel analysis, a
common metric, called guessing entropy (GE) [14], defines the average rank of
a byte b of k∗, denoted k∗[b], among all key hypotheses. We consider an attack
as successful, using Na traces, when the guessing entropy is equal to 1.

The rank of the correct key gives us an insight into how well our model
performs. A related metric is the success rate, the probability that an attack
succeeds in recovering k∗[b] among all the hypotheses. A success rate of p means
that p attacks, over 100 realizations, succeed to retrieve k∗[b]. In [14], Standaert
et al. propose to extend the notion of success rate to an arbitrary order d. Let
AEk,L be an adversary trying to attack a cryptographic computation Ek using
to a leakage model L. The adversary has to conduct some experiments ExpdAEk,L

in order to exploit the relevant information that leaks. The output of the attack
is a guessing vector g of length d that is composed of the key candidates sorted
according to the attack result. If k∗[b] ∈ g, then we consider the attack as a
success and ExpdAEk,L

= 1. Thus, the dth order success rate can be defined as:

SRd
AEk,L

= Pr[ExpdAEk,L
= 1].

In other words, the dth order success rate is defined as the probability that the
target secret k∗[b] is ranked among the d first key guesses in the score vector. In
the rest of the article, the dth order success rate is denoted SRd.

2.3 Neural Networks

Neural networks have risen in popularity over the past ten years due to the
increase in computing power and the democratization of GPUs. They proved
to be very efficient at solving a large variety of problems like classification or
feature extraction. It is for these reasons that the application of machine learning
techniques was eventually explored in side-channel analysis [2,6,9] and soon
after followed the application of deep learning and the use of neural networks
[3,10]. For a classification task, a neural network aims at constructing a function
F : R

D → R
|Z| that computes an output called a prediction represented as

a vector of size |Z|, the number of possible classes. To solve a classification
problem, the function F has to find the right prediction y associated with the
input t with high confidence. To approximate the optimal solution, a neural
network must be trained given a profiling set of Np pairs (ti, yi) where t is the i-
th profiling input and yi is the label associated with the i-th input. To construct
F , neural networks are built from several layers composed of unit blocks called
neurons. These neurons perform operations to select the relevant features that
allow for an efficient classification of t.

One special kind of network is the convolutional neural network. The partic-
ularity of CNNs is the use of filters for improving the pattern recognition. The
main advantage of the filters and convolutional layers is their time-invariance

204 D. Robissout et al.

property that allows the network to be robust against desynchronization (e.g..
shifting, jitter) [3,16]. Therefore, the resynchronization pre-processing is not nec-
essary anymore. However, Zhou and Standaert [17] have shown that resynchro-
nization still helps the network during the learning phase and improves the
network performance.

Once the architecture of the network is fixed, the training can begin but we
need to be able to evaluate how well a network is learning. In order to do so,
some evaluation metrics have been developed.

2.4 Evaluation Metrics

In machine learning, to accurately evaluate the networks, it is common to look at
the progression of different metrics that can be decomposed into two categories:

– The learning metrics, such as the empirical risk, which is the average
of a loss function, over all the examples of the training set, estimating the
classification error. They help the network to update its trainable parameters
(i.e. weights) in order to optimize F .

The classification error is defined by a comparison between a label yi and
the related predicted value ŷi. The function measuring this error is the loss
function. The goal of the training is to minimize the loss in order to reduce the
errors made by the network on the training examples. The most commonly used
loss is the categorical cross-entropy [5]. Minimizing the categorical cross-entropy
reduces the dissimilarity between the correct distributions and the predicted
distributions for a set of inputs. Thus, the evaluation of this learning metric
helps to interpret the training error of a model. It can be visualized after the
training to better understand how well the network learned.

– The performance metrics, such as the accuracy, that define the perfor-
mance of a network for a given input. This metric computes the number of
good predictions for a set of traces. In side-channel analysis, it corresponds
to a first order success rate using only one trace [12].

The performance metrics are exploited in order to evaluate the internal state
of a network [5] and used to detect both underfitting and overfitting.

Underfitting typically describes the moment of the learning phase where the
network has not seen enough training examples to extract relevant information
from them. It is therefore not able to make correct predictions. It can also be a
sign that the architecture of the network is not complex enough to properly esti-
mate the underlying function. To prevent underfitting, it is possible to increase
the number of training examples, the number of epochs and the complexity of
the network [5].

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 205

Overfitting happens when the network is starting to learn features from the
training examples that are not relevant for generalization. Thus it is loosing its
generalization power which means it is better at predicting training examples
but performs poorly on the validation set. The consequence is that the network
learns the training examples by heart, learning features that are not useful for
classification purposes. For example, in side-channel analysis, we can assume
that the network learns noise patterns from the training set, where the noise
is considered to be independent from the intermediate value Z. Since those
patterns are random, they will most likely negatively influence the prediction
of new examples. Another factor can be an overly complex architecture. As a
consequence, the network is able to estimate functions F much more complex
than the optimal one. To reduce the impact of overfitting, some techniques can
be used such as data augmentation [3], noise addition [7], regularization or a
more fitting architecture [16].

As mentioned before, the accuracy is not a suitable metric for evaluating the
network performance for side-channel attacks. It differs from the paradigm of the
side-channel attacks where one considers and uses a set of traces to accumulate
information about the secret key. According to Picek et al. [12], it is more relevant
to use the success rate when a side-channel developer wants to evaluate the
performance related to his network. Indeed, contrary to the accuracy, the success
rate is based on the accumulation of information over several traces.

2.5 Related Work on Metrics for Side-Channel Analysis

The guessing entropy is a suitable metric to evaluate the performance of a net-
work. However, this tool does not give an insight about the internal state of
the network. Indeed, the guessing entropy evaluates the performance associated
with a set of traces but does not compare the performance between the training
dataset and the validation one. Then, it is difficult for an evaluator to identify
the appropriate moment where the model starts overfitting. Detection of overfit-
ting is an important problem to consider since it lowers the performance of the
network. Moreover, an early detection of the overfitting can bring a substantial
gain in terms of training time by reducing the number of epochs the network has
to train for. Therefore, to solve this problem, van der Valk and Picek [15] intro-
duced the guessing entropy bias variance decomposition (GEBVD). By doing
so, they are able to separately study the evolution of the bias and the variance
of the guessing entropy and draw conclusions on the influence of some hyperpa-
rameters on the performance of the network. A high bias may indicate that the
network is underfitting and a high variance that it is overfitting.

Our approach is different in the sense that we evaluate the generalization
capability of a given architecture by studying its performance at training and
validation. If the network can be improved, e.g.. when having much better per-
formance on training than on validation, then regularization can be applied to
improve the training of the network and reach better performance. We also
study the link between good performance at training and good performance at
validation.

206 D. Robissout et al.

In order to do that, we propose a new metric called Δd
train,val. The aim of this

new metric is to characterize the generalization power of a network dedicated to
side-channel analysis.

3 Δd
train,val: A Deep Learning Evaluation Metric for

Side-Channel Analysis

Δd
train,val uses a common side-channel metric, namely the success rate, to evalu-

ate the performances of a network both on the training set and on the validation
set. Therefore, Δd

train,val allows the attacker to draw conclusions on the internal
state of the network, namely underfitting or overfitting.

3.1 Δd
train,val: Internal State Detection

Let a model be the result function F of the training of an architecture for a given
amount of epochs. We define Nd

train(model) and Nd
val(model) as the minimal

number of traces that a model needs in order to reach an dth-order success rate:

Nd
train(model) = min{ntrain | ∀n ≥ ntrain, SRd

train(model(n)) = 90%}

and,

Nd
val(model) = min{nval | ∀n ≥ nval, SRd

val(model(n)) = 90%}.

An dth order success rate means that the attacker has at most d key guesses to
test after the attack in order to recover the correct one.

By comparing the performances of the attacks on training and on validation,
we obtain information on how well the network is able to generalize its knowl-
edge. The choice of the euclidean norm seemed the most natural to compare two
number of traces. Therefore, Δd

train,val is computed as follow:

Δd
train,val = |Nd

val − Nd
train|.

The computation of Nd
train and Nd

val is based on the existing side-channel
metrics that are known to exploit the full information available. By comparing
them, we combine the machine learning and the side-channel approaches to
evaluate any network.

Our proposal has the advantage that it is possible to evaluate the internal
state of the network during the training and afterwards by visualizing this new
metric. Indeed, we are able to efficiently visualize when our network is in an
underfitting, good or overfitting state. The choice of a success rate of 90% was
made, instead of 100%, to bring more stability to the values of Nd

train and Nd
val.

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 207

3.2 Detection of Overfitting/underfitting

The evolution of Δd
train,val and the internal state of a model are illustrated with

three areas in Fig. 1, showing an example of the evolution of Δ1
train,val during

the training of a network:

– Underfitting: as mentioned in Sect. 2.4, underfitting occurs when the net-
work has not learned enough information from the training set. Thus, the
attack cannot be performed. The values related to Nd

train and Nd
val are often

not defined or are both very high. In other words, when the number of train-
ing epochs is low, Δd

train,val is also not defined or its value is very high (area
on the left of Fig. 1). Such cases call for an augmentation of the number of
epochs or the amount of training data to reach a success rate of 90%.

– Good trade-off : when the network is able to learn enough relevant infor-
mation from the training set, the value of Δd

train,val converges towards
Nbias(Ttrain), which represent the minimal difference between Nd

train and Nd
val

given a training set Ttrain. Let us denote e the number of epochs needed to
reach a good trade-off, we have:

Δd
train,val −−−−−−→

epoch→e
Nbias(Ttrain). (1)

A good trade-off occurs at the number of epochs for which Δd
train,val is close to

Nbias(Ttrain). The network generalizes the relevant information for performing
as well on the training set as on the validation set (area in the middle of Fig. 1).
This metric gives information on the ability of the network to generalize well.
In the following, we use best trade-off to describe the best network we were
able to train without guaranteeing that it is optimal.

– Overfitting: as mentioned in Sect. 2.4, overfitting occurs when the network
is starting to learn the training features by heart. As a consequence, the
network looses its generalization power on the validation set to obtain better
performance on the training set. The value of Nd

train approaches 1 and more
generally converges to a very small value. At the same time, Nd

val increases
towards a value Nmax(Ttrain), i.e.:

Δd
train,val −−−−−−→

epoch→∞
Nmax(Ttrain). (2)

This value represents the maximal number of traces needed by the network to
reach a success rate of 90% once the training has stabilized, i.e. the network
cannot improve its performance on the training set anymore. Thus, the update
of its weights does not change the prediction made on the validation set and
the performance of the overfitted model stays low (area on the right of Fig. 1).

With that knowledge, we can optimize the training of the network by per-
forming early stopping.

208 D. Robissout et al.

Fig. 1. Evolution of Δ1
train,val for different number of epochs. The plot of Δ1

train,val is
done using a moving average of size 10.

3.3 Δd
train,val : A Suitable Metric for Early Stopping

Early stopping consists in monitoring the learning of the network and stopping
the training when the learning metrics, usually the accuracy and the loss, are
optimal, i.e. just before the network starts to overfit. As mentioned in [5], early
stopping has other effects on the network. It is a mean of applying regulariza-
tion without having to penalize weights and therefore can be used in parallel
without other methods of regularization. It can also be considered as an addi-
tional hyperparameter, the number of training steps or number of epochs, that is
tuned during the training of the network using the computation of its associated
metrics. All in all, it is recommended to perform early stopping as long as there
is an appropriate metric to use in combination. The learning metrics are com-
puted both on the training set and on a validation set to be able to properly tell
whether or not the network performs well. The comparison between performance
at training and on validation yields important information about the network. In
our case, Δd

train,val gives us the information needed to identify when to stop the
training (see Fig. 1). If our metric does not grow for a given number of epochs
then we can assume the optimal state is reached and stop the training.

The computation of Δd
train,val can be done in parallel to the training of the

next epoch. As illustrated on Fig. 2, as long as the training time of an epoch is
superior to the time it takes to compute Δd

train,val, there is no time overhead.
In the cases where it takes longer than an epoch, for example when the training
set is small, the computation of Δd

train,val can be done once every few epochs to
prevent time overhead as shown in Fig. 3.

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 209

Fig. 2. Computation of Δ1
train,val for different consecutive epochs when the computa-

tion is shorter than the training of one epoch

Fig. 3. Computation of Δ1
train,val for different consecutive epochs when the computa-

tion is longer than the training of one epoch

4 Experimental Results

For all the experiments presented in this section we computed Δ1
train,val on

neural networks during their training phase to evaluate their best capacity. The
networks are trained using the ASCAD1 database, introduced in [13] to be a
common database for researchers. The device used to acquire the electromagnetic
measurements is an 8-bit AVR ATMega8515 running an AES implementation
secured against first order side-channel attacks. The dataset is composed of a
training set of 50000 traces and a test set of 10000 traces both coming from the
same device. From the raw traces, 700 points are selected which contain leakage
of the mask and the masked value of the third key byte in the first round. The
leakage model associated with the traces is:

Y (k∗) = Sbox(p[3] ⊕ k∗[3]),

where p is the plaintext and k∗ the correct key.
The main advantage of using this database is to compare our results to the

ones presented in the ASCAD reference article.

4.1 Early Stopping on the ASCAD Database

To perform early stopping during the training, we computed Δ1
train,val at the end

of each epoch. We started by applying this method to the architecture CNNbest

presented in Appendix A, Table 2. This is the best performing CNN architecture
presented in [13]. It uses the categorical cross-entropy (CCE) loss, the RMSprop
optimizer with a learning rate of 10−5 and a base number of epochs for training
of 75.
1 https://github.com/ANSSI-FR/ASCAD.

https://github.com/ANSSI-FR/ASCAD

210 D. Robissout et al.

For readability, we show, in Fig. 4, a moving average of Δ1
train,val using a

window of size 3. This is done to smooth out the curve and better see its global
shape and explains why the minimal value of the metric is not always at the
minimum of the curve. The moving average is thus not taken into account while
computing the minimal value of Δ1

train,val. The evolution of Ntrain for a whole
training is also shown and the attacks are performed on a set of synchronized
traces, called Desync0. The addition of the performance at training helps to
understand the state of the network. At around 30 epochs, the training of the
network allows it to reach a success rate of 90% using 4900 traces from the
validation set. From that point on, the value of Δ1

train,val quickly decreases to
reach a minimal value at 47 epochs. At this point, it is able to reach a success
rate of 90% with around 800 traces. It then slowly increases again to stabilize
in an unstable regime at Nmax(Ttrain) ≈ 3000 traces as mentioned in Eq. 2. The
original article introducing this network [13] recommended 75 epochs of training
to reach the best performances but here we find that, after 75 epochs of training,
the success rate of 90% is reached with around 1150 traces. Performing early
stopping using Δ1

train,val allowed for an improvement of 30% of the performances
of the network. The time it takes to train the network also went down from 1 h
to 40 min which is a 33% decrease in computation time compared to [13]. We
can clearly identify the learning phase where the network is underfitting that
lasts until epoch 47. At this point the network is at its best capacity given
its hyperparameters and training set. Due to its great complexity, the network
starts to overfit after the next epoch. Therefore, Δ1

train,val shows us that there
is no benefit in continuing the training after epoch 47. It can also be seen that
the value of Ntrain decreases much faster than Δ1

train,val and its value is very
low even at the best capacity of the network. This is a sign of overfitting even
though it does not yet impact negatively the performances on validation. Possible
solutions to fix this problem would be to change the complexity of the network
or to add regularization [5].

4.2 Comparison Between GEBVD and Δ1
train,val

In this section, we take a look at the guessing entropy bias variance decomposi-
tion as introduced in [15]. The goal of this decomposition is to separate the bias
from the variance in the performance of a network. This allows to evaluate the
state of the network because a high bias is typically linked to underfitting while
a high variance implies some overfitting. GEBVD therefore aims at separating
the bias and the variance of the guessing entropy. Van der Valk et al. manage
to do so by estimating the bias by the mean of the guessing entropy and the
variance to be its variance. We try to compare both Δd

train,val and the GEBVD
regarding the information they offer on the state of a CNN.

For that, we use CNNBV presented in [15] for the tests. A description of the
architecture of the network can be find in Appendix A, Table 3. This network
uses the mean squared error (MSE) as a loss function, the Adam optimizer with
a learning rate of 10−4 and the base number of epochs for training is 50. As
described in the original article, it has a varying complexity depending on the

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 211

Fig. 4. Evolution of Δ1
train,val for different number of epochs for CNNbest on Desync0,

the training set with no desynchronization of the ASCAD database [13], and compar-
ison with their choice of number of epochs

number of convolutional layers used. The networks used to obtain the following
results have zero (0CONV) or one (1CONV) convolutional layers. Finally, the
leakage model used is the following:

Y (k∗) = HW (Sbox(p[3] ⊕ k∗[3])),

where p and k∗ are the same as before. This reduces the number of output
classes to 9 instead of the previous 256.

Figure 5 shows a comparison of the two metrics on CNNBV with no convo-
lution. On the left, Fig. 5a shows the evolution of the guessing entropy at each
epoch of the training for different numbers of attack traces while Fig. 5b shows
the evolution of Δ1

train,val and Ntrain. From Fig. 5a, we see that around epoch
25, the networks is able to consistently reach a success rate of 90% with around
3800 traces which seems to indicate that is it well suited for the problem at
hand. On the second picture though, it appears that the learning period lasts
until epoch 40. Between epoch 25 and epoch 100, the network is in an unstable
regime, meaning there are a lot of unpredictable variations from one epoch to the
next, both for Ntrain and Nval. This directly impacts the evolution of Δ1

train,val

making it harder to locate the best capacity of the network. Indeed, the best-
performing network requires 109 epochs of training and only takes around 2100
traces to reach a success rate of 90%. This is roughly 50% better than the net-
work after 25 epochs and 25% better than the network after 50 epochs, which
is the number of epochs recommended in [15], that needs around 3000 traces to
obtain the same success rate. This behavior can be attributed to underfitting

212 D. Robissout et al.

Fig. 5. Evolution of metrics during training for CNNBV with 0 convolutional block
using the MSE loss

due to a lack of complexity of the network and can be an indicator that the
model chosen will not converge. It can also be linked to the choice of the loss
function and learning rate.

To test this last hypothesis, we trained the same network using the categorical
cross-entropy instead of the mean squared error. Figure 6 shows the result of this
training. We can see an overall increase in the performance of the network on
the validation set as well as a smaller variance in the value of Ntrain for a large
number of epochs. With Δ1

train,val, we reach the best capacity for the network
at the epoch 37 where the network needs around 1300 traces to reach a success
rate of 90%. Then, the value of Δ1

train,val keeps on increasing until the end of the
training. This early stopping brings significant improvements compared to the
network trained for 50 epochs, used in [15], that needed around 1800 traces to
reach a success rate of 90%. It is also better in terms of training time since we go
from 800 s for 50 epoch to 618 s for 37 epochs. The increase of Δ1

train,val after the
epoch 37 is linked to a stabilization of the performance on validation while the
performance of the attacks on training continues to improve. It seems that the
low complexity of the CNN reduces the impact of overfitting on the performance
on validation. This is further confirmed in Fig. 7 representing the evolution of the
guessing entropy in Fig. 7a and of Δ1

train,val in Fig. 7b for the same architecture
but with one layer of convolution. We can see that it tends to overfit much faster
by the shape of Ntrain and this tendency has a great impact on the performance
on validation which are much worse. The best capacity, given by the minimum
value of Δ1

train,val, is reached at the epoch 42 with around 1650 traces needed to
reach a success rate of 90%. It is still an improvement compared to the epoch 25
and the epoch 50, used in [15], which require respectively 2700 and 2150 traces.
The same metrics were computed for this network using the MSE loss but the
architecture in combination with this loss could not consistently reach a success
rate of 90% within 5000 traces throughout the training.

On the one hand, low complexity slows down the overfitting but it does not
necessarily means the network will perform better in the end. On the other hand,

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 213

Fig. 6. Evolution of metrics during training for CNNBV with 0 convolutional block
using the CCE loss

higher complexity allows the network to find more links between the input and
output which leads to overfitting if not regulated. This is why regularization
techniques are applied to neural networks to prevent this phenomenon from
happening.

Fig. 7. Evolution of metrics during training for CNNBV with 1 convolutional block
using the CCE loss

All those conclusions can be deduced using Δ1
train,val and are harder to see

with the GEBVD because once the guessing entropy reaches 1, the variance
reaches 0, therefore no information can be extracted from it. When comparing
the Figs. 6a and 7a, there is hardly any difference between the evolution of the
guessing entropies. This contrasts with the evolution of Δ1

train,val between the
Figs. 6b and 7b in which we can see a difference in the quality of the training as
well as the performance of the networks. For the network without convolutional
layers, the value of Ntrain and Nval are much closer which leads to a lower
value of Δ1

train,val and indicates a better learning phase with less overfitting.
In addition, since Δ1

train,val is based on the number of traces needed to reach

214 D. Robissout et al.

Table 1. Summary of the results with choices made using Δ1
train,val in bold

Networks Nb of

CONV

layers

LOSS Reference Nb epochs Nval Δ1
train,val Time to

train

(seconds)

Difference in

time and

performance in

comparison to

the reference

CNN best 5 CCE [13] 75 1151 1145 3600 Time: −33.3%

This article 47 802 779 2400 Nval: −30.3%

CNN BV 0 MSE [15] 50 2960 1449 970 Time: +98.5%

This article 109 2093 954 1926 Nval: −29.3%

CCE [15] 50 1849 915 800 Time: −22.7%

This article 37 1331 413 618 Nval: −28.6%

1 CCE [15] 50 2177 2136 956 Time: −20.4%

This article 42 1659 1575 761 Nval: −23.7%

a SR1 of 90%, we are still able to evaluate and compare networks when all
the attacks are successful, i.e. when the SR1 reaches 100%. Indeed, GEBVD
cannot be used when the variance is null because it gives no information on
the state of the network. With Δ1

train,val, we consistently find the best training
epoch and therefore perform early stopping which improves the capacity and the
training time of the network. The results detailed in this section are summarized
in Table 1, giving a comparison between the networks as mentioned in their
respective article and the choices made using Δ1

train,val. Those results seem to
confirm, as argued in [11] by Masure et al., that the categorical cross-entropy is
an appropriate loss to use in deep learning for side-channel analysis.

5 Conclusion

In this article, we introduced a new metric dedicated to deep learning for side-
channel analysis. By comparing the efficiency of the attacks on the training set
and on the validation set, this metric evaluates at the same time the performance
of a given architecture and its potential for improvement. It also allows for a
characterization of the state of the network and therefore for the detection of
overfitting. This property makes it possible to use this metric during the training
of a network to perform early stopping.

Consequently, we used Δd
train,val to evaluate the best CNN of the ASCAD

public database. We found out by applying Δ1
train,val for early stopping that it

reaches its best performance around 47 epochs which is less than the 75 epochs
mentioned in [13]. This early stopping of the training allowed for a reduction of
31% of the number of traces needed to reach a success rate of 90% and reduced
the training time by 30%. The measurement of Δ1

train,val showed that it was
heavily overfitting the training data. To limit this overfitting, we suggest the
use of normalization and regularization. We then compared Δ1

train,val to the
GEBVD as introduced in [15] by evaluating an architecture presented in the
article. It showed that Δ1

train,val gives a better insight on how well the network
is performing as well as how much it is overfitting the training data, especially

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 215

when the attacks are successful. We managed to improve the performance of the
network by 20 to 30% while the training time was reduce by more or less the
same percentage. This shows the importance of choosing the right number of
epochs.

For future work, we plan to use Δd
train,val to evaluate the improvements

that can bring normalization and regularization techniques. Finally, it can be
interesting to adapt this metric (or a derivative) as a loss function in order to
optimize the network in the side-channel context.

A Networks

Table 2. Network hyperparameters for CNNbest [13]

Layer type Hyperparameters

Trace input 700

Convolution 1D Filter = 64,
Filter length = 11,
Activation = ReLU

Average pooling Pool length = 2

Convolution 1D Filter = 128,
Filter length = 11,
Activation = ReLU

Average pooling Pool length = 2

Convolution 1D Filter = 256,
Filter length = 11,
Activation = ReLU

Average pooling Pool length = 2

Convolution 1D Filter = 512,
Filter length = 11,
Activation = ReLU

Average pooling Pool length = 2

Convolution 1D Filter = 512,
Filter length = 11,
Activation = ReLU

Average pooling Pool length = 2

Flatten –

Fully-connected Neurons = 4096

Fully-connected Neurons = 4096

Output Softmax: 256 classes

216 D. Robissout et al.

Table 3. Network hyperparameters for CNNBV [15]

Layer type Hyperparameters

Trace input 700

Convolution 1D (Optional) Filter = 8,
Filter length = 3,
Activation = ReLU

Batch normalization –

Max pooling Pool length = 2

Convolution 1D (Optional) Filter = 16,
Filter length = 3,
Activation = ReLU

Batch normalization –

Max pooling Pool length = 2

Convolution 1D (Optional) Filter = 32,
Filter length = 3,
Activation = ReLU

Batch normalization –

Max pooling Pool length = 2

Convolution 1D (Optional) Filter = 64,
Filter length = 3,
Activation = ReLU

Batch normalization –

Max pooling Pool length = 2

Convolution 1D (Optional) Filter = 64,
Filter length = 3,
Activation = ReLU

Batch normalization –

Max pooling Pool length = 2

Flatten –

Dropout Coefficient = 0.5

Fully-connected Neurons = 512

Dropout Coefficient = 0.5

Output Softmax: 9 or 256 classes

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 4

https://doi.org/10.1007/3-540-36400-5_4

Online Performance Evaluation of Deep Learning Networks for Profiled SCA 217

2. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilistic
multi-class support vector machines. In: Mangard, S. (ed.) CARDIS 2012. LNCS,
vol. 7771, pp. 263–276. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37288-9 18

3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç,
K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 3. http://dl.acm.org/
citation.cfm?id=648255.752740

5. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adap-
tive Computation and Machine Learning. MIT Press, Cambridge (2016).
http://www.deeplearningbook.org/

6. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4),
293–302 (2011). https://doi.org/10.1007/s13389-011-0023-x

7. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleash-
ing the power of convolutional neural networks for profiled side-channel analysis.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 148–179 (2019). https://
doi.org/10.13154/tches.v2019.i3.148-179

8. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

9. Lerman, L., Poussier, R., Markowitch, O., Standaert, F.: Template attacks versus
machine learning revisited and the curse of dimensionality in side-channel analysis:
extended version. J. Cryptogr. Eng. 8(4), 301–313 (2018). https://doi.org/10.1007/
s13389-017-0162-9

10. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

11. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for side-
channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1), 348–375
(2019). https://doi.org/10.13154/tches.v2020.i1.348-375

12. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2018). https://
doi.org/10.13154/tches.v2019.i1.209-237

13. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. IACR
Cryptology ePrint Archive 2018/53 (2018). http://eprint.iacr.org/2018/053

14. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

15. van der Valk, D., Picek, S.: Bias-variance decomposition in machine learning-based
side-channel analysis. Cryptology ePrint Archive, Report 2019/570 (2019). https://
eprint.iacr.org/2019/570

https://doi.org/10.1007/978-3-642-37288-9_18
https://doi.org/10.1007/978-3-642-37288-9_18
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
http://dl.acm.org/citation.cfm?id=648255.752740
http://dl.acm.org/citation.cfm?id=648255.752740
http://www.deeplearningbook.org/
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.13154/tches.v2019.i3.148-179
https://doi.org/10.13154/tches.v2019.i3.148-179
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/s13389-017-0162-9
https://doi.org/10.1007/s13389-017-0162-9
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.13154/tches.v2020.i1.348-375
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
http://eprint.iacr.org/2018/053
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://eprint.iacr.org/2019/570
https://eprint.iacr.org/2019/570

218 D. Robissout et al.

16. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020(1), 1–36 (2019). https://doi.org/10.13154/tches.v2020.i1.1-36

17. Zhou, Y., Standaert, F.-X.: Deep learning mitigates but does not annihilate the
need of aligned traces and a generalized ResNet model for side-channel attacks. J.
Cryptogr. En. 10(1), 85–95 (2019). https://doi.org/10.1007/s13389-019-00209-3

https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.1007/s13389-019-00209-3

Primitives and Tools for Physical
Attacks Resistance

Custom Instruction Support for Modular
Defense Against Side-Channel and Fault

Attacks

Pantea Kiaei1(B), Darius Mercadier2, Pierre-Evariste Dagand2,
Karine Heydemann2, and Patrick Schaumont3

1 Virginia Tech, Blacksburg, VA 24061, USA
pantea95@vt.edu

2 LIP6, Paris, France
darius.mercadier@gmail.com,

{pierre-evariste.dagand,karine.heydemann}@lip6.fr
3 Worcester Polytechnic Institute, Worcester, MA 01609, USA

pschaumont@wpi.edu

Abstract. The design of software countermeasures against active and
passive adversaries is a challenging problem that has been addressed by
many authors in recent years. The proposed solutions adopt a theoretical
foundation (such as a leakage model) but often do not offer concrete ref-
erence implementations to validate the foundation. Contributing to the
experimental dimension of this body of work, we propose a customized
processor called SKIVA that supports experiments with the design of
countermeasures against a broad range of implementation attacks. Based
on bitslice programming and recent advances in the literature, SKIVA
offers a flexible and modular combination of countermeasures against
power-based and timing-based side-channel leakage and fault injection.
Multiple configurations of side-channel protection and fault protection
enable the programmer to select the desired number of shares and the
desired redundancy level for each slice. Recurring and security-sensitive
operations are supported in hardware through custom instruction-set
extensions. The new instructions support bitslicing, secret-share genera-
tion, redundant logic computation, and fault detection. We demonstrate
and analyze multiple versions of AES from a side-channel analysis and
a fault-injection perspective, in addition to providing a detailed perfor-
mance evaluation of the protected designs. To our knowledge, this is the
first validated end-to-end implementation of a modular bitslice-oriented
countermeasure.

Keywords: Side-channel leakage · Fault injection · Bitslice
programming

1 Introduction

Side-channel analysis and fault attacks have plagued cryptographic software on
embedded processors for many years. The threat of power-based and timing-based
c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 221–253, 2021.
https://doi.org/10.1007/978-3-030-68773-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_11

222 P. Kiaei et al.

side-channel leakage is well understood and countermeasures such as masking and
constant-time programming figure prominently in the cryptographer’s toolbox [5,
43]. In parallel, the research community has gained more insight into the fault
behavior of hardware and software, thus greatly increasing the potency of fault
attacks [46,52]. The impact of fault attacks is minimized with fault detection and
temporal or spatial redundancy of the software execution [3,33].

Although there exists an extensive array of specific, dedicated countermea-
sures, there is surprisingly few work available [44,48,49] offering protection
against both side-channel analysis and fault injection. This is especially true
for software. The programmer is left selecting candidate solutions, figuring out
if and how they can safely be assembled. This is not an easy task because coun-
termeasures may interact in non-trivial (and unsafe) manners.

Recent related work on side-channel countermeasures has proposed partial
implementations of behavior called gadgets. The integration of these gadgets
into an overall secure implementation is a challenge that has triggered multiple
revisions of the attacker model. For example, Ishai et al. [27], Beläıd et al. [8],
Battistello et al. [6], Barthe et al. [5] and Cassiers et al. [14] present the masked
implementation of a multiplication operation, each protected against attackers
of a different level of sophistication. Given this broad variation in proposals,
we believe there is a need for their practical evaluation in a common setting.
It is not our intention to compare these proposals as in [21]. Instead, we high-
light the role of custom instruction-set extensions as a tool for countermeasure
implementation.

bit0bitn-1 slice0slicek-1

bit0

bitn-1

bit1

bit0

bitn-1

bit1

reg0

regn-1

aggregated
slice{{

standard
representa on

bitslice
representa on

agggg regated bitslice
representa on

Higher-order
Masking

Data
Redundancy

Temporal
Redundancy

aggregated
slice

reg1

reg0

regk-1

reg1

reg0

regn-1

reg1
k

n

n

k

Fig. 1. In a standard representation, processor registers are allocated per data word.
In a bitsliced representation, processor registers are allocated per bit-weight of a block
of data words. In an aggregated bitslice representation, multiple bitslices are allocated
per data bit. Aggregated bitslices can be shares of a masked design, redundant data of
a fault-protected design, or a combination of those.

In this paper, we introduce SKIVA, a processor that enables a modular
approach to countermeasure design, giving programmers the flexibility to pro-
tect their ciphers against timing-based side-channel analysis, power-based side-
channel analysis and/or fault injection at various levels of security. We leverage

Custom Instruction Support for Modular Defense 223

existing techniques in higher-order masking, in spatial and in temporal redun-
dancy. Modularity is achieved through bitslicing, each countermeasure being
expressed as a transformation from a bitsliced design into another bitsliced
design. The capabilities of SKIVA are demonstrated on the Advanced Encryp-
tion Standard, but the proposed techniques can be applied to other ciphers as
well.

Countermeasure Design Through Bitslice Aggregation. SKIVA exploits the
redundancy that is provided by a bitsliced execution model. The n-bit datapath
of the processor is seen as n 1-bit processors operating in parallel. The symmetry
of bitslices in a processor word is the basis for the modular protection schemes
enabled by SKIVA. Figure 1 demonstrates three different organizations of a reg-
ister file in a processor. We obtain the bitslice representation through a matrix
transposition of the input data so that one processor register contains all bits of
a given weight. The key idea of bitslice aggregation is to allocate multiple slices
to the representation of each data-bit. We will demonstrate how bitslice aggre-
gation enables higher-order masking (to protect against power side-channels),
data redundancy (to protect against data faults), and temporal redundancy (to
protect against control faults).

Contributions. SKIVA is a processor with built-in support for modular counter-
measures against side-channel analysis and fault analysis. We open-source our
codes to make it possible for the community to evaluate our implementation 1.
We make the following contributions.

1. We propose a flexible and modular methodology for designing countermea-
sures. It enables the combination of higher-order masking with spatial fault-
redundancy and with temporal fault-redundancy. The number of shares and
fault-redundancy levels is statically determined by the programmer (single,
double, quadruple shares and single, double, quadruple fault-redundancy).

2. We describe hardware support for the proposed methodology in SKIVA, a
processor with instruction set extensions specialized for bitsliced transposi-
tion, bitsliced masked operation, bitsliced fault detection, redundant bitsliced
expansion, and Boolean operations on complementary data.

3. We analyze the performance and code size of the Advanced Encryption Stan-
dard on SKIVA, under multiple levels of side-channel and fault-resistance.

4. We evaluate the side-channel leakage characteristics of SKIVA implemented as
a soft-core processor on a SAKURA-G FPGA board. We perform theoretical
as well as empirical analysis of fault detection coverage.

Outline. In Sect. 2, we review the related work, covering the design of bitsliced
software and countermeasures based on such software. In Sect. 3, we introduce
several modular countermeasure schemes. Starting with bitslicing, we describe
a systematic treatment of higher-order masking, intra-instruction redundancy,
and temporal redundancy. In Sect. 4, we dive into the implementation aspects
1 Cfr. https://github.com/Secure-Embedded-Systems/Skiva.

https://github.com/Secure-Embedded-Systems/Skiva

224 P. Kiaei et al.

and propose a custom instruction-set extension to support various aspects of
the bitslice-oriented countermeasures. In Sect. 5, we present the measurement
results of our prototype, including performance, side-channel leakage evaluation,
and fault detection/correction coverage. In Sect. 6, we conclude the paper.

2 Preliminaries

Bitslicing is an implementation technique to produce high-throughput, constant-
time software implementations of cryptographic primitives [10,29]. A cipher is
expressed as a Boolean circuit. The circuit is compiled into a straight-line pro-
gram by leveling the circuit and translating each Boolean operation to a corre-
sponding bitwise CPU instruction. Since the CPU manipulates registers of 32
bits, running the resulting program amounts to running 32 parallel instances of
the original Boolean circuit.

Bitslicing Versus Wordslicing. In a block cipher, the state variables are k-bit
wide. The bitsliced version of the cipher will store these k bits in a transposed
manner, such that register i will contain the i-th bit of the state. This approach
has been used for DES [10] as well as for AES [41]. However, one can also adopt
wordslicing, which stores groups of b bits out of a k-bit state per register. A
wordsliced design requires k/b registers, as opposed to k registers for a bitsliced
design. Wordsliced design has been demonstrated for AES [29,31]. The choice
between bitslicing and wordslicing has a significant impact on the efficiency
of the resulting design. The resulting code also changes significantly with the
slicing strategy. The bitsliced implementation of AES has to juggle with 128
machine words while being restricted to straightforward logical instructions. The
wordsliced implementation of AES fits within eight registers, at the expense
of complex permutations within individual words. On an embedded RISC-like
CPU, our experiments have shown that the bitsliced implementation yields a
higher throughput than the wordsliced one (Sect. 5.1). Conversely, on a high-
end SIMD CPU, earlier work has shown that wordslicing is key to reach speed
records in software encryption [29]. The lack of SIMD instructions and the lesser
register pressure for RISC CPUs thus favors bitsliced implementations, hence
our focus on bitslicing in the present work.

Countermeasures for Bitsliced Designs. Many hardware-oriented countermea-
sures can be applied as transformations on the Boolean programs of bitsliced
designs. An early effort to address power-based side-channel leakage is the dupli-
cation method [17]. More recently, several masking-oriented techniques have been
proposed [5,13,23,28]. Bitslicing is also a systematic countermeasure against
timing attacks. By construction, a Boolean program runs in constant (or repeat-
able) time. Conditionals in a Boolean program are implemented through data-
multiplexing: both results are sequentially computed and the relevant output
is obtained by demultiplexing these intermediary results based on the condi-
tional. Finally, the massively parallel nature of a bitsliced implementation can

Custom Instruction Support for Modular Defense 225

be exploited to provide intra-instruction redundancy (encrypting the same data
in redundant slices) as well as various forms of temporal redundancy (processing
data at distinct rounds in distinct, randomly-chosen slices) [32,37]. In a bitsliced
setting, these techniques translate into end-to-end protection, protecting a cipher
from the moment the plaintext is introduced to the moment the ciphertext is
produced.

Fig. 2. Bitslice aggregations on a 32 bit register, depending on (D,Rs).

3 Modular Design of Countermeasures

In this section, we present the four protection mechanisms that can be com-
bined in a modular manner, including (a) bitslicing to protect against timing
attacks; (b) higher-order masking to protect against power side-channel leakage;
(c) intra-instruction redundancy to protect against data faults and (d) temporal
redundancy to protect against control faults. We demonstrate our protection on
the AES cipher running on SKIVA. However, the techniques are equally applica-
ble to other bitsliced ciphers. However, the panel of techniques is not restricted to
this cipher nor this processor: they naturally generalize – in a systematic manner
– to any cipher admitting a bitsliced implementation, for processors of arbitrary
bitwidth as well as design (RISC as well as CISC, SIMD or not). We leave it to
future work to evaluate their effectiveness on a broader range of cryptographic
primitives and hardware platforms.

Our implementation of AES is fully bitsliced: the 128-bit input of the cipher
is represented with 128 variables. Since each variable stores 32 bits on SKIVA,
a single run of our primitive computes 32 parallel instances of AES. The protec-
tion mechanisms presented in the following assume the availability of a bitsliced
design while themselves producing a bitsliced design (of lesser parallelism) in

226 P. Kiaei et al.

return. The modularity of our approach lies in this simple observation: as long
as there is enough parallelism to compute at least one run of the algorithm, we
can chain these program transformations.

Figure 2 shows the bitslice organization for masked and intra-instruction-
redundant design. We support masking with 1, 2, and 4 shares leading to respec-
tively unmasked, 1st-order, and 3rd-order masked implementations. By conven-
tion, we use the letter D to denote the number of shares (D ∈ {1, 2, 4}) of a
given implementation. Within a machine word, the D shares encoding the ith

bit are grouped together, as illustrated by the contiguously colored bits b
j∈[1,D]
i

in Fig. 2.
We also support spatial redundancy by duplicating a single slice into two or

four slices. By convention, we use the letter Rs to denote the spatial redundancy
(Rs ∈ {1, 2, 4}) of a given implementation. Within a machine word, the Rs

duplicates of the ith bit are interspersed every 32/Rs bits, as illustrated by
the alternation of colored words bji∈[1,RS] in Fig. 2. The following subsections
elaborate on doing computations using this redundant bitslice allocation scheme.

3.1 Higher-Order Masked Computation

Recent masking schemes, including those for bitsliced designs [5,6,8,14,18], have
relied on the definition of gadgets, elementary masked logic operations that can
be securely composed together. A complete cipher is then expressed as a combi-
nation of gadgets that are wired together. The most important gadgets include
the multiplication gadget (as the canonical non-linear operation) and the mask
refresh gadget. We will demonstrate our design based on the secure duplicated
multiplication gadget by Dhooghe and Nikova [18]. For a 4-share implementa-
tion, we base our cross-product calculations on the parallel masked multiplication
algorithm defined by Barthe et al. [5, Algorithm 3]. For 2-share masking, we use
the following multiplication gadget [21]. If x and y are two-share inputs and
r is a two-share random vector, then the two-share output is obtained by the
following expression.

z = (((x.y ⊕ r) ⊕ x.rot(y, 1)) ⊕ rot(r, 1))

Optimizing this masked design by reducing the amount of randomness [4,9]
is orthogonal to the present work. The objective of SKIVA is to define a common
platform to evaluate such proposals.

3.2 Data-Redundant Computation

We protect our implementation against data faults using intra-instruction redun-
dancy (IIR) [15,32,37]. We support either a direct redundant implementation, in
which the duplicated slices contain the same value, or a complementary redun-
dant implementation, in which the duplicated slices are complemented pairwise.
For example, with Rs = 4, we can have four exact copies (direct redundancy) or
two exact copies and two complementary copies (complementary redundancy).

Custom Instruction Support for Modular Defense 227

In practice, we will favor complementary redundancy over direct redundancy.
First, it is less likely for complemented bits to flip to consistent values due to
single fault injection. For instance, timing faults during state transition [53] or
memory accesses [2] follow a random word corruption or a stuck-at-0 model.
Second, complementary slices ensure a constant Hamming weight for a slice
throughout the computation of a cipher. Our results show that complementary
redundancy results in reduced power leakage when compared to direct redun-
dancy [11].

Fig. 3. Time-redundant computation of a bitsliced AES.

3.3 Time-Redundant Computation

Data-redundant computation does not protect against control faults such as
instruction skip. We, therefore, use a different strategy: we protect our implemen-
tation against control faults using temporal redundancy (TR) across rounds [37].
We pipeline the execution of 2 consecutive rounds in 2 aggregated slices. By
convention, we use the letter Rt to distinguish implementations with temporal
redundancy (Rt = 2) from implementations without (Rt = 1). For Rt = 2, half
of the slices compute round i while the other half compute round i− 1. Figure 3
illustrates the principle of time-redundant bitslicing as applied to AES computa-
tion. The operation starts the pipeline by filling half of the slices with the output

228 P. Kiaei et al.

of the first round of AES, and the other half with the output of the initial key
whitening. At the end of round i+ 1, we have re-computed the output of round
i (at a later time): we can, therefore, compare the two results and detect control
faults based on the different results they may have produced. In contrast to typ-
ical temporal-redundancy countermeasures such as instruction duplication [40],
this technique does not increase code size: the same instructions compute both
rounds at the same time. Only the last AES round, which is different from regular
rounds, must be computed twice in a non-pipelined fashion.

Whereas pipelining protects the inner round function, faults remain possible
on the control path of the loop itself. We protect against these threats through
standard loop hardening techniques, namely redundant loop counters – packing
multiple copies of a counter in a single machine word – and duplication of the
loop control structure [25] – producing multiple copies of conditional jumps so
as to lower the odds of all of them being skipped through an injected fault.

4 SKIVA Implementation

In this section, we present the SKIVA hardware, a custom instruction-set exten-
sion (ISE) tailored to support efficient and safe implementation of these schemes.

4.1 Custom Instruction-Set Extensions in SKIVA

We added new instructions to SKIVA to support computing on aggregated bit-
slices in three different areas. First, they help with the conversion from nor-
mal representation to bitsliced form and back. Second, they handle subword-
operations for the computation of non-linear operations on two or four shares
(D ∈ {2, 4}). Third, they handle subword-operations for spatially redundant
computations and fault checking (Rs ∈ {2, 4}). The new instructions are summa-
rized in Table 1 and will be described in detail in further subsections. Appendix 6
provides their functional specification. These new instructions are orthogonal;
they can be used in a mix-and-match fashion to obtain the desired level of
sharing and redundancy. We integrated the new instructions on the SPARC V8
instruction set of the open-source LEON3 processor and software toolchain [45].

Hardware Integration. Figure 4 illustrates the integration of the custom data-
path into the seven-stage RISC pipeline. The instructions follow a two-input,
one-output or two-input, two-output format, encoded as two source registers,
a destination register, and an immediate field (INS rs1, rs2, rd, imm). The
upper 32-bit output of the custom instruction is transferred to the Y-register, a
register which is used for SPARC V8 instructions with 64-bit output, such as
the regular data multiplication. Instructions with longer than 32-bit outputs can
be integrated into instruction sets without this special register by duplicating
the instruction for calculating the lower half of the output and the upper half
of it separately (similar to MUL and SMMUL in ARM and Thumb instruction
set). The integration of custom-hardware deep into the pipeline necessitates the

Custom Instruction Support for Modular Defense 229

Table 1. Proposed ISE. These instructions are added to the standard SPARC-V
instruction set, occupying unused opcodes. Symbols in the instruction format - rs1,
rs2, rd are registers. imm is an immediate operand. The “Type” column shows what
opcode group was used for each instruction. Appendix 6 lists the functional specifica-
tion for each instruction.

Semantics Instruction format Immediate Type

Normal → Bitslice TR2 rs1, rs2, rd logic

Bitslice → Normal INVTR2 rs1, rs2, rd ld/st

Slice Rotation SUBROT rs, imm, rd D logic

Redundancy Generation RED rs, imm, rd Rs logic

Redundancy Checking FTCHK rs, imm, rd Rs logic

Redundant AND (Rs = 2) ANDC16 rs1, rs2, rd logic

Redundant XOR (Rs = 2) XORC16 rs1, rs2, rd logic

Redundant XNOR (Rs = 2) XNORC16 rs1, rs2, rd ld/st

Redundant AND (Rs = 4) ANDC8 rs1, rs2, rd logic

Redundant XOR (Rs = 4) XORC8 rs1, rs2, rd logic

Redundant XNOR (Rs = 4) XNORC8 rs1, rs2, rd ld/st

Fig. 4. Integrated in the regular 7-stage pipeline as a new execution stage.

use of simple and fast datapath hardware. However, these instructions benefit
from the same performance advantages as regular instructions, including a typ-
ical throughput of one instruction per cycle and minimal stall effect thanks to
forwarding [38].

The new instructions are mapped into unused opcodes of the SPARC V8
instruction set [50]. Since we did not replace any existing SPARC instruction,
SKIVA is backward binary-compatible with existing LEON applications. The
new instructions add minimal overhead to the design. In terms of 180nm stan-
dard cell ASIC technology, we added 1250 gate-equivalent to the design, which
amounts to 3% of the area of the integer unit of SKIVA.

Software Integration. We integrated the new instructions into the software
toolchain of SKIVA by extending the assembler. The new mnemonics were then

230 P. Kiaei et al.

integrated into the application in C through inline assembly coding. Because the
custom instruction format is compatible with that of existing, standard SPARC
V8 instructions, they benefit from off-the-shelf compiler optimizations.

Related Work. Earlier efforts of hardware-specific side-channel countermeasures
based on custom instructions include mask generation [51] and hiding [42].
CRISP explores the use of custom instructions for bitslicing in a processor
design [22]. CRISP defines three new instructions, based on two programmable
lookup tables. These instructions deal with bitslicing, but they do not offer
redundancy nor support for countermeasures. With the advent of open plat-
forms such as RISC-V, instruction set extensions are now a viable mechanism for
platform customization. XCrypto [34] defined instruction extensions for RISC-
V while Galois has proposed a formally validated one [30]. XCrypto supports
special registers for cryptographic algorithms as well as custom instructions to
improve the performance of such applications. XCrypto is designed for efficient
cryptographic workload processing with support for random number generation
and dedicated arithmetic. The SKIVA custom instructions are instead designed
as flexible countermeasures. The SKIVA programmer decides on the level of
security and then applies SKIVA instructions commensurate with the selected
level.

4.2 Hardware Support for Aggregated Bitslice Operations

In the following, we describe each group of custom instructions and their usage.
Appendix 6 gives a formal specification of each instruction.

Fig. 5. Transposition and its inverse

Custom Instruction Support for Modular Defense 231

Instructions for Bitslicing. We introduce two instructions to transpose data into
their bitsliced representation (Fig. 5a). The first instruction, TR2 rs1, rs2,
rd, performs an interleaving of the bits of two source registers into two output
registers. This interleaving can be thought of as a 2-bit transposition, as it places
bits within the same column of register rs1 and rs2 in adjacent positions of
the output registers rd and y. The second instruction, INVTR2 rs1, rs2, rd,
performs the inverse operation. Bitslice transposition for an arbitrary number
of bits is achieved through repeated application of TR2. Figure 5b shows an
8-bit transposition achieved using twelve applications of TR2. In general, for a
2n-bit transition, n.2n−1 applications of TR2 are needed. To create aggregated
bitslices (Rs > 1 or D > 1), we pre-process the source registers (in non-bitsliced
form) by duplicating them first and then transposing them to bitsliced form.
The side-channel protection and fault-detection of SKIVA are not active during
bitslice conversion, but we check their consistency after transposition and before
encryption.

Instructions for Higher-Order Masking. SKIVA supports two-share and four-
share implementations of bitsliced algorithms, which provide first-order and
third-order masked side-channel resistance. The shares are located in adjacent
bits of a processor register. We use Boolean masking so that the XOR of all
shares yields the unmasked value. Linear operations on an ensemble of shares
are computed as the linear operation on each individual share. Linear operations
are done using bitwise operations on the two-share and four-share representation.
Computing a secure multiplication over multiple shares requires the computa-
tion of the partial share-products. For example, the secure multiplication of the
two-share slices (a1, a0) with the two-share slices (b1, b0) requires the partial
products a1.b1, a1.b0, a0.b1, and a0.b0. To align the slices for the cross-products,
we implement a slice rotation instruction SUBROT rs, imm, rd. This instruc-
tion transforms the two-share slices (a1, a0) into (a0, a1). The same instruction
SUBROT can also handle a four-share design, which transforms (a3, a2, a1, a0) into
(a2, a1, a0, a3).

Instructions for Fault Redundancy Checking. SKIVA supports fault redundancy
countermeasures using instructions for the generation and checking of fault-
redundant slices. The redundant bits with respect to fault injection are stored
in adjacent bytes of a halfword. Figure 6(a) shows the example of a halfword
operation to generate redundant data, while Fig. 6(b) shows the example of a
halfword operation to verify redundant data.

The RED rs1, imm, rd instruction generates redundant data. The redun-
dant copy is stored in the upper halfword (Rs = 2) or in the three upper bytes
(Rs = 4). The redundant portion can be either a direct or else a complement of
the original data. There are six variants of RED rs1, imm, rd. Two of them sup-
port dual redundancy (Rs = 2), they duplicate the lower and upper halfword,
in direct or complementary form. Four additional variants support quadruple
redundancy (Rs = 4), and they quadruple the lower two bytes or the upper two
bytes, each in direct or complementary form.

232 P. Kiaei et al.

Fig. 6. (a) Example of RED on half-word (top, left). (b) Example of FTCHK on half-word
(top, right). (c) Example of ANDC8 (bottom, left). (d) Example of XORC16 (bottom,
right).

The FTCHK rs1, imm, rd instruction verifies the consistency of the redun-
dant data. This instruction generates a fault-flag in the redundant form (over Rs

bits, Appendix 6), which can be used to drive a fault condition test. Figure 6(b)
illustrates the case of a dual-redundancy check on complementary redundant
data. The fault-check is evaluated in a redundant manner so that the fault-check
itself can detect fault injection on its own check. The expected faultless result
of the instruction example in Fig. 6(b) is 0x00000000. There are four variants
of this instruction, for either dual (Rs = 2) or quadruple redundancy (Rs = 4),
and direct or complementary redundancy.

Instructions for Fault-Redundant Computations. Computations on direct-
redundant bitslices can be done using standard bitwise operations. For
complementary-redundant bitslices, the bitwise operations have to be adjusted to
complement-operations. The complement-redundant data format can be intro-
duced at the halfword boundary (Rs = 2) or the byte boundary (Rs = 4).
We opted to provide support for bitwise AND, XOR, and XNOR on these
complement-redundant data formats. Figure 6(c-d) illustrates the case of ANDC8
and XORC16.

Putting it All Together. We demonstrate how the proposed instructions can
be combined by building an implementation for a recently proposed gadget that
offers protection against combined attacks (side-channel attacks and faults) using
the non-interference and non-accumulation (NINA) property [18]. Figure 7 shows
a two-share NINA multiplication. Appendix C lists a four-share NINA multipli-
cation. The multiplication takes four steps. First, we check the fault flags and
conditionally clear an input. This diverts attacks where an adversary uses faults
to influence side-channel leakage. Second, the parallel multiplication algorithm
evaluates the product [5]. Third, the output is refreshed using parallel mask

Custom Instruction Support for Modular Defense 233

Fig. 7. Two-share NINA multiplication gadget using SKIVA instructions

refreshing (required for the four-share multiplication [5]). Finally, the fault flags
are updated to reflect the computation status of the result. In terms of NINA
property, these gadgets are (D,Rs)-SNINA. The proposed gadget in Fig. 7 is
of the fault-detecting type and does not protect against statistical ineffective
fault attacks (SIFA). To overcome this vulnerability, we need fault-correction
instead of detection. Fault-correction based on majority voting fits well into
SKIVA scheme where Rs = 4 by extending the FTCHK instruction to check the
redundant copies of the input and put the most agreeable copy on the output.
Majority voting needs at least 2k + 1 copies to resolve k faults; therefore, when
Rs = 4, it can resolve one fault.

In practice, the custom instruction-set extensions of SKIVA have to be judi-
ciously applied to prevent accidental side-channel leakage. One area of attention is
the allocation of masked variables in registers. For non-bitsliced designs, acciden-
tal unmasking has been demonstrated when a mask m overwrites a masked vari-
ablem⊕v [1,36] For bitsliced designs, the risk is lower because each share resides at
a different bit-index. Still, bitslices may interfere with each other in unexpected
manners [19]. In SKIVA, the SUBROT instruction shifts shares over bit-positions
using a dedicated data-path. After the result of SUBROT is consumed, that register
is cleared to eliminate lingering shares. In addition, we control register allocation
for secure gadgets manually. For example, we ensure that SUBROT never overwrites
its own input. We also maintain a strict separation between registers used for the
masked algorithm (i.e. AES), and registers used for mask generation and mask

234 P. Kiaei et al.

distribution. This ensures that registers containing masked data cannot be over-
written by registers directly related to random masks.

5 Results

This section evaluates the performance and side-channel security of AES on
SKIVA. The implementation under test is in bitsliced format and uses the secure
multiplication gadgets introduced in Sect. 4.2. Next, we analyze the fault cover-
age of applications on SKIVA under the assumed fault model.

We used the Usuba [35] compiler to generate the 18 different implementations
of AES (all combinations of D ∈ {1, 2, 4}, Rs ∈ {1, 2, 4} and Rt ∈ {1, 2}). Usuba
takes as input a high-level dataflow description of a cipher, which it bitslices and
optimizes before generating C code. We added a new backend to Usuba to make
it use our protection schemes and custom instructions in the C codes it produces.
We also patched Leon Bare-C Cross Compilation System’s (BCC) assembler to
support SKIVA’s custom instructions in order to be able to compile the C codes
produced by Usuba.

5.1 Performance Evaluation

Our experimental evaluation has been carried on a prototype of SKIVA deployed
on the main FPGA (Cyclone IV EP4CE115) of an Altera DE2-115 board. The
processor is clocked at 50 MHz and has access to 128 kB of RAM. Our perfor-
mance results are obtained by running the desired programs on bare metal. We
assume that we have access to a TRNG that frequently fills a register with a
fresh 32-bit random string. We use a software pseudo-random number generator
(32-bit xorshift) to emulate a TRNG refreshed at a rate of our choosing. We
checked that our experiments did not overflow the period of the RNG.

Several implementations of AES are available on our 32-bit, SPARC-
derivative processor, with varying degrees of performance. The constant-time,
byte-sliced implementation (using only 8 variables to represent 128 bits of data)
of BearSSL [39] performs at 48 C/B. Our bitsliced implementation (using 128
variables to represent 128 bits of data) performs favorably at 44 C/B while
weighing 8060B: despite a significant register pressure (128 live variables for 32
machine registers), the rotations of MixColumn and the ShiftRows operations
are compiled away. This bitsliced implementation serves as our baseline in the
following.

Throughput (AES). We report on the impact of our hardware and software
design on the performance of our bitsliced implementation of AES (Sect. 3). To
do so, we evaluate the performance of our 18 variants of AES, for each value
of (D ∈ {1, 2, 4}, Rs ∈ {1, 2, 4}, Rt ∈ {1, 2}). To remove the influence of the
TRNG’s throughput from the performance evaluation, we assume that its refill
frequency is strictly higher than the rate at which our implementation consumes

Custom Instruction Support for Modular Defense 235

Table 2. Exhaustive evaluation of the AES design space

Rt = 1
D

1 2 4

Rs

1 44 C/B 176 C/B 579 C/B

2 89 C/B 413 C/B 1298 C/B

4 169 C/B 819 C/B 2593 C/B

(a) Reciprocal throughput (Rt = 1)

Rt = 2
D

1 2 4

Rs

1 131 C/B 465 C/B 1433 C/B

2 269 C/B 1065 C/B 3170 C/B

4 529 C/B 2122 C/B 6327 C/B

(b)Reciprocal throughput (Rt = 2)

random bits. In practice, a refill rate of 10 cycles for 32 bits is enough to meet
this requirement.

We report our performance results in Table 2. For D and Rt fixed, the
throughput decreases linearly with Rs. At fixed D, the variant (D,Rs =
1, Rt = 2) (temporal redundancy by a factor 2) exhibits similar performances as
(D,Rs = 2, Rt = 1) (spatial redundancy by a factor 2). However, both implemen-
tation are not equivalent from a security standpoint. The former offers weaker
security guarantees than the latter. Similarly, at fixed D and Rs, we may be
tempted to run twice the implementation (D,Rs, Rt = 1) rather than running
once the implementation (D,Rs, Rt = 2): once again, the security of the former
is reduced compared to the latter since temporal redundancy (Rt = 2) couples
the computation of 2 rounds within each instruction, whereas pure instruction
redundancy (Rt = 1) does not.

Code Size (AES). We measure the impact of our hardware and software design
on code size, using our bitsliced implementation of AES as a baseline. Our hard-
ware design provides us with native support for spatial, complementary redun-
dancy (ANDC, XORC, and XNORC). Performing these operations through software
emulation would result in a ×1.3 (for D = 2) to ×1.4 (for D = 4) increase in code
size. One must nonetheless bear in mind that the security provided by emulation
is not equivalent to the one provided by native support. The temporal redun-
dancy (Rt = 2) mechanism comes at the expense of a small increase (less than
×1.06) in code size, due to the loop hardening protections as well as the checks
validating results across successive rounds. The higher-order masking comes at
a reasonable expense in code size: going from 1 to 2 shares increases code size by
×1.5 whereas going from 1 to 4 shares corresponds to a ×1.6 increase. A fully
protected implementation (D = 4, Rs = 4, Rt = 2) thus weighs 13148 bytes.

5.2 Side-Channel Analysis

We conduct an experiment to demonstrate how the proposed custom instructions
can help decrease the power leakage. We implement SKIVA on the main FPGA
of SAKURA-G board running at 9.8 MHz and powered at 5 V by an external
power generator. We use a LeCroy WaveRunner 610Zi oscilloscope, sampling

236 P. Kiaei et al.

Fig. 8. 1st and 2nd order t-tests of 1st order masked implementation. Left column:
40K fixed vs. 40K random traces with PRNG off. Right column: 500K fixed vs. 500K
random traces with PRNG on.

250 M samples/sec. To limit the noise level, we use a low-pass filter with a cutoff
frequency of 81 MHz on the power probe.

Correlation Power Analysis. To evaluate our design, we conduct 1st order corre-
lation power analysis (CPA) [12] on power consumption traces of the SubBytes
stage of the first round of AES. We use the Hamming weight of the SubBytes
output as the power model. To speed up our attack, we use a sampling rate of
50 M samples/sec. In this test case, we attack a single bitslice out of 32 parallel
bitslices; the unused bitslices perform constant encryption of an all-zero plain-
text with an all-zero key. Our CPA attack analyzes 50K traces and confirms
that 1st order CPA on the unmasked scheme can reveal half of the key with 12K
traces while it reveals all the secret key bytes with 24K traces. When masking
is enabled, no key byte is revealed under any configuration at the maximum
number of traces we considered (50K).

Test Vector Leakage Assessment. To test the correctness of our secure imple-
mentations with the proposed instructions, we use the TVLA methodology [7,20]
and conduct the 1st and 2nd order t-tests on our 1st order masked implementa-
tion and the 1st to 4th order t-tests on our 3rd order masked encryption in two
settings with and without the custom instructions. We set the trigger on one
S-box in the fourth round of AES based per TVLA methodology [7].

For our experiments, we conduct the univariate non-specific fixed-vs.-random
t-test in which a set of random inputs and a set of fixed inputs are interspersed in
a random order and sent to the device. The fixed plaintext is selected such that
the output of the SubBytes stage in the 4th round of AES is zero. Furthermore,
for higher-order t-tests, we post-process the traces to calculate the t-scores of the
target order [47]. Figure 8 and Fig. 9 show the results of the t-test on our masked
implementations. The right column in Fig. 8 (resp. Fig. 9) indicates that our first

Custom Instruction Support for Modular Defense 237

Fig. 9. 1st to 4th order t-tests of 3rd order masked implementation. Left column: 35K
fixed vs. 35K random traces with PRNG off. Right column: 500K fixed vs. 500K random
traces with PRNG on.

(resp. third) order masked scheme shows no leakage of first (resp. first, second,
or third) order on 500K fixed vs. 500K random traces while showing second
(resp. fourth) order leakage as expected. The left columns show how turning the
PRNG off causes the implementations to have leakage of all orders.

This experiment shows that the secure implementations are sound for analysis
up to 500K traces. We do not conclude that the security claim underpinning the
gadgets is valid; while an experimental observation can validate a security claim,
the experiment cannot be used as its proof of correctness.

Power Leakage of Direct and Complementary Redundancy. To compare the effect
of the direct and complementary redundancy schemes on side-channel leakage,
we run the following test. We make two different versions of our AES C code:
(1) 16 parallel aggregated bitslices of the direct (D = 2, Rs = 1, Rt = 1) scheme
as the input to the first S-box in the fourth round of AES; and (2) 8 parallel
aggregated bitslices of the complementary (D = 2, Rs = 2, Rt = 1) scheme as
the input to the first S-box in the fourth round of AES. We then measure 5K
traces for fixed input and 5K traces for random input and apply a second-order
t-test on the measured traces. To speed up our measurements, the traces were
collected at 50MS/s. As expected, Figs. 10c and 10d show second-order leakage

238 P. Kiaei et al.

Fig. 10. Effect of type of redundancy on the power side-channel leakage.

for both schemes. However, the direct redundancy results in much higher t-values
indicating a higher probability of leakage than complementary redundancy. We
also confirmed that a first-order t-test on both implementations shows no leakage
for a non-specific test of 25K fixed vs. 25K random traces even when sampled at
a higher rate of 100MS/s (Figs. 10a and 10b). Appendix 6 includes additional
observations.

5.3 Security Analysis of Data Faults

In the following, we analyze the fault sensitivity of our protected implementa-
tions. Our data protection scheme relies on spatial redundancy (Rs ∈ {2, 4}).
Faults that cannot be detected are those that affect redundant copies within a
single register in a consistent manner, which implies either identical values in
case of direct redundancy or negated values in case of complemented redundancy.
Note that this analysis is independent of whether sharing (D) is used or not.
From the standpoint of redundancy, each share is independently protected: for

Custom Instruction Support for Modular Defense 239

example, if two shares of the same data are subjected to a bit flip, our redun-
dancy mechanism will report an error, even though the underlying data remains
unchanged (x1 ⊕ x2 = x1 ⊕ x2).

There are different ways to achieve undetected faults, i.e. generate a consis-
tent value: one may skip an instruction whose destination register already holds
a consistent value; one may replace an instruction with another (e.g., substitute
an ANDC by an XORC); or directly perform a data fault.

If P is the probability for a data fault to result in a consistent value, then
the detection rate is 1 − P . Such a probability depends on the injection tech-
nique, its parameters, the target architecture, as well as the physical properties
of the device. In the following, we develop a theoretical analysis based on the
assumption that data faults follow a stuck-at 0 or stuck-at 1 model, or uniformly
distributed random byte, half-word, and word model. We then complement this
analysis by an empirical evaluation of the impact of instruction skip.

Theoretical Analysis of Spatial Redundancy. In this analysis, we use the fault
coverage (FC) metric [24] FC = 1 − Fundetected/Ftotal where Ftotal is the total
number of faults covered by the fault model and Fundetected is the number of
faults that affect the execution while escaping detection by the countermeasure.

By construction, data fault effects such as single bit set, single reset, single bit
flip, byte or half-word zeroing, faulty random byte or faulty random half-word
are all detected (FC = 100%). Word zeroing or stuck-at 1 on complementary
redundant data are also all detected (FC = 100%) but direct redundancy will
never detect it (FC = 0%).

If the attacker injects random data faults following a uniform distribution,
it means that there are Ftotal = 232 fault injection possibilities. For Rs = 2 and
independently of the redundancy (direct or complementary), 216 of those values
are consistent, including the expected output. Hence Fundetected = 216 − 1 and
FC = 99.99%. For Rs = 4, there are Fundetected = 28 − 1 faults that are left
undetected, thus FC = 99.99%.

For illustrative purposes, we now consider a slightly stronger attacker who
may flip p randomly chosen data bits. In practice, such analysis ought to be
tailored to account for the specific distribution of faults of a given injection
technique on a given platform. Under this attacker model, there are Ftotal =

(
32
p

)

fault injection possibilities leading to a p-bit flip (with p an even number). For
Rs = 2, there are Fundetected =

(
16
p
2

)
faults corresponding to a p-bit flip that are

left undetected. The lower-bound for FC is reached for p = 2 and p = 30, where
FC = 96.77%. For Rs = 4, there are Fundetected =

(
8
p
4

)
faults corresponding to a

p-bit flip that are left undetected. The lower-bound for FC is reached for p = 4
and p = 28, where FC = 99.97%. A p-bit set or reset fault model leads to a
100% detection rate if complementary redundancy is used. If direct redundancy
is used, then this amounts to the p-bit flip model. Either way the detection rate
is very high.

240 P. Kiaei et al.

Experimental Evaluation of Temporal Redundancy. We have simulated the
impact of faults on our implementation of AES. We focus our attention exclu-
sively on control faults (instruction skips) since our above analytical model
already predicts the outcome of data faults. To this end, we use a fault injec-
tion simulator based on gdb running through the JTAG interface of the FPGA
board. We execute our implementation up to a chosen breakpoint, after which
we instruct the processor to jump to a given address, hence simulating the effect
of an instruction skip. In particular, we have exhaustively targeted every instruc-
tion of the first and last round as well as the AES_secure routine (for Rt = 2)
and its counterpart for Rt = 1. Since rounds 2 to 9 use the same code as the first
round, the absence of vulnerabilities against instruction skips within the latter
means that the former is secure against instruction skip as well. This exposes a
total of 1248 injection points for Rt = 2 and 1093 injection points for Rt = 1.
For each such injection point, we perform an instruction skip from 512 random
combinations of key and plaintext for Rt = 2 and 352 random combinations for
Rt = 1.

The results are summarized in Table 3. Injecting a fault had one of five effects.
A fault may yield an incorrect ciphertext with (1) or without (2) being detected.
A fault may yield a correct ciphertext, with (3) or without (4) being detected.
Finally, a fault may cause the program or the board to crash (5). According to
our attacker model, only outcome (2) witnesses a vulnerability. In every other
outcome, the fault either does not produce a faulty ciphertext or is detected
within two rounds. For Rt = 2, we verify that every instruction skip was either
detected (outcome 1 or 3) or had no effect on the output of the corresponding
round (outcome 4) or lead to a crash (outcome 5). Comparatively, with Rt = 1,
nearly 95% of the instruction skips lead to an undetected fault impacting the
ciphertext. In 0.19% of the cases, the fault actually impacts the fault-detection
mechanism itself, thus triggering a false positive.

Table 3. Experimental results of simulated instruction skips

With impact Without impact

Detected (1) Not detected (2) Detected (3) Not detected (4) Crash (5) # of faults

Rt = 1 0.19% 92.34% 0.00% 4.31% 3.15% 12840

Rt = 2 78.19% 0.00% 5.22% 12.18% 4.40% 21160

6 Conclusion

We have presented SKIVA, a general-purpose 32-bit processor supporting high-
throughput, secure block ciphers on embedded devices. Our objective in extend-
ing the SPARC instruction set was to provide cryptographers with a manageable
programming model for implementing secure ciphers on a general-purpose CPU.

Custom Instruction Support for Modular Defense 241

On the software side, we advocate an approach centered around bitslicing, where
cryptographic primitives are treated as combinational circuits. By design, bit-
slicing protects an implementation against timing-based side-channel attacks.
However, it also provides a sound basis for modular protections against fault
and/or power-based side-channel attacks, thus paving the way for a pay-as-you-
go security approach. In essence, SKIVA can be understood as a Turing machine
for efficiently and securely executing combinational circuits in software.

These design choices translate into protection mechanisms that can natu-
rally and systematically be integrated together. To protect against faults, we
have shown that intra-instruction redundancy enables purely analytic security
analysis, guaranteeing significant coverage, while we experimentally showed that
temporal redundancy protects against instruction skips. To protect against side-
channel, we crucially rely on the physical isolation of slices, thus significantly
reducing the risk of involuntary interference due to architectural details invisible
to the programmer.

We have demonstrated the benefits of our approach with a bitsliced imple-
mentation of AES with 1, 2, and 4 shares, a temporal redundancy of 1 and
2, as well as a spatial redundancy of 1, 2, and 4. In terms of code size, we
have shown that all security levels can be implemented in less than 13148B. In
terms of performance, we have seen that it scales well with protection levels,
dividing the throughput by 161 with all protections enabled at their maximum
(D = 4, Rs = 4, Rt = 2).

Acknowledgements. This project was supported in part by NSF Grant 1617203,
NSF Grant 1931639, NIST Grant 70NANB17H280, the Émergence(s) program of the
City of Paris and the EDITE doctoral school.

Custom instructions details

TR2 instruction

TR2 rs1, rs2, rd

regrd[31:0] := CONCAT(...
regrs1[15],regrs2[15],regrs1[14],regrs2[14], ...
regrs1[13],regrs2[13],regrs1[12],regrs2[12], ...
regrs1[11],regrs2[11],regrs1[10],regrs2[10], ...
regrs1[9],regrs2[9],regrs1[8],regrs2[8], ...
regrs1[7],regrs2[7],regrs1[6],regrs2[6], ...
regrs1[5],regrs2[5],regrs1[4],regrs2[4], ...
regrs1[3],regrs2[3],regrs1[2],regrs2[2], ...
regrs1[1],regrs2[1],regrs1[0],regrs2[0])

y[31:0] := CONCAT(...
regrs1[31],regrs2[31],regrs1[30],regrs2[30], ...
regrs1[29],regrs2[29],regrs1[28],regrs2[28], ...
regrs1[27],regrs2[27],regrs1[26],regrs2[26], ...

242 P. Kiaei et al.

regrs1[25],regrs2[25],regrs1[24],regrs2[24], ...
regrs1[23],regrs2[23],regrs1[22],regrs2[22], ...
regrs1[21],regrs2[21],regrs1[20],regrs2[20], ...
regrs1[19],regrs2[19],regrs1[18],regrs2[18], ...
regrs1[17],regrs2[17],regrs1[16],regrs2[16])

INVTR2 instruction

INVTR2 rs1, rs2, rd

regrd[31:0] := CONCAT(...
regrs1[30],regrs1[28],regrs1[26],regrs1[24], ...
regrs1[22],regrs1[20],regrs1[18],regrs1[16], ...
regrs1[14],regrs1[12],regrs1[10],regrs1[8], ...
regrs1[6],regrs1[4],regrs1[2],regrs1[0], ...
regrs2[30],regrs2[28],regrs2[26],regrs2[24], ...
regrs2[22],regrs2[20],regrs2[18],regrs2[16], ...
regrs2[14],regrs2[12],regrs2[10],regrs2[8], ...
regrs2[6],regrs2[4],regrs2[2],regrs2[0])

y[31:0] := CONCAT(...
regrs1[31],regrs1[29],regrs1[27],regrs1[25], ...
regrs1[23],regrs1[21],regrs1[19],regrs1[17], ...
regrs1[15],regrs1[13],regrs1[11],regrs1[9], ...
regrs1[7],regrs1[5],regrs1[3],regrs1[1], ...
regrs2[31],regrs2[29],regrs2[27],regrs2[25], ...
regrs2[23],regrs2[21],regrs2[19],regrs2[17], ...
regrs2[15],regrs2[13],regrs2[11],regrs2[9], ...
regrs2[7],regrs2[5],regrs2[3],regrs2[1])

SUBROT instruction

SUBROT rs, imm, rd

IF imm[2:0] = 010
FOR i:=0:15

j := 2*i
regrd[j+1:j] := regrs[j:j+1]

ENDFOR
ELIF imm[2:0] = 100

FOR i:=0:7
j := 4*i
regrd[j+3:j] := CONCAT(regrs[j+2:j],regrs[j+3])

ENDFOR
FI

Custom Instruction Support for Modular Defense 243

RED instruction

RED rs, imm, rd

IF imm[2:0] = 010
regrd[15:0] := regrs[15:0]
regrd[31:16] := regrs[15:0]
y[15:0] := regrs[31:16]
y[31:16] := regrs[31:16]

ELIF imm[2:0] = 011
regrd[15:0] := regrs[15:0]
regrd[31:16] := (NOT regrs[15:0])
y[15:0] := rregrss[31:16]
y[31:16] := (NOT regrs[31:16])

ELIF imm[2:0] = 100
regrd[7:0] := regrs[7:0]
regrd[15:8] := regrs[7:0]
regrd[23:16] := regrs[7:0]
regrd[31:24] := regrs[7:0]
y[7:0] := regrs[15:8]
y[15:8] := regrs[15:8]
y[23:16] := regrs[15:8]
y[31:24] := regrs[15:8]

ELIF imm[2:0] = 101
regrd[7:0] := regrs[7:0]
regrd[15:8] := (NOT regrs[7:0])
regrd[23:16] := regrs[7:0]
regrd[31:24] := (NOT regrs[7:0])
y[7:0] := rs[15:8]
y[15:8] := (NOT regrs[15:8])
y[23:16] := rs[15:8]
y[31:24] := (NOT regrs[15:8])

ELIF imm[2:0] = 110
regrd[7:0] := regrs[23:16]
regrd[15:8] := regrs[23:16]
regrd[23:16] := regrs[23:16]
regrd[31:24] := regrs[23:16]
y[7:0] := regrs[31:24]
y[15:8] := regrs[31:24]
y[23:16] := regrs[31:24]
y[31:24] := regrs[31:24]

ELIF imm[2:0] = 111
regrd[7:0] := regrs[23:16]
regrd[15:8] := (NOT regrs[23:16])
regrd[23:16] := regrs[23:16]
regrd[31:24] := (NOT regrs[23:16])

244 P. Kiaei et al.

y[7:0] := regrs[31:24]
y[15:8] := (NOT regrs[31:24])
y[23:16] := regrs[31:24]
y[31:24] := (NOT regrs[31:24])

FI

ANDC16 instruction

ANDC16 rs1, rs2, rd

regrd[15:0] := (regrs1[15:0] AND regrs2[15:0])
regrd[31:16] := (regrs1[31:16] OR regrs2[31:16])

XORC16 instruction

XORC16 rs1, rs2, rd

regrd[15:0] := (regrs1[15:0] XOR regrs2[15:0])
regrd[31:16] := (regrs1[31:16] XNOR regrs2[31:16])

XNORC16 instruction

XNORC16 rs1, rs2, rd

regrd[15:0] := (regrs1[15:0] XNOR regrs2[15:0])
regrd[31:16] := (regrs1[31:16] XOR regrs2[31:16])

ANDC8 instruction

ANDC8 rs1, rs2, rd

regrd[7:0] := (regrs1[7:0] AND regrs2[7:0])
regrd[15:8] := (regrs1[15:8] OR regrs2[15:8])
regrd[23:16] := (regrs1[23:16] AND regrs2[23:16])
regrd[31:24] := (regrs1[31:24] OR regrs2[31:24])

Custom Instruction Support for Modular Defense 245

XORC8 instruction

XORC8 rs1, rs2, rd

regrd[7:0] := (regrs1[7:0] XOR regrs2[7:0])
regrd[15:8] := (regrs1[15:8] XNOR regrs2[15:8])
regrd[23:16] := (regrs1[23:16] XOR regrs2[23:16])
regrd[31:24] := (regrs1[31:24] XNOR regrs2[31:24])

XNORC8 instruction

XNORC8 rs1, rs2, rd

regrd[7:0] := (regrs1[7:0] XNOR regrs2[7:0])
regrd[15:8] := (regrs1[15:8] XOR regrs2[15:8])
regrd[23:16] := (regrs1[23:16] XNOR regrs2[23:16])
regrd[31:24] := (regrs1[31:24] XOR regrs2[31:24])

FTCHK instruction

FTCHK rs, imm, rd

IF imm[2:0] = 010
FOR i:=0:15

regrd[i] := (regrs[i+16] XOR regrs[i])
regrd[i+16] := (regrs[i+16] XOR regrs[i])

ENDFOR
ELIF imm[2:0] = 011

FOR i:=0:15
regrd[i] := (regrs[i+16] XNOR regrs[i])
regrd[i+16] := (regrs[i+16] XNOR regrs[i])

ENDFOR
ELIF imm[2:0] = 100

FOR i:=0:7
regrd[i] := ((regrs[i+8] XOR regrs[i]) OR ...

(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XOR regrs[i]))

regrd[i+8] := ((regrs[i+8] XOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XOR regrs[i]))

regrd[i+16] := ((regrs[i+8] XOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XOR regrs[i]))

regrd[i+24] := ((regrs[i+8] XOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...

246 P. Kiaei et al.

(regrs[i+24] XOR regrs[i]))
ENDFOR

ELIF imm[2:0] = 101
FOR i:=0:7

regrd[i] := ((regrs[i+8] XNOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XNOR regrs[i]))

regrd[i+8] := ((regrs[i+8] XNOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XNOR regrs[i]))

regrd[i+16] := ((regrs[i+8] XNOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XNOR regrs[i]))

regrd[i+24] := ((regrs[i+8] XNOR regrs[i]) OR ...
(regrs[i+16] XOR regrs[i]) OR ...
(regrs[i+24] XNOR regrs[i]))

ENDFOR
FI

Efficient C emulation of the custom instructions

The following C code shows how to emulate selected custom instructions.

#define ANDC8(r,a,b) r = (((a) | (b)) & 0xFF00FF00) | \

(((a) & (b)) & 0x00FF00FF)

#define XORC8(r,a,b) r = (a) ^ (b) ^ 0xFF00FF00

#define XNORC8(r,a,b) r = (a) ^ (b) ^ 0x00FF00FF

#define ANDC16(r,a,b) r = (((a) | (b)) & 0xFFFF0000) | \

(((a) & (b)) & 0x000FFFF)

#define XORC16(r,a,b) r = (a) ^ (b) ^ 0xFFFF0000

#define XNORC16(r,a,b) r = (a) ^ (b) ^ 0x0000FFFF

Sample multiplication gadgets

Custom Instruction Support for Modular Defense 247

Fig. 11. Secure multiplication using SUBROT and FTCHK

248 P. Kiaei et al.

Side-channel analysis results

Table 4. Detailed report of 1st order CPA results on unmasked SubBytes of 1st round
AES

of traces # of key bytes revealed

3K 1

4K 3

9K 5

10K 6

11K 7

12K 8 (half key)

14K 10

18K 11

19K 12

21K 13

22K 14

23K 15

24K 16 (full key)

Effect of Different Redundancy Schemes on Power Leakage

Figure 12 shows the evolution of t-values for the 2nd order t-test with respect to
the number of traces for both redundancy schemes. We observe that the direct
redundancy shows leakage with as few as about 200 traces, while the comple-
mentary redundancy shows leakage only after around 2500 traces. We conclude
that complementary redundancy is better than its direct counterpart in hiding
secret data from the power leakage. We believe that this result is consistent with
earlier work that investigated the impact of complementary representation on
software [16,26].

Custom Instruction Support for Modular Defense 249

Fig. 12. Evolution of t values for 2nd order t-test on 1st order masked implementation
with direct and complementary redundancy.

References

1. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3 5

2. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box charac-
terization of the effects of clock glitches on 8-bit MCUs. In 2011 Workshop on
Fault Diagnosis and Tolerance in Cryptography, FDTC 2011, Tokyo, Japan, 29
September 2011, pp. 105–114 (2011). https://doi.org/10.1109/FDTC.2011.9

3. Barry, T., Couroussé, D., Robisson, B.: Compilation of a countermeasure against
instruction-skip fault attacks. In: Proceedings of the Third Workshop on Cryptog-
raphy and Security in Computing Systems, CS2@HiPEAC, Prague, Czech Repub-
lic, 20 January 2016, pp. 1–6 (2016). https://doi.org/10.1145/2858930.2858931

4. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, 24–28 October 2016, pp. 116–129 (2016).
https://doi.org/10.1145/2976749.2978427

5. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-
Y.: Parallel implementations of masking schemes and the bounded moment leak-
age model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 19

6. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 2

7. G. Becker, et al.: Test vector leakage assessment (TVLA) methodology in practice
(2013)

https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1109/FDTC.2011.9
https://doi.org/10.1145/2858930.2858931
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-662-53140-2_2

250 P. Kiaei et al.

8. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 22

9. Beläıd, S., Goudarzi, D., Rivain, M.: Tight private circuits: achieving probing secu-
rity with the least refreshing. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS, vol. 11273, pp. 343–372. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03329-3 12

10. Biham, E.: A fast new DES implementation in software. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0052352

11. Breier, J., Jap, D., Hou, X., Bhasin, S.: On side-channel vulnerabilities of bit
permutations: Key recovery and reverse engineering. IACR Cryptol. ePrint Arch.
2018, 219 (2018). http://eprint.iacr.org/2018/219

12. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

13. Cassiers, G., Standaert, F.-X.: Improved bitslice masking: from optimized non-
interference to probe isolation. IACR Cryptol. ePrint Arch. 2018, 438 (2018).
URL https://eprint.iacr.org/2018/438

14. Cassiers, G., Standaert, F.-X.: Towards globally optimized masking: from low ran-
domness to low noise rate or probe isolating multiplications with reduced ran-
domness and security against horizontal attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2019(2), 162–198 (2019). https://doi.org/10.13154/tches.v2019.i2.
162-198

15. Chen, Z., Shen, J., Nicolau, A., Veidenbaum, A.V., Ghalaty, N.F., Cammarota, R.:
CAMFAS: a compiler approach to mitigate fault attacks via enhanced SIMDiza-
tion. In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
2017, Taipei, Taiwan, 25 September 2017, pp. 57–64 (2017). https://doi.org/10.
1109/FDTC.2017.10

16. Chen, Z., Sinha, A., Schaumont, P: Using virtual secure circuit to protect embed-
ded software from side-channel attacks. IEEE Trans. Comput. 62(1), 124–136
(2013). https://doi.org/10.1109/TC.2011.225

17. Daemen, J., Peeters, M., Van Assche, G.: Bitslice ciphers and power analysis
attacks. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 134–149. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7 10

18. Dhooghe, S., Nikova, S.: My gadget just cares for me - how NINA can prove security
against combined attacks. IACR Cryptol. ePrint Arch. 2019, 615 (2019). https://
eprint.iacr.org/2019/615

19. Gao, S., Marshall, B., Page, D., Oswald, E.: Share-slicing: friend or foe? IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020(1), 152–174 (2020). https://doi.org/
10.13154/tches.v2020.i1.152-174

20. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side
channel resistance (2011). https://csrc.nist.gov/csrc/media/events/non-invasive-
attack-testing-workshop/documents/08 goodwill.pdf

21. Goudarzi, D., Journault, A., Rivain, M., Standaert, F.-X.: Secure multiplication for
bitslice higher-order masking: optimisation and comparison. In: Fan, J., Gierlichs,
B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 3–22. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89641-0 1

https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1007/BFb0052352
http://eprint.iacr.org/2018/219
https://doi.org/10.1007/978-3-540-28632-5_2
https://eprint.iacr.org/2018/438
https://doi.org/10.13154/tches.v2019.i2.162-198
https://doi.org/10.13154/tches.v2019.i2.162-198
https://doi.org/10.1109/FDTC.2017.10
https://doi.org/10.1109/FDTC.2017.10
https://doi.org/10.1109/TC.2011.225
https://doi.org/10.1007/3-540-44706-7_10
https://doi.org/10.1007/3-540-44706-7_10
https://eprint.iacr.org/2019/615
https://eprint.iacr.org/2019/615
https://doi.org/10.13154/tches.v2020.i1.152-174
https://doi.org/10.13154/tches.v2020.i1.152-174
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://doi.org/10.1007/978-3-319-89641-0_1

Custom Instruction Support for Modular Defense 251

22. Grabher, P., Großschädl, J., Page, D.: Light-weight instruction set extensions for
bit-sliced cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS,
vol. 5154, pp. 331–345. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85053-3 21

23. Grégoire, B., Papagiannopoulos, K., Schwabe, P., Stoffelen, K.: Vectorizing higher-
order masking. In: Fan, J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815,
pp. 23–43. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89641-0 2

24. Guo, X., Mukhopadhyay, D., Karri, R.: Provably secure concurrent error detection
against differential fault analysis. IACR Cryptol. ePrint Arch. 2012, 552 (2012).
http://eprint.iacr.org/2012/552

25. Heydemann, K.: Sécurité et performance des applications: analyses et optimisations
multi-niveaux. LIP6, Habilitation (2017)

26. Hoogvorst, P., Duc, G., Danger, J.-L.: Software implementation of dual-rail repre-
sentation. In: Schindler, W., Huss, S.A. (eds.) Constructive Side-Channel Analysis
and Secure Design - Second International Workshop, COSADE (2011)

27. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

28. Journault, A., Standaert, F.-X.: Very high order masking: efficient implementation
and security evaluation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 623–643. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4 30

29. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04138-9 1

30. Kiniry, J.R., Zimmerman, D.M., Dockins, R., Nikhil, R.: A formally verified cryp-
tographic extension to a RISC-V processor. In: Second Workshop on Computer
Architecture Research with RISC-V (CARRV 2018), p. 5. ACM, New York (2018)

31. Könighofer, R.: A fast and cache-timing resistant implementation of the AES. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 187–202. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79263-5 12

32. Lac, B., Canteaut, A., Fournier, J.J.A., Sirdey, R.: Thwarting fault attacks against
lightweight cryptography using SIMD instructions. In: IEEE International Sympo-
sium on Circuits and Systems, ISCAS 2018, 27–30 May 2018, Florence, Italy, pp.
1–5 (2018). https://doi.org/10.1109/ISCAS.2018.8351693

33. Lalande, J.-F., Heydemann, K., Berthomé, P.: Software countermeasures for con-
trol flow integrity of smart card C codes. In: Kuty�lowski, M., Vaidya, J. (eds.)
ESORICS 2014. LNCS, vol. 8713, pp. 200–218. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11212-1 12

34. Marshall, B., Page, D., Pham, T.: XCrypto: a cryptographic ISE for RISC-V
(2019). https://github.com/scarv/xcrypto

35. Mercadier, D., Dagand, P.-É.: Usuba: high-throughput and constant-time ciphers,
by construction. In: Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA,
22–26 June 2019, pp. 157–173 (2019). https://doi.org/10.1145/3314221.3314636

https://doi.org/10.1007/978-3-540-85053-3_21
https://doi.org/10.1007/978-3-540-85053-3_21
https://doi.org/10.1007/978-3-319-89641-0_2
http://eprint.iacr.org/2012/552
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1109/ISCAS.2018.8351693
https://doi.org/10.1007/978-3-319-11212-1_12
https://doi.org/10.1007/978-3-319-11212-1_12
https://github.com/scarv/xcrypto
https://doi.org/10.1145/3314221.3314636

252 P. Kiaei et al.

36. Papagiannopoulos, K., Veshchikov, N.: Mind the gap: towards secure 1st-order
masking in software. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp.
282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3 17

37. Patrick, C., Yuce, B., Ghalaty, N.F., Schaumont, P.: Lightweight fault attack resis-
tance in software using intra-instruction redundancy. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 231–244. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-69453-5 13

38. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design - The Hard-
ware / Software Interface (Revised 4th Edn.). The Morgan Kaufmann Series in
Computer Architecture and Design. Academic Press (2012)

39. Pornin, T.: BearSSL, a smaller SSL/TLS library. https://bearssl.org. Accessed 08
Jan 2019

40. Proy, J., Heydemann, K., Berzati, A., Cohen, A.: Compiler-assisted loop hardening
against fault attacks. TACO 14(4), 36:1–36:25 (2017.) https://doi.org/10.1145/
3141234

41. Rebeiro, C., Selvakumar, D., Devi, A.S.L.: Bitslice implementation of AES. In:
Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 203–
212. Springer, Heidelberg (2006). https://doi.org/10.1007/11935070 14

42. Regazzoni, F., et al.: A design flow and evaluation framework for DPA-resistant
instruction set extensions. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol.
5747, pp. 205–219. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04138-9 15

43. Reparaz, O., Balasch, J., Verbauwhede, I.: Dude, is my code constant time? In:
Design, Automation & Test in Europe Conference & Exhibition, DATE 2017, Lau-
sanne, Switzerland, 27–31 March 2017, pp. 1697–1702 (2017.) https://doi.org/10.
23919/DATE.2017.7927267

44. Reparaz, O., et al.: CAPA: the spirit of beaver against physical attacks. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 121–
151. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 5

45. Cobham Gaisler Research. Leon-3 processor (2018). https://www.gaisler.com/
index.php/products/processors/leon3

46. Rivière, L., Najm, Z., Rauzy, P., Danger, J.-L., Bringer, J., Sauvage, L.: High
precision fault injections on the instruction cache of armv7-m architectures. In:
IEEE International Symposium on Hardware Oriented Security and Trust, HOST
2015, Washington, DC, USA, 5–7 May 2015, pp. 62–67. IEEE Computer Society
(2015). https://doi.org/10.1109/HST.2015.7140238

47. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

48. Schneider, T., Moradi, A., Güneysu, T.: ParTI: towards combined hardware coun-
termeasures against side-channel and fault-injection attacks. In: Proceedings of the
ACM Workshop on Theory of Implementation Security, TIS@CCS 2016 Vienna,
Austria, October 2016, pp. 39 (2016). https://doi.org/10.1145/2996366.2996427

49. Simon, T., et al.: Towards lightweight cryptographic primitives with built-in fault-
detection. IACR Cryptol. ePrint Arch. 2018, 729 (2018)

50. CORPORATE SPARC International, Inc., The SPARC Architecture Manual: Ver-
sion 8. Prentice-Hall Inc, Upper Saddle River (1992). ISBN 0-13-825001-4

51. Tillich, S., Großschädl, J.: Power analysis resistant AES implementation with
instruction set extensions. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 303–319. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74735-2 21

https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/978-3-319-69453-5_13
https://doi.org/10.1007/978-3-319-69453-5_13
https://bearssl.org
https://doi.org/10.1145/3141234
https://doi.org/10.1145/3141234
https://doi.org/10.1007/11935070_14
https://doi.org/10.1007/978-3-642-04138-9_15
https://doi.org/10.1007/978-3-642-04138-9_15
https://doi.org/10.23919/DATE.2017.7927267
https://doi.org/10.23919/DATE.2017.7927267
https://doi.org/10.1007/978-3-319-96884-1_5
https://www.gaisler.com/index.php/products/processors/leon3
https://www.gaisler.com/index.php/products/processors/leon3
https://doi.org/10.1109/HST.2015.7140238
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1145/2996366.2996427
https://doi.org/10.1007/978-3-540-74735-2_21
https://doi.org/10.1007/978-3-540-74735-2_21

Custom Instruction Support for Modular Defense 253

52. Yuce, B., Schaumont, P., Witteman, M.: Fault attacks on secure embedded soft-
ware: threats, design, and evaluation. J. Hardw. Syst. Secur. 2(2), 111–130 (2018).
https://doi.org/10.1007/s41635-018-0038-1

53. Zussa, L., Dutertre, J.-M., Clédière, J., Tria, A.: Power supply glitch induced faults
on FPGA: an in-depth analysis of the injection mechanism. In: 2013 IEEE 19th
International On-Line Testing Symposium (IOLTS), Chania, Crete, Greece, 8–10
July 2013, pp. 110–115 (2013). https://doi.org/10.1109/IOLTS.2013.6604060

https://doi.org/10.1007/s41635-018-0038-1
https://doi.org/10.1109/IOLTS.2013.6604060

Processor Anchor to Increase
the Robustness Against Fault Injection

and Cyber Attacks

Jean-Luc Danger1,2, Adrien Facon1,3, Sylvain Guilley1,2,3, Karine Heydemann4,
Ulrich Kühne2, Abdelmalek Si Merabet2, Michaël Timbert1,2(B),

and Baptiste Pecatte1,5

1 Secure-IC S.A.S., Tour Montparnasse, 27th Floor, 75015 Paris, France
michael.timbert@secure-ic.com

2 Télécom Paris, LTCI, 19 place Marguerite Perey, 91120 Palaiseau, France
3 École Normale Supérieure, CNRS, PSL Research University, 75005 Paris, France

4 LIP6, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
5 DGA, 60 Boulevard du Général Martial Valin, 75015 Paris, France

Abstract. One major advance in software security would be to use
robust processors which could assist the code developer to thwart both
cyber and physical attacks. This paper presents a hardware-based solu-
tion which increases the security by checking the integrity of executed
code on any microcontroller. Unlike other Control Flow Integrity (CFI)
protections, this solution does not require modifications of the CPU
pipeline, but relies on monitoring the interface between the processor
and its instruction cache. The integrity of the execution flow and the
instruction sequences (called Basic Blocks) is checked by hardware with
precomputed metadata. Another module is dedicated to speed up the
access to these metadata. This paper shows the effectiveness of the solu-
tion as the impact is as much as 21% in average on the execution time at
the price of using memory space to store metadata along with the code.

Keywords: Control Flow Integrity · Fault injection · Control Flow
Graph · Hardware protection · Cyber Escort Unit (CEU)

1 Introduction

Software implementations are prone to many kinds of attacks belonging to two
main classes: cyber-attacks (or software) and physical attacks. The physical
attacks on microcontrollers can be either passive (by observing leakages via
side-channels analysis) or active (by fault injection). This paper addresses both
fault injection attacks and software attacks. Protection against fault injection
attacks is quite challenging to protect efficiently by software. Indeed, the classi-
cal manner to detect a fault is to run twice the function to check the integrity,
hence decreasing the performance level by a factor of two.

c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 254–274, 2021.
https://doi.org/10.1007/978-3-030-68773-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_12

Processor Anchor to Increase the Robustness Against Fault Injection 255

The software attacks exploit bugs or wrong configurations in order to hijack
the control flow. In practice, such cyber-attacks mainly operate in two distinct
manners. Attacks such as Return-Oriented-Programming (ROP) consist in cor-
rupting the stack such that it calls carefully picked pieces of code called gadgets,
which altogether form the attack payload. ROP attacks are thus “code-based”.
The second type of cyber-attacks exploit contamination of data to force point-
ers to different locations. Such “data-based” attacks exploit improperly checked
user-inputs, which can lead to control-flow contamination. In this article, we
focus on “code-based” attacks, including their protection.

Control-flow integrity (CFI) refers to protections against control-flow hijack-
ing and was introduced in Abadi’s seminal paper [1]. The idea is to verify at
run-time by a monitor process or by dedicated hardware that the correct control
flow is respected. A common specification of the control flow is given by the
static control flow graph (CFG) of the application, which can be determined at
compile-time.

Since [1] was published many CFI implementation was proposed. There is
two main approach to implement the CFI, software or hardware. Software CFI
solutions are convenient mainly because they can be deployed on existing equip-
ment. These solutions rely on instrumenting the software to add self verification
or by using an external monitor to check the behavior of the monitored thread.
The flexibility of the software solution is at the cost of performance slow down or
to only ensure coarse grained CFI, like [2]. On the another hand, hardware solu-
tions are generally proposed in academic papers and rely on hardware monitor to
follow the execution of the processor. Or by using cryptographic primitive with
core modification to ensure CFI and more. These hardware solution have gener-
ally less impact on processor performance but need modification of the internal
of the processor, which is a very high price to pay in the industrial world, like
SOFIA implementation [3].

In the recent years, many CFI approaches have been proposed. Software-
only approaches that offer full CFI protection suffer from a high performance
overhead [2]. Some software implementations focus only on specific protections
in order to reduce this overhead.

Hardware-based solutions range from lightweight solutions – ensuring only
some types of control transfer (such as a so-called shadow stack) or reducing
the amount of reusable code by marking valid call/jump destinations – to solu-
tions covering all control transfers that can be determined statically at compile-
time, at link-time, or at load-time of the application [3,4]. Unfortunately, such
approaches either offer coarse-grained protection or does not allow indirect jump
or they require a significant modification of the CPU, which prevents them from
being deployed in practice due to either the huge amount of work required for
validating a modified processor or the use of off-the-shelf processor cores. This
is why we target a non-intrusive solution that does not modify the CPU core.

Most CFI approaches assume that the code cannot be modified, due to the
presence of widely used data execution prevention (DEP) protections. Such a pro-
tection is commonly present on high performance processors but rarely deployed

256 J.-L. Danger et al.

on embedded platforms or micro-controllers. Furthermore, different threats may
invalidate this assumption: There exist physical attacks able to perform fault
injections that result in a modification of the executed code [5,6]. Since the dis-
covery of the RowHammer attack [7], it is known that changes in write protected
DRAM can even be induced by software. Hence, code integrity (CI) is also to be
targeted in order to protect systems against a large body of attacks that disrupt
the execution.

Another technical point generally not addressed by CFI implementation is
how to handle interruptions. Interruption can happen at any time, and can be
seen as a violation of the CFG from an external point of view. It is also necessary
that the hardware implementation of CFI addresses the speculative execution or
branch prediction. This adds another complexity level to the CFG verification
as unused predicted instruction should not be checked by CFI.

In this paper, we present a hardware-based solution that combines CFI with
CI, while being non-intrusive to the processor. The code and control-flow integrity
(CCFI) checks are performed at runtime by a dedicated hardware module out-
side the processor core. The control flow information – referred to as metadata
– is stored in a dedicated section in memory and is aligned with the instruc-
tions. This metadata is fetched by a cache named CCFI-cache. Whenever a new
instruction is requested by the processor, the corresponding metadata is fetched
transparently and in parallel, so as not to disrupt or slow down the execution
flow. The CCFI-checker verifies the integrity of execution flow changes by check-
ing the effective target addresses. Function calls and returns are protected by an
integrated shadow stack. Additionally, we ensure code and metadata integrity by
computing a signature based on the executed instructions and metadata fetched
by validating it against a precomputed signature contained in the metadata.

The proposed CCFI-cache architecture has been implemented on a RISC-
V [8] platform, without modifying the processor core. Our experiments show
that the run-time overhead is acceptable for different benchmarks. The price to
pay for this very flexible solution is a two-fold increase in instruction memory.

In summary, the contribution of this work is a novel hardware-based CFI
scheme that:

– is non-intrusive, since the CPU core remains untouched,
– combines intra-procedural and inter-procedural CFI with CI,
– has low run-time overhead, and
– only requires very minor code modifications of the application code.

The rest of the paper is organized as follows: Sect. 2 presents the Control
Flow Graph principle and present the concept of Control Flow Integrity. Sect. 3
lists the state of the art of hardware protection near CFI. Section 4 presents
the hardware and the software part of our solution. Section 5 and 6 explain
the adjustments set to the solution to work with processor using speculative
execution and how metadata is modified to be able to protect interruption.
Section 7 presents security guaranties achieved by the solution. Section 8 and 9
present detail of the implementation and the performance measurements.

Processor Anchor to Increase the Robustness Against Fault Injection 257

2 Background

In this section, we introduce the basic notions and security guarantees in the
context of Control-Flow integrity.

2.1 Control Flow Graph

At the level of the machine code, a program is composed of multiple functions
which in turn can be decomposed into basic blocks. A basic block (BB) is a
straight-line sequence of instructions with a unique entry point and a unique exit
point, i.e. if the control flow enters a BB, it will execute all of its instructions in
sequence until leaving the BB at the exit point. A control flow transfer can only
take place at the last instruction. Each function can be represented as a control-
flow graph (CFG), where each node corresponds to a BB, and edges represent
the control transfers between the BBs. A whole program is composed of the
CFG of each function linked by edges representing function calls and returns. It
is common in compilation world to consider that a BB can contain a call to an
function. In our case a call automatically set the end of the BB.

2.2 Control Flow Hijacking

There are multiple ways in which an attacker can take over the control of a
machine. In many cases, buffer overflows – due to bad programming – offer an
entry point for an attacker. They can be exploited to inject code and/or to
compromise return addresses stored on the stack to divert the execution flow.

Executing injected code can be mitigated by Data Execution Prevention
(DEP)/WˆX which prevents written data to be executed. This protection can
be circumvented by code reuse attacks that rely on (stubs of) existing func-
tions in libraries, so-called gadgets. Known variants of this type of attacks are
return-oriented programming (ROP), jump-oriented programming (JOP) or call-
oriented programming (COP) [9]. As shown in [10], all such attacks rely on code
pointer corruption. In this way, only legitimate code of the application is exe-
cuted, but the CFG of the program is not respected anymore.

Another threat – invalidating DEP protections – are fault attacks, where
memory contents are altered by physical means [5,6]. Using the RowHammer
attack [7], a dynamic RAM cell can be changed by rapidly reading neighboring
cells before a refresh. Its stealthiness makes this threat extremely dangerous:
Even trusted firmware code with a digital signature can be corrupted when
residing in RAM. Some examples of attacks enabled by such modifications are
Shamir’s bug attack [11] (e.g., on RSA) or Sbox tampering attacks [12] (e.g., on
AES). Fault attacks are difficult to master, but can be used to change instruc-
tions, to manipulate access rights, to skip an instruction, or to directly change
the current program counter, in some cases without violating the CFG.

258 J.-L. Danger et al.

2.3 Control Flow Integrity

To prevent control flow hijacking and fault attacks, it is necessary to ensure
that control transfer instructions execute as expected, i.e. any control transfer
originates from an address that corresponds to a control transfer instruction and
targets a valid destination address for this specific instruction.

For direct jumps and conditional branches, the valid destinations can be
determined at compile-time. Verifying the integrity of these control transfers
boils down to checking that for each executed jump or branch, there is a corre-
sponding edge in the function’s CFG. We refer to this check as intra-procedural
CFI.

A different treatment is needed for function calls and returns. Since common
functions – such as printf – are called from many sites, just checking that the
function returns to one of these call sites does not provide a reasonable protection
against ROP attacks. Instead, the correct pairing of call and return addresses
needs to be ensured. We refer to this as inter-procedural CFI.

It should be noted that indirect jumps and calls pose a special problem for
CFI as the set of destination addresses can be significant. However, in many
cases – such as a switch statement which has been compiled to an indirect
jump – the set of target addresses is usually small and can often be determined
at compile-time.

Otherwise, either manual code changes are necessary or these specific instruc-
tions must remain unprotected.

While these checks only consider control transfer instructions, it is neces-
sary to ensure that inside a BB, all instructions are executed in-order, thereby
preventing instruction skips. This verification, which is hard to implement in
software, is called intra-BB CFI. Finally, Code integrity (CI) refers to verifying
that all instructions have been executed unaltered.

In summary, a combined CFI and CI protection must ensure basic block
integrity and verify both intra-procedural and inter-procedural control transfers.

3 Related Work

3.1 Threat Model

The threat model is as follow: we assume that the code is not executed as
intended owing to the processor stepping on some bug or owing to physical
alteration of code at rest or in memory.

3.2 Protection State of the Art

There exists a large body of research on protections against hardware and soft-
ware attacks. Due to page limitation, we only present the most closely related
work. For an overview on existing techniques, we refer the reader to the sur-
vey [10]. Table 1 summarizes the protection levels of related techniques, which
will be briefly discussed in the following.

Processor Anchor to Increase the Robustness Against Fault Injection 259

Table 1. Comparison of some of the most prominent protections

Protection W
⊕
X

S
O
F
IA

[3
]

In
te
l
C
E
T

[1
3
]

A
R
M

P
A

P
IC

O
N

[2
]

H
C
O
D
E

[4
]

P
a
th

A
rm

o
r
[1
4
]

H
C
F
I
[1
5
]

O
u
r
so

lu
ti
o
n

a) Inter Procedural ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

b) Intra Procedural ✗ ✓ (✓) ✗ ✓ ✓ ✗ ✗ ✓

c) Intra BB ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓

d) Code Integrity ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓

e) Non-intrusive ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓

f) Speculative Exec. ✓ (✓) ✓ ✓ ✓ ✗ ? ✓ ✓

g) Interruption ✓ ✗ ✓ ✓ ✓ ✗ ? (✓) ✓

A simple and effective protection against code injection is DEP, which is
implemented in all modern general purpose CPU architectures. It allows to pre-
vent the execution of memory segments that contain only data (such as the
stack), making code injection difficult. It does however not protect against ROP
and related attacks nor against hardware attacks.

In [3], de Clercq et al. present SOFIA, an architecture supporting software
and control-flow integrity. The architecture has a two stage protection: Firstly,
instructions are encrypted with a block cipher in a way that depends on the cor-
rect control flow, such that deviating from the CFG results in wrongly decrypted
instructions. Secondly, groups of instructions are protected with a Message
Authentication Code (MAC) to ensure code integrity and confidentiality. The
proposed architecture achieves a protection level similar to our technique, while
changes in the internal pipeline and the encryption and MAC computation make
it both more intrusive and costly.

Intel’s Control-flow Enforcement Technology (CET) [13] introduces a shadow
stack, which stores return-addresses in addition to the normal stack. When a
return instruction is encountered, the two addresses are compared and a security
exception is raised in case of a mismatch.

While the shadow stack is a powerful solution for inter-procedural CFI, it
does not provide any other guarantees. The second feature of CET, Indirect
Branch Tracking provides new instructions to mark valid branch targets, which
provides a rudimentary protection against ROP-style attacks. In [15], the authors
present HCFI (Hardware-enforced CFI), which is a modified SPARC architec-
ture. It combines a shadow stack with a CFI-dedicated extension of the SPARC
instruction set. While the solution concentrates only on call/return instructions,
it achieves an impressively low run-time overhead of only 1%.

ARM’s Pointer Authentication is a very efficient way to enforce the validity
of indirect branches. Using three new instructions, it can compute and verify a
Pointer Authentication Code (PAC), which guarantees that the pointer can not
be changed to malicious value while residing in memory. One can use it not only
to secure return addresses but arbitrary function or data pointers too. The PAC

260 J.-L. Danger et al.

is stored in the higher unused bits of the pointer’s value, eliminating the need for
additional memory and bus resources. The PAC is computed using the QARMA
primitive which is lightweight and has a very low latency, typically inducing only
a 0.5% to 1% run-time overhead.

PICON [2] is a purely software based solution, which is integrated into the
LLVM compiler framework. The control flow policy is represented by a push-
down automaton, which is then used at runtime by a monitoring process to
match the actual execution. PICON provides a robust and portable protection
against ROP-style attacks, while it does not protect against hardware attacks
and compromised binaries. A similar approach has been presented in [14]. Their
solution – called PathArmor – consists in a kernel module that monitors the
execution paths of user processes. Its goal is a strong but practical protection
of inter-procedural control transfers. By analyzing paths (rather than just single
edges) in the CFG, they achieve a context-sensitive CFI without resorting to a
shadow stack. These purely software-based solutions can be considered comple-
mentary to our approach.

Overall, the originality of our approach (of brandname “Cyber Escort Unit”)
is a combined protection against cyber and hardware attacks, while being non-
intrusive in contrast to other hardware-based solutions.

3.3 Limitation of Our Approach

Compared to state-of-the-art solutions, we have shown that our solution has the
largest coverage against SOTA solution. But we do not detect:

– Change on non-control-data: In this scenario, the attacker changes non-
control-data using software bug or using physical attack targeting memory or
the processor. This class of attack is undetected because the data value are
altered while respecting the CFG.

– Correlated alteration on code and metadata: In this sophisticated
attack, the attacker is able to modify the code and at the same time modify
metadata accordingly to respect rules of CCFI-checker.

4 Solution

In this section we present the architecture of our solution. The solution is divided
in two part: hardware and software. First we present the hardware part by
presenting the integration of the CCFI with an processor then detail the internal
architecture of CCFI parts. In a second section we present the software part,
we introduce metadata structure and toolchain modification to generate them.
Section 5 present specificity needed in the architecture to be to protect processor
with speculative execution. Section 6 present the modification introduced in the
CCFI-checker and metadata to handle and protect interruptions.

Our goal is to provide a solution able to protect the CFG at the lowest level
which is at the assembler instruction level. To do so our solution verify the CFG
at three different level.

Processor Anchor to Increase the Robustness Against Fault Injection 261

Inter Procedural: each call and return of function is verified.
Inter BB: the value of the PC is verified after each BB end. If the BB end with
a jump instruction we check if the destination is on the CFG of the program.
Intra BB: In each BB, the continuity of PC values is guaranteed as well as the
integrity of instruction executed.

Unlike the common definition of basic block in compilation where basic block
can may contain call instruction to other function, in our definition of basic block,
call instruction end a basic block like conditional jump.

4.1 Hardware

Fig. 1. Overview of the proposed architecture (Color figure online)

The platform architecture of the solution is shown in Fig. 1. We consider a simple
platform based on a CPU core with separate instruction and data cache. CCFI
is divided in five different module, two ensuring the CFI and CI: CCFI-Checker
and CCFI-Cache (in red in Fig. 1). The other three are adaptation module which
allow to adapt the solution to many different core.

The CCFI-cache fetches metadata which has been computed at compile-
time, containing all control-flow related information. This information is used
at runtime by the second module, the CCFI-checker. The CCFI-cache has the
same characteristics (bit width, size, associativity, replacement policy, . . .) as
the instruction cache. For each basic block in the executed program, there is a
corresponding block of metadata. Each block of metadata is perfectly aligned
in memory to its corresponding Basic Block of code, with a constant offset.
For each access to the instruction cache, a parallel access to the CCFI-cache will

262 J.-L. Danger et al.

be issued. In this way, complex address calculations are avoided. Furthermore,
the instruction cache and the CCFI-cache will always be consistent, i.e. either
both a BB and its metadata are cached or none of them. Sync module on the
Fig. 1 emit the correct @meta given pc from CPU. It also act as barrier to
synchronise the response of the instruction cache and the CCFI-Cache. When
instruction and metadata are ready it sends both plus the actual PC of the
request into Buf module which is implemented as a circular buffer. The purpose
of Buf is explained in details in Sect. 5 Trace Decoder module connected to
the trace interface of the processor. It extract the PC of the current instruction
executed. The need of this module come from the fact that trace interface is not
standardized. Some processor give all information such as address of the instruc-
tion and instruction itself. Other give less information like if a conditional jump
is taken or not. This is why for some processor we need the Trace Decoder which
will compute or extract the PC from the trace interface. Once PC extracted, it
is send to Buf which given PC return data stored (instruction and metadata)
of the given address to the next module, CCFI-checker. The actual verification
is realized by the second hardware module CCFI-checker. For each instruction
issued from the trace interface CCFI-Checker receive at the same time the cor-
responding metadata of the current instruction, send by the Buf. With these
informations CCFI-checker is able to perform several verification during the
execution of the program listed below:

– Always start executing a BB by is first instruction
– Inside a BB, each instruction are executed in order.
– Integrity of each instruction
– At the end of a BB, the next address executed is a valid edge of the CFG.

At the end of each BB, it checks the validity of the target address by com-
paring it with the precomputed valid destination contained in the metadata,
thereby ensuring intra-procedural CFI. In case of a function call or return, an
integrated shadow stack is used to verify inter-procedural CFI. This shadow
stack in embedded inside de CCFI-Checker and is not accessible from the main
processor. Intra-BB consistency is ensured by a watch-dog counter that controls
the number of executed instructions before a control transfer. Finally, code and
metadata integrity is ensured by a precomputed signature that is compared to
a hash value over the executed instructions computed at run-time. In case of
any violation, an interrupt is raised. Internal details of the CCFI-checker are
presented in Sect. 4.1.

CCFI Checker. This section present details of implementation of the CCFI-
Checker module, describing internal register, state machine and behavior.

The CCFI-checker is composed of the following principal components:

– A set of registers to store the valid destination addresses,
– A shadow stack to store function return addresses,
– An instruction counter, and
– A signature register to compute a hash value of the executed instructions.

Processor Anchor to Increase the Robustness Against Fault Injection 263

Table 2. Code and metadata correspondence

Instruction
Instruction

Metadata
Metadata Metadata description

address address

0x00000A88 lbu a5,0(s1) 0x40000A88 0xA0000004 StartBB | VD=1 | EndType=Branch | NInstr=4

0x00000A8C nop 0x40000A8C 0x4000029A ValidDest | Addr=0xA68

0x00000A90 nop 0x40000A90 0x400002A6 ValidDest | Addr=0xA98

0x00000A94 bnez a5,0xA68 0x40000A94 0xFC035B60 EndBB | Hash=0xFC035B60

0x00000A98 lw a5,-68(s0) 0x40000A98 0xA0000004 StartBB | VD=1 | EndType=Branch | NInstr=4

0x00000A9C addi a5,a5,1 0x40000A9C 0x40000118 ValidDest | Addr=0x460

0x00000AA0 sw a5,-68(s0) 0x40000AA0 0x0 Empty

0x00000AA4 j 0x460 0x40000AA4 0xDAF87E5C EndBB | Hash=0xDAF87E5C

A simplified view of the control state machine of the checker is shown in
Fig. 2. The state machine basically follows the structure of the metadata record
(cf Fig. 3). At the beginning of a BB (state Start BB in Fig. 2), it sets the
instruction counter to the number of instructions in the BB (count ← NInstr)
and initializes the signature register (sig ← H(0, instr,md)). It also checks that
the beginning of the BB is correctly labeled with StartBB metadata. The valid
destination addresses are collected while traversing the BB (state Store Dest)
and stored in the internal register bank1. If there are Empty entries in the meta-
data record, the state machine loops in the Inside BB state until the end of the
BB. During the traversal, the signature register is updated after each instruction.
For this purpose, a suitable hash digest function H needs to be chosen.

The actual verification takes place in the End BB state. There must be two
conditions to triggers the transition into this state: an EndBB label is found and
the instruction counter reaches zero. This ensures that both too long and too
short BBs will be detected immediately. Normally, the end of the BB should
coincide with the instruction counter reaching zero, which is verified in the End
BB state. It is also checked if the hash value extracted from the EndBB entry
equals the signature register. Depending of EndType at the start of the BB, In
case of Call the return address is store in an internal shadow stack. In this case
the destination of the call is validate against Valid Destination. In case of Return,
the jump destination is validated using address stored in the shadow stack.

If there have been any valid address entries in the metadata, these are used
to verify the effective target address. Note that this applies either for calls or local
branches and jumps. The implementation of the internal register bank must ensure
that the address comparison can be performed in parallel for all valid entries in one
clock cycle, before the state machine continues to process the next BB.

In case any of the checks fails, an interrupt will be triggered, allowing the
CPU to react to the attack immediately. Note that for simplicity reasons, Fig. 2
does not show the state transitions in the case of a security violation.

1 Note that the size k ≥ 2 of this register bank is an implementation parameter that
can be chosen freely. Any BB with more than k valid targets can be split recursively
until each BB has at most k valid successors.

264 J.-L. Danger et al.

4.2 Software

Metadata. Metadata contains informations depicting the Control Flow Graph
of the program. These are organised in individual blocks of metadata each depict-
ing the behavior of the execution of one Basic Block. Figure 3 show which

Fig. 2. CCFI-checker state machine

Fig. 3. Metadata format description

Processor Anchor to Increase the Robustness Against Fault Injection 265

informations are stored in these block of metadata and how it is formatted
in memory for a 32bits architecture.

These metadata contain for each basic block the list of valid destination
accessible at the end of the BB. It also contains a signature of the basic block
computed from its instructions as well as the number of instruction present in
the BB and other informations depicted in this section.

Each block of metadata contains several entries. As show in Fig. 3, each
entry type is identified by the two MSB, it can be one of the four following type:
StartBB, ValidDest, Empty or EndBB.

StartBB entry is an header which describe the type and the content of the
current BB. Func bit is use to mark the entry BB of functions.

NInstr field store the number of instruction of the BB. The two bits Int flag
are present to mark the beginning or the end of interrupt routine, its usefulness
is explain in Sect. 6. EndType flag is coded on two bits, it represent the type
of control transfer at the end of the BB. There can be three type of end: None,
Call or Return. None marks either a BB that will always be succeeded by the
next consecutive BB – i.e. there is no branch or jump at the end – or one
ending with a direct or indirect jump or branch instruction. Typically, blocks
ending with a direct jump or call will have one valid destination and conditional
branches two, while indirect control transfers can have an arbitrary number of
valid destinations. Call is set when the BB end with a call, in this case return
address will be store inside a stack called Shadow Stack. Return mark the end of
the function, in this case the value stored previously in the Shadow Stack will
be used to validate the address of return. To finish VD flag indicated if there is
ValidDest entry in these metadata. If it is set to zero there will and must be no
ValidDest entry following.

ValidDest entry are use to store one valid destination address allowed to be
reached/executed at the end of the BB, corresponding to an allowed edge in the
CFG. Addr store the absolute address of the destination right shifted of two bit.
This allow to keep the possibility to store a 32bit address, but it is only possible
on fixed length instruction architecture.

Empty entries are used when there is no ValidDest to store or when all Valid-
Dest have been already stored in previous entries. It also serve to match the size
of metadata to the number of instruction of the Basic Block, in order to keep
the memory alignment consistent.

Finally, the end of the BB is marked by an EndBB entry, which addition-
ally contains a hash signature computed over all the instructions of the BB.
Both EndBB header and NInstr are used to determine the end of the BB. This
redundancy allow to detect metadata corruption.

Note that in some cases destination of indirect branch or jump cannot be
computed at the compilation, in this case the VD bit is unset and there will
be no verification of the destination address at the end of this BB. Not setting
VD bit can leave an opportunity to an attacker to exploit this to hijack control
flow to jump somewhere else. But considering the fact that the CCFI-Checker
will automatically ensure that the next instruction is the beginning of an BB by

266 J.-L. Danger et al.

checking the presence of a Start BB header, the possibility are widely reduced. In
case of a BB ending with a Call without valid destination stored in its metadata,
the Func flag in the header of the next BB is check to ensure this call is not
diverted to a gadget.

Fig. 4. Compilation flow

Toolchain. All metadata are computed during the compilation, by adding a
plugin to GCC and modifying the linker. The creation of metadata is done in two
phase during the assembly and the linkage. Figure 4 summarizes the compilation
flow.

Firstly a GCC plugin is inserted to the compilation workflow to insert assem-
bly directive in the assembly code generated to add metadata. For the compiler
a BB can contain a call, this is not compatible with our approach. During
this phase BB containing call are split up to be compatible with our solution.

Processor Anchor to Increase the Robustness Against Fault Injection 267

When a BB is too small to contain all needed metadata a corresponding number
of nop is added to extend it. This case happens generally when a BB is only
one instruction long or when the end of the BB is a indirect jump with a lot
of destination possible. At the end of this first phase memory space have been
allocated to store metadata for each BB but there values are not yet set.

The second phase is done with the linker, when all relocation are done all
VD in metadata can be filled. The signature Hash is also computed at this stage,
after the relocation stage because the linker can modify some instruction like
short jump and long jump.

5 Speculative Execution

Depending on the specific implementation of the CPU, there can be other situ-
ations that require adjustment of the solution. One such case is branch predic-
tion and speculative execution, which leads to a mismatch between the fetched
instructions and those that are effectively executed. Since the CFI-cache mon-
itors the cache interface of the CPU, it needs to be aware of such features in
order to correctly detect the destination of branches. This section describe how
such feature is detected as an attack by a simple implementation and explain
needed change on the CCFI-Checker to be able to protect processor using specu-
lative execution. Section 8 explains how we have resolved this issue for the used
RISC-V implementation.

Speculative execution is commonly used in modern processors, and even in
some microcontrollers due to its benefits in term of performance improvement.
From our CFI point of view speculative execution can be detected as CF violation
since the processor actually begins to execute some instructions of the predicted
jump destination. If the branch prediction appears to be incorrect, it will rollback
all change induced by the speculative execution and jump to the right address.
This behaviour is represented on Fig. 5, where the processor have predicted the
that the branch will no be taken and execute speculatively the instruction at the
address 133c. Prediction was wrong, and processor rollback and jump to address
1210. This impromptu jump is detected as violation of the CFG by the basic
implementation presented in the previous Sect. 4. More advanced processor, in
order to improve performance, can also have prefetch technique that make it
impossible to follow the execution flow from instruction fetched.

To address this behaviour we have to make distinction between instruction
fetched and instruction executed. Each instruction fetched is stored in a cir-
cular buffer along with its metadata. This circular buffer is as deep as needed
to reproduce the latency of the pipeline between fetch stage and the stage of
trace interface. For each fetched instruction by the processor, one line is stored
in the Buf module. Each line contain the instruction, its address and the meta-
data associated. So when the trace interface output an address, this address is
send to Buf module to select the corresponding line. By construction it is never
possible for the processor to output an PC from the trace interface without
having its corresponding metadata present in Buf. Once the line selected, Buf

268 J.-L. Danger et al.

Fig. 5. Exemple of miss branch prediction

the related information (PC, instruction and metadata) to the CCFI-Checker.
Doing so CCFI-Checker is able to follow the execution of the processor step by
step without error even with an processor using speculative execution.

This solution for handling speculative execution is easily scalable on different
sizes of processor pipeline and prediction mechanism by adjusting the maximum
size of the cyclic buffer. This approach also has the advantage of not limiting
the number of valid destination we can store for one BB.

6 Interruptions Management

In the literature of CFI, interruption and exception are rarely discussed due to
the fact they can happen at any time and break the CFG of the current running
program.

When an interruption occurs the processor determines the memory address of
the interruption handler and jumps to it. There two major ways for a processor
to execute the handler. The first one is to have static hard-coded address in
the processor, regardless of the interruption the processor will execute the code
at this address. The distinction of the type of interruption and the call of the
right function handler is left to the programmer. The second method is to have a
dedicated memory zone for an array of code pointer. For each one of interruption
the processor fetches the corresponding code pointer and executes the pointed
handler.

In all cases this results to jump directly on the interruption subroutine at
any time and from anywhere. From outside of the processor this behaviour is

Processor Anchor to Increase the Robustness Against Fault Injection 269

viewed as a violation of the CFG. To be agnostic of the type of interruption our
solution consists in adding an Int flag in the metadata header of the first and
last BB of the handler function to detect start and end of handler function.

This allows to detect on-the-fly triggered interruptions, regardless of the pro-
cessor implementation. Upon interruption, CCFI-checker detects the discontinu-
ity of the control flow but metadata will indicate this is at the same time an Start
BB end Int meaning this function is call because of an interruption. Figure 6 is
a partial view of the CCFI-Checker FSM. From any state if the next instruc-
tion is the Start of a BB and also the beginning of an interruption procedure so
CCFI-Checker save its current context of execution in an internal memory. The
shadow stack is used to save the current PC. Once it is done the CCFI-Checker
jumps to another FSM dedicated to follows the execution of the interruption
handler (right FSM of the Fig. 6). This FSM is the same that the normal FSM
except for the END BB where the flag ENDINT is checked. If the ENDINT flag is
present in a ENDBB then the previous saved context is restored. Once the context
have been restored CCFI-checker can continue verification of the BB where it has
been interrupted.

Fig. 6. Interruption FSM

This mechanism of saving and restoring context allows to be interrupted in
the middle of a BB without triggering any false CFI alarms. In case of reentrancy
a internal stack is used to save multiple contexts. Reentrance level is limited by
the depth of this stack.

To overcome this limitation, next implementations this stack can trigger an
alarm to flag when its full. This will allow the programmer to implement a routine
to dump this stack in memory. This virtually allow to have unlimited interruption
reentrancy. This technique will introduce a vulnerability in our design since data
of the internal state of CCFI-checker will be exposed to the monitored program.

270 J.-L. Danger et al.

7 Attack Model and Security Guaranties

In this work, we address the protection of embedded platforms without DEP.
We consider that the attacker is able to exploit programming bugs which allow
buffer overflows. Such attacks can either modify the return address on the stack
and/or inject malicious code. Note that this attack model is quite permissive in
contrast to the classical CFI setting, which usually considers that code memory
is immutable [1].

Additionally, we consider non-destructive physical attacks. This includes ran-
dom changes in memory by either software-driven attacks (row-hammer) or hard-
ware attacks (such as electromagnetic injection or glitches) leading to instruc-
tion skips. Since the successful demonstration of practical attacks such as row-
hammer, physical attacks must be considered a realistic scenario, especially in
the context of embedded and mobile devices.

Assuming that the main memory contains the code alongside with its cor-
rectly generated metadata, the CCFI-checker enables detection of the following
attacks:

– Changing a return address on the stack (detected by shadow stack)
– Changing the target of a call, branch or jump outside of the static CFG

(detected by destination address verification)
– Returning or jumping into the middle of a BB (detected by StartBB label

check)
– Adding instructions at the end of a BB (detected by EndBB label check and

instruction counter)
– Turning a branch into a nop (detected by signature check)
– Changing the pc to skip an instruction (detected by signature and instruction

counter)
– Changing any instruction word in memory or up to the CPU interface

(detected by signature)
– Deleting or manipulation metadata in any way inconsistent with the code

(detected by signature)

One obvious limitation are physical attacks that directly affect the internal
state of the CPU, such as the register state or skipping computations within
the pipeline. Note that however such attacks will be caught if they directly or
indirectly change the instruction address on the cache interface. We also do not
consider advanced destructive attacks (such as focused ion beams) that could
e.g. cut the interrupt line on the circuit die and thereby practically disable the
CCFI-checker.

Furthermore, data only attacks that do not change the static control flow are
not detected. An attacker that has full control over the memory could also forge
metadata. A typical solution for this problem is to assume that the metadata (or
the metadata and the code) reside in a protected read-only memory. Considering
our proposed architecture in Fig. 1, such a solution can easily be implemented
by having a completely separated memory bus for the CCFI-cache, thereby pre-
venting any access to the metadata originating from the CPU.

Processor Anchor to Increase the Robustness Against Fault Injection 271

Finally, special care needs to be taken for the treatment of the interrupt trig-
gered by the CCFI-checker. Since interrupt mechanisms vary greatly on different
target platforms, there is no system-independent solution. For instance, if inter-
rupt target vectors are writable from user code, the interrupt service routine
(ISR) itself needs to be protected. Any tampering with the ISR would then lead
to a re-occurring violation, blocking the system in an infinite loop. In embedded
platforms, watchdog counters are typically used to reset the system when it gets
caught in a deadlock. Depending on the application, if recovery is considered less
important, the interrupt line of the CCFI-checker can also be routed directly to
the reset line, preventing any attack path via the ISR.

8 Implementation

In order to validate the CCFI architecture, we have implemented it on micro-
controller platform based on industrial RISC-V processor [8]. The CPU core is
a 5-stage pipeline processor with a two memory interfaces for accessing instruc-
tions and data (Harvard architecture). The platform uses a crossbar for memory
access, with one ROM for code and metadata and one RAM for the execution.

As mentioned in Sect. 5, branch prediction can potentially pose a problem
for the CCFI-checker, since the address seen on the memory interface (i.e. the
program counter) may not coincide with the effective branch target address.
The targeted processor have branch prediction and speculative execution capa-
bilities. It also had a complex prefetch system which prevent us to directly use
the PC from the instruction cache fetch to determine the execution flow of the
program. We claim that the proposed architecture is suitable for complex pre-
diction schemes, A detailed discussion of the required modifications is beyond
the scope of this paper.

Table 2 shows an example with two BBs and the corresponding metadata.
The upper BB ends with a conditional branch. There are two valid destinations
stored in the metadata record. In the code, there are two additional nops, which
are needed to match the size of the metadata, and – for the second one – to
resolve the prefetch of the conditional branch.

Table 3. Hardware cost

Component Cells Cell area

CCFI-cache 2078 58728

CCFI-checker 8199 24812

Table 4. Hardware cost of caches

Component Cells Cell area Net area Total

Dcache ctrl 3808 63278 6194 69473

Icache ctrl 2114 58655 3511 62166

272 J.-L. Danger et al.

9 Performance

The interruption support has been tested in many benchmarks having pre-
dictable and random interruptions. Our implementation is able to save and
restore context of execution without errors and significant impact on the perfor-
mance level.

Tables 3 and 4 report the hardware cost of CCFI-cache module, CCFI-checker
and caches on Intel’s Cyclone V FPGA.

Table 5 presents the execution time in number of cycles when the code is
running on a more powerful processor with speculative execution. Nominal run
is the software without any modification and without the presence of CCFI.
NOP only corresponds to the software modified by the toolchain but without
the CCFI module. This test gives us the impact on performance when adding
NOP to enlarge BB. CFI/NOP corresponds to the run fully protected by CCFI
module. These benchmarks show an impact of 21% on average. Most of the
overhead is due to the NOP added in the code to ensure metadata alignment
(Table 6).

As we can see in Table 5 nearly all runtime overhead came from the added
NOP. In total NOP added represent 25% of more code. Empty metadata rep-
resented the memory space allocated for metadatas not used. As we can see
around 31% of memory space of metadata does not store useful information.

Table 5. Benchmark on A* processor in number of cycle

Run Bubble sort Drystone AES

Nominal 1023533 420857 6342603

CFI/NOP 1289903 443337 8340834

NOP only 1289599 442644 8339606

Software overhead 25.99% 5.17% 31.48%

Hardware overhead 0.02% 0.15% 0.01%

Total overhead 26.02% 5.34% 31.50%

Table 6. Software modification

Run Bubble Sort Drystone AES

Number total of instructions 989 1490 2944

Number total of BB 251 339 528

Number total of nop added 216 232 456

Number total of empty metadata 327 575 1127

Processor Anchor to Increase the Robustness Against Fault Injection 273

10 Conclusion

Correct code execution is required by certification schemes, for instance the
Protection Profile PP084. When the device is susceptible to fault injections and
cyber-attacks, some hardware support helps maintain a tolerable throughput.
However, modifying the processor would be error-prone since revalidation is
costly, and legacy processors cannot be modified anyway.

We present in this paper a non-intrusive hardware-based protection able to
effectively mitigate cyber and physical attacks. Our solution uses precomputed
control flow information which are verified at runtime. The extracted informa-
tion is stored as metadata in a dedicated code section. Profiling attest that this
solution is very competitive regarding the hardware overhead and the perfor-
mance penalty, which are minimal and affordable in most cases which make our
technology practical and deployable.

The bottleneck of our solution is that the binary code shall be instrumented
with some extract NOPs to match the size of basic blocks in respectively the code
and the metadata. As a perspective, the compiler shall be involved actively to
help produce basic blocks which are not too small, thereby reducing the overhead
caused by such stuffing.

Acknowledgments. This work has been partly financed via TeamPlay, a project
from European Union’s Horizon 2020 research and innovation program, under grand
agreement N◦ 779882 (https://teamplay-h2020.eu/). Also, this project has been trans-
fered as “Cyber Escort Unit” protection to the “Securyzr” integrated Secure Element
Product at Secure-IC S.A.S.

References

1. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf. Syst. Secur. 13(1) (2009)

2. Coudray, T., Fontaine, A., Chifflier, P.: PICON: control flow integrity on LLVM
IR. In: Symposium sur la sécurité des technologies de l’information et des commu-
nications, Rennes, France, 3–5 June 2015 (2015)

3. de Clercq, R., et al.: SOFIA: software and control flow integrity architecture. In:
Design, Automation & Test in Europe (DATE). Dresden, pp. 1172–1177 (2016)

4. Danger, J., Guilley, S., Porteboeuf, T., Praden, F., Timbert, M.: HCODE:
hardware-enhanced real-time CFI. In: Proceedings of the 4th Program Protection
and Reverse Engineering Workshop, PPREW@ACSAC, New Orleans (2014)

5. Karaklajić, D., Schmidt, J.M., Verbauwhede, I.: Hardware designer’s guide to fault
attacks. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 21(12), 2295–2306
(2013)

6. Werner, M., Wenger, E., Mangard, S.: Protecting the control flow of embedded pro-
cessors against fault attacks. In: Smart Card Research and Advanced Applications
(CARDIS), Bochum. Revised Selected Papers, pp. 161–176 (2015)

7. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. SIGARCH Comput. Archit. News 42(3), 361–
372 (2014)

https://teamplay-h2020.eu/

274 J.-L. Danger et al.

8. Asanović, K., Patterson, D.A.: Instruction sets should be free: the case for RISC-
V. In: EECS Department, University of California, Berkeley, Technical report
UCB/EECS-2014-146, August 2014

9. Carlini, N., Wagner, D.A.: ROP is still dangerous: breaking modern defenses. In:
Proceedings of the 23rd USENIX Security Symposium, San Diego, pp. 385–399
(2014)

10. Szekeres, L., Payer, M., Wei, T., Sekar, R.: Eternal war in memory. IEEE Secur.
Priv. 12(3), 45–53 (2014)

11. Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 221–240. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85174-5 13

12. Aldaya, A.C., Sarmiento, A.C., Sánchez-Solano, S.: AES t-box tampering attack.
J. Cryptographic Eng. 6(1), 31–48 (2016). https://doi.org/10.1007/s13389-015-
0103-4

13. Intel, Control-flow enforcement technology preview, revision 2.0, June 2017.
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf

14. van der Veen, V., et al.: Practical context-sensitive CFI. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Denver,
2015, pp. 927–940 (2015)

15. Christoulakis, N., Christou, G., Athanasopoulos, E., Ioannidis, S.: HCFI: hardware-
enforced control-flow integrity. In: Proceedings of the Sixth ACM on Conference on
Data and Application Security and Privacy, pp. 38–49. CODASPY, New Orleans
(2016)

https://doi.org/10.1007/978-3-540-85174-5_13
https://doi.org/10.1007/978-3-540-85174-5_13
https://doi.org/10.1007/s13389-015-0103-4
https://doi.org/10.1007/s13389-015-0103-4
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

Integrating Side Channel Security in the
FPGA Hardware Design Flow

Alessandro Barenghi(B) , Matteo Brevi, William Fornaciari ,
Gerardo Pelosi , and Davide Zoni

Department of Electronics Information and Bioengineering (DEIB),
Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy

{alessandro.barenghi,william.fornaciari,gerardo.pelosi,
davide.zoni}@polimi.it

Abstract. The design of digital systems has its mainstay in the elec-
tronic design automation flows which act as crucial instruments to reduce
the effort to realize complex computing platforms. In this work, we inves-
tigate the possibility of integrating side channel security analyses within
the existing FPGA design flow, to provide a feedback to the hardware
designer in a prompt and effective way. To this end, we realize an analysis
framework which detects side channel leakage on the power consumption
side channel at two well established checkpoints in hardware design, i.e.,
post synthesis and post implementation. We report the results of the pro-
posed framework when integrated within the commercial Xilinx Vivado
design toolchain. As a case study, we employ an open source SoC running
a software version of the AES block cipher and provide a taxonomy of
the side channel information leakage. The reported results highlight how
our approach is able to provide precise insights on the sources of informa-
tion leakage in the hardware design at hand. In particular, we show that
the results of the simulations at post synthesis and post implementation
stages provide complementary sets of insights on the information leakage,
which, thanks to our methodology, can be traced back to architectural
components which are the culprits of the said leakage.

Keywords: Design automation and tools · FPGA design flow · Side
channel analysis

1 Introduction

The Internet-of-Things (IoT) revolution is leading to a tightly connected world
populated by millions of smart devices that, following the edge computing
paradigm of externalize the processing onto leaf computing nodes, are collect-
ing, computing, and exchanging data streams among them. The pervasiveness
of these devices calls for technical means to provide privacy guarantees on the
collected and processed data. This, in turn, points to the use of cryptographic
building blocks to attain the said guarantees in a reliable and provable way.

c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 275–290, 2021.
https://doi.org/10.1007/978-3-030-68773-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_13&domain=pdf
http://orcid.org/0000-0003-0840-6358
http://orcid.org/0000-0001-8294-730X
http://orcid.org/0000-0002-3812-5429
http://orcid.org/0000-0002-9951-062X
https://doi.org/10.1007/978-3-030-68773-1_13

276 A. Barenghi et al.

Fig. 1. Bird’s-eye view of a hardware design flow enhanced with side channel analysis

A prominent attack avenue for IoT devices is represented by the so-called
Side Channel Attacks (SCAs), which are able to recover the secret key of a
cryptographic primitive exploiting the link between the data being processed by a
computing device and an environmental parameter of the computing device such
as its power consumption, electromagnetic emissions, or time taken to perform
the computation. Indeed, a practical case of SCA being effective against a widely
commercialized IoT device is the one of Philips smart bulbs [13], which were
proven to be vulnerable to Correlation Power Analysis (CPA), in turn allowing
an attacker to exploit them as a foothold to violate the security of home networks,
or as a pawn to lead distributed denial of service attacks.

Digital design flows have been crucial for a long time in order to dominate the
ever increasing complexity and diversity of designing digital devices with ade-
quate performance and efficiency requirements, while fitting timing constraints
imposed by the market. Indeed, they have arguably been one of the most signif-
icant enabling technologies for the IoT revolution, as they allowed to drastically
shorten the time to design new, specialized computing platforms.

A natural consequence of the intrinsic need for security guarantees in IoT
devices is the inclusion of security itself as a design metric. Such an inclusion
points to the need of augmenting the current Electronic Design Automation
(EDA) flows with stages that provide an evaluation of the security of the design
itself with respect to a particular attack class. Concerning the security against
SCAs, a pioneering effort in augmenting the traditional ASIC hardware design
flow as well as in promoting the side channel security assessment as a stan-
dard design metric, was made in [12], where the authors propose a methodology

Integrating Side Channel Security in the FPGA Hardware Design Flow 277

to identify a side channel sensitive portion of a circuit and provide a secured
re-implementation of the portion itself employing a SCA-resistant logic style.
Another work in the direction of providing security-oriented features within a
well established EDA flow is the one in [15], where the authors augment an
EDA flow targeting ASIC with a set of modules performing side channel analy-
ses based on the power consumption at the different stages of the EDA flow, i.e.,
synthesis, place-and-route, implementation. The work validates its approach on
the design of an ASIC accelerator for the execution of the Advanced Encryption
Standard (AES) block cipher with a 128-bit cryptographic key (a.k.a. AES-128),
and on an SCA protected S-Box for the PRESENT cipher. A further motivating
point for the need of integrating SCA awareness in the EDA toolchain is rep-
resented by the increasing complexity of the CPUs employed in IoT platforms,
leading to a side channel information leakage which is tightly coupled with the
microarchitectural features of the CPU itself [1–6,18].

Contributions. In this work, we tackle the augmentation of an industry-grade
FPGA design flow with a software-only analysis of the side channel vulnerability
of a design. Our intent is to reduce the delay in the feedback loop to the designer
when it comes to the understanding of whether or not a given design may be
vulnerable to power-consumption-based SCAs. Our objective is to augment the
FPGA design flow, as depicted in Fig. 1 with side channel security analyses
after the synthesis stage, providing a preliminary analysis, and after the entire
backend of the EDA flow has been run, obtaining a more close-to-deployment
analysis. As a case-study, we employ a full System-On-Chip (SoC) based on
an implementation of the open OpenRISC Instruction Set Architecture (ISA),
which is analyzed when running a software implementation of AES-128. Our
experimental validation highlights the advantages of performing side channel
analyses in both stages, as some of the leaking points detected by each one of
them are not observable by the other. Moreover, our analysis framework allows
the designer to trace back the leakage to the microarchitectural components that
are the source of the said leakage, helping him to effectively remove potential
security issues.

The rest of this manuscript is organized as follows. The proposed enhanced
FPGA design flow to support side channel vulnerability analyses is discussed in
Sect. 2, considering the augmentation of the widely adopted commercial Xilinx
Vivado toolchain. Section 3 presents a taxonomy of the side channel leakage
detected, employing as a statistical instrument a specific t-test [8] to detect it.
Conclusions and directions for future investigations are drawn in Sect. 4.

2 Augmenting the Xilinx Vivado FPGA Design Flow

In this section, we detail the augmentation to the hardware design flow to support
the SCA vulnerability analysis considering the power consumption side channel.
The proposed augmentation of the design flow is depicted in Fig. 2, and stems
from the typical two stages approach of EDA tools, represented by clear boxes
in the figure. The typical EDA design flow is traditionally split in a set of stages

278 A. Barenghi et al.

Fig. 2. Proposed SCA-aware design flow for FPGA targets. Newly added elements are
depicted as orange blocks, while existing enhanced elements are depicted in yellow
(Color figure online)

which translate a high-level Hardware Definition Language (HDL) description of
the design into a low-level technology independent description. This description,
which is in the form of a netlist, i.e., a set of elementary components such as
Boolean gates and muxes, is used to run a first pass of functional simulations,
which are able to detect mismatches between the desired design behavior and
the actual one pertaining to incorrectly computed values. The netlist representa-
tion does not yet take into account the actual components of the target platform
which will be realizing the functionalities of the elementary components. The
step following the logic synthesis are the ones of the design implementation and
they take the gate-level netlist and map its components onto the ones available
on the target platform (in the FPGA design flow case) or onto the ones available
with the provided technology library (in an ASIC design flow). After performing
the mapping onto the platform components, the resulting set of design parts
is placed onto the available resources and the inter-component connections are
routed. The outcome of this step is ready to be deployed onto the target FPGA,

Integrating Side Channel Security in the FPGA Hardware Design Flow 279

after a semantic preserving translation from a post place-and-route netlist onto
a bitstream file. The post place-and-route netlist, which is output by the imple-
mentation passes, can be employed to perform accurate simulations of the design
at hand, as it takes into account the actual components which will be imple-
menting it, together with the signal propagation delays induced by the routed
interconnections. We note that the post implementation synthesis represents the
most accurate netlist in terms of timing, area and power characteristics, while
the post synthesis one provides only an estimates of such metrics, allowing only
an initial coarse grained evaluation of the said metrics.

We augmented the FPGA design flow by adding the analysis to detect the
side channel leakage after both the logic synthesis stage, and the implemen-
tation stage (see Simulation (func) and Simulation (timing) blocks in Fig. 2).
While this choice may appear counter-intuitive, as the simulations at the post
implementation stage take into account a more accurate circuit model, our find-
ings (reported in Sect. 3) show that complementary insights are obtained from
pre and post place-and-route results.

We follow the well established convention of simulating the design at a func-
tional level on the post synthesis netlist, thus obtaining a corresponding Value
Change Dump (VCD) file which represents the switching activity of an ideal
circuit where no signal propagation delays in the wirings are considered. Simi-
larly, following a well established best practice, we perform a complete timing
simulation exploiting the information coming from the place-and-route stages on
the post implementation netlist.

Any FPGA design flow includes a power consumption estimation stage, which
aims at providing to the designer a reasonable estimate of the expected energy
requirements of the circuit (see Power dissipation computation blocks in Fig. 2.
Such a power estimation requires as an input the Switching Activity Interchange
File (SAIF) file, together with the netlist of the design to be simulated. Currently,
the FPGA design flow provided by Xilinx, which is the one we are augmenting,
only yields the average power consumption estimate coming from the switching
activity described in the entire SAIF. While this is sufficient to obtain a reason-
able estimate of the power consumption for functional purposes, a single-valued
average estimate of the behavior of the circuit during the execution of an entire
cryptographic primitive does not provide enough time resolution to assess the
source of a potential side channel leakage.

To this end, we enhanced the power estimation stage, realizing an automated
framework to slice time-wise the SAIF representation of the switching activity
of the circuit executing the entire cryptographic primitive into arbitrarily small
portions. Our framework exploits the availability of the VCD file to perform a
slicing which is synchronous with the clock signal, allowing to obtain a sequence
of SAIF files including the switching activity of the target design during a time
interval of a single clock cycle, or a portion of a clock cycle. The sequence of
obtained SAIF files is then fed to the Xilinx power report tool, which derives
the power consumption of each one of them. Recombining in the appropriate
chronological order the obtained power estimates, we build our simulated power
traces. We chose a time interval of half a clock cycle in our experimentation, i.e.,
two simulated power samples are collected for each simulated clock cycle.

280 A. Barenghi et al.

Starting once the synthetic power traces have been generated by the power
dissipation computation blocks, we realized the power consumption side channel
evaluation stage of the flow which is in charge of assessing the information leakage
of the design (see Power attack resistance evaluation and Information leakage
blocks in Fig. 2). To this end, several statistical tests have been suggested in
the public literature, ranging from performing an actual side channel attack, to
leakage model agnostic tests [7,8].

Since our aim is to be able to provide meaningful suggestions to the designer
on which component may be the cause of an information leakage in a given time
instant, we chose to employ the specific t-test, as proposed in the same work as
its non-specific variant [8]. Our choice of the t-test is mutuated by the absence of
noise in the simulated environment, which allows to employ such a test without
implicit assumptions on the distribution of the noise [16]. The specific t-test
partitions in two sets the power traces obtained from the repeated execution
of the cipher primitive at hand with a fixed value of the cryptographic key and
different, randomly chosen input plaintexts (encryption primitive) or ciphertexts,
(decryption primitive). The partitioning of the traces is driven by the value of
an intermediate variable in the computation of the primitive itself (e.g..., a bit
being asserted or not in the inner state of a block cipher). Once the partition
is completed, a statistical t-test (hence the name) is employed to compare the
average power consumption over each one of the two trace sets, analyzing one
time instant at a time. This results in the computation of as many t statistics
as the time instants in the simulated power traces, which are then evaluated to
affirm or reject the null hypothesis that the average power consumptions of the
traces in the two sets are the same in a given time instant. We note that, while
a high value of a t statistic computed for a given time instant points to a very
likely difference in the behavior of the design being caused by a data dependent
event, this may not directly lead to an exploitable leakage [9], namely due to false
positives such as the ones highlighted in [18]. We note that the proposed design
flow can be easily configured to apply any other evaluation metric different from
the statistical test chosen in this work.

The Leakage analysis processing block (on the right-hand pane of Fig. 2)
aggregates all the generated information to deliver the side channel behavior of
the circuit under investigation. In particular, we pair the results of the t-test
with the data available from the simulation VCD. Our leakage analysis stage
scans the logical transitions contained in the VCD file, in the time intervals
corresponding to the detection of a possible leakage by the specific t-test. The
leakage analysis stage collects a list of all the signals where a logic transition
matches the partitioning criterion of the t-test and traces back to the signals
the potential leakage, exploiting the information contained in the netlist corre-
sponding to the appropriate EDA flow stage (i.e., the Netlist at post synthesis
or post implementation).

The final result of the analysis provides the designer with a side-by-side signal
waveform and t-test result view, allowing the designer to audit and, if needed,
amend the design on the side channel information leaking components.

Integrating Side Channel Security in the FPGA Hardware Design Flow 281

Table 1. Taxonomy of highlighted side channel information leakage. For each identified
information leakage type we associated its observability in the two considered hardware
design flow stages, i.e., post synthesis and post implementation, and one snapshot
reporting an instance of it

Scenario Leakage detected Figure no.

Post synthesis Post implementation

Spreading signals ✓ ✓ 3

Time shift ✓ ✓ 4

Zero variance (post impl.) ✓ 5

Signal domination ✓ 6

Zero variance (post synt.) ✓ 7

Signal isolation ✓ 8

3 Experimental Validation

To validate our proposed augmentation of the FPGA design flow, we pick as
our case study the OpenRISC Platform System on Chip (ORPSoC) [10], which
implements the OpenRISC 1000 architectural specification. The ORPSoC fea-
tures a single-issue, in-order OpenRISC 1000 CPU with a 5 stages pipeline,
and a main memory module connected to it via a Wishbone compliant bus. We
synthesized the ORPSoC targeting a clock frequency of 50 MHz, and employ-
ing a Xilinx Artix 7 XC7A200 device as our target platform. We employed the
Vivado 2017.4 Xilinx toolchain to perform the synthesis and implementation,
while obtaining the switching activity files with Xilinx XSim 2017.4.

The synthesized SoC is running a software implementation of the Advanced
Encryption Standard (AES) symmetric block cipher, employing its variant with
a 128-bit key. The software is obtained compiling a standard-abiding, memory
optimized (S-Box) implementation written in C. We computed the power traces
corresponding to 700 AES executions on independent, uniformly drawn, random
plaintexts while keeping a fixed secret key. The overall data collection took 45
days on 4 servers equipped with legacy Intel Xeon E5620 processors (launched on
2010) clocked at 2.40 GHz with 32 GiB of DDR3. The significant computation
time required is due to the need of restarting the Vivado Report Power tool
each time a power estimate for a SAIF containing the switching activity of half
a clock cycle must be computed. While this computational bottleneck is currently
significant, we still chose to employ the Xilinx Power Report tool as it is currently
the one containing the most reliable characterization of the Xilinx FPGA target
chips. We were able to determine that this current computational bottleneck
can be removed, observing how the computation time is spent by Xilinx Power
Report, via the consolidated Linux time accounting subsytem. Indeed, we found
out that the actual userspace computation load is less than 0.1% of the actual
running time (i.e., ≈1 h), while the 99.9% of the wall-clock time is taken by
reading the input files and by the operating system overhead.

282 A. Barenghi et al.

Fig. 3. Spreading signals information leakage scenario reported in Table 1

We collected two energy measurements per clock cycle, i.e., at the first and
second half of the target clock period, as the minimum number of samples to
allow the detection of the effects of the network delays introduced in the map
and place-and-route stages on the power consumption, while keeping the com-
putational requirements for the data collection within acceptable range.

In our leakage assessment, we present the result of running a specific t-test
with the parameters suggested in [8]. In particular, we employed the value of
the first bit of the AES cipher state after the first AddRoundKey primitive is
computed as the labeling criterion to partition the collected traces into two sets.
We computed the value of the t statistic point-wise in time for the two set of
traces and considered that the t test rejects the null hypothesis, stating that
the means of the power consumptions of the two sets are not distinguishable if
the value of the t-statistic is below 4.5 as suggested in [8]. This, in turn, implies
that, if the t-test rejects the null hypothesis, there is no detectable side channel
leakage with this amount of measurements with a confidence of 99.99%.

We report in Table 1 the complete taxonomy of the side channel informa-
tion leakage emerged from the evaluation of our case study platform, classified
according to whether post synthesis or post implementation power traces exhibit
a leakage or not. For each identified information leakage scenario, the corre-
sponding figure indexed in Table 1 details a representative example of the class
as obtained as the output of our tool. For the sake of clarity, we will represent the
outcome of the t-test instead of the t-statistic itself, simply depicting whether,
for a given time instant, the t-test detects potential side channel leakage or not.

Spreading Signals. The first scenario we consider is the one where informa-
tion leakage is detected both on post synthesis traces and post implementation
traces, while the time instants where the leakage is detected on post synthe-
sis traces are a subset of the ones where a leakage is also detected on post

Integrating Side Channel Security in the FPGA Hardware Design Flow 283

Fig. 4. Time shift information leakage scenario reported in Table 1

implementation traces. A practical case of such scenario, reported in Fig. 3,
allows us to provide further insight on the reasons behind such a difference.
First of all, our framework traced back the potential leakage origin to a tran-
sition on the ram dat o, lsu dat o signals (two signals involving the storage of
the result of the AddRoundKey primitive by the load-store unit). While the logic
transitions take place exactly on the raising clock edge in post synthesis, leading
to a leakage in the corresponding (first) half of the clock cycle, the post imple-
mentation simulation shows delayed transitions causing leakage in both clock
cycle halves. This fact confirms that common intuition that taking into account
more accurately the network delays will result in a more accurate picture of the
exact time instants where the information leakage takes place.

Time Shift. The Time Shift scenario emerges whenever the t-test reports that
the possible information leakage in the post implementation analysis is shifted
forward in time, with respect to the one detected by the post synthesis analysis.
Analogously to the case of Spreading Signals, we are able to ascribe this fact to
the more accurate evaluation of the network delays allowed by the information
contained in the post implementation netlist. We report an instance of such a
scenario in Fig. 4, where a transition from the sensitive value represented by
the output of the AddRoundKey primitive to zero, taking place on the load-data
signal of the load-store unit, gives rise to a leakage which is time-locked to the
first half of the clock cycle in post synthesis simulations, while it appears in the
second half of the clock cycle when post implementation traces are considered.

Zero Variance (Post Impl.). The Zero variance in post implementation traces
is an interesting scenario where we observed a lack of leakage being detected
on post implementation traces, while the post synthesis analysis shows distinct
leakage. An instance of such a scenario is reported in Fig. 5, where the leakage
is caused by the sensitive value transiting on a forwarding path for the first
operand. Indeed, carrying out the side channel leakage analysis on post synthe-
sis traces shows the expected information leakage in the first half of the clock

284 A. Barenghi et al.

Fig. 5. Zero variance (on post implementation traces) scenario as in Table 1

cycle where the aforementioned transitions take place. By contrast, no leakage
is detected on post implementation traces and the variance of the post imple-
mentation power consumption traces in the instant where leakage is detected
on the post synthesis ones is null. While we cannot ascertain the reason for
such a behaviour of the Xilinx power report output, we posit as a reasonable
justification the fact that the signal routing optimization performed in the place-
and-route stage may bring the power consumption of some signal drivers below
the minimum power simulation resolution. Indeed, such a fact would result in
a net cancellation of the data dependent contribution to the overall power con-
sumption, and the consequent zero variance in the post implementation traces.
This highlights the counter-intuitive fact that, despite the higher accuracy of
the design model provided by a post implementation netlist, some information
leakage may be missed if the analysis is not performed on post synthesis traces
too.

Signal Domination. Another scenario where an information leakage is detected
only on post synthesis traces, but not on post implementation traces is the
Signal Domination one. Differently from the Zero variance (on post implemen-
tation traces) scenario, in this case the variance of the post implementation
simulated traces is not null, however, no leakage is detected. Figure 6, reports
an instance of this scenario where a transition from zero to the sensitive value
constituted by one byte of the output of the AddRoundKey primitive is taking
place on the dbus o signal, while another transition, from a different output byte
of the same primitive to zero is taking place on the lsu o signal. In the post syn-
thesis power traces, no interference between the two transitions takes place, as
the first one concludes before the raising edge of the clock signal at the beginning
of the second clock cycle, giving rise to a distinguishable leakage by the t-test.

Integrating Side Channel Security in the FPGA Hardware Design Flow 285

Fig. 6. Signal domination example for each one of the side channel information leakage
classes identified in Table 1. We attack the i-th bit of the secret key. Pi, Pj are two bits
of the plaintext, while Ki and Kj are two bits of the secret key

Note that, in this case, no relation exists between the values of the transition
taking place on lsu o and the partitioning of the traces into two sets exists, as
the said partitioning depends on the values transiting on dbus o. Analyzing the
post implementation traces we have that the t-test fails to detect any leakage,
despite the transition on dbus o is taking place within the same clock cycle. We
ascribe this effect to the delayed transition happening on lsu o, which is likely to
be the dominant factor in the power consumption in the first half of the second
clock cycle. Indeed, such a dominant power consumption caused by an unrelated
value effectively adds a significant amount of noise to an otherwise perfectly
distinguishable information leaking power consumption. Therefore, the signal
domination scenario highlights another significant case where the post synthesis
traces offer a clearer picture of the potential information leakage of the design
with respect to a post implementation analysis.

We note that, in this scenario, a higher number of simulated traces may allow
the t-test to overcome the empasse caused by the additional noise.

Zero Variance (in Post Synthesis Traces). This scenario represent the dual
scenario with respect to the Zero variance (in post implementation traces). In
particular, it considers the case where a leakage is detected only in the post imple-
mentation traces, where it is not detected in the corresponding time instants
in the post synthesis ones, which have zero variance in the said time instant.
While arguably more expectable than the Zero variance (in post implementa-
tion traces), as the design model provided by the post implementation netlist
is closer to the actual design, this scenario also highlight the need to analyze
the potential information leakage both post synthesis and post implementation.
We report in Fig. 7, an instance of such a scenario, which is reported by our

286 A. Barenghi et al.

Fig. 7. Zero variance (post synt.) example for each one of the side channel information
leakage classes identified in Table 1. We attack the i-th of the secret key and Pi, Pj are
two bits of the plaintext while Ki and Kj are two bits of the secret key

framework when the sensitive value is transiting on the data line of the memory
bus, i.e., ram dat i. Indeed, in this case, it is quite likely that the post synthesis
model of the circuit, which neglects the effects on the power dissipation caused
by the capacity load of long signal lines underestimates the power required to
charge the memory bus. By contrast, the post implementation traces, leveraging
the more accurate description of the memory bus connections, provide a more
fitting report on the power consumption, which allows the t test to successfully
detect the information leakage.

Signal Isolation. The signal isolation scenario, where information leakage is
detected only in the analysis of post implementation traces, is essentially the
dual case of the signal domination scenario. An occurrence of this scenario is
reported in Fig. 8, where the output signals of two different bytes of the data
bus carrying the second operand into the ALU toggle at the same moment in
the post synthesis simulation, having their value change from zero to a byte of
the output of the AddRoundKey primitive. While the byte contained in rB[i] is
the one actually related to the t-test partitioning criterion, the one in rB[j] is
unrelated to the said criterion. As a result, the post synthesis power simulation
does not yield a detectable leakage, as the relevant power consumption caused by
the transition on rB[i] is shadowed by the unrelated, and at least equally strong
power consumption due to the transition of rB[j]. Analyzing the result of the
post implementation power simulation we have that, thanks to the more accurate
estimate of the network delays, the aforementioned signal transitions take place
in slightly different time instants, with the information leaking one taking place
in the second half of the clock cycle. As a consequence, the information leaking
power consumption is isolated from the non relevant one. This in turn results in
the t-test detecting leakage in the corresponding time interval.

Integrating Side Channel Security in the FPGA Hardware Design Flow 287

Fig. 8. Signal isolation example for each one of the side channel information leakage
classes identified in Table 1. We attack the i-th of the secret key and Pi, Pj are two
bits of the plaintext while Ki and Kj are two bits of the secret key

We note that, similarly to the signal domination scenario, a higher number
of power consumption traces may lead to a detection of the information leakage
during the post synthesis analysis.

Summary. Summing up the results obtained analyzing in detail the taxonomy
of information leakage detected by our approach, we can state the following:

(1) performing a post implementation simulation effectively provides a higher
timing accuracy to the side channel leakage detection. The Spreading Signals
and Time Shift scenarios exemplify the effects of such an increased precision
allowing to detect sequences of leakages.

(2) Performing post synthesis side channel analysis yields complementary
insights to the ones provided by post implementation analysis. Indeed the
Signal Domination scenario highlights a potential side channel leakage which
may be visible or hidden depending on the device targeted for implementa-
tion. This in turn may lead a designer, relying only on post implementation
simulations, to ship an IP block that indeed may exhibit a side channel leak-
age when implemented on a different target.

(3) Performing post implementation simulations is still advised as they may
highlight, as expected, side channel leakages which can only be modeled effec-
tively with accurate timing information on the implemented design.

(4) The current resolution of the power simulation tools in the FPGA design
flows may not be sufficient to highlight all the information leakages via power
consumption, as shown in the Zero variance scenarios.

288 A. Barenghi et al.

4 Concluding Remarks

This work presented an augmented FPGA hardware design flow to assess power-
based side channel information leakages. The proposed framework is currently
built on the widely employed commercial Xilinx Vivado toolchain. Starting from
the complete OpenRISC SoC design, running a software implementation of the
AES-128 block cipher as representative use-case, our investigation provides a
complete taxonomy of the side channel information leakage scenarios which are
made evident from a simulation-time side channel evaluation. Our toolchain
augmentation also allows us to trace back the plausible sources of the side channel
information leakage, when employing a specific t-test on an intermediate value
of the algorithm, or any intermediate value specific leakage assessment test. This
feature is achieved through an automated analysis of the value logical transitions
taking place at the same time as the information leakage. The results of our
automated analysis highlight that it is worthwhile to perform a simulated power
analysis both at the post synthesis level (to detect issues with the IP design
which may not be evident unless implemented on a different target device) and
at the post implementation level (to benefit from the network delay modeling).

Currently, the computational requirements for our analysis are significant,
mainly due to the significant overheads (estimated to be greater than three
orders of magnitude), imposed by the current lack of a per-cycle power esti-
mation in the existing EDA flows for FPGA. Since we were able to validate
the report of consistent results with the current Xilinx Vivado toolchain, show-
casing the effectiveness of the augmented toolchain in detecting side channel
leakage, we consider the removal of such a computational bottleneck as a press-
ing need for furher developments. Indeed, we maintain that such a performance
bottleneck is removable, as most of the time (>99.9%) in our current power
consumption simulations is spent in bootstrapping a fresh instance of the power
simulator for each time interval, corresponding to a bootstrap per each sam-
ple of a trace. We note that, as viable alternative to the industry-dependent
integration of a per-cycle power estimation in Xilinx Vivado, the availability of
effective power estimation models for open EDA flows such as Symbiflow and
Yosys [11,14,17] would allow them to output the desired power simulations in
significantly reduced timeframes. Indeed, such an evolution would further foster
a fully auditable design and side channel security analysis for FPGA targets.

Finally, we foresee the validation of the leakage detection made by our aug-
mented toolchain through comparison with a physical target as an interesting
avenue to be pursued. Indeed, while we confirmed the existence of a potential
side channel leakage analyzing the values of the logic transitions, practically
gauging the extent of the leaked information and its measurability would allow
a further confirmation of the effectiveness of the methodology itself.

Integrating Side Channel Security in the FPGA Hardware Design Flow 289

References

1. Agosta, G., Barenghi, A., Pelosi, G.: Compiler-based techniques to secure crypto-
graphic embedded software against side channel attacks. IEEE Trans. CAD Integr.
Circ. Syst. 39(8), 1550–1554 (2020). https://doi.org/10.1109/TCAD.2019.2912924

2. Agosta, G., Barenghi, A., Pelosi, G., Scandale, M.: A multiple equivalent exe-
cution trace approach to secure cryptographic embedded software. In: 2014 The
51st Annual Design Automation Conference, DAC 2014, San Francisco, CA, USA,
1–5 June 2014, pp. 210:1–210:6. ACM (2014). https://doi.org/10.1145/2593069.
2593073

3. Agosta, G., Barenghi, A., Pelosi, G., Scandale, M.: The MEET approach: securing
cryptographic embedded software against side channel Attacks. IEEE Trans. CAD
Integr. Circ. Syst. 34(8), 1320–1333 (2015). https://doi.org/10.1109/TCAD.2015.
2430320

4. Barenghi, A., Fornaciari, W., Pelosi, G., Zoni, D.: Scramble suit: a profile differ-
entiation countermeasure to prevent template attacks. IEEE Trans. CAD Integr.
Circ. Syst. 39(9), 1778–1791 (2020). https://doi.org/10.1109/TCAD.2019.2926389

5. Barenghi, A., Pelosi, G.: Side-channel security of superscalar CPUs: evaluating the
impact of micro-architectural features. In: Proceedings of the 55th Annual Design
Automation Conference, DAC 2018, San Francisco, CA, USA, 24–29 June 2018,
pp. 120:1–120:6. ACM (2018). https://doi.org/10.1145/3195970.3196112

6. Barenghi, A., Pelosi, G., Teglia, Y.: Information leakage discovery techniques to
enhance secure chip design. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS,
vol. 6633, pp. 128–143. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21040-2 9

7. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-
Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptol.
24(2), 269–291 (2010). https://doi.org/10.1007/s00145-010-9084-8

8. Becker, G.C., et al.: Test vector leakage assessment (TVLA) methodology in prac-
tice. In: International Cryptographic Module Conference, vol. 1001 (2013)

9. Coron, J., Naccache, D., Kocher, P.C.: Statistics and secret leakage. ACM Trans.
Embed. Comput. Syst. 3(3), 492–508 (2004). https://doi.org/10.1145/1015047.
1015050

10. Jullien, F., et al.: Open RISC Platform SoC (ORPSoC) Version 3 (2018). https://
github.com/openrisc

11. Krieg, C., Wolf, C., Jantsch, A.: Malicious LUT: a stealthy FPGA trojan injected
and triggered by the design flow. In: Liu, F. (ed.) Proceedings of the 35th Interna-
tional Conference on Computer-Aided Design, ICCAD 2016, Austin, TX, USA, 7–
10 November 2016, p. 43. ACM (2016). https://doi.org/10.1145/2966986.2967054

12. Regazzoni, F., et al.: A design flow and evaluation framework for DPA-resistant
instruction set extensions. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol.
5747, pp. 205–219. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04138-9 15

13. Ronen, E., Shamir, A., Weingarten, A., O’Flynn, C.: IoT goes nuclear: creating a
ZigBee chain reaction. IEEE Secur. Priv. 16(1), 54–62 (2018). https://doi.org/10.
1109/MSP.2018.1331033

https://doi.org/10.1109/TCAD.2019.2912924
https://doi.org/10.1145/2593069.2593073
https://doi.org/10.1145/2593069.2593073
https://doi.org/10.1109/TCAD.2015.2430320
https://doi.org/10.1109/TCAD.2015.2430320
https://doi.org/10.1109/TCAD.2019.2926389
https://doi.org/10.1145/3195970.3196112
https://doi.org/10.1007/978-3-642-21040-2_9
https://doi.org/10.1007/978-3-642-21040-2_9
https://doi.org/10.1007/s00145-010-9084-8
https://doi.org/10.1145/1015047.1015050
https://doi.org/10.1145/1015047.1015050
https://github.com/openrisc
https://github.com/openrisc
https://doi.org/10.1145/2966986.2967054
https://doi.org/10.1007/978-3-642-04138-9_15
https://doi.org/10.1007/978-3-642-04138-9_15
https://doi.org/10.1109/MSP.2018.1331033
https://doi.org/10.1109/MSP.2018.1331033

290 A. Barenghi et al.

14. Shah, D., Hung, E., Wolf, C., Bazanski, S., Gisselquist, D., Milanovic, M.:
Yosys+nextpnr: an open source framework from verilog to bitstream for com-
mercial FPGAs. In: 27th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM 2019, San Diego, CA, USA,
28 April – 1 May 2019, pp. 1–4. IEEE (2019). https://doi.org/10.1109/FCCM.
2019.00010

15. Sijacic, D., Balasch, J., Yang, B., Ghosh, S., Verbauwhede, I.: Towards efficient
and automated side channel evaluations at design time. In: Batina, L., Kühne, U.,
Mentens, N. (eds.) PROOFS 2018, 7th International Workshop on Security Proofs
for Embedded Systems, colocated with CHES 2018, Amsterdam, The Netherlands,
13 September 2018. Kalpa Publications in Computing, vol. 7, pp. 16–31. EasyChair
(2018), http://www.easychair.org/publications/paper/xPnF

16. Standaert, F.-X.: How (not) to use Welch’s T-test in side-channel security evalu-
ations. In: Bilgin, B., Fischer, J.-B. (eds.) CARDIS 2018. LNCS, vol. 11389, pp.
65–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15462-2 5

17. Wolf, C.: SymbiFlow, an open source FPGA tooling for rapid innovation. https://
symbiflow.github.io/

18. Zoni, D., Barenghi, A., Pelosi, G., Fornaciari, W.: A comprehensive side-channel
information leakage analysis of an in-order RISC CPU microarchitecture. ACM
Trans. Des. Autom. Electron. Syst. 23(5), 57:1–57:30 (2018). https://doi.org/10.
1145/3212719

https://doi.org/10.1109/FCCM.2019.00010
https://doi.org/10.1109/FCCM.2019.00010
http://www.easychair.org/publications/paper/xPnF
https://doi.org/10.1007/978-3-030-15462-2_5
https://symbiflow.github.io/
https://symbiflow.github.io/
https://doi.org/10.1145/3212719
https://doi.org/10.1145/3212719

Side-Channel Countermeasures

Self-secured PUF: Protecting the Loop
PUF by Masking

Lars Tebelmann1(B) , Jean-Luc Danger2 , and Michael Pehl1

1 TUM Department of Electrical and Computer Engineering, Chair of Security
in Information Technology, Technical University Munich, Munich, Germany

{lars.tebelmann,m.pehl}@tum.de
2 Télécom Paristech, Paris, France

jean-luc.danger@telecom-paris.fr

Abstract. Physical Unclonable Functions (PUFs) provide means to
generate chip individual keys, especially for low-cost applications such
as the Internet of Things (IoT). They are intrinsically robust against
reverse engineering, and more cost-effective than non-volatile memory
(NVM). For several PUF primitives, countermeasures have been pro-
posed to mitigate side-channel weaknesses. However, most mitigation
techniques require substantial design effort and/or complexity overhead,
which cannot be tolerated in low-cost IoT scenarios. In this paper, we
first analyze side-channel vulnerabilities of the Loop PUF, an area effi-
cient PUF implementation with a configurable delay path based on a sin-
gle ring oscillator (RO). We provide side-channel analysis (SCA) results
from power and electromagnetic measurements. We confirm that oscilla-
tion frequencies are easily observable and distinguishable, breaking the
security of unprotected Loop PUF implementations. Second, we present
a low-cost countermeasure based on temporal masking to thwart SCA
that requires only one bit of randomness per PUF response bit. The ran-
domness is extracted from the PUF itself creating a self-secured PUF.
The concept is highly effective regarding security, low complexity, and
low design constraints making it ideal for applications like IoT. Finally,
we discuss trade-offs of side-channel resistance, reliability, and latency as
well as the transfer of the countermeasure to other RO-based PUFs.

Keywords: Physically unclonable function · Side-channel analysis ·
RO PUF · Loop PUF · Masking · Countermeasure · IoT

1 Introduction

In an increasingly interconnected world, hardware trust anchors play an
important role to avoid that vulnerabilities in single nodes break security of

This work was partly funded by the German Ministry of Education and Research in the
project SecForCARs under grant number 01KIS0795 and under the SPARTA project,
which has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 830892.

c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 293–314, 2021.
https://doi.org/10.1007/978-3-030-68773-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_14&domain=pdf
http://orcid.org/0000-0003-2014-7184
http://orcid.org/0000-0001-5063-7964
http://orcid.org/0000-0001-6100-7714
https://doi.org/10.1007/978-3-030-68773-1_14

294 L. Tebelmann et al.

entire systems. Especially low-cost devices used in the Internet of Things (IoT)
are physically accessible and may serve as an entry point for attacks. While
such devices require decent security mechanisms, their low-cost nature limits
the acceptable cost overhead. One major issue is secure key storage to provide
the credentials for e.g., secure firmware updates or authenticated communica-
tion. However, secured non-volatile memory (NVM) is frequently not affordable.
Also, NVM protection mechanisms, needed to store the key securely, require
permanent power, draining the limited energy resources of the IoT device.

Physical Unclonable Functions (PUFs) provide a solution by deriving a secret
from manufacturing variation that are unique, unpredictable, and individual
for every chip. A PUF measures a property related to the variations, such as
the delay, and derives secret bits from the measurement when the device is
powered on. Due to noise, the secret bits are not perfectly stable and are typically
processed by an error correction algorithm to derive a stable key. As soon as the
chip is powered off, the secret vanishes from volatile memory and can no longer
be attacked. The conjunction with the fact that PUFs are readily built from
standard cells, makes them an ideal low-cost solution for the IoT.

In this work, we focus on PUFs based on ring oscillators (ROs) that measure
the delay at a certain position of the chip through the oscillation frequency of
an RO [18]. Specifically, we consider the Loop PUF [3,4], a configurable RO
PUF based on a single configurable RO. In general, other configurable PUFs
are primarily used in challenge-response protocols, and are therefore subject
to machine learning attacks [1,6,15]. In contrast, the Loop PUF is used for
key generation and the configuration by challenges is only used to maximize
the entropy extracted from a certain chip area. As an attacker does not have
access to the responses of the key generation and the challenges are generated
online from a Hadamard matrix [14], i.e., linearly independent, machine learning
attacks are out of the scope for the Loop PUF.

Since machine learning attacks and key retrieval during power off are out of
scope for the Loop PUF, physical attacks during runtime have to be considered.
Regarding the IoT scenario the most relevant case are non-invasive attacks with
affordable equipment, i.e., capable of performing power and global EM measure-
ments. We consider in this work side-channel analysis (SCA) attacks on the PUF
primitive itself. Other attack vectors for SCA are at the postprocessing stage of
the PUF to get a reliable key [12,21] but they are not addressed in this study.

Related Work. Several SCA attacks on PUF primitives have been proposed in
literature, most of them being semi-invasive attacks. For some attacks, dedicated
countermeasures have been suggested. However, existing countermeasures come
with a high design overhead or require a large amount of random numbers.

For SRAM PUFs a cloning attack was proposed that measures near infrared
photonic emissions of the SRAM cells to characterize the PUF and subsequently
clone it using a focused ion beam [7]. Furthermore, an attack is proposed that
exploits the remanesence decay effect of SRAM cells if an attacker is able to
overwrite the SRAM used for the PUF [13,22]. The Arbiter PUF is character-
ized by analyzing the photonic emissions of the different delay stages in order

Self-secured PUF: Protecting the Loop PUF by Masking 295

to deduce a linear model for the Arbiter PUF that can be solved with little
effort [19]. For the transient effect ring oscillator (TERO) PUF, EM-based SCA
allows for determining the oscillation duration of single instances by using a
Short-Time Fourier Transform (STFT). Knowledge of the oscillation duration
allows for reducing the PUF’s entropy. The leakage stems from counters that are
placed in an interleaved manner [20].

Most relevant to this work, several attacks have been carried out on RO
PUFs: (i) Using Laser Voltage Probing exposing the backside of a die to an near-
infrared laser beam [8]: The intensity of the reflected beam is altered through
absorption or interference effects and allows for the recovery of the RO frequen-
cies. (ii) Using localized electromagnetic emissions of the ROs over a decapsu-
lated die [11]: Frequencies from simultaneously activated ROs can be identified
and exploited if ROs are used in several comparisons, i.e., are activated more
than once. Consequently, a possible countermeasures consists in limiting the use
of each RO to a single comparison. Additionally, it is suggested to measure multi-
ple, i.e., more than two, ROs in parallel to increase the number of frequencies an
attacker has to distinguish. (iii) Using localized EM measurement over a decap-
sulated FPGA die, single ROs can be resolved if placed far from each other [10]:
However, for ROs placed in proximity to each other, separation of single ROs is
deemed unlikely. Yet, multiplexers and counters exhibit leakage about the RO
frequencies that can be resolved spatially. To impede the attack on counters and
multiplexers, measurement path randomization, i.e., using different counters or
multiplexers for each evaluation, and interleaved placement of the components
are proposed. (iv) Geometric leaks in the EM spectrum of an ASIC enable the
resolution of adjacently placed counters [17]: The RO PUF under attack follows a
low-power design to reduce SCA leaks. However, depending on the measurement
position on the decapsulated die, the counter frequencies have different ampli-
tudes and can be distinguished. The authors conclude that interleaved placement
of components is therefore not sufficient. Parallel comparison of multiple ROs,
as proposed by [11], increases the number of possibilities, but does not protect
from brute force attacks. Ultra-low-power counters are proposed as a possible
hiding countermeasure.

Contributions. In this work, we propose a hardened, yet low complexity, imple-
mentation of a PUF primitive, that is based on the Loop PUF [3,4]. In most
other oscillation-based PUF primitives, such as the RO PUF or the TERO PUF,
multiple instances of an oscillator are implemented and compared in parallel. In
contrast, the Loop PUF implements a single instance of the primitive, that is
evaluated sequentially. We take advantage of the sequential evaluation method
by randomizing the order of the challenges used to generate PUF bits. In partic-
ular, the randomness to determine the order is derived from the Loop PUF itself,
making our proposed design a self-secured PUF primitive. The contributions of
this work include:

296 L. Tebelmann et al.

1. Side-channel analysis of the Loop PUF using a single measurement.
2. Temporal masking countermeasure for the Loop PUF that benefits from the

sequential evaluation method.
3. Proposal of a self-secured PUF by drawing the randomness from the PUF

itself.

1 2 3 4 Nenable

Feedback Loop

c1 c2 c3 c4 cN

Challenge

MSB LSB

Counter

Fig. 1. Schematic of the Loop PUF structure.

Structure. The rest of this work is structured as follows: Sect. 2 recapitulates
the functional principle of the Loop PUF and introduces our implementation
used for the experiments. Section 3 performs a practical side-channel attack on
the Loop PUF and analyzes the results. The countermeasure against the SCA as
well as the concept of the self-secured PUF is provided in Sect. 4. Subsequently,
Sect. 5 discusses the application of the scheme to RO PUFs and the impact of
measurement time, before we draw our conclusion in Sect. 6.

2 The Loop PUF

This work mainly analyzes and improves a simple PUF based on a ring oscillator,
the Loop PUF, w.r.t. side channel attacks. One goal of this study is to check if the
low complexity property of this PUF can be kept when inserting countermeasures
against SCA. Another interest is the potential transfer of security solutions to
other RO PUFs. In this section the working principle of the Loop PUF as well
as its implementation on Xilinx Artix-7 FPGAs is presented.

2.1 Architecture

The Loop PUF is a delay PUF introduced by Cherif et al. [3,4]. Its main compo-
nent is a delay chain composed of N identical controllable delay stages. A ring
oscillator (RO) is formed when the output of the delay chain is feedback to the
chain’s input through an inverting gate. An enable signal allows for starting and
stopping the oscillation. Figure 1 illustrates the Loop PUF schematic.

Self-secured PUF: Protecting the Loop PUF by Masking 297

Each of the N delay stages of the PUF contains two delay elements such as
inverters or buffers, as depicted in Fig. 2a. A challenge bit ci applied to the ith

stage selects, e.g., via a multiplexer, one of the two elements that is included in
the RO path. The challenge C applied to the PUF is the N -bit word composed of
the ci. The frequency of the RO depends on the sum of selected delays. Neglecting
noise and aging, it is constant for given environmental conditions but unique for
each hardware realization of a Loop PUF due to local process variations of the
individual delay elements during the device fabrication.

2.2 Operating Mode

The Loop PUF requires an operating mode to derive secret bits from the oscil-
lation frequencies obtained for given challenges. The basic operating mode is
presented in Algorithm 1. It consists of two subsequent measurements: The first
using the challenge C and the second with the complementary challenge ¬C
applied (Lines 1, 3). In other words, the frequencies of the RO with different
delay elements in the ring are measured.

Algorithm 1. Basic Loop PUF Operation
Input: Challenge C (a word of N bits)
Input: Measurement time in terms of periods nacq of the reference clock
Output: Response δC (a signed integer whose sign is mapped to the secret bit kC)
1: Set current challenge to C
2: Count oscillations of Loop PUF for nacq cycles of reference clock ⇒ vC
3: Set current challenge ¬C
4: Count oscillations of Loop PUF for nacq cycles of reference clock ⇒ v¬C

5: Compute δC = vC − v¬C

6: return δC with kC = MSB(δC) ∈ {0, 1}

The challenge dependent frequency of the RO is the underlying secret to be
observed. It is measured by counting the number of oscillations of the loop for
a fixed predefined measurement time (Lines 2, 4). For this purpose, the N -bit
challenge C is applied to the Loop PUF. Then, the enable signal is set to logical
1 while a reference counter counts a predefined number nacq of periods of a
reference clock oscillating with frequency fclk. After the acquisition time Tacq is
finished, the oscillation frequency is approximated from the counter value vC as

fC ≈ fclk · vC
nacq

=
vC
Tacq

. (1)

Note that due to the discrete counter values, fC is subject to quantization noise.
After deriving fC the respective counter value v¬C and frequency f(¬C) for the
complementary challenge ¬C are derived accordingly. The sign of the frequency
difference Δf = f(C) − f(¬C) is the secret response bit kC obtained from the

298 L. Tebelmann et al.

Loop PUF. The secret PUF response bit kC is therefore derived from the most
significant bit (MSB) of the counter differences δC = vC − v¬C (Line 6):

kC = MSB(δC) =
{

1 if sign(Δf) ≥ 0
0 otherwise. (2)

The differential measurement process compensates for a large amount of influ-
ences through environmental conditions and aging effects. Since these effects
happen on a larger time scale than the measurement time, subsequently mea-
sured frequencies are affected similarly. Therefore, the most significant bit of
δC and, thus, the response bit kC has high stability if the oscillation frequency
for challenges C and ¬C are sufficiently distinct. Compared to other oscilla-
tion based PUF primitives, such as the RO and TERO PUF, spatial biases are
avoided by using the same oscillator sequentially.

A

B

stage i

Ii Oi

ci

=:

ci

Ii Oi

(a) Single Stage of the Loop PUF

1 0 1 0

0 1 0 1

0 1

ci Ii

Oi

ma mb

(b) Sketch of LUT utilization

Fig. 2. Schematic and LUT utilization of stage i of a Loop PUF

2.3 Loop PUF Challenges for Maximum Entropy

It was shown by Rioul et al. [14], that one solution to get an entropy of Nkey

bits out of the Loop PUF, is to compose it of N = Nkey delay stages and
challenge it by Nkey Hadamard codewords [2] from a N × N Hadamard Matrix.
Hadamard codewords are pairwise orthogonal; They have a minimum Hamming
distance of N/2 from each other and share a Hamming weight of N/2, except for
the null codeword. Hadamard codewords can be constructed on chip with low
effort, preserving the low-complexity property of the design as there is no need
of memory to store the challenges.

As the PUF is natively unreliable, it is necessary to have a sufficiently high
number of challenges to run postprocessing based on error correcting codes or to
filter out unreliable challenges as shown in [16]. This implies that the required
number N of delay stages and Hadamard codewords has to be bigger than the
number of key bits. Alternatively, multiple Loop PUFs can be instantiated.

Self-secured PUF: Protecting the Loop PUF by Masking 299

2.4 Loop PUF Implementation

The most sophisticated part of a Loop PUF design is the implementation of the
delay chain. Ideally, the expected delay of the Loop PUF is independent of the
challenge and a difference in the delay is only due to process variations affecting
the delay elements. I.e., wiring should have no influence and the delay elements
in a delay stage according to Fig. 2a should be as similar as possible.

To reach this goal, the Loop PUF implementation in this work utilizes the
multiplexer structure of the FPGA in accordance to the suggestions for a ring-
oscillator PUF design in [5]: Every slice of the Xilinx Artix-7 FPGA used in
this work contains four 6-input-2-output LUTs. The inputs to a LUT select a
path from functionality dependent initialized SRAM cells through a multiplexer
tree to the LUT output. Figure 2b sketches the concept for a delay element
implemented in a 2-input-1-output LUT. To implement two distinct inverter
gates as the basic delay elements (alternatively buffers can be realized) of a
delay stage in one LUT, the SRAM at the input of two multiplexers in the same
hierarchy level is initialized so that their outputs (ma,mb) correspond to the
inverse of a certain input (Ii). An additional challenge input (ci) selects if the
LUT output Oi is Oi = ma or Oi = mb. Consequently, the routing between
delay stages, i.e., from Oi to Ii+1 etc., is independent from the challenges and
does not influence the delay differences.

For ci and Ii, inputs of the LUT are selected such that the expected delay
is independent from the challenge bit. Still, due to the FPGA internal routing
and implementation of the path from SRAM cells through multiplexers to the
output, a certain challenge dependent systematic delay bias might be caused.
This corresponds to delay elements in Fig. 2a, which are faster or slower on all
devices and would result in a reduced entropy of the Loop PUF. If the same
amount of fast and slow paths are active for the challenges which are compared,
i.e., for C and ¬C, the effect is mitigated assuming all LUTs are affected by the
same systematic effect. Challenges C/¬C, which are selected correspondingly,
have the same Hamming weight. For challenges that are Hadamard codewords,
this property is inherently fulfilled if the null challenge C0 = 0 is discarded.

From the described delay elements, we realize a 64-stage Loop PUF that
is implemented in only 17 slices in 8 CLBs. The Loop PUF is realized within
a closed domain with fixed placement and routing such that it does not inter-
fere with other parts of the design. The other parts of the design are placed
in a separate area but without additional constraints regarding placement and
routing.

Using Hadamard codewords and discarding C0, the design suffices to generate
63 bits. For a key-storage scenario, either more stages in the delay path or
multiple Loop PUFs are required on a chip. A longer delay chain causes, however,
lower frequency and therefore longer measurement time. A shorter delay chain
is less efficient in terms of challenges due to discarding C0. Thus, we consider a
length of 64 delay stages a realistic size.

We decided having a single Loop PUF on the device since it corresponds
to the best case for an attacker. Using multiple Loop PUFs in parallel, the

300 L. Tebelmann et al.

attacker faces the additional obstacle of spatially resolving different counters,
which has been shown to be feasible using localized EM measurements [17].
The additional barrier of localized measurements does, however, not change the
overall results and is deemed out of the scope of this work. To further support the
analysis, the design supports supplying challenges externally and reading back
the measured counter values allowing for validation of leakage observed in the
side-channel. Responses are computed on a PC receiving the counter values from
the device, since the analysis in Sect. 3 does not consider the potential leakage
in the comparison step. Note however, that in a practical scenario the attacker
is not required to have access to any of the internal counter values or being able
to apply challenges.

3 Side-Channel Analysis of the Loop PUF

This section provides the methodology and results for the SCA of the Loop PUF.
First, the experimental setup is described in Sect. 3.1. Subsequently, methods to
detect the Frequencies of Interest at which the Loop PUF oscillates are pro-
posed in Sect. 3.2 and a side-channel attack is conducted in Sect. 3.3. Finally in
Sect. 3.4, the results are generalized regarding limitations and constraints of the
attack and possible countermeasures.

3.1 Experimental Setup

The experimental setup for the SCA evaluation of the Loop PUF consists of a
Chip Whisperer 305, that features an Artix-7 (XC7A100TFTG256) running at
fclk = 100 MHz. A PicoScope 6402D USB oscilloscope performs the acquisition
at a sampling frequency of fs = 1.25 GHz. The input bandwidth of the scope is
250 MHz, which is sufficient regarding the oscillations frequencies of the Loop
PUF and their harmonics that are in the range from 15 MHz to 65 MHz as
shown in Sect. 3.2. Measurements are performed in parallel for both, power and
EM side-channel as depicted in Fig. 3. Power measurements are acquired using
the SMA jack X4 of the CW305, which outputs the voltage drop of the FPGA’s
internal supply voltage VCCint over a 100 mΩ shunt amplified by a 20 dB low-
noise amplifier. EM measurements are taken using a Langer EMV RF-R 50-1
near field probe with a diameter of approximately 10 mm. A 30 dB Langer EMV
PA303 pre-amplifier is used to enhance the signal amplitudes in order to benefit
from the oscilloscope’s dynamic range.

The EM probe is placed on the front-side about 1 mm above the package
to capture field lines that are orthogonal to the package surface. A coarse posi-
tioning procedure is applied to find the location of interest above the package:
For each quadrant on the package measurements are taken and the procedure
in Sect. 3.2 is used to determine whether the relevant frequencies are present.
The position providing the highest peak at the frequency of interest, depicted in
Fig. 3, is chosen for all further evaluations.

Self-secured PUF: Protecting the Loop PUF by Masking 301

Fig. 3. CW305 measurement setup. The RF-R 50-1 EM probe position and the power
jack are depicted.

3.2 Frequency of Interest Detection

In order to attack the Loop PUF, an attacker has to determine the frequen-
cies of the oscillation termed as Frequency of Interest (FoI) in the following. In
Fig. 4 the spectral representation of different detection methods are depicted.
All figures are based on a single measurement per challenge, where the Loop
PUF is activated for Tacq ≈ 5.24 ms. The first 5.2 ms are transformed into the
frequency domain using a Fast Fourier Transform (FFT) of NFFT = 2, 684, 359
frequency bins and a Hanning window to minimize aliasing effects. The resulting
spectra exhibit various spikes which makes automatic evaluation difficult. Thus,
low-pass filtering is applied along the frequencies to smooth the spectrum. Using
the filtering technique, single frequency noise form perturbations and artifacts
are reduced, while Loop PUF frequencies, that have a small fluctuation, remain.

Figures 4a and b show the spectra X(f) of two challenges C and ¬C for power
and EM measurements respectively. The Loop PUF frequency f0 ≈ 15.77 MHz,
verified by Eq. (1), is indicated as well as the multiples f1, . . . , f3. In the power
side-channel, the frequencies show notable peaks, while in the EM side-channel,
peaks are partly covered by other signals. Furthermore, in both side-channels,
frequency peaks unrelated to the Loop PUF show up. While some frequency
components can be attributed to expected sources such as the system clock
fclk = 100 MHz, other frequencies are a priori indistinguishable from the Loop
PUF frequency. Therefore, two methods for reliable Frequency of Interest (FoI)
detection are proposed.

FoI Based on Signal-to-Noise Ratio. The first method subtracts an esti-
mated noise floor N(f) from the spectra X(f), generating a Signal-to-Noise
Ratio. SNR(f) = X(f)/N(f). Results are depicted in Figs. 4c and d. The noise
floor is estimated from measurements with inactive Loop PUF, eliminating cer-
tain irrelevant frequencies, such as the clock frequency. In Figs. 4c and d the
noise floor estimate N(f) is based on averaging over the frequency spectra of

302 L. Tebelmann et al.

128 measurements, where the Loop PUF was not active. Compared to the spec-
tra X(f) in Figs. 4a and b the frequencies f1, f2, f3 show up more clearly in
SNR(f) and other frequency components are canceled out. The basic frequency
f0 is covered by other signals in the EM side-channel. The peaks at 68.6 MHz
and it multiple at 137.2 MHz are unrelated to the Loop PUF, yet the candidate
frequencies for an attacker are reduced.

0 50 100 150 200

34

36

38

40

42

44

f0 f1

f2
f3

(a) Power

0 50 100 150 200

34

36

38

40

42

44

f0

f1 f2

f3

(b) EM

0 50 100 150 200
−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

f0 f1

f2 f3

(c) Denoised power

0 50 100 150 200
−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

f0

f1 f2 f3

(d) Denoised EM

0 50 100 150 200

0.5

1.0

1.5

2.0

2.5

3.0

f0
f1

f2 f3

(e) Power (Std.)

0 50 100 150 200

0.5

1.0

1.5

2.0

2.5

f0
f1 f2 f3

(f) EM (Std.)

Fig. 4. FoI detection methods for the Loop PUF frequency. (a)–(b): power spectral
density (PSD) of exemplary side-channel measurements for C and ¬C. (c)–(d): PSD
subtracted by PSD from noise measurement. (e)–(f): FoI method using the standard
deviation of the PSD among all challenges.

Self-secured PUF: Protecting the Loop PUF by Masking 303

FoI Based on Standard Deviation. An attacker may not be able to esti-
mate the noise floor reliably by idle measurements, e.g., if other operations,
which are not active in the idle measurements, run in parallel to the Loop PUF.
Thus, a second FoI detection method is proposed based on the standard devi-
ation over frequency spectra of all challenges. The basic idea is that frequency
components present in all measurements, such as the clock frequency, show a
low standard deviation, while frequencies that vary for different measurements
produce a higher standard deviation. In Figs. 4e and f the standard deviation of
the frequency spectrum among the different challenges is depicted for power and
EM measurements. Indeed, the FoI detection in the power side-channel in Fig. 4e
reveals the Loop PUF frequency f0 as well as multiples f1, f2, f3. In the EM side-
channel, Figs. 4e and f a frequency ramp is visible between 15 MHz and 24 MHz,
that partly covers f0. Thus, the fundamental Loop PUF frequency of f0 can still
be sensed with priory knowledge, but is hardly identifiable for an attacker. Only
f1, f2, f3 are clearly visible. Similar to the Signal-to-Noise Ratio (SNR)-based
method, additional frequencies are detected around 68.6 MHz and 72 MHz that
are unrelated to the Loop PUF. Overall, more unrelated peaks occur compared
to the SNR-based method, but FOIs can be more clearly distinguished compared
to the raw spectra in Figs. 4a and b.

Concluding, two methods to detect the FOIs are proposed that allow an
attacker to determine the frequencies related to the Loop PUF. If possible, the
SNR-based method is preferable, otherwise calculating the standard deviations
across challenges provides sufficient information.

3.3 Side-Channel Analysis of the Loop PUF

The frequencies in range of the FOIs determined in Sect. 3.2, are evaluated
regarding the possibility of extracting information about the Loop PUF. The fol-
lowing evaluations focus on a spectral range from 31.4 MHz to 31.7 MHz, because
a frequency around 31.54 MHz is identified as a FoI in the EM side-channel. The
same frequency range is used for power side-channel to ease comparison.

As noted in Algorithm 1, the counter value vC that results from the chal-
lenge C is compared to the counter value v¬C that results from the complemen-
tary challenge ¬C. The challenges are applied sequentially, thus an attacker can
observe the resulting frequencies fC and f¬C separately. If the order in which C
and ¬C are applied is known, as is the case for the design presented in Sect. 2.2,
the attacker can guess the PUF bit kC by comparing the frequency spectra of
the challenges.

In Fig. 5 the typically observed spectra for challenge C and its complement
¬C are depicted. The peaks f̂C and f̂¬C are clearly different and can be distin-
guished by an attacker. The sign of the comparison Δf̂ = f̂C − f̂¬C is used as
the guess for the PUF response bit, i.e.,

k̂C =
{

1 if sign(Δf̂C) ≥ 0
0 if sign(Δf̂C) < 0.

(3)

304 L. Tebelmann et al.

31.4 31.5 31.6 31.7

34

36

38

40

42

44

(a) Power

31.4 31.5 31.6 31.7

34

36

38

40

42

44

(b) EM

Fig. 5. Zoom of the power spectral density for a challenge C (blue) and its comple-
ment ¬C (orange). (Color figure online)

In order to determine the success of an attack on all Loop PUF bits, the actual
counter difference ΔvC = vC − v¬C is compared to its estimate

Δv̂C =
⌊
f̂C · Tacq

⌋
−

⌊
f̂¬C · Tacq

⌋
(4)

determined by the side-channel observations. The floor operator reflects the
assumption that the counter value is incremented after every Loop PUF oscilla-
tion.

Figure 6 depicts the match between ΔvC and Δv̂C . Estimated differences
Δv̂C with sign(Δv̂C) �= sign(ΔvC) are depicted as filled red squares. Using the
method in Eq. (3), from 63 Loop PUF bits, only two and, respectively, three
bits result in a wrong guess for the power/EM side-channel. Notably, the wrong
guesses correspond to smaller frequency differences that are more difficult to
resolve by the attack. However, smaller frequency differences also correspond
to unstable PUF bits that are compensated by an error-correcting step in key
generation or even discarded. I.e., an attacker can afford a certain number of
wrong bit guesses since also on the device not all 63 bits might be derived
correctly1.

Summing up, the response of the Loop PUF can be recovered from non-
invasive power and EM measurements using a single measurement per challenge
for all but a few unstable bits. Thus, the unprotected Loop PUF design is broken
by side-channel attacks.

1 An additional attack vector is the enhancement of the frequency leakage by leakage
of the helper data and the error-correcting code that would allow for setting up a
system of linear equations to retain the individual delays of the Loop PUF. However,
the entire attack surface could only be considered, if the complete PUF architecture
was evaluated and we focus on the primitive only.

Self-secured PUF: Protecting the Loop PUF by Masking 305

3.4 Limitations and Constraints: Frequency Resolution

In order to understand general limitations of both, the SCA presented in Sect. 3.3
as well as the countermeasures proposed in Sect. 4, this section provides con-
straints regarding the possible frequency resolution of observations.

The smallest frequency fmin, which can be resolved by measurement, is the
frequency where exactly one complete period of the oscillation fits into the obser-
vation window. In case of the Loop PUF, the maximum observation time is the
acquisition time Tacq, i.e.,

fmin :=
1

Tacq
=

fclk
nacq

. (5)

−50 −25 0 25 50

−200

−100

0

100

200

(a) Power

−50 −25 0 25 50

−200

−100

0

100

200

(b) EM

Fig. 6. Attack results from SCA on the Loop PUF: Match of real counter differences
and estimated counter differences from frequency measurements using maxima around
31.55 MHz.

For measurements with an oscilloscope in the time domain, the maximum fre-
quency fmax that can be resolved, is determined by the Shannon-Nyquist sam-
pling theorem as fmax = fs/2 for the sampling frequency fs. Thus, the observ-
able frequency range2 is bounded to

1
Tacq

= fmin ≤ f ≤ fmax =
fs
2

. (6)

An attacker is expected to get the best result if the entire acquisition time
Tacq is measured. For a measurement period of Tacq, the number of sampling
points, i.e., the length of the applied FFT is

NFFT = fs · Tacq. (7)

2 Note that technically, the smallest frequency that can be resolved is 0 Hz, i.e., the DC
component. However, in Eq. (6) we are concerned with the observable frequencies.

306 L. Tebelmann et al.

For real valued time domain signals, the spectrum is symmetric. Therefore,
an FFT of length NFFT maps the signal into NFFT /2+1 frequency bins ranging
from DC to fmax. The frequency resolution of the FFT frequency bins is

ΔFFT =
fmax

NFFT /2
=

fs
NFFT

=
1

Tacq
. (8)

In other words, a longer acquisition time Tacq allows the attacker to obtain a
better resolution of the frequency differences.

From an attackers perspective, the observed bin center frequency f̂ corre-
sponds to some real oscillation frequency freal of the Loop PUF. From Eq. (8),
freal is bounded by the width of the frequency bins to

f̂ − 1
2 · Tacq

≤ freal ≤ f̂ +
1

2 · Tacq
. (9)

Assuming all frequencies within a specific bin appear with the same probability,
the best guess an attacker can make for the counter value according to Eq. (4)
from the observed f̂ is therefore

v̂C =
⌊(

f̂ ± 1
2 · Tacq

)
· Tacq

⌋
=

⌊
f̂ · Tacq

⌋
± 1. (10)

Regarding limitations and constraints for shown attacks and countermeasure
below, from Eqs. (9) and (10) we conclude that:

1. If the frequency difference of two challenges C and ¬C is |fC −f¬C | > ΔFFT ,
the resulting PUF response bit kC is always revealed by an attack.

2. If |fC − f¬C | ≤ ΔFFT , the probability that both fC and f¬C are in the
same FFT bin, i.e., indistinguishable for an attacker, increases with decreas-
ing distance of the frequencies. The attack will succeed for small frequency
differences only with a certain probability.

3. While the sign of the counter difference can be revealed, an attacker will fail
in deriving the least significant bit (LSB) of the counters.

Note that regarding Item 2, intentionally designing a Loop PUF with closeby
frequencies does not serve as a countermeasure: The comparison of frequencies
close to each other is not desirable from a PUF perspective, because bits derived
from such a comparison are less robust against noise. The conclusions in Items
1 and 2 emphasize the necessity for countermeasures to protect the Loop PUF.
Additionally, Item 3 substantiates that the LSB of a counter cannot be revealed
by the attack. Consequently, the LSB is used in the next section as a random
bit to protect the Loop PUF.

4 Securing the Loop PUF

To thwart the SCA on the Loop PUF presented in Sect. 3, a masking counter-
measure is introduced in this section. We first present the general concept of the

Self-secured PUF: Protecting the Loop PUF by Masking 307

temporal masking scheme in Sect. 4.1 and show in Sect. 4.2 how it can be used
to make the Loop PUF self-secured by using the counter LSB as random bit. In
Sects. 4.3 and 4.4 we evaluate the mask quality and provide results for SCA for
the proposed countermeasure.

4.1 Temporal Masking

The measurement of the Loop PUF is performed sequentially: Measurement for
challenge C is followed by measurement for its complement ¬C. The order of the
frequency measurements is important since it determines the secret bit according
to Eq. (2). At the same time, the ordered sequential measurement is exploited by
the SCA in Sect. 3.3. To protect the sequential measurements against SCA, the
order of measurements to derive a certain PUF response bit kC is randomized
by a 1-bit mask m in Algorithm 23. The algorithm requires as input a mask bit
that is unpredictable for an attacker.

Algorithm 2. Protected Loop PUF Operation
Input: Challenge C (a word of N bits)
Input: Measurement time in terms of periods nacq of the reference clock
Input: mask m (1-bit random variable)
Output: Response δC (a signed integer whose sign is mapped to the secret bit kC)
1: Set current challenge C′ = m ? C : ¬C
2: Count oscillations of Loop PUF for nacq cycles of reference clock ⇒ vC′

3: Set current challenge ¬C′

4: Count oscillations of Loop PUF for nacq cycles of reference clock ⇒ v¬C′

5: Compute δC = m ? vC′ − v¬C′ : v¬C′ − vC′

6: return δC with kC = MSB(δC) ∈ {0, 1}

Comparing Algorithm 2 to Algorithm 1, the mask bit m determines if C
or ¬C is applied first (Lines 1, 3). If m is logically 0, the sequence of challenges
is C ≺ ¬C; Otherwise, if m is logically 1, the order is ¬C ≺ C. Since m is – by
definition – unknown to an attacker, he/she cannot determine the order of fre-
quency measurement. Consequently the described SCA does no longer succeed.

Without further modification, a changed order of measurements leads to a
wrong sign derived from the frequency difference on-chip. The sign is corrected
by considering the order of measurement also in the subtraction (Line 5). The
mask bit m determines the order in which the frequencies are subtracted such
that the final result is independent from m but still cannot be observed by an
attacker.

3 Note, that the reordering of measurements does not affect PUF quality metrics as
it has not effect on the oscillation frequency.

308 L. Tebelmann et al.

4.2 Self-secured Loop PUF Using 1-Bit RNG from LSB

The question how to efficiently implement the masking scheme from Sect. 4.1
without the effort of an additional Random Number Generator (RNG) remains.
We suggest to use the LSB of the frequency counter m = LSB(v) for this purpose
and discuss the quality of the mask in Sect. 4.3.

Algorithm 3 describes the key generation with masking to avoid side-channel
leakages. The algorithm takes the acquisition time nacq in clock cycles of a
reference clock as an input during design time. When executed, it derives all
Hadamard codewords except of the null challenge C0 = 0 (Line 1). Note that
the Hadamard codewords can be computed during runtime and do not require
additional memory. The succesive codeword can be computed parallel to apply-
ing the current codeword to the PUF.

The null challenge cannot be used to extract a key bit as it is a source of
bias if the delay stage is imbalanced (cf. Section 2.4). However, it can be used to
derive a mask bit (Lines 2 to 4) for the generation of the first response bit. The
oscillations of the Loop PUF for C0 are measured for a fixed time and the LSB
of the resulting counter value is taken as m.

Algorithm 3. Protected Loop PUF
Input: Measurement time in terms of periods nacq of the reference clock
Output: k = [kN−1, . . . , k1] = key of (N − 1) bits
1: Compute the Hadamard codewords set C = {C1, . . . , CN−1} with HW(Ci) = N/2
2: Set current challenge C′ = C0 = 0
3: Count oscillations of Loop PUF for nacq cycles of reference clock ⇒ vC′

4: Set mask m = LSB(vC′)
5: for all i = N − 1 down to and including 1 do
6: Set current challenge C′ = m ? Ci : ¬Ci

7: Count oscillations of Loop PUF for nacq cycles of reference clock ⇒ vC′
i

8: Set current challenge ¬C′
i

9: Count oscillations of Loop PUF for nacq cycles of reference clock ⇒ v¬C′
i

10: Compute δC = m ? vC′
i
− v¬C′

i
: v¬C′

i
− vC′

i

11: Set ki = MSB(δC) ∈ {0, 1}
12: Set mask m = LSB(vC′

i
)

13: end for

Subsequently, all other i = 1, . . . , N − 1 Hadamard codewords Ci and their
complements ¬Ci are applied to the Loop PUF. The measurement order of Ci

and ¬Ci is randomized by the current mask bit m (Line 6 to 10) reflecting the
steps from Algorithm 2. A secret PUF bit ki is derived from the MSB of the
counter difference. Finally, the mask bit is updated to the random LSB of the
counter value vC′

i
protecting the next measurement.

Figure 7 sketches a possible hardware implementation of the self-secured Loop
PUF omitting generation of the Hadamard codewords, reference counter, state
machine, output registers, and reset tree. In an actual design, the state machine

Self-secured PUF: Protecting the Loop PUF by Masking 309

1 2 3 4 Nenable

Feedback Loop

MSB

+/−

LSB

Up/down counter

m

storeselect
c1 c2 c3 c4 cN

Challenge

Fig. 7. Schematic of the protected Loop PUF structure.

would cause generation of Hadamard codewords and loading of codewords to
the challenge register while resetting the counter. An up/down counter might be
used for counting the periods of the Loop PUF.

Starting with the null challenge, m = 0 and select = 0, the number of Loop
PUF oscillations within the acquisition time are measured. Without loss of gen-
erality, it can be assumed that the counter is counting upwards in this mode.
Setting store = 1 for one cycle after nacq clock cycles, the LSB of the resulting
counter value is buffered as the first mask bit.

Subsequently, four main states are repeated until all N − 1 challenges have
been applied to the Loop PUF: (i) The mask bit from the buffer is applied to
the input of the XOR tree, another challenge is loaded, and the counter is reset.
(ii) The select signal in the design is set to logical 0 and enable is set to logical
1. (iii) After nacq cycles of the reference clock, the LSB is buffered but not yet
used as m, select is switched to logical 1. (iv) After another nacq cycles of the
reference clock, the MSB is taken as a secret bit.

The structure of the design causes that if m ⊕ select = 0, the counter counts
upwards and C is applied to the PUF. If m ⊕ select = 1, ¬C is used while
counting downwards. I.e. if m = 0, first C is applied while counting upwards
before ¬C is applied while counting downwards; If m = 1 the order of C and
¬C as well as the counting direction in state (ii) and (iii) is reversed, so that
after the complete sequence of states the up/down counter always contains the
correct frequency difference and no inversion of the MSB is required.

4.3 Empirical Analysis of the LSB-Mask

Temporal masking is effective, if the attacker cannot predict the mask bit m.
Section 3.3 shows that the LSB is not resolvable by the suggested measurement
strategy. Hence, the question remains if the attacker can predict the LSB by some

310 L. Tebelmann et al.

(a) LSB bias (b) Correlation for dif-
ferent challenges

(c) Correlation for dif-
ferent measurements

Fig. 8. (a) Relative frequency of the LSB for all Hadamard codeword challenges. Cor-
relation between LSB and frequency over (b) multiple challenges, (c) repeated mea-
surements.

other means. This would be the case if (i) the LSB has an exploitable bias or
(ii) is correlated to some observable property, namely the oscillation frequency.

Bias. A bias is considered exploitable if LSB(v) for the same challenge is equal
for all devices or if LSB(v) exhibits a global bias w.r.t. all challenges. We exclude
the former case from further analysis, since a bias over devices implies the same
frequencies for a challenge over all devices. Consequently the PUF quality is low
and some redesign is required. To rule out a bias on the device that influences
the quality of the mask bit, Fig. 8a depicts the relative frequencies of the LSB for
different challenges, where each challenge is measured 1, 000 times. It is evident
that no apparent bias exists among challenges. The global bias of all LSBs from
all challenges is 0.5022, which is within the expected range. Note that the counter
values of all 128 challenges are used to increase the sample size and to evaluate
all possible LSBs as the 63 challenges used to produce the random bits are not
known a priori.

Correlations with Frequency. Regarding correlations to the oscillation fre-
quency, two cases are considered: First, the attacker might take advantage from
correlation between the LSB and the frequency over multiple repeated measure-
ments for a fixed challenge. This would indicate that a certain guessed frequency
corresponds to a certain LSB. Second, the attacker might take advantage of a
correlation between the LSB and the frequency over multiple challenges, which
would indicate a general dependency between frequency and the LSB. Figures 8b
and c refute the existence of both kinds of correlations in our design. Both figures
show the respective correlation values between frequency and LSB along with a
threshold depicted in dashed red. Values below the threshold, given by ±4/

√
n,

are not significantly different from zero with a confidence of 99.99% [9]. The
number of observations n used to calculate the correlation is n = 128, i.e., the
number of different challenges, and the experiment is repeated for 1,000 measure-
ments in Fig. 8b. In Fig. 8c, n = 1, 000 different measurements are correlated and

Self-secured PUF: Protecting the Loop PUF by Masking 311

the experiment is repeated for each challenge. In neither case is the significance
threshold exceeded indicating no correlations between LSB and frequency.

To sum up, the LSB of the Loop PUF counter is suited for the use as a
masking bit. It does not show significant bias, nor is the LSB correlated to the
frequency of the oscillation, which an attacker could observe. Establishing these
properties makes the self-secured Loop PUF a low-complexity and secure design.

4.4 Side-Channel Analysis of the Self-secured Loop PUF

Finally, we evaluate the effectiveness of the self-secured PUF design on practical
measurements. In order to assure a fair comparison, the exact same measure-
ments as in Sect. 3.3 are used, but the order of measurements for C and ¬C
presented to the attacker is modified according to Algorithm 3. The random
bit m is determined from the counter values obtained from the device.

(a) Power (b) EM

Fig. 9. Attack results from SCA on the self-secured Loop PUF: Match of real counter
differences and estimated counter differences.

In Fig. 9, the attacker’s capability to estimate the counter difference is
depicted. Note, that the attacker tries to guess the MSB as well as the LSB.
From the remarks from Sect. 3.4 it is evident that the LSB cannot be retrieved,
which is reflected in Fig. 9. Due to the randomized acquisition order, the relation-
ship between real counter differences and SCA-based counter difference estimates
is broken and the self-secured Loop PUF is effectively hardened against SCA.

5 Remarks on the Proposed Solution

Previous sections show strong benefits of the temporal masking scheme when
applied to the Loop PUF. In Sect. 5.1, we show that the näıve reduction of
the measurement time is not sufficient to protect against SCA. In Sect. 5.2, we
elaborate the application of temporal masking to other RO PUFs.

312 L. Tebelmann et al.

5.1 Impact of Measurement Time

The frequency measurement depends largely on the measurement window Tacq.
From Sect. 3.4 the attack becomes more difficult with the reduction of Tacq, as the
FFT accuracy decreases. Thus, a näıve countermeasure would be the reduction of
the measurement time. Additionally, the latency is proportional to Tacq making
a design with smaller Tacq more efficient. However, a small Tacq significantly
reduces the reliability because the quantization noise of the counting process is
increased. Hence, the best compromise depends on different factors such as the
required latency and reliability of the key generation.

Neglecting latency, a large Tacq provides a higher reliability of the PUF
response bits. As a larger Tacq comes at the cost of leakages for SCA attacks, a
countermeasure like temporal masking is inevitable. Yet, temporal masking pro-
vides security benefits independent of the measurement time, since it impedes
attacks independent of the capability of the attacker to resolve frequencies. It is,
e.g., still effective against fault attacks where an attacker is able to extend the
measurement time by decreasing the frequency of the reference counter.

5.2 Application of Temporal Masking to RO PUFs

Temporal masking is a simple, yet secure countermeasure for Loop PUFs based
on sequential measurement of delays. Classical RO PUFs require parallel fre-
quency measurement of two ROs connected to separate counters. However, the
countermeasure can be applied if the frequency of the two selected ROs is mea-
sured sequentially by the same counter, as for the Loop PUF.

Temporal masking of RO PUFs renders attacks infeasible that spatially
resolve the counters, like [10,17], as long as the ROs itself cannot be spatially
resolved. As multiple RO pairs are measured to derive a sufficient number of
bits from an RO PUF, different design trade-offs are possible: (i) For sequen-
tial measurements using the same counter, the latency to get the PUF response
is doubled while the number of counters is halved. (ii) Keeping the number of
counters constant allows measurement of the same amount of ROs in parallel as
in the classical RO PUF design. But in order to avoid side-channel leakages, the
measured ROs must belong to different RO pairs. Otherwise the same attacks
as for classical RO PUFs would be possible. As only the way of parallelization is
changed, the latency stays the same in this second case. Additional overhead may
be required, e.g., in form of additional memory to cache measured frequencies
and required random bits for the first activated ROs.

Summarizing, in terms of complexity, the number of counters can be reduced
down to a single counter. However, the area required for the large number of ROs
in a typical RO PUF design is much larger than the area of a single counter.
Hence, the number of counters is not limited by area constraints but rather by
the latency requirement as outlined above. More interestingly, there is no specific
design effort required for the protection, contrary to the path randomization
method proposed by Merli et al. [10,11].

Self-secured PUF: Protecting the Loop PUF by Masking 313

6 Conclusion

In this work, we showed that SCA of the Loop PUF poses an imminent threat
to its security. We proposed detection methods for the oscillation frequencies of
the configurable RO and exploited non-invasive power and EM side-channels to
break the unprotected Loop PUF. In order to mitigate the attacks, we intro-
duced a low-cost yet secure and robust countermeasure suitable for IoT appli-
cations. Temporal masking randomly alters the order of challenges retaining the
security subject to physical attacks. An implementation of the Loop PUF was
introduced that leverages the low reliability of the LSB by using it as a random
bit for masking. The dual use as PUF and random number generator enables a
low-complexity and efficient integration, making the protected Loop PUF self-
secured. Measurement results verified the high level of security provided by the
protection mechanism. Finally, we indicated that the low-cost protection is eas-
ily ported to other RO PUFs avoiding additional complexity or design effort
unlike existing countermeasures. Future work includes the study of fault injec-
tion attacks on RO-based PUFs and further analysis of the SCA protection.

References

1. Becker, G.T.: The gap between promise and reality: on the insecurity of XOR
Arbiter PUFs. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 535–555. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48324-4 27

2. Bossert, M.: Hadamard Matrices and Codes, chap. American Cancer Society, Wiley
Encyclopedia of Telecommunications (2003)

3. Cherif, Z., Danger, J., Guilley, S., Bossuet, L.: An easy-to-design PUF based on
a single oscillator: the loop PUF. In: 2012 15th Euromicro Conference on Digital
System Design, pp. 156–162, September 2012

4. Cherif, Z., Danger, J., Lozach, F., Mathieu, Y., Bossuet, L.: Evaluation of delay
PUFs on CMOS 65 nm technology: ASIC vs FPGA. In: HASP 2013, p. 4. Tel-Aviv,
Israel (2013)

5. Feiten, L., Scheibler, K., Becker, B., Sauer, M.: Using different LUT paths to
increase area efficiency of RO-PUFs on Altera FPGAs. In: TRUDEVICE Work-
shop, Dresden (2018)

6. Ganji, F., Tajik, S., Fäßler, F., Seifert, J.-P.: Strong machine learning attack
against PUFs with no mathematical model. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 391–411. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 19

7. Helfmeier, C., Boit, C., Nedospasov, D., Seifert, J.: Cloning physically unclonable
functions. In: 2013 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 1–6, June 2013

8. Lohrke, H., Tajik, S., Boit, C., Seifert, J.-P.: No place to hide: contactless probing
of secret data on FPGAs. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016.
LNCS, vol. 9813, pp. 147–167. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53140-2 8

9. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Boston
(2007). https://doi.org/10.1007/978-0-387-38162-6

https://doi.org/10.1007/978-3-662-48324-4_27
https://doi.org/10.1007/978-3-662-48324-4_27
https://doi.org/10.1007/978-3-662-53140-2_19
https://doi.org/10.1007/978-3-662-53140-2_8
https://doi.org/10.1007/978-3-662-53140-2_8
https://doi.org/10.1007/978-0-387-38162-6

314 L. Tebelmann et al.

10. Merli, D., Heyszl, J., Heinz, B., Schuster, D., Stumpf, F., Sigl, G.: Localized elec-
tromagnetic analysis of RO PUFs. In: 2013 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST). pp. 19–24, June 2013

11. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Semi-invasive EM attack on FPGA
RO PUFs and countermeasures. In: 6th Workshop on Embedded Systems Security
(WESS 2011). ACM, March 2011

12. Merli, D., Stumpf, F., Sigl, G.: Protecting PUF error correction by codeword mask-
ing. Cryptology ePrint Archive, Report 2013/334 (2013). http://eprint.iacr.org/
2013/334

13. Oren, Y., Sadeghi, A.-R., Wachsmann, C.: On the effectiveness of the remanence
decay side-channel to clone memory-based PUFs. In: Bertoni, G., Coron, J.-S.
(eds.) CHES 2013. LNCS, vol. 8086, pp. 107–125. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40349-1 7

14. Rioul, O., Solé, P., Guilley, S., Danger, J.: On the entropy of physically unclonable
functions. In: 2016 IEEE International Symposium on Information Theory (ISIT),
pp. 2928–2932, July 2016

15. Rührmair, U., et al.: PUF modeling attacks on simulated and silicon data. IEEE
Trans. Inf. Forensics Secur. 8(11), 1876–1891 (2013)

16. Schaub, A., Danger, J.L., Guilley, S., Rioul, O.: An improved analysis of reliability
and entropy for delay PUFs. In: 2018 21st Euromicro Conference on Digital System
Design (DSD), pp. 553–560. IEEE (2018)

17. Shiozaki, M., Fujino, T.: Simple electromagnetic analysis attacks based on geomet-
ric leak on an ASIC implementation of ring-oscillator PUF. In: Proceedings of the
3rd ACM Workshop on Attacks and Solutions in Hardware Security Workshop,
ASHES 2019, pp. 13–21. ACM, New York (2019)

18. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and
secret key generation. In: 2007 44th ACM/IEEE Design Automation Conference,
DAC 2007, pp. 9–14 (2007)

19. Tajik, S., et al.: Physical characterization of arbiter PUFs. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 493–509. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3 27

20. Tebelmann, L., Pehl, M., Immler, V.: Side-channel analysis of the TERO PUF.
In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 43–60.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16350-1 4

21. Tebelmann, L., Pehl, M., Sigl, G.: EM side-channel analysis of BCH-based error
correction for PUF-based key generation. In: Proceedings of the 2017 Workshop
on Attacks and Solutions in Hardware Security, ASHES 2017, pp. 43–52. ACM,
New York (2017)

22. Zeitouni, S., Oren, Y., Wachsmann, C., Koeberl, P., Sadeghi, A.: Remanence decay
side-channel: the PUF case. IEEE Trans. Inf. Forensics Secur. 11(6), 1106–1116
(2016)

http://eprint.iacr.org/2013/334
http://eprint.iacr.org/2013/334
https://doi.org/10.1007/978-3-642-40349-1_7
https://doi.org/10.1007/978-3-662-44709-3_27
https://doi.org/10.1007/978-3-030-16350-1_4

Leakage-Resilient Authenticated
Encryption from Leakage-Resilient

Pseudorandom Functions

Juliane Krämer and Patrick Struck(B)

Technische Universität Darmstadt, Darmstadt, Germany
{juliane,patrick}@qpc.tu-darmstadt.de

Abstract. In this work we study the leakage resilience of authenticated
encryption schemes. We show that, if one settles for non-adaptive leak-
age, leakage-resilient authenticated encryption schemes can be built from
leakage-resilient pseudorandom functions.

Degabriele et al. (ASIACRYPT 2019) introduce the FGHF′ con-
struction which allows to build leakage-resilient authenticated encryption
schemes from functions which, under leakage, retain both pseudorandom-
ness and unpredictability. We revisit their construction and show the
following. First, pseudorandomness and unpredictability do not imply
one another in the leakage setting. Unfortunately, this entails that any
instantiation of the FGHF′ construction indeed seems to require a func-
tion that is proven both pseudorandom and unpredictable under leakage.
Second, however, we show that the unpredictability requirement is an
artefact that stems from the underlying composition theorem of the N2
construction given by Barwell et al. (ASIACRYPT 2017). By recasting
this composition theorem, we show that the unpredictability require-
ment is unnecessary for the FGHF′ construction. Thus, leakage-resilient
AEAD schemes can be obtained by instantiating the FGHF′ construc-
tion with functions that are solely pseudorandom under leakage.

Keywords: AEAD · Leakage resilience · Side channels · FGHF′

1 Introduction

Authenticated encryption schemes with associated data (AEAD) are fundamen-
tal cryptographic primitives which enable Alice to send a ciphertext to Bob
such that (1) Eve does not learn anything about the underlying message and
(2) Bob can detect any manipulation of the ciphertext. In recent years, the
study of AEAD schemes has received a lot of attention, for instance through the
recent CAESAR competition [7] or the ongoing NIST standardization process
on lightweight cryptography [26].

Recently, several AEAD schemes which are designed to be secure in the pres-
ence of leakage have been proposed [3,9,11,13–15,22]. Barwell et al. [3] show that
the Encrypt-then-MAC paradigm [5] yields a leakage-resilient AEAD scheme if
c© Springer Nature Switzerland AG 2021
G. M. Bertoni and F. Regazzoni (Eds.): COSADE 2020, LNCS 12244, pp. 315–337, 2021.
https://doi.org/10.1007/978-3-030-68773-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68773-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-68773-1_15

316 J. Krämer and P. Struck

both the encryption scheme and the MAC are leakage-resilient. They also intro-
duce the corresponding security notions. Recently, Degabriele et al. [13] refined
this result by introducing the FGHF′ construction, showing that leakage-resilient
encryption schemes and MACs can be built from fixed-input-length functions
which are both pseudorandom and unpredictable under leakage. While leakage-
resilient pseudorandomness is well established in the literature, leakage-resilient
unpredictability has been defined by Degabriele et al. specifically for the FGHF′

construction. This security notion allows the adversary to obtain leakage for the
input of which it predicts the output.1 This raises the natural question:

What is the relation of pseudorandomness and unpredictability under leakage?

While pseudorandomness and unpredictability imply one another in the leak-free
setting, Degabriele et al. claim that the notions are incomparable under leakage.
We confirm their claim by providing two constructions, each being secure with
respect to one notion while being insecure with respect to the other. This seems
to entail that any instantiation of the FGHF′ construction indeed requires a
function that is proven both pseudorandom and unpredictable under leakage.
Given that leakage-resilient unpredictability is a new security notion, our sepa-
ration result gives rise to another question:

Can leakage-resilient AEAD schemes be built from
leakage-resilient pseudorandom functions?

Surprisingly, we answer this question in the affirmative. We demonstrate that the
necessity of leakage-resilient unpredictability stems from the composition theo-
rem of Barwell et al. [3]. As observed in [13], this composition theorem imposes a
security notion towards the MAC that prohibits constructing it from a leakage-
resilient pseudorandom function. However, the composition theorem aims for
arbitrary encryption schemes and MACs, while the encryption scheme and the
MAC of the FGHF′ construction [13] exhibit a special structure. Thus, we show
that recasting the composition theorem from [3] for these encryption schemes
and MACs, allows to relax the security notion of the MAC such that it can be
constructed from a leakage-resilient pseudorandom function. This comes at the
cost of imposing a stronger security notion for the encryption scheme. However,
it turns out that the encryption scheme underlying the FGHF′ construction—
without any modification— achieves this stronger notion.

1.1 Our Contribution

Our contribution is threefold.

1) We show that, in contrast to the leak-free setting, pseudorandomness and
unpredictability are not equivalent under leakage, thereby confirming a con-
jecture made in [13].

1 Note that the same does not work for pseudorandomness. Leakage of a single output
bit allows to easily distinguish the function from a random function.

Leakage-Resilient Authenticated Encryption 317

2) We recast the N2 composition theorem in the leakage setting by Barwell
et al. [3], for a certain class of encryption schemes and MACs. We show
that, in this case, other security notions for the encryption scheme and the
MAC are sufficient to build leakage-resilient AEAD schemes. More precisely,
we can weaken the security notion for the MAC at the cost of strengthening
the security notion for the encryption scheme.

3) We revisit the FGHF′ construction [13] with respect to our recast composi-
tion theorem. We show that the encryption part (without any modification)
achieves this stronger security notion. Regarding the MAC, we show that
leakage-resilient pseudorandomness is sufficient to achieve the weaker security
notion imposed by our recast composition theorem. This completely removes
the necessity of leakage-resilient unpredictability to instantiate the FGHF′

construction, as opposed to the initial work [13]. Since proving leakage-resilient
unpredictability turned out to be a main challenge for Slae [13] (a sponge-
based instantiation of FGHF′), this is an important contribution towards
building leakage-resilient AEAD schemes from simpler building blocks.

1.2 Related Work

Leakage-resilient cryptographic primitives, ranging from (authenticated) encryp-
tion to MACs, have been proposed in [8,10,11,19,21,27]. In contrast to our
setting, these works allow leakage on the challenge queries. However, some of
underlying components are assumed to be leak-free, which is typically achieved
using techniques such as masking [12]. A subset of these works also assume that
the leakage is simulatable, an assumption that is not beyond dispute [24,29].
Functions and permutations which are pseudorandom under leakage have been
proposed for instance in [13,16,18,30,31]. Functions which are unpredictable
under leakage have only been studied in [13] which also defined this notion.

1.3 Organization of the Paper

Section 2 provides the necessary background required for this work. In Sect. 3
we provide the motivation for our work by showing that, in the leakage setting,
pseudorandomness and unpredictability of functions do not imply one another.
We recast the composition theorem for the N2 construction by Barwell et al. [3]
in Sect. 4. In Sect. 5, we show that the FGHF′ construction [13] achieves the
security notions demanded by our recast composition theorem.

2 Preliminaries

2.1 Notation

We use the game-playing framework [6]. In a game, the adversary gets access to
one or more oracles which is represented as superscripts, e.g., AO. In this work
we mainly use distinguishing games, in which the adversary has to determine
a secret bit b. The output of the game is 1, i.e., the adversary wins, if the

318 J. Krämer and P. Struck

adversary guesses the bit b correctly. Otherwise, the output of the game is 0,
i.e., the adversary looses. For an adversary A and a game G, we write GA ⇒ x
to denote that the output of G, when interacting with A, is x. Likewise, we write
AG ⇒ x to denote that A, when playing G, outputs x.

2.2 Primitives

An authenticated encryption scheme with associated data Aead consists of two
algorithm Enc and Dec. The encryption algorithm Enc : K×N ×A×M → {0, 1}∗

maps from key space K, nonce space N , associated data space A, and message
space M to the ciphertext space C. The decryption algorithm maps from the
key space K, nonce space m, associated data space A, and ciphertext space C
to the message space M. In case of an invalid ciphertext, Dec returns a special
symbol ⊥. Symmetric encryption schemes are defined analogously, except that
the algorithms do not take associated data as input. In this work we focus on a
specific class of encryption schemes, which we call mirror-like. These are encryp-
tion schemes where the encryption algorithm is an involution. Such schemes
are fully determined by their encryption algorithm. Examples for mirror-like
encryption schemes are the generic encryption scheme underlying the FGHF′

construction [13] as well as the sponge-based encryption schemes used in the
AEAD schemes Slae [13] and Isap [14]. Besides these concrete schemes, instan-
tiating block ciphers with encryption modes like CFB, OFB, and CTR also yield
mirror-like encryption schemes.

A message authentication code Mac consists of two algorithms Tag and Ver.
The tagging algorithm Tag : K × X → {0, 1}t maps a key K ∈ K and a message
X ∈ X to a tag T ∈ {0, 1}t. The verification algorithm Ver : K × X × {0, 1}t →
{�,⊥} maps a keys K ∈ K, a message X ∈ X , and a tag T ∈ {0, 1}t to
either �, indicating that the tag is valid, or ⊥, indicating that the tag is invalid.
Within this work we only consider canonical MACs which are implicitly defined
by the tagging algorithm Tag, i.e., the verification algorithm recomputes the tag
of the message and accepts if the given tag equals the recomputed tag. We write
Mac[F] to denote the canonical MAC built from a function F .

2.3 Leakage Model

Our leakage model is the same as in [13], which follows [3], building on leakage
resilience as defined in [17]. It follows the only computation leaks information
assumption [25], i.e., only data that is processed during computation can leak
information. For instance, encrypting a message with a certain key can not leak
information about another (unused) key. Leakage is modelled by (deterministic
and efficiently computable) functions from some predetermined set L. Leakage
of composite constructions is the composition of the underlying leakage func-
tions. Thus, if primitive C is a composition of primitives A and B with leakage
sets LA and LB , then LC = LA × LB is the leakage set of C. In this work we
focus on non-adaptive leakage, which we model by restricting L to be a singleton.
Since the leakage depends entirely on the concrete device, the non-adaptive leak-
age model is suitable in practice, also argued by several works [1,16,18,30,32].

Leakage-Resilient Authenticated Encryption 319

We recall the leakage resilience security notions that we need throughout this
work. Following the blueprint by Barwell et al. [3], all notions are defined via
security games where the adversary has access to one or more leakage oracle(s)
which leak and one or more challenge oracle(s) which do not leak. According
to [4], the former represent the power of the adversary while the latter model
its goals in breaking the security of the scheme. Regarding the queries by the
adversary, we follow [3] and say that an adversary forwards and repeats a query
if it repeats a query across different oracles and the same oracle, respectively.
For instance, querying the same tuple to the leakage encryption and challenge
encryption is considered forwarding as is querying the output of an encryption
oracle to a decryption oracle.

Non-adaptive Leakage. All security notions below are defined following the style
put forth in [13] which in turn is based on [3]. In particular, the permitted leakage
functions are given by a set of leakage functions L.

While all the proofs hold in the general setting of adaptive leakage, just as
in [13], we emphasise that we focus on non-adaptive leakage, i.e., any leakage set
should be thought of as a singleton. This stems from the fact that an instantiation
of the FGHF′ construction requires a leakage-resilient pseudorandom function
which is unachievable in the adaptive leakage setting as discussed in [32], unless
further restrictions are imposed on the leakage.

2.4 Security Notions

Regarding the restrictions of nonce selection by the adversary, we define semi-
nonce-respecting adversaries. These are adversaries which are nonce-respecting,
i.e., they never repeat a nonce, with respect to the challenge encryption oracle,
but not with respect to the leakage encryption oracle. This follows the recent
definition of misuse-resilience given in [2] and used for instance in [20]. Regarding
the decryption oracles, note that there is no restriction imposed on how the
nonces are selected.

In the following we recall the (leakage) security notions from [3,13] for authen-
ticated encryption schemes, symmetric encryption schemes, MACs, function fam-
ilies, pseudorandom generators, and hash functions.

For authenticated encryption schemes with associated data, we define
leakage-resilient authenticated encryption (LAE) security. It is the counterpart
of the security notion given by Rogaway [28], recast in the leakage setting by
Barwell et al. [3]. We use the code-based variant given by Degabriele et al. [13].

Definition 1 (LAE Security [13]). Let Aead = (Enc, Dec) be an authenti-
cated encryption scheme with associated data and the game LAE be as defined
in Fig. 1. For any nonce-respecting adversary A that never forwards or repeats
queries to or from the oracles Enc and Dec and only makes encryption and
decryption queries containing leakage functions in the respective sets LAE and
LV D, describing the leakage sets for authenticated encryption and verified decryp-
tion, its corresponding LAE advantage is given by:

320 J. Krämer and P. Struck

AdvLAE
Aead(A,LAE ,LV D) = 2Pr

[
LAEA ⇒ true

]
− 1.

Game LAE

b ←$ {0, 1}
K ←$ K
b′ ← AEnc,LEnc,Dec,LDec()

return (b′ = b)

oracle Enc(N ,A,M)

C ← Enc(K,N,A,M

if b = 0

return C ′ ←$ {0, 1}|C |

else

return C

oracle LEnc(N ,A,M , L)

Λ ← L(K ,N ,A,M)

C ← Enc(K ,N ,A,M)

return (C , Λ)

oracle Dec(N ,A,C)

if b = 0

return ⊥
return M ← Dec(K ,N ,A,C)

oracle LDec(N ,A,C , L)

Λ ← L(K ,N ,A,C)

M ← Dec(K ,N ,A,C)

return (M , Λ)

)

Fig. 1. LAE security game.

For symmetric encryption schemes we define IND-CPLA security as defined
in [3], which corresponds to the classical notion of IND-CPA security enhanced
with leakage.

Definition 2 (IND-CPLA Security [13]). Let Se = (Enc, Dec) be a symmetric
encryption scheme and the game INDCPLA be as defined in Fig. 2. For any semi-
nonce-respecting adversary A that never forwards or repeats queries to or from
the oracle Enc and only makes encryption queries containing leakage functions
in the set LE, its corresponding IND-CPLA advantage is given by:

AdvINDCPLA
Se (A,LE) = 2Pr

[
INDCPLAA ⇒ true

]
− 1.

The N2 composition theorem in [3] requires a stronger variant called
IND-aCPLA, where the ‘a’ stands for augmented. In this notion, the adver-
sary also gets access to a leakage decryption oracle. The queries, however, are
heavily restricted as it can only be queried on queries forwarded from the leakage
encryption oracle LEnc.

For MACs we deviate slightly from the security notion given in [3,13]. The
difference is that we allow the adversary to forward queries between its leakage
oracles but not between its challenge oracle and its leakage oracles. In [3,13] the
adversary is not allowed to forward queries between its leakage tagging oracle
and any of its verification oracles, however, forwarding between its leakage ver-
ification oracle and challenge verification oracle is permitted. Since the notions
are very much akin, we write SUF-CMLA for our notion and SUF-CMLA∗ for
the one from [3,13].

Leakage-Resilient Authenticated Encryption 321

Game INDCPLA

b ←$ {0, 1}
K ←$ K
b′ ← AEnc,LEnc()

return (b′ = b)

oracle Enc(N ,M)

C ← Enc(K ,N ,M)

if b = 0

return C ′ ←$ {0, 1}|C |

else

return C

oracle LEnc(N ,M , L)

Λ ← L(N ,M , L)

C ← Enc(K ,N ,M)

return (C , Λ)

Fig. 2. IND-CPLA security game.

Definition 3 (SUF-CMLA Security [13]). Let Mac = (Tag, Ver) be a mes-
sage authentication code and the game SUFCMLA be as defined in Fig. 3. For
any adversary A that never forwards queries to or from the oracle Vfy, and only
queries leakage functions to its oracles LTag and LVfy in the respective sets LT

and LV , its corresponding SUF-CMLA advantage is given by:

AdvSUFCMLA
Mac (A,LT ,LV) = 2Pr

[
SUFCMLAA ⇒ true

]
− 1.

Game SUFCMLA

b ←$ {0, 1}
K ←$ K
b′ ← AVfy,LTag,LVfy()

return (b′ = b)

oracle Vfy(X ,T)

if b = 0

return ⊥
else

v ← Ver(K ,X ,T)

return v

oracle LTag(X , L)

Λ ← L(K ,X)

T ← Tag(K ,X)

return (T , Λ)

oracle LVfy(X ,T , L)

Λ ← L(K ,X ,T)

v ← Ver(K ,X ,T)

return (v, Λ)

Fig. 3. SUF-CMLA security game.

For function families, we define both pseudorandomness and unpredictability
under leakage. The former is well established in the literature, the latter was
only recently introduced [13].

Definition 4 (LPRF Security [13]). Let F : K × X → {0, 1}t be a function
family over the domain X and indexed by K, and the game LPRF be as defined
in Fig. 4. For any adversary A that never forwards or repeats queries to or from
the oracle F and only queries leakage functions in the set LF , its corresponding
LPRF advantage is given by:

AdvLPRF
F (A,LF) = 2Pr

[
LPRFA ⇒ true

]
− 1.

322 J. Krämer and P. Struck

Removing the leakage oracle LF restores the classical notion of PRF security. We
denote the corresponding game analogously to the other games by PRF (dropping
the L for ‘leakage’). We will use this game for our separation example in Sect. 3.

Game LPRF

b ←$ {0, 1}
K ←$ K
b′ ← AF,LF()

return (b′ = b)

oracle F(X)

if b = 0

return y ←$ {0, 1}t

else

return F (K ,X)

oracle LF(X , L)

y ← F (K ,X)

Λ ← L(K ,X)

return (y, Λ)

Fig. 4. LPRF security game.

Definition 5 (LUF Security [13]). Let F : K × X → {0, 1}t be a function
family over the domain X and indexed by K, and the LUF game be as defined in
Fig. 5. Then for any adversary A its corresponding LUF advantage is given by:

AdvLUF
F (A,LF) = Pr

[
LUFA ⇒ true

]
.

A crucial difference between LUF and LPRF is that the former allows the adver-
sary to obtain leakage for an input and still being able to win the game by pre-
dicting the output for this input while the latter does not allow such queries.
This is exactly the difference that we exploit in our separation example.

Game LUF

win ← false

S ← ∅
K ←$ K
b′ ← AGuess,F,Lkg()

return win

oracle Guess(X ,Y ′)

Y ← F(K ,X)

if X ∧S∈� Y = Y ′

win ← true

return (Y = Y ′)

oracle F(X)

S ←∪ X

Y ← F(K ,X)

return Y

oracle Lkg(X , L)

Λ ← L(K ,X)

return Λ

Fig. 5. LUF security game.

We make use of the following definition of a pseudorandom generator which
enables the adversary to specify the output length (in bits) by querying it to the
challenge oracle. The difference to [13] is that we stick to the single challenge
case as opposed to their notion of multiple challenges.

Leakage-Resilient Authenticated Encryption 323

Definition 6 (Pseudorandom Generators [13]). Let G : S × N → {0, 1}∗

be a pseudorandom generator with an associated seed space S, and let the PRG
game be as defined in Fig. 6. Then for any adversary A, making exactly one
query to G, its corresponding PRG advantage is given by:

AdvPRG
G (A) = 2Pr

[
PRGA ⇒ true

]
− 1.

Game PRG

b ←$ {0, 1}
b′ ← AG()

return (b′ = b)

oracle G(L)

if b = 0

R ←$ {0, 1}L

else

S ←$ S
R ← G(S ,L)

return R

Fig. 6. PRG security game.

For a hash function H over a generic domain X , we define its collision resistance
below.

Definition 7 (Collision Resistance [13]). Let H : X → {0, 1}w be a hash
function. Then for any adversary A its corresponding advantage is given by:

AdvCR
H (A) = Pr[H(X0) = H(X1) ∧ X0 �= X1 ∧ X0,X1 ∈ X | (X0,X1) ← A] .

2.5 The FGHF′ Construction

Degabriele et al. [13] developed the FGHF′ construction, which allows to build a
leakage-resilient AEAD scheme from four simple building blocks: two fixed-input-
length functions F and F ′, a pseudorandom generator G, and a hash function
H. The function F and the pseudorandom generator G build the encryption
scheme Se[F ,G] while the hash function H and the function F ′ build the MAC
Mac[H,F ′]. The construction is illustrated in Fig. 7 while the pseudocode is
given in Fig. 8.

The notable feature of the construction is that only the fixed-input-length
functions have to be leakage-resilient, while the pseudorandom generator and the
hash function can be instantiated with off-the-shelf primitives from the literature.
The security implications, which illustrate one of the main results from [13],
are displayed in Fig. 9. Note the special structure of the FGHF′ construction,
that is, Se[F ,G] being a mirror-like encryption scheme and Mac[H,F ′] being
a canonical MAC (considering the composition of H and F ′ a function with
variable-input-length). Combined with the leakage model, we conclude that the
leakage sets LE and LD for Se[F ,G] are equal as are the leakage sets LT and

324 J. Krämer and P. Struck

⊕

M

N

A

C

T

Enc[F ,G]

Tag[H,F′]

F(Ke, ·) G(·)

H(·) F′(Km, ·)

Fig. 7. Graphical illustration of the FGHF′ construction [13]. It consists of an encryp-
tion scheme Se[F ,G] and a MAC Mac[H,F ′] composed via the N2 composition. The
encryption scheme consists of a fixed-input-length LPRF F and a PRG G. The MAC
consists of a vector hash H and a fixed-input-length function F ′ that is both a LUF
and an LPRF. The encryption and tagging algorithm of Se[F ,G] and Mac[H,F ′] are
Enc[F ,G] and Tag[H,F ′], respectively.

algorithm Enc((Ke,Km),N ,A,M)

// Compute ciphertext using Se[F,G]
S ← F(Ke,N)

Ce ← G(S , |M |) ⊕ M

// Compute tag using Mac[H,F ′]

H ← H(N ,A,Ce)

T ← F ′(Km,H)

return C ← (Ce,T)

algorithm Dec((Ke,Km),N ,A, (Ce,T))

H ← H(N ,A,Ce)

T ′ ← F ′(Km,H)

if T ′ = T

S ← F(Ke,N)

M ← G(S , |Ce|) ⊕ Ce

return M

return ⊥

Fig. 8. Pseudocode of the FGHF′ construction [13].

LV for Mac[H,F ′], i.e., LE = LD = LF × LG and LT = LV = LH × LF ′ . Here,
LF , LG, LH , and LF ′ are the leakage sets of the underlying components F , G,
H, and F ′. The very same is implicitly assumed in [13]. Likewise, we obtain the
leakage sets LAE = LE ×LT = LF ×LG ×LH ×LF ′ = LD ×LV = LV D for the
resulting AEAD scheme.

3 Unpredictability and Pseudorandomness Under
Leakage

Along with the FGHF′ construction, Degabriele et al. [13] introduce a security
notion for unpredictability of functions under leakage. They prove the existence

Leakage-Resilient Authenticated Encryption 325

LAE

IND-aCPLA LPRF SUF-CMLA∗

LPRF PRG CR LPRF CR LUF

F G H F ′ H F ′

[3, Theorem 1]

[13, Theorem 2] [13, Theorem 5] [13, Theorem 3,4]

Fig. 9. Security implications for the FGHF′ construction from [13, Theorem 6]. Note
that we do not give the formal definition of IND-aCPLA and SUF-CMLA∗ as we use
slightly different notions.

of functions that achieve both unpredictability and pseudorandomness under
leakage. Regarding the relation between these notions, they claim them to be
incomparable, without giving a clear justification or a proof for this statement.
We confirm this by providing a separation example which proves that the notions
do not imply one another. Therefore, we give two functions: under leakage, the
first function is unpredictable but not pseudorandom, while the second function
is pseudorandom but not unpredictable. For both functions, we assume a func-
tion which, under leakage, is both unpredictable and pseudorandom. Note that
this assumption is valid as the existence of such functions has been shown in [13]
for the sponge-based instantiation Slae of the FGHF′ construction.

3.1 Under Leakage: Unpredictability � Pseudorandomness

We start with the simple case, that is, a function which is unpredictable but not
pseudorandom under leakage.

Construction 8. Let F∗ : {0, 1}k × {0, 1}n → {0, 1}t be a function. Define the
function

F : {0, 1}k × {0, 1}n → {0, 1}t+1

F(K ,X)
→ 0 ‖ F∗(K ,X).

Lemma 9. Let F∗ be a function that is both a LUF and an LPRF and F be the
function constructed from F∗ according to Construction 8. It holds that F is a
LUF but not an LPRF.

Proof. The function F is LUF as any LUF adversary against F can easily be
transformed into a LUF adversary against F∗. On the other hand, the leading 0
of any output makes it easy to distinguish the function from a random function.
If, after several queries, an output starting with 1 is observed, the adversary
outputs 0 (indicating ideal), otherwise, it outputs 1 (indicating real). �

326 J. Krämer and P. Struck

Games G0, G1, G2

b ←$ {0, 1}
K ←$ K
b′ ← AF,LF()

oracle F(X) in G0

Ks ← FI(K ,X)

return Y ← FO(Ks, X)

oracle F(X) in G1

Ks ←$ {0, 1}s

return Y ← FO(Ks,X)

oracle F(X) in G2

return Y ←$ {0, 1}t

oracle LF(X , (LO, LI))

Ks ← FI(K ,X)

ΛI ← LI(K ,X)

Y ← FO(Ks,X)

ΛO ← LO(Ks,X)

return (Y , (ΛO, ΛI))

Fig. 10. Games G0, G1, and G2 used in the proof of Lemma 11. The games share the
leakage oracle LF, while each game uses its own challenge oracle as described.

3.2 Under Leakage: Pseudorandomness � Unpredictability

Now we address the complex part of the separation example and show that there
are functions which are pseudorandom but not unpredictable under leakage.

Construction 10. Let FO : {0, 1}s × {0, 1}n → {0, 1}t and FI : {0, 1}k ×
{0, 1}n → {0, 1}s be functions. The subscripts O and I indicate the outer and
inner function, respectively. Define the function

F : {0, 1}k × {0, 1}n → {0, 1}t
F(K ,X)
→ FO(FI(K ,X),X).

The idea of Construction 10 is as follows. It uses some master key K and, for each
input X , it derives a session key using the inner function FI , i.e., Ks = FI(K ,X).
The output Y is generated by the outer function FO using the session key Ks

and input X . The lemma below shows that the construction is pseudorandom
but not unpredictable under leakage.

Lemma 11. Let FO and FI be two functions and F be the function constructed
from FO and FI according to Construction 10. Suppose FI is both a LUF and
an LPRF and FO is PRF. Then F is an LPRF but not a LUF.

Proof. We first show that F is an LPRF. For simplicity, we restrict the adversary
to a single challenge query and argue at the end how it can be lifted to multiple
challenge queries. We make use of the games G0, G1, and G2 displayed in Fig. 10.
The games are constructed such that G0 is equal to LPRF with secret bit b = 1
and G2 is equal to LPRF with secret bit b = 0. Recall that the leakage set LF of
F is the Cartesian product of the leakage sets LO of FO and LI of FI . Using a
simple reformulation to the adversarial advantage yields

AdvLPRF
F (A,LF) = Pr

[ALPRF ⇒ 1 | b = 1
] − Pr

[ALPRF ⇒ 1 | b = 0
]

= Pr
[AG0 ⇒ 1

] − Pr
[AG2 ⇒ 1

]
. (1)

Leakage-Resilient Authenticated Encryption 327

For the game hop between G0 and G1, we construct an LPRF adversary Alprf

against FI as follows. When A makes its query X to F, Alprf queries X to its
own challenge oracle to obtain the session key Ks, computes Y ← FO(Ks,X),
and sends Y back to A. For leakage queries (X , (LO, LI)) by A, Alprf queries
its own leakage oracle on (X , LI) to obtain (Ks, ΛI), computes Y ← FO(Ks,X)
and ΛO ← LO(Ks,X), and sends (Y , (ΛO, ΛI)) back to A. It is easy to see
that Alprf perfectly simulates G0 or G1 for A depending on its own challenge.
Also all queries by Alprf are permitted as it queries exactly the same values as
A. Hence we conclude with

Pr
[AG0 ⇒ 1

] − Pr
[AG1 ⇒ 1

] ≤ AdvLPRF
FI

(Alprf ,LI). (2)

For the game hop between G1 and G2, we construct the following PRF adversary
Aprf against FO. At the start, Aprf samples a random master key K which it
will use for the leakage queries by A. Whenever A queries (X , (LO, LI)) to
its leakage oracle, Aprf (locally) computes Ks ← FI(K ,X), ΛI ← LI(K ,X),
Y ← FO(Ks,X), and ΛO ← LO(Ks,X), and sends (Y , (ΛO, ΛI)) to A. For the
challenge query X by A, Aprf forwards the query to its own challenge oracle and
the response back to A. It is again easy to see that Aprf perfectly simulates the
games G1 and G2 for A depending on its own challenge. The significant feature
is that Aprf can simulate the leakage oracle for A locally, which is why we only
need PRF security as opposed to LPRF security. We conclude with

Pr
[AG1 ⇒ 1

] − Pr
[AG2 ⇒ 1

] ≤ AdvPRF
FO

(Aprf). (3)

Inserting (2) and (3) in (1) yields

AdvLPRF
F (A,LF) = Pr

[AG0 ⇒ 1
] − Pr

[AG2 ⇒ 1
]

≤ AdvLPRF
FI

(Alprf ,LI) + AdvPRF
FO

(Aprf).

We briefly discuss how the proof can be adapted if A is allowed to make multiple
challenge queries. The first part works exactly the same, that is, Alprf forwards
the query X to get the session key Ks and computes Y ← FO(Ks,X). For the
second part, there is a subtle issue why the same reduction does not work if A
makes multiple challenge queries. In G1, A expects that every query uses a fresh
session key sampled uniformly at random, while the key used in the game PRF
is fixed, thus it can not simulate the correct game for A. Instead, the game hop
can be lifted to multiple challenge queries via a straightforward hybrid argument,
where Aprf answers the first i − 1 queries with random values, the i-th query
using its own challenge oracle just as described for the single challenge case, and
the last q− i queries with FO(Ks,X) for a randomly chosen session key Ks. This
induces a factor q , the number of challenge queries, into the bound above.

It remains to show that F is not a LUF. We construct the following LUF
adversary. It queries its leakage oracle Lkg on a randomly chosen input X , leaking
the session key Ks. Given the session key, it computes Y ← FO(Ks,X) and sends
(X ,Y) to its challenge oracle Guess, which will set the winning flag to true. �

328 J. Krämer and P. Struck

Our LUF adversary exploits the fact that the game LUF allows to obtain leakage
for the input for which the output is predicted. Hence, the adversary leaks the
session key Ks for some input X , which enables it to perfectly predict the output.
Note that this does not enable the adversary to predict an output for a different
input. Our LUF adversary bypasses the LUF security of the inner function FI

and attacks the outer function FO instead. Regarding the LPRF security, observe
the following. The LPRF adversary is also able to obtain a session key Ks through
its leakage oracle. However, this session key is only valid for the queried input
and the game LPRF does not allow to query this input to the challenge oracle,
which would make the notion unachievable anyway. We essentially show that it
is sufficient to secure the master key K by deriving the session keys using an
inner function with strong security guarantees (LPRF and LUF in our case).

We believe this result to be of independent interest as it shows that extra
caution is judicious in the leakage setting. Our constructions show how well-
known and established results from the leak-free setting, like the equivalence
between pseudorandomness and unpredictability, do not necessarily remain valid
in the leakage setting.

4 Leakage Resilience of the N2 Construction

In the previous section we established that the security notions LUF and LPRF
are incomparable. This entails that any instantiation of the FGHF′ construction
has to prove LPRF and LUF security separately. Considering the instantiation
Slae [13], proving these notions is the most complex part of the work. Thus, we
now turn our attention towards removing the requirement of LUF security. As
argued in [13], LUF security is required to build a secure MAC according to the
composition theorem for the N2 construction [3] (see also Fig. 9). Recall that
Degabriele et al. [13] prove that the encryption scheme Se[F ,G] and the MAC
Mac[H,F ′], underlying the FGHF′ construction, achieve the security notion
required by the N2 composition theorem by Barwell et al. [3]. However, Barwell
et al. prove their composition for arbitrary encryption schemes and MACs, while
Degabriele et al. focus on a mirror-like encryption scheme and a canonical MAC.
In this section, we recast the composition theorem for the N2 construction to
the case of mirror-like encryption schemes and canonical MACs.

The theorem below shows that the N2 composition of a mirror-like encryption
scheme and a canonical MAC is LAE-secure if the underlying components are.
For ease of exposition, we give the full proof for our setting. Subsequently, we
discuss how our proof differs from the one given in [3].

Theorem 12 (LAE Security of the N2 Construction). Let Se = (Enc, Dec)
be a mirror-like symmetric encryption scheme and Mac = (Tag, Ver) be a canon-
ical MAC with associated leakage sets (LE ,LD) and (LT ,LV), respectively. Let
N2 be the composition of Se and Mac as displayed in Fig. 7 with associated leak-
age sets LAE = LE ×LT and LV D = LD ×LV . For any nonce-respecting adver-
sary Aae against N2 there exists a semi-nonce-respecting IND-CPLA adversary

Leakage-Resilient Authenticated Encryption 329

Ase against Se, an LPRF adversary Alprf against Tag, and a SUF-CMLA adver-
sary Amac against Mac such that:

AdvLAE
N2 (Aae,LAE ,LV D) ≤ AdvINDCPLA

Se (Ase,LE) + AdvLPRF
Tag (Alprf ,LT)

+ AdvSUFCMLA
Mac (Amac,LT ,LV).

Proof. Since Se is a mirror-like encryption scheme and Mac is a canonical MAC,
it holds that LE = LD and LT = LV . This immediately implies that the leakage
sets LAE and LV D of N2 are identical. We us a sequence of games G0, . . . ,G3

shown in Fig. 11. Game G0 is the game LAE instantiated with N2 with secret
bit fixed to 1. In game G1, the decryption oracle is changed to reject any queried
ciphertext. Game G2 and G3 are like G1, except for the following differences.
Game G2 generates challenge ciphertext by sampling it at random while but still
computing the real tag of this ciphertext. In game G3 both the ciphertext and
the tag are sampled at random. Hence G3 equals the game LAE instantiated with
N2 with secret bit fixed to 0. Using a simple reformulation to the adversarial
advantage yields

AdvLAE
N2 (Aae,LAE ,LV D) = Pr

[ALAE
ae ⇒ 1 | b = 1

] − Pr
[ALAE

ae ⇒ 1 | b = 0
]

= Pr
[AG0

ae ⇒ 1
] − Pr

[AG3
ae ⇒ 1

]

=
3∑

i=1

(
Pr

[AGi−1
ae ⇒ 1

] − Pr
[AGi

ae ⇒ 1
])

. (4)

Below we bound each of the game hops. The hop from G0 to G1 is bound
by the SUF-CMLA security of the underlying MAC Mac, the hop from G1 to
G2 by the IND-CPLA security of the underlying encryption scheme Se, and the
hop from G2 to G3 by the LPRF security of the tagging algorithm Tag.

Let us start with the adversarial advantage between games G0 and G1. We
construct the following SUF-CMLA adversary Amac. It samples a random key
Ke for the encryption scheme Se. Queries (N ,A,M) to Enc are answered by
Amac as follows. It computes the ciphertext Ce ← Enc(Ke,N ,M), obtains the
tag T by invoking its oracle LTag on ((N ,A,Ce), ∅)2, and sends the ciphertext
C ← (Ce,T) back to Aae. Leakage encryption queries (N ,A,M , (Le, Lt)) are
processed as follows. The ciphertext Ce ← Enc(Ke,N ,M) and corresponding
leakage Λe ← Le(Ke,N ,M) are computed locally by Amac. Subsequently, it
queries its leakage oracle LTag on ((N ,A,Ce), Lt) to obtain (T , Λt) and sends
back C ← (Ce,T) and Λ ← (Λe, Λt) to Aae. For any leakage decryption query
(N ,A, (Ce,T), (Ld, Lv)), Amac forwards ((N ,A,Ce),T , Lv) to its leakage oracle
LVfy to obtain (V , Λv), which it forwards to Aae if V = ⊥. Otherwise, i.e., V =
�, Amac computes M ← Dec(Ke,N ,Ce) and Λd ← Le(Ke,N ,Ce), and sends
back (M , Λd, Λv) to Aae. Whenever Aae queries its oracle Dec on (N ,A, (Ce,T)),
Amac forwards ((N ,A,Ce),T) to its oracle Vfy. If the response of Vfy is ⊥, it
forwards it to Aae, otherwise, it computes M ← Dec(Ke,N ,Ce) and sends it to
Aae.
2 Amac does not submit a leakage function, as it simulates a challenge oracle for Aae.

330 J. Krämer and P. Struck

Games G0, G1, G2, G3

Ke,Km ←$ K
b′ ← AEnc,LEnc,Dec,LDec

ae ()

oracle Enc(N ,A,M) in G0 and G1

Ce ← Enc(Ke,N ,M)

T ← Tag(Km,N ,A,Ce)

return C ← (Ce,T)

oracle Enc(N ,A,M) in G2

Ce ←$ {0, 1}|Enc(Ke,N ,M)|

T ← Tag(Km,N ,A,Ce)

return C ← (Ce,T)

oracle Enc(N ,A,M) in G3

Ce ←$ {0, 1}|Enc(Ke,N ,M)|

T ←$ {0, 1}|Tag(Km,N ,A,Ce)|

return C ← (Ce,T)

oracle Dec(N ,A,C) in G0

parse C as (Ce,T)

v ← Ver(Km,N ,A,Ce,T)

if v = ⊥
return ⊥

return M ← Dec(Ke,N ,Ce)

oracle Dec(N ,A,C) in G1, G2, G3

return ⊥

oracle LEnc(N ,A,M , L)

parse L as (Le, Lt)

Ce ← Enc(Ke,N ,M)

T ← Tag(Km,N ,A,Ce)

C ← (Ce,T)

Λe ← Le(Ke,N ,M)

Λt ← Lt(Km,N ,A,Ce)

Λ ← (Λe, Λt)

return (C , Λ)

oracle LDec(N ,A,C , L)

parse L as (Ld, Lv)

parse C as (Ce,T)

v ← Ver(Km,N ,A,Ce,T)

Λv ← Lv(Km,N ,A,Ce,T)

if v = ⊥
return (⊥, Λv)

M ← Dec(Ke,N ,Ce)

Λd ← Ld(Ke,N ,Ce)

return (M , Λd, Λv)

Fig. 11. Games G0, . . . ,G3 used in the proof of Theorem 12. The oracles LEnc and LDec
are identical across the games. Each game uses the oracles Enc and Dec as specified.

Clearly, Amac queries its leakage oracles LTag and LVfy only on the permissive
functions, as Aae does. Amac does also not make any prohibited query, as it
invokes its challenge oracle Vfy if and only if Aae makes a query to its challenge
decryption oracle Dec which never forwards any query to or from it.

Recall that the difference between G0 and G1 is that the former imple-
ments the real decryption oracle while the latter rejects any decryption query.
Conditioned on the secret bit b of SUFCMLA being 0, Amac never decrypts Ce,
hence it perfectly simulates G1 for Aae. Likewise, if b = 1, Amac only decrypts
if the tag T is valid, thus it perfectly simulates G0 for Aae. Hence we conclude
with

Pr
[AG0

ae ⇒ 1
] − Pr

[AG1
ae ⇒ 1

] ≤ AdvSUFCMLA
Mac (Amac,LT ,LV). (5)

For the remaining game hops, note that the oracle Dec rejects any ciphertext
irrespective of the validity of the tag which is why we omit it in the description
as every reduction simply responds with ⊥.

Leakage-Resilient Authenticated Encryption 331

For the game hop between G1 and G2, we construct an IND-CPLA adver-
sary Ase as follows. It generates a key Km for Mac and runs the adversary
Aae answering its queries as follows. For leakage queries (N ,A,M , (Le, Lt))
to LEnc it passes (N ,M , Le) to its own oracle LEnc and obtains (Ce, Λe)
in return. It computes the tag T ← Tag(Km,N ,A,Ce), corresponding leak-
age Λt ← Lt(Km,N ,A,Ce), and sends ((Ce,T), (Λe, Λt)) back to Aae. For
leakage queries (N ,A, (Ce,T), (Ld, Lv)) to LDec, Ase first computes V ←
Ver(Km, (N ,A,Ce),T) and Λv ← Lv(Km,N ,A,Ce,T). If V = ⊥, it sends
(⊥, Λv) back to Aae. If V = �, it forwards (N ,M , Le) to its own leakage encryp-
tion oracle LEnc to obtain (M , Λd)3 and sends (M , (Λd, Λv)) back to Aae. Queries
(N ,A,M) to Enc are handled by obtaining Ce from its own challenge encryption
oracle invoked with (N ,M), computing the tag T ← Tag(Km,N ,A,Ce), and
sending (Ce,T) back to Aae.

Since Aae queries its leakage oracles only on functions in the corresponding
leakage set, so does Ase. Every challenge encryption query by Aae entails that
Ase invokes its challenge encryption query. Likewise, every leakage query, either
encryption or decryption, leads to a leakage encryption query by Ase. As a
valid LAE adversary, Aae does not forward queries from challenge to leakage
oracles or vice versa, as does Ase. Note further that Ase is semi-nonce-respecting.
This follows from Ase simulating both leakage oracles of Aae using its leakage
encryption oracle and Aae being nonce-respecting.

It is easy to see that Ase perfectly simulates either G1 or G2 for Ase. The
games differ in the ciphertext part Ce generated by Enc. In G1 it is the encryption
of the message M , while it is a random bit string in G2. By setting Ce to the
output of its own challenge oracle, Ase simulates G1 and G2 for Aae conditioned
on the secret bit b of the game INDCPLA being 1 and 0, respectively. It holds
that

Pr
[AG1

ae ⇒ 1
] − Pr

[AG2
ae ⇒ 1

] ≤ AdvINDCPLA
Se (Ase,LE). (6)

Finally, we construct the following LPRF adversary Alprf to bound the adver-
sarial advantage between G2 and G3. It generates a key Ke for the underlying
encryption scheme. Leakage encryption queries (N ,A,M , (Le, Lt)) are processed
by locally computing Ce ← Enc(Ke,N ,M) and Λe ← Le(Ke,N ,M), invoking
LF on ((N ,A,Ce), Lt) to obtain (T , Λt), and sending ((Ce,T), (Λe, Λt)) back
to Aae. For leakage decryption queries (N ,A, (Ce,T), (Ld, Lv)), Alprf sends
((N ,A,Ce), Lv) to its leakage oracle LF to obtain (T ′, Λv). If T �= T ′, Alprf

sends (⊥, Λv) to Aae. Otherwise, Alprf computes locally M ← Dec(Ke,N ,Ce)
and Λd ← Ld(Ke,N ,Ce), and sends (M , (Λd, Λv)) to Aae. For queries (N ,A,M)
that Aae makes to its challenge encryption oracle Enc, Alprf samples a random
bit string Ce of appropriate length, invokes its challenge oracle F on (N ,A,Ce)
to obtain T , and sends (Ce,T) back to Aae.

Recall that the difference between G2 and G3 is how the tag T is generated.
In G2 it is the real tag computed on a random ciphertext, in G3 it is a random bit

3 Note that Enc(K ,N ,C) = Dec(K ,N ,C).

332 J. Krämer and P. Struck

string. By construction, Alprf perfectly simulates G2 and G3 if its own challenge
bit b (from the game LPRF) is equal to 1 and 0, respectively.

Every challenge (leakage) query by Alprf stems from a challenge (leakage)
query by Aae. As Aae does not forward queries between its challenge and leak-
age oracles neither does Alprf . Hence we conclude that Alprf is a valid LPRF
adversary against Tag, which yields

Pr
[AG2

ae ⇒ 1
] − Pr

[AG3
ae ⇒ 1

] ≤ AdvLPRF
Tag (Alprf ,LT). (7)

Inserting (5), (6), and (7) in (4) proves the statement. �
We will now go into the differences between our proof and the proof from [3].
In [3], the first game hop differs in that it also changes the leakage decryption
oracle LDec. The change is such that any leakage decryption query which are not
forwarded from the leakage encryption oracle is rejected by returning ⊥. In [3],
this change is necessary in order to bound the second game hop with the security
of the underlying encryption scheme. To detect the difference, the LAE adversary
Aae has to submit a (fresh) valid ciphertext to LDec as an invalid ciphertext
would be rejected anyway. This entails that Aae has generated a (fresh) valid
tag for this ciphertext, which the reduction will use to distinguish whether its
challenge oracle implements the verification algorithm or ⊥. Since the leakage
decryption oracle is simulated via the leakage verification oracle, the reduction
has to forward this leakage query to its own challenge oracle to distinguish
between the real and the ideal world. This is exactly the query which prevents
building such a MAC from a function which is pseudorandom and ultimately led
to the introduction of LUF security by Degabriele et al. [13].

The next two game hops are the same as in our proof, except that the leakage
decryption oracle does not decrypt any fresh ciphertext due to the change in the
first game hop. This restriction allows to bound the second game hop by the
IND-aCPLA security of the underlying encryption scheme, as the only queries
that can not be answered with the oracle from the game INDaCPLA (decryption
of fresh ciphertext) are answered with ⊥. In our case of mirror-like encryption
schemes, this issue does not arise if the scheme is secure with respect to semi-
nonce-respecting adversaries in which case we only need IND-CPLA security as
forwarded leakage decryption queries are answered like fresh queries.

The third game hop is essentially the same, again only differing in the leakage
decryption oracle. Since the LPRF adversary simulates the encryption-related
part of the game locally, this difference is trivial.

Finally, Barwell et al. [3] have a fourth game hop. In this game hop, where
the challenge oracles are already idealised, they merely revert the change of the
leakage decryption oracle from the first game hop in order to end up with the
idealised game, that is LAE with secret bit 0. Since we never change any leakage
oracle throughout our proof, we do not need this additional game hop.

5 Leakage Resilience of the FGHF′ Construction

Having established the leakage resilience of the N2 composition for mirror-like
encryption schemes and canonical MACs, we turn our attention towards the

Leakage-Resilient Authenticated Encryption 333

FGHF′ construction. Since our recast composition theorem imposes different
security notions for the encryption scheme and the MAC, it remains to show
that the encryption scheme Se[F ,G] and the MAC Mac[H,F ′] of the FGHF′

construction achieve these notions. In Sect. 5.1 we show that we can build a
SUF-CMLA-secure MAC from a function which is pseudorandom under leakage.
Combined with a result of Degabriele et al. [13] we obtain the SUF-CMLA secu-
rity of Mac[H,F ′]. In Sect. 5.2, we show that the encryption scheme Se[F ,G]
(proven IND-aCPLA-secure against nonce-respecting adversaries by Degabriele
et al. [13]) achieves IND-CPLA security against semi-nonce-respecting adver-
saries.

5.1 Leakage-Resilient MACs from LPRFs

The following theorem shows that we can construct a SUF-CMLA-secure MAC
from a function that is an LPRF. The difference to [13] is that our security
notion does not allow the adversary to forward queries from its leakage oracle
to its challenge oracle. The proof is given in the full version of this paper [23].

Theorem 13. Let F : K × X → {0, 1}t be a function family with associated
leakage set LF , and let Mac[F] be the corresponding canonical MAC with asso-
ciated leakage sets LT , LV where LF = LT = LV . Then, for any SUF-CMLA
adversary Amac against Mac[F] which makes q queries to Vfy, there exists an
adversary Alprf against F such that:

AdvSUFCMLA
Mac[F] (Amac,LT ,LV) ≤ AdvLPRF

F (Alprf ,LF) +
q

2t − q
.

Note that the above theorem states that for any LPRF F the canonical MAC
Mac[F] is SUF-CMLA-secure with the same message space as F . In order to
let the MAC handle arbitrarily long inputs, we need F to handle arbitrarily
long inputs. This is achieved by first hashing the (arbitrarily long) input using a
collision-resistant hash function and then applying the function F . The resulting
construction yields an LPRF with arbitrary input length as has been shown by
Degabriele et al. [13, Theorem 5].

5.2 Leakage-Resilient Encryption from LPRFs

The theorem below states that the encryption scheme Se[F ,G] constructed from
a fixed-input-length function F and a PRG G (cf. Figure 7) is IND-CPLA-secure
against semi-nonce-respecting adversaries if F is an LPRF and G is a secure
PRG. We essentially show that the proof from [13] also holds for semi-nonce-
respecting adversaries. Since we only need IND-CPLA security, we prove it for
this case, adaptation to IND-aCPLA is straightforward. The proof is given in
the full version of this paper [23].

Theorem 14. Let Se[F ,G] be the mirror-like encryption scheme depicted in
Fig. 7, composed of a fixed-input-length function family F and a PRG G

334 J. Krämer and P. Struck

with respective associated leakage sets LF and LG. Then, for any semi-nonce-
respecting IND-CPLA adversary Ase against Se[F ,G], making q queries to Enc,
and associated leakage sets LE = LF ×LG, there exist an LPRF adversary Alprf

against F and a PRG adversary Aprg against G such that:

AdvINDCPLA
Se[F,G] (Ase,LE) ≤ AdvLPRF

F (Alprf ,LF) + q AdvPRG
G (Aprg).

The difference to [13] is that they consider PRGs which can be queried multiple
times while we stick to the single query case. This entails that we need a hybrid
argument over the q encryption queries by Ase, which induces the factor q .
In [13], the hybrid argument appears in the proof of the sponge-based PRG.

5.3 Security of the FGHF′ Construction

We can now state our main result, the following theorem, which states that
the FGHF′ construction yields an LAE-secure AEAD scheme, if the underlying
functions F and F ′ are leakage-resilient pseudorandom, G is a secure PRG,
and H is a collision-resistant hash function. The theorem follows directly from
Theorem 12, Theorem 13, and Theorem 14 combined with [13, Theorem 5]. The
implications are also illustrated in Fig. 12.

Theorem 15 (LAE Security of the FGHF′ Construction). Let F be a
fixed-input-length LPRF, G a PRG, H a vector hash function, and F ′ be a
fixed-input-length LPRF with associated leakage sets LF , LG, LH , and LF ′ ,
respectively. Let FGHF′ be the composition of F , G, H, and F ′ (see Fig. 7)
with associated leakage sets LAE = LV D = LF × LG × LH × LF ′ . Then for
any nonce-respecting LAE adversary Aae against FGHF′, making qE and qD
queries to Enc and Dec, respectively, there exist adversaries Alprf , Alprf , Aprg,
and Ahash such that:

AdvLAE
FGHF′(Aae,LAE ,LV D) ≤ AdvLPRF

F (Alprf ,LF) + 2AdvLPRF
F ′ (Alprf ,LF ′)

+ qE AdvPRG
G (Aprg) + 2AdvCR

H (Ahash) +
qD

2t − qD
.

Theorem 15 improves [13, Theorem 6] by removing the additional requirement
of unpredictability under leakage imposed on F ′. This entails that any instan-
tiation of the FGHF′ construction can rely on the same function to instantiate
F and F ′, thus one could name it FGHF instead. Indeed, the sponge-based
instantiation Slae [13] uses the same function to instantiate F and F ′, however,
pseudorandomness and unpredictability under leakage were proven separately.

Acknowledgements. We thank Jean Paul Degabriele and Christian Janson for help-
ful discussions. This work was funded by the Deutsche Forschungsgemeinschaft (DFG)
– SFB 1119 – 236615297.

Leakage-Resilient Authenticated Encryption 335

LAE

IND-CPLA LPRF SUF-CMLA

LPRF PRG CR LPRF

F G H F ′

Theorem 12

Theorem 14 [13, Theorem 5] Theorem 13

Fig. 12. Our security implications of the FGHF′ construction (cf. Theorem 15).

References

1. Abdalla, M., Beläıd, S., Fouque, P.-A.: Leakage-resilient symmetric encryption via
re-keying. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp.
471–488. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-
1 27

2. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robust-
ness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63697-9 1

3. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in the
face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 24

4. Barwell, G., Page, D., Stam, M.: Rogue decryption failures: reconciling AE robust-
ness notions. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 94–111.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9 6

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

6. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

7. Bernstein, D.J.: CAESAR: Competition for Authenticated Encryption: Security,
Applicability, and Robustness (2014)

8. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: TEDT, a leakage-
resilient AEAD mode for high (physical) security applications. IACR Cryptol.
ePrint Arch. 2019, 137 (2019)

9. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: TEDT, a leakage-
resist AEAD mode for high physical security applications. IACR Trans. Cryptogr.
Hardware Embed. Syst. 2020(1), 256–320 (2020)

https://doi.org/10.1007/978-3-642-40349-1_27
https://doi.org/10.1007/978-3-642-40349-1_27
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/978-3-319-27239-9_6
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25

336 J. Krämer and P. Struck

10. Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.-X.: Leakage-resilient
and misuse-resistant authenticated encryption. Cryptology ePrint Archive, Report
2016/996 (2016). http://eprint.iacr.org/2016/996

11. Berti, F., Pereira, O., Peters, T., Standaert, F.-X.: On leakage-resilient authen-
ticated encryption with decryption leakages. IACR Trans. Symmetric Cryptol.
2017(3), 271–293 (2017)

12. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

13. Degabriele, J.P., Janson, C., Struck, P.: Sponges resist leakage: the case of authenti-
cated encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
vol. 11922, pp. 209–240. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34621-8 8

14. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP
- towards side-channel secure authenticated encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017)

15. Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. In:
Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 225–
255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 8

16. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on Feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 21–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-
7 2

17. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS, pp.
293–302. IEEE Computer Society Press, October 2008

18. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryp-
tography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp.
213–232. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-
8 13

19. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Leakage-resilient authenticated
encryption with misuse in the leveled leakage setting: definitions, separation results,
and constructions. Cryptology ePrint Archive, Report 2018/484 (2018). https://
eprint.iacr.org/2018/484

20. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Authenticated encryption with
nonce misuse and physical leakage: definitions, separation results and first con-
struction. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol.
11774, pp. 150–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30530-7 8

21. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Towards lightweight side-channel
security and the leakage-resilience of the duplex sponge. IACR Cryptol. ePrint
Arch. 2019, 193 (2019)

22. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Towards low-energy leakage-
resistant authenticated encryption from the duplex sponge construction. IACR
Trans. Symmetric Cryptol. 2020(1), 6–42 (2020)

23. Krämer, J., Struck, P.: Leakage-resilient authenticated encryption from leakage-
resilient pseudorandom functions. IACR Cryptol. ePrint Arch. 2020, 280 (2020)

24. Longo, J., Martin, D.P., Oswald, E., Page, D., Stam, M., Tunstall, M.: Simulat-
able leakage: analysis, pitfalls, and new constructions. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014. Part I, volume 8873 of LNCS, pp. 223–242. Springer,
Heidelberg (2014)

http://eprint.iacr.org/2016/996
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-030-34621-8_8
https://doi.org/10.1007/978-3-030-34621-8_8
https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.1007/978-3-642-14623-7_2
https://doi.org/10.1007/978-3-642-14623-7_2
https://doi.org/10.1007/978-3-642-33027-8_13
https://doi.org/10.1007/978-3-642-33027-8_13
https://eprint.iacr.org/2018/484
https://eprint.iacr.org/2018/484
https://doi.org/10.1007/978-3-030-30530-7_8
https://doi.org/10.1007/978-3-030-30530-7_8

Leakage-Resilient Authenticated Encryption 337

25. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 16

26. National Institute of Standards and Technology. Lightweight cryptography stan-
dardization process (2015)

27. Pereira, O., Standaert, F.-X. and Vivek, S.: Leakage-resilient authentication and
encryption from symmetric cryptographic primitives. In: Ray, I., Li, N., Kruegel,
C. (eds.) ACM CCS 2015, pp. 96–108. ACM Press, October 2015

28. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002, pp. 98–107. ACM Press, November 2002

29. Standaert, F.-X., Pereira, O., Yu, Yu.: Leakage-resilient symmetric cryptogra-
phy under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 19

30. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. In: Sadeghi, A.R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security - Foundations and Practice, Information
Security and Cryptography, pp. 99–134. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14452-3 5

31. Yu, Yu., Standaert, F.-X.: Practical leakage-resilient pseudorandom objects with
minimum public randomness. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol.
7779, pp. 223–238. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36095-4 15

32. Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical leakage-resilient pseudo-
random generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM
CCS 2010, pp. 141–151. ACM Press, October 2010

https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-642-40041-4_19
https://doi.org/10.1007/978-3-642-14452-3_5
https://doi.org/10.1007/978-3-642-14452-3_5
https://doi.org/10.1007/978-3-642-36095-4_15
https://doi.org/10.1007/978-3-642-36095-4_15

Author Index

Alpirez Bock, Estuardo 123

Barenghi, Alessandro 275
Bhasin, Shivam 175
Bossuet, Lilian 200
Brevi, Matteo 275

Carré, Sébastien 3
Colombier, Brice 200

Dagand, Pierre-Evariste 221
Danger, Jean-Luc 254, 293
De Mulder, Elke 104
Destouet, Gabriel 71
Dumas, Cécile 71
Duval, Sébastien 90

Facon, Adrien 254
Fornaciari, William 275
Frassati, Anne 71
Fukushima, Kazuhide 43

Guilley, Sylvain 3, 147, 254

Habrard, Amaury 200
Heydemann, Karine 221, 254
Homma, Naofumi 43

Kiaei, Pantea 221
Kiyomoto, Shinsaku 43
Kochepasov, Anton 104
Krämer, Juliane 315
Kuhn, Markus G. 25
Kühne, Ulrich 254

Merabet, Abdelmalek Si 254
Mercadier, Darius 221

Nakano, Yuto 43

Ouladj, Maamar 147

Pecatte, Baptiste 254
Pehl, Michael 293
Pelosi, Gerardo 275
Perrier, Valérie 71
Picek, Stjepan 175
Prouff, Emmanuel 147

Rioul, Olivier 3
Robissout, Damien 200

Schaumont, Patrick 104, 221
Standaert, François-Xavier 90
Struck, Patrick 315

Tebelmann, Lars 293
Timbert, Michaël 254
Treff, Alexander 123
Tunstall, Michael 104

Ueno, Rei 43

van der Valk, Daan 175

Yao, Yuan 104
You, Shih-Chun 25

Zaid, Gabriel 200
Zhou, Yuanyuan 90
Zoni, Davide 275

	Preface
	Organization
	Contents
	Fault and Side Channel Attacks
	Persistent Fault Analysis with Few Encryptions
	1 Introduction
	1.1 Zhang et al.'s Attack
	1.2 Contributions
	1.3 Outline

	2 Bias Cancelling Effect of MixColumns
	3 Improvement Using Maximum Likelihood
	3.1 Optimal Distinguisher
	3.2 Key Byte Ranking
	3.3 Combination of Several Key Bytes to Reconstruct the Full Key
	3.4 Efficiencies of Key Byte Rank and Combination Algorithms
	3.5 Comparison with the Tool of Veyrat-Charvillon et al. ch1DBLP:confspseurocryptspsVeyratspsCharvillonGS13

	4 Conclusion and Perspectives
	4.1 Conclusion
	4.2 Perspectives
	4.3 Note Added After Revision of the Accepted Paper

	References

	A Template Attack to Reconstruct the Input of SHA-3 on an 8-Bit Device
	1 Introduction
	2 Preliminaries and Notation
	2.1 Keccak-f[1600] and SHA-3
	2.2 Template Attack
	2.3 Combining Multiple Likelihood Tables

	3 Attack Strategy
	4 Template Attack on SHA-3
	4.1 Target Hardware Device and Measurement Setup
	4.2 Interesting Clock Cycle Detection
	4.3 Building Templates
	4.4 Evaluating the Quality of Templates

	5 Searching the Correct Intermediate States
	5.1 Layer 1: Generating Tables for Byte Rows
	5.2 Layer 2: Generating Tables for Byte Slices
	5.3 Layer 3: Consistency Checking
	5.4 Results

	6 Discussion and Conclusion
	References

	Single-Trace Side-Channel Analysis on Polynomial-Based MAC Schemes
	1 Introduction
	2 Preliminaries and Related Works
	2.1 Basic Notation
	2.2 Authenticated Encryptions Based on Polynomial Hash Function
	2.3 The Problem of Unforgeability
	2.4 Conventional SCAs on Polynomial Hash Function

	3 Proposed Attack on ChaCha20-Poly1305
	3.1 Attack Description
	3.2 Side-Channel Analysis on Final Addition
	3.3 Exhaustive Polynomial Factorization
	3.4 Feasibility Evaluation
	3.5 Application to Open-Source Poly1305 Implementation

	4 Discussion
	4.1 Noise Tolerance
	4.2 Applicability and Generality of the Proposed Attack
	4.3 Countermeasures

	5 Conclusion
	References

	Side-Channel Analysis Methodologies
	Wavelet Scattering Transform and Ensemble Methods for Side-Channel Analysis
	1 Introduction
	2 Problem Statement
	3 Time-Frequency Analysis with the Wavelet Scattering Transform
	3.1 Some Time-Frequency Representations
	3.2 The Wavelet Scattering Transform

	4 A Combination Procedure for Ensemble Methods in SCA
	5 Experiments
	5.1 Method Used
	5.2 Datasets
	5.3 Choosing the Parameters
	5.4 Results
	5.5 Visualizing Leakages

	6 Conclusion
	References

	Scatter: a Missing Case?
	1 Introduction
	2 Background
	2.1 Scatter Transform with Chi2/MIA Distinguishers
	2.2 On-the-Fly Linear Regression
	2.3 Selection of Parameters

	3 First-Order Experiments
	3.1 Setting #1: A Simulated Shuffled Implementation
	3.2 Setting #2: A Concrete Jittery Implementation

	4 Higher-Order Scatter
	4.1 The Need of a Combination Function
	4.2 Second-Order Simulated Experiments

	5 Conclusion
	References

	Augmenting Leakage Detection Using Bootstrapping
	1 Introduction
	2 Preliminaries
	2.1 Leakage Detection Using Welch's t-test
	2.2 The Bootstrapping Method
	2.3 Kolmogorov-Smirnov Test

	3 Applying Bootstrapping to Leakage Detection
	3.1 Simulating Leakage Detection
	3.2 Experimental Results

	4 Limitations
	5 Implementation Details
	6 Conclusion
	References

	Evaluation of Attacks and Security
	Security Assessment of White-Box Design Submissions of the CHES 2017 CTF Challenge
	1 Introduction
	1.1 CHES 2017 Capture the Flag Challenge
	1.2 Our Contribution

	2 Tooling
	2.1 Preprocessing the Source Code
	2.2 Tooling for DCA
	2.3 Tooling for DFA

	3 Security Assessment and Classification
	3.1 DCA Vulnerable Designs
	3.2 DFA Vulnerable Designs
	3.3 Second Order DCA
	3.4 Automated Resistant Challenges
	3.5 2019 Edition of the White-Box Competition

	4 Real-Life Usefulness of White-Box Cryptography
	References

	On the Implementation Efficiency of Linear Regression-Based Side-Channel Attacks
	1 Introduction
	1.1 Context: Side-Channel Analysis
	1.2 State-of-the-Art's Review
	1.3 Contributions
	1.4 Outline

	2 Mathematical Modelization
	2.1 Notations
	2.2 Description of Stochastic Attacks

	3 LRA Study and Improvements of Its Implementation
	3.1 Difference Between SCAs with and Without Coalescence
	3.2 LRA with Assumption of Equal Images Under Different Subkeys
	3.3 Spectral Approach Computation to Speed up LRA (with EIS)
	3.4 Further Improvement
	3.5 Incremental Implementation of LRA

	4 Extension of the Improvements to the Protected Implementations by Masking
	4.1 Normalized Product Combination Against Arithmetic Masking

	5 Experiments
	5.1 LRA with and Without Spectral Approach
	5.2 SCAs with and Without Coalescence
	5.3 LRA Against Higher-Order Masking

	6 Conclusion and Perspectives
	A Proof of Proposition2
	B LRA Algorithm 4
	C WHT Algorithm
	References

	Side-Channel Attacks and Deep Learning
	Kilroy Was Here: The First Step Towards Explainability of Neural Networks in Profiled Side-Channel Analysis
	1 Introduction
	2 Background
	2.1 Multilayer Perceptron and Convolutional Neural Networks
	2.2 Comparison of Neural Networks and SVCCA Methodology
	2.3 Related Work

	3 Establishing a Baseline
	3.1 DPAcontest V4 Dataset
	3.2 Comparison Datasets
	3.3 Experimental Setup

	4 Portability
	4.1 Datasets and Experimental Setup
	4.2 Results

	5 Conclusions and Future Work
	A Additional Figures
	References

	Online Performance Evaluation of Deep Learning Networks for Profiled Side-Channel Analysis
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Profiling Attacks
	2.3 Neural Networks
	2.4 Evaluation Metrics
	2.5 Related Work on Metrics for Side-Channel Analysis

	3 dtrain,val: A Deep Learning Evaluation Metric for Side-Channel Analysis
	3.1 dtrain,val: Internal State Detection
	3.2 Detection of Overfitting/underfitting
	3.3 dtrain,val : A Suitable Metric for Early Stopping

	4 Experimental Results
	4.1 Early Stopping on the ASCAD Database
	4.2 Comparison Between GEBVD and 1train,val

	5 Conclusion
	A Networks
	References

	Primitives and Tools for Physical Attacks Resistance
	Custom Instruction Support for Modular Defense Against Side-Channel and Fault Attacks
	1 Introduction
	2 Preliminaries
	3 Modular Design of Countermeasures
	3.1 Higher-Order Masked Computation
	3.2 Data-Redundant Computation
	3.3 Time-Redundant Computation

	4 SKIVA Implementation
	4.1 Custom Instruction-Set Extensions in SKIVA
	4.2 Hardware Support for Aggregated Bitslice Operations

	5 Results
	5.1 Performance Evaluation
	5.2 Side-Channel Analysis
	5.3 Security Analysis of Data Faults

	6 Conclusion
	References

	Processor Anchor to Increase the Robustness Against Fault Injection and Cyber Attacks
	1 Introduction
	2 Background
	2.1 Control Flow Graph
	2.2 Control Flow Hijacking
	2.3 Control Flow Integrity

	3 Related Work
	3.1 Threat Model
	3.2 Protection State of the Art
	3.3 Limitation of Our Approach

	4 Solution
	4.1 Hardware
	4.2 Software

	5 Speculative Execution
	6 Interruptions Management
	7 Attack Model and Security Guaranties
	8 Implementation
	9 Performance
	10 Conclusion
	References

	Integrating Side Channel Security in the FPGA Hardware Design Flow
	1 Introduction
	2 Augmenting the Xilinx Vivado FPGA Design Flow
	3 Experimental Validation
	4 Concluding Remarks
	References

	Side-Channel Countermeasures
	Self-secured PUF: Protecting the Loop PUF by Masking
	1 Introduction
	2 The Loop PUF
	2.1 Architecture
	2.2 Operating Mode
	2.3 Loop PUF Challenges for Maximum Entropy
	2.4 Loop PUF Implementation

	3 Side-Channel Analysis of the Loop PUF
	3.1 Experimental Setup
	3.2 Frequency of Interest Detection
	3.3 Side-Channel Analysis of the Loop PUF
	3.4 Limitations and Constraints: Frequency Resolution

	4 Securing the Loop PUF
	4.1 Temporal Masking
	4.2 Self-secured Loop PUF Using 1-Bit RNG from LSB
	4.3 Empirical Analysis of the LSB-Mask
	4.4 Side-Channel Analysis of the Self-secured Loop PUF

	5 Remarks on the Proposed Solution
	5.1 Impact of Measurement Time
	5.2 Application of Temporal Masking to RO PUFs

	6 Conclusion
	References

	Leakage-Resilient Authenticated Encryption from Leakage-Resilient Pseudorandom Functions
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Notation
	2.2 Primitives
	2.3 Leakage Model
	2.4 Security Notions
	2.5 The FGHF Construction

	3 Unpredictability and Pseudorandomness Under Leakage
	3.1 Under Leakage: Unpredictability Pseudorandomness
	3.2 Under Leakage: Pseudorandomness Unpredictability

	4 Leakage Resilience of the N2 Construction
	5 Leakage Resilience of the FGHF Construction
	5.1 Leakage-Resilient MACs from LPRFs
	5.2 Leakage-Resilient Encryption from LPRFs
	5.3 Security of the FGHF Construction

	References

