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Abstract. A star-simple drawing of a graph is a drawing in which adja-
cent edges do not cross. In contrast, there is no restriction on the number
of crossings between two independent edges. When allowing empty lenses
(a face in the arrangement induced by two edges that is bounded by a
2-cycle), two independent edges may cross arbitrarily many times in a
star-simple drawing. We consider star-simple drawings of Kn with no
empty lens. In this setting we prove an upper bound of 3((n − 4)!) on
the maximum number of crossings between any pair of edges. It follows
that the total number of crossings is finite and upper bounded by n!.

Keywords: Star-simple drawings · Topological graphs · Edge crossings

1 Introduction

A topological drawing of a graph G is a drawing in the plane where vertices are
represented by pairwise distinct points, and edges are represented by Jordan
arcs with their vertices as endpoints. Additionally, edges do not contain any
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other vertices, every common point of two edges is either a proper crossing or a
common endpoint, and no three edges cross at a single point. A simple drawing
is a topological drawing in which adjacent edges do not cross, and independent
edges cross at most once.

We study a broader class of topological drawings, which are called star-
simple drawings, where adjacent edges do not cross, but independent edges may
cross any number of times; see Fig. 1 for illustration. In such a drawing, for
every vertex v the induced substar centered at v is simple, that is, the drawing
restricted to the edges incident to v forms a plane drawing. In the literature
(e.g., [1,2]) these drawings also appear under the name semi-simple, but we
prefer star-simple because the name is much more descriptive.

(a) simple (b) star-simple but not simple (c) not star-simple

Fig. 1. Topological drawings of K6 and a (nonempty) lens (shaded in (b)).

In contrast to simple drawings, star-simple drawings can have regions or cells
whose boundary consists of two continuous pieces of (two) edges. We call such
a region a lens; see Fig. 1b. A lens is empty if it has no vertex in its inte-
rior. If empty lenses are allowed, the number of crossings in star-simple draw-
ings of graphs with at least two edges is unbounded (twisting), as illustrated in
Fig. 2a. We restrict our attention to star-simple drawings with no empty lens.
This restriction is—in general—not sufficient to guarantee a bounded number of
crossings (spiraling), as illustrated in Fig. 2b. However, we will show that star-
simple drawings of the complete graph Kn with no empty lens have a bounded
number of crossings.

(a) twisting (b) spiraling

Fig. 2. Constructions to achieve an unbounded number of crossings.
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Empty lenses also play a role in the context of the crossing lemma for multi-
graphs [5]. This is because a group of arbitrarily many parallel edges can be
drawn without a single crossing. Hence, for general multigraphs there is no hope
to get a lower bound on the number of crossings as a function of the number
of edges. However, if we forbid empty lenses, we cannot draw arbitrarily many
parallel edges.

Kynčl [3, Section 5], “Picture hanging without crossings”] proposed a con-
struction of two edges in a graph on n vertices with an exponential number (2n−4)
of crossings and no empty lens; see Fig. 3. This configuration can be completed
to a star-simple drawing of Kn, cf. [6]. For n = 6 it is possible to have one more
crossing while maintaining the property that the drawing can be completed to a
star-simple drawing of K6; see Fig. 4. Repeated application of the doubling con-
struction of Fig. 3 leads to two edges with 2n−4 +2n−6 crossings in a graph on n
vertices. This configuration can be completed to a star-simple drawing of Kn.
We suspect that this is the maximum number of crossings of two edges in a
star-simple drawing of Kn.

Fig. 3. The doubling construction yields an exponential number of crossings.

(a) 5 crossings (b) star-simple completion (c) the stars of the drawing

Fig. 4. Two edges with 2n−4+2n−6 crossings in a star-simple drawing of Kn, for n = 6.
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2 Crossing Patterns

In this section we study the induced drawing D(e, e′) of two independent edges e
and e′ in a star-simple drawing D of the complete graph. We start by observing
that the endpoints of e and e′ must lie in the same region of D(e, e′). This fact
was also used in earlier work by Aichholzer et al. [1] and by Kynčl [4].

Lemma 1. The four vertices incident to e and e′ belong to the same region
of D(e, e′).

Proof. Assuming that the two edges cross at least two times, the drawing D(e, e′)
has at least two regions. Otherwise, the statement is trivial. If the four vertices
do not belong to the same region of D(e, e′), then there is a vertex u of e and
a vertex v of e′ that belong to different regions. Now consider the edge uv in
the drawing D of the complete graph. This edge has ends in different regions
of D(e, e′), whence it has a crossing with either e or e′. This, however, makes
a crossing in the star of u or v. This contradicts the assumption that D is a
star-simple drawing.

Lemma 1 implies that the deadlock configurations as shown in Fig. 5a do
not occur in star-simple drawings of complete graphs. Formally, a deadlock is a
pair e, e′ of edges such that not all incident vertices lie in the same region of the
drawing D(e, e′).

Now suppose that D is a star-simple drawing of a complete graph with no
empty lens. In this case we can argue that e and e′ do not form a configuration
as the black edge e and the red edge e′ in Fig. 5b. Indeed, that configuration
has an interior lens L and by assumption this lens is non-empty, i.e., L contains
a vertex x. Let e and e′ be the black and the red edge in Fig. 5b, respectively,
and let u be a vertex of e. The edge xu (the green edge in the figure) has no
crossing with e, hence it follows the “tunnel” of the black edge. This yields a
deadlock configuration of the edges xu and e′. Note that if in Fig. 5b instead of
drawing the green edge xu we connect x with an edge f to one of the vertices of
the red edge e′ such that f and the red edge have no crossing, then f and the
black edge e form a deadlock.

e

e′

e

e′

(a) deadlocks

x

u

e

e′

(b) spiral

Fig. 5. Constructions to achieve an unbounded number of crossings.
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We use this intuition to formally define a spiral. Two edges e, e′ form a spiral
if they form a lens L such that if we place a vertex x in L and draw a curve γ
connecting x to a vertex u of e so that γ does not cross e, then γ and e′ form a
deadlock. The discussion above proves the following lemma:

Lemma 2. A star-simple drawing of a complete graph with no empty lens has
no pair e, e′ of edges that form a spiral.

3 Crossings of Pairs of Edges

In this section we derive an upper bound for the number of crossings of two
edges in a star-simple drawing of Kn with no empty lens.

Theorem 1. Consider a star-simple drawing of Kn with no empty lens. If C(k)
is the maximum number of crossings of a pair of edges that (a) form no deadlock
and no spiral and such that (b) all lenses formed by the two edges can be hit by k
points, then C(k) ≤ e · k!, where e ≈ 2.718 is Euler’s number.

Proof. Due to Lemma 1 we can assume that all four vertices of e and e′ are on
the outer face of the drawing D(e, e′). We think of e′ as being drawn red and
horizontally and of e as being a black meander edge. Let p1, . . . , pk be points
hitting all the lenses of the drawing D(e, e′). Let u be one of the endpoints of e.
For each i = 1, . . . , k we draw an edge ei connecting pi to u such that ei has no
crossing with e and, subject to this, the number of crossings with e′ is minimized.
Figure 6 shows an example.

Note that we do not claim that all these edges e1, . . . , ek together with e
and e′ can be extended to a star-simple drawing of a complete graph. Therefore,
we cannot use Lemma 2 directly but state the assumption (a) instead.

pi

ei

e

u

e′

Fig. 6. The drawing D(e, e′) and an edge ei connecting pi to u.

We claim the following three properties:

(P1) The edges ei and e′ form no deadlock and no spiral.
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(P2) All lenses of ei and e′ are hit by the k − 1 points p1, . . . , pi−1, pi+1, . . . , pk.
(P3) Between any two crossings of e and e′ from left to right, i.e., in the order

along e′, there is at least one crossing of e′ with one of the edges ei.

Before proving the properties, we show that they imply the statement of the
theorem by induction on k. The base case 1 = C(0) ≤ e · 0! = e is obvious.
From (P1) and (P2) we see that the number Xi of crossings of ei and e′ is upper
bounded by C(k − 1). From (P3) we obtain that C(k) ≤ 1 +

∑
i Xi. Combining

these we get

C(k) ≤ k · C(k − 1) + 1 ≤ k! ·
k∑

s=0

1
s!

≤ k! · e. ��

For the proof of the three claims we need some notation. Let ξ1, ξ2, . . . , ξN
be the crossings of e and e′ indexed according to the left to right order along the
horizontal edge e′. Let gi and hi be the pieces of e′ and e, respectively, between
crossings ξi and ξi+1. The bounded region enclosed by gi ∪ hi is the bag Bi

and gi is the gap of the bag. In the drawing D(e, e′) the bags Bi where hi is a
crossing free piece of e are exactly the inclusion-wise minimal lenses formed by e
and e′. From now on when referring to a lens we always mean such a minimal
lens. Indeed if there is no empty minimal lens, then there is no empty lens. The
following observation is crucial.

Observation 2. For two bags Bi and Bj the open interiors are either disjoint
or one is contained in the other.

Proof. Every bag is bounded by a closed Jordan curve, and the boundaries of
two distinct bags do not cross (at most they may touch at a single point that is
one of ξ1, ξ2, . . . , ξN ).

Observation 2 implies that the containment order on the bags is a downwards
branching forest. The minimal elements in the containment order are the lenses.
Consider a lens L and the point pi inside L. Since the vertex u of e is in the outer
face of D(e, e′), the edge ei has to leave each bag that contains L. Furthermore,
by definition ei does not cross e and therefore it has to leave a bag B containing L
through the gap g of B. We now reformulate and prove the third claim (P3).

(P3’) For each pair ξi, ξi+1 of consecutive crossings on e′ there is a lens L and a
point pj ∈ L such that ej crosses e′ between ξi and ξi+1.

Proof sketch for (P3 ’). The pair ξi, ξi+1 is associated with the bag Bi. In the
containment order of bags a minimal bag below Bi is a lens, let L be any of the
minimal elements below Bi. By assumption, L contains a point pj . Since L ⊆ Bi,
we have that also pj ∈ Bi. Thus, it follows that ej has a crossing with the gap gi,
i.e., ej has a crossing with e′ between ξi and ξi+1.

Proof sketch for (P1 ). We have to show that ei and e′ form no deadlock and no
spiral. The minimality condition in the definition of ei implies that if L = Bi1 ⊂
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Bi2 ⊂ . . . ⊂ Bit is the maximal chain of bags with minimal element L, then ei
crosses the gaps of these bags in the given order and has no further crossings
with e′. If γ is a curve from L to u that avoids e, then in the ordered sequence of
gaps crossed by γ we find a subsequence that is identical to the ordered sequence
of gaps crossed by ei. Since e and e′ form no spiral, there is such a curve γ that
forms no deadlock with e′. Therefore, ei forms no deadlock with e′, either.

Now assume that ei and e′ form a spiral. Let B be the largest bag contain-
ing pi. Think of B as a drawing of ei with a broad pen, which may also have some
extra branches that have no correspondence in ei, see Fig. 7. The formalization
of this picture is that for every bag β formed by ei with e′ there is a bag B(β)
formed by e and e′ with B(β) ⊂ β. Now, if there is a lens λ formed by ei with e′

such that every ei-avoiding1 curve to u is a deadlock with e′, then there is a
lens L(λ) formed by e and e′ with L(λ) ⊂ λ such that every e-avoiding curve
from L(λ) to u is also B-avoiding and hence ei-avoiding. Thus, every such curve
has a deadlock with e′, whence e and e′ form a spiral, contradiction. ��
Proof sketch for (P2 ). We know by P1 that ei and e′ form no deadlock. Therefore,
by Lemma 1, the vertices of ei and e′ belong to the same region of D(ei, e′). All
crossings of ei with e′ correspond to bags of e and e′, therefore the vertices of e
and e′ are in the outer face of D(ei, e′). Together this shows that pi is also in the
outer face of D(ei, e′). Since every lens of D(ei, e′) contains a lens of D(e, e′),
it also contains one of the points hitting all lenses of D(e, e′). Hence, all lenses
of D(ei, e′) are hit by the k − 1 points p1, . . . , pi−1, pi+1, . . . , pk. ��

e

pi

ei

pj
u

e′

Fig. 7. An edge ei(green) that forms a spiral with e′. The bag B in gray and the
lens L(λ) marked with the vertex pj(blue). (Color figure online)

1 That is, disjoint from ei except for possibly a shared endpoint.
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4 Crossings in Complete Drawings

Accounting for the four endpoints of the two crossing edges we have k ≤ n−4 in
Theorem 1. Therefore, we obtain that the number of crossings of a pair of edges
in a star-simple drawing of Kn without empty lens is upper bounded by 3(n−4)!.
This directly implies that the drawing of Kn has at most n! crossings. This is the
first finite upper bound on the number of crossings in star-simple drawings of the
complete graph Kn. We know drawings of Kn in this drawing mode that have
an exponential number of crossings. Thus, it would be interesting to reduce the
huge gap between the upper and the lower bound. Specifically, can a star-simple
drawing of Kn have two edges with more than 2n−4 + 2n−6 crossings?
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2. Balko, M., Fulek, R., Kynčl, J.: Crossing numbers and combinatorial characteriza-
tion of monotone drawings of Kn. Discrete Comput. Geom. 53(1), 107–143 (2014).
https://doi.org/10.1007/s00454-014-9644-z
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