
Storyline Visualizations with Ubiquitous
Actors

Emilio Di Giacomo , Walter Didimo , Giuseppe Liotta ,
Fabrizio Montecchiani , and Alessandra Tappini(B)

Engineering Department, University of Perugia, Perugia, Italy
{emilio.digiacomo,walter.didimo,giuseppe.liotta,fabrizio.montecchiani,

alessandra.tappini}@unipg.it

Abstract. Storyline visualizations depict the temporal dynamics of
social interactions, as they describe how groups of actors (individuals
or organizations) change over time. A common constraint in storyline
visualizations is that an actor cannot belong to two different groups at
the same time instant. However, this constraint may be too severe in
some application scenarios, thus we generalize the model by allowing an
actor to simultaneously belong to distinct groups at any point in time.
We call this model Storyline with Ubiquitous Actors (SUA). Essential to
our model is that an actor is represented as a tree rather than a single
line. We describe an algorithmic pipeline to compute storyline visualiza-
tions in the SUA model and discuss case studies on publication data.

Keywords: Storyline visualization · Ubiquitous actors

1 Introduction

Storyline visualizations have been the focus of intense research in the last decade.
Originally introduced to describe the narrative of a movie [12], this visualization
paradigm has been successfully used to represent the temporal dynamics of the
interactions between actors (individuals or organizations) in a social network or
in a working environment [10,14,16–20]. In a storyline visualization, the narra-
tive unfolds from left to right, each actor is represented as a line, and two lines
may converge or diverge at a time instant based on whether the two correspond-
ing actors interact or not at that instant; see Fig. 1(a). Since a group of lines
bundled together usually reflects an in-person meeting, a common constraint in
a storyline visualization is that an actor cannot belong to two different groups at
the same point in time. However, this constraint represents a severe limitation for
some application scenarios, for example when groups model associations that are

This work is partially supported by: (i) MIUR, grant 20174LF3T8 “AHeAD: efficient
Algorithms for HArnessing networked Data”, (ii) Dipartimento di Ingegneria - Uni-
versità degli Studi di Perugia, grant RICBA19FM: “Modelli, algoritmi e sistemi per la
visualizzazione di grafi e reti”.

c© Springer Nature Switzerland AG 2020
D. Auber and P. Valtr (Eds.): GD 2020, LNCS 12590, pp. 324–332, 2020.
https://doi.org/10.1007/978-3-030-68766-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68766-3_25&domain=pdf
http://orcid.org/0000-0002-9794-1928
http://orcid.org/0000-0002-4379-6059
http://orcid.org/0000-0002-2886-9694
http://orcid.org/0000-0002-0543-8912
http://orcid.org/0000-0001-9192-2067
https://doi.org/10.1007/978-3-030-68766-3_25


Storyline Visualizations with Ubiquitous Actors 325

not in-person meetings (e.g., paper co-authorships) or when each point in time
of the storyline corresponds to a relatively long time interval (e.g., one year).

In this paper we generalize the classical storyline model by allowing an actor
to simultaneously belong to distinct groups. We call this model Storyline with
Ubiquitous Actors (SUA); see Fig. 1(b). Essential to our model is that an actor
is represented as a tree rather than a single line. Our contribution is: (i) We
propose a visualization paradigm for the SUA model and identify quality metrics
for it. (ii) We define an algorithmic pipeline for storyline visualizations in the
SUA model. (iii) We provide a proof-of-concept implementation and apply it to
produce visualizations in real-life scenarios.

Related Work. Tanahashi and Ma [18] present a general framework for gen-
erating aesthetically pleasing storyline visualizations. Subsequent papers focus
on specific optimization problems like crossing minimization [5,7,8] and wig-
gle minimization [6]. Padia et al. [15,16] consider storyline visualizations with
multiple timelines. Efficient approaches that compute storyline visualizations
with hierarchical relationships or with streaming data are described by Liu
et al. [10] and by Tanahashi et al. [19], respectively. Qiang and Bingjie [17]
present a system that embeds storyline visualizations into a radial layout. For a
broader dissertation on storytelling and visualization refer to the survey of Tong
et al. [20]. We remark that our scenario is strongly related to the dynamic sets
visualization; see, e.g., [11,13], and [3] for a survey. In this regard, it is worth
mentioning a recent work by Agarwal and Beck [2], who adopt storylines for
visualizing dynamic sets.

2 Storyline Visualizations and Ubiquitous Actors

We first recall basic definitions and principles of classical storyline visualizations
and then define our visualization for the SUA model.

Classical Storyline Visualizations. A storyline S = (A,G) consists of a
set A = {a1, a2, . . . , an} of actors and a set G = {G1, G2, . . . , Gk} of groups.
Each group Gi ∈ G is a triple 〈A(Gi), bi, ei〉, where A(Gi) ⊆ A is a subset of
actors, bi is the begin-time of Gi and ei is the end-time of Gi. We say that Gi is
active at any time instant in the interval [bi, ei], and that each actor aj ∈ A(Gi)
participates to Gi. A common assumption is that an actor cannot participate to
two distinct groups at the same point in time, i.e., if Gi and Gj are two distinct
groups such that [bi, ei] ∩ [bj , ej ] �= ∅ then A(Gi) ∩ A(Gj) = ∅.

In a storyline visualization, each actor aj is represented as a line �j that flows
from left to right; see Fig. 1(a). Some basic principles are considered: (i) For each
group Gi, the lines representing the actors in A(Gi) are adjacent, i.e., they run
close together from the begin-time bi to the end-time ei of Gi; (ii) lines of actors
that are not in the same group at the same time are depicted relatively far from
one another; (iii) a line should not deviate unless it converges or diverges with
another line. In addition, common quality metrics for the readability of storyline
visualizations are: (a) Line or block crossings – a line crossing occurs when two



326 E. Di Giacomo et al.

lines intersect while a block crossing is caused by two blocks of parallel lines
that pairwise intersect. (b) Line wiggles – line deviations that, when frequent,
negatively affect the visual flow of the layout. (c) White space gaps – white areas
used to separate lines of actors that do not participate to the same group.

a1
a2
a3 a6

a7

a4
a5

t0 t1 t2 t3 t4 t5 t6 t7

G1

G2

G3

G4

G5

G6

G7

G8

(a)
t0 t1 t2 t3 t4 t5 t6 t7

a5

a2
a1

a3
a4

G1

G2

G3

G4

G5

G6

G7

G8

(b)

Fig. 1. Storyline visualization: (a) Classical model. (b) SUA model.

Visualizations with Ubiquitous Actors. To support the visualization of
ubiquitous actors, we represent an actor aj as a tree τj rather than as a line
(see Sect. 3 for a formal definition of τj). Informally speaking, when an actor
simultaneously participates to different groups, the line of the actor branches
out and forms a tree. For example, in Fig. 1(b) we see the trees of five actors
a1, . . . , a5. At time t1 actor a2 participates to group G1 while at time t2 it
simultaneously participates to groups G1 and G3. As a consequence, the line of
a2 at time t1 is split into two branches. The choice of a tree is motivated by
the fact that we want to represent each actor by a connected geometric feature
(avoiding discontinuities); at the same time, we want to keep such geometric
feature as simple as possible, since the addition of edges may increase the number
of crossings. Such tree representations add new quality metrics:

– Actor planarity. It is natural to require that each tree representing an actor
is not self-intersecting. While this is trivially guaranteed when an actor is a
line, it requires an algorithmic effort in the SUA model.

– Branch continuity. To avoid interruptions in the continuity of the story, the
number of branches of an actor at time th that continue at time th+1 should
be maximized. If an actor participates to m groups at time th and to m′ ≥ m
groups at time th+1, all branches at time th should continue at time th+1.

– Branch degree. When an actor tree needs new branches at some time
instant th, it is desirable that the maximum number of branches that
emanates from a common branch at time th−1 is minimized.

We note that such new metrics may be in conflict with classical ones (see Fig. 2).

3 The SUA Algorithmic Pipeline

We compute storyline visualizations in the SUA model by means of an algorith-
mic pipeline based on the concept of actor-tree τj associated with an actor aj .



Storyline Visualizations with Ubiquitous Actors 327

Fig. 2. (a) A layout with optimal branch continuity. (b) Violating branch continuity for
a3 at t3 and for a1 at t5 removes 9 crossings and reduces line wiggles. (c) A layout with
optimal branch degree. (d) Violating branch degree for a3 at t3 reduces line wiggles
and removes 2 crossings.

The life-time of actor aj is the interval between the first and the last time instant
at which aj belongs to some group. Tree τj is defined as follows. Node set – Tree
τj has a root rj . For each time instant th in the life-time of aj : If aj participates
to at least one group Gi (i > 0) active at th, τj has a node uh,i for each such
group; otherwise τj has a single node uh,0 that is not associated with any group.
Edge set – The parent of a node uh,i (i ≥ 0) is assigned as follows: If th−1 is not
in the life-time of aj , the parent of uh,i is the root rj . Else, if i > 0 and Gi is
active before time th, the parent of uh,i is uh−1,i. Else, the parent of uh,i is one
of the nodes uh−1,l. Our algorithmic pipeline consists of four steps:

1. Actor-tree Initialization. It defines an initial actor-tree τj for each actor aj .
Namely, given the nodes of τj , it assigns the parent to each node of τj .

2. Branch Permutation. For each time instant th this step computes a permutation
(i.e., a vertical order) of all nodes at time th in the union of all actor-trees .

3. Actor-tree Untangling. For each actor-tree τj , it redefines the parent of some
nodes, so to reduce self-intersections of τj without changing its node degrees.

4. Branch-coordinate Assignment. It assigns the y-coordinates to actor-tree nodes.
In Step 1 we aim to optimize branch continuity and branch degree. Step 2

aims to minimize block or line crossings. Step 3 tries to enforce actor planarity.
Step 4 aims to reduce line wiggles and space gaps. Different algorithmic strategies
are applicable to each step. We briefly describe our solution; see also Fig. 4.

Actor-Tree Initialization. For any actor-tree τj , let Vh−1 and Vh be the sets of
nodes at time instant th−1 and th. The parents of the nodes in Vh are chosen



328 E. Di Giacomo et al.

Fig. 3. (a) Transformation of an actor tree into a set of disjoint paths. (b) Crossing
removal when merging two copies of the same node. (c) Actor-tree untangling. (d)
Preservation of the edge order around a node when splitting it.

among the nodes in Vh−1 so that the distribution of the degrees in Vh−1 is as
uniform as possible. For each node uh,i in Vh that belongs to the same group
of a node uh−1,i in Vh−1, the parent of uh,i is uh−1,i. For the remaining nodes
of Vh, we adopt a round robin policy to assign children to the nodes in Vh−1 so
that the difference of the degrees of any two nodes of Vh−1 is at most one.

Branch Permutation. We exploit a state-of-the-art algorithm for classical storyline
visualizations, namely the algorithm by van Dijk et al. [5] based on a SAT
formulation, which optimally solves the problem of minimizing block crossings.
To this aim, we transform the output of Step 1 into an instance for a classical
storyline visualization: Each actor tree is partitioned into a set of edge-disjoint
paths by duplicating each node with k ≥ 2 children into k nodes each having one
child (see Fig. 3(a)). Each path is processed by the algorithm in [5] as a distinct
actor. All copies of the same node are then recombined into a single node to
restore the tree. However, if disjoint paths originating from two copies of the same
node are treated independently, they can create many crossings when recombined
back into the tree. To alleviate this drawback, we let the initial node of each path
belong to the same group of its original duplicate, unless this operation makes
the path belonging to multiple groups at some other point in time. Moreover,
when copies of the same node are recombined into a single node, two edges
incident to this node may create a crossing, which is easily removed as depicted
in Fig. 3(b). Hence, a crossing in an actor tree only involves independent edges.

Actor-Tree Untangling. For each actor-tree τj , we redefine the parent of some
nodes to reduce the number of crossings between the edges of τj . If two edges
(uh−1,p, uh,q) and (uh−1,r, uh,s) (p �= q, r �= s) of τj cross, we replace them with
two new edges (uh−1,p, uh,s) and (uh−1,r, uh,q) (see Fig. 3(c)). This operation
removes at least one self-intersection and does not create any new one. Also,
the degree of uh−1,p, uh,q, uh−1,r, and uh,s does not change. We repeat this
procedure until it is no longer possible to remove self-intersections from τj .

Branch-Coordinate Assignment. As in the Branch-permutation step, we consider
the set of paths that decompose the tree and make them disjoint by duplicating
each node with k ≥ 2 children into k nodes each having one child. The cyclic



Storyline Visualizations with Ubiquitous Actors 329

Fig. 4. Illustration of the algorithmic pipeline.

order of the edges around each node defines the permutation of the lines that
correspond to these edges (see Fig. 3(d)). Any technique that assigns coordinates
to the paths, while reducing line wiggles and white space gaps can be applied (see,
e.g., [6,18]). This assignment preserves the vertical permutations of the paths.

4 Implementation and Case Studies

We developed a prototype web application, StoryTreeViewer, which imple-
ments the algorithmic pipeline of Sect. 3, see https://bit.ly/2yS3Fvi. Story-
TreeViewer offers a simple interactive interface, which we used to evaluate
effectiveness and limits of our model through two case studies on publication
data extracted from DBLP [9] and Scopus [1].

Case Study 1. The first case study, see Fig. 5(a), describes scientific collab-
orations among the authors of this work in the various editions of the Graph
Drawing Symposium (GD) since 1999. Each actor is an author and a group Gi is
a subset of actors who co-authored some papers. Gi is active in [bi, ei] if all their
members co-authored at least one paper in each year from bi to ei. The layout
reveals the following dynamic. In the first part of the story there is a strong col-
laboration between the three oldest actors (pink, green, and blue), in particular
they form a group lasting from 2004 to 2009. In 2003, the pink actor was the chair

https://bit.ly/2yS3Fvi


330 E. Di Giacomo et al.

Fig. 5. Visualizations of our case studies. See the full version [4] for larger images.
(Color figure online)

of GD, which prevented him to publish together with the other two authors. In
2010 and 2011 the collaboration of the three actors is weaker, as they mainly col-
laborated with researchers outside their university. The dynamic becomes more
involved in the last years, when two new members joined the group (cyan and
orange), and new theoretical and application research topics were activated.

Case Study 2. The second case study, see Fig. 5(b), describes scientific collab-
orations among five of the research teams (universities) with the highest num-
ber of papers published at GD. The actors are the teams and the groups are
defined as in case study 1. Namely, a group Gi is a subset of teams that appear
together in some papers (in terms of author affiliations); Gi is active in [bi, ei]
if all its teams appear together in at least one paper in each year from bi to ei.
The layout shows some interesting facts. From 1999 to 2002 there is a strong
collaboration between Roma Tre and Perugia, witnessing that the group in Peru-
gia stems from researchers coming from Rome. The collaboration between the
five research teams increases since 2007 and becomes stronger since 2011. This
is partly explained by the series of workshops started around 2006 (BWGD,
HOMONOLO, GNV, etc.) that increased international collaborations.

Limits. Working on the case studies, we observed some limits of our approach:
(i) The implementation for the Branch Permutation step exploits the algorithm
in [5], splitting each actor-tree into multiple disjoint paths. The size of this trans-
formed instance raises some computational complexity issues. (ii) Our visualiza-
tions appear to be readable for relatively few actors and further work is needed
to better evaluate the effectiveness of the SUA model on larger instances.



Storyline Visualizations with Ubiquitous Actors 331

5 Conclusions and Future Work

We introduced the SUA model, which allows ubiquitous actors in storyline visu-
alizations. This model extends the spectrum of applications for this type of rep-
resentation and opens up to many intriguing research directions. Among them:
(i) Are there more effective ways of modeling ubiquitous actors other than using
trees? (ii) Design and experiment different algorithms for the SUA pipeline.

References

1. http://www.scopus.com . Accessed 03 June-2020
2. Agarwal, S., Beck, F.: Set streams: visual exploration of dynamic overlapping sets.

Comput. Graph. Forum 39(3), 383–391 (2020)
3. Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.J.: The

state-of-the-art of set visualization. Comput. Graph. Forum 35(1), 234–260 (2016)
4. Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F., Tappini, A.: Story-

line visualizations with ubiquitous actors. CoRR abs/2008.04125v2 (2020).http://
arxiv.org/abs/2008.04125v2

5. van Dijk, T.C., Lipp, F., Markfelder, P., Wolff, A.: Computing storyline visual-
izations with few block crossings. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS,
vol. 10692, pp. 365–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-73915-1 29

6. Fröschl, T., Nöllenburg, M.: Minimizing wiggles in storyline visualizations. In:
Frati, F., Ma, K.L. (eds.) Graph Drawing and Network Visualization. pp. 585–
587. Springer International Publishing (2018)

7. Gronemann, M., Jünger, M., Liers, F., Mambelli, F.: Crossing minimization in sto-
ryline visualization. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801,
pp. 367–381. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-
2 29

8. Kostitsyna, I., Nöllenburg, M., Polishchuk, V., Schulz, A., Strash, D.: On minimiz-
ing crossings in storyline visualizations. In: Di Giacomo, E., Lubiw, A. (eds.) GD
2015. LNCS, vol. 9411, pp. 192–198. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-27261-0 16

9. Ley, M.: The DBLP computer science bibliography. https://dblp.uni-trier.de
10. Liu, S., Wu, Y., Wei, E., Liu, M., Liu, Y.: Storyflow: tracking the evolution of

stories. IEEE Trans. Vis. Comput. Graph. 19(12), 2436–2445 (2013)
11. Mizuno, K., Wu, H., Takahashi, S., Igarashi, T.: Optimizing stepwise animation in

dynamic set diagrams. Comput. Graph. Forum 38(3), 13–24 (2019)
12. Munroe, R.: Xkcd #657: Movie narrative charts, December 2009. http://xkcd.

com/657
13. Nguyen, P.H., Xu, K., Walker, R., Wong, B.L.W.: Timesets: timeline visualization

with set relations. Inf. Vis. 15(3), 253–269 (2016)
14. Ogawa, M., Ma, K.: Software evolution storylines. In: Telea, A., Görg, C., Reiss,

S.P. (eds.) Proceedings of the ACM 2010 Symposium on Software Visualization,
pp. 35–42. ACM (2010)

15. Padia, K., Bandara, K.H., Healey, C.G.: Yarn: generating storyline visualizations
using HTN planning. In: Graphics Interface, pp. 26–33. ACM (2018)

http://www.scopus.com
http://arxiv.org/abs/2008.04125v2
http://arxiv.org/abs/2008.04125v2
https://doi.org/10.1007/978-3-319-73915-1_29
https://doi.org/10.1007/978-3-319-73915-1_29
https://doi.org/10.1007/978-3-319-50106-2_29
https://doi.org/10.1007/978-3-319-50106-2_29
https://doi.org/10.1007/978-3-319-27261-0_16
https://doi.org/10.1007/978-3-319-27261-0_16
https://dblp.uni-trier.de
http://xkcd.com/657
http://xkcd.com/657


332 E. Di Giacomo et al.

16. Padia, K., Bandara, K.H., Healey, C.G.: A system for generating storyline visu-
alizations using hierarchical task network planning. Comput. Graph. 78, 64–75
(2019)

17. Qiang, L., Chai, B.: Storycake: a hierarchical plot visualization method for story-
telling in polar coordinates. In: CW, pp. 211–218. IEEE Computer Society (2016)

18. Tanahashi, Y., Ma, K.: Design considerations for optimizing storyline visualiza-
tions. IEEE Trans. Vis. Comput. Graph. 18(12), 2679–2688 (2012)

19. Tanahashi, Y., Hsueh, C., Ma, K.: An efficient framework for generating storyline
visualizations from streaming data. IEEE Trans. Vis. Comput. Graph. 21(6), 730–
742 (2015)

20. Tong, C., et al.: Storytelling and visualization: an extended survey. Information
9(3), 65 (2018)


	Storyline Visualizations with Ubiquitous Actors
	1 Introduction
	2 Storyline Visualizations and Ubiquitous Actors
	3 The SUA Algorithmic Pipeline
	4 Implementation and Case Studies
	5 Conclusions and Future Work
	References




