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Abstract. Stress minimization is among the best studied force-directed
graph layout methods because it reliably yields high-quality layouts. It
thus comes as a surprise that a novel approach based on stochastic gra-
dient descent (Zheng, Pawar and Goodman, TVCG 2019) is claimed
to improve on state-of-the-art approaches based on majorization. We
present experimental evidence that the new approach does not actually
yield better layouts, but that it is still to be preferred because it is simpler
and robust against poor initialization.
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1 Introduction

The class of force-directed graph drawing algorithms is large both in terms
of objectives and optimization algorithms [1,13]. Experimental [4] and anec-
dotal evidence suggest that a most desirable objective is the stress function of
distance-based multidimensional scaling [14]. Given a simple undirected graph
G = (V,E), the layout x = (R2)V of a straight-line drawing is considered suit-
able, if the weighted deviation

stress(x) =
∑

i<j

d−2
ij (‖xi − xj‖ − dij)2 (1)

of Euclidean distances ‖xi − xj‖ in the layout from shortest-path distances dij
in the graph is small.

The stress function has been varied in numerous ways to accommodate addi-
tional objectives or constraints [2,5,8,9,16]. Since stress minimization is com-
putationally intractable, similarly many approaches have been proposed to save
computation time [11,15,17]. These methods are generally designed to improve
an initial layout iteratively and thus yield local minima of the stress function
that cannot be improved further by moving single vertices.

Here we are interested in assessing a recent proposal by Zheng, Pawar, and
Goodman [18] that is based on stochastic gradient descent and claimed to out-
perform majorization approaches [10].
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Our own computational experiments suggest that the new approach does not
lead to better layouts, but that it is still preferable due to its simplicity and,
crucially, indifference to initialization. We do not address actual running times
because any comparison would be relative to the choice of speed-up techniques
and the overall similarity of the computation suggests that the same algorithm
engineering techniques could be used in either approach.

The remainder is organized as follows. In Sect. 2, we briefly describe the
proposal of Zheng et al. in the context of previous approaches. The results of
our experiments are presented and discussed in Sect. 3, and we conclude with
some general implications in Sect. 4.

2 Stress Minimization

We very briefly review some major developments in the use of multidimensional
scaling in graph drawing. This is not to provide the details of each method but
to contrast the approach based on stochastic gradient descent with previous
approaches.

Gradient Descent. While first uses of multidimensional scaling for graph drawing
date back to the 1960s, it was popularized by Kamada and Kawai [12], who also
introduced a localized version of the gradient descent approach used until then.
Since a necessary condition for a local minimum of the stress function is that all
partial derivatives are zero, they iteratively pick a vertex for which the vector of
partial derivatives with respect to its two coordinates has maximum length. Then
a two-dimensional Newton-Raphson method is applied to the stress function with
all other vertices fixed. Their layout is thus obtained by iteratively moving one
vertex at a time toward a position where the different stress terms cancel each
other out.

Majorization. Ganser, Koren, and North [10] proposed to use majorization [7]
instead. Here, the complex stress function is replaced with a convex function
that is larger for each layout but the current, for which it is equal. Minimizing
this function leads to a new layout that is guaranteed to have lower stress, and
the process is iterated until it converges to a local minimum.

The process can also be localized to move only a single vertex such that the
majorizing function is reduced. This yields an intuitive algorithm because the
update

xi ← 1∑
j �=i

d−2
ij

∑

j �=i

d−2
ij · xj + dij(xi − xj)

‖xi − xj‖

places vertex i directly into a position that balances out the influences of all
other vertices. One iteration consists of an update of each vertex.

Because of its simplicity and guaranteed convergence, this approach is con-
sidered the state of the art.
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Stochastic Dradient Descent. In this method the gradient is replaced by an
unbiased estimator. For additive objective functions such as the stress function
in Eq. (1), the estimator may simply be a single term of the sum. Since stress has
one term for every pair of vertices, the contribution of this term can be reduced
by moving the two vertices either closer together or farther apart.

A single update thus moves both vertices along the vector δ to extend or
shrink the line segment xixj to match the target length dij more closely,

xi ← xi − µ(t)
2 · δ

xj ← xj + µ(t)
2 · δ

where δ =
‖xi − xj‖ − dij

‖xi − xj‖ · (xi − xj),

and μ(t) = min{1, d−2
ij η(t)} is a weighted step width capped at 1. Since an

individual move is almost certainly in conflict with the desired distances of other
pairs, the method does not converge in general. Instead, the unweighted step
width η(t) is made to exhibit an exponential decay over iteration time t, and
convergence is thus enforced.

Fig. 1. Example run of stochastic gradient descent on graph dwt 1005 with random
initialization and intermediate layouts after 1, 6, and 15 iteration.

One iteration consists of an update of all pairs of vertices in random order.
The method is thus similar to localized majorization but instead of aggregating
the influence of all other vertices before moving one, those influences are consid-
ered separately in random order. The running time of one iteration is in Θ(n2)
for both stochastic gradient descent and localized majorization, but instead of
over a linear number of linear-time vertex movements the computation is spread
out over a quadratic number of constant-time dyadic updates.

3 Experiments

Our experiments address the claim [18] that stochastic gradient descent (SGD)
outperforms majorization (SMACOF). The graphs used as benchmarks are from
the University of Florida sparse matrix collection [6].
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On Par, But Not Better. The claim of superior performance is based on exper-
iments in which both approaches are initialized with a random layout as in the
example in Fig. 1. It was already concluded from earlier experiments, however,
that the performance of majorization depends on the initialization and that
random initialization leads to poor local minima [4].

initially 1 iteration 6 iterations 15 iterations

random SMACOF

random SGD

CMDS SMACOF

CMDS SGD

Fig. 2. An example graph (1138 bus) after 1, 6, and 15 iterations.

We therefore ran experiments comparing the reduction in stress when initial-
izing at random or with classical MDS (CMDS). Classical MDS results in layouts
that are essentially unique and represent large distances well. Moreover, it can be
approximated at comparatively negligible cost using PivotMDS [3]. Two typical
examples of the results are shown in Fig. 3, and for a better intuition, we also
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Fig. 3. Stress values for SGD and SMACOF on two example graphs. Random initial-
ization is within a unit square whilst classical MDS is used at an appropriate scale.
The plots show results of 10 runs for each algorithm, with circles representing single
runs and lines interpolating through the means of all 10 runs. Initial stress omitted.

Fig. 4. Stress relative to baseline from SMACOF after CMDS. With 10 runs for each
instance, we find that random initialization results in significantly higher stress for
SMACOF (left chart). The stress obtained from SGD differs by about ±1% (rescaled
on the right).

show some of the corresponding layouts in Fig. 2. While the result on all bench-
mark graphs confirm that SGD indeed yields much lower stress than majorization
when initialized with a random layout, there is no noteworthy difference in the
final stress when the initial layout takes care of the global arrangement. Notably,
the result of SGD is largely independent of the initialization strategy.

Our experiments on a much larger set of benchmark graphs support these
conclusions. The evaluations in Fig. 4 confirm quantitatively that majorization
with random initialization is a poor baseline because it results in significantly
higher stress compared to majorization after classical scaling. Whether SGD
or the latter combination yield lower stress depends on the graph, but relative
differences are small, anyway.
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Fig. 5. Stress reduction by SMACOF initialized with CMDS or a few iterations of
SGD (left) and the relative deviation of the final stress from the baseline of SMACOF
with CMDS (right) on example graphs 1138 bus and dwt 1005. The initial iterations
of SGD start from a random initialization in the unit square, and each instance was
run 10 times.

Self-initializing. The seeming indifference of SGD to the initial layout prompted
a second suite of experiments.

We hypothesized that the initially large displacements in SGD are respon-
sible for the overall quality of the final outcome. If this was the case, then the
differences between SGD and SMACOF should disappear when we initialize
SMACOF with a small number of SGD iterations.

As illustrated in Fig. 5 this is indeed the case. Even a single step of SGD
prevents majorization from sinking into a poor local minimum. After about
seven iterations of SGD, majorization yields layouts that are even slightly better
than those obtained from initialization with CMDS. We also note that in the
next iterations, SMACOF reduces stress faster than SGD, but the number of
iterations to the final layout is roughly the same for both. This number becomes
smaller than for SMACOF initialized with CMDS, offsetting the higher cost of
SGD iterations compared to PivotMDS.

We conclude that a, if not the, major advantage of the approach based on
stochastic gradient descent is the reliable untangling of any initial layout during
the first few iterations. No separate initialization strategy is required.



24 K. Börsig et al.

Well Designed. We performed a number of additional experiments that generally
confirm the recommendations given for stochastic gradient descent [18], and
indicate that little can be gained by straightforward attempts at improvement
such as an initial focus on long distances or the integration of majorization steps.

4 Conclusions

We have presented computational experiments comparing two approaches for
graph drawing by multidimensional scaling of shortest-path distances.

Contrary to claims by the authors, we do not find that stochastic gradient
descent, which was recently proposed as an alternative to majorization, leads
to better layouts [18]. We find no significant differences in stress, provided that
majorization is initialized appropriately.

The true advantage of stochastic gradient descent appears to lie in its indif-
ference to initialization. It is striking that this very simple and uniform algorithm
yields results that are on par with the state of the art.

We did not compare running times in this short paper because both
approaches largely perform the same operations in different order and speed-
up techniques such as subsampling and spatial aggregation abound. Since many
of these apply similarly to both approaches, we expect differences to be too sub-
tle for any general claims. Since pairs in a maximal matching can be updated
without interference, stochastic gradient descent appears to be more amenable
to parallelization, though.

References

1. Brandes, U.: Force-directed graph drawing. In: Kao, M.Y. (ed.) Encyclopedia of
Algorithms, pp. 1–6. Springer, New York (2014). https://doi.org/10.1007/978-3-
642-27848-8 648-1

2. Brandes, U., Mader, M.: A quantitative comparison of stress-minimization
approaches for offline dynamic graph drawing. In: van Kreveld, M., Speckmann, B.
(eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-25878-7 11

3. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling
of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp.
42–53. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6 6

4. Brandes, U., Pich, C.: An experimental study on distance-based graph drawing.
In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218–229.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00219-9 21

5. Brandes, U., Pich, C.: More flexible radial layout. J. Graph Alg. Appl. 15(1),
157–173 (2011). https://doi.org/10.7155/jgaa.00221

6. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1 (2011). https://doi.org/10.1145/2049662.2049663

7. De Leeuw, J.: Applications of convex analysis to multidimensional scaling. In:
Barra, J.R., Brodeau, F., Romier, G., Van Cutsem, B. (eds.) Recent Developments
in Statistics, pp. 133–145. North Holland Publishing Company (1977). http://
www.stat.ucla.edu/∼deleeuw/janspubs/1977/chapters/deleeuw C 77.pdf

https://doi.org/10.1007/978-3-642-27848-8_648-1
https://doi.org/10.1007/978-3-642-27848-8_648-1
https://doi.org/10.1007/978-3-642-25878-7_11
https://doi.org/10.1007/978-3-642-25878-7_11
https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.1007/978-3-642-00219-9_21
https://doi.org/10.7155/jgaa.00221
https://doi.org/10.1145/2049662.2049663
http://www.stat.ucla.edu/~deleeuw/janspubs/1977/chapters/deleeuw_C_77.pdf
http://www.stat.ucla.edu/~deleeuw/janspubs/1977/chapters/deleeuw_C_77.pdf


SGD Works Well 25

8. Dwyer, T., Koren, Y., Marriott, K.: Constrained graph layout by stress majoriza-
tion and gradient projection. Discrete Math. 309(7), 1895–1908 (2009). https://
doi.org/10.1016/j.disc.2007.12.103

9. Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout.
IEEE Trans. Vis. Comput. Graph. 19(6), 927–940 (2013). https://doi.org/10.1109/
TVCG.2012.299

10. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31843-9 25

11. Ingram, S., Munzner, T., Olano, M.: Glimmer: multilevel MDS on the GPU.
IEEE Trans. Vis. Comput. Graph. 15(2), 249–261 (2009). https://doi.org/10.1109/
TVCG.2008.85

12. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31, 7–15 (1989). https://doi.org/10.1016/0020-0190(89)90102-6

13. Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Hand-
book of Graph Drawing and Visualization, pp. 383–408. CRC Press, Oxford (2013)

14. McGee, V.E.: The multidimensional scaling of ‘elastic’ distances. Br. J. Math.
Stat. Psychol. 19(2), 181–196 (1966). https://doi.org/10.1111/j.2044-8317.1966.
tb00367.x
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