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Preface

This volume contains the papers presented at GD 2020, the 28th International
Symposium on Graph Drawing and Network Visualization, held on September 16–18,
2020 online. Graph drawing is concerned with the geometric representation of graphs
and constitutes the algorithmic core of network visualization. Graph drawing and net-
work visualization are motivated by applications where it is crucial to visually analyse
and interact with relational datasets. Information about the conference series and past
symposia is maintained at http://www.graphdrawing.org. The 2020 edition of the
conference was hosted by The University of British Columbia, with Will Evans as chair
of the Organizing Committee. A total of 251 participants attended the conference.

Regular papers could be submitted to one of two distinct tracks: Track 1 for papers
on combinatorial and algorithmic aspects of graph drawing and Track 2 for papers on
experimental, applied, and network visualization aspects. Short papers were given a
separate category, which welcomed both theoretical and applied contributions. An
additional track was devoted to poster submissions. All the tracks were handled by a
single Program Committee. In response to the call for papers, the Program Committee
received a total of 82 submissions, consisting of 75 papers (40 in Track 1, 14 in Track
2, and 21 in the short-paper category) and 7 posters. More than 250 single-blind
reviews were provided, more than a third of which were contributed by external
sub-reviewers. After extensive electronic discussions via EasyChair, the Program
Committee selected 38 papers and 7 posters for inclusion in the scientific program of
GD 2020. This resulted in an overall paper acceptance rate of just over 50% (55% in
Track 1, 50% in Track 2, and 43% in the short-paper category). Authors were invited to
publish an electronic version of their accepted papers on the arXiv e-print repository
and also to provide a recorded presentation of their work. These contributions were
made available before the conference to all the online participants. There were two
invited lectures at GD 2020, one on each track of the scientific program. Sheelagh
Carpendale, Simon Fraser University, CA, presented “An Alternate Look at Aesthet-
ics” and Jeff Erickson, from University of Illinois at Urbana-Champagne, talked about
“Fun with Toroidal Spring Embeddings”. Abstracts of all invited lectures are included
in these proceedings.

The conference gave out best paper awards in Track 1 and Track 2, as well as a best
presentation award and a best poster award. As decided by a majority vote of the
Program Committee, the award for the best paper in Track 1 was assigned to
“Crossings between non-homotopic edges” by János Pach, Gábor Tardos, and Géza
Tóth, and the award for the best paper in Track 2 was assigned to “Graph drawing via
gradient descent, (GD)2” by Reyan Ahmed, Felice De Luca, Sabin Devkota, Stephen
Kobourov, and Mingwei Li. Based on a majority vote of conference participants, the
best presentation award was given to Johannes Obenaus, Rosna Paul, and Alexandra
Weinberger for their presentation of the paper “Plane Spanning Trees in Edge-Colored
Simple Drawings of Kn and the best poster award was given to “MetroSets: Visualizing

http://www.graphdrawing.org


Hypergraphs as MetroMaps” by Ben Jacobsen, Markus Wallinger, Stephen Kobourov,
and Martin Nöllenburg.

Congratulations to all the award winners for their excellent contributions, and many
thanks to Springer whose sponsorship funded the prize money for these awards.

Following tradition, the 27th Annual Graph Drawing Contest was held during the
conference. The contest was divided into two parts, creative topics and the live
challenge.

The creative topics featured two graphs, the Hrafnkels Saga graph and the K-pop
graph.

The live challenge focused on minimizing the number of crossings in an upward
drawing on a fixed grid, and had two categories: manual and automatic. Awards were
given in each of the four categories. We thank the Contest Committee, chaired by
Philipp Kindermann, for preparing interesting and challenging contest problems.
A report about the contest is included in these proceedings.

Many people and organizations contributed to the success of GD 2020. We would
like to thank all members of the Program Committee and the external reviewers for
carefully reviewing and discussing the submitted papers and posters; this was crucial
for putting together a strong and interesting program.

Thanks to all authors who chose GD 2020 as the publication venue for their
research.

We are grateful for the support of the sponsors Springer, yWorks, the Pacific
Institute for the Mathematical Sciences, and The University of British Columbia. Their
generosity helped make this symposium a memorable event for all participants. Last
but not least, we would like to express our appreciation of the organizing team, William
Evans, Holly Kwan, and Ruth Situma, as well as all the student volunteers: Ben Chugg,
Kyle Clarkson, Rebecca Lin, Noushin Saeedi, Lucca Siaudzionis, Matthew Tang,
Kelvin Wong, and David Zheng.

The 29th International Symposium on Graph Drawing and Network Visualization
(GD 2021) will take place from September 13–17, 2021. We hope to hold the con-
ference at the University of Tübingen, Germany, but in the event that we are unable to
have a physical conference, GD 2021 will, like GD 2020, be held virtually. Helen
Purchase and Ignaz Rutter will co-chair the Program Committee, and Michael Bekos
and Michael Kaufmann will co-chair the Organizing Committee.

October 2020 David Auber
Pavel Valtr
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Looking at Alternative Aesthetics

Sheelagh Carpendale

Simon Fraser University, Canada

Abstract. There have been many discussions in graph drawing, information
design and human computer interaction communities about the importance of
aesthetics in design, mentioning advantages such as people paying closer
attention, people being more willing to engage longer, and generally enhancing
usability. The Graph Drawing community is particularly aware of this, having
developed their own perspective on aesthetics. In this talk, I laud the current
Graph Drawing aesthetics, and note that alternatives are possible. I describe four
such possible directions: 1) looking beyond our culture – the world is full of
wonderful diversity; 2) data – comes with many variations in structure that may
contain sources of design ideas; 3) interaction – these possibilities continue to
expand and now include notions of agency, and serendipity; and 4) biomimicry
– nature contains fabulous inspirations for design.



Fun with Toroidal Spring Embeddings

Jeff Erickson

Department of Computer Science,
University of Illinois at Urbana-Champaign, USA

Abstract. Tutte’s classical spring embedding theorem is the foundation of
hundreds of algorithms for drawing and manipulating planar graphs. A some-
what less well-known generalization of Tutte’s theorem, first proved by Yves
Colin de Verdière in 1990, applies to graphs on more complex surfaces. I will
describe two recent applications of this more general theorem to graphs on the
Euclidean flat torus. The first is a natural toroidal analogue of the
Maxwell-Cremona correspondence, which relates equilibrium stresses, orthog-
onal dual embeddingss, and weighted Delaunay complexes. The second is an
efficient algorithm to morph between geodesic torus graphs using a small
number of parallel linear morphing steps, matching (and slightly simplifying)
recent planar moprhing algorithms.

This talk includes joint work with Erin Chambers, Patrick Lin, and Salman
Parsa, available at:

– https://arxiv.org/abs/2003.10057
– https://arxiv.org/abs/2007.07927

https://arxiv.org/abs/2003.10057
https://arxiv.org/abs/2007.07927
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Gradient Descent and Queue Layouts



Graph Drawing via Gradient
Descent, (GD)2

Reyan Ahmed(B) , Felice De Luca , Sabin Devkota , Stephen Kobourov ,
and Mingwei Li

Department of Computer Science, University of Arizona, Tucson, USA
abureyanahmed@email.arizona.edu

Abstract. Readability criteria, such as distance or neighborhood
preservation, are often used to optimize node-link representations of
graphs to enable the comprehension of the underlying data. With few
exceptions, graph drawing algorithms typically optimize one such crite-
rion, usually at the expense of others. We propose a layout approach,
Graph Drawing via Gradient Descent, (GD)2, that can handle multi-
ple readability criteria. (GD)2 can optimize any criterion that can be
described by a smooth function. If the criterion cannot be captured
by a smooth function, a non-smooth function for the criterion is com-
bined with another smooth function, or auto-differentiation tools are
used for the optimization. Our approach is flexible and can be used
to optimize several criteria that have already been considered earlier
(e.g., obtaining ideal edge lengths, stress, neighborhood preservation) as
well as other criteria which have not yet been explicitly optimized in
such fashion (e.g., vertex resolution, angular resolution, aspect ratio).
We provide quantitative and qualitative evidence of the effectiveness of
(GD)2 with experimental data and a functional prototype: http://hdc.
cs.arizona.edu/∼mwli/graph-drawing/.

1 Introduction

Graphs represent relationships between entities and visualization of this infor-
mation is relevant in many domains. Several criteria have been proposed to eval-
uate the readability of graph drawings, including the number of edge crossings,
distance preservation, and neighborhood preservation. Such criteria evaluate dif-
ferent aspects of the drawing and different layout algorithms optimize different
criteria. It is challenging to optimize multiple readability criteria at once and
there are few approaches that can support this. Examples of approaches that
can handle a small number of related criteria include the stress majorization
framework of Wang et al. [36], which optimizes distance preservation via stress
as well as ideal edge length preservation. The Stress Plus X (SPX) framework
of Devkota et al. [14] can minimize the number of crossings, or maximize the
minimum angle of edge crossings. While these frameworks can handle a limited
set of related criteria, it is not clear how to extend them to arbitrary optimiza-
tion goals. The reason for this limitation is that these frameworks are dependent
c© Springer Nature Switzerland AG 2020
D. Auber and P. Valtr (Eds.): GD 2020, LNCS 12590, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-68766-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68766-3_1&domain=pdf
http://orcid.org/0000-0001-6830-9053
http://orcid.org/0000-0001-5937-7636
http://orcid.org/0000-0002-0610-6573
http://orcid.org/0000-0002-0477-2724
http://orcid.org/0000-0002-0457-8091
http://hdc.cs.arizona.edu/~mwli/graph-drawing/
http://hdc.cs.arizona.edu/~mwli/graph-drawing/
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4 R. Ahmed et al.

on a particular mathematical formulation. For example, the SPX framework was
designed for crossing minimization, which can be easily modified to handle cross-
ing angle maximization (by adding a cosine factor to the optimization function).
This “trick” can be applied only to a limited set of criteria but not the majority
of other criteria that are incompatible with the basic formulation.

Fig. 1. Three (GD)2 layouts of the dodecahedron: (a) optimizing the number of cross-
ings, (b) optimizing uniform edge lengths, and (c) optimizing stress.

In this paper, we propose a general approach, Graph Drawing via Gradi-
ent Descent, (GD)2, that can optimize a large set of drawing criteria, provided
that the corresponding metrics that evaluate the criteria are smooth functions.
If the function is not smooth, (GD)2 either combines it with another smooth
function and partially optimizes based on the desired criterion, or uses modern
auto-differentiation tools to optimize. As a result, the proposed (GD)2 frame-
work is simple: it only requires a function that captures a desired drawing cri-
terion. To demonstrate the flexibility of the approach, we consider an initial
set of nine criteria: minimizing stress, maximizing vertex resolution, obtaining
ideal edge lengths, maximizing neighborhood preservation, maximizing crossing
angle, optimizing total angular resolution, minimizing aspect ratio, optimizing
the Gabriel graph property, and minimizing edge crossings. A functional pro-
totype is available on http://hdc.cs.arizona.edu/∼mwli/graph-drawing/. This is
an interactive system that allows vertices to be moved manually. Combinations
of criteria can be optimized by selecting a weight for each; see Fig. 1.

2 Related Work

Many criteria associated with the readability of graph drawings have been pro-
posed [37]. Most of graph layout algorithms are designed to (explicitly or implic-
itly) optimize a single criterion. For instance, a classic layout criterion is stress
minimization [26], where stress is defined by

∑

i<j

wij(|Xi −Xj |−dij)2. Here, X is

a n×2 matrix containing coordinates for the n nodes, dij is typically the graph-
theoretical distance between two nodes i and j and wij = d−α

ij is a normalization
factor with α equal to 0, 1 or 2. Thus reducing the stress in a layout corresponds

http://hdc.cs.arizona.edu/~mwli/graph-drawing/
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to computing node positions so that the actual distance between pairs of nodes
is proportional to the graph theoretic distance between them. Optimizing stress
can be accomplished by stress minimization, or stress majorization, which can
speed up the computation [22]. In this paper we only consider drawing in the
Euclidean plane, however, stress can be also optimized in other spaces such as
the torus [9].

Stress minimization corresponds to optimizing the global structure of the
layout, as the stress metric takes into account all pairwise distances in the graph.
The t-SNET algorithm of Kruiger et al. [27] directly optimizes neighborhood
preservation, which captures the local structure of a graph, as the neighborhood
preservation metric only considers distances between pairs of nodes that are close
to each other. Optimizing local or global distance preservation can be seen as
special cases of the more general dimensionality reduction approaches such as
multi-dimensional scaling [28,34].

Purchase et al. [30] showed that the readability of graphs increases if a lay-
out has fewer edge crossings. The underlying optimization problem is NP-hard
and several graph drawing contests have been organized with the objective of
minimizing the number of crossings in the graph drawings [2,8]. Recently several
algorithms that directly minimize crossings have been proposed [31,33].

The negative impact on graph readability due to edge crossings can be miti-
gated if crossing pairs of edges have a large crossings angle [4,15,24,25]. Formally,
the crossing angle of a straight-line drawing of a graph is the minimum angle
between two crossing edges in the layout, and optimizing this property is also
NP-hard. Recent graph drawing contests have been organized with the objective
of maximizing the crossings angle in graph drawings and this has led to several
heuristics for this problem [5,12].

The algorithms above are very effective at optimizing the specific readability
criterion they are designed for, but they cannot be directly used to optimize
additional criteria. This is a desirable goal, since optimizing one criterion often
leads to poor layouts with respect to one or more other criteria: for example,
algorithms that optimize the crossing angle tend to create drawings with high
stress and no neighborhood preservation [14].

Davidson and Harel [11] used simulated annealing to optimize different graph
readability criteria (keeping nodes away from other nodes and edges, uniform
edge lengths, minimizing edge crossings). Recently, several approaches have been
proposed to simultaneously improve multiple layout criteria. Wang et al. [36]
propose a revised formulation of stress that can be used to specify ideal edge
direction in addition to ideal edge lengths in a graph drawing. Devkota et al. [14]
also use a stress-based approach to minimize edge crossings and maximize cross-
ing angles. Eades et al. [19] provided a technique to draw large graphs while
optimizing different geometric criteria, including the Gabriel graph property.
Although the approaches above are designed to optimize multiple criteria, they
cannot be naturally extended to handle other optimization goals.

Constraint-based layout algorithms such as COLA [17,18], can be used to
enforce separation constraints on pairs of nodes to support properties such as
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Fig. 2. The (GD)2 framework: given a graph and a set of criteria (with weights), for-
mulate an objective function based on the selected set of criteria and weights. Then
compute the quality (value) of the objective function of the current layout of the graph.
Next, generate the gradient (analytically or automatically). Using the gradient infor-
mation, update the coordinates of the layout. Finally, update the objective function
based on the layout via regular or stochastic gradient descent. This process is repeated
for a fixed number of iterations.

customized node ordering or downward pointing edges. The coordinates of two
nodes are related by inequalities in the form of xi ≥ xj + gap for a node pair
(i, j). These kinds of constraints are known as hard constraints and are different
from the soft constrains in our (GD)2 framework.

3 The (GD)2 Framework

The (GD)2 framework is a general optimization approach to generate a layout
with any desired set of aesthetic metrics, provided that they can be expressed by
a smooth function. The basic principles underlying this framework are simple.
The first step is to select a set of layout readability criteria and a loss functions
that measures them. Then we define the function to optimize as a linear combi-
nation of the loss functions for each individual criterion. Finally, we iterate the
gradient descent steps, from which we obtain a slightly better drawing at each
iteration. Figure 2 depicts the framework of (GD)2: Given any graph G and read-
ability criterion Q, we find a loss function LQ,G which maps from the current
layout X (i.e. a n × 2 matrix containing the positions of nodes in the draw-
ing) to a real value that quantifies the current drawing. Note that some of the
readability criteria naturally correspond to functions that should be minimized
(e.g., stress, crossings), while others to functions that should be maximized (e.g.,
neighborhood preservation, angular resolution). Given a loss function LQ,G of X
where a lower value is always desirable, at each iteration, a slightly better layout
can be found by taking a small (ε) step along the (negative) gradient direction:
X(new) = X − ε · ∇X LQ,G.

To optimize multiple quality measures simultaneously, we take a weighted
sum of their loss functions and update the layout by the gradient of the sum.
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3.1 Gradient Descent Optimization

There are different kinds of gradient descent algorithms. The standard method
considers all vertices, computes the gradient of the objective function, and
updates vertex coordinates based on the gradient. For some objectives, we need
to consider all the vertices in every step. For example, the basic stress formu-
lation [26] falls in this category. On the other hand, there are some problems
where the objective can be optimized only using a subset of vertices. For exam-
ple, consider stress minimization again. If we select a set of vertices randomly
and minimize the stress of the induced graph, the stress of the whole graph is
also minimized [38]. This type of gradient descent is called stochastic gradient
descent. However, not all objective functions are smooth and we cannot com-
pute the gradient of a non-smooth function. In that scenario, we can compute
the subgradient, and update the objective based on the subgradient. Hence, as
long as the function is continuously defined on a connected component in the
domain, we can apply the subgradient descent algorithm. In [3], we give a list
of loss functions we used to optimize 9 graph drawing properties with gradient
descent variants. In Sect. 4, we specify the loss functions we used in detail.

When a function is not defined in a connected domain, we can introduce a
surrogate loss function to ‘connect the pieces’. For example, when optimizing
neighborhood preservation we maximize the Jaccard similarity between graph
neighbors and nearest neighbors in graph layout. However, Jaccard similarity
is only defined between two binary vectors. To solve this problem we extend
Jaccard similarity to all real vectors by its Lovász extension [6] and apply that to
optimize neighborhood preservation. An essential part of gradient descent based
algorithms is to compute the gradient/subgradient of the objective function. In
practice, it is always not necessary to write down the gradient analytically as it
can be computed automatically via automatic differentiation [23]. Deep learning
packages such as Tensorflow [1] and PyTorch [29] apply automatic differentiation
to compute the gradient of complicated functions.

When optimizing multiple criteria simultaneously, we combine them via a
weighted sum. However, choosing a proper weight for each criterion can be tricky.
Consider, for example, maximizing crossing angles and minimize stress simulta-
neously with a fixed pair of weights. At the very early stage, the initial drawing
may have many crossings and stress minimization often removes most of the
early crossings. As a result, maximizing crossing angles in the early stages can
be harmful as it move nodes in directions that contradict those that come from
stress minimization. Therefore, a well-tailored weight scheduling is needed for a
successful outcome. Continuing with the same example, a better outcome can be
achieved by first optimizing stress until it converges, and later adding weights
for the crossing angle maximization. To explore different ways of scheduling, we
provide an interface that allows manual tuning of the weights.

3.2 Implementation

We implemented the (GD)2 framework in JavaScript. In particular we used
the automatic differentiation tools in tensorflow.js [35] and the drawing library
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d3.js [7]. The prototype is available at http://hdc.cs.arizona.edu/∼mwli/graph-
drawing/.

4 Properties and Measures

In this section we specify the aesthetic goals, definitions, quality measures and
loss functions for each of the 9 graph drawing properties we optimized: stress,
vertex resolution, edge uniformity, neighborhood preservation, crossing angle,
aspect ratio, total angular resolution, Gabriel graph property, and crossing num-
ber. In the following discussion, since only one (arbitrary) graph is considered,
we omit the subscript G in our definitions of loss function LQ,G and write LQ

for short. Other standard graph notation is summarized in Table 1.

Table 1. Graph notation used in this paper.

Notation Description

G Graph

V The set of nodes in G, indexed by i, j or k

E The set of edges in G, indexed by a pair of
nodes (i, j) in V

n = |V | Number of nodes in G

|E| Number of edges in G

Adjn×n and Ai,j Adjacency matrix of G and its (i, j)-th entry

Dn×n and dij Graph-theoretic distances between pairs of
nodes and the (i, j)-th entry

Xn×2 2D-coordinates of nodes in the drawing

||Xi − Xj || The Euclidean distance between nodes i and
j in the drawing

θi ith crossing angle

ϕijk Angle between incident edges (i, j) and (j, k)

4.1 Stress

We use stress minimization to draw a graph such that the Euclidean distance
between pairs of nodes is proportional to their graph theoretic distance. Follow-
ing the ordinary definition of stress [26], we minimize

LST =
∑

i<j

wij(|Xi − Xj |2 − dij)2 (1)

Where dij is the graph-theoretical distance between nodes i and j, Xi and Xj

are the 2D coordinates of nodes i and j in the layout. The normalization factor,
wij = d−2

ij , balances the influence of short and long distances: the longer the
graph theoretic distance, the more tolerance we give to the discrepancy between
two distances. When comparing two drawings of the same graph with respect to
stress, a smaller value (lower bounded by 0) corresponds to a better drawing.

http://hdc.cs.arizona.edu/~mwli/graph-drawing/
http://hdc.cs.arizona.edu/~mwli/graph-drawing/


Graph Drawing via Gradient Descent, (GD)2 9

4.2 Ideal Edge Length

When given a set of ideal edge lengths {lij : (i, j) ∈ E} we minimize the average
deviation from the ideal lengths:

LIL =

√
√
√
√

1
|E|

∑

(i,j)∈E

(
||Xi − Xj || − lij

lij
)2 (2)

For unweighted graphs, by default we take the average edge length in the current
drawing as the ideal edge length for all edges. lij = lavg = 1

|E|
∑

(i,j)∈E

||Xi −
Xj || for all (i, j) ∈ E. The quality measure QIL = LIL is lower bounded by 0
and a lower score yields a better layout.

4.3 Neighborhood Preservation

Neighborhood preservation aims to keep adjacent nodes close to each other
in the layout. Similar to Kruiger et al. [27], the idea is to have the k-nearest
(Euclidean) neighbors (k-NN) of node i in the drawing to align with the k near-
est nodes (in terms of graph distance from i). A natural quality measure for
the alignment is the Jaccard index between the two pieces of information. Let,
QNP = JaccardIndex(K,Adj) = |{(i,j):Kij=1 and Aij=1}|

|{(i,j):Kij=1 or Aij=1}| , where Adj denotes
the adjacency matrix and the i-th row in K denotes the k-nearest neighborhood
information of i: Kij = 1 if j is one of the k-nearest neighbors of i and Kij = 0
otherwise.

To express the Jaccard index as a differentiable minimization problem, first,
we express the neighborhood information in the drawing as a smooth function of
node positions Xi and store it in a matrix K̂. In K̂, a positive entry K̂i,j means
node j is one of the k-nearest neighbors of i, otherwise the entry is negative. Next,
we take a differentiable surrogate function of the Jaccard index, the Lovász hinge
loss (LHL) [6], to make the Jaccard loss optimizable via gradient descent. We
minimize

LNP = LHL(K̂, Adj) (3)

where LHL is given by Berman et al. [6], K̂ denotes the k-nearest neighbor
prediction:

K̂i,j =

{

−(||Xi − Xj || − di,πk
+di,πk+1
2 ) if i �= j

0 if i = j
(4)

where di,πk
is the Euclidean distance between node i and its kth nearest neighbor

and Adj denotes the adjacency matrix. Note that K̂i,j is positive if j is a k-NN
of i, otherwise it is negative, as is required by LHL [6].
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4.4 Crossing Number

Reducing the number of edge crossings is one of the classic optimization goals in
graph drawing, known to affect readability [30]. Following Shabbeer et al. [33],
we employ an expectation-maximization (EM)-like algorithm to minimize the
number of crossings. Two edges do not cross if and only if there exists a line
that separates their extreme points. With this in mind, we want to separate
every pair of edges (the M step) and use the decision boundaries to guide the
movement of nodes in the drawing (the E step). Formally, given any two edges
e1 = (i, j), e2 = (k, l) that do not share any nodes (i.e., i, j, k and l are all
distinct), they do not intersect in a drawing (where nodes are drawn at Xi =
(xi, yi), a row vector) if and only if there exists a decision boundary w = w(e1,e2)

(a 2-by-1 column vector) together with a bias b = b(e1,e2) (a scalar) such that:
LCN,(e1,e2) =

∑
α=i,j,k or l ReLU(1 − tα · (Xαw + b)) = 0.

Here we use (e1, e2) to denote the subgraph of G which only has two edges
e1 and e2, ti = tj = 1 and tk = tl = −1. The loss reaches its minimum at 0 when
the SVM classifier fw,b : x �→ xw + b predicts node i and j to be greater than 1
and node k and l to be less than −1. The total loss for the crossing number is
therefore the sum over all possible pairs of edges. Similar to (soft) margin SVM,
we add a term |w(e1,e2)|2 to maximize the margin of the decision boundary:
LCN =

∑

e1=(i,j), e2=(k,l)∈E
i, j, k and l all distinct

LCN,(e1,e2) + |w(e1,e2)|2. For the E and M steps, we

used the same loss function LCN to update the boundaries w(e1,e2), b(e1,e2) and
node positions X:

w(new) = w − ε∇wLCN (M step 1)

b(new) = b − ε∇bLCN (M step 2)

X(new) = X − ε∇XLCN (X; w(new), b(new)) (E step)

To evaluate the quality we simply count the number of crossings.

4.5 Crossing Angle Maximization

When edge crossings are unavoidable, the graph drawing can still be easier to
read when edges cross at angles close to 90◦ [37]. Heuristics such as those by
Demel et al. [12] and Bekos et al. [5] have been proposed and have been successful
in graph drawing challenges [13]. We use an approach similar to the force-directed
algorithm given by Eades et al. [20] and minimize the squared cosine of crossing
angles: LCAM =

∑
all crossed edge pairs

(i,j),(k,l)∈E

( 〈Xi−Xj ,Xk−Xl〉
|Xi−Xj |·|Xk−Xl| )

2. We evaluate quality by

measuring the worst (normalized) absolute discrepancy between each crossing
angle θ and the target crossing angle (i.e. 90◦): QCAM = maxθ |θ − π

2 |/π
2 .
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4.6 Aspect Ratio

Good use of drawing area is often measured by the aspect ratio [16] of the
bounding box of the drawing, with 1 : 1 as the optimum. We consider multiple
rotations of the current drawing and optimize their bounding boxes simultane-
ously. Let AR = minθ

min(wθ,hθ)
max(wθ,hθ)

, where wθ and hθ denote the width and height
of the bounding box when the drawing is rotated by θ degrees. A naive approach
to optimize aspect ratio, which scales the x and y coordinates of the drawing by
certain factors, may worsen other criteria we wish to optimize and is therefore
not suitable for our purposes. To make aspect ratio differentiable and compatible
with other objectives, we approximate aspect ratio based on 4 (soft) boundaries
(top, bottom, left and right) of the drawing. Next, we turn this approximation
and the target (1 : 1) into a loss function using cross entropy loss. We minimize

LAR =
∑

θ∈{ 2πk
N , for k=0,···(N−1)}

crossEntropy([
wθ

wθ + hθ
,

hθ

wθ + hθ
], [0.5, 0.5])

(5)

where N is the number of rotations sampled (e.g., N = 7), and wθ, hθ are the
(approximate) width and height of the bounding box when rotating the drawing
around its center by an angle θ. For any given θ-rotated drawing, wθ is defined
to be the difference between the current (soft) right and left boundaries, wθ =
right − left = 〈softmax(xθ), xθ〉 − 〈softmax(−xθ), xθ〉, where xθ is a collection
of the x coordinates of all nodes in the θ-rotated drawing, and softmax returns a
vector of weights (. . . wk, . . . ) given by softmax(x) = (. . . wk, . . . ) = exk∑

i exi
. Note

that the approximate right boundary is a weighted sum of the x coordinates
of all nodes and it is designed to be close to the x coordinate of the right-
most node, while keeping other nodes involved. Optimizing aspect ratio with
the softened boundaries will stretch all nodes instead of moving the extreme
points. Similarly, hθ = top − bottom = 〈softmax(yθ), yθ〉 − 〈softmax(−yθ), yθ〉
Finally, we evaluate the drawing quality by measuring the worst aspect ratio
on a finite set of rotations. The quality score ranges from 0 to 1 (where 1 is
optimal): QAR = minθ∈{ 2πk

N , for k=0,···(N−1)}
min(wθ,hθ)
max(wθ,hθ)

4.7 Angular Resolution

Distributing edges adjacent to a node makes it easier to perceive the informa-
tion presented in a node-link diagram [25]. Angular resolution [4], defined as the
minimum angle between incident edges, is one way to quantify this goal. For-
mally, ANR = minj∈V min(i,j),(j,k)∈E ϕijk, where ϕijk is the angle formed by
between edges (i, j) and (j, k). Note that for any given graph, an upper bound
of this quantity is 2π

dmax
where dmax is the maximum degree of nodes in the

graph. Therefore in the evaluation, we will use this upper bound to normalize
our quality measure to [0, 1], i.e. QANR = ANR

2π/dmax
. To achieve a better drawing

quality via gradient descent, we define the angular energy of an angle ϕ to be
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e−s·ϕ, where s is a constant controlling the sensitivity of angular energy with
respect to the angle (by default s = 1), and minimize the total angular energy
over all incident edges:

LANR =
∑

(i,j),(j,k)∈E

e−s·ϕijk (6)

4.8 Vertex Resolution

Good vertex resolution is associated with the ability to distinguish different
vertices by preventing nodes from occluding each other. Vertex resolution is
typically defined as the minimum Euclidean distance between two vertices in
the drawing [10,32]. However, in order to align with the units in other objectives
such as stress, we normalize the minimum Euclidean distance with respect to a
reference value. Hence we define the vertex resolution to be the ratio between
the shortest and longest distances between pairs of nodes in the drawing, V R =
mini�=j ||Xi−Xj ||

dmax
, where dmax = maxk,l ||Xk − Xl||. To achieve a certain target

resolution r ∈ [0, 1] by minimizing a loss function, we minimize

LV R =
∑

i,j∈V,i�=j

ReLU(1 − ||Xi − Xj ||
r · dmax

) 2 (7)

In practice, we set the target resolution to be r = 1√
|V | , where |V | is the number

of vertices in the graph. In this way, an optimal drawing will distribute nodes
uniformly in the drawing area. The purpose of the ReLU is to output zero when
the argument is negative, as when the argument is negative the constraint is
already satisfied. In the evaluation, we report, as a quality measure, the ratio
between the actual and target resolution and cap its value between 0 (worst)
and 1 (best).

QV R = min(1.0,
mini,j ||Xi − Xj ||

r · dmax
) (8)

4.9 Gabriel Graph Property

A graph is a Gabriel graph if it can be drawn in such a way that any disk
formed by using an edge in the graph as its diameter contains no other nodes.
Not all graphs are Gabriel graphs, but drawing a graph so that as many of
these edge-based disks are empty of other nodes has been associated with good
readability [19]. This property can be enforced by a repulsive force around the
midpoints of edges. Formally, we establish a repulsive field with radius rij equal
to half of the edge length, around the midpoint cij of each edge (i, j) ∈ E, and
we minimize the total potential energy:

LGA =
∑

(i,j)∈E,
k∈V \{i,j}

ReLU(rij − |Xk − cij |)2 (9)
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where cij = Xi+Xj

2 and rij = |Xi−Xj |
2 . We use the (normalized) minimum dis-

tance from nodes to centers to characterize the quality of a drawing with respect
to Gabriel graph property: QGA = min(i,j)∈E,k∈V

|Xk−cij |
rij

.

5 Experimental Evaluation

In this section, we describe the experiment we conducted on 10 graphs to assess
the effectiveness and limitations of our approach. The graphs used are depicted in
Fig. 3 along with information about each graph. The graphs have been chosen to
represent a variety of graph classes such as trees, cycles, grids, bipartite graphs,
cubic graphs, and symmetric graphs.

Fig. 3. Drawings from different algorithms: neato, sfdp and (GD)2 with stress (ST),
aspect ratio (AR), crossing angle maximization (CAM) and angular resolution (ANR) opti-
mization on a set of 10 graphs. Edge color is determined by the discrepancy between
actual and ideal edge length (here all ideal edge lengths are 1); informally, short edges
are red and long edges are blue. (Color figure online)
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Table 2. The values of the nine criteria corresponding to the 10 graphs for the layouts
computed by neato, sfdp, random, and 3 runs of (GD)2 initialized with neato, sfdp,
and random layouts. Bold values are the best. Green cells show an improvement, yellow
cells show a tie, with respect to the initial values.

Crossings
neato sdfp rnd (GD)2n (GD)2s (GD)2r

dodec. 6.0 6.0 79.0 6.0 6.0 10.0
cycle 0.0 0.0 11.0 0.0 0.0 0.0
tree 0.0 0.0 31.0 0.0 0.0 0.0
block 23.0 16.0 297.0 23.0 16.0 25.0
compl. 3454 3571 3572 3454 3571 3572
cube 2.0 2.0 18.0 2.0 2.0 2.0
symme. 1.0 0.0 77.0 1.0 0.0 0.0
bipar. 40.0 52.0 40.0 40.0 40.0 40.0
grid 0.0 0.0 190.0 0.0 0.0 0.0
spx t. 73.0 71.0 7254.0 73.0 71.0 76.0

Ideal edge length
neato sdfp rnd (GD)2n (GD)2s (GD)2r

dodec. 0.14 0.15 0.53 0.1 0.15 0.08
cycle 0.0 0.0 0.42 0.0 0.0 0.0
tree 0.03 0.13 0.31 0.03 0.04 0.09
block 0.31 0.43 0.5 0.25 0.33 0.31
compl. 0.42 0.41 0.45 0.41 0.41 0.41
cube 0.08 0.12 0.29 0.03 0.0 0.12
symme. 0.08 0.19 0.46 0.07 0.05 0.04
bipar. 0.31 0.26 0.44 0.16 0.13 0.1
grid 0.01 0.09 0.41 0.0 0.0 0.01
spx t. 0.4 0.32 0.45 0.3 0.2 0.32

Stress
neato sdfp rnd (GD)2n (GD)2s (GD)2r

dodec. 21.4 17.58 111.05 17.45 17.58 17.6
cycle 0.77 0.77 30.24 0.77 0.77 0.77
tree 2.11 2.7 98.49 2.11 2.62 5.5
block 26.79 28.22 203.31 12.72 23.71 11.2
compl. 33.54 31.58 37.87 31.53 31.49 31.47
cube 2.75 2.71 11.69 2.66 2.69 2.65
symme. 9.88 5.38 180.48 9.88 3.36 3.97
bipar. 9.25 8.5 12.48 8.52 8.5 9.6
grid 6.77 7.38 221.66 6.77 6.78 6.77
spx t. 674.8 418.4 9794 227.1 235.3 227.2

Angular resolution
neato sdfp rnd (GD)2n (GD)2s (GD)2r

dodec. 0.39 0.39 0.01 0.6 0.39 0.6
cycle 0.8 0.8 0.05 0.8 0.8 0.8
tree 0.61 0.56 0.04 0.78 0.83 0.88
block 0.05 0.01 0.0 0.36 0.02 0.29
compl. 0.0 0.01 0.0 0.0 0.01 0.0
cube 0.28 0.3 0.01 0.46 0.44 0.4
symme. 0.66 0.6 0.03 0.68 0.76 0.77
bipar. 0.01 0.03 0.01 0.02 0.04 0.11
grid 0.52 0.54 0.0 0.52 0.54 0.52
spx t. 0.02 0.0 0.0 0.03 0.0 0.0

Neighbor preservation
neato sdfp rnd (GD)2n (GD)2s (GD)2r

dodec. 0.32 0.3 0.1 0.5 0.3 0.5
cycle 1.0 1.0 0.08 1.0 1.0 1.0
tree 1.0 1.0 0.02 1.0 1.0 1.0
block 0.57 0.93 0.12 0.83 0.93 1.0
compl. 1.0 1.0 1.0 1.0 1.0 1.0
cube 0.5 0.5 0.12 0.5 0.5 0.5
symme. 0.75 0.95 0.05 0.75 1.0 1.0
bipar. 0.47 0.47 0.43 0.47 0.47 0.43
grid 1.0 1.0 0.05 1.0 1.0 1.0
spx t. 0.36 0.44 0.03 0.49 0.46 0.53

Gabriel graph property
neato sdfp rnd (GD)2n (GD)2s (GD)2r

dodec. 0.16 0.64 0.07 0.32 0.64 0.32
cycle 1.0 1.0 0.29 1.0 1.0 1.0
tree 1.0 1.0 0.05 1.0 1.0 1.0
block 0.16 0.03 0.04 0.57 0.14 0.59
compl. 0.0 0.01 0.02 0.04 0.01 0.07
cube 0.43 0.51 0.01 0.75 0.8 0.71
symme. 0.54 1.0 0.15 0.7 1.0 1.0
bipar. 0.08 0.11 0.25 0.48 0.64 0.74
grid 1.0 1.0 0.03 1.0 1.0 1.0
spx t. 0.04 0.0 0.02 0.06 0.08 0.08

Vertex resolution
neato sdfp rnd (GD)2n (GD)2s (GD)2r

dodec. 0.52 0.54 0.07 0.7 0.81 0.68
cycle 0.98 0.98 0.32 0.98 0.98 0.98
tree 0.68 0.57 0.23 0.69 0.68 0.68
block 0.66 0.38 0.1 0.72 0.59 0.51
compl. 0.8 1.0 0.18 0.84 1.0 0.91
cube 0.66 0.82 0.11 0.66 0.82 0.67
symme. 0.35 0.43 0.06 0.38 0.51 0.6
bipar. 0.83 0.87 0.21 0.83 0.87 0.35
grid 0.87 0.8 0.08 0.88 0.88 0.88
spx t. 0.47 0.48 0.05 0.47 0.48 0.32

Aspect ratio
neato sdfp rnd (GD)2n (GD)2s (GD)2r

dodec. 0.92 0.91 0.88 0.96 0.96 0.96
cycle 0.96 0.95 0.67 0.96 0.95 0.96
tree 0.73 0.67 0.88 0.86 0.76 0.88
block 0.9 0.74 0.7 0.96 0.9 0.96
compl. 0.89 0.97 0.91 0.98 0.98 0.98
cube 0.76 0.79 0.57 0.87 0.79 0.88
symme. 0.58 0.67 0.89 0.6 0.67 0.89
bipar. 0.82 0.9 0.91 0.82 0.9 0.91
grid 1.0 1.0 0.82 1.0 1.0 1.0
spx t. 0.98 0.86 0.88 0.99 0.99 0.99

Crossing angle
neato sdfp rnd (GD)2n (GD)2s (GD)2r

dodec. 0.06 0.12 0.24 0.06 0.09 0.15
cycle 0.0 0.0 0.19 0.0 0.0 0.0
tree 0.0 0.0 0.23 0.0 0.0 0.0
block 0.11 0.1 0.24 0.05 0.06 0.09
compl. 0.25 0.24 0.24 0.24 0.24 0.24
cube 0.03 0.03 0.21 0.03 0.03 0.04
symme. 0.03 0.0 0.24 0.03 0.0 0.0
bipar. 0.16 0.17 0.23 0.16 0.17 0.19
grid 0.0 0.0 0.23 0.0 0.0 0.0
spx t. 0.16 0.22 0.25 0.16 0.15 0.21

In our experiment we compare (GD)2 with neato [21] and sfdp [21], which
are classical implementations of a stress-minimization layout and scalable force-
directed layout. In particular, we focus on 9 readability criteria: stress (ST), ver-
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tex resolution (VR), ideal edge lengths (IL), neighbor preservation (NP), crossing
angle (CA), angular resolution (ANR), aspect ratio (AR), Gabriel graph properties
(GG), and crossings (CR). We provide the values of the nine criteria corresponding
to the 10 graphs for the layouts computed by by neato, sfdp, random, and 3 runs
of (GD)2 initialized with neato, sfdp, and random layouts in Table 2. The best
result is shown with bold font, green cells indicate improvement, yellow cells rep-
resent ties, with respect to the initial values (scores for different criteria obtained
using neato, sfdp, and random initialization). From the experimental results we
see that (GD)2 improves the random layout in 90% of the tests. (GD)2 also
improves or ties initial layouts from neato and sfdp, but the improvements are
not as strong or as frequent, most notably for the CR, NP, and CA criteria.

In this experiment, we focused on optimizing a single metric. In some applica-
tions, it is desirable to optimize multiple criteria. We can use a similar technique
i.e., take a weighted sum of the metrics and optimize the sum of scores. In the
prototype (http://hdc.cs.arizona.edu/∼mwli/graph-drawing/), there is a slider
for each criterion, making it possible to combine different criteria.

6 Limitations

Although (GD)2 is a flexible framework that can optimize a wide range of cri-
teria, it cannot handle the class of constraints where the node coordinates are
related by some inequalities, i.e., the framework does not support hard con-
straints. Similarly, this framework does not naturally support shape-based draw-
ing constraints such as those in [17,18,36]. (GD)2 takes under a minute for the
small graphs considered in this paper. We have not experimented with larger
graphs as the implementation has not been optimized for speed.

7 Conclusions and Future Work

We introduced the graph drawing framework (GD)2 and showed how this app-
roach can be used to optimize different graph drawing criteria and combinations
thereof. The framework is flexible and natural directions for future work include
adding further drawing criteria and better ways to combine them. To compute
the layout of large graphs, a multi-level algorithmic model might be needed.
It would also be useful to have a way to compute appropriate weights for the
different criteria.

Acknowledgments. This work was supported in part by NSF grants CCF-1740858,
CCF-1712119, and DMS-1839274.
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Really Well for Stress Minimization
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Abstract. Stress minimization is among the best studied force-directed
graph layout methods because it reliably yields high-quality layouts. It
thus comes as a surprise that a novel approach based on stochastic gra-
dient descent (Zheng, Pawar and Goodman, TVCG 2019) is claimed
to improve on state-of-the-art approaches based on majorization. We
present experimental evidence that the new approach does not actually
yield better layouts, but that it is still to be preferred because it is simpler
and robust against poor initialization.

Keywords: Multidimensional scaling · Stress minimization ·
Stochastic gradient descent · Experiments.

1 Introduction

The class of force-directed graph drawing algorithms is large both in terms
of objectives and optimization algorithms [1,13]. Experimental [4] and anec-
dotal evidence suggest that a most desirable objective is the stress function of
distance-based multidimensional scaling [14]. Given a simple undirected graph
G = (V,E), the layout x = (R2)V of a straight-line drawing is considered suit-
able, if the weighted deviation

stress(x) =
∑

i<j

d−2
ij (‖xi − xj‖ − dij)2 (1)

of Euclidean distances ‖xi − xj‖ in the layout from shortest-path distances dij
in the graph is small.

The stress function has been varied in numerous ways to accommodate addi-
tional objectives or constraints [2,5,8,9,16]. Since stress minimization is com-
putationally intractable, similarly many approaches have been proposed to save
computation time [11,15,17]. These methods are generally designed to improve
an initial layout iteratively and thus yield local minima of the stress function
that cannot be improved further by moving single vertices.

Here we are interested in assessing a recent proposal by Zheng, Pawar, and
Goodman [18] that is based on stochastic gradient descent and claimed to out-
perform majorization approaches [10].
c© Springer Nature Switzerland AG 2020
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Our own computational experiments suggest that the new approach does not
lead to better layouts, but that it is still preferable due to its simplicity and,
crucially, indifference to initialization. We do not address actual running times
because any comparison would be relative to the choice of speed-up techniques
and the overall similarity of the computation suggests that the same algorithm
engineering techniques could be used in either approach.

The remainder is organized as follows. In Sect. 2, we briefly describe the
proposal of Zheng et al. in the context of previous approaches. The results of
our experiments are presented and discussed in Sect. 3, and we conclude with
some general implications in Sect. 4.

2 Stress Minimization

We very briefly review some major developments in the use of multidimensional
scaling in graph drawing. This is not to provide the details of each method but
to contrast the approach based on stochastic gradient descent with previous
approaches.

Gradient Descent. While first uses of multidimensional scaling for graph drawing
date back to the 1960s, it was popularized by Kamada and Kawai [12], who also
introduced a localized version of the gradient descent approach used until then.
Since a necessary condition for a local minimum of the stress function is that all
partial derivatives are zero, they iteratively pick a vertex for which the vector of
partial derivatives with respect to its two coordinates has maximum length. Then
a two-dimensional Newton-Raphson method is applied to the stress function with
all other vertices fixed. Their layout is thus obtained by iteratively moving one
vertex at a time toward a position where the different stress terms cancel each
other out.

Majorization. Ganser, Koren, and North [10] proposed to use majorization [7]
instead. Here, the complex stress function is replaced with a convex function
that is larger for each layout but the current, for which it is equal. Minimizing
this function leads to a new layout that is guaranteed to have lower stress, and
the process is iterated until it converges to a local minimum.

The process can also be localized to move only a single vertex such that the
majorizing function is reduced. This yields an intuitive algorithm because the
update

xi ← 1∑
j �=i

d−2
ij

∑

j �=i

d−2
ij · xj + dij(xi − xj)

‖xi − xj‖

places vertex i directly into a position that balances out the influences of all
other vertices. One iteration consists of an update of each vertex.

Because of its simplicity and guaranteed convergence, this approach is con-
sidered the state of the art.
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Stochastic Dradient Descent. In this method the gradient is replaced by an
unbiased estimator. For additive objective functions such as the stress function
in Eq. (1), the estimator may simply be a single term of the sum. Since stress has
one term for every pair of vertices, the contribution of this term can be reduced
by moving the two vertices either closer together or farther apart.

A single update thus moves both vertices along the vector δ to extend or
shrink the line segment xixj to match the target length dij more closely,

xi ← xi − µ(t)
2 · δ

xj ← xj + µ(t)
2 · δ

where δ =
‖xi − xj‖ − dij

‖xi − xj‖ · (xi − xj),

and μ(t) = min{1, d−2
ij η(t)} is a weighted step width capped at 1. Since an

individual move is almost certainly in conflict with the desired distances of other
pairs, the method does not converge in general. Instead, the unweighted step
width η(t) is made to exhibit an exponential decay over iteration time t, and
convergence is thus enforced.

Fig. 1. Example run of stochastic gradient descent on graph dwt 1005 with random
initialization and intermediate layouts after 1, 6, and 15 iteration.

One iteration consists of an update of all pairs of vertices in random order.
The method is thus similar to localized majorization but instead of aggregating
the influence of all other vertices before moving one, those influences are consid-
ered separately in random order. The running time of one iteration is in Θ(n2)
for both stochastic gradient descent and localized majorization, but instead of
over a linear number of linear-time vertex movements the computation is spread
out over a quadratic number of constant-time dyadic updates.

3 Experiments

Our experiments address the claim [18] that stochastic gradient descent (SGD)
outperforms majorization (SMACOF). The graphs used as benchmarks are from
the University of Florida sparse matrix collection [6].
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On Par, But Not Better. The claim of superior performance is based on exper-
iments in which both approaches are initialized with a random layout as in the
example in Fig. 1. It was already concluded from earlier experiments, however,
that the performance of majorization depends on the initialization and that
random initialization leads to poor local minima [4].

initially 1 iteration 6 iterations 15 iterations

random SMACOF

random SGD

CMDS SMACOF

CMDS SGD

Fig. 2. An example graph (1138 bus) after 1, 6, and 15 iterations.

We therefore ran experiments comparing the reduction in stress when initial-
izing at random or with classical MDS (CMDS). Classical MDS results in layouts
that are essentially unique and represent large distances well. Moreover, it can be
approximated at comparatively negligible cost using PivotMDS [3]. Two typical
examples of the results are shown in Fig. 3, and for a better intuition, we also
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Fig. 3. Stress values for SGD and SMACOF on two example graphs. Random initial-
ization is within a unit square whilst classical MDS is used at an appropriate scale.
The plots show results of 10 runs for each algorithm, with circles representing single
runs and lines interpolating through the means of all 10 runs. Initial stress omitted.

Fig. 4. Stress relative to baseline from SMACOF after CMDS. With 10 runs for each
instance, we find that random initialization results in significantly higher stress for
SMACOF (left chart). The stress obtained from SGD differs by about ±1% (rescaled
on the right).

show some of the corresponding layouts in Fig. 2. While the result on all bench-
mark graphs confirm that SGD indeed yields much lower stress than majorization
when initialized with a random layout, there is no noteworthy difference in the
final stress when the initial layout takes care of the global arrangement. Notably,
the result of SGD is largely independent of the initialization strategy.

Our experiments on a much larger set of benchmark graphs support these
conclusions. The evaluations in Fig. 4 confirm quantitatively that majorization
with random initialization is a poor baseline because it results in significantly
higher stress compared to majorization after classical scaling. Whether SGD
or the latter combination yield lower stress depends on the graph, but relative
differences are small, anyway.
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Fig. 5. Stress reduction by SMACOF initialized with CMDS or a few iterations of
SGD (left) and the relative deviation of the final stress from the baseline of SMACOF
with CMDS (right) on example graphs 1138 bus and dwt 1005. The initial iterations
of SGD start from a random initialization in the unit square, and each instance was
run 10 times.

Self-initializing. The seeming indifference of SGD to the initial layout prompted
a second suite of experiments.

We hypothesized that the initially large displacements in SGD are respon-
sible for the overall quality of the final outcome. If this was the case, then the
differences between SGD and SMACOF should disappear when we initialize
SMACOF with a small number of SGD iterations.

As illustrated in Fig. 5 this is indeed the case. Even a single step of SGD
prevents majorization from sinking into a poor local minimum. After about
seven iterations of SGD, majorization yields layouts that are even slightly better
than those obtained from initialization with CMDS. We also note that in the
next iterations, SMACOF reduces stress faster than SGD, but the number of
iterations to the final layout is roughly the same for both. This number becomes
smaller than for SMACOF initialized with CMDS, offsetting the higher cost of
SGD iterations compared to PivotMDS.

We conclude that a, if not the, major advantage of the approach based on
stochastic gradient descent is the reliable untangling of any initial layout during
the first few iterations. No separate initialization strategy is required.
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Well Designed. We performed a number of additional experiments that generally
confirm the recommendations given for stochastic gradient descent [18], and
indicate that little can be gained by straightforward attempts at improvement
such as an initial focus on long distances or the integration of majorization steps.

4 Conclusions

We have presented computational experiments comparing two approaches for
graph drawing by multidimensional scaling of shortest-path distances.

Contrary to claims by the authors, we do not find that stochastic gradient
descent, which was recently proposed as an alternative to majorization, leads
to better layouts [18]. We find no significant differences in stress, provided that
majorization is initialized appropriately.

The true advantage of stochastic gradient descent appears to lie in its indif-
ference to initialization. It is striking that this very simple and uniform algorithm
yields results that are on par with the state of the art.

We did not compare running times in this short paper because both
approaches largely perform the same operations in different order and speed-
up techniques such as subsampling and spatial aggregation abound. Since many
of these apply similarly to both approaches, we expect differences to be too sub-
tle for any general claims. Since pairs in a maximal matching can be updated
without interference, stochastic gradient descent appears to be more amenable
to parallelization, though.
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Abstract. A queue layout of a graph G consists of a vertex ordering of G
and a partition of the edges into so-called queues such that no two edges
in the same queue nest, i.e., have their endpoints ordered in an ABBA-
pattern. Continuing the research on local ordered covering numbers, we
introduce the local queue number of a graph G as the minimum � such
that G admits a queue layout with each vertex having incident edges
in no more than � queues. Similarly to the local page number [Merker,
Ueckerdt, GD’19], the local queue number is closely related to the graph’s
density and can be arbitrarily far from the classical queue number.

We present tools to bound the local queue number of graphs from
above and below, focusing on graphs of treewidth k. Using these, we
show that every graph of treewidth k has local queue number at most
k +1 and that this bound is tight for k = 2, while a general lower bound
is �k/2�+1. Our results imply, inter alia, that the maximum local queue
number among planar graphs is either 3 or 4.

Keywords: Queue number · Local covering number · Treewidth

1 Introduction

Given a graph, we aim to find a vertex ordering ≺ and a partition of the edges
into queues, where two edges uv and xy may not be in the same queue if u ≺ x ≺
y ≺ v. Since Heath and Rosenberg [14] introduced this concept in 1992, one of
the main concerns of studying queue layouts is the investigation of the maximum
queue number of the class of planar graphs and the class of graphs with bounded
treewidth, see for instance [4,7,8,13,22,25]. Despite recent breakthroughs, there
are still large gaps between lower and upper bounds on the maximum queue
number of both graph classes. In particular, the maximum queue number of
planar graphs is between 4 and 49 due to Alam et al. [4], respectively Dujmović
et al. [7], and Wiechert [25] provides a linear lower bound and an exponential
upper bound on the maximum queue number of graphs with treewidth k. We
continue the research in this direction by proposing a new graph parameter, the
local queue number, that minimizes the number of queues in which any one vertex
has incident edges. Compared to the classical queue number, the investigation
c© Springer Nature Switzerland AG 2020
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of the local queue number leads to stronger lower bounds and weaker upper
bounds. The latter might offer a way to support conjectured upper bounds on
the classical queue number. We remark that analogously to the local queue
number considered here, we recently introduced [17] the local page number as a
weaker version of the classical page number.

All necessary definitions are given in Sect. 1.1, including the formal definition
of local queue numbers. In Sect. 1.2, we briefly locate local queue numbers in the
general covering number framework, and outline the state of the art on queue
numbers and local page numbers of planar graphs and graphs with bounded
treewidth. We summarize our results in Sect. 1.3 and point out which results
on local page numbers immediately generalize to local queue numbers. We then
investigate the local queue number of k-trees in Sect. 2. Finally, we discuss pos-
sible applications of the presented tools and propose open problems for further
research in Sect. 3.

1.1 Definitions

Consider a graph G with a linear ordering ≺ of its vertex set. The sets V (G) and
E(G) denote the vertex set, respectively edge set, of G. For subsets X,Y ⊆ V (G),
we write X ≺ Y and say X is to the left of Y and Y is to the right of X if x ≺ y
for all vertices x ∈ X, y ∈ Y . If the sets consist only of a single vertex, we
use x instead of {x}. Let the span of X contain all vertices lying between the
leftmost and the rightmost vertex of X, that is span(X) = {v ∈ V (G) : ∃x, x′ ∈
X with x � v � x′}. For a subgraph H of G and a vertex v �∈ V (H), we say v
is below H if v ∈ span(V (H)) and we say v is outside H otherwise.

Fig. 1. Left to right: 1-queue layout, 3-rainbow, 1-page book embedding, 3-twist.

Two edges uv, xy ∈ E(G) nest if u ≺ x ≺ y ≺ v or x ≺ u ≺ v ≺ y, and they
cross if u ≺ x ≺ v ≺ y or x ≺ u ≺ y ≺ v. A set of k pairwise nesting (crossing)
edges is called a k-rainbow (k-twist). A queue (page) is an edge set in which no
two edges nest (cross), see Fig. 1. A k-queue layout (k-page book embedding) of
G consists of a vertex ordering ≺ and a partition of the edges of G into k queues
(pages). Finally, the queue number qn(G) (page number pn(G), also known as
stack number or book thickness) of a graph G is the smallest k such that there is a
k-queue layout (k-page book embedding) for G. Both concepts are called ordered
covering numbers as a partition of edges can also be considered as covering the
graph with queues or pages, respectively.

We now define local variants of the parameters defined above. For this, we
allow partitions of arbitrary size but minimize the number of parts at every
vertex. An �-local queue layout (�-local book embedding) is one in which every
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vertex has incident edges in at most � queues (pages). The local queue number
qn�(G) (local page number pn�(G)) is the smallest � for which there is an �-local
queue layout for G. Note that we have qn�(G) � qn(G) and pn�(G) � pn(G) as
layouts of size � are also �-local.

Finally, a k-tree is a (k + 1)-clique or is obtained from a smaller k-tree by
choosing a clique C of size k and adding a new vertex u which is adjacent to all
vertices of C. Fixing an arbitrary construction ordering, the vertex u is called a
child of C, and C is called the parent clique of u. We also say u is a child of each
vertex of C. A child is called nesting with respect to a vertex ordering if it is
placed below its parent clique, and non-nesting otherwise. Note that k-trees are
exactly the maximal graphs with treewidth k. As local queue and page numbers
are monotone, it suffices for us to investigate k-trees, instead of arbitrary graphs
of treewidth k.

1.2 Related Work and Motivation

The notion of local ordered covering numbers unifies the concepts of local cover-
ing numbers and ordered covering numbers. The first was introduced by Knauer
and Ueckerdt [16], while existing research on the latter focuses on queue num-
bers and page numbers, which were established by Bernhart and Kainen [5] and
Heath and Rosenberg [14], respectively.

We first give a brief overview of global and local covering numbers as intro-
duced in [16]. Consider a class of graphs G, called guest class, and an input graph
H. We say the graph H is covered by some covering graphs G1, . . . , Gt ∈ G if
Gi is a subgraph of H for each i and every edge of H is contained in some
covering graph, i.e. if G1 ∪ · · · ∪ Gt = H. The set of covering graphs is called an
injective G-cover of H. The global covering number is the minimum number of
covering graphs needed to cover a graph H, that is the size of the smallest injec-
tive G-cover of H. For the local covering number, we use G-covers of arbitrary
size and minimize the number of covering graphs at every vertex. For this, we
say a G-cover for a graph H is �-local if every vertex is contained in at most �
covering graphs. Now, the local covering number of a graph H with guest class
G is defined as the smallest � such that there is an �-local injective G-cover of H.

Many known graph parameters are covering numbers. For instance, the thick-
ness and outerthickness are global covering numbers for the guest classes of
planar and outerplanar graphs, respectively [11,19]. In addition, all kinds of
arboricity are global covering numbers for the guest class of the respective
forests [2,3,10,20]. The local covering number was considered for the guest
classes of complete bipartite graphs [9], complete graphs [24], and different
forests [16].

We continue by summarizing known results on the queue number and local
page number of planar graphs and graphs with bounded treewidth. While every
1-queue graph is planar [14], the maximum queue number among all outerplanar
graphs is 2 [13] and among all planar graphs it is between 4 and 49 [4,7]. The
lower bound of 4 is obtained by a planar 3-tree. Alam et al. [4] also show that
every planar 3-tree admits a 5-queue layout. Trees have queue number 1 using a
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BFS-ordering [14], and BFS-orderings proved also useful for queue layouts of pla-
nar graphs [7], outerplanar graphs [13], and graphs with bounded treewidth [25].
Rengarajan and Veni Madhavan [22] prove that every 2-tree admits a 3-queue
layout, while Wiechert [25] proves that this bound is tight. More general, there
is a graph with treewidth k and queue number at least k + 1 for each k > 1,
while the best known upper bound is 2k − 1 [25].

The local version of page numbers was introduced and investigated in [17].
The local page number of any graph is always near its maximum average degree,
while the classical page number can be arbitrarily far off: For any d � 3, there
are n-vertex graphs with local page number at most d + 2 but page number
Ω(

√
dn1/2−1/d). The maximum local page number for k-trees is at least k and

at most k + 1, and for planar graphs it is either 3 or 4.
Our main motivation for defining local ordered covering numbers is to com-

bine the well-studied notions of ordered covering numbers and local covering
numbers and thereby continue research on both concepts. The questions we ask
for the new graph parameters naturally arise from those asked for the known
concepts. Studying ordered graphs and covering numbers is additionally moti-
vated by applications in very-large-scale integration (VLSI) circuit design and
bioinformatics [1,6,15,23]. In addition, covers appear in network design [21],
while queue layouts are closely related to 3-dimensional graph drawing [26] and
parallel multiplications of sparse matrices [12].

1.3 Contribution

We first observe that there are graphs whose local queue number is arbitrarily
far from its queue number. In addition, the local queue number is tied to the
maximum average degree, which is defined as mad(G) = max{2|E(H)|/|V (H)| :
H ⊆ G,H �= ∅}. Both results are derived from the analogous results for local
page numbers [17], which is why we omit the proofs here. They can be found in
the long version of this paper [18]. Theorem 2 also implies that the local queue
number is tied to the local page number, which is conjectured for the classical
page number and classical queue number.

Theorem 1. For any d � 3 and infinitely many n, there exist n-vertex graphs
with local queue number at most d + 2 but queue number Ω(

√
dn1/2−1/d).

Theorem 2. For any graph G, we have

mad(G)
4

� qn�(G) � mad(G)
2

+ 2.

While the best upper bound for the queue number of k-trees is 2k − 1 due
to Wiechert [25], Theorem 2 already provides a linear upper bound for the local
queue number of k-trees, which can be slightly improved.

Theorem 3. Every graph with treewidth k admits a (k + 1)-local queue layout.
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Suspecting that the bound in Theorem 3 might be tight, we focus on lower
bounds for the local queue number of k-trees in Sect. 2. Our main contribution
is a tool that allows to focus on the construction of cliques with non-nesting
children. We use this to prove that Theorem 3 is tight for k = 2 and that there
are k-trees whose local queue number is at least 
k/2� + 1 for k > 1.

Theorem 4. There is a graph with treewidth 2 and local queue number 3.

Theorem 5. For every k > 1, there is a graph G with treewidth k and local
queue number at least 
k/2� + 1.

As the maximum average degree of planar graphs is strictly smaller than
6 and 2-trees are planar, Theorems 2 and 4 bound the maximum local queue
number of the class of planar graphs.

Corollary 6. Every planar graph admits a 4-local queue layout and there is a
planar graph whose local queue number is at least 3.

2 The Local Queue Number of k-Trees

We first provide a straight-forward construction for the upper bound of k+1 for
the local queue number of k-trees, which proves Theorem 3.

Proof (of Theorem 3). We partition the edges of a k-tree G into stars, each form-
ing a queue. Consider an arbitrary construction ordering of G and let v1, . . . , vn

denote the vertices of G in this ordering. For each vertex vi ∈ V (G), i = 1, . . . , n,
we define a queue Qi that contains all edges from vi to its children, that is
Qi = {vivj ∈ E(G) : i < j}. Choosing an arbitrary vertex ordering yields a
queue layout since edges of a star cannot nest. The layout is (k + 1)-local since
every vertex has at most k neighbors with smaller index. �

As our main tool for constructing k-trees with large local queue number, we
introduce a sequence of two-player games that are adaptions of a game intro-
duced by Wiechert [25]. Taking turns, Alice constructs a k-tree, which is laid
out by Bob. The rules for Alice stay the same in all games, whereas the rules
for Bob include only the first n conditions in the n-th game (see below). We
always assume that Bob has an optimal strategy and prepare Alice to react on
all possible moves of Bob. That is, when we write Alice wins, then we mean that
she wins regardless of the layout Bob chooses.

The graph which is laid out in the r-th round of any game is denoted by
Gr, the layout Bob creates by (≺r,Qr). In the beginning, there is an initial
clique Cinit whose edges are assigned to arbitrary queues. In particular, we have
G0 = Cinit. The notation we introduce for the games is summarized in Fig. 2.
In the r-th round, Alice chooses a k-clique Cr from the current graph Gr−1 and
an integer mr. Now, mr new vertices xr

1, . . . , x
r
mr

are introduced and become
adjacent to the vertices of Cr. The clique Cr is the parent clique of the new
vertices and edges. Vertices with the same parent clique are called twin vertices
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and two edges that share a vertex in the parent clique and are introduced in the
same round are called twin edges. Then, in the n-th game, Bob inserts the new
vertices into the current vertex ordering and assigns the new edges to queues
satisfying the first n of the following conditions:

Fig. 2. Notation for the Games (i) to (v). Cr is the parent clique that Alice chooses in
the r-th round and she chooses to add mr = 2 children. The two children xr

1 and xr
2

are twin vertices. The two orange (thin) edges are twin edges. (Color figure online)

(i) The layout (≺r,Qr) is an �-local queue layout of Gr.
(ii) In the first round, all new vertices are placed to the right of Cinit. Without

loss of generality, we have Cinit ≺ x1
1 ≺ · · · ≺ x1

m1
.

(iii) The new vertices xr
1, . . . , x

r
mr

are inserted consecutively, i.e. y is not in the
span of xr

1, . . . , x
r
mr

for all vertices y ∈ V (Gr−1) from the previous rounds.
(iv) Each two twin edges are assigned to the same queue.
(v) The new vertices are placed to the right of their parent clique. Without loss

of generality, we have Cr ≺ xr
1 ≺ · · · ≺ xr

mr
. The edges between a vertex xr

i ,
i ∈ {1, . . . , mr}, and its parent clique Cr are assigned to pairwise different
queues. In particular, if � = k, then Bob cannot introduce new queues at
vertex xr

i in the following rounds.

Alice wins the n-th game if Bob cannot extend the layout without violating
one of the first n conditions. In particular, if Alice wins the first game, this
implies the existence of a k-tree with local queue number � + 1. However, the
first game is the hardest for Alice, whereas the games become easier when Bob’s
moves are more restricted. During the proofs, we decide what Alice does but
cannot control Bob’s moves. We say that Bob has to act in a certain way if Alice
wins otherwise.

We now set out to show how Alice wins Game (i) for k = � = 2. We first
present a 2-tree with which Alice wins Game (v) and then show how to augment
it until arriving at a 2-tree with which she wins the first game.

Lemma 7. There is a graph with which Alice wins Game (v) for k = � = 2.

Proof. Consider the 2-tree presented in Fig. 3. The edge {1, 2} is the initial
clique Cinit and Alice introduces in five rounds the vertices one-by-one in the
order indicated by their number. We first argue why we may assume that
Bob does not assign any new edge to the same queue as its parent clique.
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Fig. 3. 2-tree for Game (v) (left) and the layout chosen by Bob (right)

Assume that in some round r, Bob chooses to assign an edge e between the
parent clique Cr and its child xr

1 to the same queue Q as Cr. Condition (v)
ensures that the other edge e′ between Cr and xr

1 is assigned to a different queue
Q′. Thus, both endpoints of e′ have incident edges in the same two queues Q
and Q′. In particular, Bob cannot introduce new queues for edges adjacent to
e′. Condition (v) further states that Bob cannot introduce new queues at any
vertex that does not belong to the initial clique. It follows that Bob can use only
the two queues Q and Q′ for any subgraph that starts with e′ as initial clique.
Now, Alice wins by constructing the 2-tree with queue number 3 provided by
Wiechert [25] using e′ as the initial clique.

Hence, Bob has no choice when assigning the edges to queues. The vertex
ordering is determined by the rules except for the placement of vertex 6 which
may be placed between the vertices 4 and 5. In this case, however, the edges
{1, 5} and {3, 6} form a rainbow. Thus, Bob chooses the layout shown in Fig. 3,
which again has a rainbow (edges {3, 7} and {4, 5}) and Alice wins Game (v). �

We give the reductions from Game (v) to Game (ii) in a more general way,
so we can reuse them for subsequent lemmas.

Lemma 8. Let k > 1 and � � k. If Alice wins Game (v), then she also wins
Game (ii).

Proof. We prove that Alice wins the n-th game provided a strategy with which
she wins the (n + 1)-st game. We do this by adapting the strategy such that
the (n + 1)-st condition is satisfied in the n-th game. Alternatively, we prove
that Alice wins the n-th game if Bob does not act as claimed in the (n + 1)-st
condition. Thus, we may assume that the (n + 1)-st condition holds and apply
the given strategy for the (n + 1)-st game.

Game (v) � Game (iv). We assume that Alice has a strategy to win Game
(v) and present how Alice adapts her moves to ensure Condition v in Game (iv).
We exploit the vertex placement and queue assignment of twin vertices and twin
edges to prove that Bob creates a rainbow unless he places new vertices to the
right of their parent clique. We thereby observe that each two non-twin edges
introduced in the same round are assigned to different queues. We proceed by
induction on the number of rounds r. The vertex placement in the first round is
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established by Condition (ii). In each of the succeeding rounds, let Alice increase
the number mr of added vertices by 2.

Consider a set of twin vertices X = {xp
0, x

p
1, . . . , x

p
mp+1} that were added to

a clique Cp in a former round p. To simplify the notation, we write xi instead
of xp

i and m instead of mp. The vertices of Cp are denoted by c1 ≺ · · · ≺ ck. By
induction, we have Cp ≺ X. Observe that this already implies that the edges
at each xi are assigned to pairwise different queues since chx1 and cjx0 nest for
1 � h < j � k and twin edges are assigned to the same queue due to Condition
(iv) (see Fig. 4). In particular, Bob has to choose one of the existing queues for
new edges incident to xi.

Fig. 4. The twin edges c2x0 and c2x1 are in the same queue. All edges between Cp and
X have a twin edge forming a rainbow with one of them.

Fig. 5. Vertices x0, . . . , xm+1 and their parent clique Cp. A child xr of xi, i ∈
{1, . . . , m}, can only be placed to the right of xm+1.

Alice now continues applying her strategy for Game (v) using the vertices
x1, . . . , xm. Assume that, in some round r, she chooses a clique Cr that contains
xi for some i ∈ {1, . . . ,m} (see Fig. 5). Bob has to insert a child xr of Cr into
the vertex ordering and has to choose a queue Q for xix

r which already contains
an edge cxi with c ∈ V (Cp). If Bob places xr between c and xm+1, then cxm+1

and xix
r form a rainbow in the same queue. If Bob places xr to the left of c,

then cx0 and xix
r nest and are assigned to the same queue. Hence, he has to

place the new vertices to the right of xm+1 and therefore satisfies Condition (v).
Thus, Alice may apply her strategy for Game (v) to win.
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Game (iv) � Game (iii). We consider Game (iii) and show how Alice ensures
Condition (iv), i.e. that each two twin edges are assigned to the same queue.
For this, recall that each vertex has incident edges in at most � different queues.
Thus, Bob has at most �k possibilities to assign the k edges of a new vertex to
queues. Alice multiplies the number mr of added vertices by �k in each round and
thus finds mr twin vertices whose twin edges are assigned to the same queues.
She continues the game on those with the same strategy with which she wins
Game (iv) and ignores the others.

Game (iii)�Game (ii). Condition (iii) forces Bob to insert twin vertices con-
secutively into the vertex ordering. Let mr be the number of vertices that Alice
adds to the current graph in the r-th round of Game (ii). To simulate Condition
(iii) in Game (ii), Alice chooses to add (mr+1)·|V (Gr−1)| vertices instead of only
mr. By pigeonhole principle, Bob places at least mr new vertices consecutively.
Alice now uses her strategy from Game (iii) to win Game (ii). �

Finally, the following lemma justifies to introduce Condition (ii) if k = � = 2.
That is, we use Lemma 9 to win Game (i) provided a strategy to win Game (ii).
We choose s = 2m1, where m1 is the number of vertices that are introduced in
the first round of Game (ii). The clique given by Lemma 9 serves as initial clique
Cinit. Without loss of generality, Cinit has m1 children to the right and therefore
satisfies Condition (ii).

Lemma 9. For any s > 0, there is a 2-tree G such that for every 2-local queue
layout there is an edge with at least s non-nesting children.

Proof. An m-ary 2-tree of depth t is constructed as follows. We start with an
edge whose depth, and also the depth of its endpoints, is defined to be 0. For
0 < i � t, depth-i edges are introduced inductively by adding m children to each
depth-(i − 1) edge. The depth of the new children is i. G is an (s + 4)-ary 2-tree
of depth 6 and is partly shown in Fig. 6.

For the sake of contradiction, consider a 2-local queue layout of G such that
every edge of depth less than 6 has at least five nesting children. We shall find
a rainbow in one of the queues.

Let vw denote the depth-0 edge and let w′ be a nesting child of vw. The initial
edge vw is assigned to some queue Qblack. We now assume that vw′ is assigned
to a different queue Qorange and handle the other case later. Consider a nesting
child w′′ of vw′. Next, we have five depth-3 children of vw′′ which are placed
below their parent edge by assumption. Since the layout is 2-local, there are only
four possible combinations how the edges of depth 3 incident to v and w′′ can
be assigned to queues. By pigeonhole principle, there are two vertices x and y
with vx and vy assigned to the same queue Q, where Q = Qblack or Q = Qorange,
and xw′′, yw′′ ∈ Qblue for some queue Qblue. Note that Qblue �= Qblack, Qorange

as otherwise this would create a rainbow in the respective queue. Without loss
of generality, we have x ≺ y.
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Fig. 6. 2-tree with nesting children. The edges in black (thick), orange (thin), and
blue (dashed) correspond to the respective queues. The edges vx and vy could also be
orange, yu is black, orange, or blue and creates a rainbow in either case. (Color figure
online)

Finally, consider a nesting child u of the edge yw′′. Since the layout is 2-local,
we have yu ∈ Q or yu ∈ Qblue, that is yu is assigned to Qblack, Qorange, or Qblue.
In all three cases, there is a rainbow in the respective queue.

To end the proof, consider the case that vw′ is assigned to Qblack. If vx, vy ∈
Qblack, then the argumentation above still works. Otherwise, use vx instead of
vw′.

We conclude that in every 2-local queue layout, one of the edges has fewer
nesting children than we used in the construction, in particular fewer than five.
Therefore, all further children are non-nesting.

�
Lemmas 7 to 9 together show that Alice wins Game (i) for k = � = 2. That

is, there is a 2-tree with local queue number 3, which proves Theorem 4.
Since Bob may use more queues for larger k, the approach for Lemma 7 using

a k-tree with queue number k + 1 works only for k = 2. However, we introduce
two new conditions that restrict Bob’s moves further and offer Alice a way to
win Game (v) for any k > 1 and � � k.

For Games (vi) and (vii), we change the initial setup. Instead of starting with
only one clique, we start with two cliques and proceed on both cliques in parallel.
We thereby get two copies of the same graph (a left graph and a right graph),
where each vertex, edge, and clique has a corresponding copy in the other graph.
In the r-th round, Alice now chooses a k-clique in the left graph and its copy in
the right graph, and adds mr new vertices to each. Conditions (i) to (v) apply
to the left graph and to the right graph independently. In addition, Bob has to
satisfy the following conditions (only the first for Game (vi) and both for Game
(vii)):

(vi) Each two cliques C and C ′ that are copies of each other are laid out alter-
natingly, that is c1 ≺ c′

1 ≺ c2 ≺ c′
2 ≺ · · · ≺ ck ≺ c′

k for vertex sets
V (C) = {c1, . . . , ck} and V (C ′) = {c′

1, . . . , c
′
k}. In particular, new vertices

and their copies are placed in the order of their parent cliques to the right
of both parent cliques. Every edge is assigned to the same queue as its copy.
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(vii) Consider an edge v1v2 with its copy w1w2 (see Fig. 7). If there is a child x
of v1 to the right of both edges, then the edges v1x and v1v2 are assigned
to different queues.

We show how Alice wins Games (v) to (vi) for any k > 1 and � � k in the
long version of this paper [18]. The two new games together with Lemma 8 lead
to the following lemma showing that it suffices to find a k-tree with non-nesting
children to prove lower bounds. We remark that placing children outside their
parent clique would be a natural way to avoid nesting edges. Note that Condition
(ii) is justified by the requirement of Lemma 10.

v1 w1 v2 w2 x

Fig. 7. Two sister edges and a child x to the right of both

Lemma 10. Let k > 1 and � � k. Assume that for any s > 0 there is a k-
tree such that for every �-local queue layout, there is a k-clique with at least s
non-nesting children. Then, there is a k-tree with local queue number at least
� + 1.

Observe that we can embed k′-trees in k-trees with k′ < k. A queue layout of
the k-tree, however, can result in additional restrictions to the queue layout of
the embedded k′-tree. In particular, if every �-local queue layout of some k-tree
contains a k′-tree having a k′-clique with non-nesting children, we may apply
Lemma 10 to this clique. The resulting k′-tree with local queue number at least
� + 1 can then be augmented to a k-tree with local queue number at least � + 1.
This leads to the following strengthening of Lemma 10.

Lemma 11. Let 1 < k′ � k and � � k′. Assume that for any s > 0 there is a
k-tree G such that for every �-local queue layout, G contains a k′-clique with at
least s non-nesting children. Then, there is a k-tree with local queue number at
least � + 1.

Note that adding 2s children to a k-clique yields a k-tree that contains a

k/2�-clique with at least s non-nesting children. Thus, Lemma 11 with � =
k′ = 
k/2� proves Theorem 5.

3 Conclusions

Based on the notions of queue numbers and local covering numbers, we intro-
duced the local queue number as a novel graph parameter. We presented a tool
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to deal with k-trees which led to the construction of a 2-tree with local queue
number 3. This strengthens the lower bound of 3 for the queue number of 2-trees
due to Wiechert [25]. It remains open whether there are k-trees with local queue
number k + 1 for k > 2. Given Lemma 10, this is equivalent to the existence
of k-trees that have a k-clique with non-nesting children for any k-local queue
layout. That is, if every k-tree admits a k-local queue layout, then every k-tree
also admits a k-local queue layout such that all children are placed below their
parent clique. As such a vertex placement produces many nesting edges, this
does not seem to be a promising strategy.

Question 12. What is the maximum local queue number of treewidth-k graphs?

There is a third parameter that is closely related to queue numbers and
local queue numbers. For the union queue number qnu(G) of a graph G, we
define a union queue to be a vertex-disjoint union of queues and then minimize
the number of union queues that are necessary to cover all edges of G. As we
minimize the size of the cover, one could consider the union queue number close
to the queue number. Surprisingly, the union queue number is tied to the local
queue number and we have a linear upper bound on the union queue number
of k-trees. We refer to [17] for an analogous proof for local and union page
numbers. This observation has interesting consequences for queue layouts of k-
trees. If the best known upper bound of 2k −1 [25] is tight, then there are queue
layouts consisting of linearly many union queues but at least exponentially many
queues.

On the other hand, Lemma 10 might be extendable for �-queue layouts with
� > k. Condition (v) is crucial for this as it forbids Bob to introduce new queues.
If Bob may use more than k queues, however, the given proof fails. Note that the
requirement of a k-clique with non-nesting children is satisfied by a construction
presented by Wiechert [25, Lemma 10].

Finally, the presented 2-tree also serves as a witness that there are planar
graphs with local queue number at least 3. However, it is open whether this can
be improved to 4.

Question 13. Is there a planar graph with local queue number 4?
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Abstract. An h-queue layout of a graph G consists of a linear order of
its vertices and a partition of its edges into h queues, such that no two
independent edges of the same queue nest. The minimum h such that
G admits an h-queue layout is the queue number of G. We present two
fixed-parameter tractable algorithms that exploit structural properties
of graphs to compute optimal queue layouts. As our first result, we show
that deciding whether a graph G has queue number 1 and computing
a corresponding layout is fixed-parameter tractable when parameterized
by the treedepth of G. Our second result then uses a more restrictive
parameter, the vertex cover number, to solve the problem for arbitrary h.
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1 Introduction

An h-queue layout of a graph G is a linear layout of G consisting of a linear
order of its vertices and a partition of its edges into queues, such that no two
independent edges of the same queue nest [22]; see Fig. 1 for an illustration. The
queue number qn(G) of a graph G is the minimum number of queues in any
queue layout of G. While such linear layouts represent an abstraction of various
problems such as, for instance, sorting and scheduling [3,28], they also play a
central role in three-dimensional graph drawing. It is known that a graph class
has bounded queue number if and only if every graph in this class has a three-
dimensional crossing-free straight-line grid drawing in linear volume [10,14]. We
refer the reader to [16,25] for further references and applications. Moreover, it
is worth recalling that stack layouts [24,30] (or book embeddings), which allow
nesting edges but forbid edge crossings, form the “dual” concept of queue layouts.
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Fig. 1. A 4-queue layout of K8.

A rich body of literature is concerned with the study of upper bounds for
the queue number of several planar and non-planar graph families (see, e.g.,
[1,2,9,12–14,21,29] and also [15] for additional references). For instance, a graph
of treewidth w has queue number at most O(2w) [29], while every proper minor-
closed class of graphs (including planar graphs) has constant queue number [13].

Of particular interest to us is the corresponding recognition problem, which
we denote by Queue Number: Given a graph G and a positive integer h, decide
whether G admits an h-queue layout. In 1992, in a seminal paper, Heath and
Rosenberg proved that 1-Queue Number, i.e., the restriction of Queue Num-
ber to h = 1, is NP-complete [22]. In particular, they characterized the graphs
that admit queue layouts with only one queue as the arched leveled-planar
graphs, and showed that the recognition of these graphs is NP-complete [22].

Since Queue Number is NP-complete even for a single queue, it is natural to
ask under which conditions the problem can be solved efficiently. For instance,
it is known that if the linear order of the vertices is given (and the aim is
thus to simply partition the edges of the graph into queues), then the problem
becomes solvable in polynomial time [21]. We follow up on recent work made for
the stack number [5] and initiate the study of the parameterized complexity of
Queue Number by asking under which parameterizations the problem is fixed-
parameter tractable. In other words, we are interested in whether (1-)Queue
Number can be solved in time f(k) · nO(1) for some computable function f of
the considered structural parameter k of the n-vertex input graph G.

As our main result, we show 1-Queue Number is fixed-parameter tractable
parameterized by the treedepth of the input graph (Sect. 3). We remark that
treedepth is a fundamental graph parameter with close ties to the theory of graph
sparsity (see, e.g., [23]). The main technique used by the algorithm is iterative
pruning, where we recursively identify irrelevant parts of the input and remove
these until we obtain a bounded-size equivalent instance (a kernel) solvable by
brute force. While the iterative pruning technique has already been used in a few
other algorithms that exploit treedepth [18–20], the unique challenge here lay in
establishing that the removal of seemingly irrelevant parts of the graph cannot
change NO-instances to YES-instances. The proof of this claim, formalized in
Lemma 1, uses a new type of block decomposition of 1-queue layouts.
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For our second result, we turn to the general Queue Number problem. Here,
we establish fixed-parameter tractability when parameterized by a larger param-
eter, namely the vertex cover number (Sect. 4). This result is also achieved by
kernelization and forms a natural counterpart to the recently established fixed-
parameter tractability of computing the stack number under the same parame-
terization [5], although the technical arguments and steps of the proof differ due
to the specific properties of queue layouts.
Note: Full proofs of statements marked with (*) can be found in [4].

2 Preliminaries

We can assume that our input graphs are connected, as the queue number of a
graph is the maximum queue number over all its connected components. Given
a graph G = (V,E) and a vertex v ∈ V , let N(v) be the set of neighbors of v
in G. Also, for r ∈ N, we denote by [r] the set {1, . . . , r}. An h-queue layout of
G is a pair 〈≺, σ〉, where ≺ is a linear order of V , and σ : E → [h] is a function
that maps each edge of E to one of h queues. In an h-queue layout 〈≺, σ〉 of G,
it is required that no two independent edges in the same queue nest, that is, for
no pair of edges uv,wx ∈ E with four distinct end-vertices and σ(uv) = σ(wx),
the vertices are ordered as u ≺ w ≺ x ≺ v. Given two distinct vertices u and v
of G, u is to the left of v if u ≺ v, else u is to the right of v. Note that a 1-queue
layout of G is simply defined by a linear order ≺ of V and σ ≡ 1.

We assume familiarity with basic notions in parameterized complexity [8,11].

Treedepth. Treedepth is a parameter closely related to treewidth, and the struc-
ture of graphs of bounded treedepth is well understood [23]. We formalize a few
notions needed to define treedepth, see also Fig. 2 for an illustration. A rooted
forest F is a disjoint union of rooted trees. For a vertex x in a tree T of F , the
height (or depth) of x in F is the number of vertices in the path from the root
of T to x. The height of a rooted forest is the maximum height of a vertex of the
forest. Let V (T ) be the vertex set of any tree T ∈ F .

Definition 1 (Treedepth). Let the closure of a rooted forest F be the graph
clos(F) = (Vc, Ec) with the vertex set Vc =

⋃
T∈F V (T ) and the edge set Ec =

{xy | x is an ancestor of y in some T ∈ F}. A treedepth decomposition of a
graph G is a rooted forest F such that G ⊆ clos(F). The treedepth td(G) of a
graph G is the minimum height of any treedepth decomposition of G.

An optimal treedepth decomposition can be computed by an FPT algorithm.

Proposition 1 [27]. Given an n-vertex graph G and an integer k, it is possible
to decide whether G has treedepth at most k, and if so, to compute an optimal
treedepth decomposition of G in time 2O(k2) · n.

Proposition 2 [23]. Let G be a graph and td(G) ≤ k. Then G has no path of
length 2k.
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Fig. 2. (a) A graph G and (b) a treedepth decomposition F of G of height 4. In
particular, P2 = {1, 2}, A2 = {C1, C2, C3}, and m2 = 3.

Vertex Cover Number. A vertex cover C of a graph G = (V,E) is a subset
C ⊆ V such that each edge in E has at least one incident vertex in C. The vertex
cover number of G, denoted by τ(G), is the size of a minimum vertex cover of G.
Observe that td(G) ≤ τ(G)+1: it suffices to build F as a single path with vertex
set C and with leaves V \ C. Computing an optimal vertex cover of G is FPT.

Proposition 3 [6]. Given an n-vertex graph G and a constant τ , it is possible
to decide whether G has vertex cover number at most τ , and if so, to compute a
vertex cover C of size τ of G in time O(2τ + τ · n).

3 Parameterization by Treedepth

In this section, we establish our main result: the fixed-parameter tractability of 1-
Queue Number parameterized by treedepth. We formalize the statement below.

Theorem 1. Let G be a graph with n vertices and constant treedepth k. We can
decide in O(n) time whether G has queue number one, and, if this is the case,
we can also output a 1-queue layout of G.

3.1 Algorithm Description

Since we assume G to be connected, any treedepth decomposition of G consists
of a single tree T . Now, suppose that a treedepth decomposition T of G of depth
k is given. For a vertex t of T , let Pt be the set of ancestors of t including t, let
At be the set of connected components of G − Pt which contain a child of t, and
mt be the maximum number of vertices in a component in At; see also Fig. 2(b).

Observation 1. For every component C ∈ At and for every vertex v ∈ C, it
holds that N(v) ⊆ C ∪ Pt. Moreover, |C ∪ Pt| ≤ mt + k.
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Now, we define the following equivalence over components in At. Components
B,C ∈ At satisfy B ∼ C if and only if there exists a bijective renaming function
ηB,C : B → C over (the vertices of) B,C such that each vertex bi ∈ B has a
counterpart ηB,C(bi) = ci ∈ C that satisfies: (i) N(bi) ∩ Pt = N(ci) ∩ Pt and (ii)
bi is adjacent to bj ∈ B if and only if ci is adjacent to its counterpart cj . When
B,C are clear from the context, we may drop the subscript of η for brevity.

By Observation 1, the number of equivalence classes of ∼ is upper-bounded by
the number of possible graphs on k+mt vertices, which is at most 2(k+mt)

2
. The

next observation allows us to propagate the bounds formalized by the notation
above from children towards the root.

Observation 2. If for a vertex t of T there exist integers a, b such that each
child q of t satisfies |Aq| ≤ a and mq ≤ b, then mt ≤ (a · b) + 1.

The main component of our treedepth algorithm is Lemma 1, stated below.
Intuitively, applying Lemma 1 bottom-up on T (together with Observation 2)
allows us to iteratively remove subtrees from T while preserving the (non-
)existence of a hypothetical solution—in particular, we will be able to prune
subtrees of parents with a very large number of children until we reach an equiv-
alent instance where each vertex has a bounded number of children. To formalize
the meaning of “very large”, we define the following function for i ≥ 2:

#children(k, i) =
((

(2(k+1) + 1)size(k,i)2 + 1
) · (size(k, i) + k)!

) · 2(k+size(k,i))2 ,

where size(k, i) is a recursively defined function that captures the size bound
given by Observation 2 as follows:

– size(k, i) = (size(k, i − 1) · #children(k, i − 1)) + 1 for i ≥ 2, and
– size(k, 1) = #children(k, 1) = 0.

Lemma 1. Assume G has a vertex t at depth i in T such that |At| ≥
#children(k, i), but mt ≤ size(k, i) and every descendant q of t in T satisfies
that |Aq| ≤ #children(k, i−1). Then there exists a component B of At such that
G − B has queue number one if and only if G has queue number one. Moreover,
B can be computed in time size(k, i)! · #children(k, i)2.

The proof of the lemma is deferred to Sect. 3.2. Before proceeding, we show
how Lemma 1 is used to obtain Theorem 1.

Proof (of Theorem 1). We start by applying Proposition 1 to compute a
treedepth decomposition T of G of depth at most k. Consider now vertices
at depth k − 1 in T , i.e., vertices whose children are all leaves in T , and set
i = 2. Observe that every vertex v at this depth satisfies mv ≤ size(k, 2) since
size(k, 2) = 1 and mv = 1. If |Av| ≥ #children(k, 2), we apply Lemma 1 to obtain
an equivalent graph with fewer vertices and restart on that graph. Otherwise,
every vertex v at depth k − 1 satisfies |Av| < #children(k, 2).

We now inductively repeat the above argument for every depth less than
k − 1. In particular, assume that for some depth 1 ≤ d ≤ k − 1 every vertex v
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at depth d satisfies |Av| < #children(k, i), where i = k − d + 1. Then we can
set d′ := d − 1, i′ := i + 1, and recall from Observation 2 that every vertex
v′ at depth d′ satisfies mv ≤ size(k, i′). Hence, if v′ has too many subtrees—in
particular, if |Av′ | ≥ #children(k, i′)—we will once again apply Lemma 1 to
obtain an equivalent smaller instance, in which case we restart the algorithm.
Repeating this procedure for d′ will eventually stop, and at that point it will
hold that |Av′ | < #children(k, i′) for every v′ at depth d′, in turn allowing us to
continue with the induction.

The above procedure will halt only once the root r of T satisfies |Ar| <
#children(k, k) and mr ≤ size(k, k). At that point, we have a kernel G′ [8,11]—
an equivalent graph that has size bounded by a function of k, notably by f(k) =
#children(k, k) · size(k, k)+1. To prove Theorem 1, it suffices to decide whether
G′ admits a 1-queue layout by a brute-force algorithm that runs in time O(f(k)!·
f(k)2). Since Lemma 1 is applied O(n) times and the runtime of the associated
algorithm is O(size(k, k) ·#children(k, k)2), the total runtime is upper-bounded
by a function of k times n. Finally, we note that while it would be possible to
provide a term upper-bounding the dependency on k of the running time, it is
clear that such a term must necessarily be non-elementary—indeed, the recursive
definition of the two functions #children(k, k) and size(k, k) results in a tower
of exponents of height k. ��

3.2 Proof of Lemma 1

Since we have

|At| ≥ ((
(2(k+1)+1)size(k,i)2 +1

)·(size(k, i)+k)!
)·2(k+size(k,i))2 = #children(k, i)

and the number of equivalence classes of ∼ is upper-bounded by 2(k+mt)
2 ≤

2(k+size(k,i))2 , there must exist an equivalence class, denoted A∼
t ⊆ At, containing

at least
(
(2(k+1) + 1)size(k,i)2 + 1

) · (size(k, i) + k)! connected components in At

which are pairwise equivalent w.r.t. ∼. Moreover, this equivalence class can be
computed in time at most size(k, i)!·#children(k, i)2 by simply brute-forcing over
all potential renaming functions η between arbitrarily chosen #children(k, i)-
many components in At to construct the set of all equivalence classes of these
components. Let B be an arbitrarily selected component in A∼

t . First, observe
that if G is a YES-instance then so is G−B, as deleting vertices and edges cannot
increase the queue number. On the other hand, assume there is a 1-queue layout
of G − B with linear order ≺. Our aim for the rest of the proof is to obtain a
linear order ≺′ of G that extends ≺ and yields a valid 1-queue layout of G.

A Refined Equivalence. Let ≡≺ be an equivalence over components in A∼
t defined

as follows. C ≡≺ D if and only if the following holds: the linear order ≺ restricted
to Pt ∪ ηC,D(C) is the same as ≺ restricted to Pt ∪ C. In other words, ≡≺ is a
refinement of ∼ restricted to A∼

t which groups components based on the order
in which their vertices appear (also taking into account which subinterval they
appear in w.r.t. Pt). Note that ≡≺ has at most (mt + k)! ≤ (size(k, i) + k)!
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many equivalence classes, and hence by the virtue of A∼
t having size at least

(
(2(k+1) + 1)size(k,i)2 + 1

) · (size(k,i) + k)!, there must exist an equivalence class
U of ≡≺ containing at least (2(k+1) + 1)size(k,i)2 + 1 components of A∼

t .
We adopt the following terminology for U : we will denote the components in

U as C1, C2, . . . , Cu, where u = |U |, we will identify the vertices in a component
Ci by using the lower index i, and for each such vertex v, say v = vi ∈ Ci, use
vj to denote its counterpart ηCi,Cj

(vi).

Identifying Delimiting Components. Consider two adjacent vertices vi, wi ∈ Ci.
We say that component Cj is vw-separate from Ci if edges viwi and vjwj neither
nest nor cross each other. On the other hand, Cj is vw-interleaving (respectively,
vw-nesting) with Ci if viwi and vjwj cross each other (respectively, if one of viwi

and vjwj nests the other). By the definition of ≡≺ and U , these three cases are
exhaustive. Moreover, if viwi is an edge then so is vjwj and hence Cj cannot be
vw-nesting with Ci. Our next aim will be to find two components—we will call
them delimiting components—that are not vw-separate for any edge vw. To this
end, for some two adjacent vertices vi, wi of Ci, denote by D1 the component
whose counterpart to vi (say v1) is placed leftmost in ≺ among all components
in U . We now define a sequence of components as follows: D� is the unique
component that is (i) vw-separate from D�−1 and whose vertex v� is placed
(ii) to the right of v�−1, and (iii) v� is placed leftmost among all components
satisfying properties (i) and (ii). Let d be the maximum integer such that Dd

exists.

Lemma 2 (*). d ≤ 2k+1 + 1.

Moreover, each component Cq in U can be uniquely assigned to one com-
ponent D� as defined above (w.r.t. the chosen edge vw) as follows: If Cq = D�

for some �, then Cq is assigned to itself; otherwise, D� is the component whose
vertex v� is to the left of and simultaneously closest to the corresponding vertex
vq in Cq among all components D1, . . . , Dd.

Lemma 3 (*). Let Cq and Cp be two components assigned to the same com-
ponent D� w.r.t. the edge vw. Then Cq and Cp are vw-interleaving.

We are now ready to construct our delimiting components. Recall that at
this point, |U | ≥ (2(k+1) + 1)size(k,i)2 + 1 while the maximum number of edges
inside a component in U is upper-bounded by m2

t ≤ size(k, i)2. Hence by the
pigeon-hole principle and by applying the bound provided in Lemma 2 for each
edge inside the components of U , there must exist two components in U , say Cx

and Cy, which for each edge vw are assigned to the same component Dvw
� . By

Lemma 3 it now follows that they are vw-interleaving for every edge vw.

Using Delimiting Components. Before we use Cx and Cy to insert B, we can
show that the way they interleave with each other is “consistent” in ≺.

Lemma 4 (*). Assume, w.l.o.g., that some vertex vx is to the left of vy. Then
for each vertex wx it holds that wx is to the left of wy.
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Fig. 3. Reinsertion of Bi: (a) A schematic illustration, and (b) an example where blue
and red vertices belong to Cx and Cy, respectively.

We remark that it is not the case that Cx must be vw-interleaving with
Cy if vw is not an edge – this is, in fact, a major complication that we will
need to overcome to complete the proof. W.l.o.g. and recalling Lemma 4, we
will hereinafter assume that every vertex vx ∈ Cx is placed to the left of its
counterpart vy ∈ Cy. The following definition allows us to partition the vertices
of Cx into subsequences that should not be interleaved with vertices of B.

Definition 2 (Block). A block L = {v1
x, v2

x, . . . , vh
x} of Cx is a maximal set of

vertices of Cx such that: (1) there is no vertex vi
y (the counterpart in Cy of vi

x),
with 1 ≤ i ≤ h, between two vertices of L in ≺; (2) there are no two vertices of
L such that one has a neighbor to its left and one has a neighbor to its right.

We observe that, as an immediate consequence of Definition 2, no two vertices
of L are adjacent (an edge uv in L would imply that u has a neighbor to its right
and v has a neighbor to its left, or vice versa).

For each block L = {v1
x, v2

x, . . . , vh
x} of Cx, there is a corresponding set of

vertices {v1
B , v2

B , . . . , vh
B} of B, i.e., the set containing the counterparts of L in

B. We will obtain a linear order of G by processing the blocks of Cx one by one
as encountered in a left-to-right sweep of ≺, and for each block L, we will extend
≺ by suitably inserting the corresponding vertices of B.

Consider the i-th encountered block Li = {vi,1
x , vi,2

x , . . . , vi,�i
x } of Cx, refer to

Fig. 3 for an illustration. Note that, because Cx and Cy are equivalent compo-
nents, it holds vi,1

y ≺ vi,2
y · · · ≺ vi,�i

y (even though such vertices might not be
consecutive). Also, let vi be the first vertex to the left of vi,1

y in ≺ (possibly
vi = vi,�i

x ). We insert all vertices in the corresponding block Bi of B such that:
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vi ≺ vi,1
B ≺ vi,2

B ≺ . . . vi,�i

B ≺ vi,1
y . After processing the last block of Cx, we know

that all vertices of Cx have been considered and hence all vertices of B have
been reinserted, that is, we extended ≺ to a linear order ≺′ of the whole graph
G. The next observation immediately follows by the procedure described above.

Observation 3. For every vertex vx, it holds that vx ≺′ vB ≺′ vy.

We now establish the correctness of ≺′, completing the proof of Lemma 1.

Lemma 5 (*). The linear order ≺′ yields a valid 1-queue layout of G.

Proof (sketch). To prove the statement, we argue that no two edges of G nest
in the 1-queue layout defined by ≺′. We recall that ≺′ extends ≺, hence we do
not need to argue about pairs of edges in G − B. Moreover, by construction, ≺′

restricted to Cx is the same as ≺′ restricted to B (up to the renaming function
η). Consequently, no two edges having both endpoints in B can nest.

We first consider any edge vBw for w ∈ Pt and vB ∈ B, and assume vB ≺′ w
(else the argument is symmetric). Suppose, for a contradiction, that vBw nests
another edge ab. Recall that since Cx and B are equivalent components, if vB

is to the left of w, the same holds for vx. By Observation 3, we know vx ≺′

vB ≺′ w, which implies that ab is nested by vxw as well, a contradiction with
the correctness of ≺. Similarly, if vBw is nested by an edge ab, then we know
vB ≺′ vy ≺′ w, which implies that ab nests vyw as well, again a contradiction.

We now consider any edge vBwB , with vB ≺′ wB , and we assume for a
contradiction that vBwB nests an edge ab. Since Definition 2 ensures that a
block cannot contain a pair of adjacent vertices, we know that vx and wx belong
to different blocks, say Li and Lj (with i < j) respectively. Therefore, we can
rename the vertices as vx = vi,i′

x and wx = vj,j′
x , and similarly vB = vi,i′

B and
wB = vj,j′

B ; refer to Fig. 4(a) for an illustration. By Observation 3, it holds
vi,i′

x ≺′ vi,i′
B ≺′ vi,i′

y and vj,j′
x ≺′ vj,j′

B ≺′ vj,j′
y . Moreover, the correctness of ≺

implies that vi,i′
B ≺′ a ≺′ vi,i′

y (since vi,i′
y vj,j′

y cannot nest ab) and vj,j′
x ≺′ b ≺′

vj,j′
B (since vi,i′

x vj,j′
x cannot nest ab). Because a is between vi,i′

B and vi,i′
y , either

there exists another vertex vi,1
y (the counterpart to the first vertex in block Li,

where possibly vi,1
y = a) such that vi,i′

B ≺′ vi,1
y �′ a ≺′ vi,i′

y , or a = vi,i′
y .

Suppose first a �= vi,1
y and a �= vi,i′

y . Observe that vi,1
x has at least one

neighbor in Cx (because Cx is connected), and that vj,j′
x is to the right of vi,i′

x ,
hence, by Definition 2, vi,1

x also has a neighbor to its right, say vl,j∗
x . Because

no two edges nest in ≺, it must be: (i) vi,1
x ≺′ vi,i′

x , (ii) vl,j∗
x ≺′ b, and (iii)

vl,j∗
y ≺′ b (possibly vl,j∗

y = b). Altogether, this implies that vj,j′
x and vl,j∗

x are

in the same block (i.e., l = j) and hence vj,j′
B ≺′ vj,j∗

y ≺′ b, which contradicts

b ≺′ vj,j′
B . If instead a = vi,1

y or a = vi,i′
y , then b is either a vertex of Cy or a

vertex of Pt. If b ∈ Cy, the argument is similar, as we can set b = vj,j∗
y and

observe that vj,j′
B should be to the left of vj,j∗

y , see Fig. 4(b). If b ∈ Pt, we would
have vj,j′

x ≺′ b ≺′ vj,j′
y , which contradicts the fact that Cx and Cy are equivalent

components, see Fig. 4(c). ��
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Fig. 4. Illustration for the proof of Lemma 5: vi,i
′

B vj,j
′

B nests an edge ab.

4 Parameterization by Vertex Cover Number

We now turn to the general Queue Number problem and show that it is fixed-
parameter tractable when parameterized by the vertex cover number by proving:

Theorem 2. Let G be a graph with n vertices and vertex cover number τ =
τ(G). A queue layout of G with the minimum number of queues can be computed
in O(2τO(τ)

+ τ log τ · n) time.
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4.1 Algorithm Description

Before describing the algorithm behind Theorem 2, we make an easy observation
(which matches an analogous observation in [5]).

Lemma 6. Every n-vertex graph G = (V,E) with a vertex cover C of size τ
admits a τ -queue layout. Moreover, if G and C are given as input, such a τ -
queue layout can be computed in O(n + τ · n) time.

Proof. Denote by c1, . . . , cτ the τ vertices of C and let ≺ be any linear order of
G such that ci ≺ ci+1, for i = 1, 2, . . . , τ − 1. A queue assignment σ of G on h
queues can be obtained as follows. Let U = V \ C. For each i ∈ [τ ] all edges
uci with u ∈ U ∪ {c1, . . . , ci−1} are assigned to queue i. Now, consider the edges
assigned to any queue i ∈ [τ ]. By construction, they are all incident to vertex ci,
and thus no two of them nest each other. Therefore, the pair 〈≺, σ〉 is a τ -queue
layout of G and can be computed in O(n + τ · n) time.

��
Let C be a vertex cover of size τ of graph G. For any subset U of C, a vertex

v ∈ V \C is of type U if N(v) = U . This defines an equivalence relation on V \C
and in particular partitions V \ C into at most

∑τ
i=1

(
τ
i

)
= 2τ−1 < 2τ distinct

types. Denote by VU the set of vertices of type U .

Lemma 7. Let h ∈ N and v ∈ VU such that |VU | ≥ 2 · hτ + 2. Then G admits
an h-queue layout if and only if G′ = G−{v} does. Moreover, an h-queue layout
of G′ can be extended to an h-queue layout of G in linear time.

The proof of Lemma 7 is deferred to Sect. 4.2.

Proof (of Theorem 2). By Proposition 3, we can determine the vertex cover
number τ of G and compute a vertex cover C of size τ in time O(2τ + τ · n).
With Lemma 7 in hand, we can then apply a binary search on the number of
queues h ≤ τ as follows. If h > τ , by Lemma 6 we can immediately conclude
that G admits a τ -queue layout and compute one in O(n + τ · n) time. Hence
we shall assume that h ≤ τ . We construct a kernel G∗ from G of size hO(τ) as
follows. We first classify each vertex of G based on its type. We then remove an
arbitrary vertex from each set VU with |VU | > 2 · hτ + 1 until |VU | ≤ 2 · hτ + 1.
Thus, constructing G∗ can be done in O(2τ + τ · n) time, since 2τ is the number
of types and τ · n is the maximum number of edges of G. From Lemma 7 we
conclude that G admits an h-queue layout if and only if G∗ does.

Given a linear order ≺∗ of G∗, a queue assignment σ∗ such that 〈≺∗, σ∗〉
is an h-queue layout of G∗ exists if and only if σ∗ contains no h-rainbow [21],
i.e., h independent edges that pairwise nest, which can be easily checked (and
computed if it exists) in hO(τ) time [21]. Consequently, determining whether G∗

admits an h-queue layout can be done by first guessing all linear orders, and
then for each of them by testing for the existence of an h-rainbow. Since we
have 2τ types, and each of the at most 2 · hτ + 1 elements of the same type are
equivalent in the queue layout (that is, the position of two elements of the same
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type can be exchanged in ≺∗ without affecting σ∗), the number of linear orders
can be upper bounded by (2τ )O(hτ ) = 2τO(τ)

. Thus, whether h queues suffice for
G∗ can be determined in 2τO(τ) · hO(τ) = 2τO(τ)

time. An h-queue layout of G∗

(if any) can be extended to one of G by iteratively applying the constructive
procedure of Lemma 7, in O(τ · n) time. Finally, by applying a binary search on
h we obtain an overall time complexity of O(2τO(τ)

+ τ log τ · n), as desired. ��

4.2 Proof of Lemma 7

One direction follows easily, since removing a vertex from an h-queue layout still
gives an h-queue-layout of the resulting graph. So let 〈≺, σ〉 be an h-queue layout
of G′. We prove that an h-queue layout of G can be constructed by inserting v
immediately to the right of a suitable vertex u in VU and by assigning the edges
of v to the same queues as the corresponding edges of u.

We say that two vertices u1, u2 ∈ VU are queue equivalent, if for each vertex
w ∈ U , the edges u1w and u2w are both assigned to the same queue according
to σ. Each vertex in VU has degree exactly |U |, hence this relation partitions
the vertices of VU into at most h|U | ≤ hτ sets. Let V ∗

U = VU \ {v}. Since |V ∗
U | ≥

2·hτ +1, at least three vertices of this set, which we denote by u1, u2, and u3, are
queue equivalent. Consider now the graph induced by the edges of these three
vertices that are assigned to a particular queue. By the above argument, such a
graph is a Kl,3, for some l > 0. However, K3,3 does not admit a 1-page queue
layout, because any graph with queue number 1 is planar [22]. As a consequence,
l ≤ 2, that is, each ui ∈ V ∗

U has at most two edges on each queue. Denote such
two edges by uiw and uiz and assume, w.l.o.g., that u1 ≺ u2 ≺ u3 and w ≺ z.
We now claim that w ≺ u1 ≺ u2 ≺ u3 ≺ z, else two edges would nest. We can
distinguish a few cases based on the position of u1 (recall that u1 ≺ u2 ≺ u3),
refer to Fig. 5 for an illustration.

– Case A: w ≺ z ≺ u1, then the nesting edges are zu1 and wu2.
– Case B: u1 ≺ w ≺ z, then we distinguish three more subcases.

• Case B.1: u2 ≺ w, then the nesting edges are u1z and u2w.
• Case B.2: w ≺ u2 ≺ z, then the nesting edges are u1z and wu2.
• Case B.3: z ≺ u2, then the nesting edges are zu2 and wu3.

– Case C: w ≺ u1 ≺ z, if w ≺ u2 ≺ u3 ≺ z the claim follows. Else, we have
two more subcases based again on the position of u2.

• Case C.1: w ≺ z ≺ u2, then the nesting edges are wu2 and u1z.
• Case C.2: w ≺ u2 ≺ z ≺ u3, then the nesting edges are wu3 and u1z.

It follows that we can extend ≺ by introducing v as the first vertex to the right
of u1 and, for each edge vw such that w ∈ U , we can assign vw to the same
queue as u1w. This operation does not introduce any nesting. Namely, if vw is
assigned to a queue containing only one edge of u1, the graph induced by the
edges in this queue is a star with center w and no two edges can nest. If vw is
assigned to a queue containing two edges of u1, say u1w and u1z, then we know
that all vertices of VU are between w and z in ≺ and again no two edges nest.
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Fig. 5. Illustration for the proof of Lemma 7.

5 Conclusions and Open Problems

We proved that h-Queue Number is fixed-parameter tractable parameterized
by treedepth for h = 1, and by the vertex cover number for arbitrary h ≥ 1.
Several interesting questions arise from our research, among them:

1. A first natural question is to understand whether Theorem 1 can be extended
to the general case (h ≥ 1). In particular, our arguments establishing the
existence of interleaving components already fail for h = 2.

2. Extending Theorem 1 to graphs of bounded treewidth is also an interesting
problem; here the main issue is to be able to forget information about vertices
in a partial order, thus an approach based on testing arched leveled-planarity
might be more suitable.

3. Finally, we mention the possibility of studying the parameterized complexity
of mixed linear layouts, using both queues and stacks, see [7,17,22,26].
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for queue layouts. CoRR abs/2008.08288 (2020)

5. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms
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13. Dujmović, V., Joret, G., Micek, P., Morin, P., Ueckerdt, T., Wood, D.R.: Pla-
nar graphs have bounded queue-number. In: Foundations of Computer Science
(FOCS’19), pp. 862–875. IEEE (2019). https://doi.org/10.1109/FOCS.2019.00056
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17. Dujmović, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph subdivi-
sions. Discrete Math. Theor. Comput. Sci. 7(1), 155–202 (2005)

18. Ganian, R., Ordyniak, S.: The complexity landscape of decompositional parameters
for ILP. Artif. Intell. 257, 61–71 (2018). https://doi.org/10.1016/j.artint.2017.12.
006

19. Ganian, R., Peitl, T., Slivovsky, F., Szeider, S.: Fixed-parameter tractability of
dependency QBF with structural parameters. In: Principles of Knowledge Repre-
sentation and Reasoning (KR’20) (2020, to appear)

20. Gutin, G.Z., Jones, M., Wahlström, M.: The mixed Chinese postman problem
parameterized by pathwidth and treedepth. SIAM J. Discrete Math. 30(4), 2177–
2205 (2016). https://doi.org/10.1137/15M1034337

21. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as
mechanisms for laying out graphs. SIAM J. Discrete Math. 5(3), 398–412 (1992).
https://doi.org/10.1137/0405031

22. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput.
21(5), 927–958 (1992). https://doi.org/10.1137/0221055
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Abstract. We investigate the queue number of posets in terms of their
width, that is, the maximum number of pairwise incomparable elements.
A long-standing conjecture of Heath and Pemmaraju asserts that every
poset of width w has queue number at most w. The conjecture has been
confirmed for posets of width w = 2 via so-called lazy linear extension.

We extend and thoroughly analyze lazy linear extensions for
posets of width w > 2. Our analysis implies an upper bound of (w−1)2+1
on the queue number of width-w posets, which is tight for the strategy
and yields an improvement over the previously best-known bound. Fur-
ther, we provide an example of a poset that requires at least w+1 queues
in every linear extension, thereby disproving the conjecture for posets of
width w > 2.

Keywords: Queue layouts · Posets · Linear extensions

1 Introduction

A queue layout of a graph consists of a total order ≺ of its vertices and a partition
of its edges into queues such that no two edges in a single queue nest, that is,
there are no edges (u, v) and (x, y) in a queue with u ≺ x ≺ y ≺ v. If the
input graph is directed, then the total order has to be compatible with its edge
directions, i.e., it has to be a topological ordering of it [13,14]. The minimum
number of queues needed in a queue layout of a graph is commonly referred to
as its queue number.

There is a rich literature exploring bounds on the queue number of different
classes of graphs [1,11,15,17–19]. A remarkable work by Dujmović et al. [8]
proves that the queue number of (undirected) planar graphs is constant, thus
improving upon previous (poly-)logarithmic bounds [4,6,7] and resolving an old
conjecture by Heath, Leighton and Rosenberg [11]. For a survey, we refer to [9].
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In this paper, we investigate bounds on the queue number of posets. Recall
that a poset 〈P,<〉 is a finite set of elements P equipped with a partial order <;
refer to Sect. 2 for formal definitions. The queue number of 〈P,<〉 is the queue
number of the acyclic digraph G(P,<) associated with the poset that contains
all non-transitive relations among the elements of P . This digraph is known as
the cover graph and can be visualized using a Hasse diagram; see Fig. 1.

The study of the queue number of posets was initiated in 1997 by Heath and
Pemmaraju [12], who provided bounds on the queue number of a poset expressed
in terms of its width, that is, the maximum number of pairwise incomparable
elements with respect to <. In particular, they observed that the queue number
of a poset of width w cannot exceed w2 and posed the following conjecture.

Conjecture 1 (Heath and Pemmaraju [12]). Every poset of width w has
queue number at most w.

Heath and Pemmaraju [12] made a step towards settling the conjecture by pro-
viding a linear upper bound of 4w − 1 on the queue number of planar posets
of width w. This bound was recently improved to 3w − 2 by Knauer, Micek,
and Ueckerdt [16], who also gave a planar poset whose queue number is exactly
w, thus establishing a lower bound. Furthermore, they investigated (non-planar)
posets of width 2, and proved that their queue number is at most 2. Therefore,
Conjecture 1 holds when w = 2.�

Our Contribution. We present improvements upon the aforementioned results,
thus continuing the study of the queue number of posets expressed in terms of
their width, which is one of the open problems by Dujmović et al. [8].

(i) For a fixed total order of a graph, the queue number is the size of a maximum
rainbow, that is, a set of pairwise nested edges [11]. Thus to determine the queue
number of a poset 〈P,<〉 one has to compute a linear extension (that is, a total
order complying with <), which minimizes the size of a maximum rainbow. In
in [2], we present a poset and a linear extension of it which yields a rainbow of
size w2. Knauer et al. [16] studied a special type of linear extensions, called lazy,
for posets of width-2 to show that their queue number is at most 2. Thus, it
is tempting to generalize and analyze lazy linear extensions for posets of width
w > 2. We provide such an analysis and show that the maximum size of a rainbow
in a lazy linear extension of a width-w poset is at most w2 − w (Theorem 1 in
Sect. 3). Furthermore, we show that the bound is worst-case optimal for lazy
linear extensions (for details refer to [2]).

(ii) The above bound already provides an improvement over the existing upper
bound on the queue number of posets. However, a carefully chosen lazy linear
extension, which we call most recently used (MRU), further improves the bound
to (w−1)2+1 (Theorem 2 in Sect. 4). Therefore, the queue number of a width-w
poset is at most (w−1)2+1. Again we show this bound to be worst-case optimal
for MRU extensions (for details refer to [2]).
� Knauer et al. [16] also claim to reduce the queue number of posets of width w from
w2 to w2 − 2�w/2�. However, as we discuss in [2], their argument is incomplete.
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Fig. 1. (a) The Hasse diagram of a width-4 poset; gray elements are pairwise incompa-
rable; the chains of a certain decomposition are shown by vertical lines. (b) A 2-queue
layout with a 2-rainbow formed by edges (v2, v5) and (v6, v8).

(iii) We demonstrate a non-planar poset of width 3 whose queue number is 4
(Theorem 3). We generalize this example to posets of width w > 3 (Theorem 4),
thus disproving Conjecture 1. These two proofs are mostly deferred to [2].

2 Preliminaries

A partial order over a finite set of elements P is a binary relation < that is
irreflexive and transitive. A set P together with a partial order, <, is a partially
ordered set (or simply a poset) and is denoted by 〈P,<〉. Two elements x and y
with x < y or y < x are called comparable; otherwise x and y are incomparable.
A subset of pairwise comparable (incomparable) elements of a poset is called a
chain (antichain, respectively). The width of a poset is defined as the cardinality
of a largest antichain. For two elements x and y of P with x < y, we say that x
is covered by y if there is no element z ∈ P such that x < z < y. A poset 〈P,<〉
is naturally associated with an acyclic digraph G(P,<), called the cover graph,
whose vertex-set V consists of the elements of P , and there exists an edge from
u to v if u is covered by v; see Fig. 1a. By definition, G(P,<) has no transitive
edges.

A linear extension L of a poset 〈P,<〉 is a total order of P , which complies
with <, that is, for every two elements x and y in P with x < y, x precedes y
in L. Given a linear extension L of a poset, we write x ≺ y to denote that x
precedes y in L; if in addition x and y may coincide, we write x � y. We use
[x1, x2, . . . , xk] to denote xi ≺ xi+1 for all 1 ≤ i < k; such a subsequence of L
is also called a pattern. Let F = {(xi, yi); i = 1, 2, . . . , k} be a set of k ≥ 2
independent (that is, having no common endpoints) edges of G(P,<). It follows
that xi ≺ yi for all 1 ≤ i ≤ k. If [x1, . . . , xk, yk, . . . , y1] holds in L, then the
edges of F form a k-rainbow (see Fig. 1b). Edge (xi, yi) nests edge (xj , yj), if
1 ≤ i < j ≤ k.

A queue layout of an acyclic digraph G consists of a total order of its vertices
that is compatible with the edge directions of G and of a partition of its edges into
queues, such that no two edges in a queue are nested. The queue number of G is
the minimum number of queues required by its queue layouts. The queue number
of a poset 〈P,<〉 is the queue number of its cover graph G(P,<). Equivalently,
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the queue number of 〈P,<〉 is at most k if and only if it admits a linear extension
L such that no (k + 1)-rainbow is formed by some of the edges of G(P,<) [15].
If certain edges form a rainbow in L, we say that L contains the rainbow.

The elements of a poset 〈P,<〉 of width w can be partitioned into w chains [5].
Note that such a partition is not necessarily unique. In the following, we fix this
partition, and treat it as a function C : P → {1, . . . , w} such that if C(u) = C(v)
and u 
= v, then either u < v or v < u. We use R, B, and G to denote specific
chains from a chain decomposition. A set of edges of the cover graph G(P,<)
of the poset that form a rainbow in a linear extension is called an incoming R-
rainbow TR of size s if it consists of s edges (u1, r1), . . . , (us, rs) such that ri ∈ R
for all 1 ≤ i ≤ s and C(ui) 
= C(uj) for all 1 ≤ i, j ≤ s with i 
= j. If s = w, TR is
called complete and is denoted by T ∗

R. An edge e of TR with both endpoints in
R is called an R-self edge. For example, T ∗

R \ {e} is an incoming R-rainbow of
size w−1 without the R-self edge e. Similar notation is used for chains B and G.

3 Lazy Linear Extensions

First let us recall two properties of linear extensions, whose proofs immediately
follow from the fact that a cover graph of a poset contains no transitive edges.

Proposition 1. A linear extension of a poset 〈P,<〉 does not contain pattern
[r1 . . . r2 . . . r3], where C(r1) = C(r2) = C(r3) and (r1, r3) is an edge of G(P,<).

Proposition 2. A linear extension of a poset 〈P,<〉 does not contain pattern
[r1 . . . r2 . . . b2 . . . b1], where C(r1) = C(r2), C(b1) = C(b2), and (r1, b1) and (r2, b2)
are edges of G(P,<).

Proposition 2 implies that for any linear extension of a poset, the maximum
size of a rainbow is at most w2 [12]. In [2] we show that for every w ≥ 2, there
exists a width-w poset and a linear extension of it containing a w2-rainbow.
Hence, a linear extension has be to chosen carefully, if one seeks for a bound on
the queue number of posets that is strictly less than w2.

In this section, we present and analyze such an extension, which we call lazy.
Assume that a poset is given with a decomposition into w chains. Intuitively,
a lazy linear extension is constructed incrementally starting from a minimal
element of the poset. In every iteration, the next element is chosen from the
same chain, if possible. Formally, for i = 1, . . . , n − 1, assume that we have
computed a lazy linear extension L for i vertices of G(P,<) and let vi be last
vertex in L (if any). To determine the next vertex vi+1 of L, we compute the
following set consisting of all source-vertices of the subgraph of G(P,<) induced
by V \ L:

S = {v ∈ V \ L : �(u, v) ∈ E with u ∈ V \ L} (1)

If there is a vertex u in S with C(u) = C(vi), we set vi+1 = u; otherwise vi+1 is
freely chosen from S. For the example of Fig. 1a, observe that v1 ≺ v4 ≺ v2 ≺
v3 ≺ v6 ≺ v7 ≺ v5 ≺ v8 is a lazy linear extension.
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Lemma 1. If a lazy linear extension L of poset 〈P,<〉 contains the pattern
[r1 . . . b . . . r2], where C(r1) = C(r2) 
= C(b), then there exists some x ∈ P with
C(x) 
= C(r1) between r1 and r2 in L, such that x < r2.

Proof. Since the pattern is [r1 . . . b . . . r2], G(P,<) contains an edge from a vertex
x with C(x) 
= C(r1) to a vertex y ∈ C(r1) that is between r1 and r2 in L (notice
that x may or may not coincide with b). Since the edge belongs to G(P,<), it
follows that x < y ≤ r2. ��
Lemma 2. A lazy linear extension of poset 〈P,<〉 does not contain pattern

where (u1, r1), . . . , (uw−1, rw−1) form an incoming C(r)-rainbow of size w − 1,
such that C(r) 
= C(ui) for all 1 ≤ i ≤ w − 1 and C(r) 
= C(b).

Proof. Assume to the contrary that there is a lazy linear extension L containing
the pattern. Since [r . . . b . . . rw−1] holds in L, by Lemma 1, there is x with C(x) 
=
C(rw−1) between r and rw−1 in L such that x < rw−1. Since C(x) 
= C(rw−1),
there is 1 ≤ j ≤ w − 1 such that C(x) = C(uj), which implies uj < x. Thus:

Since uj < x < rw−1 ≤ rj , there is a path from uj to rj in G(P,<). Thus,
edge (uj , rj) is transitive; a contradiction. ��
Theorem 1. The maximum size of a rainbow formed by the edges of G(P,<)
in a lazy linear extension of a poset 〈P,<〉 of width w is at most w2 − w.

Proof. Assume to the contrary that there is a lazy linear extension L that con-
tains a (w2 −w + 1)-rainbow T . By Proposition 2 and the pigeonhole principle,
T contains at least one complete incoming rainbow of size w; denote it by T ∗

R
and the corresponding chain by R. By Proposition 1, the R-self edge of T ∗

R is
innermost in T ∗

R. Thus, if (u1, r1), . . . , (uw, rw) are the edges of T ∗
R and uw ∈ R,

then without loss of generality, we may assume that the following holds in L.

We next show that (uw, rw) is the innermost and (uw−1, rw−1) is the second
innermost edge in T . Assume to the contrary that there exists an edge (x, y)
in T that does not belong to T ∗

R (that is, C(y) 
= R) and which is nested by
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(uw−1, rw−1). Regardless of whether (x, y) nests (uw, rw) or not, we deduce the
following.

Together with uw ∈ R and y /∈ R, we apply Lemma 2, which yields a
contradiction. Since (uw, rw) and (uw−1, rw−1) are the two innermost edges of
T , it follows that T does not contain another complete incoming rainbow of size
w.

Hence, each of the remaining w−1 incoming rainbows has size exactly w−1.
Consider vertex uw−1 and let without loss of generality C(uw−1) = B. By Propo-
sition 1, B 
= R. We claim that the incoming B-rainbow TB does not contain the
B-self edge. Assuming the contrary, this B-self edge nests (uw−1, rw−1) because
(uw, rw) and (uw−1, rw−1) are the two innermost edges of T . Since C(uw−1) = B,
we obtain a contradiction by Proposition 1. Thus, TB is a B-rainbow of size w−1
containing no B-self edge. All edges of TB nest (uw−1, rw−1), which yields the for-
bidden pattern of Lemma 2 formed by vertices of TB, uw−1 ∈ B, and rw−1 ∈ R;
a contradiction. ��
In [2] we show that our analysis is tight, i.e., there are posets of width w and
corresponding lazy linear extensions containing (w2 − w)-rainbows.

4 MRU Extensions

We now define a special type of lazy linear extensions for a width-w poset 〈P,<〉,
which we call most recently used, or simply MRU. For i = 1, . . . , n − 1, assume
that we have computed a linear extension L for i vertices of G(P,<), which are
denoted by v1, . . . , vi. To determine the next vertex of L, we compute set S of
Eq. (1). Among all vertices in S, we select one from the most recently used chain
(if any). Formally, we select a vertex u ∈ S such that C(u) = C(vj) for the largest
1 ≤ j ≤ i. If such vertex does not exist, we choose vi+1 arbitrarily from S. For
the example of Fig. 1a, observe that v1 ≺ v4 ≺ v2 ≺ v3 ≺ v6 ≺ v5 ≺ v7 ≺ v8 is
an MRU extension.

For a linear extension L of poset 〈P,<〉, and two elements x and y in P , let
C[x, y] be the subset of chains whose elements appear between x and y (inclu-
sively) in L, that is, C[x, y] = {C(z) : x � z � y}.

Lemma 3. Let L be an MRU extension of a width-w poset 〈P,<〉 containing
pattern [r1 . . . r2 . . . b], such that C(r1) = C(r2) 
= C(b) and there is no element in
L between r1 and r2 from chain C(r1). If C[r1, r2] = C[r1, b], then r2 < b.

Proof. Assume to the contrary that there is some b for which r2 < b does not
hold. Without loss of generality, let b be the first (after r2) of those elements in
L. Since C[r1, r2] = C[r1, b], there are elements between r1 and r2 in L from chain
C(b). Let b1 be the last such element in L. Hence, r1 ≺ b1 ≺ r2 ≺ b. Consider the
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incremental construction of L. Since there is no element between r1 and r2 in
L from chain C(r1), the chain of b was “more recent” than the one of r2, when
r2 was chosen as the next element. Thus, there is an edge (x, b) in G(P,<) with
r2 ≺ x in L. Since b is the first element that is not comparable to r2, then r2 < x
holds. Hence, r2 < b; a contradiction to our assumption that r2 < b does not
hold. ��
Corollary 1. Let L be an MRU extension of a width-w poset 〈P,<〉 containing
pattern [r1 . . . r2], such that C(r1) = C(r2) and there is no element in L between r1
and r2 from chain C(r1). If |C[r1, r2]| = w, then r2 is comparable to all subsequent
elements in L.

Next we describe a forbidden pattern which is central in our proofs.

Lemma 4. An MRU extension L of a width-w poset 〈P,<〉 does not contain
the following pattern, even if uk = b1

– C(ui) 
= C(uj) for 1 ≤ i, j ≤ w with i 
= j,
– (u1, r1), . . . , (uk, rk) form an incoming R-rainbow of size k for some 1 ≤

k ≤ w,
– between b1 and b2 in L, there is an element from R but no elements from

B = C(b1) = C(b2).

Proof. Since there are no elements between b1 and b2 in L from B and since
C(ui) 
= C(uj) for 1 ≤ i, j ≤ w with i 
= j, one of u1, . . . , uk belongs
to B. Let ui be this element with 1 ≤ i ≤ k, that is, C(ui) = B. Since
(u1, r1), . . . , (uk, rk) form an incoming R-rainbow, (ui, ri) is an edge of G(P,<).
Notice that [ui . . . b1 . . . b2 . . . ri] holds in L and that ui = b1 may hold if i = k.

Our proof is by induction on |C|−|C[b1, b2]|, which ranges between 0 and w−2.
In the base case |C| − |C[b1, b2]| = 0, that is, |C[b1, b2]| = w. By Corollary 1, b2 is
comparable to all subsequent elements in L. In particular, b2 < ri, which implies
that (ui, ri) is transitive in G(P,<), since ui ≤ b1 < b2 < ri; a contradiction.

Assume |C| − |C[b1, b2]| > 0. Let r0 be the first vertex from R after b2 in L,
that is, r0 � rk. If there are no elements between b2 and r0 from C \ C[b1, b2]
(that is, C[b1, b2] = C[b2, r0]), then by Lemma 3 it follows that b2 < r0, which
implies ui ≤ b1 < b2 < r0 ≤ ri. Thus, edge (ui, ri) is transitive in G(P,<); a
contradiction. Therefore, we may assume that there are elements between b2 and
r0 in L from C\C[b1, b2]. Let g1 be the first such element; denote C(g1) = G. Since
between b1 and b2 in L there is an element from R (that is, R ∈ C[b1, b2]), G 
= R
holds. Similarly, G 
= B. Let (u�, r�) be the edge of the incoming R-rainbow with
C(u�) = G; notice that such an edge exists as G ∈ C \ C[b1, b2]. Since r0 is the
first element from R after b2 in L, r0 � r�. Thus, [u� . . . b1 . . . b2 . . . g1 . . . r0 . . . r�]
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holds in L such that C(u�) = G /∈ {R,B}. Let g2 be the last element between u�

and b1 from G, that is, u� � g2 ≺ b1 in L. Now, consider the pattern:

which satisfies the conditions of the lemma, since between g2 and g1 in L there
is an element of R (namely, the one between b1 and b2 in L) and no elements
of G (by the choice of g1 and g2). Further, |C| − |C[g2, g1]| < |C| − |C[b1, b2]|,
since {G} = C[g2, g1] \ C[b1, b2]. By the inductive hypothesis, the aforementioned
pattern is not contained in L. Thus, also the initial one is not contained. ��

In the next five lemmas we study configurations that cannot appear in a
rainbow formed by the edges of G(P,<) in an MRU extension.

Lemma 5. Let R and B be different chains of a width-w poset. Then a rainbow
in an MRU extension of the poset does not contain all edges from

T ∗
R ∪ {(b1, b2)},

where b1, b2 ∈ B and T ∗
R is a complete incoming R-rainbow.

Proof. Assume to the contrary that a rainbow T contains an incoming R-rainbow
formed by edges (u1, r1), . . . , (uw, rw) and an edge (b1, b2) with b1, b2 ∈ B. As in
the proof of Theorem 1, we can show that (uw−1, rw−1) and (uw, rw) are the two
innermost edges of T , and C(uw) = R. Assume without loss of generality that
uk ≺ b1 ≺ uk+1 in L for some 1 ≤ k ≤ w− 1, which implies that rk+1 ≺ b2 ≺ rk.
Thus, the following holds in L.

By Proposition 1, there are no elements from B between b1 and b2. Hence,
the conditions of Lemma 4 hold for the pattern; a contradiction. ��
Lemma 6. Let R and B be different chains of a width-w poset. Then a rainbow
in an MRU extension of the poset does not contain all edges from

T ∗
R \ {(r1, r2)} ∪ T ∗

B \ {(b1, b2)},

where r1, r2 ∈ R, b1, b2 ∈ B, and T ∗
R, T ∗

B are complete incoming R-rainbow and
B-rainbow, respectively.

Proof. Let TR be an incoming R-rainbow of size w − 1 without the R-self edge;
define TB symmetrically. Assume to the contrary that a rainbow T in an MRU
extension L contains both TR and TB. Let (uw−1, rw−1) and (vw−1, bw−1) be
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the innermost edges of TR and TB in T , respectively. Without loss of generality,
assume that (vw−1, bw−1) nests (uw−1, rw−1). This implies the following in L:

By Lemma 2 applied to TB, there are no elements from B between vw−1 and
rw−1 in L. Consider edge (ui, ri) of TR such that ui ∈ B. Element ui ensures
that there are some elements preceding vw−1 in L that belong to B. Let b� be
the last such element in L, that is, b� � vw−1. Symmetrically, let br be the first
element from B following rw−1 in L, that is, rw−1 ≺ br � bw−1, and we have:

By the choice of b� and br, we further know that between b� and br there
are no elements from B, but there is an element from R, namely rw−1. Let
(u1, r1), . . . , (uk, rk) be the edges of TR that nest both b� and br in L. Assuming
that uw = rw−1, we conclude that the following holds in L:

Since between b� and br there are no elements from B, but there is an element
from R, we have the forbidden pattern of Lemma 4; a contradiction. ��
Lemma 7. Let R,B,G be pairwise different chains of a width-w poset. Then a
rainbow in an MRU extension of the poset does not contain all edges from

T ∗
R \ {(g1, r)} ∪ T ∗

B \ {(g2, b)},

where g1, g2 ∈ G, r ∈ R, b ∈ B, and T ∗
R, T ∗

B are complete incoming R-rainbow
and B-rainbow, respectively.

Proof. Assume to the contrary that a rainbow T contains both TR and TB
as in the statement of the lemma. Let (u1, r1), . . . , (uw−1, rw−1) be the edges
of TR and (v1, b1), . . . , (vw−1, bw−1) be the edges of TB, where (uw−1, rw−1)
and (vw−1, bw−1) are the R- and B-self edges, respectively. By Proposition 1,
(uw−1, rw−1) and (vw−1, bw−1) are innermost edges in TR and TB. Without loss of
generality, assume that (vw−1, bw−1) nests (uw−1, rw−1), and that vw−1 appears
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between vertices uk and uk+1 of TR, which implies that rk+1 ≺ bw−1 ≺ rk.
Hence, the following holds in L:

By Proposition 1, there is no vertex of B between vw−1 and bw−1 in L. If
there is a vertex from G between vw−1 and bw−1 in L, then we have the forbidden
pattern of Lemma 4, since C(ui) 
= G for all 1 ≤ i ≤ w − 1.

Otherwise, by Lemma 1, there is some x /∈ B between vw−1 and bw−1 in L,
such that x < bw−1. As mentioned above, x /∈ G either. Thus, the incoming B-
rainbow contains edge (vi, bi), which nests (vw−1, bw−1), such that C(vi) = C(x).
Since vi < x < bw−1 < bi, the edge (vi, bi) is transitive; a contradiction. ��
Lemma 8. Let R,B,G be pairwise different chains of a width-w poset. Then a
rainbow in an MRU extension of the poset does not contain all edges from

T ∗
B \ {(b1, b2)} ∪ T ∗

R \ {(mr, r)} ∪ T ∗
G \ {(mg, g)},

where b1, b2 ∈ B, mr ∈ V \ R, r ∈ R, mg ∈ V \ G, g ∈ G, and T ∗
B, T

∗
R, T ∗

G are
complete incoming B-rainbow, R-rainbow G-rainbow, respectively.

Proof. Assume to the contrary that a rainbow T contains three incoming rain-
bows, TB, TR, and TG , as in the statement of the lemma. Without loss of gener-
ality, assume that the G-self edge (g1, g2) is nested by the R-self edge, (r1, r2);
that is, r1 ≺ g1 ≺ g2 ≺ r2. Denote the edges of TB by (ui, bui

) for 1 ≤ i ≤ w− 1,
and assume that the following holds in L for some k ≤ w − 1.

Suppose there exists a vertex x ∈ B such that r1 ≺ x ≺ r2; then r1 and
r2 together with x and edges of TB form the forbidden pattern of Lemma 4.
Thus, there are no vertices from B between r1 and r2 in L, and (uk, buk

) is the
innermost edge of TB in T . Therefore, we can find two consecutive vertices in
chain B, b′ and b′′, such that b′ ≺ r1 ≺ r2 ≺ b′′ � buk

. Here b′ exists because
by Lemma 7 at least one of the two edges, (b, r), (b, g), is in T as part of TR,
TG , respectively. Further, by Lemma 2, the interval between uk and buk

does
not contain pattern [uk . . . b . . . x . . . buk

], where b ∈ B, x /∈ B. Thus, b′ ≺ uk and
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the interval of L between b′′ and buk
contains vertices only from B (b′′ = buk

is
possible).

Now if there exists a vertex from C(mr) between b′ and b′′, then [b′ . . . r1 . . . b′′]
together with the edges of TR form the forbidden pattern of Lemma 4. Thus,
there are no vertices from C(mr) between b′ and b′′.

Finally, consider vertices r1 and r2 that are consecutive in R. By
Lemma 1 and the fact that r1 ≺ g1 ≺ r2, there is x /∈ C(mr) between r1 and r2
such that x < r2. Since x /∈ C(mr), rainbow TR contains edge (y, ry) for some
ry ∈ R such that C(y) = C(x). Edge (y, ry) is transitive, as y < x < r2 < ry; a
contradiction. ��
Lemma 9. Let R,B,G be pairwise different chains of a width-w poset. Then a
rainbow in an MRU extension of the poset does not contain all edges from

T ∗
B \ {(mb, b)} ∪ T ∗

R \ {(mr, r)} ∪ T ∗
G \ {(mg, g)},

where mb ∈ V \B, b ∈ B, mr ∈ V \R, r ∈ R, mg ∈ V \G, g ∈ G, and T ∗
B, T

∗
R, T ∗

G
are complete incoming B-rainbow, R-rainbow G-rainbow, respectively.

Proof. Assume to the contrary that a rainbow T contains three incoming rain-
bows TB, TR, and TG , as in the statement of the lemma for some MRU exten-
sion L of the poset. By Lemma 7, C(mb), C(mr), and C(mg) are pairwise distinct
chains.

Without loss of generality, assume that the R-self edge, (r1, r2), nests the
B-self edge, (b1, b2), which in turn nests the G-self edge, (g1, g2). Namely, r1 ≺
b1 ≺ g1 ≺ g2 ≺ b2 ≺ r2. Denote the edges of TB by (ui, bui

) for 1 ≤ i ≤ w − 1,
and assume that

holds in L for some k ≤ w − 1. If there is a vertex from C(mb) between r1
and r2 in L, then the forbidden pattern of Lemma 4 is formed by [r1 . . . b1 . . . r2]
and edges of TB. Otherwise by Lemma 1, there is some x /∈ C(mb) between
b1 and b2 such that x < b2. Since |TB| = w − 1, TB contains edge (y, by) for
some by ∈ B such that C(y) = C(x). Since y < x < b2 < by, (y, by) is transitive;
a contradiction. ��
Now we state the main result of the section.

Theorem 2. The maximum size of a rainbow formed by the edges of G(P,<)
in an MRU extension of a poset 〈P,<〉 of width w is at most (w − 1)2 + 1.
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Proof. When w = 2, the theorem holds for any lazy linear extension by
Theorem 1 and thus for MRU. Hence, we focus on the case w ≥ 3. Assume to the
contrary that an MRU extension contains a rainbow T of size (w−1)2+1. Let TB,
TR, TG be the largest incoming rainbows in T corresponding to chains B, R, and
G, respectively. Assume without loss of generality that |TB| ≥ |TR| ≥ |TG |. By the
pigeonhole principle, we have |TB| ≥ |TR| ≥ w − 1. We claim that |TB| = w − 1.
Indeed, if |TB| = w, then by Lemma 5, TR does not contain the R-self edge.
Thus, T contains T ∗

B and T ∗
R \ {(r1, r2)} with r1, r2 ∈ R; a contradiction by

Lemma 6.
Thus, |TB| = |TR| = |TG | = w − 1 follows, and we distinguish cases based on

the number of self edges in TB, TR, and TG . If each of them contain its self edge,
then we have the forbidden configuration of Lemma 9. If two of TB, TR, and
TG contain a self edge, then we have the forbidden configuration of Lemma 8.
Finally, if at most one of TB, TR, and TG contains a self edge, say TB, then
TR and TG form the forbidden configuration of Lemma 6. This concludes the
proof. ��
In [2] we show that our analysis is tight, i.e., there are posets of width w and
corresponding MRU extensions containing ((w − 1)2 + 1)-rainbows.

5 A Counterexample to Conjecture 1

Here we sketc.h our approach to disprove Conjecture 1. We describe a poset in
terms of its cover graph G(p, q); see Fig. 2. For p ≥ q − 3, graph G(p, q) consists
of 2p + q vertices a1, . . . , ap, b1, . . . , bq, and c1, . . . , cp that form three chains of
lengths p, q, and p, respectively. For all 1 ≤ i ≤ p and for all 1 ≤ j ≤ q, the edges
(ai, ai+1), (bj , bj+1) and (ci, ci+1) form the intra-chain edges of G(p, q). Graph
G(p, q) also contains the following inter-chain edges: (i) (ai, ci+3) and (ci, ai+3)
for all 1 ≤ i+ 3 ≤ p, and (ii) (ai, bi) and (ci, bi) for all 1 ≤ i ≤ q.s We denote by
˜G(p, q) the graph obtained by adding (b1, ap) and (b1, cp) to G(p, q).

Theorem 3. ˜G(31, 22) requires 4 queues in every linear extension.

Sketch. In [2] we provide lower bounds on the queue number for simple subgraphs
of ˜G(p, q) and then for more complicated ones for appropriate values of p and
q. We distinguish two cases depending on the length of edge (b1, cp) in a linear
extension L of ˜G(p, q). Either the edge is “short” (that is, b1 is close to cp in
L) or “long”. In the first case, the existence of a 4-rainbow is derived from
the properties of the subgraphs. In the latter case, edge (b1, cp) nests a large
subgraph of ˜G(p, q), which needs 3 queues. ��

To prove that Conjecture 1 does not hold for w > 3, we employ an auxiliary
lemma implicitly used in [16]; see [2] for details.

Theorem 4. For every w ≥ 3, there is a width-w poset with queue number
w + 1.
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Fig. 2. Illustration of graph ˜G(p, q) with p = 16 and q = 11.

6 Conclusions

In this paper, we explored the relationship between the queue number and the
width of posets. We disproved Conjecture 1 and we focused on two natural types
of linear extensions, lazy and MRU. That led to an improvement of the upper
bound on the queue number of posets. A natural future direction is reduce the
gap between the lower bound, w+ 1, and the upper bound, (w− 1)2 + 1, on the
queue number of posets of width w > 2. In particular, we do not know whether
the queue number of width-3 posets is four or five, and whether a subquadratic
upper bound is possible. It is also intriguing to ask whether Conjecture 1 holds
for planar width-w posets whose best-known upper bound is currently 3w−2 [16].

Another related open problem is on the stack number of directed acyclic
graphs (DAGs). The stack number is defined analogously to the queue number
except that no two edges in a single stack cross. Heath et al. [13,14] asked
whether the stack number of upward planar DAGs is bounded by a constant.
While the question has been settled for some subclasses of planar digraphs [10],
the general problem remains unsolved. This is in contrast with the stack number
of undirected planar graphs, which has been shown recently to be exactly four [3].
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7. Dujmović, V., Frati, F.: Stack and queue layouts via layered separators. J. Graph
Algorithms Appl. 22(1), 89–99 (2018). https://doi.org/10.7155/jgaa.00454
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Abstract. In SODA’99, Chan introduced a simple type of planar
straight-line upward order-preserving drawings of binary trees, known as
LR drawings: such a drawing is obtained by picking a root-to-leaf path,
drawing the path as a straight line, and recursively drawing the subtrees
along the paths. Chan proved that any binary tree with n nodes admits
an LR drawing with O(n0.48) width. In SODA’17, Frati, Patrignani, and
Roselli proved that there exist families of n-node binary trees for which
any LR drawing has Ω(n0.418) width. In this paper, we improve Chan’s
upper bound to O(n0.437) and Frati et al.’s lower bound to Ω(n0.429).

1 Introduction

Drawings of trees on a grid with small area have been extensively studied in
the graph drawing literature [1–4,6–9,13–18,20–27] (see also the book [10] and
a recent survey [12]).

In this paper, we focus on one simple type of drawings of binary trees called
LR drawings, which was introduced by Chan in SODA’99 [4] (and named in a
later paper by Frati, Patrignani, and Roselli [14]): For a given binary tree T ,
we place the root somewhere on the top side of the bounding box, recursively
draw its left subtree L and its right subtree R, and combine the two drawings
by applying one of two rules. In the left rule, we connect the root of T to the
root of R by a vertical line segment, place the bounding box of L’s drawing one
unit to the left of the vertical line segment, and place the bounding box of R’s
drawing underneath. In the right rule, we connect the root of T to the root of
L by a vertical line segment, place the bounding box of R’s drawing one unit to
the right of the vertical line segment, and place the bounding box of L’s drawing
underneath. See Fig. 1(a). LR drawings are precisely those that can be obtained
by recursive applications of these two rules.

(For historical context, we should mention that a similar notion of hv drawings
were proposed before in some of the early papers on tree drawings [7–9], and
were also defined recursively using two rules; the key differences are that in hv
drawings, the root is always placed at the upper left corner, and the order of the
left and right subtrees may not be preserved.)

c© Springer Nature Switzerland AG 2020
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Fig. 1. LR drawing

Alternatively, LR drawings have the following equivalent definition: for a
given binary tree T , we pick a root-to-leaf path π, draw π on a vertical line, and
recursively draw all subtrees of π (i.e., subtrees rooted at siblings of the nodes
along π), placing the bounding boxes of left subtrees of π one unit to the left of
the vertical line, and the bounding boxes of the right subtrees of π one unit to
the right of the vertical line. See Fig. 1(b).

It is easy to see that LR drawings satisfy the following desirable properties:

1. Planar: edges do not cross in the drawing.
2. Straight-line: edges are drawn as straight line segments.
3. Strictly upward: a parent has a strictly larger y-coordinate than each child.
4. Order-preserving: the edge from a parent to its left child is to the left of the

edge from the parent to its right child in the drawing.

Indeed, the original motivation for LR drawings is in finding “good” planar,
straight-line, strictly upward, order-preserving drawings of binary trees [4].
Goodness here is measured in terms of the area of a drawing, defined as the
width (the number of grid columns) times the height (the number of grid rows),
assuming that nodes are placed on an integer grid. The goal is to prove worst-
case bounds on the minimum area needed for such drawings as a function of
the number of nodes n. As Ω(n) height is clearly necessary in the worst case for
strictly upward drawings (and LR drawings have O(n) height), the goal becomes
bounding the width. Chan’s original paper gave several methods to produce
LR drawings of arbitrary binary trees, the first method guaranteeing O(n0.695)
width, a second method with O(

√
n) width, and a final method (described in

the appendix of his paper) with O(n0.48) width.
More recently, in SODA’17, Frati, Patrignani, and Roselli [14] proved the

first nontrivial lower bound, showing that there exist binary trees for which any
LR drawing requires Ω(n0.418) width. This raises an intriguing question: can the
gap between upper and lower bounds be closed, and the precise value of the
exponent be determined?

It should be mentioned that other methods were subsequently found for pla-
nar, straight-line, strictly upward, order-preserving drawings of binary trees with
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smaller width (2O(
√
log n) in Chan’s original paper, and eventually, O(log n) in

a paper by Garg and Rusu [16]). Nevertheless, the question on LR drawings is
still interesting and natural, as it is fundamentally about combinatorics of trees,
or more specifically, decompositions of trees via path separators (instead of the
more usual vertex or edge separators). Indeed, by the alternative definition, the
minimum LR-drawing width W ∗(T ) of a binary tree T can be described by the
following self-contained formula, without reference to geometry:

W ∗(T ) = min
π

max
α,β

(W ∗(α) + W ∗(β) + 1),

where the minimum is over all root-to-leaf paths π in T , and the maximum is
over all left subtrees α of π and all right subtrees β of π.

The LR drawing problem was also mentioned in Di Battista and Frati’s
recent survey [12] (as “Open problem 10”).1 LR drawing techniques have been
applied to solve other problems, for example, on octagonal,2 planar, straight-
line, strictly upward, order-preserving drawings of binary trees [4], orthogonal,3

planar, straight-line, non-upward, order-preserving drawings of binary trees [13],
and planar straight-line drawings of outerplanar graphs [11,19], although in each
of these applications, better methods not relying on LR drawings were eventually
found [3,5,14].

In this paper, we make progress in narrowing the gap on the width bounds
for LR drawings of binary trees: we improve Chan’s upper bound from O(n0.48)
to O(n0.437), and improve Frati et al.’s lower bound from Ω(n0.418) to Ω(n0.429).

2 Upper Bound

In this section, we present an algorithm for LR drawings that achieves width
O(n0.438). A small improvement to O(n0.437) will be given in the next section.
Our algorithm builds upon Chan’s approach [4, Appendix A] but uses new ideas
to substantially improve his O(n0.48) upper bound. Throughout the paper, let
|T | denote the size (i.e., the number of nodes) in a tree T .

2.1 The Algorithm

Given a binary tree T with n nodes, we describe a recursive algorithm to produce
an LR drawing of T and show by induction that its width is at most cnp, for
some constants p and c to be set later.

For n smaller than a sufficiently large constant, we can draw T arbitrarily.
Otherwise, we maintain a path π = 〈v0, . . . , vt〉. A subtree of π refers to a subtree
rooted at a sibling of a node in π (it does not include the two subtrees at vt).

1 Technically, that survey asks about a different but related function: W ∗∗(n) =
maxT minπ maxα,β(W ∗∗(|α|) + W ∗∗(|β|) + 1), where the outer maximum is over
all n-node binary trees T . This function may be larger than maxT :|T |=n W ∗(T ).

2 All edges have slope from {0, ±1, ±∞}.
3 All edges are horizontal or vertical.
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Let α and β denote the largest left subtree and right subtree of π, respectively.
We maintain the invariant that

|α|p + |β|p ≤ (1 − δ)np

for some sufficiently small constant δ > 0. Initially, t = 0 and v0 is the root of
T . If vt is a leaf, then we draw the subtrees of π recursively and combine them
by aligning π vertically; the width is bounded by c|α|p + c|β|p + 1, which by
the invariant (and the induction hypothesis) is at most c(1 − δ)np + 1 < cnp

for a sufficiently large c (depending on p and δ). From now on, assume that vt

is not a leaf. Let L and R be the left and right subtree of the current node vt,
respectively. For some choice of constants δ > 0 and h, we consider four cases
(which cover all possibilities, as we will show in the next subsection).

Case 1: |α|p + |R|p ≤ (1 − δ)np. Set vt+1 to be the left child of vt. Increment t
and repeat.
Case 2: |β|p + |L|p ≤ (1 − δ)np. Set vt+1 to be the right child of vt. Increment
t and repeat.

In either of the above two cases, the invariant is clearly preserved.
We may now assume that |α|p + |R|p > (1− δ)np and |β|p + |L|p > (1− δ)np.

In conjunction with the invariant, we know that |β| < |R| and |α| < |L|.
For the next two cases, we introduce notation for the left and right subtrees

of π (see Fig. 2). Let α
(0)
1 = α (the largest left subtree of π). The parent of α

(0)
1

divides π into two segments. Let α
(1)
1 and α

(1)
2 denote the largest left subtree of

the top and bottom segment, respectively. Extend the definition analogously: For
each i, the parents of the 2i − 1 subtrees in {α

(�)
j | 0 ≤ � < i, 1 ≤ j ≤ 2�} divide

π into 2i segments. In the downward order, let α
(i)
1 , . . . , α

(i)
2i denote the largest

left subtrees of these segments. The above labeling of subtrees resembles a “ruler
pattern” (like in [14]). We define the right subtrees β

(i)
1 , . . . , β

(i)
2i similarly (we

do not care how the left subtrees and the right subtrees of π interleave).

Fig. 2. Notation for left subtrees

Case 3: There exists i ≤ h such that
∑2i

j=1 |α(i)
j |p +max{|L|, |R|}p ≤ (1− δ)np.

We generate an LR drawing of T using a procedure called the i-right-twist:
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We bend π at the parents of all subtrees in {α
(�)
j | 0 ≤ � < i, 1 ≤ j ≤ 2�}

(all these subtrees are thus pulled downward in the drawing), as illustrated in
Fig. 3. We recursively draw R. We draw most of the subtrees of π recursively
as well, but with the following exceptions: for the subtrees in {α

(�)
j | 0 ≤ � <

i, 1 ≤ j ≤ 2�}, we make their leftmost paths vertically aligned and recursively
draw the subtrees of these paths. Similarly, for L, we make its leftmost path
vertically aligned and recursively draw the subtrees of the path. Since every
subtree of π has size at most max{|α|, |β|} < max{|L|, |R|}, it is easy to check
(using the induction hypothesis) that the resulting LR drawing has width at
most

∑2i

j=1 c|α(i)
j |p + cmax{|L|, |R|}p +2h; this is at most (1− δ)cnp +2h < cnp,

for a sufficiently large c (depending on p, δ, and h).

Case 4: There exists i ≤ h such that
∑2i

j=1 |β(i)
j |p + max{|L|, |R|}p ≤ (1 − δ)np.

This is similar to Case 3, by using the i-left-twist.

Fig. 3. Right twist

Remark. The twisting procedures in Cases 3 and 4, and the introduction of
the “ruler pattern”, are the main new ideas, compared to Chan’s previous algo-
rithm [4].

2.2 Analysis

To complete the induction proof, it suffices to show that these four cases cover
all possibilities.



76 T. M. Chan and Z. Huang

Lemma 1. For p = 0.438 and a sufficiently small constant δ > 0 and a suffi-
ciently large constant h,

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|α|p + |R|p,
|β|p + |L|p,

h
min
i=1

⎛

⎝
2i∑

j=1

|α(i)
j |p + max{|L|, |R|}p

⎞

⎠ ,

h
min
i=1

⎛

⎝
2i∑

j=1

|β(i)
j |p + max{|L|, |R|}p

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ (1 − δ)np.

Proof. Assume for the sake of contradiction that the lemma is false. Without
loss of generality, assume |R| ≥ |L|. Let a0, . . . , ah, b0, . . . , bh be positive real
numbers with

∑h
i=0 ai +

∑h
i=0 bi = 1, whose values are to be determined later.

Let

X := a0(|α|p + |R|p) + b0(|β|p + |L|p)

+
h∑

i=1

ai

⎛

⎝
2i∑

j=1

|α(i)
j |p + |R|p

⎞

⎠ +
h∑

i=1

bi

⎛

⎝
2i∑

j=1

|β(i)
j |p + |R|p

⎞

⎠ .

By our assumption, X > (1 − δ)np. On the other hand, by Hölder’s
inequality,4

X = a0|α|p + b0|β|p + b0|L|p + (1 − b0) |R|p

+
h∑

i=1

ai

2i∑

j=1

|α(i)
j |p +

h∑

i=1

bi

2i∑

j=1

|β(i)
j |p

≤ λ1−p

⎛

⎝|α| + |β| + |L| + |R| +
h∑

j=1

2i∑

j=1

|α(i)
j | +

h∑

j=1

2i∑

j=1

|β(i)
j |

⎞

⎠

p

≤ λ1−pnp,

where

λ := a
1

1−p

0 + 2b
1

1−p

0 + (1 − b0)
1

1−p +
h∑

i=1

2ia
1

1−p

i +
h∑

i=1

2ib
1

1−p

i .

Thus, we have λ1−p > 1 − δ. However, we show that this is not true for some
choice of parameters.

4 Hölder’s inequality states that
∑

i |xiyi| ≤ (∑
i |xi|s

)1/s (∑
i |yi|t

)1/t
for any s, t > 1

with 1
s

+ 1
t

= 1. In our applications, it is more convenient to set s = 1
p
,

t = 1
1−p

, xi = Xp
i , and yi = ci, and rephrase the inequality as:

∑
i ciX

p
i ≤

(∑
i c

1/(1−p)
i

)1−p (∑
i Xi

)p
for any 0 < p < 1 and ci, Xi ≥ 0.
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We first set ai = bi = (2− 1−p
p )ia0 for 1 ≤ i ≤ h (by calculus, this choice is

actually the best for minimizing λ). Let ρ = 1+2
∑h

i=1(2
− 1−p

p )i and b0 = 1−ρa0.
Then we indeed have

∑h
i=0 ai +

∑h
i=0 bi = 1, and the above expression simplifies

to λ = ρa
1

1−p

0 +2(1−ρa0)
1

1−p +(ρa0)
1

1−p . For p = 0.438, the limit of ρ (as h → ∞)
is 2/(1 − 2− 1−p

p ) − 1 ≈ 2.395068. We can plug in a0 = 0.247 and verify (using a
calculator) that the limit of λ is less than 0.9984, which leads to a contradiction
for a sufficiently small δ and a sufficiently large h.

3 Slightly Improved Upper Bound

In this section, we describe a refinement of our algorithm to further improve the
width upper bound to O(n0.437). Although the improvement is tiny, the main
purpose is to show that our algorithm is not optimal.

The change lies in the procedure of i-right-twist in Case 3, specifically, how
L is drawn. Instead of vertically aligning the leftmost path in L, we choose a
different path, exploiting the already “used” width from the drawing of α

(i)
2i that

is available to the left of the root of L. We define a new path π′ = 〈u0, u1, . . .〉
in L as follows. Initially, set u0 to the root of L. For k = 0, 1, . . . (until uk is
a leaf), if the left subtree of uk has size at most |α(i)

2i |, then set uk+1 to be the
right child of uk; otherwise, set uk+1 to be the left child of uk (see Fig. 4). This
way, every left subtree of π′ has size at most |α(i)

2i |, and every right subtree of π′

has size less than |L| − |α(i)
2i |. (Note that |α(i)

2i | < |L|.) We draw L by vertically
aligning the path π′, and recursively drawing the left and right subtrees of π′.
The overall LR drawing of T has width at most

∑2i

j=1 c|α(i)
j |p + cmax{|L| −

|α(i)
2i |, |R|}p + 2h. (Parts of the drawing may have width bounded instead by

∑2i−1
j=1 c|α(i)

j |p +cmax{|L|, |R|}p +2h, but this is no worse than the above bound

since |L|p ≤ |α(i)
2i |p + (|L| − |α(i)

2i |)p.) Thus, we can relax the condition in Case 3

to
∑2i

j=1 c|α(i)
j |p + cmax{|L| − |α(i)

2i |, |R|}p ≤ (1 − δ)np.
With a similar modification to the i-left-twist procedure, we can relax the

condition in Case 4 to
∑2i

j=1 c|β(i)
j |p + cmax{|L|, |R| − |β(i)

2i |}p ≤ (1 − δ)np.
It suffices to prove the following variant of Lemma 1:

Lemma 2. For p = 0.437 and a sufficiently small constant δ > 0 and a suffi-
ciently large constant h,

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|α|p + |R|p,
|β|p + |L|p,

h
min
i=1

⎛

⎝
2i∑

j=1

|α(i)
j |p + max{|L| − |α(i)

2i |, |R|}p

⎞

⎠ ,

h
min
i=1

⎛

⎝
2i∑

j=1

|β(i)
j |p + max{|L|, |R| − |β(i)

2i |}p

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ (1 − δ)np.
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Fig. 4. Choosing a path π′ inside L

Proof. Assume for the sake of contradiction that the lemma is false. Without
loss of generality, assume |R| ≥ |L|. Note that |β(i)

2i | decreases with i. Let i∗ be
the smallest integer with 1 ≤ i∗ ≤ h such that |R| − |β(i∗)

2i∗ | ≥ |L| (if such an
integer does not exist, set i∗ = h + 1).

Let a0, . . . , ah, b0, . . . , bh be positive real numbers with
∑h

i=0 ai+
∑h

i=0 bi = 1,
whose values are to be determined later. Let

X :=
h∑

i=0

ai

⎛

⎝
2i∑

j=1

|α(i)
j |p + |R|p

⎞

⎠ +
i∗−1∑

i=0

bi

⎛

⎝
2i∑

j=1

|β(i)
j |p + |L|p

⎞

⎠

+
h∑

i=i∗
bi

⎛

⎝
2i∑

j=1

|β(i)
j |p + (|R| − |β(i)

2i |)p

⎞

⎠ .

By our assumption, X > (1 − δ)np. On the other hand, by Hölder’s inequality,
for any 0 < γ < 1,

|β(i)
2i |p + (|R| − |β(i)

2i |)p = (1 − γ)|β(i)
2i |p + γ|β(i)

2i |p + (|R| − |β(i)
2i |)p

≤ (1 − γ)|β(i)
2i |p + (γ

1
1−p + 1)1−p|R|p,
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and by Hölder’s inequality again,

X ≤
h∑

i=0

ai

2i∑

j=1

|α(i)
j |p +

i∗−1∑

i=0

bi

2i∑

j=1

|β(i)
j |p +

(
i∗−1∑

i=0

bi

)

|L|p

+
h∑

i=i∗
bi

⎛

⎝
2i−1∑

j=1

|β(i)
j |p + (1 − γ)|β(i)

2i |p
⎞

⎠

+

(
h∑

i=0

ai + (1 + γ
1

1−p )1−p
h∑

i=i∗
bi

)

|R|p

≤ λ1−pnp,

where

λ :=
h∑

i=0

2ia
1

1−p

i +
i∗−1∑

i=0

2ib
1

1−p

i +

(
i∗−1∑

i=0

bi

) 1
1−p

+
h∑

i=i∗
(2i − 1 + (1 − γ)

1
1−p )b

1
1−p

i

+

(
h∑

i=0

ai + (1 + γ
1

1−p )1−p
h∑

i=i∗
bi

) 1
1−p

.

An optimal choice of parameters is now messier to describe, but will not be
necessary. We can reuse our earlier choice with a0 = 0.247, ai = bi = (2− 1−p

p )ia0

for 1 ≤ i ≤ h, and b0 = 1 − ∑h
i=0 ai − ∑h

i=1 bi. For p = 0.437, γ = 0.1, and
h = 7, we can verify (with a short computer program) that for each possible
i∗ ∈ {1, . . . , 8}, λ evaluates to strictly less than 1, a contradiction.

Theorem 1. For any binary tree with n nodes, there exists an LR drawing with
O(n0.437) width.

Remark. It is not difficult to implement the algorithm to construct the drawing
in O(n) time.

4 Lower Bound

We now prove an Ω(n0.429) lower bound on the width of LR drawings. Our proof
is largely based on Frati, Patrignani, and Roselli’s [14]; we show that a simple
variation of their proof is sufficient to improve their Ω(n0.418) lower bound.

4.1 Tree Construction

For any given positive integer n, we describe a recursive construction of a binary
tree Tn with n nodes and show by induction that any LR drawing of Tn has
width at least cnp, where p and c > 0 are constants to be determined later.
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Fig. 5. Tree construction for the lower bound

For n smaller than a sufficiently large constant, we can construct Tn arbitrar-
ily. Otherwise, let h, ϕ, and μ be parameters, to be chosen later. We construct
a tree Tn containing a path π = 〈u1, v1, u2, v2, . . . , uk−1, vk−1, uk〉, where k = 2h

and u1 is the root. The left and right subtree of uk, which we denote by L and
R, are recursively constructed trees each with �ϕn� nodes.

We will add left subtrees α1, . . . , αk−1 to u1, . . . , uk−1 and right subtrees
β1, . . . , βk−1 to v1, . . . , vk−1. Specifically, the subtrees αk/2 and βk/2, which are
said to be at level 0, are recursively constructed trees each with �μn� nodes.
The subtrees αk/4, α3k/4 and βk/4, β3k/4, which are at level 1, are recursively
constructed trees each with

⌈
2−1/pμn

⌉
nodes. Extend the process analogously:

For each i ≤ h−2, the 2i left subtrees αk/2i+1 , α3k/2i+1 , α5k/2i+1 , . . . and 2i right
subtrees βk/2i+1 , β3k/2i+1 , β5k/2i+1 , . . ., which are at level i, are recursively con-
structed trees each with

⌈
(2−1/p)iμn

⌉
nodes. As shown in Fig. 5, these subtrees

of π form a “ruler pattern” (which somewhat resembles the ruler pattern from
our upper bound proof, coincidentally or not).

We set h = p log(μn/c0)� for a sufficiently large constant c0, and choose
parameters ϕ and μ to satisfy

ϕ +
μ

1 − 2− 1−p
p

=
1
2
. (1)

Then the total size of the left subtrees at level 0, . . . , h − 2 is

h−2∑

i=0

2i
⌈
(2−1/p)iμn

⌉
=

h−2∑

i=0

(2− 1−p
p )iμn + O(k)

=
μn

1 − 2− 1−p
p

− Θ((2− 1−p
p )hμn) + O(k)

=
(
1
2 − ϕ

)
n − Θ(c0k).
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The same bound holds for the right subtrees at level 0, . . . , h − 2. Thus, we can
distribute Θ(c0) nodes to each of the Θ(k) subtrees at the last level h−1 so that
|Tn| is exactly n.

4.2 Analysis

We begin with a simple property arising from the ruler pattern:

Lemma 3. For any set J ⊆ {1, . . . , k − 1} of consecutive integers, the largest

subtree αj (or βj) with j ∈ J has size at least
(

|J|−1
k

)1/p

μn.

Proof. We may assume |J | ≥ 2 (for otherwise the inequality is trivial). Say
k/2i+1 ≤ |J | < k/2i. The subtrees αj at level at most i are precisely those with
indices j divisible by k/2i+1; there exists one such index with j ∈ J . The size of
αj and βj is at least (2−1/p)iμn ≥ (|J |/k)1/pμn. ��

Assume inductively that any LR drawing of Tn′ has width at least c(n′)p, for
all n′ < n. Let Tn(uj) denote the subtree of Tn rooted at node uj . We will prove
the following claim, for c sufficiently small:

Claim. For j ∈ {1, . . . , k}, every LR drawing Γ of Tn(uj) has width at least

k−j+1
k c(μn)p + c(ϕn)p.

Proof. We do another proof by induction, on j (within the outer induction
proof). Let π(Γ ) denote the root-to-leaf path in T (uj) that is vertically aligned
in Γ . Let πj→k denote the path 〈uj , . . . , uk〉. Consider the last node w that is
common to both paths π(Γ ) and πj→k.

Case 1: w = uk. Let α and β be the largest subtree among αj , . . . , αk−1 and
βj , . . . , βk−1, respectively (in the special case j = k, let α = β = ∅). By Lemma 3,

|α|p, |β|p ≥ k−j−1
k (μn)p.

If π(Γ ) contains the left child of uk, then the drawings of α and R are separated
by the vertical line through π(Γ ), and so (by the outer induction hypothesis)
the overall drawing Γ has width at least

c|α|p + c|R|p + 1 ≥ k−j−1
k c(μn)p + c(ϕn)p + 1 ≥ k−j+1

k c(μn)p + c(ϕn)p,

for a sufficiently small c (since 1
k (μn)p = O(1)). If π(Γ ) contains the right child

of uk, then βi and L are vertically separated, and the argument is similar.

Case 2: w = um for some j ≤ m < k. Let α be the largest subtree among
αj , . . . , αm−1 (in the special case m = j, let α = ∅). By Lemma 3,

|α|p ≥ m−j−1
k (μn)p.
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Since π(Γ ) contains the left child of um, we know that the drawings of α and
Tn(um+1) are separated by the vertical line through π(Γ ), and so by the induc-
tion hypotheses, the overall drawing Γ has width at least

c|α|p + k−m
k c(μn)p + c(ϕn)p + 1 ≥ k−j−1

k c(μn)p + c(ϕn)p + 1

≥ k−j+1
k c(μn)p + c(ϕn)p,

for a sufficiently small c.

Case 3: w = vm for some m < k. This is similar to Case 2. ��
Applying Claim 4.2 with j = 1, we see that any LR drawing of Tn has width

at least c(μn)p + c(ϕn)p, which is at least cnp, completing the induction proof,
provided that

ϕp + μp ≥ 1. (2)

For p = 0.429, we can choose μ = 0.122 and ϕ ≈ 0.297513 and verify (using
a calculator) that both (1) and (2) are satisfied.

Theorem 2. For every positive integer n, there is a binary tree with n nodes
such that any LR drawing requires Ω(n0.429) width.

Remark. The maximum value of p that guarantees the existence of μ and ϕ
satisfying (1) and (2) has a concise description: it is given by p = 1/(1 + x),
where x is the solution to the equation

1 − 2−x = (21/x − 1)x.

Our lower-bound proof is very similar to Frati, Patrignani, and Roselli’s [14],
but there are two main differences: First, their tree construction was parame-
terized by a different parameter h instead of n; they upper-bounded the size
n by an exponential function on h and lower-bounded the width by another
exponential function on h. Second, and more crucially, they chose ϕ = μ (in our
terminology). Besides convenience, we suspect that their choice was due to the
above parameterization issue. With this extra, unnecessary constraint ϕ = μ,
the best choice of p was only around 0.418.

5 Final Remarks

The main open problem is to narrow the remaining small gap in the exponents
of the upper and lower bound (between 0.437 and 0.429). The fact that both
the upper and lower bound proofs use similar “ruler patterns” suggests that we
are on the right track (even though looking for further tiny improvements in
the upper-bound proof by complicating the analysis, along the lines of Sect. 3,
doesn’t seem very worthwhile).

Frati et al. [14] have computed the exact optimal width for small values of
n, and according to their experimental data for all n ≤ 455, a function of the
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form W ∗(n) = anb − c with the least-squares fit is W ∗(n) ≈ 1.54n0.443 − 0.55.
Our results reveal that the true exponent is actually smaller.

Another open problem is to bound the related function W ∗∗(n) mentioned
in footnote 1 of the introduction; our new upper-bound proof does not work for
this problem, but Chan’s O(n0.48) upper bound [4] still holds.
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Abstract. We study planar straight-line drawings of graphs that min-
imize the ratio between the length of the longest and the shortest edge.
We answer a question of Lazard et al. [Theor. Comput. Sci. 770 (2019),
88–94] and, for any given constant r, we provide a 2-tree which does not
admit a planar straight-line drawing with a ratio bounded by r. When
the ratio is restricted to adjacent edges only, we prove that any 2-tree
admits a planar straight-line drawing whose edge-length ratio is at most
4+ ε for any arbitrarily small ε > 0, hence the upper bound on the local
edge-length ratio of partial 2-trees is 4.

Keywords: Planar straight-line drawing · Edge-length ratio · 2-tree

1 Introduction

Straight-line drawings of planar graphs are thoroughly studied both for their the-
oretical interest and their applications in a variety of disciplines (see, e.g., [6,12]).
Different quality measures for planar straight-line drawings have been consid-
ered in the literature, including area, angular resolution, slope number, average
edge length, and total edge length (see, e.g., [8,9,11]).

This paper studies the problem of computing planar straight-line drawings
of graphs where the length ratio of the longest to the shortest edge is as small
as possible. We recall that the problem of deciding whether a graph admits a
planar straight-line drawing with specified edge lengths is NP-complete even
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when restricted to 3-connected planar graphs [7] and the completeness persists
in the case when all given lengths are equal [4]. In addition, deciding whether a
degree-4 tree has a planar drawing such that all edges have the same length and
the vertices are at integer grid points is NP-complete [1].

In the attempt of relaxing the edge length conditions which make the problem
hard, Hoffmann et al. [9] propose to minimize the ratio between the longest and
the shortest edges among all straight-line drawings of a graph. While the problem
remains hard for general graphs (through approximation of unit disk graphs [5]),
Lazard et al. prove [10] that any outerplanar graph admits a planar straight-
line drawing such that the length ratio of the longest to the shortest edges is
strictly less than 2. This result is tight in the sense that for any ε > 0 there are
outerplanar graphs that cannot be drawn with an edge-length ratio smaller than
2− ε. Lazard et al. also ask whether their construction could be extended to the
class of series-parallel graphs.

We answer this question in the negative sense, by showing that a subclass
of series-parallel graphs, called 2-trees, does not allow any planar straight-line
drawing of bounded edge-length ratio. In fact, a corollary of our main result
is the existence of an Ω(log n) lower bound for the edge-length ratio of planar
straight-line drawings of n-vertex 2-trees. Motivated by this negative result, we
consider a local measure of edge-length ratio and prove that when the ratio is
restricted only to the adjacent edges, any series-parallel graph admits a planar
straight-line drawing with local edge-length ratio at most 4+ε, for any arbitrarily
small ε > 0. The proof of this upper bound is constructive, and it gives rise to
a linear-time algorithm assuming a real RAM model of computation.

It is worth noticing that Borrazzo and Frati have shown that any 2-tree on n
vertices can be drawn with edge-length ratio O(n0.695) [3]. This, together with
our Ω(log n) result, defines a non-trivial gap between the upper and lower bound
on the edge-length ratio of planar straight-line drawings of partial 2-trees. We
recall that Borrazzo and Frati also show an Ω(n) lower bound on the edge-length
ratio of general planar graphs [3].

The rest of the paper is organized as follows. Preliminaries are in Sect. 2;
the Ω(log n) lower bound is proved in Sect. 3; Sect. 4 presents a constructive
argument for an upper bound on the local edge-length ratio of partial 2-trees.
Conclusions and open problems can be found in Sect. 5. Omitted proof can be
found in the appendix of the full version of the paper which is available online [2].

2 Preliminaries

We use capital letters A,B, . . . , for the points in the Euclidean plane. For points
A and B, let |AB| denote the Euclidean distance between A and B. The symbol
�ABC denotes the triangle determined by three distinct non-colinear points A,
B, and C. The symbol ∠BAC stands for the angle at vertex A of the triangle
�ABC.

For a polygon Q, we denote its perimeter by P (Q) and its area by A(Q).
We consider finite nonempty planar graphs and their planar straight-line

drawings. Once a straight-line drawing of a graph G is given, with a slight
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abuse of notation we use the same symbol for a vertex U and the point U
representing the vertex U in the drawing; the same symbol UV for an edge and
the corresponding segment; as well as �UV W for an induced cycle of length
three and the corresponding triangle.

When we consider graphs as combinatorial objects, we often use lowercase
symbols u or e for the vertices and edges.

The edge-length ratio of a planar straight-line drawing of a graph G is the
ratio between the length of the longest and the shortest edge of the drawing.

Definition 1. The edge-length ratio ρ(G) of a planar graph G is the infimum
edge-length ratio taken over all planar straight-line drawings of G.

The class of 2-trees is defined recursively: an edge is a 2-tree. If e is an edge
of a 2-tree, then the graph, formed by adding a new vertex u adjacent to both
endpoints of e, is also a 2-tree. In such a situation we say that u has been added
as a simplicial vertex to e. A partial 2-tree is a subgraph of a 2-tree.

3 Edge-Length Ratio of 2-Trees

We recall that 2-trees are planar graphs. The main result of this section is the
following.

Theorem 1. For any r ≥ 1, there exists a 2-tree G with edge-length ratio
ρ(G) ≥ r.

To prove Theorem 1, for a given r we argue that a sufficiently large 2-tree,
drawn with the longest edge having length r, contains a triangle with area at
most 1

4 (Corollary 1). Then, inside this triangle of small area we build a sequence
of triangles with perimeters decreasing by at least 1 at every two steps (Lemmas 5
and 6), which results in a triangle with an edge of length less than 1.

We consider a special subclass G = {G0, G1, . . . } of 2-trees with labeled
vertices and edges constructed as follows: G0 is the complete graph K3 whose
vertices and edges are given the label 0. The graph Gi+1 is obtained by adding
five simplicial vertices to each edge of label i of Gi. Each newly created vertex
and edge gets label i + 1. See Fig. 1 for an example where the black vertices and
edges have label 0, the blue ones have label 1, and the red ones have label 2.

A separating triangle of level i in a straight-line drawing of a 2-tree G is an
unordered triple {U, V,W} of mutually adjacent vertices such that the vertex
W of label i was added as a simplicial vertex to the edge UV in the recursive
construction of G and the triangle �UV W contains in its interior at least two
other vertices with label i which are simplicial to the edge UV . For example, in
Fig. 1a) vertices {U, V,W} form a separating triangle of level 1.

Lemma 1. For any k > i ≥ 1, for any planar straight-line drawing of the graph
Gk, and for any edge e of Gk labeled by i, there exists a separating triangle of
level i + 1 containing the endpoints of e.



88 V. Blažej et al.

Fig. 1. The 2-trees G1 and G2. Black color corresponds to label 0, blue to 1, and red
to 2. Separating triangle Δ1 is emphasized by a dashed line in G1. (Color figure online)

Proof. If a common edge of two triangles is traversed in the same direction
when following their boundaries in the clockwise manner, then these triangles
are nested, i.e. the interior of one contains the other one. Since we have five
vertices simplicial to e, out of the corresponding five triangles in at least three e
traversed in the same direction when following their boundaries in the clockwise
manner. Thus at least three triangles are nested and the outermost of these is
the desired separating triangle.

(For the clarity of presentation we have assumed a straight-line drawing,
where the graph-theoretic term triangle coincides with the geometric one. This
assumption could indeed be neglected when we consider a triangle in a planar
drawing as the Jordan curve formed from the drawing of a 3-cycle.)

We proceed to show that any drawing of Gk contains a triangle of sufficiently
small area. To this aim, we construct a sequence of nested triangles such that
each triangle’s area is half of the previous triangle’s area. We denote as Δi a
separating triangle of level i in an embedding of Gk, where i ≤ k.

Lemma 2. For any k ≥ 1, any planar straight-line drawing of Gk contains a
sequence of triangles Δ1,Δ2, . . . ,Δk, where for any i ∈ {1, . . . , k} the triangle
Δi is a separating triangle of level i, and for each i > 1, in addition, Δi is in
the interior of Δi−1 and A(Δi) ≤ 1

2A(Δi−1).

Proof. We prove the lemma by induction on i. For i = 1 we apply Lemma 1 on
any edge e of label 0 in Gk to get the triangle Δ1.

When i ∈ {2, . . . , k}, we assume by inductive hypothesis that the graph Gk

contains a sequence of triangles Δ1,Δ2, . . . ,Δi−1 satisfying the constraints. Let
U be one of the two vertices of label i − 1 in the interior of Δi−1 and let e and
f be the two edges of label i − 1 incident to U .

We apply Lemma 1 on both of e and f to obtain two separating triangles of
level i inside Δi−1, see Fig. 2. Since the drawing was planar, the two triangles
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are non-overlapping. We choose the triangle with the smaller area to be Δi to
assure that A(Δi) ≤ 1

2A(Δi−1).

Fig. 2. Two separating triangles created in the interior of Δi−1

Corollary 1. For any r > 1 and k ≥ 2 + 2 log2 r, every planar straight-line
drawing of Gk with edge lengths at most r contains a separating triangle of area
at most 1

4 .

Proof. If all edges have length at most r, the area of Δ1 is bounded by
√
3
4 r2. By

Lemma 2, any drawing of Gk contains a sequence of nested separating triangles
whose last element Δk has area at most 1

2k−1

√
3r2

4 ≤ 1
4 .

Before we proceed to the next step in our construction, we need some ele-
mentary facts from the trigonometry.

We call thin any triangle with edges of length at least 1 and area at most 1
4 .

Any thin triangle has height at most 1
2 and hence it has one obtuse angle of size

at least 2π
3 and two acute angles, each of size at most π

6 .

Lemma 3. Let �ABC be a thin triangle, where the longest edge is AB and let
D ∈ �ABC be such that |CD| ≥ 1. Then one of the angles ∠ACD or ∠BCD
is obtuse.

Proof. Assume by contradiction that both ∠ACD and ∠BCD are acute. With-
out loss of generality we may also assume that ∠ACD ≥ ∠BCD. Since
∠ACD + ∠BCD = ∠ACB ≥ 2π

3 , it follows that ∠ACD ≥ π
3 .

Fig. 3. To the argument that ∠ACD cannot be acute.

Then the triangle �ACD has height at least
√
3
2 , see Fig. 3. Thus it has area

at least
√
3
4 , a contradiction with the fact that the surrounding thin triangle

�ABC has area at most 1
4 .



90 V. Blažej et al.

Now we focus our attention on the perimeters of the considered triangles.

Lemma 4. Let �ABC be a thin triangle, where the longest edge is AB. Denote
by Q the polygon, created by cutting off an isosceles triangle �BDE with both
edges BD and BE of length 1. Then the perimeter of any triangle located in the
polygon Q is at most P (�ABC) − 1.

Fig. 4. Cutting-off the triangle �BDE.

See Fig. 4 for an example of cutting off an isosceles triangle.

Proof. Assume for a contradiction that some triangle T has perimeter P (T ) >
P (�ABC) − 1. Since T and Q are nested convex objects, we have that that
P (Q) ≥ P (T ) > P (�ABC)−1. Then the length of the edge DE is greater than
1 and hence the angle ∠DBE ≥ π

3 , a contradiction with the property that the
acute angles of a thin triangle are at most π

6 .

We now return to our construction and show that a separating triangle with a
small area is guaranteed to contain a separating triangle of a significantly smaller
perimeter. In the following two lemmas we distinguish two complementary cases,
namely whether the edge of level i−1 of a separating triangle of level i is incident
to its obtuse angle or not.

Lemma 5. Let Gk have a planar straight-line drawing with edge lengths at least
1 and let �UV W be a thin separating triangle of level i, where i ≤ k−1. Assume
that the edge UV is of level i − 1 and that it is incident to the obtuse angle of
�UV W . Then �UV W contains a thin separating triangle T of level i+1 whose
perimeter satisfies P (T ) ≤ P (�UV W ) − 1.

Proof. Let X and Y be the two vertices of level i simplicial to the edge UV inside
the triangle �UV W . As the embedding of Gk is non-crossing straight-line, we
may assume without loss of generality that the vertex X is inside �UV Y .

As all triangles in our further consideration are inside the thin triangle
�UV W , they have area at most 1

4 . By the definition of thin triangle they are
also thin, as otherwise we would get in Gk an edge shorter than 1, which violates
the assumptions of the Lemma. We distinguish several cases depending on the
position of the obtuse angle of the considered triangles, see Fig. 5.
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Fig. 5. Case analysis for Lemma 5.

a) The obtuse angle of �UV X is at V . By Lemma 1 we find a separating
triangle T incident with the edge V Y . Since T takes place within the angle
∠WV X, it is at distance at least 1 from U . Hence we may apply Lemma 4
to cut away the isosceles triangle in the neighborhood of vertex U , to argue
that the perimeter of T is at most P (�UV W ) − 1.

b) The obtuse angle of �UV X is at X and the separating triangle �V XZ
incident with V X obtained by by Lemma 1 is inside �UV X. As �UXV is
thin, we get that ∠WV X ≥ π

2 . Hence all points of �V XZ are at distance
at least 1 from W . We cut away the vertex W and obtain P (�V XZ) ≤
P (�UV W ) − 1.

c) The angle ∠UXV is obtuse, the separating triangle �V XZ is outside
�UV X and the angle ∠V XZ is obtuse. We apply Lemma 3 to get that
∠WV Z is obtuse—the case of ∠UV Z being obtuse is excluded as this angle
is composed from acute angles of two thin triangles: �UV X and �V XZ.
Then we cut away the vertex W as in the previous case and obtain the
claimed result.

d) The angle ∠UXV is obtuse, the separating triangle �V XZ is outside
�UV X and the angle ∠V XZ is acute. Now cut away the vertex U (as
|UX| ≥ 1), and get P (�V XZ) ≤ P (�UV W ) − 1.

Note that only when Case a) occurred, we used the existence of two vertices
of label i within the separating triangle �UV W . If Y was not present, we would
have to discuss the case that the obtuse angle of �UV X is at V and both
separating triangles of level i+1 are inside �UV X. For such a case it is possible
to find a configuration where Lemma 4 cannot be immediately applied, see Fig. 6.

Lemma 6. Let Gk have a planar straight-line drawing with edge length at least
1 and let �UV W be a thin separating triangle of level i ≤ k − 2. Assume that
the edge UV is of level i − 1 and that it is not incident to the obtuse angle of
�UV W . Then �UV W contains a thin separating triangle T of level at most
i + 2 whose perimeter satisfies P (T ) ≤ P (�UV W ) − 1.

Proof. Similarly to the previous lemma, let X be one of the two vertices of level
i simplicial to the edge UV inside the triangle �UV W , see Fig. 7. By Lemma 1
we construct a separating triangle �UXZ incident with the edge UX.
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Fig. 6. The case that avoids cutting. Note that X could be arbitrary close to W and
Z to U .

Fig. 7. Case analysis for Lemma 6.

a) If the angle ∠UXZ is acute, then we cut away V and apply Lemma 4 to
obtain P (�UXZ) ≤ P (�UV W ) − 1.

b) If the angle ∠UXZ is obtuse, then we apply Lemma 5 for the triangle �UXZ
to find a suitable separating triangle T of level i + 2 within �UXZ.

Corollary 2. For any r > 1, k ≥ 1, l ≥ 0 and any planar straight-line draw-
ing of Gk+l with edge length at least 1 it holds: If the drawing contains a thin
separating triangle of level k ≥ 1, then it has a triangle of perimeter at most
2r + 1

4 − � l
2�.

Proof. Denote by Δ0 the thin triangle of level k in the drawing of Gk+l. Since
all edges have length at most r, any thin triangle it could be drawn inside a
rectangle r × 1

8 , hence it has perimeter at most 2r + 1
4 .

We involve Lemmas 5 and 6, to find in the drawing of Gk+l a sequence of
nested separating triangles of length at least l + 1 with decreasing perimeters.

We argue that the sequence can be chosen such that for any i ∈
{1, 2, . . . , � l

2�} : P (Δ2i) ≤ P (Δ2i−2) − 1 ≤ P (Δ0) − i. We distinguish two cases
whether the edge of level 2i−3 in Δ2i−2 is incident to the obtuse angle of Δ2i−2

or not:

– In the first case we apply Lemma 5 to get P (Δ2i−1) ≤ P (Δ2i−2) − 1. As Δ2i

is inside Δ2i−1, we get P (Δ2i) ≤ P (Δ2i−2) − 1.
– Otherwise we apply Lemma 6 to derive P (Δ2i) ≤ P (Δ2i−2) − 1 directly.
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Now we combine the two parts together to prove Theorem 1.

Proof (of Theorem 1). For given r we choose k = �2 + 2 log2 r	 and consider
the graph Gk+4r. Assume for a contradiction that Gk+4r allows a drawing of
edge-length ratio at most r. Up to an appropriate scaling, we assume that the
longest edge of such drawing has length r and hence the shortest has length at
least 1.

In the drawing of the graph Gk+4r consider a sequence of separating triangles
Δ1, . . . ,Δk+4r where Δ1, . . . ,Δk are chosen as shown in Corollary 1.

By Corollary 1, the triangle Δk is thin, so we can extend the sequence with
Δk, . . . ,Δk+4r according to Corollary 2.

By Corollary 2, P (Δk+4r) ≤ 2r + 1
4 − 2r = 1

4 , a contradiction to the assump-
tion that all triangles of Gk+4r have sides of length at least one.

Note that the graph Gk+4r has O∗((104)r
)

vertices and edges, as in each
iteration we add 10 edges of level i per every edge of level i−1. The dependency
between the edge-length ratio and the number of vertices could be rephrased as
follows:

Corollary 3. The edge-length ratio over the class of n-vertex 2-trees is Ω(log n).

We recall that Borrazzo and Frati prove that every partial 2-tree with n
vertices admits a planar straight-line drawing whose edge-length ratio is in
O(n0.695) [3, Corollary 1].

4 Local Edge-Length Ratio of 2-Trees

The aesthetic criterion studied in the previous section took into account any
pair of edges. By our construction of nested triangles, it might happen that two
edges attaining the maximum length ratio are far in the graph distance (in the
Euclidean distance they are close as the triangles are nested). This observation
leads us to the question, whether 2-trees allow drawings where the length ratio
of any two adjacent edges could be bounded by a constant. For this purpose we
define the local variant of the edge-length ratio as follows:

The local edge-length ratio of a planar straight-line drawing of a graph G is
the maximum ratio between the lengths of two adjacent edges (sharing a common
vertex) of the drawing.

Definition 2. The local edge-length ratio ρl(G) of a planar graph G is the
infimum local edge-length ratio taken over all planar straight-line drawings of G.

ρl(G) = inf
drawing of G

max
UV,V W∈EG

|UV |
|V W |

Observe that the local edge-length ratio ρl(G) is by definition bounded by the
global edge-length ratio ρ(G). In particular, every outerplanar graph G allows a
drawing witnessing ρl(G) ≤ 2 [10]. We extend this positive result to the class of
all 2-trees with a slightly increased bound on the ratio.
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Theorem 2. The local edge-length ratio of any n-vertex 2-tree G is ρl(G) ≤ 4.
Also, for any arbitrarily small positive constant ε, a planar straight-line drawing
of G with local edge-length ratio at most 4 + ε can be computed in O(n) time
assuming the real RAM model of computation.

The proof of Theorem 2 is based on a construction that provides a straight-
line drawing of local edge-length ratio 4 + ε for any given 2-tree G and any
ε > 0.

We use a breadth first search (BFS) and and decompose VG into layers based
on the distance from the initial edge e of the recursive definition of the 2-tree.
Each such layer Li = {u : dist(u, e) = i} is a forest, see Fig. 8a).

Fig. 8. a) A decomposition of a 2-tree G into layers: black L0 (the initial edge), blue
L1, red L2, and green L3; b) The tree components of G (Color figure online)

Moreover, for every component C of Li, i ≥ 1 we may due to the definition
of a 2-tree identify a unique vertex w ∈ C and two its neighbors u, v ∈ Li−1,
as w is the first vertex of C inserted into G, and in the time of its insertion it
was simplicial to the edge uv. We call the subgraph of G induced by C ∪ {u, v}
a tree-component rooted in u, v and denote it by Hu,v,w, see Fig. 8b). Observe
that each tree-component of itself is a 2-tree. Moreover the vertices of Hu,v,w

distinct from u, v and w can be partitioned into two disjoint sets: those adjacent
to u and those adjacent to v.

Note that BFS can be executed in O(n) time for a planar graph with n
vertices. This procedure can be extended in a straightforward way to determine
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the tree-components in O(n) time—on each vertex we spend additional constant
time to identify the tree component it belongs.

For a line segment AB, let AB = AB \ {A,B} denote for the segment AB
without its endpoints.

Definition 3. Let UV be an edge of a planar straight-line drawing of G on at
least three vertices. The vacant region for UV is the intersection of all open
half-planes determined by all pairs of vertices such that these half-planes contain
UV .

For example, Fig. 9 shows the vacant region for an edge UV in a planar
straight-line drawing of a 2-tree. Note that, by the definition, the vacant region
for UV is an open convex set with U and V on the boundary.

Fig. 9. The filled gray region is the vacant region of the edge UV .

We proceed to the main technical step of our construction.

Lemma 7. Let HX,Y,Z be a tree-component of a 2-tree G. For any δ > 0, any
open convex set S and any two points on the boundary of S, the graph HX,Y,Z

can be drawn with the local edge-length ratio at most 2 + δ such that vertices
X,Y are placed on the chosen two points, the rest of the drawing of HX,Y,Z is
inside S, and XY is the longest edge of the drawing.

Fig. 10. Folding a path in the tree component HX,Y,Z . The arrows indicate the vertex
movement. (Color figure online)

Instead of the proof of Lemma 7, that is omitted due to space restrictions,
we provide a very brief idea of the construction. Observe that in the case that
in the case when the tree component HX,Y,Z is a fan centered at X, then it can
be folded like an umbrella into the vacant region of XY as depicted in Fig. 10a).
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In the folded drawing the red edges have the same length upto an additive factor
δ, while the blue are twice longer (again upto +δ).

Analogously, if the vertices adjacent to X in HX,Y,Z induce a path and the
same for the neighbors of Y , then these two paths can be folded from both sides
of XY inside its vacant region, see Fig. 10b). By much more technically involved
argument it can be shown that the whole branch of a tree can be folded into the
area near the first edge of the branch.

Proof (of Theorem 2). When G = K2, then it has ρl(K2) = 1, by Definition 2
(note that U and W need not to be distinct.) Otherwise we proceed by induction
on the number of tree components of G.

For any ε ∈ (0, 1), let δ = ε
3 . The induction hypothesis we aim to prove is:

Claim. Any 2-tree G allows a drawing with local edge-length ratio at most 4+ε,
where each tree component HX,Y,Z is drawn with local edge length ratio at most
2 + δ and XY is the longest edge of the drawing of HX,Y,Z .

For the base of the induction G consists of a single tree component HX,Y,Z ,
where XY is the initial edge of construction of G as a 2-tree. We choose any
open convex set S and two points X, Y on its boundary and apply Lemma 7.

For the induction step assume that HX,Y,Z is a tree component of G, where
Z belongs to the highest possible level. The graph G′ = G \ (HX,Y,Z \ {X,Y })
(i.e. when we remove from G the component of Li containing the vertex Z) is
a 2-tree, since we may create G′ as a 2-tree by the same order of insertions as
is used for G, only restricted to the vertices of G′. By induction hypothesis G′

allows a drawing with local edge-length ratio at most 4 + ε.
In this drawing we identify the vacant region S for XY and involve Lemma 7

to extend the drawing of G′ to the entire G. The only vertices common to G′

and HX,Y,Z are X and Y , hence we shall argue that edges incident with X or
Y have edge-length ratio at most 4 + ε, as inside HX,Y,Z the ratio is at most
2 + δ < 4 + ε by Lemma 7.

By the construction of the 2-tree, the edge XY may belong to several tree
components rooted in X, Y , where it is the longest edge, but only to a single
tree-component rotted in the vertices of the preceding level. Consequently, the
edge-length ratio of any two edges incident with X or with Y is at most (2+δ)2 =
4 + 2δ + δ2 < 4 + 3δ = 4 + ε.

Finally, we remark that computing the coordinates of the vertices can be exe-
cuted in constant time per vertex, assuming a real RAM model of computation.
It follows that the drawing of G can be computed in O(n) time.

Since any graph of treewidth at most 2, in particular all series-parallel graphs,
can be augmented to a 2-tree, Theorem 2 directly implies the following.

Corollary 4. For any graph G of treewidth at most 2, it holds that ρl(G) ≤ 4.

5 Conclusions and Open Problems

This paper studied the edge-length ratio of planar straight-line drawing of partial
2-trees. It proved an Ω(log n) lower bound on such edge-length ratio and it proved
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that every partial 2-tree admits a planar straight-line drawing such that the local
edge-length ratio is at most 4 + ε for any arbitrarily small positive ε. Several
questions are naturally related with our results. We conclude the paper by listing
some of those that, in our opinion, are among the most interesting ones.

1. Corollary 3 of this paper gives a logarithmic lower bound while Corollary 1
of [3] gives a sub-linear upper bound on the edge-length ratio of planar
straight-line drawings of partial 2-trees. We find it interesting to close the
gap between the upper and lower bound.

2. Theorem 2 gives an upper bound of 4 on the local edge-length ratio of partial
2-trees. It would be interesting to establish whether such an upper bound is
tight. Also, studying the local edge-length ratio of other families of planar
graphs is an interesting topic.

3. The construction in Theorem 2 creates drawings where the majority of angles
are very close to 0 or π radians. Hence, it would make sense to study the
interplay between (local or global) edge-length ratio and angular resolution
in planar straight-line drawings.

Acknowledgement. We thank all three reviewers for their positive comments and
careful review, which helped improve our contribution.
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Abstract. Network visualisation techniques are important tools for the
exploratory analysis of complex systems. While these methods are regu-
larly applied to visualise data on complex networks, we increasingly have
access to time series data that can be modelled as temporal networks
or dynamic graphs. In dynamic graphs, the temporal ordering of time-
stamped edges determines the causal topology of a system, i.e., which
nodes can, directly and indirectly, influence each other via a so-called
causal path. This causal topology is crucial to understand dynamical pro-
cesses, assess the role of nodes, or detect clusters. However, we lack graph
drawing techniques that incorporate this information into static visual-
isations. Addressing this gap, we present a novel dynamic graph visu-
alisation algorithm that utilises higher-order graphical models of causal
paths in time series data to compute time-aware static graph visualisa-
tions. These visualisations combine the simplicity and interpretability of
static graphs with a time-aware layout algorithm that highlights patterns
in the causal topology that result from the temporal dynamics of edges.

1 Introduction

Network visualisation techniques are a cornerstone in the exploratory analysis
of data on complex systems. They help us recognize patterns in relational data
on complex networks, such as, e.g., clusters or groups of well-connected nodes,
hierarchical and core-periphery structures, or highly important nodes [7,18,24].
However, apart from knowing which elements are connected, we increasingly have
information on when and in which chronological order connections occurred.
Sources of time-stamped data include social interactions, click stream data
in the web, financial transactions, passenger itineraries in transportation net-
works, or gene regulatory interactions [16]. Despite these applications, visualis-
ing time-stamped network data is still a challenge [2,16]. Common approaches
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use sequences of snapshots, where each snapshot is a graph of the connections
active in a time interval or at a point in time, to animate the evolution of
the topology. Such animations can help us gain a high-level understanding of
temporal activities in dynamic graphs. However, they are complex and cogni-
tively demanding, which makes it hard to recognise patterns that determine
how nodes influence each other over time. Moreover the application of graph
drawing algorithms to temporal snapshot necessitates a coarse graining of time.
This introduces a major issue: we lose information on the chronological ordering
of links that determines so-called time-respecting or causal paths [16,19]. In a
nutshell, for two time-stamped edges (a, b; t1) and (b, c; t2) that occur at times
t1 and t2, a causal path

#   ”

abc from node a via node b to node c can only exist if
edge (a, b) occurs before (b, c), i.e. if t1 < t2. If the ordering of edges is reversed,
such a causal path does not exist, i.e. node a cannot influence node c via b,
neither directly nor indirectly. This simple example highlights how the tempo-
ral ordering of edges gives rise to causal topologies. While two edges (a, b) and
(b, c) in a static graph imply that a (transitive) path

#   ”

abc exists, the temporal
ordering of edges in dynamic graphs can invalidate this assumption. This has
important implications for the modelling of epidemic processes, random walk
and diffusion dynamics, centrality measures used to rank nodes, or clustering
techniques. It calls for a new class of higher-order network modelling, analysis,
and visualisation techniques [21]. In a recent review on state-of-the-art temporal
network analysis [16], Holme highlights a lack of visualisation techniques that
(i) go beyond cognitively demanding animations, and (ii) consider the complex
topology of causal paths in high-resolution time series data: “[. . . ] temporal
networks lack the intuitive visual component of static networks. Probably this
is a fundamental property that cannot be completely altered, but there should
be better visualization methods than we have now. Highest on our wish list is
a method that both simplifies some structures and keeps (at least some) of the
time-respecting paths (maybe at the cost of not having time on the abscissa).”
[16], p. 23.

Addressing this gap, we develop a visualisation algorithm that incorporates
information on causal paths in dynamic graphs into simple (static) visualisations.
Our contributions are: (i) we highlight a lack of time-aware graph visualisation
techniques that respects the causal topology resulting from the ordering of edges
in high-resolution data on dynamic graphs; (ii) we develop a dynamic graph
drawing algorithm that generalises force-directed layouts to high-dimensional De
Bruijn graph models of causal paths [5,30]; (iii) we assess the quality of our visu-
alisations in synthetic and empirical time series data, and show that they help to
detect temporal clusters invisible in static visualisations, and identify important
vertices with high temporal centrality; (iv) we provide an Open Source python
implementation of our algorithm [6]. Focusing on time-aware static visualisa-
tions that highlight temporal patterns neglected by existing techniques, we take
a new approach to dynamic graph drawing. Considering recent works on learn-
ing optimal higher-order graph models from rich time series data [30], our work
opens perspectives to combine machine learning and visual data mining.
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2 Preliminaries and Related Work

We define a dynamic graph as a tuple G(t) = (V,E(t)), where V is a set of
vertices and E(t) is a set of time-stamped edges E(t) ⊆ V × V × N. We assume
that (v, w; t) ∈ E(t) denotes that a directed edge between source vertex v and
target vertex w occurred instantaneously at discrete time t ∈ N. We say that
a (static) graph G = (V,E) is the time-aggregated graph corresponding to a
dynamic graph G(t) iff (v, w) ∈ E ↔ ∃t ∈ N : (v, w; t) ∈ E(t). We further assume
that the edge weights w : E → N of such a time-aggregated graph capture the
number of times edges have been active in the corresponding dynamic graph,
i.e. we define w(v, w) := |{t ∈ N : (v, w; t) ∈ E(t)}|. A simple example for
a dynamic graph with eight time-stamped edges and five nodes is shown in
Fig. 1 (a). A key concept in the study of dynamic graphs is that of a time-
respecting or causal path [16,19]. For a dynamic graph G(t) = (V,E(t)) we call a
sequence (v0, v1; t0), (v1, v2; t1), . . . , (vl−1, vl; tl) of time-stamped edges a causal
path p = #                         ”v0v1v2 . . . vl of length l from vertex v0 to vl iff (i) (vi, vi+1; ti) ∈ E(t),
and (ii) 0 < ti+1 − ti ≤ δ holds for i ∈ {0, 1, . . . , l−1}. We thus define the length
of causal paths as the number of edges that they traverse, which implies that
time-stamped edges are trivial causal paths of length one. In this definition, the
condition 0 < ti+1 − ti ensures that the sequence of time-stamped edges respects
the “arrow of time”, while the condition ti+1 − ti ≤ δ ensures that to form a
causal path two time-stamped edges must occur within time δ of each other.

Fig. 1. Information on causal paths (coloured arrows) contained in dynamic graphs (a)
is discarded by standard time-aggregated visualisations (b). HOTVis uses higher-order
graph models of causal paths (c) to produce time-aware, static visualisations (d) that
highlight the causal topology of dynamic graphs.

We note that the existence of a causal path #              ”v0 . . . vl is a necessary condition
for a vertex v0 in a dynamic graph to causally influence another vertex vl. We
further observe that each causal path in G(t) necessarily implies that the same
path exists in the time-aggregated graph G. Conversely, the existence of a path
in graph G corresponding to the dynamic graph G(t) does not imply that the
corresponding causal path exists in G(t). The example in Fig. 1 (a) illustrates
how the chronological order of edges can break transitivity in a dynamic graph.



102 V. Perri and I. Scholtes

Here, the timing and ordering of time-stamped edges implies that only two of the
four theoretically possible causal paths of length two exist. Hence, despite the
presence of corresponding paths in the static topology, vertices a and b cannot
indirectly influence d and e via causal paths

#   ”

acd and
#  ”

bce respectively.
To address the issue that time-aggregated graph representations discard

information on causal paths, we utilize higher-order graph models that cap-
ture how the chronological ordering of edges influences causal paths [21]. For a
given dynamic graph G(t) and order k ≥ 1 we define a higher-order graph G(k)

as tuple G(k) = (V (k), E(k)) of higher-order vertices V (k) ⊆ V k and higher-order
edges E(k) ⊆ V (k) × V (k).

Each higher-order vertex v =: #                     ”v0v1 . . . vk ∈ V (k) is an ordered tuple of k
vertices vi ∈ V in the dynamic graph G(t) that also satisfies the conditions of
a causal path. Higher-order edges are constructed using the iterative line graph
construction of high-dimensional De Bruijn graphs [5]. The construction of a
De Bruijn graph of order k restricts edges to connect higher-order vertices that
overlap in k − 1 vertices, i.e. we require:

( #                                 ”v0v1 . . . vk−1vk, #                                      ”w0w1 . . . wk−1wk) ∈ E(k) ⇒ vi = wi−1(i = 1, . . . , k)

Utilising the modelling framework introduced in [30] we use (weighted)
higher-order edges of a k-th order graph G(k) to represent the frequency of
causal paths of length k in a dynamic graph, i.e we define weights w : E(k) → N

as

w( #                     ”v0 . . . vk−1,
#               ”v1 . . . vk) := {|(t0, . . . , tk−1) : (e; ti) ∈ E(t)

from causal path #               ”v0 . . . vk)}|
Figure 1(c) shows an example for a (trivial) higher-order graph model of

order k = 2 that represents the causal paths
#   ”

bcd and #   ”ace of length two in
the dynamic graph in Fig. 1 (a). Higher-order graphs generalise time-aggregated
graph representations of dynamic graphs, where for k = 1 we have V (1) = V and
E(1) = E. Hence, a weighted time-aggregated graph is a first-order model of a
dynamic graph that counts edges, i.e. causal paths of length one. For k > 1, we
obtain higher-order models that capture both the topology and the chronological
ordering of time-stamped edges in a dynamic graph, where the second-order
model is the simplest model that is sensitive to the timing and ordering of edges.

Related Work. Having illustrated the effects that are due to the arrow of time,
we review works on dynamic graph drawing. We only present methods relevant
to our work, referring the reader to [2] for a detailed review.

A natural approach to visualise time series data on graphs are animated visu-
alisations that show the temporal evolution of vertices and/or edges. To generate
such animations, we need to create a sequence of graphs, where each graph is a
static snapshot of the vertices and edges at one point in time. An independent
visualisation of such snapshots by means of standard graph layout algorithms
is likely to result in animations that make it difficult to associate structures in
subsequent frames, a problem often framed as maintaining the user’s “mental
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map” [1,29]. A large number of works focuses on optimising graph layouts across
multiple snapshots [8,10,14,20,22], or in generating smooth transitions [11,23]
that minimise the cognitive effort required to trace time-varying vertices, edges,
or clusters through subsequent snapshots.

Despite these improvements, identifying patterns in animations remains chal-
lenging. Also, their use is limited since animations cannot be embedded in schol-
arly articles, books, or posters. Addressing these issues, a second line of research
focuses on methods to visualise dynamic graphs in terms of timeline represen-
tations, which map the time dimension of dynamic graphs to a (static) spatial
dimension. Examples includes directed acyclic time-unfolded graph representa-
tions of dynamic graphs [19,28], time arc or time radar trees [4,15], sequences
of layered adjacencies [36], stacked 3D representations where consecutive time
slices are arranged along a third dimension [10], and circular representations [9].
However, timelines are limited to a small number of time stamps, which hinders
their application to data with high temporal resolution (e.g. seconds or even
milliseconds). The application of static graph drawing algorithms to such data
requires a coarse-graining of time into time slices, such that each time slice gives
rise to a graph snapshot that can be visualised using, e.g., force-directed lay-
out algorithms. As pointed out in [32], this coarse-graining of time leads to a
loss of information on temporal patterns. Some recent works have thus explored

Algorithm 1. HOTVis: Higher-order time-aware layout with max. order K

1: procedure HOTVis(G(t), K, N, δ, α2, . . . , αK)
2: A, Pos = dict(), Temp = t0
3: for k ∈ range(1, K) do
4: � superimpose attractive forces
5: G(k) = HigherOrderGraph(G(t), δ, k)
6: for ( #                     ”v0 . . . vk−1,

#               ”v1 . . . vk) ∈ E(k) do
7: if (v0, vk) ∈ A then
8: A[v0, vk] = A[v0, vk] + αk · w( #                     ”v0 . . . vk−1,

#               ”v1 . . . vk)
9: else

10: A[v0, vk] = αk · w( #                     ”v0 . . . vk−1,
#               ”v1 . . . vk)

11: for i ∈ range(N) do
12: � apply many-body simulation [12]
13: for v ∈ V do
14: Θ = 0
15: for w ∈ V, w �= v do
16: Δ = Pos[w] − P[v]
17: Θ = Θ − Δ/|Δ| · k2/|Δ|
18: for (v, w) ∈ A do
19: Δ = Pos[w] − Pos[v]
20: Θ = Θ + Δ/|Δ| · A[v, w] · |Δ|2/k

21: P [v] = P [v] + Θ/|Θ| · min(|Θ|, Temp)

22: Temp = cool(Temp)
return Pos



104 V. Perri and I. Scholtes

dynamic graph visualisations that are not based on time slices, e.g. using a con-
tinuous space-time cube [32] or using visualisations that highlight higher-order
dependencies at the level of individual nodes [34]. To the best of our knowledge
none of the existing methods has explicitly addressed static representations of
dynamic graphs that retain information on which nodes can influence each other
via causal paths, which is the motivation for our work.

3 Higher-Order Time-Aware Network Visualisation

To address the research gap outlined in Sect. 2, we propose an algorithm to gen-
erate higher-order time-aware visualisations (HOTVis). It captures the influence
of the temporal dimension of a graph on its causal topology, i.e. which vertices
can influence each other via causal paths, generalising the force-directed layout
algorithm introduced in [12] to high-dimensional graphs.

Force-directed layouts optimally position vertices in a Euclidean space by
means of a many-body simulation. Attractive forces along edges move connected
nodes close to each other while a repulsive force between all nodes separates
them. Simulating these forces until an equilibrium state is reached leads to
graph layouts that highlight topological structures and symmetries [7]. HOTVis
generalises the attractive forces of force-directed layouts so that they capture
the topology of causal paths in time-stamped data. In particular, our algorithm
superimposes attractive forces that act between the endpoints of edges in multi-
ple higher-order graphs up to a configurable maximum order K. Figure 1(d) illus-
trates this idea based on the edges in the second-order model shown in Fig. 1(c).
The additional attractive forces between vertex pairs a, e and b, d (coloured lines
in Fig. 1(d)) change the positioning of vertices such that those vertices that can
causally influence each other are positioned in proximity.

The pseudocode of HOTVis is shown in Algorithm 1. It takes a dynamic graph
G(t), a maximum time difference δ used to define causal paths, a maximum order
K, a number of iterations N , and parameters αk controlling the influence of
paths of length k on the layout. The algorithm works in two phases. The first
phase generates higher-order graphs G(k) up to order K (lines 4–6). For each
edge ( #                     ”v0 . . . vk−1,

#               ”v1 . . . vk) in G(k), an attractive force is added between vertices
v0 and vk that can influence each other via causal path #                     ”v0v1 . . . vk (lines 7–10).
Its strength depends on (i) the frequency of causal paths, and (ii) a parame-
ter αk that controls the influence of causal paths of length k on the generated
time-aware layout. For α2 = . . . = αK = 0 we obtain a standard force-directed
(first-order) layout in which time is ignored. For αk > 0 and k > 1 vertex posi-
tions are additionally influenced by the ordering of time-stamped edges. The
second phase of HOTVis (lines 11–22), uses the many-body simulation proposed
in [12] to simulate repulsive and superimposed attractive forces between nodes.
The algorithm returns a dictionary of vertex positions that produces a static,
time-aware visualisation. The computational complexity of the algorithm is given
by the sum of the computational complexities of two phases, the first consisting
in the generation of k−th order graph models for k = 2, . . . , K, the second in
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the layouting of the nodes. The complexity of the first phase has a non-trivial
dependency on the temporal distribution of time-stamped edges of the dynam-
ical graph and is further discussed in the full version [25]. The computational
complexity of the second phase corresponds to that of the algorithm proposed
in [12].

Illustration in Synthetic Example. A demonstration of a time-aware visu-
alisation in synthetic data on a temporal network with K = 2 is shown in
Fig. 2. The data was generated using a stochastic model creating time-stamped
edge sequences with temporal correlations that lead to an over-representation of
causal paths of length two that (indirectly) connect pairs of vertices in three clus-
ters (coloured vertices in Fig. 2). Different from what one would expect based on
the time-aggregated topology, the chronological ordering of time-stamped edges
leads to an under-representation of causal paths between vertices with different
colours. Hence, we obtain temporal clusters in the causal topology, where vertices
in the same cluster can indirectly influence each other via causal paths more than
vertices in different clusters. Details of the model are included in the full version
[25] and in the Zenodo package [26]. Temporal clusters in the causal topology
are visible only in a second-order time-aware visualisation that superimposes
attractive forces calculated in both the first and the second-order graph (middle
panel Fig. 2). These clusters are not visible in the static graph layout shown in
Fig. 2 (left panel). To demonstrate that clusters are solely due to the chronologi-
cal ordering of time-stamped edges and the resulting causal paths, we shuffle the
timestamps of edges and reapply our time-aware visualisation algorithm. The
resulting layout in Fig. 2 (right panel) shows that the shuffling of timestamps
destroys the cluster structure, confirming that HOTVis visualises patterns due to
the ordering of edges.

Fig. 2. Application of HOTVis to synthetic temporal network with three temporal
clusters (coloured nodes). A second-order time-aware layout (middle) highlights clusters
not visible in a static visualisation (left). A time-aware visualisation of the data with
randomised time stamps (right) confirms that clusters are due to the ordering of edges.
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4 Experimental Evaluation

Having illustrated HOTVis in a synthetic example, we now evaluate whether it
produces better visual representations of empirical time-stamped network data.
We compare HOTVis (at different orders) against a baseline visualisation that
is generated using the Fruchterman-Reingold algorithm [12]. To quantitatively
assess the “quality” of visualisations generated by HOTVis, we define measures
that capture how well the causal topology is represented. For the following defi-
nitions, let G(t) be a dynamic graph that gives rise to a multi-set S of N causal
paths S = {p0, . . . , pN}. We also assume that Algorithm 1 assigns each vertex
v ∈ V to a position πv := Pos[v] ∈ R

2.

Edge Crossing (ξ). This standard measure counts the number of pairs of edges
that cross each other in the visualisation. It is widely used in the evaluation
of graph drawing algorithm. It rests on the idea that a large number of edge
crossings ξ makes it difficult to identify which vertices are connected by edges,
i.e. “high-quality” drawings minimise ξ. We efficiently calculate edge crossing
based on the orientation predicate [31].

Causal Path Dispersion (σ). The causal path dispersion σ captures whether
the sets of vertices traversed by causal paths are less spatially dispersed than
expected based on the spatial distribution of vertices. It intuitively captures
whether vertices that can influence each other directly and indirectly are posi-
tioned in close proximity. For this, we consider a multi-set S of causal paths p
with cardinality N := |S| that traverse a graph with vertices V . We define σ as

σ =

∑
p∈S

∑
ui∈p ||Pos[ui] − B(p)|| · |V |

N · ∑
vi∈V ||Pos[vi] − B(V )|| ∈ [0, 1] ,

where B : 2V → R
2 is a function that returns the barycentre of vertex

positions P [v] for vertex multi-set V . For σ ≈ 1 the spatial distribution of nodes
traversed by causal paths is the same as for nodes traversed by random paths
in the network topology. Values of σ < 1 highlight that vertices connected via
causal paths occupy a smaller area than expected at random.

Closeness Eccentricity (Δ). In force-directed layouts the distance of a vertex
from the barycentre of the visualisation is correlated with the vertex’ closeness
centrality, defined as the inverse of the sum of shortest path lengths between
the vertex and all other vertices [3]. It is thus interesting to study whether
vertex positions in our time-aware visualisation are correlated with the temporal
closeness centrality of a vertex v. For a set S of causal paths p, we define this as

CC(v) :=
∑

w �=v∈V

∑
p∈S δw(p)δv(p)

∑
p∈S,w∈p dist(v, w; p)

.

Here, dist(v, w; p) denotes the (topological) distance between vertices v and w
via causal path p and δv(p) is one if path p traverses vertex v and zero otherwise.
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With Tγ = {u1, u2, . . . , un} being the set of n nodes whose temporal closeness
centrality is in the γ upper percentile, we define closeness eccentricity Δ(γ) as:

Δ(γ) :=

∑
ui∈Tγ

||Pos[ui] − B(V )|| · |V |
|Tγ | · ∑

v∈V ||Pos[v] − B(V )|| ∈ [0, 1]

Δ(γ) captures whether the n vertices with highest temporal closeness cen-
trality are closer to (Δ < 1) or farther away (Δ > 1) from the barycentre of the
visualisation than we would expect at random.

4.1 Experimental Results

We now report the results of our experimental evaluation of HOTVis in (i) the
synthetically generated data with temporal clusters introduced above, and (ii)
five time-stamped data sets on real complex networks. The five data sets fall into
two classes, highlighting different types of data in which our algorithm can be
used. The first class captures paths or trajectories in a networked system. Here
we utilise two data sets (i) flights, which captures 280k passenger itineraries
between 175 US airports recorded in 2001, and (ii) tube, which contains 4.2
million passenger trips in the London metro in 2014. Details on those data are
available on Zenodo [26]. The second class consists of time-stamped data on
social interactions, in which we can calculate causal paths as defined in Sect. 2.
Here we used three data sets from the Sociopatterns collaboration, namely (i)
hospital, which captures 32,424 time-stamped proximity events between 75
patients, medical and administrative staff in a hospital recorded over a period
of five days [35], (ii) workplace, which consists of 9,827 face-to-face interactions
between 92 company employees recorded in an office building over a period of
ten days [13] and (iii) school which contains 77,602 proximity events between
242 individuals (232 children and 10 teachers) [33].

We now tests whether we can “learn” consistent patterns in the causal topol-
ogy of the time-stamped network data from the time-aware visualisation gen-
erated by HOTVis. To assess the consistency of the patterns identified by our
algorithm we use a cross-validation approach: we generate time-aware visuali-
sations with different maximum orders K in a training sample, and then assess
their quality in a validation set that we withheld from our algorithm. Thanks to
the evaluation on unseen data, we can use our measures to compare the gener-
alisability of the patterns displayed at each maximum order K. A benefit of our
method is that the optimal maximum order needed to visualise the topology of
causal paths can be determined using the statistical model selection techniques
described in [27,30]. It provides a principled method to balance the complex-
ity and explanatory power of the higher-order model used for our visualisation,
learning a model that avoids both over- and underfitting. In the following, we
evaluate our algorithm for all maximum orders K = 1, . . . ,Kopt + 2, where Kopt

is the optimal order returned by the method described in [30]. All results were
obtained by applying the cross-validation approach described above in 100 lay-
out calculations for each data set and for each maximum order K. To focus on
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the effect of the topology of causal paths and rule out distortions due to skewed
distributions of weights w (cf. [17]), we set the weight of all paths to a constant
value of one. Moreover, to ensure that all orders have an equal influence on the
overall layout, we set the parameter αk in a higher-order model with order k to
αk := m−1

k , where mk is the number of unique paths of length k. This ensures
that the forces in each k-th order model are scaled according to the density of
edges. We note that the choice of those parameters is motivated by simplicity and
ease of reproducibility. In particular, it does not require sophisticated parameter
tuning, which could be used to optimise the visualisation for a specific data set.

Fig. 3. Edge crossing ξ (top) and causal path dispersion σ (bottom) for a syn-
thetic dynamic graph with three clusters (column synthetic), empirical data on
flight itineraries (column flights), metro trips (tube), and time-stamped interac-
tions between workers in an office environment (workplace), patients and hospital
staff (hospital), and children and teachers in a primary school (school). All values
are averages of 100 cross-validation experiments, where a time-aware layout with max-
imum order K (x-axis) was computed for a 70% random training set of causal paths,
calculating quality measures (y-axis) in the layout for a test set of remaining 30% of
causal paths.

The results of our evaluation are shown in Fig. 3. For the edge crossing ξ,
in the synthetic data we find no significant change with increasing K, while
the empirical data sets show significant increases as the maximum order grows.
A general growth of edge crossings with increasing K is expected since, apart
from the topology of edges, the time-aware visualisation considers the topology
of causal paths. The causal path dispersion σ decreases considerably for orders
K > 1 in all data sets, highlighting that our algorithm positions those nodes close
to each other that strongly influence each other via causal paths. For a suitably
chosen order K, we further observe that relatively large decreases of causal path
dispersion σ (e.g. a decrease of 15% for order K = 5 in tube) are associated with
relatively mild or insignificant increases of edge crossing ξ (e.g. no significant
change for order K in tube). For those orders K, our method provides a good
trade-off between a visualisation that best represents the topology of causal paths
and a visualisation that best represents the static topology. On the one hand,
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this supports our hypothesis that HOTVis better represents the causal topology
of temporal networks compared to time-aggregated (first-order) visualisations.
On the other hand, this raises the issue of finding the “optimal” order K of a
higher-order graph model, which can be addressed using the statistical model
selection technique presented in [30]. In agreement with the results of our cross-
validation, this technique yields an optimal order Kopt = 5 for tube and Kopt = 2
for the other data sets. This indicates that we can use statistical model selection
to learn the optimal maximum order parameter K to be used in HOTVis.

In Fig. 4 we illustrate HOTVis in the school data set for K = 1 (left) and
the optimal order K = 2 (right). Node colours indicate the membership of
students in different classes. Importantly, this group structure in the data is
not expressed in the topology of links (see Fig. 4 left). Consequently, a time-
neglecting first-order layout places nodes in a single group, which leads to a
cluttered visualisation that makes it difficult to visually detect the ground truth
group structure. A second-order layout generated by HOTVis (see Fig. 4 right)
better highlights group structures that are expressed in the topology of causal
paths, thus leading to temporal cluster patterns that cannot be seen in the
static topology. This example demonstrates that the mechanism by which HOTVis
visualises temporal clusters—as illustrated in the synthetic example in Fig. 2—
can successfully visualize group structures in empirical social networks.

Fig. 4. Comparison between a time-neglecting (left) and time-aware (right) layout for
the school data set. Node colours represent the class each student belongs to, while
square markers identify teachers. The time-aware visualisation generated by HOTVis

(right) positions nodes that influence each other through causal paths close to each
other. HOTVis highlights ground truth groups of students in school classes. We used
the default parameter αk = m−1

k as described in Sect. 4.

Temporal Closeness. We finally show results for closeness eccentricity Δ.
We specifically test whether, similar to static force-directed layout algorithms,
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Fig. 5. Closeness eccentricity Δ (y-axis) for a varying top percentage n of vertices
with highest temporal closeness (x-axis). Results are presented for K=1 (blue dots)
K=Kopt (green triangles), K=Kopt+2 (black pluses). Hulls indicate the 2σ interval.
(Color figure online)

HOTVis places nodes with high temporal closeness in the centre of the visual-
isation. The results for the four empirical data sets are shown in Fig. 5 (again
for 100 cross-validation experiments). In all data sets, higher values of K cor-
respond to lower values of Δ. For tube and flights, values significantly differ
with a 2σ confidence interval. This indicates that HOTVis represents the tempo-
ral closeness of vertices better than a first-order layout. To quantify our ability
to visually identify vertices with high temporal centrality, we additionally ran
a prediction experiment: We use the proximity of vertices to the barycentre
of the visualisation to identify vertices whose temporal closeness is in the top
10% percentile. This yields a binary classification problem, where we use vertex
positions calculated by HOTVis in a training set to predict vertices with high-
est temporal closeness centrality in a validation set. We predict a vertex to be
among the top 10% vertices with highest temporal closeness centrality, if it is
among the top 10% vertices with smallest distance to the barycentre. To compare
the performance of different orders K we use ROC curves (100 cross-validation
experiments). The results in Fig. 6 show that for K > 1 HOTVis outperforms a
static (first-order) visualisation in all data sets. AUC scores for K = 1, K = Kopt

and K = Kopt +2 are: 0.82, 0.95, 0.95 in flights; 0.87, 0.92, 0.92 in tube; 0.71,
0.77, 0.77 in workplace; 0.93, 0.96, 0.94 in hospital; 0.80, 0.87, 0.85 in school.
Supporting our hypothesis, we find that visualisations with order K > Kopt,
where Kopt is determined by the model selection technique from [30], only yield
negligible increases (or even decreases) in prediction performance. We illustrate
this in the flights dataset for K = 1 and K = Kopt = 2. The two layouts
in Fig. 7 strongly differ in the positioning of the top 10% vertices with highest
temporal closeness centrality (in red). Different from a time-neglecting layout, in
HOTVis the majority of vertices classified as most central due to their proximity
to the barycentre are within the top 10% values of temporal closeness centrality.
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Fig. 6. ROC curves illustrate the ability to predict nodes with top 10% closeness
centrality for K = 1 (blue dashed), K=Kopt (green solid), K=Kopt+2 (black dotted).
(Color figure online)

Fig. 7. Comparison between time-neglecting (left) and time-aware (right) layout for
flights. Vertices whose temporal closeness centrality is among top 10% of values are
highlighted in red. Black circles delineate the area containing 10% of vertices closest
to the barycentre. The time-aware visualisation generated by HOTVis (right) places
vertices with high temporal closeness centrality close to the barycentre, enabling us
to identify temporally important vertices. We used αk = m−1

k as described in Sect. 4.
(Color figure online)

5 Conclusion and Outlook

Despite advances in dynamic graph drawing, the visualisation of high-resolution
time-stamped network data is still a challenge. Existing methods suffer from a
limited ability to highlight patterns in the causal topology of dynamic graphs,
which is determined by the interplay between its topology (i.e. which edges exist)
and the temporal dynamics of edges (i.e. when time-stamped edges occur). We
address this issue through HOTVis, a dynamic graph drawing algorithm that uses
higher-order graph to produce static, time-aware visualisations. Experiments in
synthetic and empirical data support our hypothesis that the resulting visual-
isations better highlight temporal clusters due to the chronological ordering of
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edges. We further show that HOTVis places highly influential vertices (i.e. ver-
tices with high temporal closeness) close to the centre of the visualisation, which
better represents their role in the system and supports visual data mining.

Our algorithm introduces an additional parameter—the maximum order K
to be used for the visualisation—that needs to be adjusted to the temporal
correlations in the data. We show that recent advances in statistical modelling
and machine learning enable us to automatically learn the optimal choice Kopt for
this parameter, thus turning it into a practicable method to visualise patterns
in temporal data. Our work highlights a largely unexplored potential for new
visual data mining techniques that combine graph drawing, higher-order network
models [21], and machine learning that we seek to explore in the future.
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Abstract. In social networks, individuals’ decisions are strongly influ-
enced by recommendations from their friends and acquaintances. The
influence maximization (IM) problem asks to select a seed set of users
that maximizes the influence spread, i.e., the expected number of users
influenced through a stochastic diffusion process triggered by the seeds.
In this paper, we present VAIM, a visual analytics system that supports
users in analyzing the information diffusion process determined by differ-
ent IM algorithms. By using VAIM one can: (i) simulate the information
spread for a given seed set on a large network, (ii) analyze and compare
the effectiveness of different seed sets, and (iii) modify the seed sets to
improve the corresponding influence spread.

Keywords: Influence maximization · Information diffusion · Visual
analytics

1 Introduction

People in social networks influence each other in both direct and indirect ways,
through a mechanism often known as the word-of-mouth effect (see, e.g., [12,13]).
For this reason social networks are becoming the favorite venue where companies
advertise their products/services and where politicians run their campaigns. The
influence maximization (IM) problem asks to select a seed set of users that
maximizes the influence spread, i.e., the expected number of users positively
influenced by an information diffusion process triggered by the seeds and that
spreads through the network according to some stochastic model. We refer the
reader to the works by Guille et al. [10] and by Li et al. [16] for surveys about
influence maximization and information diffusion in social networks.
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Fig. 1. VAIM’s visual interface, at t = 0 of the case study in Sect. 3. Its components
are marked as follows: A) Simulation control, B) Density Matrix view, C) Diffusion
Matrix view, D) Node-link view. (Color figure online)

Analyzing and engineering an IM algorithm is a demanding task; as reported
by Arora et al. [4], there is no single state-of-the-art technique for IM. Under
the most common diffusion models, finding the optimal seed set in a network is
known to be an NP-hard problem [12]. Besides the problem hardness, being the
information diffusion process stochastic, even the evaluation of influence spread
of any seed set is computationally complex [8], which makes the design of scalable
and effective IM algorithms a great challenge that motivated a large and still
increasing body of literature [16]. In this context, we want to exploit the power of
information visualization to support expert users in analyzing, evaluating, and
comparing IM algorithms. Our main contributions are as follows.
(i) We present VAIM, a system that provides facilities to simulate an informa-
tion diffusion process over a given network and problem-oriented visual analytics
(VA) tools to explore the related data (Sect. 2). VAIM has a modular architecture
that currently includes some of the most popular IM algorithms and information
diffusion models. An interface with multiple coordinated views makes it possi-
ble to visually compare and analyze the performance of a diffusion model over
potentially very large networks and for different choices of the seed sets (i.e.,
for different IM algorithms). The user can interactively modify the seed set and
iterate the process until a satisfying spread is achieved.
(ii) The effectiveness of VAIM is evaluated through a case study (Sect. 3). We
show how tacking advantage of VAIM for (a) comparing different seed selection
algorithms on the same network, and (b) improving the seed selection by either
a manual or a system-assisted modification of the initial seed set.
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Related Work. There are several visualization systems designed to analyze
information diffusion processes in social networks. TwitInfo [18,19] aggregates
tweets in the spatial, temporal, and event dimensions supporting the explo-
ration of event propagation processes. Whisper [5] exploits a flower-like visual-
ization for real-time monitoring of the diffusion of a given topic, highlighting
the spatio-temporal information of the process over the world. OpinionFlow [24]
uses Sankey graphs and density maps to visually summarize opinion diffusion
processes. FluxFlow [25] adopts a timeline visualization to analyze anomalous
information diffusion spreading. D-Map [6] collects data from Sina Weibo and
offers a map-based ego-centric visualization to reveal dynamic patterns of how
people are involved and influenced in a diffusion process. SocialWave [21] uses
abstract visualizations to explore and analyze spatio-temporal diffusion of infor-
mation. More approaches are elaborated in Chen et al. [7]. All these approaches
are designed to reveal different facets of information diffusion processes and they
often rely on geographical and other user-related information. On the other hand,
they neither support the user in analyzing the impact of the seeds (which in fact
may be unknown) and of the network structure in terms of influence spread, nor
offer simulation tools to experiment different diffusion models.

Long and Wong [17] introduce Visual-VM, a visualization system for viral
marketing. Similar to VAIM, Visual-VM allows users to simulate stochastic dif-
fusion processes and to visually analyze their output. However, Visual-VM offers
a simple visual interface, which strongly relies on geographical information to
lay out the network. The networks analyzed with VAIM may come from diverse
scenarios and may not contain geographical information about users.

Finally, Vallet et al. [22,23] present a visualization framework to compare
different diffusion models based on a common set of graph rewriting rules. Dif-
ferent from VAIM, the work of Vallet et al. does not focus on comparing different
IM algorithms and it is mainly tailored to networks of small or medium size.

Background and Notation. We model a social network as a directed graph
G = (V,E). A diffusion model M captures the stochastic diffusion process among
the vertices of G. During the process, a vertex v ∈ V can be either active
or inactive. The influence spread of a seed set S, denoted by σG,M (S), is the
expected number of active vertices once the diffusion process (over the graph G
and under the model M) terminates. More formally, the IM problem asks for a
set S∗ ⊆ V of at most 0 < k ≤ |V | seeds that maximizes the influence spread,
i.e., S∗ = arg max{σG,M (S)|S ⊆ V ∧ |S| ≤ k}. One of the most commonly used
diffusion models is the Independent Cascade (IC) [16]. Other models (such as the
Linear Threshold model) make use of additional parameters but do not differ
significantly in terms of the underlying iterative framework. In the IC model, a
diffusion instance unfolds through an iterative process: In step 0, only the seed
vertices are active; in step j > 0, each vertex u activated at step j − 1 will
activate each of its inactive neighbors v with probability 0 ≤ p(u, v) ≤ 1. The
process halts when no more vertices can be activated. Unfortunately, the IM
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problem is NP-hard under the IC model, as well as under other models [12]. For
a broader discussion refer to [10,16].

2 VAIM Design

The design of VAIM relies on the “Data-Users-Tasks” model proposed in [20].

Data. To estimate the influence spread of a seed set, we rely on a simulation-
based approach. To obtain statistically relevant data, the simulation is repeated
multiple times. Each single repetition is a time-dependent process taking as input
a graph and a set of seeds. Hence, the data model of VAIM includes the input
network, and set-typed temporal data represented by the active set of vertices
and edges at every timestamp of the simulated diffusion process.

Users. VAIM targets a single class of expert users. Those users are knowledge-
able in their own application domain and in the use of visual analytics tools.
Also, they are interested not only in the resulting influence spread, but also on
how the structure of the network influences the diffusion process.

Tasks. VAIM is designed to support the following user tasks:

T1 Simulate. It should be possible to simulate a diffusion process on a given
network, with the seeds from an IM algorithm, under a given diffusion model.

T2 Evaluate. The user should be allowed to visually analyze both the quality of
spread of a seed set and the impact of the network structure on the diffusion
process, such as areas with a higher rate of active nodes, isolated areas, etc. The
user can fast forward, rewind, and pause the process animation.

T3 Compare. It should be possible to visually compare the performance of dif-
ferent seed sets computed by different IM algorithms.

T4 Feedback. The user should be facilitated in modifying the seed set and iterate
the simulate-evaluate-compare process.

2.1 Visualization Design

The visualization design adopts an overview+detail approach. The interface is
organized as a dashboard with multiple coordinated views (see also Fig. 1). The
chosen colour schemes and palettes are colorblind friendly [11].

– Simulation control (Fig. 1-A). Here the user can set different parameters about
the diffusion process, such as the stochastic model and the number of iterations
(Task T1).

– Density matrix view (Fig. 1-B). The main purpose of this view is to provide
an overview of the network structure in a scalable manner. This is achieved
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with a simplified matrix visualization, which is obtained by firstly computing a
node-link layout of the whole (potentially very large) network with some fast
algorithm, such as centralized or distributed force-directed techniques (e.g., [2,
3,14]), and then by slicing the plane into cells. The color intensity of each cell
reflects the number of nodes inside. The size of the matrix can be increased or
decreased through a simple slider. Hovering with the mouse on a cell, the number
of nodes in that cell is reported.

– Diffusion matrix view (Fig. 1-C). It allows users to visually compare multiple
simulations over the same network. A legend below it shows the considered IM
algorithms. Each simulation is conveyed using a distinct matrix visualization
whose cells’ colors vary in a YlOrRd scale (yellow to orange to red) and reflect
the number of active nodes in the corresponding area of the network. Notably,
the density and diffusion matrices have the same set of cells, so to facilitate com-
parisons and associations among them. Similarly as for the density matrix view,
the computation and the rendering of this view must be fast enough to allow
the visualization of multiple simulations over large networks. At the left side of
each diffusion matrix, the process trend chart is a plot with two curves showing,
for each iteration, the number of new nodes activated in that iteration and the
cumulative number of nodes activated up to that iteration. A red vertical seg-
ment indicates the currently selected iteration. VAIM can animate the diffusion
process over time. Other facilities allow users to highlight those cells containing
some seeds, or whose influence rate is low (< 30%), medium ([30%, 60%]), or
high (> 60%). Clicking on a cell, its influence rate is shown and a list of nodes
that can be either removed or promoted as seeds is suggested, based on node
degrees and influence rate.

– Node-link view (Fig. 1-D). Below each diffusion matrix, there is a panel in which
a detailed node-link diagram of a portion of the network can be visualized. This
portion can be freely chosen by the user through a brushing selection of any
group of k×h cells in the density matrix. The combination of the node-link view
with the two matrix views described above is particularly useful for very large
networks, for which detailed visualizations are feasible only for small portions. In
the diagram, blue nodes represent seeds while dark red nodes and edges represent
the active elements at the considered time instant (Fig. 2(a)). The user can hide
all edges or leave only the active ones.

The three views together are designed to support Tasks T2, T3 and T4.

3 Evaluation and Discussion

We discuss an evaluation of VAIM on the following case study (a second one is
discussed in [1]). The input is the fb-combined social network, extracted from
Facebook [15], having 4, 039 nodes and 88, 234 edges (https://snap.stanford.edu/

data/). We simulated an IC diffusion process (T1), using two seed sets of 400
nodes each, computed by two popular IM algorithms: HIGHDEG [12,13] and
SDISC [9], based on degree centrality and discount, respectively. We compared

https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
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(a)

(b)

Fig. 2. Snapshot of VAIM after (a) the first iteration of the diffusion process, and (b)
at the end of the diffusion process.

and evaluated (T2 and T3) the performance of the two diffusion processes.
Figure 1 shows a snapshot of the interface at the beginning of each diffusion
process. The process trend charts reveal that SDISC leads to a higher number
of active nodes in fewer iterations. By exploring the diffusion matrices we can
observe a different distribution of the seeds selected by the two IM algorithms.
For example, focusing on the densest cell of the network (which can be easily
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spotted in the density matrix), we see that HIGHDEG (the right-side simulation)
concentrates a higher number of seeds than SDISC (the left-side simulation) in
that cell (182 seeds of HIGHDEG vs 115 seeds of SDISC), while putting relatively
fewer seeds in sparser cells. Also, within the densest cell, SDISC distributes the
seeds more uniformly than HIGHDEG. Figure 2(a) shows the processes at the
next iteration, and still focuses on the densest cell. Despite the smaller number
of seeds, SDISC yields a higher number of newly active nodes (red nodes) in that
cell (268 of SDISC vs 243 of HIGHDEG). Also, the greater number of red edges
(those used by the diffusion process) exiting the cell, reveals a higher influence of
the nodes of this cell towards nodes outside it. Figure 2(b) shows the end of the
processes. Using the influence rate function, we observe that the cells selected
from the density matrix have a smaller number of active nodes with HIGHDEG
than with SDISC. Looking at the node-link view for these cells (edges are hid-
den), this seems to be caused by the very small number of seeds that HIGHDEG
placed in this portion of the network. The above discussion helps understanding
how the seeding strategy adopted by SDISC leads to better performance, which
corroborates the results of an experimental analysis performed on a collaboration
graph presented in [9].

In order to improve the information spread of SDISC (T4), VAIM suggested
20 nodes (with smallest degree in the cell with highest influence rate) to be
removed from the original seed set and 20 nodes (with highest degree in the cell
with lowest influence rate) to be promoted as seeds. We modified the seed set
accordingly and we simulated again the diffusion process. The new process lead
to 2% more of active nodes.

4 Conclusion and Future Work

We discussed the use of visual analytics to support the analysis and fine tuning of
IM strategies. We plan to extend the system with features such as edge bundling
to mitigate edge clutter in the node-link view. We will also implement new dif-
fusion models, together with ad-hoc views to explore the additional parameters
of these models. Considering networks with node and edge attributes (e.g., geo-
locations) is also an interesting direction. Finally, we want to further evaluate
VAIM with more case studies and experiments, in particular to test its scalability
(both in terms of simulation and visualization) to very large networks.
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Abstract. An odd wheel graph is a graph formed by connecting a new
vertex to all vertices of an odd cycle. We answer a question of Rosenfeld
and Le by showing that odd wheels cannot be drawn in the plane such
that the lengths of the edges are odd integers.

Keywords: Geometric graphs · Odd-distance graphs · Forbidden
subgraphs

1 Introduction

A geometric graph is a graph drawn in the plane so that the vertices are rep-
resented by distinct points and the edges are represented by possibly intersect-
ing straight line segments connecting the corresponding points . A unit-distance
graph is a geometric graph where all edges are represented by segments of length
1. The study of unit-distance graphs started with the question of Edward Nelson,
who raised the problem of determining the minimum number of colors that are
needed to color the points of the plane so that no two points unit distance apart
are assigned the same color. This number is known as the chromatic number of
the plane. Until recently the best lower bound was 4, but Aubrey de Grey [6]
constructed a unit-distance graph which cannot be colored with 4 colors. The
best upper bound is 7. For more details on unit-distance graphs see for example
[13].

Erdős [4] raised the problem to determine the maximal number of edges in
a unit-distance graph with n vertices and this question became known as the
Erdős Unit Distance Problem.

Later Erdős and Rosenfeld [1] asked the same two questions for odd distances.
Namely, let Godd be the graph whose vertex set is the plane and two vertices
are connected if their distance is an odd integer. They asked to determine the
chromatic number of Godd, and to determine how many distances among n points
in the plane can be odd integers.

Analogously we define odd-distance graphs to be the geometric graphs having
an embedding in the Euclidean plane in which all edges are of odd integer length.
In other words, the odd-distance graphs are the finite subgraphs of Godd. There
are odd-distance graphs whose chromatic number is five [1,6] but contrary to
c© Springer Nature Switzerland AG 2020
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the unit distance case we do not have any upper bound. The chromatic number
of Godd might be infinite. In the case when we require the color classes to be
measurable sets, it has been shown that the chromatic number is indeed infinite
[2,14].

Four points in the plane with pairwise odd integer distances do not exist,
hence K4 is not an odd-distance graph. From Turán’s theorem we know that the
complete tripartite graph Kn,n,n has the maximal number of edges among K4-
free graphs. Piepemeyer [11] showed that Kn,n,n, and therefore any 3-colorable
graph, is an odd-distance graph. This settles the second question of Erdős and
Rosenfeld.

Let Wn be the wheel graph formed by connecting a new vertex to all vertices
of a cycle on n vertices.1 The wheel graph W2k is 3-colorable, hence it is an
odd-distance graph.

Rosenfeld and Le [12] showed that having K4, which is also W3, as a subgraph
is not the only obstruction for being an odd-distance graph, since W5 is also not
an odd-distance graph. This led them to the following question: Is it true that
W2k+1 is not a subgraph of Godd for any k? We answer this for the affirmative.

Theorem 1. The odd wheels are not odd-distance graphs.

In Sect. 2 we consider drawings of wheel graphs in general, not assuming
that the edge lengths are odd numbers. We develop a number of useful lemmas,
that might prove useful for related questions. For example Harborth’s conjec-
ture asks whether all planar graphs admit a planar drawing with integer edge
lengths. Since the maximal planar graphs are the triangulations, they contain
many wheels. Hence, understanding the possible drawings of wheels is vital for
solving the conjecture. Then, in Sect. 3, we prove Theorem 1.

2 Wheels with Integer Edge Lengths

Embeddings of Wheel Graphs

Every set of n + 1 ordered points of the plane determines an embedding of the
wheel graph Wn. Throughout this paper we will always assume that the center of
the wheel is embedded at the origin O and the other points are A1, A2, . . . , An,
following the order of the vertices in the defining cycle of the wheel (see Fig. 1).
In the following notations the index is understood cyclically, i.e. the index n+1 is
equivalent to the index 1. For example every embedding determines n triangles:
OAiAi+1 for i ∈ {1, . . . , n}. These will be referred to as the triangles of the
embedding. We will use the following notations:

ri = |OAi|, ri,i+1 = |AiAi+1|
θi,i+1 = ∠AiOAi+1

1 There is some discrepancy in the literature, since some authors prefer to denote by
Wn the wheel graph on n vertices.
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That is, the i-th triangle has sides of length ri, ri+1 and ri,i+1, and its inner
angle is θi,i+1. Note that the θi,i+1-s are directed angles. We do not assume pla-
narity or even general position of the points. For example crossings are allowed,
and O does not need to be in the interior of the cycle (see Fig. 1).

A1

A2

A3

A5

A4

θ4,5
θ2,3

θ1,2

θ3,4

θ5,1

A1

A2

A3

A5

A4

Fig. 1. Two embeddings of the wheel graph W5.

Geometry of a Triangle

Let us recall some classical results from elementary geometry. Let T (a, b, c)
denote a triangle with sides a, b, c and angles α, β, γ. By the law of cosines:

cos(α) =
b2 + c2 − a2

2bc
(1)

sin(α) =
√

1 − cos(α)2 =

√
4b2c2 − (b2 + c2 − a2)2

2bc
(2)

Let A denote the area of T (a, b, c).

A =
bc sin(α)

2
=

√
4b2c2 − (b2 + c2 − a2)2

4
(3)

Using these formulas we will introduce two notions, the characteristic of a
triangle and the residual of an angle. Strictly speaking we will only need residuals
for the proof of Theorem 1, but there is a strong connection to the characteristics
of triangles so they are worth mentioning.
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Characteristic of a Triangle

From (3) we can see that if a, b and c are integers, then we can write the area
of T (a, b, c) as r

√
D for some rational number r and a square-free integer D. If

the area is 0, then r = 0 and D can be any square-free integer. If the area is
non-zero, then D must be the square-free part of 4b2c2 − (b2 + c2 − a2)2. In this
case the number D is called the characteristic of the triangle.

We say that a point set in the plane is integral if the pairwise distances
are integers. The characteristic of triangles is a useful tool in the study and
algorithmic generation of integral point sets (see for example [8]). The following
statement is folklore, for a proof see [9].

Theorem 2. The triangles spanned by each three non collinear points in a plane
integral point set have the same characteristic.

Consider an embedding of a wheel graph where the edges have integer lengths.
The rest of the distances might be non-integer, so the n triangles of the embed-
ding can have different characteristics. (See for example Fig. 2). When we started
the study of embeddings of wheel graphs, we hoped to show that there cannot
be too many characteristics appearing in a embedding. It turned out that there
can be arbitrarily many, but we can still gain some information by considering
them. Later in this section we will show the following statement.

6 5

6

4

4 6
6

4

9

9

2

2
7

7

7

Fig. 2. Characteristics of the triangles in an embedding.

Lemma 1. Consider an embedding of a wheel graph with integer edge lengths.
Then the angles among the θi,i+1-s corresponding to the triangles of a given
characteristic add up to an integer multiple of π.

Residual of an Angle

Considering (1) and (3) we can see that the characteristic of a triangle transfers
to the angles in the following sense. If a triangle that have integer sides have
characteristic D, then the sine of its angles have the form q

√
D for some rational
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number q, and the cosines of the angles are rational. Hence we will say that
an angle θ has residual D if D is square-free, sin(θ) = q

√
D for some rational

number q, and furthermore cos(θ) is rational.
Most angles in general do not have any residual. Integer multiples of π have

residual D for any square-free integer D, but other angles have at most one
residual. If the residual is unique, it will be called the residual of the angle. For
example the residual of π

2 is 1, the residual of π
3 is 3, but π

6 does not have any
residual. Just as the characteristic of triangles, the residual of the angles is a
useful tool, in [5] it was used to find trisectible angles in triangles that have
integer sides.

The trigonometric addition formulas sin(θ+φ) = sin(θ) cos(φ)+sin(φ) cos(θ)
and cos(θ + φ) = cos(θ) cos(φ) − sin(θ) sin(φ) immediately imply that the set
of angles that have residual D are closed under addition. Also, for any φ the
following angles have the same set of residuals: φ,−φ, π + φ, π − φ.

Angles Whose Squared Trigonometric Functions Are Rational

Conway, Radin and Sadun [3] studied angles whose squared trigonometric func-
tions are rational. They said that θ is a pure geodetic angle if the square of its
sine is rational and they showed the following theorem.

Theorem 3 (The Splitting Theorem [3]). If the value of a rational linear
combination of pure geodetic angles is a rational multiple of π, then so is the
value of its restriction to those angles whose tangents are rational multiples of
any given square root.

Clearly, angles that have residual D are pure geodetic angles and have tan-
gents that are rational multiples of

√
D. Therefore, Theorem 3 applies to them,

but we can even strengthen it in some sense. Note that in the next theorem we
consider simple sums instead of rational linear combinations.

Theorem 4 (The Splitting Theorem for angles that have residual). Let
us consider some angles that have a residual. If the value of the sum of these
angles is a rational multiple of π, then so is the value of its restriction to those
angles that have a given residual. Furthermore, these restricted sums must add
up to integer multiples of π

3 or π
2 .

Proof. The first part is clear from Theorem 3. For the second part we recall
Niven’s Theorem.

Theorem 5 (Niven’s theorem [10]). Consider the angles in range 0 ≤ θ ≤ π
2 .

The only values of θ such that both θ
π and cos(θ) are rational are 0, π

3 and π
2 .

Since angles corresponding to a given residual are closed under addition, the
sum restricted to residual D gives us an angle that has residual D. But angles
that have residual D have rational cosine so we can apply Theorem 5 to the
restricted sums. ��
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Now we are ready to prove Lemma 1. Since triangles that have characteristic
D have angles that have residual D, it is enough to show the following residual
version.

Lemma 2. Consider an embedding of a wheel graph with integer edge lengths.
Then the angles among the θi,i+1-s corresponding to a given residual add up to
an integer multiple of π.

Proof. We know that
n∑

i=1

θi,i+1 is an integer multiple of 2π. Hence we can apply

Theorem 4 for the angles θi,i+1. Suppose that the angles corresponding to a given
residual D add up to θ. From Theorem 4 it is clear that θ is either an integer
multiple of π

2 or an integer multiple of π
3 . Let θ′ = θ mod π. Then θ′ = 0, π

3 , 2π
3

or π
2 . Note that since θ is the sum of some angles that have residual D, it also

has residual D. Hence θ′ also has residual D.
Since sin(π

3 ) = sin(2π
3 ) =

√
3
2 , we have D = 3 for θ′ = π

3 and also for θ′ = 2π
3 .

Similarly we have D = 1 for θ′ = π
2 . Therefore, if we group the terms of

n∑

i=1

θi,i+1

based on the residuals, every group will sum up to an integer multiple of π except
maybe the ones corresponding to D = 1 and D = 3. (Some θi,i+1 might not have
a unique residual but those are themselves integer multiples of π, we can just
pick an arbitrary residual for them). Since the whole sum should be an integer
multiple of π, the exceptional cases together must add up to a integer multiple
of π. This can only happen if both of them add up to an integer multiple of
π, since π

3 + π
2 and 2π

3 + π
2 are not integer multiples of π. Hence, every sum

corresponding to a given residual is a integer multiple of π. ��

3 Wheels with Odd Edge Lengths

In the previous section we considered wheels with arbitrary integer edge lengths.
Now we are ready to turn our attention to drawings of odd wheels where the
edge lengths are odd numbers.

Lemma 3. If a, b and c are odd numbers and the characteristic of the triangle
T (a, b, c) is D, then D ≡ 3 mod 8.

Proof. From (3) we know that the characteristic of the triangle is the square-free
part of 4a2b2 − (a2 + b2 − c2)2. Since squares of odd numbers are congruent to
1 modulo 8, we have 4a2b2 − (a2 + b2 − c2)2 ≡ 3 mod 8. Since the square part
of 4a2b2 − (a2 + b2 − c2)2 is the square of an odd number it is congruent to 1
modulo 8. Hence D ≡ 3 mod 8. ��

This means that if we have an embedding of a wheel graph where the edge
lengths are odd integers, then each θi,i+1 have a unique residual that is congruent
to 3 modulo 8. The next idea is to classify the angles whose residual is congruent
to 3 modulo 8.
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Lemma 4. Suppose D ≡ 3 mod 8 and φ is an angle that has residual D. Then
cos(φ) can be written as m

2p , where p ≡ 1 mod 8 and m is an integer. Further-
more the remainder of m modulo 8 is determined by the angle, and it is either
1, 2, 3, 5, 6 or 7.

We will call this remainder the class of φ.

Proof. By the definition of having a residual cos(φ) is rational. Since D ≡ 3
mod 8 the value of cos(φ) is non-zero. Hence, we can write cos(φ) = a

b for some
non-zero integers a, b such that gcd(a, b) = 1. There are two cases.

First, suppose that a and b are odd. Odd numbers have an inverse in Z8. So,
if b is odd, there is an odd number k such that bk ≡ 1 mod 8. Hence we can
write cos(φ) = 2ak

2bk . Now ak is odd, therefore 2ak is not divisible by 4. Hence
m = 2ak, p = bk works.

Second, suppose that a or b is even. Since gcd(a, b) = 1, one of them is even

and the other one is odd. Consider that sin(φ) = ±
√

1 − a2

b2 = ±
√

b2−a2

b . The
square-free part of b2 − a2 is D, and b2 − a2 is odd, so b2 − a2 ≡ 3 mod 8.
Since the only quadratic residuals modulo 8 are 0, 1 and 4, the only possibility
is that b2 ≡ 4 mod 8 and a2 ≡ 1 mod 8. Since b2 ≡ 4 mod 8, b′ = b

2 is odd
and similarly to the previous case there is an odd k such that kb′ ≡ 1 mod 8.
Since a2 ≡ 1 mod 8, a must be odd. So m = ak, p = b′k works.

It is also easy to see that an angle cannot fall into two classes, notice that
m1
2p1

= m2
2p2

implies m1p2 ≡ m2p1 mod 8. ��
The aim of the next lemma is to answer the following question. Suppose we

have two angles one of class m1 and one of class m2. If their sum have a class,
what could that be?

Lemma 5. If cos(θ) = m1
2p1

, cos(φ) = m2
2p2

and cos(θ+φ) = m3
2p2

for some integers
p1, p2, p3 that are congruent to 1 modulo 8 and integers m1,m2,m3, then

m2
1 + m2

2 + m2
3 − m1m2m3 − 4 ≡ 0 mod 8 (4)

Proof. Using the cosine addition formula cos(θ + φ) = cos(θ) cos(φ) −
sin(θ) sin(φ):

m3

2p3
=

m1

2p1
· m2

2p2
−

(

±
√

4p21 − m2
1

2p1

)

·
(

±
√

4p22 − m2
2

2p2

)

(2m3p1p2 − m1m2p3)2 = p23(4p21 − m2
1)(4p22 − m2

2)

4m2
3p

2
1p

2
2+m2

1m
2
2p

2
3−4m1m2m3p1p2p3 = 16p21p

2
2p

2
3−4p21m

2
2p

2
3−4m2

1p
2
2p

2
3+m2

1m
2
2p

2
3

p21p
2
2m

2
3 − p1p2p3m1m2m3 − 4p21p

2
2p

2
3 + p21m

2
2p

2
3 + m2

1p
2
2p

2
3 = 0

Using that p1 ≡ p2 ≡ p3 ≡ 1 mod 8 we get (4). ��
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Consider the solutions of (4) in Z8. Clearly, every triple (m1,m2,m3) that
is not a solution of this equation encodes a forbidden change in the class when
adding two angles. For example, since (1, 2, 3) is not a solution, adding an angle
of class 1 and an angle of class 2 cannot result in an angle of class 3. The equation
is symmetric in m1,m2 and m3. We will be later interested in solutions where
one of the mi-s is 1, 3, 5 or 7. Checking every triple we find that these solutions
are the following ones and the re-orderings of these: (1, 1, 2), (1, 1, 7), (1, 2, 5),
(1, 3, 5), (1, 3, 6), (1, 6, 7), (2, 3, 3), (2, 3, 7), (2, 5, 5), (2, 7, 7), (3, 3, 7), (3, 5, 6),
(5, 5, 7), (5, 6, 7), (7, 7, 7).

Proof of Main Theorem

The idea of the proof is simple, we want to show that
n∑

i=1

θi,i+1 is not a multiple

of 2π using the fact that each θi,i+1 is an angle of a triangle whose sides have
odd length. This will not work this easily, for example both π

3 and 2π
3 appears in

triangles with odd sides and π
3 + π

3 + π
3 + π

3 + 2π
3 = 2π. To reach a contradiction

we will also use that the triangles in a wheel embedding share sides with their
neighbours.

Proof (of Theorem 1)
Suppose there is a counterexample to Theorem 1. From Lemma 3 we know that
each θi,i+1 has a unique residual. Let φ1, . . . , φn be a reordering of the angles
θ1,2, θ2,3, . . . , θn,1 in such a way that the angles of given residuals are consecutive.
In general an arbitrary angle might not have any residual. The advantage of this

ordering is that
�∑

i=1

φi has a residual for each � ∈ {0, 1, . . . , n}. To see this suppose

that the residual of φ� is D. From Lemma 2 we see that the φi-s before φ� whose
residual is not D sum up to an integer multiple of π. Thus, they do not affect the

residual of
�∑

i=1

φi. Since angles that have residual D are closed under addition,

the rest sums up to an angle that has residual D.
We also know that D ≡ 3 mod 8 from Lemma 3. Hence by Lemma 4 we

know that
�∑

i=1

φi have a class for each � ∈ {0, 1, . . . , n}. Consider how the class

changes as � goes from 0 to n.
In each step we increase the angle by some θj,j+1. We have cos(θj,j+1) =

r2
j+r2

j+1−r2
j,j+1

2rjrj+1
= (r2

j+r2
j+1−r2

j,j+1)rjrj+1

2r2
j r2

j+1
. Since rj , rj+1 and rj,j+1 are odd numbers,

(r2j + r2j+1 − r2j,j+1) ≡ 1 mod 8 and r2j r2j+1 ≡ 1 mod 8. Therefore the class of
θj,j+1 is the remainder of rjrj+1 by eight, which is either 1, 3, 5 or 7. We will
use this fact in the following form. If rjrj+1 ≡ 1 mod 4, then the class of θj,j+1

is either 1 or 5, and if rjrj+1 ≡ 3 mod 4, then the class of θj,j+1 is either 3 or

7. Therefore, as we increase � the angle
�∑

i=1

φi changes either by an angle whose

class is 1 or 5, or by an angle whose class is 3 or 7 depending on the remainder
of rjrj+1 divided by 4.
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Now we are ready to use Lemma 5. The solutions of (4) have an underlying
structure, that we can use. This is depicted in Fig. 3. We create a graph G whose
vertex set is {1, 2, 3, 5, 6, 7}. For solutions of the form (1, x, y) and (5, x, y) we
have connected x and y by a dashed edge. For solutions of the form (3, x, y) and
(7, x, y) we have connected them by and solid edge, allowing loop edges. These
two sets of edges are disjoint. Note that the dashed edges form a bipartite graph
such that the solid edges connect vertices inside the two parts. This will allow
us to use a parity argument, as any closed trail in this graph must use an even
number of dashed edges.

1

56

2

3
7

Fig. 3. Possible changes in the class when adding an angle of class 1, 3, 5 or 7.

Now we are ready to finish the proof. Let T be the trail of length n + 1 in G

whose �-th vertex is the class of
�−1∑

i=1

φi. We know that
n∑

i=1

φi is a integer multiple

of 2π, so cos(
n∑

i=1

φi) = 2
2·1 . Hence the trail should start and end at 2. By Lemma

5 when the class of φi is 1 or 5, we follow one of the solid edges, if the class is 3
or 7, we follow a dashed edge.

Finally, we show that we followed a dashed edge an odd number of times.
Considering the equation (r1r2)(r2r3) · · · (rn−1rn)(rnr1) = (

∏
ri)2 ≡ 1 mod 4

we have riri+1 ≡ 3 mod 4 for an even number of i-s. Since n is odd, this
implies that we have an odd number of i-s when riri+1 ≡ 1 mod 4. Hence the
trail contains an odd number of dashed edges. Since the dashed edges form a
bipartite graph and the solid edges connect vertices inside the two parts the trail
cannot end where it started, a contradiction. This shows that a counterexample
to Theorem 1 cannot exists. ��

4 Final Remarks

We note that some parts of the proof can be replaced by other arguments. For
example Lemma 5 also follows from the analysis of Cayley-Menger determinants.
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The main goal of understanding odd-distance graphs is to determine the
chromatic number of Godd. Odd wheels are the simplest graphs that are not
3-colorable, yet they are not odd-distance graphs. Our proof heavily relies on
the fact that a wheel graph contains many triangles. An other nice question of
Rosenfeld and Nam Lê Tien [12] is the following. Are there triangle-free graphs
that are not odd-distance graphs?

Piepemeyer’s construction which shows that Kn,n,n is an odd-distance graph
comes from an integral point set. Naturally, one might be tempted to look for
odd-distance graphs with high chromatic number in a similar way. Take an inte-
gral point set and then consider the odd-distance graph given by the edges of
odd length. We note that this method cannot lead to success since the chromatic
number of these graphs is at most 3. We leave the proof of this statement to the
interested readers.

We can also consider the natural analog of Harborth’s conjecture. Which
planar graphs have a planar drawing where the length of the edges are odd
integers?

Take for example a maximal planar graph, in other words a triangulation. If
it contains an odd wheel, it is not an odd-distance graph. On the other hand if it
does not contain an odd wheel, it is 3-colorable. Hence it is an odd distance graph,
but this does not imply that we can find an plane drawing without crossings. Is
it true that all 3-colorable planar graphs have an embedding without crossings
where the length of the edges are odd integers?
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Abstract. We consider the construction of a polygon P with n ver-
tices whose turning angles at the vertices are given by a sequence
A = (α0, . . . , αn−1), αi ∈ (−π, π), for i ∈ {0, . . . , n − 1}. The prob-
lem of realizing A by a polygon can be seen as that of constructing a
straight-line drawing of a graph with prescribed angles at vertices, and
hence, it is a special case of the well studied problem of constructing an
angle graph. In 2D, we characterize sequences A for which every generic
polygon P ⊂ R

2 realizing A has at least c crossings, for every c ∈ N, and
describe an efficient algorithm that constructs, for a given sequence A,
a generic polygon P ⊂ R

2 that realizes A with the minimum number of
crossings. In 3D, we describe an efficient algorithm that tests whether
a given sequence A can be realized by a (not necessarily generic) poly-
gon P ⊂ R

3, and for every realizable sequence the algorithm finds a
realization.

Keywords: Crossing number · Polygon · Spherical polygon · Angle
graph

1 Introduction

Straight-line realizations of graphs with given metric properties have been one
of the earliest applications of graph theory. Rigidity theory, for example, studies
realizations of graphs with prescribed edge lengths, but also considers a mixed
model where the edges have prescribed lengths or directions [4,13–15,21]. In
this paper, we extend research on the so-called angle graphs, introduced by
Vijayan [27] in the 1980s, which are geometric graphs with prescribed angles
between adjacent edges. Angle graphs found applications in mesh flattening [29],
and computation of conformal transformations [8,22] with applications in the
theory of minimal surfaces and fluid dynamics.
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Viyajan [27] characterized planar angle graphs under various constraints,
including the case when the graph is a cycle [27, Theorem 2] and when the graph
is 2-connected [27, Theorem 3]. In both cases, the characterization leads to an
efficient algorithm to find a planar straight-line drawing or report that none
exists. Di Battista and Vismara [6] showed that for 3-connected angle graphs
(e.g.., a triangulation), planarity testing reduces to solving a system of linear
equations and inequalities in linear time. Garg [10] proved that planarity testing
for angle graphs is NP-hard, disproving a conjecture by Viyajan. Bekos et al. [2]
showed that the problem remains NP-hard even if all angles are multiples of π/4.

The problem of computing (straight-line) realizations of angle graphs can
be seen as the problem of reconstructing a drawing of a graph from the given
partial information. The research problems to decide if the given data uniquely
determine the realization or its parameters of interest are already interesting
for cycles, and were previously considered in the areas of conformal transforma-
tions [22] and visibility graphs [7].

In 2D, we are concerned with realizations of angle cycles as polygons min-
imizing the number of crossings which, as we shall see, depends only on the
sum of the turning angles. It follows from the seminal work of Tutte [26] and
Thomassen [25] that every positive instance of a 3-connected planar angle graph
admits a crossing-free realization if the prescribed angles yield convex faces.
Convexity will also play a crucial role in our proofs.

In 3D, we would like to determine whether a given angle cycle can be real-
ized by a (not necessarily generic) polygon. Somewhat counter-intuitively, self-
intersections cannot be always avoided in a polygon realizing the given angle
cycle in 3D; we present examples below. Di Battista et al. [5] characterized
oriented polygons that can be realized in R

3 without self-intersections with
axis-parallel edges of given directions. Patrignani [20] showed that recognizing
crossing-free realizibility is NP-hard for graphs of maximum degree 6 in this
setting.

Throughout the paper we assume modulo n arithmetic on the indices, and
use 〈., .〉 scalar product notation.

Angle sequences in 2-space. In the plane, an angle sequence A is a sequence
(α0, . . . , αn−1) of real numbers such that αi ∈ (−π, π) for all i ∈ {0, . . . , n − 1}.
Let P ⊂ R

2 be an oriented polygon with n vertices v0, . . . , vn−1 that appear in
the given order along P , which is consistent with the given orientation of P . The
turning angle of P at vi is the angle in (−π, π) between the vector vi − vi−1 and
vi+1−vi. The sign of the angle is positive if rotating the plane, so that the vector
vi − vi−1 points in the positive direction of the x-axis, makes the y-coordinate
of vi+1 − vi positive. Otherwise, the angle nonpositive; see Fig. 1.

The oriented polygon P realizes the angle sequence A if the turning angle
of P at vi is equal to αi, for i = 0, . . . , n − 1. A polygon P is generic if all
its self-intersections are transversal (that is, proper crossings), vertices of P are
distinct points, and no vertex of P is contained in a relative interior of an edge
of P . Following the terminology of Viyajan [27], an angle sequence is consistent
if there exists a generic closed polygon P with n vertices realizing A. For a
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αi < 0 αi > 0

vi vi

Fig. 1. A negative, or right, (on the left) and a positive, or left, (on the right) turning
angle αi at the vertex vi of an oriented polygon.

polygon P that realizes an angle sequence A = (α0, . . . , αn−1) in the plane, the
total curvature of P is TC(P ) =

∑n−1
i=0 αi, and the turning number (also known

as rotation number) of P is tn(P ) = TC(P )/(2π); it is known that tn(P ) ∈ Z in
the plane [24].

The crossing number, denoted by cr(P ), of a generic polygon is the number of
self-crossings of P . The crossing number of a consistent angle sequence A is the
minimum integer c, denoted by cr(A), such that there exists a generic polygon
P ∈ R

2 realizing A with cr(P ) = c. Our first main results is the following
theorem.

Theorem 1. For a consistent angle sequence A = (α0, . . . , αn−1) in the plane,
we have

cr(A) =

{
1 if

∑n−1
i=0 αi = 0,

|k| − 1 if
∑n−1

i=0 αi = 2kπ and k �= 0.

The proof of Theorem 1 can be easily converted into a weakly linear-time
algorithm that constructs, for a given consistent sequence A, a generic polygon
P ⊂ R

2 that realizes A with the minimum number of crossings.

Angle sequences in 3-space and spherical polygonal linkages. In R
d,

d ≥ 3, the sign of a turning angle no longer plays a role: The turning angle of an
oriented polygon P at vi is in (0, π), and an angle sequence A = (α0, . . . , αn−1)
is in (0, π)n. The unit-length direction vectors of the edges of P determine a
spherical polygon P ′ in S

d−1. Note that the turning angles of P correspond
to the spherical lengths of the segments of P ′. It is not hard to see that this
observation reduces the problem of realizability of A by a polygon in R

d to the
problem of realizability of A by a spherical polygon in S

d−1, in the sense defined
below, that additionally contains the origin 0 in the interior of its convex hull.

Let S
2 ⊂ R

3 denote the unit 2-sphere. A great circle C ⊂ S
2 is the intersec-

tion of S2 with a 2-dimensional hyperplane in R
3 containing 0. A spherical line

segment is a connected subset of a great circle that does not contain a pair of
antipodal points of S2. The length of a spherical line segment ab equals the mea-
sure of the central angle subtended by ab. A spherical polygon P ⊂ S

2 is a closed
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curve consisting of finitely many spherical segments; and a spherical polygon
P = (u0, . . . ,un−1), ui ∈ S

2, realizes an angle sequence A = (α0, . . . , αn−1) if
the spherical segment (ui−1,ui) has (spherical) length αi, for every i. As usual,
the turning angle of P at ui is the angle in [0, π] between the tangents to S

2 at
ui that are co-planar with the great circles containing (ui,ui+1) and (ui,ui−1).
Unlike for polygons in R

2 and R
3, we do not put any constraints on turning

angles of spherical polygons (i.e., angles 0 and π are allowed).
Regarding realizations of A by spherical polygons, we prove the following.

Theorem 2. Let A = (α0, . . . , αn−1), n ≥ 3, be an angle sequence. There exists
a generic polygon P ⊂ R

3 realizing A if and only if
∑n−1

i=0 αi ≥ 2π and there
exists a spherical polygon P ′ ⊂ S

2 realizing A. Furthermore, P can be constructed
efficiently if P ′ is given.

Theorem 3. There exists a constructive weakly polynomial-time algorithm to
test whether a given angle sequence A = (α0, . . . , αn−1) can be realized by a
spherical polygon P ′ ⊂ S

2.

A simple exponential-time algorithm for realizability of angle sequences by
spherical polygons follows from a known characterization [3, Theorem 2.5], which
also implies that the order of angles in A does not matter for the spherical
realizability. The topology of the configuration spaces of spherical polygonal
linkages have also been studied [16]. Independently, Streinu et al. [19,23] showed
that the configuration space of noncrossing spherical linkages is connected if∑n−1

i=0 αi ≤ 2π. However, these results do not seem to help prove Theorem 3.
The combination of Theorems 2 and 3 yields our second main result.

Theorem 4. There exists a constructive weakly polynomial-time algorithm to
test whether a given angle sequence A = (α0, . . . , αn−1) can be realized by a
polygon P ⊂ R

3.

Organization. We prove Theorem 1 in Sect. 2 and Theorems 2, 3, and 4 in Sect. 3.
We finish with concluding remarks in Sect. 4.

2 Crossing Minimization in the Plane

The first part of the following lemma gives a folklore necessary condition for the
consistency of an angle sequence A in the plane. The condition is also sufficient
except when k = 0. The second part follows from a result of Grünbaum and
Shepard [11, Theorem 6], using a decomposition due to Wiener [28]. We provide
a proof for the sake of completeness.

Lemma 1. If an angle sequence A = (α0, . . . , αn−1) is consistent, then
∑n−1

i=0 αi = 2kπ for some k ∈ Z. Furthermore, if k �= 0 then cr(A) ≥ |k| − 1.
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P

P ′

P ′′

α

−α

Fig. 2. Splitting an oriented closed polygon P at a self-crossing point into 2 oriented
closed polygons P ′ and P ′′ such that tn(P ) = tn(P ′) + tn(P ′′).

c
P ′ P ′′ P

Fig. 3. Constructing a polygon P with |tn(P )| − 1 crossings.

Proof. Let P be a polygon such that cr(A) = cr(P ). We prove that cr(A) ≥
|k| − 1 = |tn(P )| − 1, by induction on cr(P ).

We consider the base case, where cr(P ) = 0. By the Jordan-Schönflies curve
theorem, P bounds a compact region homeomorphic to a disk. By a well-known
fact, the internal angles at the vertices of P sum up to (n − 2)π. Since A is
consistent,

∑n−1
i=0 αi = 2kπ, and thus, (n − 2)π =

∑n−1
i=0 (π − αi) = (n − 2k)π

or (n − 2)π =
∑n−1

i=0 (π + αi) = (n + 2k)π, depending on the orientation of the
polygon. The claim follows since |tn(P )| = |k| = 1 in this case.

Refer to Fig. 2. In the inductive step, we have cr(P ) ≥ 1. By splitting P into
two closed parts P ′ and P ′′ at a self-crossing, we obtain a pair of closed polygons
such that tn(P ) = tn(P ′) + tn(P ′′). We have cr(P ) ≥ 1 + cr(P ′) + cr(P ′′) ≥
1 + |tn(P ′)| − 1 + |tn(P ′′)| − 1 ≥ |tn(P )| − 1. Thus, the induction goes through,
since both cr(P ′) and cr(P ′′) are smaller than cr(P ). 	


The following lemma shows that the lower bound in Lemma 1 is tight when
αi > 0 for all i ∈ {0, . . . , n − 1}.

Lemma 2. If A = (α0, . . . , αn−1) is an angle sequence such that
∑n−1

i=0 αi =
2kπ, k �= 0, and αi > 0, for all i, then cr(A) ≤ |k| − 1.

Proof. Refer to Fig. 3. In three steps, we construct a polygon P realizing A with
|tn(P )| − 1 self-crossings thereby proving cr(A) ≤ |k| − 1 = |tn(P )| − 1. In the
first step, we construct an oriented self-crossing-free polygonal line P ′ with n+2
vertices, whose first and last (directed) edges are parallel to the positive x-axis,
and whose internal vertices have turning angles α0, . . . , αn−1 in this order. We
construct P ′ incrementally: The first edge has unit length starting from the
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origin; and every successive edge lies on a ray emanating from the endpoint of
the previous edge. If the ray intersects neither the x-axis nor previous edges, then
the next edge has unit length, otherwise its length is chosen to avoid any such
intersection. In the second step, we prolong the last edge of P ′ until it creates the
last self-intersection/crossing c and denote by P ′′ the resulting closed polygon
composed of the part of P ′ from c to c via the prolonged part. By making the
differences between the lengths of the edges of P ′ sufficiently large a prolongation
of the last edge of P ′ has to eventually create at least one desired self-intersection.
Hence, P ′′ is well-defined. Finally, we construct P realizing A from P ′′ by an
appropriate modification of P ′′ in a small neighborhood of c without creating
additional self-crossings. The number of self-crossings of P follows by the winding
number of P with respect to the point just a bit north from the end vertex of
P ′, which is k or −k. 	


To prove the upper bound in Theorem 1, it remains to consider the case
that A = (α0, . . . , αn−1) contains both positive and negative angles. The crucial
notion in the proof is that of an (essential) sign change of A which we define next.
Let βi =

∑i
j=0 αj mod 2π. Let vi ∈ R

2 denote the unit vector (cos βi, sin βi).
Hence, vi is the direction vector of the (i + 1)-st edge of an oriented polygon P
realizing A if the direction vector of the first edge of P is (1, 0) ∈ R

2. As observed
by Garg [10], [Section 6], the consistency of A implies that 0 is a strictly positive
convex combination of vectors vi, that is, there exist scalars λ0, . . . , λn−1 > 0
such that

∑n−1
i=0 λvi = 0 and

∑n−1
i=0 λi = 1.

The sign change of A is an index i such that αi < 0 and αi+1 > 0, or vice
versa, αi > 0 and αi+1 < 0. Let sc(A) denote the number of sign changes of A.
Note that the number of sign changes of A is even. A sign change i of a consistent
angle sequence A is essential if 0 is not a strictly positive convex combination
of {v0, . . . ,vi−1,vi+1, . . . ,vn−1}.

Lemma 3. If A = (α0, . . . , αn−1) is a consistent angle sequence, where
∑n−1

i=0 αi = 2kπ, k ∈ Z, and all sign changes are essential, then cr(A) ≤ ∣
∣|k|−1

∣
∣.

Proof. We distinguish between two cases depending on whether
∑n−1

i=0 αi = 0.
Case 1:

∑n−1
i=0 αi = 0. Since

∑n−1
i=0 αi = 0, we have sc(A) ≥ 2. Since all sign

changes are essential, for any two distinct sign changes i �= j, we have vi �= vj ,
therefore counting different vectors vi, where i is a sign change, is equivalent to
counting essential sign changes. We show next that sc(A) = 2.

Suppose, to the contrary, that sc(A) > 2. Note that sc(A) is even, since the
number of sign changes in a cyclic sequence of signs is even. Thus, we have
sc(A) ≥ 4. Note that if vi corresponds to an essential sign change i, then there
exists an open halfplane bounded by a line through the origin that contains only
vi in {v0, . . . ,vn−1}. Thus, if i and i′ are distinct essential sign changes, for any
other essential sign change j we have that vj is contained in a closed convex
cone bounded by −vi and −vi′ unless −vi = vi′ . Hence, the only possibility
for having 4 essential sign changes i, i′, j, and j′ is if they satisfy vi = −vi′ ,
vj = −vj′ and vi �= ±vj . Since all i, i′, j, and j′ are sign changes, there
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exists a fifth vector vk, which implies that one of i, i′, j, and j′ is not essential
(contradiction).

Assume w.l.o.g. that j and n − 1 are the only two essential sign changes. We
have that vj �= −vn−1. Indeed, since the sign changes j and n − 1 are essential,
all the other vectors vi, other than vj and vn−1, either must be contained in
the same open half-plane defined by a line through vj and −vn−1, which is
impossible due to the consistency of A, or must be orthogonal to vj and vn−1.
Then due to the consistency of A, there exists a pair {i, i′} such that vi = −vi′ .
However, j and n − 1 are the only sign changes by assumption, and thus there
exists some index � such that v� �= ±vi (contradiction).

λn−1vn−1

λjvj λ0v0 vn−1vj

v0
vj−1

λj−1vj−1

λj+1vj+1

λn−2vn−2

Fig. 4. The case of exactly 2 sign changes n − 1 and j, both of which are essential,
when

∑n−1
i=0 αi = 0. Both missing parts of the polygon on the left are convex chains.

It follows that vj and vn−1 are not collinear, and we have that the remaining
vi’s belong to the closed convex cone bounded by −vj and −vn−1; refer to Fig. 4.
Thus, we may assume that (i) βn−1 = 0, (ii) the sign changes of A are j and n−1,
and (iii) 0 < β0 < . . . < βj and βj > βj+1 > . . . > βn−1 = 0. Now, realizing A
by a generic polygon with exactly 1 crossing between the line segments in the
direction of vj and vn−1 is a simple exercise.

Case 2:
∑n−1

i=0 αi �= 0. We show that, unlike in the first case, none of the sign
changes of A can be essential. Indeed, suppose j is an essential sign change, and
let A′ = (α′

0, . . . , α
′
n−2) = (α0, . . . , αj−1, αj +αj+1, . . . , αn−1) and β′

i =
∑i

j=0 α′
j

mod 2π. Consider the unit vectors v′
0, . . . ,v

′
n−2, where v′

i = (cos β′
i, sin β′

i). Since
j is an essential sign change, there exists a nonzero vector v such that

〈
v,vj

〉
> 0

and
〈
v,v′

i

〉 ≤ 0 for all i. Hence, by symmetry, we may assume that 0 ≤ β′
i ≤ π,

for all i. Since j is a sign change, we have −π < α′
i < π for all i, consequently

β′
j =

∑j
i=0 α′

i mod 2π =
∑j

i=0 α′
i, which in turn implies, by Lemma 1, that

0 = β′
n−2 =

∑n−2
i=0 α′

i =
∑n−1

i=0 αi (contradiction).
We have shown that A has no sign changes. By Lemma 2, we have cr(A) ≤

|k| − 1, which concludes the proof. 	

Theorem 1. For a consistent angle sequence A = (α0, . . . , αn−1) in the plane,
we have

cr(A) =

{
1 if

∑n−1
i=0 αi = 0,

|k| − 1 if
∑n−1

i=0 αi = 2kπ and k �= 0.
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Proof. The claimed lower bound cr(A) ≥ ∣
∣|k| − 1

∣
∣ on the crossing number of

A follows by Lemma 1, in the case when k �= 0, and the result of Viyajan [27,
Theorem 2] in the case when k = 0. It remains to prove the upper bound
cr(A) ≤ ∣

∣|k| − 1
∣
∣.

We proceed by induction on n. In the base case, we have n = 3. Then P is
a triangle,

∑2
i=0 αi = ±2π, and cr(A) = 0, as required. In the inductive step,

assume n ≥ 4, and that the claim holds for all shorter angle sequences. Let
A = (α0, . . . , αn−1) be an angle sequence with

∑n−1
i=0 αi = 2kπ.

If A has no sign changes or if all sign changes are essential, then Lemma 2
or Lemma 3 completes the proof. Otherwise, we have at least one nonessential
sign change s. Let A′ = (α′

0, . . . , α
′
n−2) = (α0, . . . , αs−1, αs + αs+1, . . . , αn−1).

Note that
∑n−2

i=0 α′
i = 2kπ. Since the sign change s is nonessential, 0 is a strictly

positive convex combination of the β′
i’s, where β′

i =
∑i

j=0 α′
j mod 2π. Indeed,

this follows from β′
i = βi, for i < s, and β′

i = βi+1, for i ≥ s.

λ′
j−1v

′
j−1

λ′
jv

′
j

λj−1vj−1

λj+1vj+1

αj

αj+1

αj + αj+1

Fig. 5. Re-introducing the j-th vertex to a polygon realizing A′ in order to obtain a
polygon realizing A.

Refer to Fig. 5. Hence, by applying the induction hypothesis we obtain a
realization of A′ as a generic polygon P ′ with

∣
∣|k|−1

∣
∣ crossing. A generic polygon

realizing A is then obtained by modifying P in a small neighborhood of one of
its vertices without introducing any additional crossing, similarly as in the paper
by Guibas et al. [12]. 	


3 Realizing Angle Sequences in 3-Space

In this section, we describe a polynomial-time algorithm to decide whether an
angle sequence A = (α0, . . . αn−1), where 0 < αi < π for all i, can be realized as
a polygon in R

3.
We remark that our problem can be expressed as solving a system of poly-

nomial equations, where 3n variables describe the coordinates of the n vertices
of P , and each of n equations is obtained by the cosine theorem applied for a
vertex and two incident edges of P . However, it is not clear to us how to solve
such a system efficiently.

By Fenchel’s theorem in differential geometry [9], the total curvature of any
smooth curve in R

d is at least 2π. Fenchel’s theorem has been adapted to closed
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polygons [24, Theorem 2.4], and it gives the following a necessary condition for
an angle sequence A to have a realization in R

d, for all d ≥ 2:

n−1∑

i=0

αi ≥ 2π. (1)

We show that a slightly stronger condition is both necessary and sufficient,
hence it characterizes realizable angle sequences in R

3.

Lemma 4. Let A = (α0, . . . , αn−1), n ≥ 3, be an angle sequence. There exists
a polygon P ⊂ R

3 realizing A if and only if there exists a spherical polygon
P ′ ⊂ S

2 realizing A such that 0 ∈ relint(conv(P ′)) (relative interior of conv(P ′)).
Furthermore, P can be constructed efficiently if P ′ is given.

Proof. Assume that an oriented polygon P = (v0, . . . , vn−1) realizes A in R
3.

Let ui = (vi+1 − vi)/‖vi+1 − vi‖ ∈ S
2 be the unit direction vector of the edge

vivi+1 of P according to its orientation. Then P ′ = (u0, . . . ,un−1) is a spherical
polygon that realizes A. Suppose, for the sake of contradiction, that 0 is not in
the relative interior of conv(P ′). Then there is a plane H that separates 0 and P ′,
that is, if n is the normal vector of H, then

〈
n,ui

〉
> 0 for all i ∈ {0, . . . , n−1}.

This implies
〈
n, (vi+1 −vi)

〉
> 0 for all i, hence

〈
n,

∑n−1
i=1 (vi+1 −vi)

〉
> 0, which

contradicts the fact that
∑n−1

i=1 (vi+1 − vi) = 0, and
〈
n,0

〉
= 0.

Conversely, assume that a spherical polygon P ′ realizes A, with edge lengths
α0, . . . , αn−1 > 0. If all the vertices of P ′ lie on a common great circle, then
0 ∈ relint(conv(P ′)) implies

∑n−1
i=0 ±αi = 0 mod 2π, where the sign is deter-

mined by the direction (cw. or ccw.) in which a particular segment of P ′ tra-
verses the common great circle according to its orientation. As observed by
Garg [10, Section 6], the signed angle sequence is consistent in this case due to
the assumption that 0 ∈ relint(conv(P ′)). Thus, we obtain a realization of A
that is contained in a plane.

Otherwise we may assume that 0 ∈ int(conv(P ′)). By Carathéodory’s the-
orem [17, Thereom 1.2.3], P ′ has 4 vertices whose convex combination is the
origin 0. Then we can express 0 as a strictly positive convex combination of all
vertices of P ′. The coefficients in the convex combination encode the lengths of
the edges of a polygon P realizing A, which concludes the proof in this case.

We now show how to compute strictly positive coefficients in strongly poly-
nomial time. Let c = 1

n

∑n−1
i=0 ui be the centroid of the vertices of P ′. If c = 0,

we are done. Otherwise, we can find a tetrahedron T = conv{ui0 , . . . ,ui3} such
that 0 ∈ T and such that the ray from 0 in the direction −c intersects int(T ),
by solving an LP feasibility problem in R

3. By computing the intersection of
the ray with the faces of T , we find the maximum μ > 0 such that −μc ∈ ∂T
(the boundary of T ). We have −μc =

∑3
j=0 λjuij and

∑3
j=0 λj = 1 for suitable

coefficients λj ≥ 0. Now 0 = μc − μc = μ
n

∑n−1
i=0 ui +

∑3
j=0 λjuij is a strictly

positive convex combination of the vertices of P ′. 	

It is easy to find an angle sequence A that satisfies (1) but does not correspond

to a spherical polygon P ′. Consider, for example, A = (π − ε, π − ε, π − ε, ε),
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for some small ε > 0. Points in S
2 at (spherical) distance π − ε are nearly

antipodal. Hence, the endpoints of a polygonal chain (π − ε, π − ε, π − ε) are
nearly antipodal as well, and cannot be connected by an edge of (spherical)
length ε. Thus a spherical polygon cannot realize A.

Algorithms. In the remainder of this section, we show how to find a realization
P ⊂ R

3 or report that none exists, in polynomial time. Our first concern is to
decide whether an angle sequence is realizable by a spherical polygon.

Proof. Let A = (α0, . . . , αn−1) ∈ (0, π)n be a given angle sequence. Let n =
(0, 0, 1) ∈ S

2, that is, n is the north pole. For i ∈ {0, 1, . . . , n − 1}, let Ui ⊆
S
2 be the locus of the end vertices ui of all (spherical) polygonal lines P ′

i =
(n,u0, . . . ,ui) with edge lengths α0, . . . , αi−1. It is clear that A is realizable by
a spherical polygon P ′ if and only if n ∈ Un−1.

Note that for all i ∈ {0, . . . , n − 1}, the set Ui is invariant under rotations
about the z-axis, since n is a fixed point and rotations are isometries. We show
how to compute the sets Ui, i ∈ {0, . . . , n − 1}, efficiently.

We define a spherical zone as a subset of S
2 between two horizontal

planes (possibly, a circle, a spherical cap, or a pole). Recall the parameteri-
zation of S

2 using spherical coordinates (cf. Fig. 6 (left)): for every v ∈ S
2,

v(ψ,ϕ) = (sin ψ sin ϕ, cos ψ sin ϕ, cos ϕ), with longitude ψ ∈ [0, 2π) and polar
angle ϕ ∈ [0, π], where the polar angle ϕ is the angle between v and n. Using
this parameterization, a spherical zone is a Cartesian product [0, 2π)×I for some
circular arc I ⊂ [0, π]. In the remainder of the proof, we associate each spherical
zone with such a circular arc I.

We define additions and subtraction on polar angles α, β ∈ [0, π] by

α ⊕ β = min{α + β, 2π − (α + β)}, α � β = max{α − β, β − α};

see Fig. 6 (right). (This may be interpreted as addition mod 2π, restricted to the
quotient space defined by the equivalence relation ϕ ∼ 2π − ϕ.)

Fig. 6. Parametrization of the unit vectors (left). Circular arc Ci+1(ϕ) (right).



Polygons with Prescribed Angles in 2D and 3D 145

We show that Ui is a spherical zone for all i ∈ {0, . . . , n − 1}, and show how
to compute the intervals Ii ⊂ [0, π] efficiently. First note that U0 is a circle at
(spherical) distance α0 from n, hence U0 is a spherical zone with I0 = [α0, α0].

Assume that Ui is a spherical zone associated with Ii ⊂ [0, π]. Let ui ∈ Ui,
where ui = v(ψ,ϕ) with ψ ∈ [0, 2π) and ϕ ∈ Ii. By the definition Ui, there
exists a polygonal line (n,u0, . . . ,ui) with edge lengths α0, . . . , αi. The locus of
points in S

2 at distance αi+1 from ui is a circle; the polar angles of the points
in the circle form an interval Ci+1(ϕ). Specifically (see Fig. 6 (right)), we have

Ci+1(ϕ) = [min{ϕ � αi+1, ϕ ⊕ αi+1},max{ϕ � αi+1, ϕ ⊕ αi+1}].

By rotational symmetry, Ui+1 = [0, 2π) × Ii+1, where Ii+1 =
⋃

ϕ∈Ii
Ci+1(ϕ).

Consequently, Ii+1 ⊂ [0, π] is connected, and hence, Ii+1 is an interval. Therefore
Ui+1 is a spherical zone. As ϕ⊕αi+1 and ϕ�αi+1 are piecewise linear functions
of ϕ, we can compute Ii+1 using O(1) arithmetic operations.

We can construct the intervals I0, . . . , In−1 ⊂ [0, π] as described above. If
0 /∈ In−1, then n /∈ Un−1 and A is not realizable. Otherwise, we can compute
the vertices of a spherical realization P ′ ⊂ S

2 by backtracking. Put un−1 = n =
(0, 0, 1). Given ui = v(ψ,ϕ), we choose ui−1 as follows. Let ui−1 be v(ψ,ϕ⊕αi)
or v(ψ,ϕ � αi) if either of them is in Ui−1 (break ties arbitrarily). Else the
spherical circle of radius αi centered at ui intersects the boundary of Ui−1, and
then we choose ui−1 to be an arbitrary such intersection point. The decision
algorithm (whether 0 ∈ In−1) and the backtracking both use O(n) arithmetic
operations. 	


Enclosing the Origin. Theorem 3 provides an efficient algorithm to test whether
an angle sequence can be realized by a spherical polygon, however, Lemma 4
requires a spherical polygon P ′ whose convex hull contains the origin in its
relative interior. We show that this is always possible if a realization exists and∑n−1

i=0 αi ≥ 2π. The general strategy in the inductive proof of this claim is to
incrementally modify P ′ by changing the turning angle at one of its vertices to 0
or π. This allows us to reduce the number of vertices of P ′ and apply induction.
(The proof of the following lemma is deferred to the appendix.)

Lemma 5. Given a spherical polygon P ′ that realizes an angle sequence A =
(α0, . . . , αn−1), n ≥ 3, with

∑n−1
i=0 α ≥ 2π, we can compute in polynomial time

a spherical polygon P ′′ realizing A such that 0 ∈ relint(conv(P ′′)).

The combination of Theorem 3 with Lemmas 4–5 yields Theorems 2 and 4.
The proof of Lemma 5 can be turned into an algorithm with running time
polynomial in n if we assume that every arithmetic operation can be carried out
in O(1) time. Nevertheless, we get only a weakly polynomial running time, since
we are unable to guarantee a polynomial size encoding of the numerical values
that are computed in the process of constructing a spherical polygon realizing
A that contains 0 in its convex hull in the proof of Lemma 5.
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4 Conclusion

We devised efficient algorithms to realize a consistent angle cycle with the min-
imum number of crossings in 2D. In 3D, we can test efficiently whether a given
angle sequence is realizable, and find a realization if one exists. However, it
remains an open problem to find an efficient algorithms that computes the min-
imum number of crossings in generic realizations. There exist angle sequences
that are realizable in 3D, but every generic realization has crossings. It is not
difficult to see that crossings are unavoidable only if every 3D realization of an
angle sequence A is contained in a plane, which is the case, for example, when
A = (π − ε, . . . , π − ε, (n − 1)ε), for odd n ≥ 5 which is the length of A. Thus,
an efficient algorithm for this problem would follow by Theorem 1, once one can
test efficiently whether A admits a fully 3D realization. The evidence that we
have points to the following conjecture, whose “only if” part we can prove.

Conjecture 1. An angle sequence A = (α0, . . . , αn−1), where αi ∈ (0, π) and
n ≥ 3, that can be realized by a polygon in R

3, has a realization by a self-
intersection free polygon in R

3 if and only if n is odd or
∑n−1

i=0 (π − αi) �= π.

It can be seen that Conjecture 1 is equivalent to the claim that every real-
ization A in R

3 has a self-intersection if and only if A can be realized in R
2 as

a thrackle, that is, a polygon where every pair of nonadjacent edges cross each
other. Here, we keep all the angles in A positive.

Can our results in R
2 or R

3 be extended to broader interesting classes of
graphs? A natural analog of our problem in R

3 would be a construction of
triangulated spheres with prescribed dihedral angles, discussed in a recent paper
by Amenta and Rojas [1]. For convex polyhedra, Mazzeo and Montcouquiol [18]
proved, settling Stoker’s conjecture, that dihedral angles determine face angles.
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Abstract. A mixed s-stack q-queue layout of a graph consists of a linear
order of its vertices and of a partition of its edges into s stacks and q
queues, such that no two edges in the same stack cross and no two edges
in the same queue nest. In 1992, Heath and Rosenberg conjectured that
every planar graph admits a mixed 1-stack 1-queue layout. Recently,
Pupyrev disproved this conjectured by demonstrating a planar partial
3-tree that does not admit a 1-stack 1-queue layout. In this note, we
strengthen Pupyrev’s result by showing that the conjecture does not
hold even for 2-trees, also known as series-parallel graphs.

Keywords: Mixed linear layouts · Queue layouts · Book embeddings ·
Series-parallel graphs

1 Introduction

Over the years, linear layouts of graphs have been a fruitful subject of intense
research, which has resulted in several remarkable results both of combinatorial
and of algorithmic nature; see, e.g., [7,14,19,21,27,29]. A linear layout of graph
is defined by a total order of its vertex-set and by a partition of its edge-set
into a number of subsets, called pages. By imposing different constraints on the
edges that may reside in the same page, one obtains different types of linear
layouts; see [1,8,21,25,29]. The most notable ones are arguably the stack and
the queue layouts (the former are commonly referred to as book embeddings in
the literature), as is evident from the numerous papers that have been published
over the years; see [15] for a short introduction.

In a stack (queue) layout of a graph, no two indepedent edges of the same
page, called stack (queue) in this context, are allowed to cross (nest, resp.)
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v1 v3 v2 v4 v5

(a) 2-stack layout

v1 v3 v2 v4 v5

(b) 2-queue layout

v1 v3 v2 v4 v5

(c) mixed 1-stack 1-queue

Fig. 1. Illustration of different linear layouts of the complete graph on five vertices
v1, . . . , v5 minus the edge (v1, v2).

with respect to the underlying linear order; see [7] and [21]. In other words,
the endpoints of the edges assigned to the same stack follow the last-in-first-out
model in the underlying linear order, while the endpoints of the edges assigned
to the same queue follow the first-in-first-out model; see Fig. 1. The minimum
number of stacks (queues) required by any of the stack (queue) layouts of a graph
is commonly referred to as its stack-number (queue-number, resp.). Accordingly,
the stack-number (queue-number) of a class of graphs is the maximum stack-
number (queue-number, resp.) over all its members.

Known Results. A large body of the literature is devoted to the study of
bounds on the stack- and the queue-number of different classes of graphs.

For stack layouts, the most remarkable result is due to Yannakakis, who
back in 1986 showed that every planar graph admits a 4-stack layout [28,29].
Recently, Bekos et al. [6] and Yannakakis [30] independently established that the
stack-number of the class of planar graphs is 4, by demonstrating planar graphs
that do not admit 3-stack layouts. Certain subclasses of planar graphs, however,
allow for layouts with fewer than four stacks, e.g., 4-connected planar graphs [24],
series-parallel graphs [26], planar 3-trees [19], and others [5,9,16–18,22,23].

For queue layouts, Dujmović et al. [14] recently showed that every planar
graph admits a 49-queue layout, improving over previously known logarithmic
bounds [4,11–13]. However, the exact queue-number of the class of planar graphs
is not yet known, as the currently best-known lower bound is 4 [2]. Again, several
subclasses of planar graphs allow for layouts with significantly fewer than 49
queues, e.g., outerplanar graphs [20], series-parallel graphs [26] and planar 3-
trees [2].

Motivation. Back in 1992, Heath and Rosenberg [21] proposed a natural gen-
eralization of stack and queue layouts, called mixed s-stack q-queue layout, that
supports s stack-pages and q queue-pages. In their seminal paper [21], they con-
jectured that every planar graph admits a mixed 1-stack 1-queue layout. How-
ever, Pupyrev [25] recently showed that the conjecture does not hold even for
partial planar 3-trees. This negative result naturally raises the question whether
the conjecture holds for other subclasses of planar graphs. To this end, Pupyrev
conjectured that bipartite planar graphs admit mixed 1-stack 1-queue layouts.

Our Contribution. We make a step forward in understanding which subclasses
of planar graphs admit mixed 1-stack 1-queue layouts by providing a negative
certificate for the class of 2-trees (also known as maximal series-parallel graphs).
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u1 u2 u3 v3 v2 v1

(a) 3-rainbow

u1 u2 u3 v1 v2 v3

(b) 3-twist

b u v ca d

(c) Smiley face

Fig. 2. Illustration of: (a) a 3-rainbow, (b) a 3-twist, and (c) a smiley face.

This improves upon the partial planar 3-tree negative example by Pupyrev [25].
Note that 2-trees admit both 2-stack layouts and 3-queue layouts [26].

Preliminaries. A linear order ≺ of a graph G is a total order of its vertices.
Let F = {(ui, vi); i = 1, . . . , k} be a set of k ≥ 2 independent edges such that
ui ≺ vi, for all 1 ≤ i ≤ k. If the order is [u1, . . . , uk, vk, . . . , v1], then we say that
the edges of F form a k-rainbow, while if the order is [u1, . . . , uk, v1, . . . , vk],
then the edges of F form a k-twist. Two edges that form a 2-twist (2-rainbow)
are referred to as crossing (nested, resp.). A stack (queue) is a set of pairwise
non-crossing (non-nested, resp.) edges. A mixed s-stack q-queue layout L of G
consists of a linear order ≺ of G and a partition of the edges of G into s stacks
and q queues; for short, we refer to L as mixed layout when s = q = 1. An edge
in a stack (queue) in L is called a stack-edge (queue-edge, resp.).

The operation of attaching a vertex u to an edge (v, w) of a graph G consists
of adding to G vertex u and edges (u, v) and (u,w). Vertex u is said to be
attached or being an attachment of (v, w). A 2-tree is a graph obtained from
an edge by repeatedly attaching a vertex to an edge. Consider a mixed s-stack
q-queue layout L of a 2-tree. We say that a vertex u attached to an edge (v, w)
is a stack-attachment (queue-attachment) of (v, w) if both (u, v) and (u,w) are
stack-edges (queue-edges, resp.) in L. Vertex u is a mixed-attachment of (v, w)
if one of (u, v) and (u,w) is a queue-edge and the other is a stack-edge in L.

2 The Main Result

In this section, we define a family {G(k, �); k, � ∈ N
+} of 2-trees, and we prove

that infinitely many members of it do not admit mixed layouts. For � ≥ 1, G(1, �)
is an edge; for k > 1, G(k, �) is obtained from G(k − 1, �) by attaching � vertices
to each edge of it. For convenience, we let G(k, �) be the graph G(k, �) \ G(k −
1, �), that is, the graph induced by the edges that belong to G(k, �) but not to
G(k − 1, �). In the following lemmas, we study properties of a mixed layout of
graph G(k, �).

Lemma 1. Let L be a mixed layout of G(k, �) with k > 1, � > 2. Then, every
edge of G(k − 1, �) has at most two stack-attachments in L.
Proof. Let (a, b) be an edge of G(k −1, �) and assume to the contrary that there
exist three stack-attachments u, v and w of G(k, �) attached to (a, b) in L.
Neglecting edge (a, b), vertices a, b, u, v and w induce a K2,3 in G(k, �), whose
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Fig. 3. Illustrations for the proofs (a–b) of Lemma 2, and (c–d) of Lemma 3.

edges are all stack-edges in L. This is a contradiction, since the subgraph induced
by the stack-edges of G(k, �) must be outerplanar [7], while K2,3 is not. ��
A smiley face 〈a, b, u, v, c, d〉 in a mixed layout consists of six vertices a ≺ b ≺
u ≺ v ≺ c ≺ d and four edges (a, b), (c, d), (a, d), and (u, v), such that (a, b),
(c, d), and (a, d) are queue-edges, and thus (u, v) is a stack-edge; see Fig. 2c.

Lemma 2. Let L be a mixed layout of G(k, �) with k > 1, � > 2. Then, a smiley
face cannot be formed by the vertices of G(k − 1, �) in L.
Proof. Assume to the contrary that a smiley face 〈a, b, u, v, c, d〉 is formed in L
by vertices of G(k−1, �). Consider any vertex x of G(k, �) attached to the stack-
edge (u, v). If a ≺ x ≺ d, then the queue-edge (a, d) forms a 2-rainbow both
with (u, x) and with (v, x); see Fig. 3a. If x ≺ a, then the queue-edge (a, b)
forms a 2-rainbow both with (u, x) and with (v, x); see Fig. 3b. If d ≺ x, then
the queue-edge (c, d) forms a 2-rainbow both with (u, x) and with (v, x). Hence,
neither (u, x) nor (v, x) is a queue-edge, so x is a stack-attachment. Since � > 2,
(u, v) has more than two stack-attachments in L, contradicting Lemma 1. ��

Lemma 3. Let L be a mixed layout of G(k, �) with k > 1, � > 2. Let a, b, c be
queue-attachments of an edge (u, v) of G(k −1, �) with u ≺ v. Then u ≺ a, b, c ≺
v.

Proof. Assume to the contrary that a ≺ u (the case v ≺ a is symmetric). We first
prove that a ≺ u implies v ≺ b, c. Indeed, if b ≺ a, then the queue-edges (b, v)
and (a, u) form a 2-rainbow; see Fig. 3c. If a ≺ b ≺ v, then the queue-edges (a, v)
and (b, u) form a 2-rainbow; see Fig. 3d. Thus, v ≺ b and analogously v ≺ c.
Symmetrically, v ≺ c implies b ≺ u. Hence, b ≺ u ≺ v ≺ b; a contradiction. ��
Lemma 4. Let L be a mixed layout of G(k, �) with k > 4, � > 6. Then, every
queue-edge of G(k − 3, �) has at most six queue-attachments in L.
Proof. Assume for a contradiction that there is a queue-edge (u, v) in G(k−3, �)
with seven queue-attachments x1, . . . , x7 in G(k − 2, �). By Lemma 3, all seven
vertices have to lie between u and v; w.l.o.g. assume that u ≺ x1 ≺ . . . ≺ x7 ≺ v.

For any edge (u, xi) or (v, xi) with 2 ≤ i ≤ 6 belonging to G(k − 1, �),
consider an attachment w of this edge. By Lemma 1, we can assume that w
is not a stack attachment. Further, if (w, xi) is a queue-edge, then it forms a
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x1 vxiu x7w w w

(a) (w, xi) queue-edge

x1 vxiuw

(b) Claim 1: w ≺ u

x1 vxiu w x7

(c) Claim 2: x1 ≺ w ≺ x7

x1 vxiu ww
x7xi+1

w′

(d) Claim 3: x7 ≺ w ≺ v

x1 vxiu w w′

xi−1

(e) Claim 4: u ≺ w ≺ x1

vx5uw′ wx4

(f) v ≺ w

Fig. 4. Illustrations for the proof of Lemma 4.

2-rainbow with either (u, v) , (u, x1) , or (v, x7) ; see Fig. 4a. Hence, we assume
that every selected attachment w of (u, xi) or (v, xi) with 2 ≤ i ≤ 6 in G(k−1, �)
is a mixed-attachment with stack-edge (w, xi). We prove Claims 1–4 for edges
(v, xi); for (u, xi) symmetric arguments work; see Fig. 4.

Claim 1. There is no mixed-attachment w of (v, xi) with 2 ≤ i ≤ 6 and w ≺ u
and there is no mixed-attachment w of (u, xi) with 2 ≤ i ≤ 6 and v ≺ w.

Proof. Otherwise, the queue-edges (v, w) and (u, x1) form a 2-rainbow. ��
Claim 2. There is no mixed-attachment w of (v, xi) or (u, xi) with 2 ≤ i ≤ 6
and x1 ≺ w ≺ x7.

Proof. Otherwise, there is a smiley face 〈u, x1, xi, w, x7, v〉 or 〈u, x1, w, xi, x7, v〉
in G(k − 1, �), based on whether xi ≺ w or w ≺ xi, contradicting Lemma 2. ��
Claim 3. There is no mixed-attachment w of (v, xi) with 2 ≤ i ≤ 6 and x7 ≺
w ≺ v and no mixed-attachment w of (u, xi) with 2 ≤ i ≤ 6 and u ≺ w ≺ x1.

Proof. Let to the contrary w′ be a mixed-attachment of (v, xi+1). We have xi ≺
w′ ≺ w, as otherwise the stack-edges (w′, xi+1) and (xi, w) would cross. Then a
smiley face 〈u, x1, xi+1, w

′, w, v〉 exists in G(k − 1, �), contradicting Lemma 2. ��
Claim 4. There is no mixed-attachment w of (v, xi) with 3 ≤ i ≤ 5 and u ≺
w ≺ x1 and no mixed-attachment w of (u, xi) with 3 ≤ i ≤ 5 and x7 ≺ w ≺ v.

Proof. Let to the contrary w′ be a mixed-attachment of (u, xi−1). We have u ≺
w ≺ w′ ≺ xi, as otherwise the stack-edges (w′, xi−1) and (xi, w) would cross.
However, by Claims 2 and 3, this leads to a contradiction. ��

Now consider a mixed-attachment w of (v, x4) and a mixed-attachment w′

of (u, x5). By Claims 1–4, we must have v ≺ w and w′ ≺ u; see Fig. 4f. However,
then the stack-edges (x4, w) and (x5, w

′) cross. This concludes the proof.
Lemmas 1 and 4 imply the following
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p3 p4 p6p2 p5p1 p7

(a) Pattern P.1

p3 p4 p6p2 p5p1 p7

(b) Pattern P.2

p3 p4 p6p2 p5p1 p7

(c) Pattern P.3

Fig. 5. Illustration of different patterns.

Fig. 6. Illustration for the proof of Pattern P.1 in Lemma 5.

Corollary 1. Let L be a mixed layout of G(k, �) with k > 4, � > 8. Then, every
queue-edge of G(k − 4, �) has at least � − 8 mixed-attachments in L.

Next we define three patterns P.1–P.3 and prove that they are forbidden in
a mixed layout. Each pattern is denoted by 〈p1, . . . , p7〉, as it is defined on a set
of seven vertices for which either p1 ≺ . . . ≺ p7 or p7 ≺ . . . ≺ p1 holds in L; see
Fig. 5. The involved edges in each pattern and their types are as follows.

P.1 Stack-edges (p1, p3), (p1, p6) and (p4, p5), and a queue-edge (p2, p7).
P.2 Stack-edges (p2, p3), (p2, p6) and (p4, p5), and a queue-edge (p1, p7).
P.3 Stack-edges (p1, p7), (p2, p4) and (p2, p5), and queue-edges (p1, p6) and
(p3, p7).

Lemma 5. Let L be a mixed layout of G(k, �) with k > 1, � > 4. Then, G(k−1, �)
does not contain Patterns P.1–P.3 in L.
Proof sketch. For a contradiction, let 〈p1, . . . , p7〉 be Pattern P.1 contained in
G(k − 1, �); see Fig. 6. We first argue that at least one of the � > 4 vertices
attached to (p4, p5) in G(k, �) has to be a mixed-attachment. By Lemma 1, at
most two of them can be stack-attachments. If more than two of these vertices are
queue-attachments, then by Lemma 3, they all appear between p4 and p5 in L,
and thus any queue-edge incident to them creates a 2-rainbow with the queue-
edge (p2, p7). Hence, there is at least one mixed-attachment x of (p4, p5). Let
e and e′ be the stack- and queue-edge incident to x, respectively. Then, p3 ≺
x ≺ p6, as otherwise e would cross one of the stack-edges (p1, p3) and (p1, p6).
However, then e′ forms a 2-rainbow with the queue-edge (p2, p7); a contradiction.
Similarly we argue for Pattern P.2. For Pattern P.3 see [3]. ��

We are now ready to prove the main result of this paper.

Theorem 1. G(k, �) does not admit a mixed layout if k ≥ 5, � ≥ 33.
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x1 x4v x3u x5wx2

(a)

x2 x4v x3u x5w x1

(b)

x2 x4v x3u x5 wx1

(c)

Fig. 7. Illustration for the first case of Theorem 1.

Proof sketch. Assume to the contrary that G(5, 33) admits a mixed layout L.
By Lemma 1, there is at least one queue-edge (u, v) in G(2, 33). W.l.o.g., let
u ≺ v in L. By Corollary 1, G(3, 33) contains at least 25 mixed-attachments, say
x1, . . . , x25, of (u, v). For every i = 1, . . . , 25, one of the following applies: xi ≺ u,
or u ≺ xi ≺ v, or v ≺ xi. For each of the cases, we further distinguish whether
the edge (u, xi) is a stack-edge or a queue-edge. This defines six configurations
for xi. Thus, at least five vertices, say w.l.o.g., x1, . . . , x5, are attached with
the same configuration to (u, v); we assume w.l.o.g. that x1 ≺ . . . ≺ x5. We
show a contradiction in the case when v ≺ xi and (u, xi) is a queue-edge for all
i = 1, . . . , 5; for the remaining cases refer to [3].

By Corollary 1, G(4, 33) contains at least one mixed-attachment w of (u, x2).
Thus, either (x2, w) or (u,w) is a stack-edge. In the former case, the stack-edges
(v, x1) and (v, x3) enforce x1 ≺ w ≺ x3; see Fig. 7a. Hence, 〈u, v, x1, x2, w, x3, x5〉
or 〈u, v, x1, w, x2, x3, x5〉 of G(4, 33) form Pattern P.2 in L. This contradicts
Lemma 5. In the latter case, the stack-edge (v, x5) enforces either w ≺ v or
x5 ≺ w. We consider three subcases. If w ≺ u, then the queue-edges (w, x2)
and (u, x1) form a 2-rainbow. If u ≺ w ≺ v, then the queue-edges (w, x2) and
(u, x5) form a 2-rainbow; see Fig. 7b. Otherwise, x5 ≺ w holds. It follows that
〈u, v, x2, x3, x4, x5, w〉 of G(4, 33) form Pattern P.3 in L; see Fig. 7c. ��

3 Open Problems

In this paper, we proved that 2-trees do not admit mixed 1-stack 1-queue layouts.
Since 2-trees admit 2-stack layouts and 3-queue layouts [26], it is natural to
ask whether they admit mixed 1-stack 2-queue layouts. We conclude with an
algorithmic question, namely, what is the complexity of recognizing graphs that
admit mixed 1-stack 1-queue layouts, even for 2-trees? Note that recently de Col
et al. [10] showed that testing whether a (not necessarily planar) graph admits
a mixed 2-stack 1-queue layout is NP-complete.
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11904, pp. 460–467. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
35802-0 35

11. Di Battista, G., Frati, F., Pach, J.: On the queue number of planar graphs. SIAM
J. Comput. 42(6), 2243–2285 (2013). https://doi.org/10.1137/130908051
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Abstract. Suppose that a biconnected graph is given, consisting of a
large component plus several other smaller components, each separated
from the main component by a separation pair. We investigate the exis-
tence and the computation time of schematic representations of the struc-
ture of such a graph where the main component is drawn as a disk, the
vertices that take part in separation pairs are points on the boundary of
the disk, and the small components are placed outside the disk and are
represented as non-intersecting lunes connecting their separation pairs.
We consider several drawing conventions for such schematic representa-
tions, according to different ways to account for the size of the small
components. We map the problem of testing for the existence of such
representations to the one of testing for the existence of suitably con-
strained 1-page book-embeddings and propose several polynomial-time
and pseudo-polynomial-time algorithms.

1 Introduction

Many of today’s applications are based on large-scale networks, having billions of
vertices and edges. This spurred an intense research activity devoted to finding
methods for the visualization of very large graphs. Several recent contributions
focus on algorithms that produce drawings where either the graph is only par-
tially represented or it is schematically visualized. Examples of the first type
are proxy drawings [7,13], where a graph that is too large to be fully visual-
ized is represented by the drawing of a much smaller proxy graph that preserves
the main features of the original graph. Examples of the second type are graph
thumbnails [16], where each connected component of a graph is represented by
a disk and biconnected components are represented by disks contained into the
disk of the connected component they belong to.

Among the characteristics that are emphasized by the above mentioned draw-
ings, a crucial role is played by connectivity. Following this line of thought, we
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(a) (b)

Fig. 1. Schematic representations of biconnected graphs. (a) A max-constrained book-
embedding. (b) A two-dimensional book-embedding; for simplicity, the vertices lie on
a straight line rather than on the boundary of a disk.

study schematic representations of graphs that emphasize their connectivity fea-
tures. We start from the following observation: quite often, real-life very large
graphs have one large connected component and several much smaller other
components (see, e.g., [5,12]). This happens to biconnected and triconnected
components too (see, e.g., [2] for an analysis of the graphs in [9]).

Hence, we concentrate on a single biconnected graph (that can be a bicon-
nected component of a larger graph) consisting of a large component plus several
other smaller components, each separated from the large component by a sepa-
ration pair. We propose to represent the large component as a disk, to draw the
vertices of such a component that take part in separation pairs as points on the
boundary of the disk, and to represent the small components as non-intersecting
lunes connecting their separation pairs placed outside the disk. See Fig. 1. This
representation is designed to emphasize the arrangement of the components with
respect to the separation pairs. For simplicity, we assume that each separation
pair separates just one small component from the large one.

More formally, our input is a weighted graph G = (V,E, ω), where each vertex
in V participates in at least one separation pair, each edge (u, v) of E represents
a small component separated from the large one by the separation pair {u, v},
and ω assigns a positive weight to each edge. The weight of an edge represents a
feature that should be emphasized in the schematic representation. As an exam-
ple, it might represent the number of vertices or edges of the corresponding small
component. We study one-dimensional and two-dimensional representations. In
both cases, the vertices of G are linearly ordered points that are placed along
the boundary of a disk. In the one-dimensional representations, we draw each
edge as an arc and impose that arcs do not cross. Also, consider two edges (u, v)
and (x, y) and suppose that the weight of (u, v) is larger than that of (x, y).
Then we impose that (u, v) is drawn outside (x, y), so to represent the weight
by means of the edge length. We call max-constrained book-embedding this type
of representation (see Fig. 1(a)). In Sect. 3 we present a polynomial-time algo-
rithm that tests whether a graph admits such a representation. We also study
a more constrained type of representation. Namely, let (u, v) be an edge and
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consider the sequence of edges (u1, v1), . . . , (uk, vk) that are drawn immediately
below (u, v); then, we may want that ω(u, v) >

∑k
i=1 ω(ui, vi). We call sum-

constrained book-embedding this type of representation. In Sect. 4 we present
a pseudo-polynomial-time algorithm that tests whether a graph admits such a
representation. Both max- and sum-constrained book-embeddings are 1-page
book-embeddings satisfying specific constraints. Hence, a necessary condition
for G to admit these types of representations is outerplanarity [1].

Since there exist weighted outerplanar graphs that admit neither a max-
constrained nor a sum-constrained book-embedding, in Sect. 5 we study how to
represent planarly a weighted outerplanar graph with edges that have, in addi-
tion to a length, also a thickness: each edge is represented with a lune with area
proportional to its weight. We call these representations two-dimensional book-
embeddings. See Fig. 1(b). First, we show that all weighted outerplanar graphs
admit a two-dimensional book-embedding and discuss the area requirements of
such representations. Second, we show that, if a finite resolution rule is imposed,
then there are graphs that do not admit any two-dimensional book-embedding
and we present a polynomial-time algorithm to test whether a graph admits
such a representation. Conclusions are presented in Sect. 6. Because of space
limitations, complete proofs are deferred to the full version of the paper [4].

2 Preliminaries

Block-Cut-Vertex Tree. A cut-vertex in a connected graph G is a vertex whose
removal disconnects G. A graph with no cut-vertex is biconnected. A block of G
is a maximal subgraph of G which is biconnected. The block-cut-vertex tree T
of G [6,8] has a B-node for each block of G and a C-node for each cut-vertex
of G; a B-node b and a C-node c are adjacent if c is a vertex of the block of G
represented by b. We denote by G(b) the block of G represented by a B-node b.
We often identify a C-node of T and the corresponding cut-vertex of G. Suppose
that T is rooted at some B-node; then, for any node x of T (either a B-node or
a C-node), we denote by G+(x) the subgraph of G consisting of all the blocks
G(b) such that b is a B-node in the subtree of T rooted at x.

Planar Drawings. A drawing of a graph maps each vertex to a point in the
plane and each edge to a Jordan arc between its end-vertices. A drawing is planar
if no two edges intersect, except at common end-vertices. A planar drawing
partitions the plane into connected regions, called faces. The unbounded face is
the outer face, while all the other faces are internal.

Outerplanar Graphs. An outerplanar drawing is a planar drawing such that all
the vertices are incident to the outer face. An outerplanar graph is a graph that
admits an outerplanar drawing. Two outerplanar drawings are equivalent if the
clockwise order of the edges incident to each vertex is the same in both drawings.
An outerplane embedding is an equivalence class of outerplanar drawings. A
biconnected outerplanar graph has a unique outerplane embedding [11,14]. Given
the outerplane embedding Γ of an n-vertex biconnected outerplanar graph G,
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the extended dual tree T of Γ is obtained from the dual graph D of Γ by splitting
the vertex of D corresponding to the outer face of Γ into n degree-1 vertices.
Note that T is an ordered tree and can be constructed in O(n) time. Further,
each edge of T is dual to an edge of G; moreover, the edges incident to leaves of
T are dual to edges incident to the outer face of Γ .

Book-Embeddings. Given a graph G and a linear order L of its vertices, we
write u ≺L v to represent that u precedes v in L. Two edges (u, v) and (w, z) of
G cross if u ≺L w ≺L v ≺L z; then L is a 1-page book-embedding of G if no two
edges cross. The flip of L is a linear order L′ such that, for any pair of vertices u
and v, we have u ≺L′ v if and only if v ≺L u. By u �L v we mean that u ≺L v or
u = v. For a pair of distinct edges e1 = (u1, v1) and e2 = (u2, v2) of G such that
u1 �L u2 ≺L v2 �L v1, we say that e2 is nested into e1 and e1 wraps around e2.
Further, a subgraph G′ of G lies under (resp. lies strictly under) an edge (u, v)
of G, where u ≺L v, if for every vertex w of G′, we have u �L w �L v (resp.
u ≺L w ≺L v). The lowest-right edge incident to a vertex v is the edge (u, v)
such that v ≺L u and there is no neighbor w of v such that v ≺L w ≺L u.

A weighted graph G = (V,E, ω) is a graph equipped with a function ω that
assigns a positive weight to each edge in E.

3 max-Constrained Book-Embeddings

In this section, we study a first type of one-dimensional representations. We
are given a weighted graph G = (V,E, ω). We draw the vertices in V as points
linearly ordered on the boundary of a disk and the edges in E as non-intersecting
arcs positioned outside the disk, placing edges with larger weight outside edges of
smaller weight. Formally, a max-constrained book-embedding of a weighted graph
G = (V,E, ω) is a 1-page book-embedding L such that, for any two distinct
edges e1 = (u, v) and e2 = (x, y) in E with u �L x ≺L y �L v, we have that
ω(e1) > ω(e2). That is, if e1 wraps around e2, then ω(e1) > ω(e2). We do not
specify the actual drawing of the edges since, if G has a max-constrained book-
embedding, then they can be easily represented with non-crossing Jordan arcs.
An example is in Fig. 1(a). In this section we prove the following theorem.

Theorem 1. Let G = (V,E, ω) be an n-vertex weighted outerplanar graph.
There exists an O(n log n)-time algorithm that tests if G admits a max-constrai-
ned book-embedding and, in the positive case, constructs such an embedding.

We call max-be-drawer the algorithm in the statement of Theorem 1. We
can assume that G is connected; otherwise, it admits a max-constrained book-
embedding if and only if every connected component of it admits one.

We start by computing in O(n) time the block-cut-vertex tree T of G [6,8].
We root T at any B-node b∗ such that G(b∗) contains an edge with maximum
weight. For each B-node b of T , we compute in overall O(n) time the value
W+(b) of the maximum weight of an edge of G+(b).
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We now visit T in arbitrary order. For each B-node b, we do what follows.
First, we check if G(b) admits a max-constrained book-embedding. In the

negative case, we conclude that G admits no max-constrained book-embedding,
while in the positive case we compute such an embedding and call it L(b). This
check is done in time linear in the number of vertices of G(b), as follows. First,
we check whether there exists a single edge (u, v) ∈ E of maximum weight. If
not, we conclude that G admits no max-constrained book-embedding, otherwise
we compute in linear time [3,10,15] the unique 1-page book-embedding L(b) of
G(b) such that u and v are the first and the last vertex of L(b), respectively;
note that, in any max-constrained book-embedding of G(b), the edge (u, v) does
not nest into any other edge of G(b), given that it has maximum weight, hence
it has to wrap around every other edge of G(b). We construct in linear time the
extended dual tree T of the outerplane embedding of G(b) and we root T at the
leaf whose incident edge is dual to (u, v). We visit T and, for every edge (α, β)
of T where α is the parent of β and β has children γ1, . . . , γk, we check whether
the dual edge eβ of (α, β) has weight larger than that of the edge eγi

that is dual
to the edge (β, γi), for i = 1, . . . , k. If one of these checks fails, we conclude that
G(b) admits no max-constrained book-embedding, since eβ wraps around eγi

in
L(b), otherwise L(b) is a max-constrained book-embedding of G(b).

Second, if b �= b∗, consider the C-node c that is the parent of b in T . We
check in constant time whether c is the first or the last vertex of L(b). If not,
we conclude that G admits no max-constrained book-embedding, given that T
is rooted at a node b∗ such that G(b∗) contains an edge with maximum weight,
hence G(b∗) does not lie under any edge incident to c. Otherwise, we possibly
flip in constant time L(b) so that c is the first vertex of L(b).

Third, for each C-node c of T that is adjacent to b, we store two values �b(c)
and rb(c). These are the weights of the edges (u, c) and (c, w) such that u and
w are the vertices immediately preceding and following c in L(b), respectively;
if a vertex preceding or following c in L(b) does not exist, then we set �b(c) or
rb(c) to ∞, respectively. This is done in constant time for each C-node.

We now perform a bottom-up visit of T . After visiting a B-node b, we either
conclude that G admits no max-constrained book-embedding or we determine
a max-constrained book-embedding L+(b) of G+(b) such that, if b �= b∗, the
parent of b in T is the first vertex of L+(b). In more detail, we act as follows.

If b is a leaf of T , then we set in constant time L+(b) = L(b).
If b is an internal node of T , then we proceed as follows. We initialize L+(b)

to L(b); recall that the parent of b in T , if b �= b∗, is the first vertex of L(b).
Let c1, . . . , ck be the C-nodes that are children of b in T . For i = 1, . . . , k,

let bi,1, . . . , bi,mi
be the B-nodes that are children of ci. Since we already visited

each node bi,j , we have a max-constrained book-embedding L+(bi,j) of G+(bi,j)
whose first vertex is ci. We now process each C-node ci independently.

We order (and possibly relabel) the B-nodes bi,1, . . . , bi,mi
that are children

of ci in decreasing order of value W+(bi,j); that is, W+(bi,1) ≥ W+(bi,2) ≥
· · · ≥ W+(bi,mi

). This can be done in O(mi log mi) time. We now process the
B-nodes bi,1, . . . , bi,mi

in this order. We use two variables, L(ci) and R(ci), and
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initialize them to �b(ci) and rb(ci), respectively. When processing a node bi,j ,
for j = 1, . . . , mi, we insert the vertices of G+(bi,j) into the ordering L+(b), by
replacing ci either with L+(bi,j) (that is, L+(bi,j) is inserted to the right of ci)
or with the flip of L+(bi,j) (that is, L+(bi,j) is inserted to the left of ci). This
operation can be performed in constant time. Further, the choice of whether we
insert L+(bi,j) to the left or to the right of ci is performed as follows.

(a) (b)

Fig. 2. Schematic representations of biconnected graphs. (a) A 1-page sum-constrained
book-embedding. (b) A minres-constrained two-dimensional book-embedding; for sim-
plicity, the vertices are aligned on a straight-line.

– If W+(bi,j) ≥ L(ci) and W+(bi,j) ≥ R(ci), then we conclude that G admits
no max-constrained book-embedding.

– If W+(bi,j) < R(ci), then we insert the vertices of G+(bi,j) into L+(b), by
replacing ci with L+(bi,j); we update R(ci) to the value of rbi,j (ci).

– If W+(bi,j) ≥ R(ci) and W+(bi,j) < L(ci), then we insert the vertices of
G+(bi,j) into L+(b), by replacing ci with the flip of L+(bi,j); we update L(ci)
to the value of rbi,j (ci).

After visiting the root b∗ of T , if max-be-drawer did not conclude that
G admits no max-constrained book-embedding, it computed a max-constrained
book-embedding L := L+(b∗) of G. The running time of max-be-drawer is
dominated by the O(mi log mi)-time sorting performed on the mi children of
each C-node ci, hence it is in O(n log n).

The upper bound in Theorem 1 is essentially tight, as computing a max-
constrained book-embedding has a time complexity that is lower-bounded by
that of a sorting algorithm. Indeed, given a set S of n distinct real numbers, one
can construct a star T with a center c whose n edges have the weights in S. Any
max-constrained book-embedding of T partitions the edges into two ordered
sequences, one to the left of c and one to the right of c; a total ordering of S can
be constructed by merging these sequences in O(n) time.



166 G. Di Battista et al.

4 sum-Constrained Book-Embeddings

Even if in a max-constrained book-embedding no edge can wrap around an
edge with larger weight, an edge e might still wrap around a sequence of edges
e1, . . . , ek with ω(e) <

∑k
i=1 ω(ei). This might cause the resulting visualization

to not effectively convey the information related to the edge weights. Hence, we
study a second type of one-dimensional representations that are more restrictive
than max-constrained book-embeddings and that allow us to better take into
account the relationships between the weights of the edges.

A sum-constrained book-embedding of a weighted outerplanar graph G =
(V,E, ω) is a 1-page book-embedding L with the following constraint. Let e =
(u, v) be any edge in E with u ≺L v. Let e1 = (u1, v1), . . . , ek = (uk, vk) be
any sequence of edges in E such that u �L u1 ≺ v1 �L · · · �L uk ≺ vk �L v.
Then, ω(e) >

∑k
i=1 ω(ei). Observe that the max-constrained book-embedding

in Fig. 1(a) is not a sum-constrained book-embedding since it contains vertices
3, 4, 5, and 7 (in this order) and the sum of the weights of (3, 4) and (5, 7) is
14, while the weight of (3, 7) is 12. A sum-constrained book-embedding is in
Fig. 2(a). The goal of this section is to prove the following theorem.

Theorem 2. Let G = (V,E, ω) be an n-vertex weighted outerplanar graph and
let Φ be the maximum weight of any edge in E. There exists an O(Φ2n3 log(Φn))-
time algorithm that tests whether G admits a sum-constrained book-embedding
and, in the positive case, constructs such an embedding.

We call sum-be-drawer the algorithm in the statement of Theorem 2. As
for max-constrained book-embeddings, we can assume that G is connected.

First, we compute in O(n) time the block-cut-vertex tree T of G [6,8]. We
root T at any B-node b∗ containing an edge with maximum weight. Further, we
equip each B-node b with the maximum weight W (b) of any edge of G(b).

Second, we visit (in arbitrary order) T . For each B-node b, the algorithm
sum-be-drawer performs the following checks and computations.

1. We check whether G(b) admits a sum-constrained book-embedding. This can
be done in time linear in the number of vertices of G(b), and hence in O(n)
time for all the blocks of G, similarly as in Algorithm max-be-drawer. If
the check fails, then we conclude that G admits no sum-constrained book-
embedding. Otherwise, we compute such an embedding and call it L(b).

2. If b �= b∗, we consider the C-node c of T that is the parent of b. We check
in constant time whether c is the first or the last vertex of L(b). If not, then
we conclude that G admits no sum-constrained book-embedding. If yes, we
possibly flip in constant time L(b) so that c is the first vertex of L(b).

We introduce some definitions (refer to Fig. 3). Let L be a 1-page book-
embedding of G. A vertex c is visible in L if there exists no edge e of G such
that c lies strictly under e in L; for example, the vertices 1, 4, and 9 in Fig. 3(a)
are visible. The total extension τL of L is the sum of the weights of all the edges
e such that there is no edge e′ that wraps around e in L. Let c be a visible vertex
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(d) τL = 23, αL = 1, λc
L = 9, ρc

L = 14

Fig. 3. (a) and (b) are left-right equivalent w.r.t. 4; (c) left-right dominates (d) w.r.t.
4; (b) and (c) are up-down equivalent; (b) up-down dominates (a).

of L. The extension λc
L of L to the left of c is the sum of the weights of all the

edges e such that: (i) there is no edge e′ that wraps around e in L; and (ii) for
each end-vertex v of e, we have v �L c. The extension ρc

L of L to the right of c is
defined analogously. Let u be the first vertex of L. The free space αL of L is the
weight of the lowest-right edge (u, v) of u in L minus the total extension of the
subgraph of G induced by v and by the vertices that are strictly under (u, v).

Now, let L and L′ be two 1-page book-embeddings of G and let c be a vertex
of G that is visible both in L and in L′. We say that L and L′ are left-right
equivalent with respect to c if λc

L = λc
L′ and ρc

L = ρc
L′ . We also say that L left-

right dominates L′ with respect to c if λc
L ≤ λc

L′ , ρc
L ≤ ρc

L′ , and at least one of the
two inequalities is strict. Finally, let L and L′ be two 1-page book-embeddings
of G whose first vertex is the same. We say that L is up-down equivalent to L′ if
τL = τL′ and αL = αL′ . We also say that L up-down dominates L′ if τL ≤ τL′ ,
αL ≥ αL′ , and at least one of the two inequalities is strict.

The algorithm sum-be-drawer now performs a bottom-up visit of T .
After visiting a C-node c, sum-be-drawer either concludes that G

admits no sum-constrained book-embedding or determines a sequence of sum-
constrained book-embeddings L+

1 (c), . . . ,L+
k (c) of G+(c) such that:

(C1) for any i = 1, . . . , k, we have that c is visible in L+
i (c);

(C2) λc
L+

1 (c)
< · · · < λc

L+
k (c)

and ρc
L+

1 (c)
> · · · > ρc

L+
k (c)

; and

(C3) G+(c) admits no sum-constrained book-embedding that respects (C1) and
that left-right dominates L+

i (c) with respect to c, for some i ∈ {1, . . . , k}.

After visiting a B-node b �= b∗, sum-be-drawer either concludes that G
admits no sum-constrained book-embedding or determines a sequence of sum-
constrained book-embeddings L+

1 (b), . . . ,L+
k (b) of G+(b) such that:

(B1) the parent c of b in T is the first vertex of L+
i (b), for i = 1, . . . , k;

(B2) αL+
1 (b) < · · · < αL+

k (b) and τL+
1 (b) < · · · < τL+

k (b); and
(B3) G+(b) admits no sum-constrained book-embedding that respects (B1) and

that up-down dominates L+
i (b), for some i ∈ {1, . . . , k}.
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We now describe the bottom-up visit of T performed by sum-be-drawer.

Processing a Leaf. If b is a leaf of T , then the only sum-constrained book-
embedding of G+(b) constructed by sum-be-drawer is L+

1 (b) = L(b).

Processing a C-node. We process a C-node c as follows. Let b1, . . . , bh be
the B-nodes that are children of c. For each bi with i = 1, . . . , h, we have a
sequence L+

1 (bi), . . . ,L+
ki

(bi) satisfying Properties (B1)–(B3). We relabel the B-
nodes b1, . . . , bh in such a way that W (bi) ≤ W (bi+1), for i = 1, . . . , h − 1; this
takes O(n log n) time. We now process the B-nodes b1, . . . , bh in this order. While
processing these nodes, we construct h sequences S1, . . . ,Sh, where Si contains
O(Φn) sum-constrained book-embeddings of G+(b1) ∪ · · · ∪ G+(bi). Roughly
speaking, Si is a sequence of “optimal” sum-constrained book-embeddings of
G+(b1) ∪ · · · ∪ G+(bi) with respect to left-right dominance.

When processing b1, we let S1 consist of L+
ki

(b1) and its flip.
Suppose that, for some i ∈ {2, . . . , h}, the B-node bi−1 has been processed.

We process bi as follows. We initialize Si = ∅. We individually consider each of
the O(Φn) embeddings in Si−1; let L be one of these embedding. We consider
each embedding L+

j (bi), with j = 1, . . . , ki and try to place the vertices of L+
j (bi)

different from c to the right and/or to the left of L. More precisely (1) if αL+
j (bi)

>

ρc
L (that is, if the part of L to the right of c “fits” immediately to the right

of c in L+
j (bi)), then we construct a sum-constrained book-embedding L′ of

G+(b1)∪· · ·∪G+(bi) by placing the vertices of L+
j (bi)\{c} to the right of L, in the

same order as they appear in L+
j (bi), and we insert L′ into Si; (2) if αL+

j (bi)
> λc

L,

we construct a sum-constrained book-embedding L′ of G+(b1) ∪ · · · ∪ G+(bi) by
placing the vertices of L+

j (bi) \ {c} to the left of L, in the opposite order as they
appear in L+

j (bi), and we insert L′ into Si.
Since ki ∈ O(Φn), after we considered each of the O(Φn) embeddings in Si−1,

we have that Si contains O(Φ2n2) embeddings. If Si is actually empty, then
we conclude that G admits no sum-constrained book-embedding. Otherwise, we
order and polish Si by removing left-right dominated embeddings and by leaving
only one copy of left-right equivalent embeddings (this brings the number of
embeddings in Si down to O(Φn)). The complexity of this step is dominated by
the ordering of the elements in Si, which takes O(Φ2n2 log(Φn)) time.

After processing bh, we have that S := Sh contains the required sequence of
sum-constrained book-embeddings of G+(c) satisfying Properties (C1)–(C3).

Processing an Internal B-node Different from the Root. Let c1, . . . , ck

be the C-nodes that are children of a B-node b, labeled in the order as they
appear in the sum-constrained book-embedding L(b) of G(b). For each ci with
i = 1, . . . , h, we have a sequence L+

1 (ci), . . . ,L+
ki

(ci) of sum-constrained book-
embeddings of G+(ci) satisfying Properties (C1)–(C3). We consider each of the
O(Φn) embeddings L+

1 (c1), . . . ,L+
k1

(c1) of G+(c1) and plug it into L(b), if pos-
sible. For each of these choices, we process the C-nodes c2, . . . , ch in this order.
When processing ci, we choose a sum-constrained book-embedding L+

j (ci) for
G+(ci) so that the extension of L+

j (ci) to the right of ci is minimum, subject to
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the constraint that L+
j (ci) “fits” on the left. This results in the construction of at

most one embedding of G+(b) for each embedding of G+(c1). The set of embed-
ding of G+(b) is then simplified by removing up-down dominated embeddings
and by leaving a single copy of up-down equivalent embeddings.

Processing the Root. The way we deal with the root b∗ of T is similar, and
actually simpler, than the way we deal with a B-node b �= b∗. We choose for
G+(c1) the embedding that fits into the embedding L(b) of G(b) and whose
extension to the right is minimum. Then, for every C-node ci with i = 2, . . . , k,
we select a single embedding as in the case of a B-node different from the root.
We produce at most one book-embedding for G+(b∗) = G.

Running Time. Algorithm sum-be-drawer processes a B-node in O(Φ2n2)
time and a C-node in O(hΦ2n2 log(Φn)) time, where h is the number of children
of the C-node. Since the BC-tree T has O(n) nodes and edges, the running time
of the algorithm sum-be-drawer is in O(Φ2n3 log(Φn)).

5 Two-Dimensional Book-Embeddings

In order to deal with weighted outerplanar graphs that admit no max-
constrained and no sum-constrained 1-page book-embedding (a cycle with three
edges that all have the same weight is an example of such a graph), a possibility
is to give to each edge not only a length but also a thickness, so that the area
of the lune representing an edge is proportional to its weight.

Given a weighted outerplanar graph G = (V,E, ω), a two-dimensional book-
embedding Γ of G consists of a 1-page book-embedding L (which is said to
support Γ ) and of a representation of G with the following features:

1. Each vertex v ∈ V is assigned an x-coordinate x(v) such that u ≺L v if and
only if x(u) < x(v);

2. Each edge e = (u, v) ∈ E such that u ≺L v is represented by an axis-parallel
rectangle R(e) := [xmin(e), xmax(e)] × [ymin(e), ymax(e)] whose area is equal
to ω(e), where xmin(e) = x(u) and xmax(e) = x(v). Further, let e1, . . . , ek be
the edges in E that are nested into e and let Ymax = maxi=1,...,k{ymax(ei)}.
Then we have ymin(e) = Ymax.

The area of Γ is the area of the smallest axis-parallel rectangle enclosing it.
In Sect. 1, we proposed to represent vertices as points on the boundary of a

disk and edges as lunes with area proportional to the edge weights. In the above
definition instead, to simplify the geometric constructions, vertices are placed
along a straight-line and edges are represented as rectangles. However, it is easy
to connect the rectangle representing an edge (u, v) with the points representing
u and v, without intersecting the internal points of any other rectangle, implying
the topological equivalence of the two representations. See Fig. 1(b).

The following theorems state that all weighted outerplanar graphs admit
a two-dimensional book-embedding. The algorithms in their proofs exploit a
suitable visit of the extended dual tree of G.
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Theorem 3. Let G = (V,E, ω) be an n-vertex weighted biconnected outerplanar
graph and let L > 0 be a prescribed width. There exists an O(n)-time algorithm
that constructs a two-dimensional book-embedding in area L × H =

∑
e∈E ω(e).

Theorem 4. For any constant ε > 0, every n-vertex weighted outerplanar graph
G = (V,E, ω) admits a two-dimensional book-embedding with area less than or
equal to

∑
e∈E ω(e) + ε. Such an embedding can be computed in O(n) time.

Theorems 3 and 4 do not give any guarantee in terms of minimum height and
width of the rectangles in the constructed two-dimensional book-embeddings. We
now study two-dimensional book-embedding with finite resolution.

A minres-constrained two-dimensional book-embedding of a weighted outer-
planar graph G = (V,E, ω) is a two-dimensional book-embedding such that: (1)
For each edge e in E, we have that xmax(e) − xmin(e) ≥ 1 and ymax(e) − ymin(e)
≥ 1. (2) For each pair u, v of vertices, we have that |x(v) − x(u)| ≥ 1.

Let L be a 1-page book-embedding of a graph G and let e be an edge of G.
We call the number of vertices that lie strictly under e the burden of e in L, and
denote it by β(e). We have the following characterization.

Theorem 5. A n-vertex weighted outerplanar graph G = (V,E, ω) admits a
minres-constrained two-dimensional book-embedding if and only if it admits a
1-page book-embedding L such that ω(e) ≥ β(e) + 1, for each edge e ∈ E.

Figure 2(b) shows a minres-constrained two-dimensional book-embedding
produced by the algorithm used to prove Theorem 5. We can prove the following
theorem by means of a variation of Algorithm sum-be-drawer from Sect. 4.

Theorem 6. Let G = (V,E, ω) be an n-vertex weighted outerplanar graph.
There exists an O(n5 log n)-time algorithm that tests whether G admits a
minres-constrained two-dimensional book-embedding and, in the positive case,
constructs such an embedding.

6 Conclusions and Open Problems

With the aim of constructing schematic representations of biconnected graphs
consisting of a large component plus several smaller components, we studied
several types of constrained 1-page book-embeddings and presented polynomial-
time or pseudo-polynomial-time algorithms for testing if a graph admits such
book-embeddings. All the algorithms presented in this paper have been imple-
mented; Figs. 1 and 2 have been generated by means of such implementations.

Our paper opens several problems.
First, our algorithms allow us to represent only an outerplanar arrangement

of small components around a large component. How to generalize the app-
roach to the non-outerplanar case? One could study the problem of minimizing
the crossings between components and/or minimizing the violations to the con-
straints on the weights of the nesting components.
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Second, we propose to linearly arrange the vertices of the separation pairs
of the large component on the boundary of a disk. What happens if such an
arrangement is instead circular? It is probably feasible to generalize our tech-
niques in this direction, but extra effort is required.

Third, we concentrate on a “flat” decomposition of a graph with one large
component plus many small components. What happens if the small compo-
nents have their own separation pairs? In other words, how to represent the
decomposition of a biconnected graph in its triconnected components?

Finally, our algorithms for constructing two-dimensional book-embeddings
with finite resolution may output drawings whose area is not minimum. Can we
minimize the area of such drawings in polynomial time?

Acknowledgments. Thanks to an anonymous reviewer for observing that computing
a max-constrained book-embedding has a time complexity that is lower-bounded by
the one of sorting.
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Abstract. In phylogenetics, tree-based networks are used to model and
visualize the evolutionary history of species where reticulate events such
as horizontal gene transfer have occurred. Formally, a tree-based network
N consists of a phylogenetic tree T (a rooted, binary, leaf-labeled tree)
and so-called reticulation edges that span between edges of T . The net-
work N is typically visualized by drawing T downward and planar and
reticulation edges with one of several different styles. One aesthetic crite-
ria is to minimize the number of crossings between tree edges and retic-
ulation edges. This optimization problem has not yet been researched.
We show that, if reticulation edges are drawn x-monotone, the problem
is NP-complete, but fixed-parameter tractable in the number of reticula-
tion edges. If, on the other hand, reticulation edges are drawn like “ears”,
the crossing minimization problem can be solved in quadratic time.

Keywords: Phylogenetic network · Tree-based · Crossing
minimization

1 Introduction

The evolution of a set of species is usually depicted by a phylogenetic tree [12].
More precisely, a phylogenetic tree T is a rooted, binary tree where the leaves
are labeled bijectively by the set of species. The internal vertices of T , each
having two children, represent bifurcation events in the evolution of the taxa.
The heights assigned to vertices indicate the flow of time from the root, lying
furthest in the past, to the present-day species.

Evolutionary histories can however not always be fully represented by a
tree [3]. Indeed, reticulate events such as hybridization, horizontal gene transfer,
recombination, and reassortment require the use of vertices with higher inde-
gree [8,13]. A phylogenetic network N generalizes a phylogenetic tree in exactly
this sense, that is, besides the root, leaves and vertices with indegree one and
outdegree two, N may contain vertices with indegree two and outdegree one.
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Tree-Based Networks. Motivated by the question of whether the evolutionary
history of the taxa is fundamentally tree-like, Francis and Steel [4] introduced
a class of phylogenetic networks called tree-based networks, which are “merely
phylogenetic trees with additional edges”. Formally, a tree-based network N is
a phylogenetic network that has a subdivision T ′ of a phylogenetic tree T as
spanning tree. Then T is called the base tree of N and T ′ the support tree of
N . Lately, tree-based networks have received a lot of attention in combinatorial
phylogenetics [1,4,9,11] and while drawings of several other types of phyloge-
netics networks have been investigated in the past [2,7,8,14], this has, to the
best of our knowledge, not been done for tree-based networks. In this paper, we
look at drawings of tree-based networks with different drawing styles inspired
by drawings in the literature.

For a tree-based network N , we assume that both the base tree T and the
support tree T ′ as spanning tree of N are fixed. We call an edge not contained
in the embedding of T ′ into N a reticulation edge. Therefore, we can perceive a
drawing of N as a drawing of T (or T ′) and the reticulation edges. A vertex of
N that is also in T is called a tree vertex.

Drawing Styles. Our drawing conventions are that N is drawn downwards with
vertices at their fixed associated height and T is drawn planar in the style of a
dendrogram, that is, each tree edge (u, v) consists of a horizontal line segment
starting at u and a vertical line segment ending at v. For reticulation edges,
we have different drawing styles; see Fig. 1. In the horizontal style – the only
style where the two endpoints of a reticulation edge must have the same height
– reticulation edges are drawn as horizontal line segments. This style has for
example been used by Kumar et al. [10, Figure 4]. We assume that all horizontal
edges come with slightly different heights. The next two styles are inspired by
Figures 3 and 6 by Vaughan et al. [15]. There, a reticulation edge (u, v) is drawn
with two horizontal and one vertical line segment and thus with two bends. The
styles differ in where the vertical line segment is placed. We define vertex �(u, v)
as follows. If the lowest common ancestor (lca) w in T ′ of u and v is a tree vertex,
set �(u, v) = w. Otherwise, set �(u, v) to be the first tree vertex below w. In the
ear style, the vertical line segment is placed to the right of the subtree rooted at
�(u, v). In the snake style, the vertical line segment lies between u and v and, in
particular, its x-coordinate lies between the x-coordinates of the left and right
subtree of �(u, v).

The aesthetic criteria to optimize for when constructing a drawing of N , with
either of the styles, is the number of crossings. Our focus is on crossings between
reticulation edges and tree edges. Crossings between pairs of reticulation edges
may be minimized in a post-processing step.

We make the following important observation. The number of crossings in a
drawing of N is fully determined by the order of the leaves or, equivalently, by
the rotation of each tree vertex. Formally, we use a map c : V (T ) → V (T ) that
assigns to each non-leaf vertex v of T one of its children. In a drawing of N ,
we then consider v to be rotated left, if c(v) is its left child, and rotated right,
if c(v) is its right child. Two vertices are rotated the same way if they are both
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Fig. 1. Drawings of tree-based networks with the (a) horizontal, (b) snake, and (c) ear
style for the red reticulation edges.

rotated left or if they are both rotated right. Let c̄(v) denote the child of v that
is not c(v).

Contribution and Outline. First, we show that the number of crossings can be
minimized in quadratic time for ear-style drawings. Second, we prove that the
problem is NP-hard for the horizontal style. On the positive side, we devise fixed-
parameter tractable (fpt) algorithms for the horizontal and the snake style.

2 Ear-Style Drawings: Polynomial-Time Algorithm

Consider an ear-style drawing of a tree-based network N . Let e = (u, v) be a
reticulation edge of N and f = (x, y) a tree edge of N . First, note that the
vertical line segment of e is placed such that it does not cross any tree edge.
Next, note that if the subtree T (�(u, v)) rooted at �(u, v) does not contain f ,
then e and f cannot cross. Let l be the horizontal line segment of e starting
at v. Assume T (�(u, v)) contains f and the y-coordinate range of f contains the
y-coordinate of v. Observe that l and f cross if and only if f is in the right
subtree of �(v, y); see Fig. 2(a). (An analogous condition holds for the horizontal
line segment starting at u.) Rotating �(u, v) thus changes whether f and l cross.
Furthermore, in general, the existence of each possible crossing depends on the
rotation of a single tree vertex. We can thus minimize the number of crossings
in an ear-style drawing of N by deciding for each tree vertex which orientation
results in less crossings. We show that this can be done efficiently.

Theorem 1. Let N be a tree-based network with n leaves and k reticulation
edges. Then an ear-style drawing of N with minimum number of crossings can
be computed in O(nk) time.

Proof. The idea of the algorithm is to sweep upwards through N and, whenever
an endpoint v of a reticulation edge is met, to tell v’s ancestor tree vertices how
many crossings it costs to have v in the left subtree. Each tree vertex is thus
equipped with two counters that inform about which rotation is less favorable;
see Fig. 2(a).
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Fig. 2. (a) Start of sweep line algorithm with counters at 0; (b) adding potential
crossings to counters; (c) rotating v based on counters.

Let e = (u, v) be a reticulation edge. Above we observed that a horizontal
segment of e can only have crossings with tree edges below �(u, v). Therefore, we
first compute and store the lca for each pair of endpoints of each reticulation edge
in O(n + k) time with an algorithm by Gabow and Tarjan [5, Section 4.6]. We
then start the sweep from the leaves towards the root of N . At every endpoint v
of a reticulation edge (u, v) (or (v, u)), determine in O(n) time for every vertex u
of T the width of its left and right subtree at the height of v; for example with a
post-order traversal of T . Then from v up to �(u, v), add for each tree vertex w
the width of the subtree not containing v to the respective counter; see Fig. 2(b).
This way, we count potential crossings of the horizontal segment at v with the
vertical segments of all edges at the height of v in this subtree at once. When the
sweep reaches a tree vertex w, as in Fig. 2(c), pick the best rotation for w based
on its counters. In total we have 2k steps for endpoints of reticulation edges
taking O(n) time and O(n) steps for tree vertices taking O(1) time. Hence, the
algorithm runs in O(nk) time. ��

To minimize crossings between pairs of reticulation edges in a post-processing
step, we only have to consider pairs of reticulation edges that have the vertical
segment to the right of the same subtree and that are nested, that is, two reticu-
lation edges (u, v) and (x, y) with u above x and y above v. The vertical segment
of (u, v) should then be to the right of the vertical segment of (x, y).

3 Horizontal-Style Drawings: NP-Completeness

In this section, we show that the crossing minimization decision problem for
horizontal-style drawings is NP-complete. We prove the NP-hardness with a
reduction from MAX-CUT, which is known to be NP-complete [6]. Recall that
in an instance of MAX-CUT we are given a graph G = (V,E) and a parame-
ter p ∈ N, and have to decide whether there exists a bipartition (A,B) of V with
at least p edges with one end in A and one end in B.

Theorem 2. The crossing minimization problem for horizontal-style drawings
of a tree-based network is NP-complete.
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Proof. Firstly, since we can non-deterministically generate all the drawings of N
and count the number of crossings of a drawing in polynomial time, the problem
is in NP. Concerning the hardness, we polynomial-time reduce a MAX-CUT
instance with a graph G = (V,E) to crossing minimization on a tree-based
network N . In the following construction of N , assume that leaves are always
(re)assigned the height 0.

The main idea is to have one edge gadget Ne for each e ∈ E that induces a
crossing if and only if e is not in our cut; see Fig. 3. Let h : V → N be an arbitrary
vertex ordering. Let e = {u, v} ∈ E and suppose h(u) < h(v). The construction
of Ne then works as follows. We have a tree vertex ue with two leaves as children
and a tree vertex ve with ue and a leaf as children. We set c(ve) = ue and the
heights of ue and ve to h(u) and h(v) respectively. We add a reticulation edge
fe between uec(ue) and vec̄(ve). Note that fe and uec̄(ue) cross if and only if ue

and ve are rotated the same way. To connect all edge gadgets, we replace the
leaves of an arbitrary rooted, binary tree with |E| leaves and a downward planar
embedding with the edge gadgets; see Fig. 4.

Fig. 3. An edge gadget Ne; a vertex gadget Nv based on the tree Tv.

We want to ensure that the tree vertices v1, . . . , vdeg(v) corresponding to the
same node v ∈ V are all rotated the same way. If this is enforced, we can
consider all nodes in V where the corresponding tree vertices are rotated left
as one partition set and all nodes in V where the corresponding tree vertices
are rotated right as the other partition set. If on the other hand a cut is given,
we simply choose for each vertex the rotation of the corresponding tree vertices
accordingly. Now, to ensure the same rotation for all corresponding tree vertices,
we construct a vertex gadget Nv for each node v ∈ V (in some order); see Fig. 3.
We start with a rooted, binary tree Tv on three leaves l1, l2, l3 such that l1 and
l2 have a common parent. Let v� denote the child of the root of Tv and let
c(c(v�)) = l1. Add a bundle of k1 = 2(|V |+1) · |E| reticulation edges between l2
and l3. We will see that k1 is large enough such that this bundle does not induce
crossings in a crossing minimum drawing. It thus enforces that l2 lies between
l1 and l3. We substitute l2 by our current construction; see Fig. 3.

Lastly, for 1 ≤ i ≤ deg(v), we add a reticulation edge between vic(vi) and the
incoming edge of l1, and a reticulation edge between vic̄(vi) and l3. Note that
if v� and vi are rotated the same way, we get two crossings less than otherwise.
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However, different rotations can save at most one crossing in the edge gadget
containing vi. Hence, in a crossing minimum drawing, v� and vi are rotated the
same way. In fact, v1, . . . , vdeg(v), v

� are rotated the same way. This completes
the construction of N . Note that N has a size polynomial in the size of G.

Note that the order of the edge gadgets does not influence the number of
crossings with the two reticulation edges added for vi; this number is fixed for
crossing minimum drawings. Therefore, we can compute the total number k2
of crossings induced by vertex gadgets. Furthermore, since k2 ≤ 2|V | |E| and
thus k1 ≥ k2 + |E| + 1, we get that crossing one edge bundle would induce more
crossings than we obtain from the vertex gadgets and from the edge gadgets.
Hence, no bundle induces crossings in a crossing minimum drawing.

Fig. 4. A crossing-minimum drawing of N inducing a max-cut on G.

We conclude that minimizing crossings boils down to minimizing crossings
in edge gadgets. Finally, by the construction of N and our observations, we get
that N admits a horizontal-style drawing with k ≤ k2 + |E| − p crossings if and
only if G admits a cut of size at least p. The statement follows. ��

A snake-style drawing where endpoints of reticulation edges have the same
height is a horizontal-style drawing; the reduction thus also works for this style.

Corollary 1. The crossing minimization problem for snake-style drawings of a
tree-based network is NP-complete.

4 Snake-Style Drawings: FPT Algorithm

For the ear style, we have seen that whether a reticulation edge and a tree edge
cross, depends on the rotation of at most one tree vertex, since horizontal line
segments always go to the right. This is not the case for horizontal-style and
snake-style drawings. However, fixing the rotation of �(u, v) for each reticulation
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edge (u, v), also fixes for the horizontal line segments of (u, v) whether they go
to the left or right. Further, while the vertical line segment may have a single
crossing, this crossing occurs if and only if one endpoint of the reticulation edge
is the lca of both endpoints. We can again conclude that the existence of each
crossing of a horizontal line segment with a tree edge depends on the rotation
of a single tree vertex – with two differences to the ear style: (i) A horizontal
line segment can now also go towards the left. (ii) A horizontal line segment of a
reticulation edge (u, v) ends between the two subtrees of �(u, v), i.e., one of the
two subtrees can have crossings with only one of the horizontal line segments of
(u, v). With these observations we can now devise a fixed-parameter tractable
algorithm.

Theorem 3. Let N be a tree-based network with n leaves and k reticulation
edges. Then a snake-style drawing of N with minimum number of crossings can
be computed in O(2k ·nk) time. The computation is thus fixed-parameter tractable
when parametrized by k.

Proof. Let L = {�(u, v) | (u, v) is a reticulation edge}. Suppose the rotation
for all v ∈ L is fixed. With the observation above, we can slightly adapt our
algorithm from Theorem 1 to compute for every v �∈ L the rotation that induces
less crossings. Namely, the algorithm has to differentiate whether line segments
go to the left or right, and pick a rotation only for v �∈ L.

We try this for all possible combinations of rotations of vertices in L and
then pick the drawing with the least crossings. Since there are O(2k) such com-
binations, the statement on the running-time follows. ��

Note that this implies the same statement for the horizontal style.
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Abstract. This paper presents an empirical study of the relationship
between the density of small-medium sized random graphs and their
planarity. It is well known that, when the number of vertices tends to
infinite, there is a sharp transition between planarity and non-planarity
for edge density d = 0.5. However, this asymptotic property does not
clarify what happens for graphs of reduced size. We show that an unex-
pectedly sharp transition is also exhibited by small and medium sized
graphs. Also, we show that the same “tipping point” behavior can be
observed for some restrictions or relaxations of planarity (we considered
outerplanarity and near-planarity, respectively).

Keywords: Planarity · Random graphs · Outerplanarity ·
Near-planarity

1 Introduction

Several popular Graph Drawing algorithms devised to draw graphs of small-
medium size assume that the graph to be drawn is planar both in the static
setting [11,16,17] and in the dynamic one [3,5,8]. Hence, to assess the practical
applicability of such algorithms it is crucial to study the probability that a small-
medium sized graph (say of about 100–200 vertices) is planar. In particular, it
is interesting to consider how this probability varies as a function of the density
of the graph. We might have that the probability of planarity changes smoothly
or that it changes abruptly, exhibiting a tipping-point behaviour.

A tipping point is a threshold that, when exceeded, leads to a sharp change
in the state of a system. In sociology, for example, a tipping point is a time when
most of the members of a group suddenly change their behavior by adopting a
practice that before was considered rare. In climate study, a tipping point is a
quick and irreversible change in the climate, triggered by some specific cause, like
the growth of the global mean surface temperature. Even in graph theory, tipping
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Fig. 1. Function ζ(n, d) for n ∈ [1, 400] and d ∈ [0, 3] in four cases: (a) c1 = 5, c2 = 0.5,
c3 = 20, c4 = 0.5; (b) c1 = 5, c2 = 0.5, c3 = 8, c4 = 0.5; (c) c1 = 5, c2 = 0.5, c3 = 4, c4 = 0.5;
and (d) c1 = 10, c2 = 0.5, c3 = 1, c4 = 0.5.

points have been found. As an example, in 1960 Erdös and Rènyi established
that a random graph G(n,m) with n vertices and m edges undergoes an abrupt
change when the average vertex degree is equal to one, that is when m ≈ n/2 [10].
Namely, when m = cn/2 and c < 1, asymptotically almost surely the connected
components are all of size O(log n), and are either trees or unicyclic graphs.
Conversely, when c > 1, almost surely there is a unique giant component of
size Θ(n). The density d = m/n = 1/2 is sometimes referred to as the critical
density or phase transition density. See [4,12] for a discussion of these concepts.

In this paper we investigate whether the density plays a similar role for the
planarity of small-medium sized graphs. Namely, when the density of such graphs
increases, does the probability of planarity change smoothly or abruptly?

To answer this question one could think of using the result of �Luczak et al. [14]
who show that a random graph is almost surely non-planar if and only if the
number of edges is n/2 + O(n2/3). From the point of view of the density this
means that a graph is almost surely non-planar if the density is 1/2+O(n−1/3).
However, the result shows only an asymptotic bound and does not clarify what
happens for small-medium sized graphs. Essentially, this means that, for n → ∞
graphs with density greater than 1/2 are almost surely non-planar and that the
“transition range” of density within which the probability of planarity falls from
1 to 0 is Θ(n−1/3). This result has been confirmed in [15], where it is proved that
a graph with infinitely many vertices and density 1/2 has probability ≈ 0.998 to
be planar. Again, this gives no hint about how large is in practice this transition
range for small values of n. For example, Fig. 1 shows four plots for different
values of the constants c1, . . . , c4 of the function ζ(n, d) which has both the
asymptotic behaviors described in [14] (see [1]).

ζ(n, d) =
1

2(d−(0.5+c1/nc2 ))·(c3+c4n1/3) + 1
Depending on the values of c1, . . . , c4 the function shows quite different

behaviours in the range n ∈ [1, 400].
In this paper we adopt a pragmatic point of view. Namely, we are interested

into investigating what are the properties of a random graph of small-medium
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size n when its density increases. In particular, we experimentally measured
that, for each graph size n ≤ 400, there is a value of density that marks a sharp
transition from planar graphs to non-planar ones. This behavior is shared also by
restrictions or relaxations of planarity, such as outerplanarity, and near-planarity.

The paper is structured as follows. Section 2 describes the methodology used
for all experiments. Section 3 describes each experiment in detail. Our conclu-
sions are given in Sect. 4.

2 Experimental Setting

All the experiments described in Sect. 3 are composed of three phases: gen-
eration of graphs; measurement; and analysis. In this section we describe the
characteristics of the three phases common to all experiments.
Generation of Graphs. In all experiments (but for near-planarity) we used
graphs with a number n of vertices that varies from 1 to 400, increasing at each
step by one. The density d = m

n , where m is the number of edges, varies in a range
that depends on the type of property that we are investigating. In fact, given
a specific property, there always exists an interval of densities, that we call the
significant interval, such that for a graph outside the significant interval either
the property is granted or the property is ruled out, while inside the significant
interval there are both graphs that have the property and graphs that do not.
This is the interval of densities that we aim to experimentally explore1.

For each combination of size n and density d we determined the number of
edges m = Round(n · d) of the graphs to be generated, and generated 10, 000
random graphs with n vertices and m edges2. In particular, we used function
randomSimpleGraph of the OGDF library [7] for uniformly-at-random generat-
ing labeled graphs with a given number of vertices and edges. All graphs were
simple (no loops or multiple edges allowed).

Measurement. For each combination of size and density we counted how many
graphs have the desired property.

Analysis. We used Wolfram Mathematica 12.0.0.0 for producing the plots that
are in this paper. In particular, we used function ListPlot3D that joins points
with flat polygons. For the property of acyclicity it is also possible to compute
the exact percentage of random graphs that are acyclic. This allowed us to
compare the measured frequency distribution with its probability counterpart
(see [1]). We used Mathematica also for sampling contour lines of surfaces and
for computing fitting functions of sets of value pairs.

1 For the smallest graphs we may not have all densities. For example, there is no graph
with 5 vertices and density greater than 2.

2 Function Round() rounds a value to the nearest integer, where Round(0.5) = 1.0.
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3 Experimental Results

In this section we report the results of the experiments to determine how density
and size impact graph-theoretic properties of random graphs of small-medium
size. Since the purpose of the experiments is to show that planarity exhibits
a tipping point behavior when the density increases, we start our experiments
with acyclicity, a property that notoriously does not have tipping points [4, p.
118]. Then, we consider planarity, outerplanarity, and near-planarity, the main
targets of our investigation.
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Fig. 2. (a) Measured fraction of random graphs that are acyclic. (b) Measured fraction
of random graphs that are planar.

Acyclicity in Random Graphs. Simple graphs with less than three edges are
acyclic. Conversely, since a tree has m = n − 1 edges, when m = n a graph
has at least one cycle. Hence, the significant interval of densities for acyclicity
is [ 3n , 1 − 1

n ]. We used densities ranging from 0.0 to 1.0, with a step of 0.05
performing a total of 84 × 106 tests. The plot in Fig. 2(a) shows the measured
frequency of acyclic graphs as a function of density and size. Is it apparent that
the density is the main cause of the loss of acyclicity, while the size of the graph
seems to have weaker effects. In particular, bigger graphs tend to loose acyclicity
earlier than smaller graphs.

Overall, the percentage of acyclic graphs seems to decrease smoothly through
the significant interval of densities, without any quick transition or drop. Acyclic
graphs allow us to compare a case where the tipping point is absent with the
cases discussed in the next sections where a tipping point is present. Also, for
acyclicity we were able to compute the actual probability of a graph of having
this property and we used the comparison between experimental and theoretical
values to validate the experimental pipeline (see [1]).
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Planarity in Random Graphs. We now consider the property of the graph of
being planar. All graphs with less than 9 edges are planar and there is no planar
graph with more than 3n−6 edges. Hence, the significant interval of densities for
planarity is [ 9n , 3n−6

n ]. For our experiments we used densities from 0.0 to 3.0, with
a step of 0.1, performing a total of 124× 106 planarity tests. In order to test the
generated graphs for planarity we first used the OGDF function makeConnected
that adds the minimum number of edges to make the graph connected and then
called a single planarity test on the obtained graph: it can be easily seen that
the minimality of the added edges implies that the connected graph is planar if
and only if the connected components of the original graph were all planar.
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f50% = 0.5 + 4.28796
n0.80709 + 1.20455

n1/3

Horizontal Asymptote at 0.5

Fig. 3. (a) View from the side of the same graph of Fig. 2(b). (b) The samples at height
50% (red dots) and a possible fitting curve (solid blue line). (Color figure online)

Figures 2(b) and 3(a) show a plot of the frequency of planar graphs in random
simple graphs as a function of density and size. It is apparent that the percentage
of planar graphs drops from 100% to 0% in a short range of density values. As an
example, for n = 200 we have that the fraction of planar graphs drops from 99%
to 1% in the interval of densities [0.915, 0.598], that corresponds to the 10.6% of
the significant interval. In contrast, for the same value of n, the fraction of acyclic
graphs depicted in Fig. 2(a) drops from 99% to 1% in the 53% of the significant
interval. The tipping point is strongly related with density and appears earlier
in larger graphs. Figure 7 in [1] shows a plot of 9 equally spaced contour lines at
height 10%, 20%, . . . , 90%.

In order to quantitatively study the behavior of the plot we determined the
sample points of the contour line at height 50% and computed a fitting of such
points. For the fitting, because of the results in [14], we selected a function of
type d = 1/2 + c1/nc2 + c3/n1/3. The result of the fitting is shown in Fig. 3(b).
Observe that the value of c2 is consistent with the theory.
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Fig. 4. (a) The sample points of the contour lines at height 1% and 99% and the
corresponding fitting curves. (b) Difference between the fitting curves in (a).

In order to evaluate the width of the transition range we determined the
sample points of the contour lines at height 1% and 99% and computed two
fittings, one for each set of such points. For both the fittings, again, we selected
a function of type d = 1/2+ c1/nc2 + c3/n1/3. The result are shown in Fig. 4(a).
Observe how the difference between the two curves is very small (Fig. 4(b)).

Surprisingly, for random graphs of small-medium size the drop value for the
measured fraction of planar graph is much smaller than it would have been
hoped for: if you grow the density of a random graph of small-medium size you
very likely loose planarity way before you have any chance to get connectivity
(d = 1). Practically speaking, if you were interested into graphs with density
one, planarity is almost granted for number of vertices in the range [1, 40] but is
almost absent above 100 vertices. For density 1.5, instead, a random graph with
more than 25 vertices is very likely non-planar.

Outerplanarity in Random Graphs. An outerplanar graph is a graph that
admits a planar drawing where all vertices are on the external face. All graphs
with less than 6 edges are outerplanar—the smallest non-outerplanar graphs
being K4 and K2,3—and there is no outerplanar graph with more than 2n − 3
edges. Hence, the significant interval of densities for outerplanarity is [ 6n , 2n−3

n ].
For our experiments we used densities from 0.0 to 2.0, with a step of 0.1.

Figure 5(a) shows the fraction of outerplanar graphs as a function of the
number of vertices and density.

Near-Planarity in Random Graphs. A near-planar graph is a graph that
can be made planar by removing (at most) one edge [6]. Near-planar graphs are
also called skewness-1 or almost planar graphs [9]. The smallest not near-planar
graph is K3,4, with 12 edges. From the definition of near-planar graphs it follows
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Fig. 5. (a) Measured fraction of random graphs that are outerplanar. (b) Measured
fraction of random graphs that are near-planar.

that such graphs have a maximum of 3n − 6 + 1 vertices. Hence, the significant
interval of densities for near-planarity is [14n , 3n−5

n ]. In our experiments we used
densities ranging from 0.0 to 3.0 increasing by 0.1. The recognition of near-planar
graphs can be made in quadratic-time: it suffices to test for planarity any graph
obtained by removing one edge.

Figure 5(b) shows the measured fraction of random graphs that are near-
planar as a function of the number of vertices (from 1 to 200) and the density.
Observe that the transition from near-planar graphs to non-near-planar ones
is sharper than what we measured for planarity or quasi-planarity, although it
occurs for higher values of densities.

4 Conclusion and Future Work

We reported empirical evidence of the existence of a tipping point for planarity
in random graphs of small-medium size. The same phenomenon appears to be
present for restrictions and relaxations of planarity as outerplanarity and near-
planarity. It would be interesting to measure whether other popular families
of ‘beyond planar’ graphs, as 1-planar or quasiplanar graphs, also feature the
same abrupt transition in their distribution in random graphs. Unfortunately,
testing 1-planarity is NP-complete [13] even for near-planar graphs [6] and, to
our knowledge, no implementation of the FPT algorithm in [2] for testing 1-
planarity is available. Also, no testing algorithm has been proposed for quasi-
planarity. Finally, we could consider other types of graphs, as random bipartite,
biconnected, or triconnected graph, as well as other graph models like small-
world graphs or scale-free graphs.
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Abstract. B0-VPG graphs are intersection graphs of vertical and hor-
izontal line segments on a plane. Cohen, Golumbic, Trotter, and Wang
[Order, 2016] pose the question of characterizing B0-VPG permutation
graphs. We respond here by characterizing B0-VPG cocomparability
graphs. This characterization also leads to a polynomial time recogni-
tion and B0-VPG drawing algorithm for the class. Our B0-VPG drawing
algorithm starts by fixing any one of the many posets P whose cocom-
parability graph is the input graph G. The drawing we obtain not only
visualizes G in that one can distinguish comparable pairs from incompa-
rable ones, but one can also identify which among a comparable pair is
larger in P from this visualization.

Keywords: Poset visualization · Permutation graph ·
Cocomparability graph · B0-VPG · Graph drawing

1 Introduction

Representing a graph as an intersection graph of two-dimensional geometric
objects like strings, line segments, rectangles and disks is a means to depict a
graph on the plane. When the graph being represented is a comparability or
cocomparability graph, one can also ask whether the “direction” of the compa-
rability relation in the associated poset can also be inferred from the drawing.
In this paper we characterize cocomparability graphs which can be represented
as intersection graphs of vertical and horizontal line segments in a plane. For
the posets whose cocomparability graphs can be represented thus, we describe a
representation from which one can also infer the direction of the comparability
relation. Our drawing algorithm runs in polynomial time.

Bk-VPG graphs are intersection graphs of simple paths with at most k bends
on a two-dimensional grid. Here, a path is simple if it does not pass through any
grid vertex twice, and two paths are said to intersect if they share a vertex of
the grid. The name Bk-VPG is an abbreviation for Vertex-intersection graphs of
k-Bend Paths on a Grid. In particular, B0-VPG graphs are intersection graphs
of vertical and horizontal line segments on a plane. The bend number of a graph
G is the minimum k for which G belongs to Bk-VPG.
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The dimension of a poset P = (X,≺) is the smallest k such that ≺ is the
intersection of k total orders on X. The comparability graph of P is the undirected
graph on the vertex set X with edges between the pairs of elements comparable
in P . A graph G is a comparability graph if it is the comparability graph of a
poset. If two posets have the same comparability graph, then they have the same
dimension [30]. Hence we can unambiguously define the dimension of a compa-
rability graph G as the dimension of any poset P whose comparability graph is
G. The complement of a comparability graph is a cocomparability graph. A per-
mutation graph is a comparability graph of dimension at most two. It is known
that a graph G is a permutation graph if and only if G is both comparability
and cocomparability [27].

Cohen et al. [11] illustrated, via an elegant picture-proof, that if G is a
comparability graph of dimension k (k ≥ 1), the bend number of its complement
G is at most k − 1. In particular therefore, the bend number of a permutation
graph is either 0 or 1. They posed the problem of characterizing permutation
graphs with bend number 0 as an open question (Qn 4.2 in [11]). We settle this
question with a stronger result. We characterize cocomparability graphs with
bend number 0 as follows (Theorem 1).

The simple cycle on k vertices is denoted by Ck. A C4 together with an
additional edge e between two non-consecutive vertices of the C4 is a diamond
and the edge e is a diamond diagonal. Two vertices x and y in a graph G are
diamond related if there exists a path from x to y in G made up of diamond
diagonals alone. This is easily verified to be an equivalence relation that refines
the connectivity relation in G.

Theorem 1. A cocomparability graph G is B0-VPG if and only if

(i) No two vertices of an induced C4 in G are diamond related, and
(ii) G does not contain an induced subgraph isomorphic to C6, the complement

of C6.

A poset P = (X,≺) is an interval order if all the elements of X can be
mapped to intervals on R such that ∀x, y ∈ X, x ≺ y if and only if the interval
representing x is disjoint from and to the left of the interval representing y.
Complements of the comparability graphs of interval orders form the well known
class of interval graphs. While interval graphs are trivially B0-VPG, it is known
that there exists interval orders of arbitrarily high dimension [3]. Hence the
class of B0-VPG cocomparability graphs is richer than the class of B0-VPG
permutation graphs. In fact, since permutation graphs are C6-free, the first of
the two conditions in Theorem 1 characterizes B0-VPG permutation graphs.

Corollary 1. A permutation graph G is B0-VPG if and only if no two vertices
of an induced C4 in G are diamond related.

A naive check for the conditions in Theorem 1 can be done in O(n6) time.
Combining this with any of the known polynomial time recognition algorithms
for cocomparability graphs [12,18] will give a polynomial time recognition algo-
rithm for B0-VPG cocomparability graphs. We do not try to optimize the
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recognition algorithm here, but only note that this is in contrast to the NP-
completeness of recognizing B0-VPG graphs.

The above algorithm starts by fixing a partial order PG whose cocompara-
bility graph is G and a linear extension σ of PG. The resulting drawing D ends
up being a representation of PG = (V (G),≺P ) in the following sense. We define
three binary relations ≺v,h

D , ≺h,v
D and ≺D among vertices of G based on the

drawing D as follows.

Definition 1. Let x and y be two vertices in V (G) and let Ix and Iy be the line
segments representing them in D, respectively.

– x ≺v,h
D y if Ix is either vertically below Iy or if both are intersected by a

horizontal line, Ix is to the left of Iy.
– x ≺h,v

D y if Ix is either to the left of Iy or if both are intersected by a vertical
line, Ix is vertically below Iy.

– x ≺D y if and only if x ≺v,h
D y when Ix is horizontal and x ≺h,v

D y when Ix is
vertical.

While the above relations are not even partial orders in general, in our draw-
ing D, the relation ≺D faithfully captures ≺P . Theorem 2 states this formally
and Fig. 1 illustrates an example.

Theorem 2. Any poset PG = (VG,≺P ) whose cocomparability graph G is B0-
VPG has a two dimensional visualization D such that x ≺P y if and only if
x ≺D y.

a b

d ec f

hg i

Ib Ie

Ic

Ig

Ia

Id

If

Ii

Ih

Fig. 1. Hasse diagram of a poset corresponding to a B0-VPG cocomparability graph
and a B0-VPG representation D in which the covering relation is indicated by thin
directed paths for clarity. The directed paths with blue color and green color respec-
tively depict the relations ≺h,v

D and ≺v,h
D .
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1.1 Literature

Bk-VPG graphs were introduced by Asinowski et al. in 2012 [2] as a parameter-
ized generalization for string graphs (intersection graphs of curves in a plane)
and grid intersection graphs (bipartite graphs which are intersection graphs of
vertical and horizontal segments in the plane in which all the vertices in one
part are represented by vertical segments and all the vertices in the other part
by horizontal line segments). Grid Intersection graphs (GIGs) are equivalent to
bipartite B0-VPG graphs. Similarly one can show that Bk-VPG graphs with an
unrestricted k, which are called VPG graphs simpliciter, are equivalent to string
graphs. B0-VPG graphs are also equivalent to 2-DIR graphs, where a k-DIR
graph is an intersection graph of line segments lying in at most k directions in
the plane. All these equivalences were formally established in [2].

The NP-completeness of the recognition problem for VPG graphs follows
from that of string graphs [23,28]. For B0-VPG graphs, it follows from that of
2-DIR graphs [24]. Chaplick et al. showed that, ∀k ≥ 0, it is NP-complete to
recognize whether a given graph G is in Bk-VPG even when G is guaranteed to
be in Bk+1-VPG and represented as such [7]. This also shows that ∀k ≥ 0 the
classes Bk-VPG and Bk+1-VPG are separated. Cohen et al. showed that, ∀k ≥ 0,
there exists a cocomparability graph with bend number k (Theorem 3.1 in [11]).
This shows that, ∀k ≥ 0, the classes Bk-VPG and Bk+1-VPG are separated
within cocomparability graphs. The question of a similar separation within
chordal graphs was left open in [7] and a partial answer was given in [4].

Since the Bk-VPG representation is a kind of planar representation, the bend
number of planar graphs have received special attention. Chaplick and Ueck-
erdt showed, disproving a conjecture in [2], that every planar graph is B2-VPG
[8]. Every planar bipartite graph is a GIG [21] and hence B0-VPG. The order
dimension of GIGs has also been investigated in literature [6]. A polynomial time
decision algorithm for chordal B0-VPG graphs is developed in [5]. Characteriza-
tions for B0-VPG are known within the classes of split graphs, chordal bull-free
graphs, chordal claw-free graphs [20] and block graphs [1].

Subclasses of cocomparability graphs within which a characterization for
B0-VPG is known include cographs, bipartite permutation graphs, and interval
graphs. Cographs, which form a subgraph of permutation graphs are B0-VPG
if and only if they do not contain an induced W4 [10]. A W4 is a C4 together
with a universal fifth vertex. All bipartite permutation graphs are B0-VPG [11].
Interval graphs are trivially B0-VPG, since the interval representation itself is a
B0-VPG representation. Theorem 1 subsumes these three results.

Towards the end of this paper, we discuss a two dimensional visualization
of posets. The most common way to visualize a poset P = (X,≺) so far is
Hasse Diagram (also called Order Diagram). The problem of drawing a Hasse
diagram algorithmically was addressed by many algorithms e.g. upward planar
drawing [13], dominance drawing [14], confluent drawing [15], weak dominance
drawing [22]. The key concern here is to get a crossing-free drawing in which no
two upward edges cross at a non vertex point. The first three algorithms can
only handle posets of dimension at most two and a few other cases. Though
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our drawing handles only those posets whose cocomparability graph is B0-VPG
irrespective of its dimension, crossing-freeness is not a concern in our drawing
since comparability is inferred from the relative position of lines.

1.2 Terminology and Notation

The complement of a graph G is denoted as G. We denote a path and a cycle
on n vertices, respectively, by Pn and Cn. A graph G is said to be H-free if G
contains no induced subgraph isomorphic to the graph H. A poset P is said to
be T -free if P contains no induced subposet isomorphic to the poset T . In this
case, P is also said to exclude T .

The closed neighborhood of a vertex v is the set of neighbors of v together
with v. An Asteroidal Triple (AT ) is a set of three independent vertices such that
there exists a path between each two of them not passing through any vertex from
the closed neighborhood of the third. We have defined interval orders, interval,
comparability, cocomparability, and permutation graphs in the introduction. We
will make use of the facts that C4-free cocomparability graphs are interval graphs
[17] and all cocomparability graphs are AT-free [19].

2 Proof of Theorem 1

The necessity of the two conditions in Theorem 1 is relatively easier to establish,
and hence we do that first. A C4 has a unique B0-VPG representation as shown
in Fig. 2(a) [2]. Notice that no two vertices of an induced C4 can be represented
by collinear paths in a B0-VPG representation. In contrast, one can see that in
any B0-VPG representation of a C3, at least two of its three vertices have to
be represented by collinear paths. Moreover, in any B0-VPG representation of
a diamond, the endpoints of the diamond diagonal have to be represented by
collinear paths as shown in Fig. 2(b) [20]. Since collinearity is transitive, any two
vertices which are diamond related have to be represented by collinear paths.
This shows the necessity of the first condition in Theorem 1. Notice that C6

has a C3 in which each pair of vertices is part of an induced C4. Being part of
C3 forces two of the corresponding three paths to be collinear which prevents a
B0-VPG representation of the corresponding induced C4. Hence the necessity of
the second condition.

The three step algorithm (Algorithm 1) and the proof of its correctness (in
the full version1) are devoted to showing that these two necessary conditions are
sufficient to construct a B0-VPG representation of a cocomparability graph. The
construction is completed in three steps. We start with a cocomparability graph
G satisfying the two conditions of Theorem 1. In the first step, we contract
a subset of edges of G to obtain a bipartite minor RG of G with a couple of
additional properties. A set of vertices in G which gets represented by a single
vertex in RG after all the edge contractions is referred to as a branch set of

1 Details of the proof can be found in the Appendix section of the full version [26].
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pa

pb

pc

pd

(a) A C4 induced by {a, b, c, d}.

pb

pa

pd

pc

(b) A diamond induced by
{a, b, c, d} with ac as its diagonal.

Fig. 2. The unique B0-VPG representation of C4 and a diamond.

RG. We will denote the vertices in RG by the corresponding branch sets. In the
second step, for each of the subgraphs of G induced by each branch set of RG,
we find an interval representation, again with a few additional properties. In the
third and final step, we fit all the above interval representations together to get
a B0-VPG representation of G.

Before proceeding to the algorithm, we state in the next section some of the
known results which ease our construction.

2.1 Preliminaries

An ordering σ of V of a graph G(V,E) is called a cocomparability ordering or
an umbrella-free ordering if for all three vertices in x <σ y <σ z, adjacency of x
and z implies that at least one of the other pairs are adjacent. If not, (x, y, z) is
called an umbrella in σ.

Lemma 1 ([25]). A graph G is a cocomparability graph if and only if there is
a cocomparability ordering σ of the vertices of G.

Definition 2. Given a graph G and a total ordering σ of V (G), a triple (u, v, w)
of vertices of G where u ≺σ v ≺σ w is called a forbidden triple if there exists a
path from u to w without containing a vertex from the closed neighborhood of v.

Lemma 2. Any umbrella free ordering is forbidden triple free.

Proof. Let σ be an umbrella free ordering. Assume a forbidden triple u ≺σ v ≺σ

w exists. Thus there exists a path from u to w without containing a vertex from
the closed neighborhood of v. If we arrange the vertices of the path together
with v in an order respecting σ, there exists two adjacent vertices u1 and w1

among them such that u1 ≺σ v ≺σ w1. Thus (u1, v, w1) forms an umbrella in σ
which is a contradiction.

Lemma 3 ([9]). Cocomparability is preserved under edge contraction.
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A 2 + 2 is a poset containing four elements where every element is comparable
with exactly one element. A 2 + 2 poset corresponds to an induced C4 in the
complement of its comparability graph. Thus an interval order cannot contain a
2 + 2. Similarly, if a poset does not have a 2 + 2, then the complement of all of
its comparability graphs will be C4-free cocomparability graphs.

Theorem 3 (Fishburn-1970) [[16], Theorem 6.29 in [31]]. A poset is an inter-
val order if and only if it excludes 2 + 2.

Consider a bipartite graph G(A ∪ B,E). An ordering σ of A is said to have
adjacency property if the neighborhood of every vertex of B is consecutive in σ.
Here G is called convex if there exists an ordering σ of A with the adjacency
property and biconvex if it is convex and there exists an ordering τ of B with
the adjacency property. Bipartite permutation graphs are biconvex graphs [29].

Theorem 4 ([11]). Bipartite permutation graphs are B0-VPG.

2.2 B0-VPG Algorithm

We see a three-step algorithm to construct a B0-VPG representation for any
arbitrary cocomparability graph satisfying the conditions of Theorem 1. Figure
3 helps to understand the algorithm easily. The first step is depicted in Fig. 3b,
3c, 3e and the final drawing in the third step is shown in Fig. 3f.

In the following definition, we assume that any self loop produced by an edge
contraction is removed and any parallel edges formed by an edge contraction is
represented by a single edge in the minor.

Definition 3 (dd-minor). A dd-minor of graph G is the graph obtained by
contracting every diamond diagonal in G.

Definition 4 (Reduced dd-minor). A reduced dd-minor of graph G is a min-
imal graph RG that can be obtained by edge contractions of the dd-minor of G
such that no branch-set of RG contains more than one vertex of an induced C4

in G.

Remark 1. Though the dd-minor exists for every graph, a reduced dd-minor does
not exist for every graph. A necessary and sufficient condition for the existence
of a reduced dd-minor for a graph G is that no two vertices of an induced C4 in
G should be diamond related.

If an edge xy (x ≺σ y) is contracted to a new vertex, then the new vertex
is placed at the position of x in σ and labeled as x itself. This results in a
new order σ′ which is a subsequence of σ. By Lemma 3, σ′ is an umbrella-free
ordering. Thus after all the edge contractions to get the minimal graph RG, we
get an umbrella-free ordering σRG

of V (RG) which is a subsequence of σ. This
is sufficient to say that RG is also a cocomparability graph by Lemma 1. In fact,
every vertex B of RG is represented in σRG

by the leftmost (under σ) vertex b
in the branch set B.

For any two branch sets Bi and Bj of RG, Bj,i denotes the vertices in Bj

which have a neighbor in Bi.
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Lemma 4 (Proof in the full version [26]). The following claims on the
cocomparability graph RG are true.

1. For any two adjacent branch sets B1 and B2, the set B1,2 ∪ B2,1 induces a
clique in G.

2. If B0, B1, B2 form consecutive vertices of a C3 or an induced C4 in RG then
B1,0 ∩ B1,2 �= ∅. Moreover, if B0, . . . , Bk−1 is a C3 or an induced C4 in RG,
then there exists an induced cycle b0, . . . , bk−1 in G where each bi ∈ Bi.

3. RG is a bipartite permutation graph.

Relabeling of V (RG). It is clear from Lemma 4.3 that the reduced dd-minor
RG of the cocomparability graph G is a bipartite permutation graph. Given the
umbrella-free ordering σ of G, we inherited the umbrella-free ordering σRG

for
RG which respects σ. In the algorithm, we label each branch set of the left part
of RG with B1, B3, . . . (odd indices) such that i < j implies that in the order σ,
the leftmost vertex in Bi is to the left of the leftmost vertex in Bj . Similarly we
label each branch set of the right part of RG with B0, B2, . . . (even indices) such
that i < j implies that in the order σ, the leftmost vertex in Bi is to the left of
the leftmost vertex in Bj .

Henceforth, we slightly abuse the notation ≺σ for the branch sets of the
reduced dd-minor of G in the following way. For any two such branch sets Bi

and Bj , Bi ≺σ Bj if ∀x ∈ Bi,∀y ∈ Bj , x ≺σ y. Thus Bi and Bj are said to be
separated in σ if either Bi ≺σ Bj or Bj ≺σ Bi.

Lemma 5 (Proof in the full version [26]). For any two branch sets Bi, Bj

of the same parity if i < j, then Bi ≺σ Bj.

Lemma 6 (Proof in the full version [26]). For each branch set Bi of RG,
G[B∗

i ] is an interval graph. Moreover, G[B∗
i ] has an interval representation I∗

i

satisfying the following properties.

(i) For all x, y ∈ B∗
i , we have the interval for x to the left of interval for y if

and only if x ≺P y.
(ii) For each neighbor Bj of Bi, all the intervals corresponding to the vertices

in Bj,i are point intervals at a point pj,i.
(iii) If Bj and Bk are two neighbors of Bi such that j < k, then the point pj,i is

to the left of the point pk,i in I∗
i .
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(c) A reduced dd-minor RG of G
(also bipartite permutation graph).
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(d) Hasse diagram of an arbitrary poset
PG(V, ≺P ) of G. Choose and fix a linear
extension σ = (b, a, c, d, f, e, g, i, h, j).
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(e) Labeled RG respecting σ.
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(f) The drawing D which is also a 2-D visu-
alization of PG by Theorem 2.

Fig. 3. Drawing a B0-VPG representation D of a cocomparability graph G satisfying
the conditions of Theorem 1. Note that the collinear intersecting line segments in D
are drawn a little apart in order to distinguish them easily.
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Algorithm 1
Input. G is an arbitrary but fixed cocomparability graph satisfying the two
conditions of Theorem 1.
Output. A B0-VPG representation D of G .
Assumptions.
1) PG(V (G),≺P ) is an arbitrary but fixed partial order whose comparability
graph is G.
2) σ is an arbitrary but fixed linear extension of PG and hence an umbrella-free
ordering for G.

1. Step 1: Choose an arbitrary but fixed reduced dd-minor RG of G and label V (RG)
as described in the above mentioned relabeling procedure.

2. Step 2:
(i) For each branch set Bi of RG, let B∗

i = Bi ∪ {Bj,i : BiBj ∈ E(RG)} and we
obtain an interval representation I∗

i of B∗
i using Lemma 6.

(ii) Remove intervals of vertices in B∗
i \ Bi from I∗

i to get Ii.
3. Step 3: Construction of the drawing D using the following steps. Let e and o

respectively (with further subscripts if needed) denote the even and odd indices of
the branch sets of RG.
(i) For each odd-indexed branch set Bo, Io is drawn vertically from the point

(o, (e1−0.5)) to (o, (e2+0.5)) where Be1 and Be2 are the leftmost and rightmost
neighbors of Bo in σRG .

(ii) Stretch or shrink the intervals in each vertical interval representation Io with-
out changing their intersection pattern, so that for each neighbor Be of Bo,
the point pe,o is at (o, e). This can be done since the intersection pattern of
an interval representation with n intervals is solely determined by the order of
the corresponding 2n endpoints.

(iii) For each even-indexed branch set Be, Ie is drawn horizontally from the point
((o1−0.5), e) to ((o2+0.5), e) where Bo1 and Bo2 are the leftmost and rightmost
neighbors of Be in σRG .

(iv) Stretch or shrink the intervals in each horizontal interval representation Ie

without changing their intersection pattern, so that for each neighbor Bo of
Be, the point po,e is at (o, e).

Proposition 1. The B0-VPG representation D is precisely a B0-VPG repre-
sentation of the cocomparability graph G.

The proof of the above proposition is written in the full version [26]. One can
easily verify that Algorithm 1 runs in polynomial time.

3 Proof of Theorem 2

In this section, we fix P (V,≺P ) as the given input poset and G as its cocom-
parability graph. Let D be the B0-VPG representation of G obtained by the
construction employed in the proof of Theorem 1, where the partial order PG
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assumed in Algorithm 1 is P . We argue below that for any two vertices x and
y in V (G), x ≺D y (cf. Definition 1) if and only if x ≺P y and thus establish
Theorem 2. First, we show that if x ≺P y, then x ≺D y. But a simple exchange
of variables is not enough to prove the converse because ≺D is not antisymmetric
in the set of all vertical and horizontal line segments. Hence in order to complete
the proof we show that the relation ≺D is antisymmetric when restricted to the
line segments in D.

3.1 If x ≺P y Then x ≺D y

Recall that σ is a linear extension of PG. Thus if x ≺P y, then x ≺σ y and x is
non-adjacent to y in G.

If x and y are in the same branch set Bi of RG then clearly Ix ≺Ii
Iy by

Lemma 6.(i). Here if Ix is horizontal, clearly x ≺v,h
D y. Otherwise, x ≺h,v

D y. If
x and y are in different branch sets, Bi and Bj respectively, of the same parity,
then i < j (Lemma 5). Thus in D, if both are of odd parity, Bi is drawn to the
left of Bj and if both are of even parity, Bi is drawn to the bottom of Bj . Thus
if Ix is vertical, then x ≺h,v

D y and if Ix is horizontal, then x ≺v,h
D y.

If the parity is opposite, we have two sub-cases; that is Bi and Bj are either
non-adjacent or adjacent. If non-adjacent, the branch set Bj cannot have a neigh-
bor Bh where h < i. Suppose there exists such a neighbor Bh for Bj such that
h < i. Clearly since Bh is adjacent to Bj , h and i are of the same parity and
hence Bh ≺σ Bi (Lemma 5). Since Bh is adjacent to Bj , there exists a path
from a vertex z ∈ Bh to y ∈ Bj in G[Bh ∪ Bj ]. Moreover since Bi is disjoint
from Bh and Bj , x has no neighbor in Bh ∪Bj , and hence the triple (z, x, y) is a
forbidden triple in σ which is a contradiction as per Lemma 2. Since Bj has no
opposite parity neighbor Bh for any h ≤ i, the following property can easily be
verified from our drawing. Thus if Bi is of even parity, then Bi is to the bottom
of Bj in D. Otherwise, Bi to the left of Bj in D. Hence clearly if Ix is horizontal,
then Ix is to the bottom of Iy, that is x ≺v,h

D y. Similarly, if Ix is vertical, then
Ix is to the left of Iy, that is x ≺h,v

D y.
Now the remaining sub-case is that Bi and Bj are adjacent. The following

observation is frequently used in the remaining part of the proof.

Observation 1. If the interval representations Ii and Ij intersects, there exist
at least two intersecting intervals Iu1 ∈ Ii and Iv1 ∈ Ij. For any interval Iu ∈ Ii,
if Iu ≺Ii

pj,i, then u ≺σ v1 and if pj,i ≺Ii
Iu then v1 ≺σ u. This is easily inferred

from I∗
i . We can symmetrically argue the same for Iv.

The intervals Ix and Iy do not intersect since x and y are non-adjacent in G.
If Ix contains pj,i, then pi,j (geometrically coinciding with pj,i) has to precede Iy

in Ij . Otherwise due to Observation 1, we get y ≺σ x which is a contradiction.
Similarly if Iy contains pi,j , then Ix has to precede pj,i in Ii. In both these case,
if Ix is horizontal, then x ≺v,h

D y and if Ix is vertical, then x ≺h,v
D y. Henceforth

we assume that neither Ix nor Iy contains the intersection point of Ii and Ij .



202 S. K. Pallathumadam and D. Rajendraprasad

In this case, it is easy to see that x has no neighbors in Bj and y has no neighbors
in Bi.

In order to rule out the following scenarios, we show the existence of a for-
bidden triple in σ which leads to a contradiction as per the Lemma 2.

If Iy ≺Ij
pi,j , then x ≺σ y ≺σ u1 as per Observation 1. Thus (x, y, u1) is a

forbidden triple.
If pj,i ≺Ii

Ix, then v1 ≺σ x ≺σ y as per Observation 1. Thus (v1, x, y) is a
forbidden triple.

Hence pi,j ≺Ij
Iy and Ix ≺Ii

pj,i. In this case, if Ix is horizontal, x ≺v,h
D y

and if Ix is vertical, we get x ≺h,v
D y. Moreover, in both these cases, Ix is to the

left and to the bottom of Iy.
Thus we have proved that when x ≺P y, we get that x ≺v,h

D y when Ix is
horizontal or x ≺h,v

D y when Ix is vertical in the B0-VPG representation D of G.
That is x ≺D y. If x and y are incomparable in PG, then they are adjacent in G
and the corresponding intervals intersect in D.

3.2 Antisymmetry of ≺D

Observation 2. If two opposite parity branch sets are non-intersecting, then
one of them is entirely to the bottom left of the other in D. Hence for all Ix in
the bottom left branch set and for all Iy in the top right branch set, x ≺D y.

Justification. When two branch sets are non-intersecting, they are separated in σ
since otherwise, there will exist a forbidden triple u ≺σ v ≺σ w such that u and
w are in one branch set and v in the other branch set. Without loss of generality,
let Bi ≺σ Bj . We claim that Bi is entirely to the bottom left of Bj . Assume not.
That is either Bi has an opposite parity neighbor Bk for some k > j or Bj has
an opposite parity neighbor Bh for some h < i or both. In the first case, there
exists a forbidden triple (x, y, z) for any x ∈ Bi, y ∈ Bj and z ∈ Bk which is a
contradiction by Lemma 2. Similarly in the second case, there exists a forbidden
triple (w, x, y) for any w ∈ Bh, x ∈ Bi and y ∈ Bj which is again a contradiction
by Lemma 2.

Observation 3. In D, there is no line segment Ib which is to the bottom right
of a line segment It of an opposite parity branch set.

Justification. Assume It is in Ii and Ib is in Ij . The branch sets Bi and Bj are
of the opposite parity. If they are non-adjacent, then by Observation 2, either
It has to be bottom left of Ib or Ib has to be bottom left of It. In both cases,
Ib can not be bottom right of It. Now we consider the case when the branch
sets are adjacent. Since It and Ib are non-intersecting, there exists intersecting
intervals It1 ∈ Ii and Ib1 ∈ Ij as per Observation 1. In σ, either t precedes b
or b precedes t. These result in the forbidden triple either (t, b, t1) or (b, t, b1)
respectively leading to a contradiction by Lemma 2.

Lemma 7. Any two non-intersecting line segments Ix and Iy in D satisfy either
x ≺D y or y ≺D x, but not both. In particular, the relation ≺D is antisymmetric.
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Proof. Since D is a B0-VPG representation of G, x and y are nonadjacent in
G and hence comparable in P . That is, either x ≺P y or y ≺P x. Therefore,
x ≺D y or y ≺D x. Hence it is enough to verify that x ≺D y and y ≺D x cannot
both be true. This is easily verified when Ix and Iy are both horizontal or both
vertical. Hence we can assume without loss of generality that Ix is horizontal
and Iy is vertical. If both x ≺D y and y ≺D x, then Ix has to be to the bottom
right of Iy. This contradicts Observation 3.

This concludes the proof of Theorem 2. For every two incomparable elements
in ≺P , the corresponding line segments intersect in D. For every two comparable
elements x, y ∈ V (G), if x ≺P y, then x ≺D y. By exchange of variables, if
y ≺P x, then y ≺D x. Lemma 7 asserts that exactly one of the above is true for
any two non-intersecting line segments. Hence x ≺D y only when x ≺P y. Thus
the relation ≺D is isomorphic to the relation ≺P .
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Abstract. In a planar L-drawing of a directed graph (digraph) each edge
e is represented as a polyline composed of a vertical segment starting at
the tail of e and a horizontal segment ending at the head of e. Distinct
edges may overlap, but not cross. Our main focus is on bimodal graphs,
i.e., digraphs admitting a planar embedding in which the incoming and
outgoing edges around each vertex are contiguous. We show that every
plane bimodal graph without 2-cycles admits a planar L-drawing. This
includes the class of upward-plane graphs. Finally, outerplanar digraphs
admit a planar L-drawing – although they do not always have a bimodal
embedding – but not necessarily with an outerplanar embedding.

Keywords: Planar L-drawings · Directed graphs · Bimodality

1 Introduction

In an L-drawing of a directed graph (digraph), vertices are represented by points
with distinct x- and y-coordinates, and each directed edge (u, v) is a polyline
consisting of a vertical segment incident to the tail u and of a horizontal segment
incident to the head v. Two edges may overlap in a subsegment with end point
at a common tail or head. An L-drawing is planar if no two edges cross (Fig.
1(c)). Non-planar L-drawings were first defined by Angelini et al. [2]. Chaplick
et al. [11] showed that it is NP-complete to decide whether a directed graph has
a planar L-drawing if the embedding is not fixed. However it can be decided in
linear time whether a planar st-graph has an upward-planar L-drawing, i.e. an
L-drawing in which the vertical segment of each edge leaves its tail from the top.

Sabine Cornelsen—The work of Sabine Cornelsen was funded by the German Research
Foundation DFG – Project-ID 50974019 – TRR 161 (B06).
Giordano Da Lozzo—The work of Giordano Da Lozzo was partially supported by MIUR
grants 20157EFM5C “MODE: MOrphing graph Drawings Efficiently” and 20174LF3T8
“AHeAD: efficient Algorithms for HArnessing networked Data”.

c© Springer Nature Switzerland AG 2020
D. Auber and P. Valtr (Eds.): GD 2020, LNCS 12590, pp. 205–219, 2020.
https://doi.org/10.1007/978-3-030-68766-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68766-3_17&domain=pdf
http://orcid.org/0000-0002-7602-1524
http://orcid.org/0000-0003-3501-4608
http://orcid.org/0000-0002-1688-394X
http://orcid.org/0000-0003-2396-5174
https://doi.org/10.1007/978-3-030-68766-3_17


206 P. Angelini et al.

A vertex v of a plane digraph G is k-modal (mod(v) = k) if in the cyclic
sequence of edges around v there are exactly k pairs of consecutive edges that are
neither both incoming nor both outgoing. A digraph G is k-modal if mod(v) ≤ k
for every vertex v of G. The 2-modal graphs are often referred to as bimodal,
see Fig. 1(a). Any plane digraph admitting a planar L-drawing is clearly 4-
modal. Upward-planar and level-planar drawings induce bimodal embeddings.
While testing whether a graph has a bimodal embedding is possible in linear
time, testing whether a graph has a 4-modal embedding [4] and testing whether
a partial orientation of a plane graph can be extended to be bimodal [8] are
NP-complete.

Fig. 1. Various representations of a bimodal irreducible triangulation.

A plane digraph is a planar digraph with a fixed rotation system of the edges
around each vertex and a fixed outer face. In an L-drawing of a plane digraph
G the clockwise cyclic order of the edges incident to each vertex and the outer
face is the one prescribed for G. In a planar L-drawing the edges attached to the
same port of a vertex v are ordered as follows: There are first the edges bending
to the left with increasing length of the segment incident to v and then those
bending to the right with decreasing length of the segment incident to v.

This is analogous to the Kandinsky model [14] where vertices are drawn as
squares of equal size on a grid and edges as orthogonal polylines on a finer grid
(Fig. 1(d)). Bend-minimization in the Kandinsky model is NP-complete [9] and
can be approximated within a factor of two [3]. Each undirected simple graph
admits a Kandinsky drawing with one bend per edge [10]. The relationship
between Kandinsky drawings and planar L-drawings was established in [11].

L-drawings of directed graphs can be considered as bend-optimal drawings,
since one bend per edge is necessary in order to guarantee the property that
edges must leave a vertex from the top or the bottom and enter it from the
right or the left. Planar L-drawings can be also seen as a directed version of
+-contact representations, where each vertex is drawn as a + and two vertices
are adjacent if the respective +es touch. If the graph is bimodal then the +es are
Ts (including T,

T

, and

T

). Undirected planar graphs always allow a T-contact
representation, which can be computed utilizing Schnyder woods [12].

Biedl and Mondal [7] showed that a +-contact representation can also be
constructed from a rectangular dual (Fig. 1(b)). A plane graph with four vertices
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on the outer face has a rectangular dual if and only if it is an inner triangulation
without separating triangles [18]. Bhasker and Sahni [5] gave the first linear time
algorithm for computing rectangular duals. He [15] showed how to compute a
rectangular dual from a regular edge labeling and Kant and He [17] gave two
linear time algorithms for computing regular edge labelings. Biedl and Derka [6]
computed rectangular duals via (3,1)-canonical orderings.

Contribution: We show that every bimodal graph without 2-cycles admits a
planar L-drawing respecting a given bimodal embedding. This implies that every
upward-planar graph admits a planar L-drawing respecting a given upward-
planar embedding. We thus solve an open problem posed in [11]. The construc-
tion is based on rectangular duals. Finally, we show that every outerplanar graph
admits a planar L-drawing but not necessarily one where all vertices are incident
to the outer face. We conclude with open problems.

Proofs for statements marked with (�) can be found inthe full version [1],
where we also provide an iterative algorithm showing that any bimodal graph
with 2-cycles admits a planar L-drawing if the underlying undirected graph with-
out 2-cycles is a planar 3-tree.

2 Preliminaries

L-Drawings. For each vertex we consider four ports, North, South, East, and
West. An L-drawing implies a port assignment, i.e. an assignment of the edges
to the ports of the end vertices such that the outgoing edges are assigned to
the North and South port and the incoming edges are assigned to the East and
West port. A port assignment for each edge e of a digraph G defines a pair
(out(e),in(e)) ∈ {North,South} × {East,West}. An L-drawing realizes a port
assignment if each edge e = (v, w) is incident to the out(e)-port of v and to
the in(e)-port of w. A port assignment admits a planar L-drawing if there is a
planar L-drawing that realizes it. Given a port assignment it can be tested in
linear time whether it admits a planar L-drawing [11].

In this paper, we will distinguish between given L-drawings of a triangle.

Lemma 1 (�). Figure 5 shows all planar L-drawings of a triangle up to sym-
metry.

Coordinates for the Vertices. Given a port assignment that admits a planar
L-drawing, a planar L-drawing realizing it can be computed in linear time by
the general compaction approach for orthogonal or Kandinsky drawings [13].
However, in this approach, the graph has to be first augmented such that each
face has a rectangular shape. For L-drawings of plane triangulations it suffices
to make sure that each edge has the right shape given by the port assignment,
which can be achieved using topological orderings only.
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Theorem 1 (�). Let G = (V,E) be a plane triangulated graph with a port
assignment that admits a planar L-drawing and let X and Y be the digraphs
with vertex set V and the following edges. For each edge e = (v, w) ∈ E

– there is (v, w) in X if in(e) = West and (w, v) in X if in(e) = East.
– there is (v, w) in Y if out(e) = North and (w, v) in Y if out(e) = South.

Let x and y be a topological ordering of X and Y , respectively. Drawing each
vertex v at (x(v), y(v)) yields a planar L-drawing realizing the given port assign-
ment.

Observe that we can modify the edge lengths in a planar L-drawing inde-
pendently in x- and y-directions in an arbitrary way, as long as we maintain the
ordering of the vertices in x- and y-direction, respectively. This will still yield a
planar L-drawing. This fact implies the following remark.

Remark 1. Let G be a plane digraph with a triangular outer face, let Γ be a
planar L-drawing of G, and let Γ0 be a planar L-drawing of the outer face of G
such that the edges on the outer face have the same port assignment in Γ and
Γ0. Then there exists a planar L-drawing of G with the same port assignment
as in Γ in which the drawing of the outer face is Γ0.

Generalized Planar L-Drawings. An orthogonal polyline P = 〈p1, . . . , pn〉 is
a sequence of points s.t. pipi+1 is vertical or horizontal. For 1 ≤ i ≤ n − 1 and
a point p ∈ pipi+1, the polyline 〈p1, . . . , pi, p〉 is a prefix of P and the polyline
〈p, pi+1, . . . , pn〉 is a suffix of P . Walking from p1 to pn, consider a bend pi,
i = 2, . . . , n−1. The rotation rot(pi) is 1 if P has a left turn at pi, −1 for a right
turn, and 0 otherwise (when pi−1pi and pipi+1 are both vertical or horizontal).
The rotation of P is rot(P ) =

∑n−1
i=2 rot(pi).

In a generalized planar L-drawing of a digraph, vertices are still represented by
points with distinct x- and y-coordinates and the edges by orthogonal polylines
with the following three properties. (1) Each directed edge e = (u, v) starts with
a vertical segment incident to the tail u and ends with a horizontal segment
incident to the head v. (2) The polylines representing two edges overlap in at
most a common straight-line prefix or suffix, and they do not cross.

In order to define the third property, let init(e) be the prefix of e overlapping
with at least one other edge, let final(e) be the suffix of e overlapping with
at least one other edge, and let mid(e) be the remaining individual part of e.
Observe that the first and the last vertex of init(e), final(e), and mid(e) are end
vertices of e, bends of e, or bends of some other edges. Now we define the third
property: (3) For an edge e one of the following is true: (i) neither of the two
end points of mid(e) is a bend of e and rot(e) = ±1 or (ii) one of the two end
points of mid(e), but not both, is a bend of e and rot(mid(e)) = 0. See Fig. 2.
As a consequence of the flow model of Tamassia [19], we obtain the following
lemma.

Lemma 2 (�). A plane digraph admits a planar L-drawing if and only if it
admits a generalized planar L-drawing with the same port assignment.
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Fig. 2. Cond. 3 of generalized planar L-drawings is fulfilled for all edges but for e1 and
e2. The rotation of each edge is ±1. However, rot(mid(e1)) = 2 and both end vertices
of mid(e2) are bends of e2.

Rectangular Dual. An irreducible triangulation is an internally triangulated
graph without separating triangles, where the outer face has degree four (Fig. 1).
A rectangular tiling of a rectangle R is a partition of R into a set of non-
overlapping rectangles such that no four rectangles meet at the same point. A
rectangular dual of a planar graph is a rectangular tiling such that there is a one-
to-one correspondence between the inner rectangles and the vertices and there is
an edge between two vertices if and only if the respective rectangles touch. We
denote by Rv the rectangle representing the vertex v. Note that an irreducible
triangulation always admits a rectangular dual, which can be computed in linear
time [5,6,15,17].

Perturbed Generalized Planar L-Drawing. Consider a rectangular dual for
a directed irreducible triangulation G. We construct a drawing of G as follows.
We place each vertex of G on the center of its rectangle. Each edge is routed as
a perturbed orthogonal polyline, i.e., a polyline within the two rectangles corre-
sponding to its two end vertices, such that each edge segment is parallel to one
of the two diagonals of the rectangle containing it. See Fig. 3(a). This drawing
is called a perturbed generalized planar L-drawing if and only if (1) each directed
edge e = (u, v) starts with a segment on the diagonal \u of Ru from the upper
left to the lower right corner and ends with a segment on the diagonal /v of Rv

from the lower left to the upper right corner. Observe that a change of directions
at the intersection of Rv and Ru is not considered a bend if the two incident
segments in Rv and Ru are both parallel to \ or to /. The definition of rotation
and Conditions (2) and (3) are analogous to generalized planar L-drawings.

In a perturbed generalized planar L-drawing, the North port of a vertex is at
the segment between the center and the upper left corner of the rectangle. The
other ports are defined analogously. Since we can always approximate a segment
with an orthogonal polyline (Figs. 3(b) to 3(d)), we obtain the following.

Lemma 3 (�). If a directed irreducible triangulation has a perturbed generalized
planar L-drawing, then it has a planar L-drawing with the same port assignment.
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Fig. 3. (a) An edge in a perturbed generalized planar L-drawing. (b-e) From a per-
turbed generalized planar L-drawing to a generalized planar L-drawing.

3 Planar L-drawings of Bimodal Graphs

We study planar L-drawings of plane bimodal graphs. Our main contribution is
to show that if the graph does not contain any 2-cycles, then it admits a planar
L-drawing (Theorem 2). In the full version of this paper [1], we also show that if
there are 2-cycles, then there is a planar L-drawing if the underlying undirected
graph after removing parallel edges created by the 2-cycles is a planar 3-tree.

3.1 Bimodal Graphs Without 2-Cycles

Our approach is inspired by the work of Biedl and Mondal [7] that constructs
a +-contact representation for undirected graphs from a rectangular dual. We
extend their technique in order to respect the given orientations of the edges.

The idea is to triangulate and decompose a given bimodal graph G. Proceed-
ing from the outermost to the innermost 4-connected components, we construct
planar L-drawings of each component that respects a given shape of the outer
face. We call a pair of edges e1, e2 a pincer if e1 and e2 are on a triangle T , both
are incoming or both outgoing edges of its common end vertex v (i.e. v is a sink-
or a source switch of T ), and there is another edge e of G incident to v in the
interior of T but with the opposite direction. See Fig. 4. If the outer face of a
4-connected component contains a pincer, we have to make sure that e1 and e2
are not assigned to the same port of v in an ancestral component. In a partial
perturbed generalized planar L-drawing of G, we call a pincer bad if e1 and e2
are assigned to the same port. Observe that in a bimodal graph, a pincer must
be a source or a sink in an ancestral component. Moreover, in a 4-connected
component at most one pair of incident edges of a vertex can be a pincer.

Theorem 2. Every plane bimodal graph without 2-cycles admits a planar L-
drawing. Moreover, such a drawing can be constructed in linear time.

Proof. Triangulate the graph as follows: Add a new directed triangle in the outer
face. Augment the graph by adding edges to obtain a plane bimodal graph in
which each face has degree at most four as shown in the full version [1]. More
precisely, now each non-triangular face is bounded by a 4-cycle consisting of
alternating source and sink switches of the face. We finally insert a 4-modal
vertex of degree 4 into each non-triangular face maintaining the 2-modality of
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Fig. 4. (a) The blue edges incident to v and w, respectively, are pincers that are bad
in the drawing of the blue triangle in (b) and not bad in (c). (d) shows the only case
(up to reversing directions) of a graph H in Sect. 3.2 with a pincer that is incident
to a 2-modal vertex (the orientation of the undirected outer edge is irrelevant). (e)
Avoiding bad pincers with virtual edges. (Color figure online)

Fig. 5. Realization in the rectangular dual for any kind of drawings of the outer face
up to symmetries.

the neighbors. Let G be the obtained triangulated graph. We construct a port
assignment that admits a planar L-drawing of G as follows. Decompose G at sep-
arating triangles into 4-connected components. Proceeding from the outermost to
the innermost components, we compute a port assignment for each 4-connected
component H, avoiding bad pincers and such that the ports of the outer face of
H are determined by the corresponding inner face of the parent component of H.
See Sect. 3.2. By Theorem 1, we compute a planar L-drawing realizing the given
port assignment. Finally, we remove the added vertices and edges from Γ . Since
the augmentation of G and its decomposition into 4-connected components [16]
can be performed in linear time, the total running time is linear.

Theorem 2 yields the following implication, solving an open problem in [11].

Corollary 1. Every upward-plane graph admits a planar L-drawing.
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3.2 Planar L-Drawings for 4-Connected Bimodal Triangulations

In this subsection, we present the main algorithmic tool for the proof of Theorem
2. Let G be a triangulated plane digraph without 2-cycles in which each vertex is
2-modal or an inner vertex of degree four. Let H be a 4-connected component of
G (obtained by decomposing G at its separating triangles) and let Γ0 be a planar
L-drawing of the outer face of H without bad pincers of G. We now present an
algorithm that constructs a planar L-drawing of H in which the drawing of the
outer face is Γ0 and no face contains bad pincers of G.

Port Assignment Algorithm. The aim of the algorithm is to compute a
port assignment for the edges of H such that (i) there are no bad pincers and
(ii) there exists a planar L-drawing realizing such an assignment. Note that the
drawing Γ0 already determines an assignment of the external edges to the ports
of the external vertices. By Remark 1 any planar L-drawing with this given port
assignment can be turned into one where the outer face has drawing Γ0.

First, observe that H does not contain vertices on the outer face that are
4-modal in H: This is true since 4-modal vertices are inner vertices of degree
four in the triangulated graph G and since G has no 2-cycles. This implies that
H, likewise G, is a triangulated plane digraph without 2-cycles in which each
vertex is 2-modal or an inner vertex of degree four.

Avoiding Bad Pincers. Next, we discuss the means that will allow us to avoid
bad pincers. Let e1 and e2 be two edges with common end vertex v that are
incident to an inner face f of H such that e1, e2 is a pincer of G. Note that the
triangle bounding f is a separating triangle of G. We call f the designated face of
v. In the following we can assume that v is 0-modal in H: In fact, if v is 2-modal
in H then v was an inner 4-modal vertex of degree 4 in G, and e1 and e2 are two
non-consecutive edges incident to v. It follows that H is a K4 where the outer
face is not a directed cycle. See Fig. 4(d). For any given drawing Γ0 of the outer
face (see Fig. 5 and Lemma 1 for the possible drawings of a triangle), the inner
vertex can always be added such that no bad pincer is created. Finally, observe
that v cannot be 4-modal in H otherwise it would be at least 6-modal in G.

Hence, in the following, we only have to take care of pincers where the com-
mon end vertex is 0-modal in H. Since each 0-modal vertex was 2-modal in G,
it has at most one designated face. In the following, we assume that all 0-modal
vertices are assigned a designated incident inner face where no 0◦ angle is allowed.

Constructing the Rectangular Dual. As an intermediate step towards a perturbed
generalized planar L-drawing, we have to construct a rectangular dual of H, more
precisely of an irreducible triangulation obtained from H as follows. Let s, t, and
w be the vertices on the outer face of H. Depending on the given drawing of
the outer face, subdivide one of the edges of the outer face by a new vertex x
according to the cases given in Fig. 5 – up to symmetries. Let f be the inner
face incident to x. Then f is a quadrangle. Triangulate f by adding an edge
e incident to x: Let y be the other end vertex of e. If y was 2-modal, we can
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Fig. 6. Port assignment: (b) around neighbor y of outer subdivision vertex x.

orient e such that y is still 2-modal. If y was 0-modal and f was its designated
face, then orient e such that y is now 2-modal. Otherwise, orient e such that y
remains 0-modal. Observe that if y had degree 4 in the beginning it has now
degree 5.

The resulting graph Hx is triangulated, has no separating triangles and the
outer face is bounded by a quadrangle, hence it is an irreducible triangulation.
Thus, we can compute a rectangular dual R for Hx. Up to a possible rotation
of a multiple of 90◦, we can replace the four rectangles on the outer face with
the configuration depicted in Fig. 5 that corresponds to the given drawing of the
outer face. Let Rv be the rectangle of a vertex v.

Port Assignment. We now assign edges to the ports of the incident vertices. For
the edges on the outer face the port assignment is given by Γ0. Figure 5 shows
the assignments for the outer face.

Let v be a vertex of Hx. We define the canonical assignment of an edge
incident to v to a port around v as follows (see Fig. 6(a)). An outgoing edge (v, u)
is assigned to the North port, if Ru is to the left or the top of Rv. Otherwise it
is assigned to the South port. An incoming edge (u, v) is assigned to the West
port, if Ru is to the left or the bottom of Rv. Otherwise it is assigned to the
East port.

In the following we will assign the edges to the ports of their end vertices
such that each edge is assigned in a canonical way to at least one of its end
points and such that crossings between edges incident to the same vertex can
be avoided within the rectangle of the common end vertex. We exploit this
property alongside with the absence of 2-cycles to prove that such an assignment
determines a perturbed generalized planar L-drawing of the plane graph Hx.

0-Modal Vertices. We consider each 0-modal vertex v to be 2-modal by adding
a virtual edge inside its designated face f . Namely, suppose v is a source and
let e1 = (v, w1) and e2 = (v, w2) be incident to f . We add a virtual edge (w, v)
between e1 and e2 from a new virtual vertex w. Of course, there is not literally a
rectangle Rw representing w, but for the assignments of the edges to the ports of
v, we assume that Rw is the degenerate rectangle corresponding to the segment
on the intersection of Rw1 and Rw2 . See Fig. 4(e).
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2-Modal Vertices. Let now v be a 2-modal vertex. We discuss the cases where we
have to deviate from the canonical assignment. We call a side s of a rectangle in
the rectangular dual to be mono-directed, bi-directed, or 3-directed, respectively, if
there are 0, 1, or 2 changes of directions of the edges across s. See Fig. 7. Observe
that by 2-modality there cannot be more than two changes of directions.

Consider first the case that Rv has a side that is 3-directed, say the right side
of Rv. See Fig. 7(a). If from top to bottom there are first outgoing edges followed
by incoming edges and followed again by outgoing edges, then we assign from
top to bottom first the North port, then the East port, and then the South port
to the edges incident to rectangles on the right of Rv (counterclockwise switch).
Otherwise, we assign from top to bottom first the East port, then the South
port, and then the West port (clockwise switch). All other edges are assigned
in a canonical way to the ports of v; observe that there is no other change of
directions.

Fig. 7. Assignment of ports when the direction of edges incident to one side of a
rectangle changes a) twice b-e) once, or f) never.

Consider now the case that Rv has one side that is bi-directed, say again the
right side of Rv. If the order from top to bottom is first incoming then outgoing
then assign the edges incident to the right side of Rv in a canonical way (canonical
switch, Fig. 7(b)). Otherwise (unpleasant switch), we have two options, we either
assign the outgoing edges to the North port and the incoming edges to the East
port (counter-clockwise switch, Fig. 7(d)) or we assign the outgoing edges to the
South port and the incoming edges to the West port (clockwise switch, Fig. 7(c)).

Observe that if there is an unpleasant switch on one side of Rv then there
cannot be a canonical switch on an adjacent side. Assume now that there are
two adjacent sides s1 and s2 of Rv in this clockwise order around Rv with
unpleasant switches. Then we consider both switches as counterclockwise or both
as clockwise. See Fig. 7(e). Observe that due to 2-modality two opposite sides
of Rv are neither both involved in unpleasant switches nor both in canonical
switches.
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Consider now the case that one side s of Rv is mono-directed, say again the
right side of Rv. See Fig. 7(f). In most cases, we assign the edges incident to s in
a canonical way. There would be – up to symmetry – the following exceptions:
The top side of Rv was involved in a clockwise switch and the edges at the right
side are incoming edges. In that case we have a clockwise switch at s, i.e., the
edges at the right side are assigned to the West port of v. The bottom side of
Rv was involved in a counter-clockwise switch and the edges at the right side
are outgoing edges. In that case we have a counter-clockwise switch at s, i.e., the
edges at the right side are assigned to the North port of v.

In order to avoid switches at mono-directed sides, we do the following: Let
s1, s, s2 be three consecutive sides in this clockwise order around the rectangle
Rv such that there is an unpleasant switch on side s; say s is the right side of
Rv, s1 is the top and s2 is the bottom, and the edges on the right side are from
top to bottom first outgoing and then incoming. By 2-modality, there cannot be
a switch of directions on both, s1 and s2, i.e., s1 contains no incoming edges, or
s2 contains no outgoing edges. In the first case, we opt for a counterclockwise
switch for s, otherwise, we opt for a clockwise switch.

Fig. 8. Extra Rule

There is one exception to the rule in the previous paragraph (which we refer
to as Extra Rule): Let u and w be two adjacent 0-modal vertices with the
same designated face f such that the two virtual end vertices are on one line �.
See Fig. 8. Let su be the side of Ru intersecting Rw and let sw be the side of Rw

intersecting Ru. Assume that u has an unpleasant switch at su and, consequently,
w has an unpleasant switch at sw. Let x be the third vertex on f and let sx be
the side of Rx intersecting Ru and Rw. Observe that sx ⊂ �. Do the switch at
su and sw in clockwise direction if and only if the switch at sx is in clockwise
direction, otherwise in counterclockwise direction.

Property 1. There is neither a clockwise nor a counter-clockwise switch at a
mono-directed side of a rectangle Rv except if v is one of the 0-modal vertices
to which the Extra Rule was applied.

4-Modal Vertices. If v is an inner 4-modal vertex of degree 4, then each side of Rv

is incident to exactly one rectangle, and we always use the canonical assignment.
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If v is a 4-modal vertex of degree 5, then v is the inner vertex y adjacent to the
subdivision vertex x. Note that we do not have to draw the edge between x and
y. However, this case is still different from the previous one, since there are two
rectangles incident to the same side s of Ry. If the switch at s is canonical then
there is no problem. Otherwise we do the assignment as in Fig. 6(b).

Observe that we get one edge between y and a vertex on the outer face that
is not assigned in a canonical way at y. But this edge is assigned in a canonical
way at the vertex in the outer face. This completes the port assignments.

Fig. 9. How to route the edge e between v and w. Point d is the corner at the end of
the diagonal of Rw to which e is assigned.
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Correctness. In the full version [1], we give a detailed proof that the con-
structed port assignment admits a perturbed generalized planar L-drawing and,
thus, a planar L-drawing of H. The proof starts with the observation that each
edge is assigned in a canonical way at one end vertex at least. Then we route
the edges as indicated in Fig. 9 where each part of a segment that is not on a
diagonal of a rectangle represents a perturbed orthogonal polyline of rotation 0.
Finally, we show that the encircled bends are not contained in any other edge.

Lemma 4. A planar L-drawing of H in which the drawing of the outer face is
Γ0 and no face contains bad pincers of G can be constructed in linear time.

Proof. The construction guarantees a planar L-drawing of H. The port assign-
ment is such that there are no bad pincers and for the outer face it is the same
as in Γ0. A rectangular dual can be constructed in linear time [5,17]. The port
assignment can also be done in linear time. Finally, the coordinates can be com-
puted in linear time using topological ordering – see Theorem 1.

4 Outerplanar Digraphs

Since there exist outerplanar digraphs that do not admit any bimodal embed-
ding [4], we cannot exploit Theorem 2 to construct planar L-drawings for the
graphs in this class. However, we are able to prove the following.

Theorem 3. Every outerplanar graph admits a planar L-drawing.

Proof. Put all vertices on a diagonal in the order in which they appear on the
outer face – starting from an arbitrary vertex. The drawing of the edges is
determined by the direction of the edges. This implies that some edges are drawn
above and some below the diagonal. By outerplanarity, there are no crossings.

We remark that Theorem 3 provides an alternative proof to the one in [4]
that any outerplanar digraph admits a 4-modal embedding. Observe that the
planar L-drawings constructed in the proof of Theorem 3 are not necessarily
outerplanar. In the following, we prove that this may be unavoidable.

Theorem 4. Not every outerplanar graph admits an outerplanar L-drawing.

f
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Proof. Consider the graph depicted above. It has a unique outerplanar embed-
ding. Let f be the inner face of degree 6. Each vertex incident to f is 4-modal
and is a source switch or a sink switch of f . Thus, the angle at each vertex is 0◦.
The angle at each bend is at most 3/2π. Thus, the angular sum around f would
imply (2 · deg f − 2) · π ≤ 3/2 · deg f · π, which is not possible for deg f = 6.

There are even 4-modal biconnected internally triangulated outerplane
digraphs that do not admit an outerplanar L-drawing. See the full version [1].

5 Open Problems

– Are there bimodal graphs with 2-cycles that do not admit a planar L-drawing
(with or without the given embedding)?

– What is the complexity of testing whether a 4-modal graph admits a planar
L-drawing with a fixed embedding?

– In the directed Kandinsky model where edges leave a vertex to the top or
the bottom and enter a vertex from the left or the right, for which k is there
always a drawing with at most 1+2k bends per edge for any 4-modal graph?
k = 0 does not suffice. What about k = 1?

– Can it be tested efficiently whether an outerplanar graph with a given 4-modal
outerplanar embedding admits an outerplanar L-drawing?
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Abstract. The aim of this research is a practical method to draw cable
plans of complex machines. Such plans consist of electronic compo-
nents and cables connecting specific ports of the components. Since the
machines are configured for each client individually, cable plans need to
be drawn automatically. The drawings must be well readable so that
technicians can use them to debug the machines. In order to model plug
sockets, we introduce port groups; within a group, ports can change their
position (which we use to improve the aesthetics of the layout), but
together the ports of a group must form a contiguous block.

We approach the problem of drawing such cable plans by extend-
ing the well-known Sugiyama framework such that it incorporates ports
and port groups. Since the framework assumes directed graphs, we pro-
pose several ways to orient the edges of the given undirected graph.
We compare these methods experimentally, both on real-world data and
synthetic data that carefully simulates real-world data. We measure the
aesthetics of the resulting drawings by counting bends and crossings.
Using these metrics, we compare our approach to Kieler [JVLC 2014], a
library for drawing graphs in the presence of port constraints.

Keywords: Sugiyama framework · Port constraints · Experimental
evaluation

1 Introduction

Today, the development of industrial machinery implies a high interdependency
of mechanical, electrical, hydraulic, and software-based components. The con-
tinuous improvement of these machines yielded an increased complexity in all
these domains, but also in their interrelations. In the case of a malfunction, a
human technician needs to understand the particular interdependencies. Only
then, (s)he will be able to find, understand, and resolve errors. Different types
of schematics play a key role in this diagnosis task for depicting dependencies
between the involved components, e.g., electric or functional schematics. The
intuitive understanding and comprehensibility of these schematics is critical for
finding errors efficiently.
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Fig. 1. Extract of a hand-drawn plan. The labels have been intentionally obfuscated
or removed.

Due to the increased complexity of machinery, such schematics cannot be
drawn manually anymore: The high variance of machine configurations nowadays
requires the ad-hoc computation and visualization of schematics appropriate for
the requested diagnosis case. To support technicians, algorithms for drawing
schematics should adhere to the visual “laws” of the manual drawings that the
technicians are familiar with; see Fig. 1 for an example. Such drawings route
connections between components in an orthogonal manner. Manual drawings
often use few layers and seem to avoid crossings and bends as much as possible.

In many applications (such as UML diagrams or data flow diagrams), con-
nections are directed from left to right or from top to bottom. This setting is
supported by the framework introduced by Sugiyama et al. [12]. Given a directed
graph, their approach arranges the edges mainly in the same direction by orga-
nizing the nodes in subsequent layers (or levels). The layer-based approach solves
the graph-layout problem by dividing it into five phases: cycle elimination, layer
assignment, crossing minimization, node placement, and edge routing.

There are also algorithms for practical applications purely based on the
orthogonal drawing paradigm, where all vertices are rectangles on a regular
grid and the edges are routed along the horizontal and vertical lines of the grid.
There, a classic three-phase method dates back to Biedl et al. [1].

In many technical drawings (such as cable plans, UML diagrams, or data
flow diagrams), components are drawn as axes-aligned rectangles, connections
between the components are drawn as axes-aligned polygonal chains that are
attached to a component using a port, that is, a geometric icon that is small
relative to a component and whose shape has a specific meaning for the domain
expert. Using so-called port constraints, a user can insist that a connection enters
a component on a specific side—a natural requirement in many applications.

The well-established Kieler library [11] implements the Sugiyama framework.
Kieler is particularly interesting for our application as Kieler allows the user
to specify several types of port constraints; namely, on which side of a vertex
rectangle should a port be placed, and, for each side, the exact order in which
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the ports should be arranged. Alternatively, the order is variable and can be
exploited to improve the layouts in terms of crossings and bends.

We have chosen to build our algorithm for undirected graphs on the (directed)
layer-based approach instead of an (undirected) purely orthogonal one because
the typical hand-drawn plans use only few distinct layers to place the vertices
on, the layer-based approach seems to be better investigated in practice, and
Kieler has already proven to yield by and large pleasing results in the considered
domain.

Our Contribution. First, we propose two methods to direct the edges of the given
undirected graph so that we can apply the Sugiyama framework (see Sect. 3);
one is based on breadth-first search, the other on a force-directed layout. We
compare the two methods experimentally with a simple baseline method that
places the nodes of the given graph randomly and directs all edges upward (see
Sect. 4.3), both on real-world and synthetic cable plans (see Sect. 4.2). We claim
that our approach to generate realistic test graphs is of independent interest. We
“perturb” real-world instances such that, statistically, they have similar features
as the original instances.

Second, we extend the set of port constraints that the aforementioned Kieler
library allows the user to specify. In order to model plug sockets, we introduce
port groups; within a group, the position of the ports is either fixed or variable.
In either case, the ports of a group must form a contiguous block. Port groups
can be nested. If the order of a port group is variable, our algorithm exploits
this to improve the aesthetics of the layout.

Apart from such hierarchical constraints, we also give the user the possibil-
ity to specify pairings between ports that belong to opposite sides of a vertex
rectangle (top and bottom). Such a pairing constraint enforces that the two cor-
responding ports are placed at the same x-coordinates on opposite sides of the
vertex rectangle. Pairing constraints model pairs of sockets of equal width that
are plugged into each other.

After formally defining the problem (Sect. 2), we describe our algorithm
(Sect. 3). Finally, we present our experimental evaluation (Sect. 4).

2 Preliminaries

We define the problem Layered Graph Drawing with Generalized Port
Constraints as follows. For an illustration refer to Fig. 2b.

Given: An undirected port graph G = (V, P, PG,PP,E), where

– V is the set of vertices—each vertex v is associated with two positive numbers
w(v) and h(v); v will be represented by a rectangle of width at least w(v) and
height at least h(v) (to ensure a given vertex label can be accommodated),

– P is the set of ports—each port belongs either directly to a vertex or indirectly
through a port group (or a nested sequence of port groups),
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– PG is the set of port groups—each port group belongs to a side (Bottom,
Top, Free)1 of exactly one vertex and contains a set of ports and port groups
(not contained in another port group) whose order is fixed or variable,

– PP is the set of port pairings—each port pairing consists of two unique ports
from P that belong to the same vertex (directly or via port groups), and

– E is the set of edges—each edge connects two unique ports from P that are
contained in different vertices, and

– the graph where all ports are contracted into their vertices is connected.

Find: A drawing of G such that

– no drawing elements overlap each other except that edges may cross each
other in one point,

– each vertex v ∈ V is drawn as an axis-aligned rectangle of width at least w(v)
and height at least h(v) on a horizontal layer,

– each port p ∈ P is drawn as a (small, fixed-size) rectangle attached to the
boundary of its vertex rectangle (on the specified side unless set to Free),

– when walking along the boundary of a vertex, the ports of a port group (or
subgroup) form a contiguous block; and for a port group with fixed order, its
ports and port groups appear in that order,

– for each port pair {p, p′} ∈ PP , ports p and p′ are drawn on the same vertical
line on opposite sides of their vertex,

– each edge {p, p′} ∈ E is drawn as a polygonal chain of axis-aligned line
segments (orthogonal polyline) that connects the drawings of p and p′, and

– the total number of layers, the width of the drawing, the lengths of the edges,
and the number of bend points of the edges are kept close to a minimum.

We have chosen this problem definition to be both, simple and extendable to
more complex settings by using the described elements as building blocks. For
instance, if there are multiple edges per port, then in a preprocessing we can
assign each edge its own port and keep them together using a port group. In a
post-processing, we draw just one of these ports and we re-draw the ends of the
edges incident to the other ports of this group. Or if there are bundles of edges
(e.g. a cable with twisted wires), we can keep their ports together by introducing
port groups.

Note that our problem definition generalizes the Layered Graph Draw-
ing problem that is formalized and solved heuristically by the Sugiyama frame-
work [12]. Several subtasks of the framework correspond to NP-hard optimization
problems such as One-Sided Crossing Minimization [4]. Hence, we have to
make do with a heuristic for our problem, too. This heuristic is coming up next.

3 Algorithm

We assume that we are given a graph as described in Sect. 2. (Otherwise we can
preprocess accordingly.) Similarly to the algorithm of Sugiyama et al. [12], our
algorithm proceeds in phases, which we treat in the following subsections.
1 We can also handle sides Left and Right, which we describe in the full version [13].

We do not have constraints for ports on the left or the right side in our experiments.
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3.1 Orienting Undirected Edges

Classical algorithms for layered graph drawing expect as input a directed acyclic
graph, whose vertices are placed onto layers such that all edges point upwards.
For directed cyclic graphs, some edges may be reversed or removed to make
the graph acyclic. In our case of undirected graphs, we suggest the following
procedures to orient the undirected edges, making the graph simultaneously
directed and acyclic. (Hence, we don’t need the cycle elimination phase of the
Sugiyama framework.) We ignore the ports in this step.

BFS: We execute a breadth-first search from a random start vertex. Edges are
oriented from vertices discovered earlier to vertices discovered later.

FD: We run a force-directed graph drawing algorithm. In the resulting drawing,
edges are oriented upwards.

Rand: We place the vertices randomly into the drawing area, uniformly dis-
tributed. In the resulting drawing, we orient the edges as in FD.

The runtime of this phase is dominated by the force-directed algorithm. We
also suggest to execute the force-directed algorithm more than once, say k times,
with different random start positions and then to use the drawing admitting
the fewest crossings. This is less time consuming than re-iterating the whole
algorithm. In our experiments, we used a classical spring embedder [6] with the
speed-up technique as described by Lipp et al. [8]. The resulting runtime is in
O(k · I · |V | log |V |), where I is the number of iterations per execution of the
force-directed algorithm.

3.2 Assigning Vertices to Layers

In this step we seek for an assignment of vertices to layers, such that all directed
edges point upwards. We use a network simplex algorithm as described by
Gansner et al. [7]. The algorithm is optimal in the sense that the sum of layers
the edges span is minimized. With respect to the runtime of their algorithm, the
authors state: “Although its time complexity has not been proven polynomial,
in practice it takes few iterations and runs quickly.”

3.3 Orienting Ports and Inserting Dummy Vertices

Consider the ports of a vertex. If a port group is of a type different than Free,
we assign all ports of this port group or a port group containing this port group
to the specified vertex side, e.g., the bottom side.2 If this leads to contradicting
assignments of the same port, we reject the instance. We treat port pairings
analogously. We assign ports that are in no port group to the top or the bottom
side depending on whether they have an outgoing or incoming edge. If ports of
a port group of type Free remain unassigned, we make a majority decision for
the top-level port group—if there are more outgoing than incoming edges, we
set its ports to the top side; otherwise to the bottom side.
2 See the full version [13] for handling port groups of type Left and Right.
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Fig. 2. Example for the insertion of dummy vertices. (Color figure online)

In any case, we may end up with ports being on the “wrong” side in terms of
incident edges, e.g., a port on the top side has an incoming edge. To make such
edges reach their other endpoints without running through the vertex rectangle,
we introduce an extra layer directly above the layer at hand. On the extra layer,
we then place a dummy vertex that will serve as a “turning point” for these
edges; see Fig. 2. We will refer to them as turning dummy vertices.

In contrast, Kieler [11] appends effectively, for each port that lies on the
“wrong” side, a dummy port on the opposite side of the vertex rectangle, to the
very right or left of the ports there. The edges will later be routed around the
vertex to this dummy port. Our new approach therefore provides a somewhat
greater flexibility in routing edges around vertices.

As in the classical algorithms for layered graph drawing, we subdivide edges
traversing a layer (which may also be an extra layer) by a new dummy vertex
on each such layer. Hence, we have only edges connecting neighboring layers. As
for all algorithms that rely on decomposing the edges, this phase runs in time
O(λ · |E| + |P |), where λ is the number of layers. Note that λ ∈ O(|V |).

3.4 Reducing Crossings by Swapping Vertices

We employ the layer sweep algorithm using the well-known barycenter heuristic
proposed by Sugiyama et al. [12]. However, we also have to take the ports and
the port constraints into account. We suggest three ways to incorporate them.

Vertices: We first ignore ports. We arrange the vertices as follows. Since there
may be many edges between the same pair of vertices, we compute the vertex
barycenters weighted by edge multiplicities. After having arranged all vertices,
we arrange the ports at each vertex to minimize edge crossings. Finally, we
rearrange the ports according to port pairings and port groups by computing
barycenters of the ports of each port group.

Ports: We use indices for the ports instead of the vertices and apply the barycen-
ter heuristic to the ports. This may yield an invalid ordering with respect to
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port groups and vertices. Hence, we sort the vertices by the arithmetic mean
of the port indices computed before. Within a vertex, we sort the port groups
by the arithmetic mean of the indices of their ports. We recursively proceed
in this way for port groups contained in port groups and finally for the ports.

Mixed: Vertices that do not have port pairings are kept as a whole, vertices
with port pairings are decomposed into their ports. The idea is that, when
sweeping up or down, the ports do not influence the ordering on the other side
and can be handled in the end—unless they are paired. After each iteration,
we force the ports from decomposed vertices to be neighbors by computing
their barycenters, and we arrange the paired ports above each other. Finally,
we arrange all ports that are not included in the ordering as in Vertices.

In all cases, if a port group has fixed order, we cannot re-permute its elements,
but we take the order as described from left to right. We use random start permu-
tations for vertices and ports. We execute this step r times for some constant r
(in our experiments r = 10) and take the solution that causes the fewest cross-
ings. Kieler [11] also computes barycenters depending on the order of ports of
the previous layer. Similar to Ports they describe a layer-total approach and
similar to Mixed they describe a node-relative approach. However, they com-
pute barycenters only for vertices as a whole. We use barycenters of ports to
recursively determine also an ordering of port groups.

This phase runs in time O(r ·J ·λ · |E|), where J is the number of (top-down
or bottom-up) sweeps within one execution of the layer sweep algorithm.

3.5 Determining Vertex Coordinates

To position both vertices and ports, we decompose the vertices into ports and
edges. An example is given in Fig. 3. We duplicate each layer Li (except for the
extra layers introduced in Sect. 3.3) to an upper layer Li+ and a lower layer Li− .
For a vertex on layer Li, we place all ports of the Top side in the previously
computed order onto Li+ and all ports of the Bottom side in the previously
computed order onto Li− . To separate the vertices from each other and to assign
them a rectangular drawing area, we insert a path of length one with the one port
on Li− and the other port on Li+ at the beginning and the end of each layer
and between every two consecutive vertices (gray in Fig. 3(b)). Moreover, we
may insert dummy ports without edges within the designated area of a vertex,
to increase the width of a vertex. This can be seen as “padding” the width
of a vertex v via ports to obtain the desired minimum width w(v). For each
port pairing {p, p′}, where p is on Li− and p′ is on Li+ , insert a dummy edge
connecting p and p′. Observe that we do not have edge crossings between Li−

and Li+ . Therefore, using the algorithm of Brandes and Köpf [2] (see below),
these edges will end up as vertical line segments. This fulfills our requirement for
vertices being rectangular and for ports of port pairings being vertically aligned.

Now we have a new graph G′ with ports being assigned to layers, but with-
out vertices and without port constraints. So, in the following we consider the
ports as vertices. This is precisely the situation as in the classical algorithms
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Fig. 3. Example of the transformation of vertices with ports on one layer to ports and
edges on two layers; port pairings are indicated by color. (Color figure online)

for layered graph drawing when determining coordinates of vertices. After the
current coordinate assignment step, we will re-transform the drawing into our
setting with vertices, ports, and edges.

The y-coordinate of a vertex is given by its layer. For assigning x-coordinates,
we use the well-established linear-time algorithm of Brandes and Köpf [2]. It
heuristically tries to straighten long edges vertically and balancing the position
of a vertex with respect to its upper and lower neighbors. It guarantees to pre-
serve the given vertex order on each layer and a minimum distance δ between
consecutive vertices. Moreover, it guarantees that uncrossed edges are drawn as
vertical line segments, which is crucial for our application.

We note that the original algorithm of Brandes and Köpf [2] contained two
flaws that came up in our experiments. Subsequently, they were fixed [3].

This phase runs in time linear in the number of ports and edges.

3.6 Constructing the Drawing and Orthogonal Edge Routing

First, we obtain vertices drawn as rectangles from (dummy) ports and edges
by reversing the transformation described in Sect. 3.5. Then, we transform the
dummy vertices inserted in Sect. 3.3 into bend points of their edges. Finally, we
draw the edges orthogonally. In the full version [13], we describe how to route
the edge pieces between two consecutive layers including edges going through
turning dummy vertices. The total runtime of this phase is O(λ · |E|2) in the
worst case (while in practice we would rather expect a linear runtime behavior).

4 Experimental Evaluation

For our experiments we got access to 380 real cable plans of a large German
machine manufacturing company. To obfuscate these plans and to have more
data for our experiments, we generated 1139 pseudo cable plans from the real
cable plans—almost always three from each real cable plan. For replicability, we
have made all of our algorithms, data structures, and data described here publicly
available on github [9,10]—except for the original (company-owned) plans.
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4.1 Graphs Used in the Experiments

First, we discuss the structure of these cable plans and how we transformed them
to the format that is expected by our algorithm. A cable plan has vertices with
ports and vertex groups that comprise multiple vertices. Moreover, there can be
edges connecting two or more ports (that is, hyperedges) and a port can be inci-
dent to an arbitrary number of edges. In a vertex group, there are port pairings
between two vertices and these vertices should be drawn as touching rectangles.
In our model, we do not have vertex groups and port pairings between different
vertices. Instead, we model a vertex group as a single vertex with (internal) port
pairings and a port group for the ports of each vertex. Moreover, we split ports
of degree d into d separate ports and enforce that they are drawn next to each
other and on the same side of the vertex by an (unordered) port group. We
replace hyperedges by a dummy vertex having an edge to each of the ports of
the hyperedge. We don’t have ports on the left or the right side of a vertex.

4.2 Generating a Large Pseudo Data Set from Original Data

Now, we describe briefly how we generated the pseudo cable plans. This can be
seen as a method to extend and disguise a set of real-world graphs. A draw-
ing of an original cable plan and derived pseudo cable plan is depicted in the
appendix of the full version [13]. There, we also show larger examples of draw-
ings generated by our algorithm. First, we preprocess the real-world input data
by extracting only the largest connected component of each graph as we draw
each connected component independently anyways. Then, we generate a pseudo
plan by removing and inserting elements from/to an original plan. Elements of
the plans are the vertex groups, vertices, ports, port pairings, and edges. As a
requirement we had to replace or remove at least a q-fraction of the original
elements (in our case q = 0.1). We proceed in three phases.

1. We determine target values for most elements of the graph (number of vertex
groups, vertices, ports, port pairings) and more specific parameters (distri-
bution of edge–port incidences, arithmetic mean of parallel edges per edge,
number of self loops, distribution of ports per edge, distribution of edges per
port). We pick each target value randomly using a normal distribution, where
the mean is this value in the original plan and the standard deviation is the
standard deviation of this value across all graphs of the original data set
divided by the number of plans in the original data set times a constant.

2. We remove a q-fraction of the original elements uniformly at random in the
following order: vertex groups (incl. contained vertices and incident edges),
vertices (incl. ports and incident edges), port pairings (incl. ports and incident
edges), ports (incl. incident edges), and edges.

3. In the same order, we add as many new elements as needed to reach the
respective target values. For the insertion of edges we are a bit more careful.
In case the graph became disconnected during the deletion phase, we first
reconnect the graph by connecting different components. Then, we insert the
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remaining edges according to the distributions of edge–port incidences while
trying to reduce the gaps between the target value and the current value for
parallel edges per edge and for the number of self loops. Parallel edges have
the same terminal vertices but not necessarily the same terminal ports. We
mostly use ports that do not have edges (they are new or their edges were
removed or they had no edges initially) and assign for each one the number of
edges it should get in the end. This gives us a set of candidate ports. Next, we
iteratively add a (hyper)edge e connecting d ports. In each iteration, we pick
c sets of d ports from our set of candidate ports uniformly at random—each
set is a candidate for the end points of the new edge. We choose the set where
we approach the aforementioned target values the best if we would add the
corresponding edge to the current graph. We used c = 1000, which means we
took one out of 1000 randomly generated edge candidates.

Our generated pseudo cable plans are good if they are similar to and have
similar characteristics as the original cable plans, and if the corresponding orig-
inal cable plans cannot easily be reconstructed from the pseudo cable plans.

For our purposes, we can compare the results of the experiments using the
original data set and the generated data set or we can compute explicit graph
characterization parameters. The numbers of vertices, ports, edges, . . . are similar
by using the target values. For example, the arithmetic mean (median) of the
number of vertices in the original data set is 104.16 (105), while it is 103.98 (105)
in the generated data set. The arithmetic mean (median) across the arithmetic
means of parallel edges per edge in the original data set is 1.592 (1.429), while it
is 1.493 (1.402) in the generated data set. Some characteristic parameters where
we did not have target values exhibit at least some similarities, which indicates
a similar structure of the graphs of both sets. For example, the arithmetic mean
(median) of the diameters across all graphs in the original data set is 9.508 (10),
while it is 8.128 (8) in the generated data set.

4.3 Experiments

Our experiments were run in Java on an Intel Core i7 notebook with 8 cores and
24 GB RAM under Linux and took about 14 h.

Orienting Undirected Edges. For each graph and each of FD, BFS, Rand, we
oriented the edges and executed the algorithm 5 times. For crossing minimiza-
tion, we used the variant Ports with 10 repetitions. For FD, we used only one
execution of the force-directed algorithm (so k = 1) to make it better comparable
to the other methods. We recorded

– the number ncr of crossings in the final drawing,
– the number nbp of bends created when executing the algorithm,
– the number ndv of dummy vertices created when executing the algorithm,
– the total area and the ratio of the bounding box of the drawing, and
– the time to orient the edges and run the algorithm.
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Table 1. Comparison of the methods for orienting the edges. The mean μ is relative to
Rand (standard deviation in the range [.2, .6]); β measures (in %) how often a method
provides the best result (

∑
β > 100 possible due to ties).

Original cable plans Generated artificial cable plans

FD BFS Rand FD BFS Rand

μ β μ β μ β μ β μ β μ β

ncr .55 89 .67 25 1 8 .68 89 .80 21 1 11

nbp .80 85 .86 20 1 10 1.01 60 1.03 29 1 21

ndv 1.03 9 .81 91 1 9 1.13 6 .93 89 1 11

area 1.14 20 1.05 42 1 42 1.30 10 1.13 37 1 55

w:h .51 85 .73 16 1 3 .65 85 .86 14 1 3

time 1.47 8 .88 74 1 26 1.66 4 1.03 51 1 48

Fig. 4. Comparison of the edge-orientation methods FD and BFS relative to Rand.
In each color, each dot represents one of the 380 original plans. (Color figure online)
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For each graph and each criterion, we took for each method the best of the
five results and normalized by the best value of Rand. The means (μ) of these
values are listed in Table 1. The winner percentage β measures how often a
specific method achieved the best objective value (usually the smallest, but for
the aspect ratio (w:h) the one closest to 1). Ties are not broken, so over the
three methods, the β-values add up to more than 100. We have a plot relating
the normalized values of ncr and nbp to the number of vertices in Fig. 4 for the
original plans and in the appendix of the full version [13] for the generated plans.

Crossing Minimization. We used the same settings as when we compared the
methods for orienting the edges, but here we exclusively used FD for orienting
the edges. We compared the methods Vertices, Mixed, and Ports, each with
10 repetitions in the crossing reduction phase. Kieler joined the comparison as
the base line method to which we relate our results.

The variant Kieler uses instead of our algorithm the algorithm ElkLayered
in eclipse.elk (formerly known as: KLayered in KIELER) [5]. As our algorithm,
ElkLayered does Sugiyama-based layered drawing using ports at vertices. Elk-
Layered, however, expects a directed graph as input and its port constraints
are less powerful. ElkLayered offers free placement of the ports around a vertex,
fixed side at a vertex, fixed order around a vertex, and fixed position at a vertex.
After orienting the given undirected graph, we used this algorithm as a black box
(and hence, we did not record the number of dummy vertices for Kieler) when
we set the port constraints to the most flexible value for each vertex. So, for
vertices having multiple port groups or port pairings, we set the order of ports
to be fixed, while we allow free port placement for all other vertices. As both
algorithms expect different input, use different subroutines and ElkLayered uses
more additional steps for producing aesthetic drawings, this comparison should
be treated with caution. For our results, see Table 2, Fig. 5, and the appendix
of the full version [13].

Table 2. Comparison of the methods for crossing reduction. The mean μ is relative to
Kieler (except for ndv, where it is relative to the best); the standard deviation is in
the range [.2, 1.1] (except for time, where it is higher); β is as in Table 1.

Original cable plans Generated artificial cable plans

Vertices Mixed Ports Kiel Vertices Mixed Ports Kiel

μ β μ β μ β μ β μ β μ β μ β μ β

ncr .83 19 .83 16 .65 84 1 12 .87 39 .96 15 .82 62 1 14

nbp .46 13 .44 29 .42 72 1 1 .56 40 .56 34 .56 41 1 0

ndv 1.11 38 1.10 40 1.11 37 – – 1.10 34 1.08 40 1.08 39 – –

area 3.20 3 3.40 2 3.44 3 1 97 3.70 1 4.03 1 4.06 1 1 99

w:h 1.05 31 1.11 21 1.23 15 1 37 1.20 18 1.25 14 1.32 10 1 62

time 14.31 2 39.66 1 51.71 1 1 100 18.18 1 45.82 1 68.52 1 1 100
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Fig. 5. Comparison of the three crossing-reduction methods relative to Kieler. In each
color, each dot represents one of the 380 original cable plans. (Color figure online)

5 Discussion and Conclusion

FD almost always yields orientations of the undirected graphs that lead to draw-
ings with fewer crossings than the orientations obtained from BFS and Rand.
Surprisingly, the oriented graphs obtained from BFS mostly use fewer dummy
vertices than FD. Although Rand performs rather poorly for most criteria, it
often uses the smallest drawing area. The savings in the total area by Rand
can be attributed almost exclusively to a lower height, which corresponds to
fewer layers. We discuss the direction assignment phase in more detail in the full
version [13]. Since we consider the numbers of crossings and bends, and a bal-
anced aspect ratio the most relevant parameters for obtaining visually pleasant
drawings, we recommend FD for orienting edges.
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For the crossing reduction phase, Ports performs clearly better than Ver-
tices and Mixed in terms of ncr and nbp. This is in line with our expectation
that incorporating distinct port orderings during the whole crossing reduction
procedure helps to avoid edge crossings, which crucially depend on the pre-
cise order of ports. Rather surprisingly, Vertices performs slightly better than
Mixed. We discuss the crossing reduction phase and the comparison of our
algorithm to Kieler in more detail in the full version [13].

We concede that the artificial plans that we generated are not perfect as
they behave somewhat differently from the original plans for certain criteria.
For instance, for the artificial plans the relative advantage of Ports in terms
of ncr and nbp is smaller than for the original plans. Nevertheless, the obfus-
cation allowed us to make somewhat realistic cable plans publicly available, so
that others can validate our experiments in the future. Our generation procedure
may also serve as an entry point for more research in generating pseudo data
from original data. As suggested by a reviewer, we intend to integrate our algo-
rithm into the software of our industrial partner to see whether this statistical
improvement yields advantages in practice. Last but not least we refer to the
appendix (full version [13]) for a cute combinatorial problem that we have not
solved exactly.
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Abstract. An ortho-radial grid is described by concentric circles and
straight-line spokes emanating from the circles’ center. An ortho-radial
drawing is the analog of an orthogonal drawing on an ortho-radial grid.
Such a drawing has an unbounded outer face and a central face that
contains the origin. Building on the notion of an ortho-radial represen-
tation [1], we describe an integer-linear program (ILP) for computing
bend-free ortho-radial representations with a given embedding and fixed
outer and central face. Using the ILP as a building block, we intro-
duce a pruning technique to compute bend-optimal ortho-radial draw-
ings with a given embedding and a fixed outer face, but freely choosable
central face. Our experiments show that, in comparison with orthogonal
drawings using the same embedding and the same outer face, the use
of ortho-radial drawings reduces the number of bends by 43.8% on aver-
age. Further, our approach allows us to compute ortho-radial drawings of
embedded graphs such as the metro system of Beijing or London within
seconds.

Keywords: Ortho-radial drawing · Integer-linear program

1 Introduction

Planar orthogonal drawings are arguably one of the most popular drawing styles.
Their aesthetic appeal derives from their good angular resolution and the restric-
tion to only the horizontal and the vertical slope, which makes it easy to trace the
edges. They naturally correspond to embeddings into the standard grid, where
edges are mapped to paths between their endpoints. The most important aes-
thetic criterion for orthogonal drawings is the number of bends. Consequently, a
large body of literature deals with optimizing the number of bends [3–5,7,8,14].
Ortho-radial drawings are a natural analog of orthogonal drawings but on an
ortho-radial grid, which is formed by concentric circles and straight-line spokes
emanating from the circles’ center. Besides their aesthetic appeal and the fact
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Fig. 1. Graph with (a) straight-line, (b) orthogonal and (c) ortho-radial layout. The
ortho-radial layout has been created by our approach and has 14 bends. The orthogonal
layout has been proposed by Biedl and Kant [2] and has 23 bends.

that they inherit favorable properties of orthogonal drawings like a good angular
resolution, they have the potential to save on the number of bends; see Fig. 1.

The corner-stone of the whole theory of bend minimization is the notion
of an orthogonal representation, which for a plane graph (i.e., a graph with
a fixed embedding) describes for each vertex the angles between consecutive
incident edges and for each edge the order and directions of its bends. It is a
seminal result of Tamassia [14] that characterizes the orthogonal representations
in terms of local conditions and shows that every orthogonal representation
admits a drawing. The usefulness of this result hinges on the fact that it turns
the seemingly geometric problem of computing a bend-optimal drawing into a
purely combinatorial one. Geometric aspects of the drawing, such as choosing
edge lengths, can then be dealt with separately, and after deciding the bends on
the edges.

Today, this is usually described as a pipeline consisting of three steps, the
topology-shape-metrics framework (TSM for short). The topology step chooses
a planar embedding of the input graph. The shape step computes an orthogo-
nal representation for this embedding (e.g., using flow-based methods), and the
metrics step computes edge lengths so that a crossing-free drawing is obtained.

Recently, this framework has been adapted to ortho-radial drawings. There
is a natural analog of ortho-radial representation that satisfies analogous local
conditions to orthogonal representations. However, unlike the orthogonal case,
there exist ortho-radial representations that satisfy all the local conditions, but
do not correspond to an ortho-radial drawing; see Fig. 2a,b for an example.
After initial results on the characterization of ortho-radial representations of
cycles [11] and ortho-radial representations of maxdeg-3 graphs, where all faces
are rectangles [10], Barth et al. [1] gave a characterization of the drawable ortho-
radial representations in terms of a third, more global condition. Niedermann
et al. [13] further showed that, given an ortho-radial representation that satisfies
the third condition, its ortho-radial drawing can be computed in quadratic time.

Up to now, however, there are no algorithms for computing ortho-radial rep-
resentations, even if the graph comes with a fixed planar embedding, including
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Fig. 2. An ortho-radial drawing of a 4-cycle (a) and an ortho-radial representation of it
that is not drawable (b), though the sum of the angles around each vertex and around
each face is the same as in (a). A bend-optimal drawing of a graph (c), where the edge
e′ has bends in different directions.

the central and the outer face. It is an open question whether a bend-optimal
valid ortho-radial representation can be computed efficiently in this setting. The
example from Fig. 2a, b already shows that such an ortho-radial representa-
tion cannot be characterized in terms of purely local conditions. Figure 2c is an
example of a bend-optimal drawing where an edge bends in two different direc-
tions. This shows that a straightforward adaption of existing techniques that
are based on min-cost flows, is unlikely to succeed. In this paper, we develop
a method for computing ortho-radial representations with few bends based on
an integer-linear program (ILP). This yields the first practical algorithm that
takes an arbitrary plane maxdeg-4 graph as input and computes an ortho-radial
drawing. We use it to evaluate the usefulness of ortho-radial drawings, in partic-
ular with respect to the potential of saving bends in comparison to orthogonal
drawings.

Contribution and Outline. We start with preliminary results in Sect. 2 intro-
ducing notions and facts on orthogonal and ortho-radial representations. In
Sect. 3, we present an ILP for computing bend-free ortho-radial representations
for graphs with a fixed embedding. In Sect. 4 we extend that ILP to optimize the
number of bends. To that end, we provide theoretical insights into the number
of bends required for ortho-radial drawings. Moreover, we describe a pruning
strategy that allows us to quickly compute a bend-optimal drawing. In Sect. 5
we evaluate our algorithms and compare them to standard approaches for com-
puting orthogonal drawings.

2 Preliminaries

A graph of maximum degree 4 is a 4-graph. Unless stated otherwise, all graphs
occurring in this paper are 4-graphs. Let G = (V,E) be a connected planar 4-
graph with a fixed combinatorial embedding E and let v ∈ V be a vertex. We
call the counterclockwise order of edges around v in the embedding the rotation
of v, and we denote it by E(v). An angle at v is a pair of edges (e1, e2) that are
both incident to v and such that e1 immediately precedes e2 in E(v).

Let Δ be an orthogonal (or ortho-radial) drawing of G with embedding E .
By turning bends into vertices, we can assume that the drawing is bend-free.
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Fig. 3. (a) Rotations between angles. (b) Rotations between two edges e, e′. (c) Rota-
tion of path P . (d) Label of edge e with respect to essential cycle C.

We now derive a labeling of the angles of v with labels in {−2,−1, 0, 1} with
so-called rotation values. For an angle (e1, e2) at v, we set rot(e1, e2) = 2 −
2α/π, where α is the counterclockwise geometric angle between e1 and e2 in Δ;
see Fig. 3a. Intuitively, this counts the number of right turns one takes when
traversing e1 towards v and afterwards e2 away from v, where negative numbers
correspond to left turns. Note that if e1 = e2, then rot(e1, e2) = −2, i.e., v
contributes two left turns.

For a face f of G, we denote by rot(f) the sum of the rotations of all
angles incident to f . Formally, if v0, . . . , vn−1 is the facial walk around f (ori-
ented such that f lies to the right of the facial walk), we define rot(f) =
∑n−1

i=0 rot(vi−1vi, vivi+1) where indices are taken modulo n. Intuitively, this
counts the number of right turns minus the number of left turns one takes when
traversing the face boundary such that the face f lies to the right. Since Δ is
an orthogonal drawing with some outer face fo, it satisfies the following condi-
tions [14].

(I) For each vertex, the sum of the rotations around v is 2(deg(v) − 2).
(II) For each face f �= f0 it is rot(f) = 4 and it is rot(f0) = −4.

We call an assignment Γ of rotation values to the angles that satisfy these
two rules an orthogonal representation. Every orthogonal drawing Δ induces an
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orthogonal representation. An orthogonal representation Γ is drawable if there
exits a drawing Δ that induces it.

For ortho-radial drawings a similar situation occurs. Here, we have two special
faces; an unbounded face, called the outer face fo, and a central face fc, which
contains the origin. If the central and the outer face are identical, then the
drawing does not enclose the origin, and the ortho-radial drawing does in fact
lie on some patch of the ortho-radial grid that can be conformally mapped to an
orthogonal grid (i.e., without changing any angles). An ortho-radial drawing Δ
similarly defines rotation values that satisfy the following conditions.

(I)’ For each vertex, the sum of the rotations around v is 2(deg(v) − 2).
(II)’ For each face f �= fo, fc it is rot(f) = 4, if fo �= fc, then rot(fo) = rot(fc) =

0 and rot(fo) = −4 if fo = fc.

Similar to the orthogonal case, an ortho-radial drawing Δ therefore induces
an ortho-radial representation Γ that defines rotation values satisfying these
conditions. An ortho-radial representation is drawable if there exists an ortho-
radial drawing that induces it.

Tamassia [14] proved that every orthogonal representation is drawable. In
contrast, there exist ortho-radial representations that are not drawable; see e.g.,
Fig. 2b, which illustrates a so-called strictly monotone cycle. Its ortho-radial
representation satisfies conditions (I)’ and (II)’, yet it is not drawable.

To characterize the drawable ortho-radial representations, Barth et al. [1]
introduce a labeling concept. Since the horizontal and vertical directions on an
ortho-radial grid are not interchangeable (one is circular, the other is not), addi-
tional information is required. The information which is the horizontal direc-
tion is given by a reference edge e� which is assumed to lie on the outer
face and that is directed such that it points in the clockwise direction. To
present the characterization of Barth et al. [1], we extend the notion of rota-
tion. For two edges e, e′ incident to a vertex v, let e = e1, . . . , ek = e′ be the
edges between them in E(v) so that (ei, ei+1) is an angle for i = 1, . . . , k − 1.
To measure the rotation between e and e′, we convert the rotation values
between them into geometric angles, sum them up, and convert them back to
a rotation, which gives rot(e, e′) =

∑k−1
i=1 rot(ei, ei+1) − 2(k − 2); see Fig. 3b.

Note that for an angle (e, e′), it is k = 2, and therefore the two definitions
of rot(e, e′) coincide. For a path P = v0, . . . , vn−1 in G, we define its rotation
rot(P ) =

∑n−1
i=1 rot(vi−1vi, vivi+1), and for a cycle C in G, we define its rotation

rot(C) =
∑n

i=1 rot(vi−1vi, vivi+1), where indices are taken modulo n; see Fig. 3c.
A cycle C of G is called essential if it separates the central and the outer face.
A cycle is essential if and only if rot(C) = 0 [1]. We assume that C is directed
such that the central face lies to its right. Let e be an edge on C. A reference
path for e on C is a (not necessarily simple) walk P that starts with the edge e�,
ends with the edge e and does not contain an edge or a vertex that lies to the
right of C. We define �C(e) = rot(P ) as the label of e on C; see Fig. 3d. Barth
et al. [1] show that the label does not depend on the actual path P (however the
same edge may have different labels for different cycles). With this, Barth et al.
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formulate a third condition. An ortho-radial representation is called valid if, for
each essential cycle C, either �C(e) = 0 for all edges e ∈ E(C), or there exist
edges e−, e+ in E(C) with �C(e−) < 0 and �C(e+) > 0. A cycle C that does not
satisfy this condition is called strictly monotone. Thus, an ortho-radial represen-
tation is valid if and only if it has no strictly monotone cycle. In Fig. 2a,b the
edges of the 4-cycle are labeled with their labels with respect to the reference
edge e�; Fig. 2b is a strictly monotone cycle. The following two results form the
combinatorial and algorithmic basis for our work.

Theorem 1 (Barth et al. [1]). An ortho-radial representation is drawable if
and only if it is valid.

Theorem 2 (Niedermann et al. [13]). There is an O(n2)-time algorithm
that, given an ortho-radial representation Γ of an n-vertex graph G, either out-
puts a drawing of Γ , or a strictly monotone cycle C in Γ .

3 ILP for Bend-Free Ortho-Radial Drawings

In this section we are given a planar 4-graph G = (V,E) with a combinatorial
embedding E , an outer face fo, a central face fc and a reference edge e� on fo;
we denote that instance by G = (G, E , fo, fc, e

�). We present an algorithm based
on an ILP that yields a valid ortho-radial representation of G, if it exists.

Basic Formulation. For each vertex u and each of its angles (e, e′) we introduce
an integer variable re,e′ ∈ {−2,−1, 0, 1}, which describes the rotation rot(e, e′)
between e and e′. Condition I’ is enforced by the following constraint for u.

k∑

i=1

rei,ei+1 = 2(deg(v) − 2), (1)

where e1, . . . , ek are the incident edges of u in counter-clockwise order; we define
ek+1 = e1. For each face f of G Condition II’ is enforced by the next constraint.

k∑

i=1

rei,ei+1 =

⎧
⎪⎨

⎪⎩

4 if f is a regular face,
0 if f is the outer or central face but not both,
−4 if f is both the central and outer face,

(2)

where e1, . . . , ek are the edges of the facial walk around f such that f lies to the
right; we define ek+1 = e1. We denote that formulation by For. By construction a
valid assignment of the variables in For induces an ortho-radial representation Γ .
In particular, assuming that e� is directed such that it points clockwise, we can
derive from the variable assignment the directions of the other edges in G. The
next theorem summarizes this result.

Theorem 3. An ortho-radial representation exists for G if and only if For

induces an ortho-radial representation.
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Fig. 4. Illustration of path Q used for the labeling of C.

However, the induced ortho-radial representation Γ is not necessarily valid,
but may contain strictly monotone cycles. We therefore extend For by constraints
for each essential cycle C of G. To that end, let P be a path that starts at e�

and ends at C such that it does not use any vertex or edge that lies to the right
of C. Further, let Q be the path e� + P + C that follows C in clockwise order
from the endpoint of P and ends at the end point of P ; see Fig. 4. For each edge
e of Q we introduce an integer variable le with −m ≤ le ≤ m, which models a
label with respect to C. Here m denotes the number of edges of G. We require
that the label of the reference edge is 0, i.e., le� = 0. Moreover, for an edge
e = vw of Q \ {e�} and its predecessor e′ = uv on Q let e′ = e1, . . . , ek = e be
the edges between them in E(v) so that (ei, ei+1) is an angle for i = 1, . . . , k − 1.
We introduce the constraint

le = le′ +
k−1∑

i=1

rei,ei+1 − 2(k − 2) (3)

Hence, the values le for e ∈ E(C) describe a labeling of C, where E(C)
denotes the edges of C. To exclude strictly monotone cycles, we ensure that
either le = 0 for all edges e ∈ E(C), or there exist edges e−, e+ in E(C)
with le− > 0 and le+ < 0. We first observe that C can only be strictly monotone
if

∑
e∈E(C) le �= 0. We introduce a single binary variable z that is 1 if and only if

∑
e∈E(C) le = 0. Additionally, for each edge e of C we introduce two binary vari-

ables xe and ye, which are used to enforce that le is negative or positive, respec-

tively.
∑

e∈E(C)

le ≤ M · (1 − z) (4)
∑

e∈E(C)

le ≥ −M · (1 − z) (5)

∑

e∈E(C)

xe + z ≥ 1 (6)
∑

e∈E(C)

ye + z ≥ 1 (7)

le ≤ −1 + M · (1 − xe) ∀e ∈ E(C)
(8)

le ≥ 1 − M · (1 − ye) ∀e ∈ E(C)
(9)
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We define M as a constant with M > m so that the corresponding con-
straints are trivially satisfied for z = 0, xe = 0 and ye = 0, respectively. If
z = 1, we obtain by Constraint 4 and Constraint 5 that

∑
e∈E(C) le = 0. Hence,

C is not strictly monotone. Otherwise, if z = 0, by Constraint 6 there is an
edge e− ∈ E(C) with xe− = 1. By Constraint 8 we obtain le− < 0. Similarly,
by Constraint 7 there is an edge e+ ∈ E(C) with ye+ = 1. By Constraint 9
we obtain le+ > 0. Altogether, we find that C is not strictly monotone. We
emphasize that for each essential cycle C of G we introduce a fresh set of vari-
ables and constraints; which we denote by FC . Hence, we consider the ILP
F(G) = For ∪ ⋃

C∈C FC , where C is the set of all essential cycles in G. The next
theorem summarizes this.

Theorem 4. If G has an ortho-radial representation, then the formulation F(G)
induces a valid ortho-radial representation.

Separation of Constraints. Adding FC for each essential cycle C of G is not
feasible in practice, as there can be exponentially many of these in G. Hence,
instead, we propose an algorithm that adds FC on demand. The algorithm first
checks whether G has an ortho-radial representation Γ1 using the formulation
F1 := For (Theorem 3). If this is not the case, the algorithm stops and returns
that there is no ortho-radial representation for G. Otherwise, starting with F1

and Γ1 it applies the following iterative procedure. In the i-th iteration (with
2 ≤ i) it checks whether Γi−1 is valid (Theorem 2). If it is, the algorithm stops
and returns Γi−1. Otherwise, the validity test yields a strictly monotone cycle C
as a certificate proving that Γi−1 is not valid. The algorithm creates then the
formulation Fi = Fi−1 ∪ FC and induces the ortho-radial representation Γi, in
which it is enforced that C is not strictly monotone. The algorithm stops at the
latest when the formulation FC , which prohibits that C is a strictly monotone
cycle, has been added for each essential cycle C ∈ C. Hence, in theory an expo-
nential number of iterations may be necessary. However, in our experiments the
procedure stopped after few iterations for all test instances; see Sect. 5.

Bend Optimization. We also can use the ILP to optimize the ortho-radial rep-
resentation. In Sect. 4 we consider bend minimization by modeling bends as
degree-2 vertices. We therefore extend For such that it allows us to optimize
the change of direction at such nodes. For each degree-2 vertex we introduce a
binary variable cu, which is 1 if and only if one of the two incident edges of u lies
on a concentric circle and the other lies on a ray of the grid. The two incident
edges e1 and e2 of u form the two angles (e1, e2) and (e2, e1). For these we intro-
duce the constraints cu ≥ re1,e2 and cu ≥ re2,e1 . Subject to these constraints we
minimize

∑
u∈V2

cu, where V2 ⊆ V denotes the degree-2 vertices of G. We can
easily restrict the optimization to a subset of V2 distinguishing between degree-2
vertices that originally belong to G and those that we use for modeling bends.
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Fig. 5. Illustration of the layout algorithm. Subdivision vertices are squares.

Fig. 6. Constructions for the proof of Theorem 5

4 Optimizing Bends and the Choice of the Central Face

In this section we are given a graph G with embedding E and designated outer
face fo. We describe an algorithm that returns a bend-optimal ortho-radial draw-
ing for G = (G, E , fo), i.e., there is no other ortho-radial drawing G that has fewer
bends for any choice of the central face fc and the reference edge e� on fo. The
algorithm uses the ILP from Sect. 3 as a building block. The ILP does not directly
allow to express bends; rather, we subdivide the edges with degree-2 vertices,
which can then be used as bends. See Fig. 5 for an illustration.

1. Insert a cycle Co in E that encloses G and connect Co via an edge ε to a
newly inserted vertex ν on the original outer face of E . Insert edge ε′ on the
opposite side enforcing that ν has degree 4. Hence, Co is the new boundary
of the outer face fo. Choose an arbitrary edge of Co as reference edge e�.

2. Subdivide each edge of G with degree-2 vertices such that each maximally
long chain of degree-2 vertices consists of at least K vertices.

3. Create a valid ortho-radial representation Γf for face f as the central face.
To that end, apply the ILP formulation of Sect. 3 with separated constraints
and bend optimization on Gf = (G, E , fo, f, e�) charging the newly inserted
degree-2 vertices with costs; the subdivision vertices on ε are not charged.

4. For the representation Γf with fewest bends compute a drawing (Theorem 2).

For bend-optimal drawings an appropriately large K is decisive. For biconnected
graphs K = 2n + 4 is sufficient even for a fixed central and outer face.

Theorem 5. Every biconnected plane 4-graph on n vertices with designated cen-
tral and outer faces has a planar ortho-radial drawing with at most 2n+4 bends
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Fig. 7. The node distribution (gray bars) of the graphs in IRome distributed on 10
equally sized bins. The number of vertices ranges between 3 and 44. The blue, tiled
bars indicate the number of optimally solved instances. (Color figure online)

and at most two bends per edge with the exception of up to two edges that may
have three bends.

The proof, which is deferred to the full version [12], uses similar constructions as
in the orthogonal case; see also Fig. 6. It seems plausible that the bound can be
transferred to non-biconnected graphs as in the work by Biedl and Kant [3]; as
we use a different bound, we refrain from the rather technical proof. Moreover,
we insert Co to make the layout independent from the choice of the reference
edge e�. This does not impact the number of bends needed for the original part
of G, because we subdivide ε with sufficiently many 2-degree vertices that can
be bent for free. Further, as ν has degree 4, the drawing cannot be bent at ν.

Replacing each edge by 2n+4 degree-2 vertices increases the size of the graph
drastically. However, the ILP can be solved much faster if fewer subdivision
vertices are used. Next, we describe a pruning strategy that uses upper and
lower bounds on the optimal drawing to exclude central faces and to limit the
number of subdivision vertices and the number of times we solve the ILP.

We first compute the minimum number U of bends that is necessary for a
bend-optimal orthogonal drawing of G. This also bounds the number of bends
in a bend-optimal ortho-radial drawing of G. Hence, it is sufficient to subdivide
each edge with U vertices in Step 2. Initially, we run For on each face f of G
as central face. This gives us a lower bound lf for the bends in the case that f
is the central face. In Step 3 we then consider the faces in increasing order of
their lower bounds. If the lower bound lf of the current face f exceeds the upper
bound U we prune f and continue with the next face. Otherwise, we iteratively
compute a valid ortho-radial representation Γf for f as described in Sect. 3 and
update U if it is improved by the current solution. Further, when we update the
ILP due to strictly monotone cycles, we skip f if its number of bends exceeds U
and continue with the next face.

5 Experimental Evaluation

In this section we present our experimental evaluation which we have conducted
to show the potential of our approach as a general graph drawing tool.
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Fig. 8. Examples of bend-optimal orthogonal and ortho-radial drawings for the Rome
graphs. The outer face was fixed, but the central face was optimized.

5.1 Feasibility of Approach

We first pursue the issue of whether our approach is feasible. It is far from clear
whether prohibiting strictly monotone cycles on demand is practical, as we may
need to insert an exponential number of constraints into the ILP formulation. To
answer this question we have conducted the first experiments on a subset of the
Rome graphs1, which is a widely accepted benchmark set. We have replaced each
vertex v with degree k > 4 with a cycle of k vertices, which we connected to the
neighbors of v correspondingly. Further, we applied a heuristic from OGDF [6] to
embed the remaining graphs such that the size of the outer face is maximized. We
replaced all edge crossings with degree-4 vertices. A preliminary analysis showed
that the graphs contain many degree-2 vertices. To ensure for the purpose of
the evaluation that our approach is forced to introduce bends with costs, we
normalized each instance by removing all degree-2 vertices. We only considered
instances up to 44 nodes. In total we obtained a set IRome of 4048 instances.
Figure 7 shows the size distribution of the resulting instances. We implemented
our approaches in Python and solved the ILP formulations using Gurobi 9.0.2 [9]
using a timeout of 2 min in each iteration. We ran the experiments on an Intel(R)
Xeon(R) W-2125 CPU clocked 4.00 GHz with 128 GiB RAM.

For each of the instances in IRome we applied the algorithm described in
Sect. 4; see Fig. 8 for four examples. For 3462 instances we obtained bend-optimal
ortho-radial drawings. For 586 instances the solver returned a not necessarily
optimal result due to timeouts. The number of not optimally solved instances

1 http://www.graphdrawing.org/data.

http://www.graphdrawing.org/data
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Fig. 9. Overview of the considered Rome graphs. A disk with radius r and position
(x, y) corresponds to r instances (a) with x vertices and y bends in the ortho-radial
(blue) and the orthogonal (red) drawing, (b) with x bends in the orthogonal drawing
and y bends in the ortho-radial drawing. (Color figure online)

increases with the number of nodes; see Fig. 7 for more details. For 1081 instances
the algorithm took less than half a second. Only for 861 instance it took more
than 10 s; 628 of them took more than one minute. Further, when searching for
the best choice of the central face about 76.5% of the faces are pruned in advance
on average due to exceeding upper bounds. Hence, for more than three quarters
of the faces we do not need to solve the ILP formulation, still guaranteeing
that we obtain a drawing with minimum number of bends. Moreover, when the
algorithm runs for a fixed central face, it needs less than 3.8 iterations on average
until it finds a valid ortho-radial representation. Put differently, we insert the
formulation FC prohibiting a strictly monotone cycle C into the ILP formulation
3.8 times on average. Altogether, the evaluation shows the practical feasibility of
the approach. It supports the rather strong hypothesis that prohibiting strictly
monotone cycles on demand is sufficient, but considering all essential cycles is
not necessary.

5.2 Ortho-Radial Drawings vs. Orthogonal Drawings

In this part we compare ortho-radial drawings with orthogonal drawings with
respect to the necessary number of bends. We expect a reduction of the number
of bends in an ortho-radial drawing compared with its orthogonal drawing.

Figure 9a shows that independent of the size of the graphs the ortho-radial
drawings often have fewer bends than the orthogonal drawings. Further, Fig. 9b
shows that for many of the instances we achieve a reduction between 1 to 3 bends
in the ortho-radial drawings. To investigate this in greater detail we consider for
each instance I ∈ IRome the bend reduction rI = bog−bor

bog
· 100%, where bog is

the minimum number of bends of an orthogonal drawing of I and bor is the
number of bends of the ortho-radial drawing created with our approach; note
that for both drawings we assume the same embedding and the same outer face.
From this comparison we have excluded any instance with zero bends. The bend
reduction is 43.8% on average and the median is at 40.0%. We emphasize that for
550 instances there are bend-free ortho-radial drawings, whereas only 129 admit
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a) b)

Fig. 10. The metro system in Beijing, China. (a) The input graph derived from vec-
torizing a metro map of Beijing. The outer and central faces are dashed. (b) The
ortho-radial layout induced by our approach within 7 s.

bend-free orthogonal drawings. Thus, our experiments support our hypothesis
that ortho-radial drawings lead to a substantial bend reduction.

5.3 Case Study on Metro Maps

Ortho-radial drawings are particularly used to represent metro systems [15]. We
tested our algorithm on the metro system of Beijing, which is a comparably
large and complex transit system; see Fig 10. We have vectorized a metro map
of the city that shows 21 lines; for details see the full version [12]. The created
graph has 224 vertices, 289 edges and 67 faces. We fixed the central face by
hand to intentionally determine the appearance of the final layout. We subdi-
vided the edges such that each chain consisting of degree-2 vertices has at least
three intermediate vertices. Our algorithm created the layout shown in Fig. 10b
within seven seconds. It has 21 bends. We emphasize that the outer loop line is
represented as a circle and the inner loop line has only two bends. Altogether,
the layout reflects the main geometric features of the system well, although we
have only optimized the number of bends, e.g., outgoing metro lines are mainly
drawn as straight-lines emanating from the center. In a second run, which took
three minutes, we proved that 21 bends is optimal. Further metro systems are
found in the full version [12].

6 Conclusion

Barth et al. [1] and Niedermann et al. [13] carried over the metrics step of the
TSM framework from orthogonal to ortho-radial drawings explaining how to
obtain such a drawing from a valid ortho-radial representation. However, they
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let open how to transfer the shape step constructing such a valid ortho-radial
representation. We presented the first algorithm that answers this question and
creates ortho-radial drawings, which are bend-optimal. Our experiments showed
its feasibility based on the Rome graphs and different metro systems. This was
far from clear due to the possibly exponential number of essential cycles.

Altogether, we presented a general tool for creating ortho-radial drawings. We
see applications in map making (e.g., metro maps, destinations maps). Possible
future refinements include the adaption of the optimization criteria both in the
shape and metrics step. For example in the shape step one could enforce certain
bends to better express the geographic structure of the transit system.
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1 Introduction

Computing orthogonal drawings of graphs is among the most studied problems in
graph drawing [9,13,20,24], because of its direct application to several domains,
such as software engineering, information systems, and circuit design (e.g., [2,
11,14,19,22]). In an orthogonal drawing, the vertices of the graph are mapped
to distinct points of the plane and each edge is represented as an alternating
sequence of horizontal and vertical segments between its end-vertices. A point
in which two segments of an edge meet is called a bend. An orthogonal drawing
is a grid drawing if its vertices and bends have integer coordinates.

One of the most popular and effective strategies to compute a readable
orthogonal grid drawing of a graph G is the so-called topology-shape-metrics
(or TSM, for short) approach [26], which consists of three steps: (i) compute a
planar embedding of G by possibly adding dummy vertices to replace edge cross-
ings if G is not planar; (ii) obtain an orthogonal representation H of G from the
previously determined planar embedding; H describes the “shape” of the final
drawing in terms of angles around the vertices and sequences of left/right bends
along the edges; (iii) assign integer coordinates to vertices and bends of H to
obtain the final non-crossing orthogonal grid drawing Γ of G.

If G is planar, the TSM approach computes a planar orthogonal grid draw-
ing Γ of G. Such a planar drawing exists if and only if G is a 4-graph, i.e., of
maximum vertex-degree at most four. To increase the readability of Γ , a typ-
ical optimization goal of Step (ii) is the minimization of the number of bends.
In Step (iii) the goal is to minimize the area or the total edge length of Γ ; a
problem referred to as orthogonal compaction. Unfortunately, while the compu-
tation of an embedding-preserving bend-minimum orthogonal representation H
of a plane 4-graph is polynomial-time solvable [8,26], the orthogonal compaction
problem for a planar orthogonal representation H is NP-complete in the general
case [25]. Nevertheless, Bridgeman et al. [6] showed that the compaction problem
for the area requirement can be solved optimally in linear time for a subclass of
orthogonal representations called turn-regular. A similar polynomial-time result
for the minimization of the total edge length in this case is proved by Klau and
Mutzel [21]. Esser showed that these two approaches are equivalent [15].

Informally speaking, a face of a planar orthogonal representation H is turn-
regular if it does not contain a pair of reflex corners (i.e., turns of 270◦) that
point to each other (see Sect. 2 for the formal definition); H is turn-regular if
all its faces are turn-regular. For a turn-regular representation H, every pair of
vertices or bends has a unique orthogonal relation (left/right or above/below)
in any planar drawing of H. Conversely, different orthogonal relations are pos-
sible for a pair of opposing reflex corners, which makes it computationally hard
to optimally compact non-turn-regular representations. For example, Figs. 1(a)
and 1(b) show two different drawings of a non-turn-regular orthogonal repre-
sentation; the drawing in Fig. 1(b) has minimum area. Figure 1(c) depicts a
minimum-area drawing of a turn-regular orthogonal representation of the same
graph.
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Fig. 1. (a) Drawing of a non-turn-regular orthogonal representation H; vertices u and
v point to each other in the gray face. (b) Another drawing of H with smaller area. (c)
Drawing of a turn-regular orthogonal representation of the same graph.

The aforementioned scenario naturally motivates the problem of computing
orthogonal representations that are turn-regular, so to support their subsequent
compaction. To the best of our knowledge, this problem has not been studied
so far (a related problem is studied for upward planar drawings only [5,10,12]).
Heuristics have been described to make any given orthogonal representation H
turn-regular, by adding a minimal set of dummy edges [6,18]; however, such
edges impose constraints that may yield a drawing of sub-optimal area for H.

Our contribution is as follows:

(i) We identify notable classes of planar graphs that always admit turn-regular
orthogonal representations. We prove that biconnected planar 3-graphs and
planar Hamiltonian 4-graphs (which include planar 4-connected 4-graphs [23])
admit turn-regular representations with at most two bends per edge and at most
three bends per edge, respectively. For these graphs, a turn-regular representa-
tion can be constructed in linear time. We also prove that every biconnected pla-
nar graph admits an orthogonal representation that is internally turn-regular,
i.e., its internal faces are turn-regular (Sect. 3). We leave open the question
whether every biconnected planar 4-graph admits a turn-regular representation.

(ii) For 1-connected planar graphs, including trees, there exist infinitely many
instances for which a turn-regular representation does not exist. Motivated by
this scenario, and since the orthogonal compaction problem remains NP-hard
even for orthogonal representations of paths [16], we study and characterize the
class of trees that admit turn-regular representations. We then describe a cor-
responding linear-time testing algorithm, which in the positive case computes a
turn-regular drawing without bends (Sect. 4). Finally, we prove that such draw-
ings are “convex” (i.e., all edges incident to leaves can be extended to infinite
crossing-free rays). We remark that a linear-time algorithm to compute planar
straight-line convex drawings of trees is described by Carlson and Eppstein [7].
However, in general, the drawings they compute are not orthogonal.
(iii) We address the problem of testing whether a given biconnected plane graph
admits a turn-regular rectilinear representation, i.e., a representation without
bends. For this problem we give a polynomial-time algorithm for plane graphs
with “small” faces, namely faces of degree at most eight (Sect. 5).
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2 Preliminary Definitions and Basic Results

We consider connected graphs and assume familiarity with basic concepts of
orthogonal graph drawing and planarity [9] (see also [3]). Let G be a plane 4-
graph and H be an orthogonal representation of G. If H has no bends, then it is
called rectilinear. W.l.o.g., we assume that H comes with a given orientation, i.e.,
for each edge segment pq of H (where p and q are vertices or bends), it is fixed
if p is to the left, to the right, above, or below q in every (orthogonal) drawing
of H. Let f be a face of H. We assume that the boundary of f is traversed
counterclockwise (clockwise) if f is internal (external). The rectilinear image of
H is the orthogonal representation H obtained from H by replacing each bend
with a degree-2 vertex. For any face f of H, let f denote the corresponding face
of H. For each occurrence of a vertex v of H on the boundary of f , let prec(v) and
succ(v) be the edges preceding and following v, respectively, on the boundary of
f (prec(v) = succ(v) if deg(v) = 1). Let α be the value of the angle internal to f
between prec(v) and succ(v). We associate with v one or two corners based on
the following cases: If α = 90◦, associate with v one convex corner; if α = 180◦,
associate with v one flat corner; if α = 270◦, associate with v one reflex corner; if
α = 360◦, associate with v an ordered pair of reflex corners. For example, in the
(internal) face of Fig. 2(a), a convex corner is associated with v1, a flat corner
with v2, a reflex corner with v3, and an ordered pair of reflex corners with v4.

Fig. 2. Illustration of (a) convex, flat and reflex corners, and (b) kitty corners.

Based on the definition above, there is a circular sequence of corners associ-
ated with (the boundary) of f . For a corner c of f , we define: turn(c) = 1 if c is
convex; turn(c) = 0 if c is flat; turn(c) = −1 if c is reflex. For any ordered pair
(ci, cj) of corners of f , we define the following function: rot(ci, cj) =

∑
c turn(c)

for all corners c along the boundary of f from ci (included) to cj (excluded).
For example, in Fig. 2(a) let c1, c2, and c3 be the corners associated with v1,
v2, and v3, respectively, and let (c4, c′

4) be the ordered pair of reflex corners
associated with v4. We have rot(c1, c2) = 3, rot(c3, c4) = 1, rot(c3, c′

4) = 0, and
rot(c3, c1) = −3. The properties below are consequences of results in [26,27].

Property 1. For each face f of H and for each corner ci of f , we have rot(ci, ci) =
4 if f is internal and rot(ci, ci) = −4 if f is external.
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Property 2. For each ordered triplet of corners (ci, cj , ck) of a face of H, we have
rot(ci, ck) = rot(ci, cj) + rot(cj , ck).

Property 3. Let ci and cj be two corners of f . If f is internal then rot(ci, cj) = 2
⇐⇒ rot(cj , ci) = 2. If f is external then rot(ci, cj) = 2 ⇐⇒ rot(cj , ci) = −6.

Let c be a reflex corner of H associated with either a degree-2 vertex or a
bend of H. Let sh and sv be the horizontal and vertical segments incident to c
and let �h and �v be the lines containing sh and sv, respectively. We say that c
(or equivalently its associated vertex/bend of H) points up-left, if sh is to the
right of �v and sv is below �h. The definitions of c that points up-right, down-left,
and down-right are symmetric (see Figs. 3(a)–3(d)). If v is a degree-1 vertex in
H, then it has two associated reflex corners in H. In this case, v points upward
(downward) if its incident segment is vertical and below (above) the horizontal
line passing through v. The definitions of a degree-1 vertex that points leftward
or rightward are symmetric (see Figs. 3(e)–3(h)).

Fig. 3. Directions of a reflex corner associated with a degree-2 vertex or with a bend:
(a) up-left; (b) up-right; (c) down-left; (d) down-right. Directions of a degree-1 vertex:
(e) upward; (f) downward; (g) leftward; (h) rightward.

Two reflex corners ci and cj of a face of H are called kitty corners if
rot(ci, cj) = 2 or rot(cj , ci) = 2. A face f of an orthogonal representation H
is turn-regular, if the corresponding face f of H has no kitty corners. If every
face of H is turn-regular, then H is turn-regular. For example, the orthogonal
representation in Fig. 2(b) is not turn-regular as the faces f1 and f3 are turn-
regular, while the internal face f2 and the external face f4 are not turn-regular
(the pairs of kitty corners in each face are highlighted with dotted arrows). A
graph G is turn-regular, if it admits a turn-regular orthogonal representation.
If G admits a turn-regular rectilinear representation, then G is rectilinear turn-
regular. The next lemma (whose proof can be found in [3]), provides a sufficient
condition for the existence of a kitty-corner pair in the external face.

Lemma 1. Let H be the rectilinear image of an orthogonal representation H
of a plane graph G. Let (c1, c2) be two corners of the external face such that
rot(c1, c2) ≥ 3 or c1 is a reflex corner and rot(c1, c2) ≥ 2. Then, the external
face contains a pair of kitty corners.

Corollary 1. Let H be an orthogonal representation of a plane graph G. If the
external face of H has three consecutive convex corners, H is not turn-regular.
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3 Turn-Regular Graphs

The theorems in this section can be proven by modifying a well-known linear-
time algorithm by Biedl and Kant [4] that produces an orthogonal drawing Γ
with at most two bends per edge of a biconnected planar 4-graph G with a fixed
embedding E . Such an algorithm exploits an st-ordering s = v1, v2, . . . , vn = t
of the vertices of G, where s and t are two distinct vertices on the external face
of E . We recall that an st-ordering s = v1, v2, . . . , vn = t is a linear ordering
of the vertices of G such that any vertex vi distinct from s and t has at least
two neighbors vj and vk in G with j < i < k [17]. The orthogonal drawing Γ is
constructed incrementally by adding vertex vk, for k = 1, . . . , n, into the drawing
Γk−1 of {v1, . . . , vk−1}, while preserving the embedding E . Some invariants are
maintained when vertex vk is placed above Γk−1: (i) vertex vk is attached to
Γk−1 with at least one edge incident to vk from the bottom; (ii) after vk is added
to Γk−1, some extra columns are introduced into Γk to ensure that each edge
(vi, vj), such that i ≤ k < j has a dedicated column in Γk that is reachable from
vi with at most one bend and without introducing crossings.

Fig. 4. The first four steps of the algorithm in the proof of Theorem 1 for the con-
struction of a turn-regular orthogonal drawing of the biconnected planar 3-graph shown
in (a).

Theorem 1. Every biconnected planar 3-graph admits a turn-regular represen-
tation with at most two bends per edge, which can be computed in linear time.

Proof. Let G be a biconnected planar 3-graph and let E be any planar embedding
of G. Let s and t be two distinct vertices on the external face of E . As in [4],
based on an st-ordering of G, we incrementally construct an orthogonal drawing
Γ of G by adding vk into the drawing Γk−1 of graph Gk−1, for k = 1, . . . , n.
Besides the invariants (i) and (ii) described above, we additionally maintain the
invariant (iii): each reflex corner introduced in the drawing points either down-
right or up-right with the possible exception of the reflex corners of the edges
on the external face that are incident to s or t. Drawing Γ1 consists of the single
vertex v1. Since deg(v1) ≤ 3, the columns assigned to its three incident edges
are the column where v1 lies and the two columns immediately on its left and
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on its right (see Fig. 4(b)). These columns are assigned to the edges incident to
v1 in the order they appear in E . Now, suppose you have to add vertex vk to
Γk−1. Observe that, since G has maximum degree three, vk has a maximum of
three edges (vk, vh), (vk, vi), and (vk, vj), where we may assume, without loss of
generality, that h < i < j. To complete the proof, we consider three cases:

Case 1 (h < k < i): We place vk on the first empty row above Γk−1 and on the
column assigned to (vk, vh). Also, to preserve the invariant (ii), we introduce an
extra column immediately to the right of vk and we assign the column of vk and
the newly added extra column to (vk, vi) and (vk, vj) in the order that is given
by E . For example, Fig. 4(c) shows the placement of v2 directly above v1, with
one extra column inserted to the right of v2 and assigned to the edge (v2, v6).

Case 2 (i < k < j): We place vk on the first empty row above Γk−1 and on the
leftmost column between the columns assigned to (vk, vh) and (vk, vi). Also, we
assign the column of vk to (vk, vj), e.g., Fig. 4(e) shows the placement of v4 on
the leftmost column assigned to its incoming edges (v3, v4) and (v1, v4).

Case 3 (j < k): Here, vk is t. We place vk on the first empty row above Γk−1 and
on the middle column among those assigned to (vk, vh), (vk, vi), and (vk, vj).

The discussion in [4] suffices to prove that Γ is a planar orthogonal drawing of
G with at most two bends per edge. We claim that Γ is also turn-regular. In fact,
the invariant (iii) guarantees that all internal faces have reflex corners pointing
either down-right or up-right and, hence, are turn-regular. On the external face
we may have reflex corners pointing down-left (from the leftmost edge of v1) or
up-left (from the leftmost edge of vn). However, since there is a y-monotonic
path leading from s to any other vertex of G, such corners correspond to bends
lying on the bottom or on the top row of any drawing with the same orthogonal
representation as Γ and, therefore, they cannot form a kitty corner. ��

The proofs of the next two theorems exploit a similar technique as in Theo-
rem 1. The full proof of Theorem 2 can be found in [3].

Theorem 2. Every planar Hamiltonian 4-graph G admits a turn-regular repre-
sentation H with at most 3 bends per edge, and such that only one edge of H
gets 3 bends and only if G is 4-regular. Given the Hamiltonian cycle, H can be
computed in linear time.

Sketch of proof. We use as st-ordering for the Biedl and Kant approach [4] the
ordering given by the Hamiltonian cycle. We choose a suitable vertex v1 from
which we start the construction. The construction rules are given in Fig. 5. If
G has a vertex of degree less than four, then we choose such a vertex as v1.
Otherwise, G is 4-regular and we prove that G has at least one vertex such that
the configuration of Fig. 5(c) is ruled out by the embedding E . We maintain the
invariant that all the reflex corners introduced in the drawing point (i) down-left
or up-left, if they are contained in a face that is on the left side of the portion of
the Hamiltonian cycle traversing Γk, and (ii) down-right or up-right, if they are
contained in a face that is on the right side. Possible exceptions are the reflex
corners on the external face and that occur on edges incident to v1 or to vn. ��
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Fig. 5. Drawing rules for the algorithm in the proof of Theorem 2. The Hamiltonian
path is drawn red and thick. Figures (g)–(j) are to be intended up to a horizontal flip.

Fig. 6. The construction rules for the algorithm in the proof of Theorem 3.

Theorem 3. Every biconnected planar 4-graph has a representation with O(n)
bends per edge that is internally turn-regular and that is computed in O(n) time.

Proof. We modify the algorithm of Biedl and Kant [4] again, where instead of
the standard bottom-up construction, we adopt a spiraling one. The vertices are
inserted in the drawing according to an st-ordering, based on the rules depicted
in Fig. 6. For an internal face f let s(f) (d(f), resp.) be the index of the first
(last, resp.) inserted vertex incident to f . By construction, f is bounded by
two paths P� and Pr that go from vs(f) to vd(f), where P� precedes Pr in the
left-to-right list of outgoing edges of vs(f). The construction rules imply that
Pr has only convex corners. On the other hand, each convex corner of P� is
always immediately preceded or immediately followed by a reflex corner. This
rules out kitty corners in f . Indeed, consider to reflex corners ci and cj of P� and
the counter-clockwise path from ci to cj all contained into P�. When computing
rot(ci, cj) a positive amount +1 is always followed by a negative amount −1, and
the sum is never equal to 2. Since f is an internal face, rot(ci, cj)+rot(cj , ci) = 4,
and rot(ci, cj) �= 2 implies rot(cj , ci) �= 2. Note that an edge (vi, vj) contains
O(j − i) bends, which yields O(n) bends per edge in the worst case. ��
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4 Characterization and Recognition of Turn-Regular
Trees

We give a characterization of the trees that admit turn-regular representations,
which we use to derive a corresponding linear-time testing and drawing algo-
rithm. For a tree T , let smooth(T ) denote the tree obtained from T by smoothing
all subdivision vertices, i.e., smooth(T ) is the unique smallest tree that can be
subdivided to obtain a tree isomorphic to T . We start with an auxiliary lemma
which is central in our approach (see [3] for details).

Lemma 2. T is turn-regular if and only if smooth(T ) is rectilinear turn-regular.

Sketch of proof. Suppose that T has a turn-regular representation H (the other
direction is obvious). We can assume that H has no zig-zag edges. By Corollary 1,
the rectilinear image of H has at most two consecutive convex corners, which can
be removed with local transformations as in Fig. 7. This results in a turn-regular
representation with only flat corners at degree-2 vertices as desired. ��

Fig. 7. Illustrations for the proof of Lemma 2.

Unless otherwise specified, from now on we will assume by Lemma 2 that T is
a tree without degree-2 vertices. We will further refer to a tree as turn-regular if
and only if it is rectilinear turn-regular. This implies that the class of turn-regular
trees coincides with the class of trees admitting planar straight-line convex draw-
ings, i.e., all edges incident to leaves can be extended to infinite crossing-free rays,
whose edges are horizontal or vertical segments. The next property directly fol-
lows from Lemma 2 and the absence of degree-2 vertices.

Property 4. Let H be a turn-regular rectilinear representation of a tree T . Then,
the reflex corners of H are formed by the leaves of T .

While turn-regularity is not a hereditary property in general graphs, the next
lemma, whose proof can be found in [3], shows that it is in fact heredi-
tary for trees.

Lemma 3. If a tree T is turn-regular, then any subtree of T is turn-regular.

A trivial tree is a single edge; otherwise, it is non-trivial. For k ∈ {2, 3}, a
k-fork in a tree T consists of a vertex v whose degree is k + 1 and at least k
leaves adjacent to it in T .
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For k ∈ {2, 3}, a k-fork at a vertex v in a tree T consists of vertex v whose
degree is k + 1 and at least k leaves adjacent to it in T . Due to the degree
restriction, a 2-fork is not a 3-fork, and vice versa. Also, notice that by definition
K1,4 is a 3-fork. The next lemma follows from [7, Lem. 7]; a simplified proof is
given in [3].

Lemma 4. A turn-regular tree has (i) at most four 2-forks and no 3-fork, or
(ii) two 3-forks and no 2-fork, or (iii) one 3-fork and at most two 2-forks.

Lemma 5. A non-trivial tree T contains at least one 2- or 3-fork.

Proof. Since T is non-trivial and contains no vertices of degree two, there exists
a non-leaf vertex v with degree either three or four, such that v is adjacent to
exactly two or three leaves, respectively. Thus, the claim follows. ��
Corollary 2. A turn-regular tree has at most four non-trivial disjoint subtrees.

A vertex v of a tree T is a splitter if v is adjacent to at least three non-leaf vertices.

Lemma 6. A turn-regular tree T contains at most two splitters.

Proof. Assume to the contrary that T contains at least three splitters v1, v2 and
v3. We first claim that it is not a loss of generality to assume that v1, v2 and v3
appear on a path in T . If this is not the case, then there is a vertex, say u, such
that v1, v2 and v3 lie in three distinct subtrees rooted at u. Hence, u is a splitter
that lies on the path from v1 to v3. If we choose v2 to be u, the claim follows.

Let P be the path containing v1, v2 and v3 in T , and assume w.l.o.g. that v1
and v3 are the two end-vertices of P . Since v1 is a splitter, it is adjacent to at
least three vertices that are not leaves and two of them do not belong to P . Let
T1 and T2 be the subtrees of T rooted at these two vertices, which by definition
are non-trivial and do not contain v2 and v3. By a symmetric argument on v3,
we obtain two non-trivial subtrees T3 and T4 of T that do not contain v1 and v2.
The third splitter v2 may have only one neighbor that is not a leaf and does not
belong to P . The (non-trivial) subtree T5 rooted at this vertex contains neither
v1 nor v3. Hence, T1, . . . , T5 contradict Corollary 2. ��

By Lemma 6, a turn-regular tree contains either zero or one or two splitters
(see Lemmas 7–9). A caterpillar is a tree, whose leaves are within unit distance
from a path, called spine. For k ∈ {3, 4}, a k-caterpillar is a non-trivial caterpillar
(i.e., not a single edge), whose spine vertices have degree at least 3 and at most k.

Lemma 7. A tree T without splitters is a 4-caterpillar and turn-regular.

Proof. In the absence of splitters in T , all inner vertices of T form a path. Hence,
T is a 4-caterpillar and thus turn-regular; see Fig. 8(a). ��
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Fig. 8. Illustration of (a) a 4-caterpillar, (b) a 4-windmill, (c) a 3-windmill, and (d) a
double-windmill. Possible extensions are highlighted in gray.

A tree with one splitter v is (i) a 4-windmill, if v is the root of four 3-
caterpillars (Fig. 8(b)), (ii) a 3-windmill, if v is the root of two 3-caterpillars and
one 4-caterpillar (Fig. 8(c)). Note that in the latter case, v can be adjacent to a
leaf if it has degree four. The operation of pruning a rooted tree T at a degree-k
vertex v with k ∈ {3, 4} that is not the root of T , removes the k − 1 subtrees of
T rooted at the children of v without removing these children, and yields a new
subtree T ′ of T , in which v and its children form a (k − 1)-fork in T ′.

Lemma 8. A tree T with one splitter is turn-regular if and only if it is a 3- or
4-windmill.

Sketch of proof. Every 3- or 4-windmill is turn-regular; see Figs. 8(b)–8(c). Now,
let u be the splitter of T . If u has four non-leaf neighbors, then u is the root
of four non-trivial subtrees T1, . . . , T4, which by Lemma 7 are 4-caterpillars. We
claim that none of them has a degree-4 vertex. Assume to the contrary that T1

contains such a vertex v �= u. We root T at u and prune at v, resulting in a (turn-
regular, by Lemma 3) subtree T ′ of T that contains a 3-fork at v. By Lemma 5,
each of the non-trivial trees T2, . . . , T4 contains a fork. By Lemma 4, these three
forks together with the 3-fork formed at v contradict the turn-regularity of T ′.
The case in which u has three non-leaf neighbors can be found in [3]. ��

A tree T with exactly two splitters u and v is a double-windmill if (i) the path
from u to v in T forms the spine of a 4-caterpillar in T , (ii) each of u and v is the
root of exactly three non-trivial subtrees, and (iii) the two non-trivial subtrees
rooted at u (v) that do not contain v (u) are 3-caterpillars; see Fig. 8(d). The
proof of the next lemma is similar to the one of Lemma 8; see [3].

Lemma 9. A tree T with two splitters is turn-regular if and only if it is a
double-windmill.

Lemmas 7–9 imply the next theorem. Note that for the recognition, one can test
if a (sub-)tree is a 3- or a 4-caterpillar in linear time (for details, see [3]).

Theorem 4. A tree T is turn-regular if and only if smooth(T ) is (i) a 4-
caterpillar, or (ii) a 3- or a 4-windmill, or (iii) a double-windmill. Moreover,
recognition and drawing can be done in linear time.
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5 Turn-Regular Rectilinear Representations

Here we focus on rectilinear planar representations and prove the following.

Theorem 5. Let G be an n-vertex biconnected plane graph with faces of degree
at most eight. There exists an O(n1.5)-time algorithm that decides whether G
admits an embedding-preserving turn-regular rectilinear representation and that
computes such a representation in the positive case.

Proof. We describe a testing algorithm based on a constrained version of Tamas-
sia’s flow network N(G), which models the space of orthogonal representations of
G within its given planar embedding [26]. Let V , E, and F be the set of vertices,
edges, and faces of G, respectively. Tamassia’s flow network N(G) is a directed
multigraph having a vertex-node νv for each vertex v ∈ V and a face-node νf

for each face f ∈ F . N(G) has two types of edges: (i) for each vertex v of a face
f , there is a directed edge (νv, νf ) with capacity 3; (ii) for each edge e ∈ E,
denoted by f and g the two faces incident to e, there is a directed edge (νf , νg)
and a directed edge (νg, νf ), both with infinite capacity.

Fig. 9. (a) A pair of kitty corners in a face of degree eight. (b) The modification of the
flow network around a face-node corresponding to an internal face. The labels on the
directed edge represent capacities.

A feasible flow on N(G) corresponds to an orthogonal representation of G: a
flow value k ∈ {1, 2, 3} on an edge (νv, νf ) represents an angle of 90·k degrees at v
in f (since G is biconnected, there is no angle larger than 270◦ at a vertex); a flow
value k ≥ 0 on an edge (νf , νg) represents k bends on the edge of G associated
with (νf , νg), and all these bends form an angle of 90◦ inside f . Hence, each
vertex-node νv supplies 4 units of flow in N(G), and each face-node νf in N(G)
demands an amount of flow equal to cf = (2 deg(f) − 4) if f is internal and to
cf = (2 deg(f) + 4) if f is external. The value cf represents the capacity of f .
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It is proved in [26] that the total flow supplied by the vertex-nodes equals the
total flow demanded by the face-nodes; if a face-node νf cannot consume all the
flow supplied by its adjacent vertex-nodes (because its capacity cf is smaller),
it can send the exceeding flow to an adjacent face-node νg, through an edge
(νf , νg), thus originating bends.

Our algorithm has to test the existence of an orthogonal representation H
such that: (a) H has no bend; (b) H is turn-regular. To this aim, we suitably
modify N(G) so that the possible feasible flows only model the set of orthogonal
representations that verify Properties (a) and (b). To enforce Property (a), we
just remove from N(G) the edges between face-nodes. To enforce Property (b),
we enhance N(G) with additional nodes and edges. Consider first an internal
face f of G. By hypothesis deg(f) ≤ 8. It is immediate to see that if deg(f) ≤ 7
then f cannot have a pair of kitty corners. If deg(f) = 8, a pair {u, v} of kitty
corners necessarily requires three vertices along the boundary of f going from
u to v (and hence also from v to u); see Fig. 9(a). Therefore, for such a face
f , we locally modify N(G) around νf as shown in Fig. 9(b). Namely, for each
potential pair {u, v} of kitty corners, we introduce an intermediate node νuv;
the original edges (νu, νf ) and (νv, νf ) are replaced by the edges (νu, νuv) and
(νv, νuv), respectively (each still having capacity 3); finally, an edge (νuv, νf )
with capacity 5 is inserted, which avoids that u and v form a reflex corner inside
f at the same time. For the external face f , it can be easily seen that a pair
of kitty corners is possible only if the face has degree at least 10. Since we are
assuming that deg(f) ≤ 8, we do not need to apply any local modification to
N(G) for the external face.

Hence, a rectilinear turn-regular representation of G corresponds to a feasible
flow in the modified version of N(G). Since N(G) can be easily transformed into
a sparse unit capacity network, this problem can be solved in O(n1.5) time by
applying a maximum flow algorithm (the value of the maximum flow must be
equal to 4|V |) [1]. ��

6 Open Problems

Our work raises several open problems. (i) A natural question is if all biconnected
planar 4-graphs are turn-regular (not only internally). (ii) While we suspect the
existence of non-turn regular biconnected planar 4-graphs, we conjecture that
triconnected planar 4-graphs are turn-regular. (iii) It would be interesting to
extend the result of Theorem 5 to more general classes of plane graphs.
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Abstract. We study the planar orthogonal drawing style within the
framework of partial representation extension. Let (G, H, ΓH) be a par-
tial orthogonal drawing, i.e., G is a graph, H ⊆ G is a subgraph and ΓH

is a planar orthogonal drawing of H.
We show that the existence of an orthogonal drawing ΓG of G that

extends ΓH can be tested in linear time. If such a drawing exists, then
there also is one that uses O(|V (H)|) bends per edge. On the other hand,
we show that it is NP-complete to find an extension that minimizes the
number of bends or has a fixed number of bends per edge.

Keywords: Planar orthogonal drawing · Partial representation
extension · Bend minimization

1 Introduction

One of the most popular drawing styles are orthogonal drawings, where vertices
are represented by points and edges are represented by chains of horizontal and
vertical segments connecting their endpoints. Such a drawing is planar if no two
edges share an interior point. An interior point of an edge where a horizontal
and a vertical segment meet is called a bend. The main aesthetic criterion for
planar orthogonal drawings is the number of bends on the edges.

A large body of literature is devoted to optimizing the number of bends in
planar orthogonal drawings. The complexity of the problem strongly depends on
the particular input. If the combinatorial embedding can be chosen freely, then
it is NP-complete to decide whether there exists a drawing without bends [17].
If the input graph comes with a fixed combinatorial embedding, then a bend-
optimal drawing that preserves the given embedding can be computed efficiently
by a classical result of Tamassia [26]. A recent trend has been to investigate under
which conditions the variable-embedding case becomes tractable. For maxdeg-3
graphs a bend-optimal drawing can be computed efficiently [10], which has
recently been improved to linear time [12]. The problem is also FPT with respect
to the number of degree-4 vertices [11], and if one discounts the first bend on
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Fig. 1. An instance of the partial representation extension problem (G, H, ΓH) is given.
The graph H is solid black and the edges of E(G)\E(H) are dashed red. (a) (G, H, ΓH)
admits a planar extension, but not an orthogonal extension. (b) (G, H, ΓH) admits an
orthogonal extension with no bends (c) An orthogonal representation of G (the curved
part of the dashed edge has no bends) that extends the description of the solid black
drawing of H. There exists no drawing of G with this representation that extends the
given drawing of H. (Color figure online)

each edge, an optimal solution can be computed even for individual convex cost
functions on the edges [4,5]. We refer to the survey [13] for further references.

In light of this popularity and the existence of a strongly developed theory,
it is surprising that the planar orthogonal drawings have not been investigated
within the framework of partial representation extension. Especially so, since it
has been considered in the related context of simultaneous representations [1].

In the partial representation extension problem, the input graph G comes
together with a subgraph H ⊆ G and a representation (drawing) ΓH of H. One
then seeks a drawing ΓG of G that extends ΓH , i.e., whose restriction to H
coincides with ΓH . The partial representation extension problem has recently
been considered for a large variety of different types of representations. For
planar straight-line drawings, it is NP-complete [25], whereas for topological
drawings there exists a linear-time algorithm [2] as well as a characterization
via forbidden substructures [18]. Moreover, it is known that, if a topological
drawing extension exists, then it can be drawn with polygonal curves such that
each edge has a number of bends that is linear in the complexity of ΓH [6]. Here
the complexity of ΓH is the number of vertices and bends in ΓH . Most recently
the problem has been investigated in the context of 1-planarity [14]. Besides
classical drawing styles, it has also been studied for contact representations [7]
and for geometric intersection representations, e.g., for (proper/unit) interval
graphs [19,21], chordal graphs [20], circle graphs [8], and trapezoid graphs [23].

In this paper, we provide an in-depth study of partial representation exten-
sion problems for the orthogonal drawing style. Since the aesthetics are of par-
ticular importance for the quality of such a drawing, we put a major emphasis on
extension questions in relation to the number of bends. It is worth noting that
even the seminal work of Tamassia [26] already mentions the idea of preserving
the shape of a given subgraph by maintaining its orthogonal representation via
modifications in his flow network. However, this approach only preserves the
shape of the subgraph as described by an orthogonal representation, and not
necessarily its drawing. Figure 1 shows that there are partial planar orthogonal
drawings that can be extended in a planar way, but not orthogonally (Fig. 1a)
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and that, even if an orthogonal representation OG of G preserves a given orthog-
onal representation OH of a drawing ΓH of H, there does not necessarily exist
a drawing ΓG of G realizing OG that extends ΓH (Fig. 1b).

Contribution and Outline. After presenting preliminaries in Sect. 2, we give a
linear-time algorithm for deciding the existence of an orthogonal drawing exten-
sion in Sect. 3. Then, we consider the realizability problem, where we are given
an orthogonal extension in the form of a suitable planar embedding, and we seek
an orthogonal drawing extension that optimizes the number of bends. Along the
lines of a result by Chan et al. [6], we show that there always exists an orthogo-
nal drawing extension such that each edge has a number of bends that is linear
in the complexity of ΓH in Sect. 4. We complement these findings in Sect. 5 by
showing that it is NP-hard to minimize the number of bends and NP-complete to
test whether there exists an orthogonal drawing extension with a fixed number
of bends per edge. For the proofs of theorems marked with a [∗], please refer to
the full version of this paper [3].

2 Preliminaries

We call the circular clockwise ordering of the edges around a vertex v in an
embedding the rotation at v. Let G = (V,E) be a simple undirected graph and
let H ⊆ G be a subgraph. We refer to the vertices and edges of H as H-vertices
and H-edges, respectively. Similarly, we refer to the vertices of V (G)\V (H) and
to the edges of E(G) \ E(H) as G-vertices and G-edges, respectively.

Let (G,H, ΓH) be a triple composed of a graph G, a subgraph H ⊆ G, and
an orthogonal drawing ΓH of H. We denote by RepExt(ortho) (RepExt
stands for representation extension) the problem of testing whether G admits
an orthogonal drawing ΓG that extends ΓH . In ΓH , we say that an H-edge is
attached to one of the four ports of its end vertices. If there is no H-edge attached
to a port of a vertex, then this port is free; note that the free ports are those
at which the G-edges can be attached in ΓG. For two edges e and e′ that are
consecutive in the rotation at a vertex v in ΓH , we denote by PH(e, e′) = k
the fact that there exist exactly k free ports of v when moving from e to e′

in clockwise order around their common endvertex. We call PH(e, e′) = k a
port constraint, and we denote by PH the set of all port constraints in ΓH .
Note that, for a vertex v with rotation e1, . . . , eh in ΓH , with h ≤ 4, we have∑h

i=1 PH(ei, ei+1) = 4 − deg(v) (defining eh+1 := e1).
We now show that to solve an instance (G,H, ΓH) of the RepExt(ortho)

problem, it suffices to only consider the port constraints determined by ΓH

together with the embedding EH of H in ΓH . More specifically, we prove the
following characterization, which could also be deduced from [1].

Theorem 1 (�). Let (G,H, ΓH) be an instance of RepExt(ortho). Let EH

be the embedding of H in ΓH , and let PH be the port constraints induced by
ΓH . Then, (G,H, ΓH) admits an orthogonal drawing extension if and only if G
admits a planar embedding EG that extends EH and such that, for every port
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constraint PH(e, e′) = k, there exist at most k G-edges between e and e′ in the
rotation at v in EG, where v is the common vertex of the H-edges e and e′.

In view of Theorem 1, we define a new problem, called RepExt(top+port),
which is linear-time equivalent to RepExt(ortho). An instance of this prob-
lem is a 4-tuple (G,H, EH ,PH) and the goal is to test whether G admits an
embedding EG that satisfies the conditions of Theorem 1. In order to unify the
terminology, we also refer to the Partially Embedded Planarity problem studied
in [2] as RepExt(top) (top stands for topological drawing). Recall that an
instance of this problem is a triple 〈G,H, EH〉, and the goal is to test whether G
admits an embedding EG that extends EH . As proved in [2], RepExt(top) can
be solved in linear time.

3 Testing Algorithm

In this section we show that RepExt(ortho) can be solved in linear time. By
Theorem 1, it suffices to prove that RepExt(top+port) can be solved in linear
time. The algorithm is based on constructing in linear time, starting from an
instance (G,H, EH ,PH) of RepExt(top+port), an instance (G′,H ′, EH′) of
RepExt(top) that admits a solution if and only if (G,H, EH ,P) does.

In order to construct the instance (G′,H ′, EH′) of RepExt(top+port), we
initialize G′ = G, H ′ = H, and EH′ = EH . Then, for each vertex v such that
1 < degH(v) < degG(v), we perform the following modifications; see Fig. 2.

Case 1: Suppose first that degH(v) = 3 and degG(v) = 4, and let e = vw
be the unique G-edge incident to v; refer to Fig. 2(a). Since degH(v) = 3, there
exist exactly two H-edges e1 and e2 such that e1 immediately precedes e2 in the
rotation at v in EH and P(e1, e2) = 1. Note that, to respect the port constraint,
we have to guarantee that e is placed between e1 and e2 in the rotation at v in
EG. For this, we subdivide e with a new vertex w′, that is, we remove e from G′,
and we add the vertex w′ and the edges vw′ and w′w to G′. Also, we add w′

and vw′ to H ′, and insert vw′ between e1 and e2 in the rotation at v in EH′ .
Case 2: Suppose now that degH(v) = 2 and degG(v) ≥ 3. Let e1 and e2 be

the two H-edges incident to v, and let e = vw and e∗ = vz be the at most two
G-edges incident to v. We distinguish two cases, based on whether P(e1, e2) = 2
and P(e2, e1) = 0 (or vice versa), or P(e1, e2) = P(e2, e1) = 1.

Case 2.a: If P(e1, e2) = 2, then we need to guarantee that both e and e∗ (if it
exists) are placed between e1 and e2 in the rotation at v in EG; refer to Fig. 2(b).
For this, we remove e and e∗ from G′, and we add a new vertex w′ and the edges
vw′, w′w, and w′z to G′. Also, we add w′ and vw′ to H ′, and insert vw′ between
e1 and e2 in the rotation at v in EH′ . Note that, if e∗ does not exist, this is the
same procedure as in the previous case. Case 2.b: If P(e1, e2) = P(e1, e2) = 1,
then we need to guarantee that e and e∗ (if it exists) appear on different sides
of the path composed of the edges e1 and e2; refer to Fig. 2(c). Note that, if e∗

does not exist, then e can be on any of the two sides of this path, and thus in
this case we do not perform any modification. If e∗ exists, we subdivide e, e∗,
e1, and e2 with a new vertex each, that is, we remove these edges from G′ (e1
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Fig. 2. Gadgets for H-vertices

and e2 also from H ′), and we add four new vertices w′, z′, w′
1, and w′

2. Also, we
add to G′ the edges vw′, vz′, vw′

1, and vw′
2, and the edges w′w, z′z, w′

1w1, and
w′

2w2, where w1 and w2 are the endpoints of e1 and e2, respectively, different
from v. Further, we add the edges w′w′

1, w′
1z

′, z′w′
2, and w′

2w
′ to G′. Finally, we

add the edges vw′
1, w′

1w1, vw′
2, and w′

2w2 also to H ′; in EH′ , we place w′
1w1 and

w′
2w2 in the rotations at w1 and at w2, respectively, in the same position as e1

and e2, respectively, in EH . The rotations at v, w′, z′, w′
1, and w′

2 in EH′ do not
need to be set, since each of these vertices has at most two incident H ′-edges.
The above construction leads to the following lemma.

Lemma 1 (�). The instance (G′,H ′, EH′) has an embedding extension if and
only if (G,H, EH ,P) has an embedding extension satisfying the port constraints.

Theorem 2. The RepExt(top+port) problem can be solved in linear time.

Proof. Given an instance I = (G,H, EH ,P) of RepExt(top+port), we con-
struct the instance I ′ = (G′,H ′, EH′) of RepExt(top) that has linear size as
described above. This takes O(1) time per vertex, and hence total linear time.
By Lemma 1, I has a solution if and only if I ′ has one. Since the existence of a
solution of I ′ can be tested in linear time [2], the statement follows.

As a consequence of Theorems 1 and 2, we conclude the following.

Theorem 3. The RepExt(ortho) problem can be solved in linear time.

4 Realizability with Bounded Number of Bends

In this section we prove that, if there exists an orthogonal drawing extension for
an instance (G,H, ΓH) of RepExt(ortho), then there also exists one in which
the number of bends per edge is linear in the complexity of the drawing ΓH .
By subdividing H at the bends of ΓH , we can assume that ΓH is a bend-free
drawing of H. To achieve the desired edge complexity, it then suffices to show
that O(|V (H)|) bends per edge suffice. This result can be considered as the
counterpart for the orthogonal setting of the one by Chan et al. [6] for the polyline
setting. In their work, in fact, they show that a positive instance (G,H, ΓH) of the
RepExt(top) problem can always be realized with at most O(|V (H)|) bends
per edge when ΓH is a planar straight-line drawing of H.
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Our approach follows the algorithm given in [6], with a main technical dif-
ference which is due to the peculiar properties of orthogonal drawings. Their
algorithm first constructs a planar supergraph G′ of G that is Hamiltonian using
a method of Pach et al. [24, Lemma 5]. The main step of the algorithm of Chan
et al. [6] involves the contraction of some edges of G′ [6, Lemma 3]). This oper-
ation identifies the two end-vertices of the contracted edge and merges their
adjacency lists. However, both the construction of the supergraph G′ and the
contractions may produce vertices of degree greater than 4, which implies that
the resulting graph does not admit an orthogonal drawing any longer. As such,
these operations are not suitable for the realization of orthogonal drawings. In
order to overcome this problem, we consider instead the Kandinsky model [16],
which extends the orthogonal drawing model to also allow for vertices of large
degree. Once the drawing has been computed, we remove the previously added
parts and by adding a small amount of additional bends on the G-edges, we
arrive at a orthogonal drawing of the initial graph G. More specifically, we prove
the following theorem:

Theorem 4 (�). Let (G,H, ΓH) be an instance of RepExt(ortho). Suppose
that G admits an orthogonal drawing ΓG that extends ΓH , and let EG be the
embedding of G in ΓG. Then we can construct a planar Kandinsky drawing of G
in O(n2)-time, where n is the number of vertices of G, that realizes EG, extends
H, and has at most 262|V (H)| bends per edge.

An overview of the algorithm to construct the desired Kandinsky orthogonal
drawing Γ ∗

G of G, whose main steps follow the method in [6], is given below.

Step 1: Consider a face F of ΓH with facial walks W1,W2, . . . , Wk. Construct
an ε-approximation of F and let W ′

i be the orthogonal polygon that
approximates Wi, 1 ≤ i ≤ k. Let F ′ be the face bounded by the approx-
imated boundary components of F .

Step 2: Partition F ′ into rectangles [15] and construct a graph K by placing
a vertex at the center of each rectangle and by joining the vertices of
adjacent rectangles. Let T be a spanning tree of K. For each facial walk
Wi, add a new vertex near to Wi as a leaf of T (see Fig. 3).

Step 3: Construct the multigraph GF induced by the vertices lying inside or on
the boundary of F and by contracting each facial walk of F to a single
vertex. Then draw GF along T . Now, reconstruct the edges of G \ H
and the edges between GF and other components of G inside F . Refer
to Fig. 4.

We then transform Γ ∗
G into an orthogonal drawing ΓG of G with O(|V (H)|)

bends per edge that extends ΓH . An illustration is given in Fig. 5.

Theorem 5 (�). Let (G,H, ΓH) be an instance of RepExt(ortho). Suppose
that G admits an orthogonal drawing ΓG that extends ΓH , and let EG be the
embedding of G in ΓG. Then we can construct a planar orthogonal drawing of G
in O(n2)-time, where n is the number of vertices of G, that realizes EG, extends
H, and has at most 270|V (H)| bends per edge.
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Fig. 3. (a) A face with outer walk W1 and, inner facial walks W2 and W3. (b) An
approximation F ′ of F . (c) A face and a corresponding tree T

Fig. 4. (a) An orthogonal drawing of a tree T together with approximations along T
(b) An orthogonal drawing of the Hamiltonian cycle C with respect to T (c) The edge
p3p5 is drawn using approximations of T

Fig. 5. Re-routing the edges incident to a vertex u in the Kandinsky drawing ΓK
G to

obtain the orthogonal drawing ΓG.

5 Bend-Optimal Extension

In this section we study the problem of computing an orthogonal drawing exten-
sion of an instance I = (G,H, ΓH) of RepExt(ortho) with the minimum
number of bends. Observe that, if H is empty, this is equivalent to computing
a bend-minimal drawing of G, which is NP-complete if the embedding of G is
not fixed. We thus assume that G comes with a fixed planar embedding EG that
satisfies the port constraints of ΓH , and we study the complexity of computing
a bend-optimal drawing ΓG of G with embedding EG that extends ΓH .
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Here, we specifically focus on the restricted case where V (H) = V (G) and
E(H) = ∅, which we call orthogonal point set embedding with fixed mapping. We
show that, even in this case, it is NP-hard to minimize the number of bends
on the edges. On the positive side, we show that in this case the existence of a
drawing that uses one bend per edge can be tested in polynomial time.

Theorem 6. Given an instance (G,H, ΓH) of RepExt(ortho), a planar
embedding EG of G that satisfies the port constraints of ΓH , and a number
k ∈ N0, it is NP-complete to decide whether G admits an orthogonal draw-
ing ΓG with embedding EG that extends H and has at most k bends. This holds
even if V (G) \ V (H) = ∅, E(H) = ∅, and E(G) is a matching.

Proof. We give a reduction from the NP-complete problem monotone planar 3-
SAT [9]. In this variant of 3-SAT, the variable–clause graph is planar and has
a layout where the variables are represented by horizontal segments on the x-
axis, the clauses by horizontal segments above and below the x-axis, and each
variable is connected to each clause containing it by a vertical segment, the
clauses above the x-axis contain only positive literals and the clauses below
contain only negative literals; see Fig. 6a.

Fig. 6. A representation of an instance of monotone planar 3-SAT with four variables
a, b, c, d and four clauses c1, c2, c3, c4 (a). Image of the vertically-stretched version of
(a) under the mapping Φ (b).

A box is an axis-aligned rectangle whose bottom-left and the top-right corners
contain two H-vertices, connected by a G-edge. We consider non-degenerate
boxes, and thus this G-edge requires at least one bend; when this edge is drawn
with one bend, there is a choice whether it contains the top-left or the bottom-
right corner of the box. In these cases we say that the box is drawn top and drawn
bottom, respectively. We now describe our variable, pipe, and clause gadgets.

A variable gadget consists of h > 0 boxes R1, . . . , Rh that are 3 × 3-squares,
where the bottom-left corner of Ri lies at b+(2(i− 1), 2(i− 1)), for an arbitrary
base point b; see Fig. 7a-b. The crucial property is that in a one-bend drawing
of the gadget, Ri is drawn bottom if and only if Ri+1 is drawn top for i =
1, . . . , h − 1. Thus, in such a drawing, either all the odd boxes (those with odd
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Fig. 7. Variable gadget with h = 4 boxes (a,b). In (a) the even boxes are drawn top
and the odd boxes are drawn bottom, (b) shows the opposite. Pipe gadget (c,d). In (c)
all boxes are drawn bottom, in (d) they are all drawn top. In all cases the base point
is marked.

indices) are drawn top and all the even boxes (those with even indices) are drawn
bottom, or vice versa. This will be used to encode the truth value of a variable.

A (positive) pipe gadget works similarly; see Fig. 7c-d. For a base point b, it
consists of h > 0 boxes R1, . . . , Rh that are 3 × 3-squares such that the bottom-
left corner of Ri lies at b+(−2(i−1), 2(i−1)); see Fig. 7c-d. The decisive property
is that in a one-bend drawing of the gadget, all the boxes are drawn the same as
R1, that is, either all bottom (see Fig. 7c) or all top (see Fig. 7d). Negative pipe
gadgets are symmetric with respect to the line y = x and behave symmetrically.

The last gadget we describe is the (positive) clause gadget ; negative clause
gadgets are symmetric with respect to the line y = x and behave symmetrically.
The positive clause gadget has three input boxes R1, R2, R3, whose corners lie
on a single line with slope 1; we assume that R1 lies left of R2, which in turn
lies left of R3. To simplify the description, we assume that the left lower corners
of these rectangles lie at (x, x), (y, y), and (z, z), respectively. Refer to Fig. 8a.

We create three literal boxes L1, L2, L3 that are 3×3-squares. The lower left
corner of L1 is (x − 3, y + 2), the lower left corner of L2 if (y − 2, y + 2), and the
lower left corner of L3 is (y, z +3). Note that the interiors of L2 and R2 intersect
in a unit square, and therefore, if R2 is drawn top, then L2 must be drawn top.
To obtain the same behavior for the other input and literal rectangles, we add
two transmission boxes T1 and T2. The lower left corner of T1 is (x − 1, x + 2)
and its upper right corner is (x+1, y +4). The bottom-left and top-right corner
of T2 are (y +2, z +2) and (z +1, z +4), respectively. This guarantees that, also
for i = 1, 3, if Ri is drawn top, then Ti and Li are drawn top. We finally have
a blocker box B, with corners at (x − 1, z + 1) and (x + 1, z + 4); and a clause
box, whose corners are in the centers of L1 and L3, respectively.

Note that the G-edge connecting the two corners of the clause box, which we
call the clause edge, requires at least two bends, as any one-bend drawing cuts
horizontally through either the blocker B or the literal square L2; see Fig. 8a.
The following claim shows that the possibility of drawing it with exactly two
bends depends on the drawings of the literal boxes of the clause gadget, and
thus on the truth values of the literals; see Fig. 8b-c.
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Fig. 8. Clause gadget with input rectangles R1, R2, R3. The bottom-left and top-right
corner of the clause box are drawn as crosses (a). The image of the triangle ΔC under
the mapping (x, y) �→ (x−y, x+y) is drawn gray. The possibilities of routing the clause
edge with two bends, if L3 is drawn bottom (b) and if L3 is drawn top and L2 is drawn
bottom (c).

Claim 1 (�). If the other edges are drawn with one bend, then the clause edge
can be drawn with two bends if and only if not all literal boxes are drawn top.

We are now ready to put the construction together. Consider the layout of
the variable–clause graph, where each variable x is represented by a horizontal
segment sx on the x-axis, and each clause C = (c1, c2, c3) with only positive (only
negative) literals by a horizontal segment sC above (below) the x-axis. Further,
the occurrence of a variable x in a clause C is represented by a vertical visibility
segment sx,C that starts at an inner point of sx and ends at an inner point of sC ;
see Fig. 6a. We call these points attachment points. By suitably stretching the
drawing horizontally, we may assume that all segments start and end at points
with integer coordinates divisible by 8. We also stretch the whole construction
vertically by a factor of n, which guarantees that for each clause segment sC the
right-angled triangle ΔC , whose long side is sC and that lies above sC (below
sC if C consists of negative literals) does not intersect any other segments in its
interior. Note that the initial drawing fits on a grid of polynomial size [22], and
the transformations only increase the area polynomially. For the construction
it is useful to consider this representation rotated by 45◦ in counterclockwise
direction and scaled by a factor of

√
2 back to the grid. This is achieved by the

affine mapping Φ : (x, y) 
→ (x − y, x + y); see Fig. 6b.
For each variable segment sx with left endpoint (a, 0) and right endpoint

(b, 0) we create a variable gadget with h = (b − a)/2 boxes and base point
(a, a). For each clause segment sC above the x-axis with attachment points
(a1, b), (a2, b), (a3, b), we create a positive clause gadget with input boxes at
(ai − b, ai + b). For each vertical segment sx,C above the x-axis with attachment
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points (a, 0) and (a, b), we create a positive pipe gadget of h = (b/2)−2 boxes at
base point (a− 2, a− 2). Note that, together with the box of the variable gadget
of x at (a, a) and the input box of C at (a−b, a+b), the newly placed boxes form
a pipe gadget that consists of h+2 boxes. Since distinct vertical segments on the
same side of the x-axis have horizontal distance at least 8, the boxes of distinct
pipes do not intersect, and the placement is such that only the first and last box
of each pipe gadget intersect boxes that belong to the corresponding variable or
clause gadget. Finally note that for each clause C, except for the input boxes,
the clause gadget lies inside the image of the triangle ΔC under the mapping Φ,
since the attachment points are interior points of sC , and the x-coordinates of
its endpoints are divisible by 8. Hence, the only interaction of the clause gadget
with the remainder of the construction is via the input variables The proof of
the following claim is based on showing that we can draw each box with exactly
one bend and each clause edge with exactly two bends, if and only if the original
instance of monotone planar 3-SAT is satisfiable.

Claim 2 (�). Let ϕ be an instance of monotone planar 3-SAT, with γ
clauses. Also, let β be the number of boxes in the instance (G,H, ΓH) of
RepExt(ortho) constructed as described above. Then, the formula ϕ is sat-
isfiable if and only if the instance (G,H, ΓH) admits an extension with at most
k = β + γ bends.

Since the construction has polynomially many vertices and edges on a poly-
nomial size grid, it can be executed in polynomial time. Moreover, by construc-
tion, V (H) = V (G), E(H) = ∅, and E(G) is a matching. The statement of the
theorem follows.

By subdividing each non-clause edge with a G-vertex, and each clause edge
with two G-vertices, we get the following corollary.

Corollary 1. It is NP-complete to decide whether a partial orthogonal drawing
(G,H, ΓH) admits an extension without bends.

Similarly, we can ask whether an instance (G,H, ΓH) admits an extension
with at most k bends per edge for a fixed number k. The construction depicted
in Fig. 9 shows how to force an edge to use k bends for any fixed number k.
By making the part that enforces the first k − 1 bends sufficiently small, we
essentially obtain the behavior of the box gadget from the proof of Theorem6.

Corollary 2. For any fixed k ≥ 2, it is NP-complete to decide whether an
instance (G,H, ΓH) of RepExt(ortho) admits an extension that uses at most
k bends per edge, even if V (G) = V (H).

On the positive side, if all vertices are predrawn, the existence of an extension
with at most k bends per edge can be tested efficiently for k = 0 and k = 1.

Theorem 7. Let (G,H, ΓH) be an instance of RepExt(ortho) with V (G) =
V (H) and let k ∈ {0, 1}. It can be tested in polynomial time whether (G,H, ΓH)
admits an extension with at most k bends per edge.
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Fig. 9. Gadget for forcing an edge to use k = 4 bends. All vertices and the thin
solid black lines are H-vertices. Up to minor geometric adjustments, the thick blue and
dotted red lines show the only two ways to draw the G-edge between the two H-vertices
u and v with k bends. Scaling the lower left part to make it sufficiently small results
in a construction that behaves like a box. (Color figure online)

Proof. For k = 0 we simply draw each G-edge as the straight-line segment
between its endpoints, and check whether this is a crossing-free orthogonal
drawing.

For k = 1 we proceed as follows. While there exists a G-edge e = uv whose
endpoints have the same x- or the same y-coordinates, we do the following. If
e must be drawn as a straight-line (if u and v have the same x- or the same y-
coordinates), the instance (G,H, ΓH) is equivalent to the instance (G,H ′, Γ ′

H),
where H ′ is obtained from H by adding e, and Γ ′

H is obtained from inserting e as
a straight-line segment. By applying this reduction rule, we eventually arrive at
an instance (G′′,H ′′, Γ ′′

H) such that the endpoints of each G-edge have distinct x-
and distinct y-coordinates. Now for each such edge, there are precisely two ways
to draw them with one bend. It is then straightforward to encode the existence
of choices that lead to a planar drawing into a 2-SAT formula.

6 Conclusions

In this paper we studied the problem of extending a partial orthogonal drawing.
We gave a linear-time algorithm to test the existence of such an extension, and
we proved that if one exists, then there is also one whose edge complexity is
linear in the size of the given drawing. On the other hand, we showed that, if
we also restrict to a fixed constant the total number of bends or the number of
bends per edge, then deciding the existence of an extension is NP-hard.

Concerning future work we feel that the most important questions are the
following: 1) The complexity of 270|V (H)| bends per edge resulting from the
transition to orthogonal drawings is significantly worse than the one of 72|V (H)|
bends per edge in the case of arbitrary polygonal drawings [6]. Can this num-
ber be significantly reduced to, say, less than 100|V (H)|? 2) As mentioned in
the introduction, Tamassia [26] already observed that an orthogonal represen-
tation of H can be efficiently extended to an orthogonal representation of G.
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However, drawing such an extension may require to modify the drawing ΓH of
the given subgraph. Is it possible to efficiently test whether a given orthogonal
representation can be drawn such that it extends a given drawing ΓH?
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Abstract. In this article we discuss classical theorems from Convex
Geometry in the context of topological drawings. In a simple topological
drawing of the complete graph Kn, any two edges share at most one
point: either a common vertex or a point where they cross. Triangles of
simple topological drawings can be viewed as convex sets. This gives a
link to convex geometry.

We present a generalization of Kirchberger’s Theorem, a family of sim-
ple topological drawings with arbitrarily large Helly number, and a new
proof of a topological generalization of Carathéodory’s Theorem in the
plane. We also discuss further classical theorems from Convex Geometry
in the context of simple topological drawings.

We introduce “generalized signotopes” as a generalization of simple
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arrangements of pseudolines.
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Fig. 1. Forbidden patterns in topological drawings: self-crossings, double-crossings,
touchings, and crossings of adjacent edges.

problems from the convex geometry of point sets. Since we only deal with sim-
ple topological drawings we omit the attribute simple and define a topological
drawing D of Kn as follows:

� vertices are mapped to distinct points in the plane,
� edges are mapped to simple curves connecting the two corresponding vertices

and containing no other vertices, and
� every pair of edges has at most one common point, which is either a common

vertex or a crossing (but not a touching).

Figure 1 illustrates the forbidden patterns for topological drawings. Moreover, we
assume throughout the article that no three or more edges cross in a single point.
Topological drawings are also known as “good drawings” or “simple drawings”.

In this article, we discuss classical theorems such as Kirchberger’s, Helly’s,
and Carathéodory’s Theorem in terms of the convexity hierarchy of topological
drawings introduced by Arroyo, McQuillan, Richter, and Salazar [5], which we
introduce in Sect. 2. In that section, we also introduce generalized signotopes, a
combinatorial generalization of topological drawings. Our proof of a generaliza-
tion of Kirchberger’s Theorem in Sect. 3 makes use of this structure. Section 4
deals with a generalization of Carathéodory’s Theorem. In Sect. 5, we present a
family of topological drawings with arbitrarily large Helly number. We conclude
this article with Sect. 6, where we discuss some open problems.

2 Preliminaries

Let D be a topological drawing and v a vertex of D. The cyclic order πv of
incident edges around v is called the rotation of v in D. The collection of rotations
of all vertices is called the rotation system of D. Two topological drawings are
weakly isomorphic if there is an isomorphism of the underlying abstract graphs
which preserves the rotation system or reverses all rotations.

A triangular cell, which has no vertex on its boundary, is bounded by three
edges. By moving one of these edges across the intersection of the two other
edges, one obtains a weakly isomorphic drawing; see Fig. 2. This operation is
called triangle-flip. Gioan [21], see also Arroyo et al. [6], showed that any two
weakly isomorphic drawings of the complete graph can be transformed into each
other with a sequence of triangle-flips and at most one reflection of the drawing.

Besides weak isomorphism, there is also the notion of strong isomorphism:
two topological drawings are called strongly isomorphic if they induce homeomor-
phic cell decompositions of the sphere. Every two strongly isomorphic drawings
are also weakly isomorphic.
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Fig. 2. Two weakly isomorphic drawings of K6, which can be transformed into each
other by a triangle-flip.

Convexity Hierarchy. Given a topological drawing D, we call the induced sub-
drawing of three vertices a triangle. Note that the edges of a triangle in a topolog-
ical drawing do not cross. The removal of a triangle separates the plane into two
connected components – a bounded component and an unbounded component.
We call the closure of these connected components sides. A side of a triangle is
convex if every edge that has its two end-vertices in the side is completely drawn
in the side. We are now ready to introduce the “convexity hierarchy” of Arroyo
et al. [5]). For 1 ≤ i < j ≤ 5, drawings with property (j) also have property (i).

(1) topological drawings;
(2) convex drawings: each triangle has a convex side;
(3) hereditary-convex drawings: if a triangle �1 is fully contained in the convex

side of another triangle �2, then also its convex side is;
(4) face-convex drawings: there is a special face f∞ such that, for every triangle,

the side not containing f∞ is convex;
(5) pseudolinear drawings: all edges of the drawing can be extended to bi-infinite

curves – called pseudolines – such that any two cross at most once1;
(6) straight-line drawings: all edges are drawn as straight-line segments con-

necting their endpoints.

Arroyo et al. [7] showed that the face-convex drawings where the special
face f∞ is drawn as the unbounded outer face are precisely the pseudolinear
drawings (see also [4] and [2]).

Pseudolinear drawings are generalized by pseudocircular drawings. A draw-
ing is called pseudocircular if the edges can be extended to pseudocircles (simple
closed curves) such that any pair of non-disjoint pseudocircles has exactly two
crossings. Since stereographic projections preserve (pseudo)circles, pseudocircu-
larity is a property of drawings on the sphere.

Pseudocircular drawings were studied in a recent article by Arroyo, Richter,
and Sunohara [8]. They provided an example of a topological drawing which is

1 Arrangements of pseudolines obtained by such extensions are equivalent to pseudo-
configurations of points, and can be considered as oriented matroids of rank 3 (cf.
Chapter 5.3 of [17]).
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not pseudocircular. Moreover, they proved that hereditary-convex drawings are
precisely the pseudospherical drawings, i.e., pseudocircular drawings with the
additional two properties that

� every pair of pseudocircles intersects, and
� for any two edges e �= f the pseudocircle γe has at most one crossing with f .

The relation between convex drawings and pseudocircular drawings remains
open.

Convexity, hereditary-convexity, and face-convexity are properties of the
weak isomorphism classes. To see this, note that the existence of a convex side
is not affected by changing the outer face or by transferring the drawing to the
sphere, moreover, convex sides are not affected by triangle-flips. Hence, these
properties only depend on the rotation system of the drawing. For pseudolin-
ear and straight-line drawings, however, the choice of the outer face plays an
essential role.

Generalized Signotopes

Let D be a topological drawing of a complete graph in the plane. Assign an
orientation χ(abc) ∈ {+,−} to each ordered triple abc of vertices. The sign
χ(abc) indicates whether we go counterclockwise or clockwise around the triangle
if we traverse the edges (a, b), (b, c), (c, a) in this order.

If D is a straight-line drawing of Kn, then the underlying point set S =
{s1, . . . , sn} has to be in general position (no three points lie on a line). Assuming
that the points are sorted from left to right, then for every 4-tuple si, sj , sk, sl

with i < j < k < l the sequence χ(ijk), χ(ijl), χ(ikl), χ(jkl) (index-triples
in lexicographic order) is monotone, i.e., there is at most one sign-change. A
signotope is a mapping χ :

(
[n]
3

)
→ {+,−} with the above monotonicity property,

where [n] = {1, 2, . . . , n}. Signotopes are in bijection with Euclidean pseudoline
arrangements [19] and can be used to characterize pseudolinear drawings [11,
Theorem 3.2].

When considering topological drawings of the complete graph we have no left
to right order of the vertices, i.e., no natural labeling. Exchanging the labels of
two vertices reverts the orientation of all triangles containing both vertices. This
suggests to look at the alternating extension of χ. Formally χ(iσ(1), iσ(2), iσ(3)) =
sgn(σ) · χ(i1, i2, i3) for any distinct labels i1, i2, i3 and any permutation σ ∈ S3.
This yields a mapping χ : [n]3 → {+,−}, where [n]3 denotes the set of all
triples (a, b, c) with pairwise distinct a, b, c ∈ [n]. To see whether the alternating
extension of χ still has a property comparable to the monotonicity of signotopes,
we have to look at 4-tuples of vertices, i.e., at drawings of K4. On the sphere
there are two types of drawings of K4: type-I has one crossing and type-II has
no crossing. Type-I can be drawn in two different ways in the plane: in type-Ia
the crossing is only incident to bounded faces and in type-Ib the crossing lies on
the outer face; see Fig. 3.

A drawing of K4 with vertices a, b, c, d can be characterized in terms of the
sequence of orientations χ(abc), χ(abd), χ(acd), χ(bcd). The drawing is
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Fig. 3. The three types of topological drawings of K4 in the plane.

� of type-Ia or type-Ib iff the sequence is + + ++, + + −−, + − −+, − + +−,
− − ++, or − − −−; and

� of type-II iff the number of +’s (and −’s respectively) in the sequence is odd.

Therefore there are at most two sign-changes in the sequence χ(abc), χ(abd),
χ(acd), χ(bcd) and, moreover, any such sequence is in fact induced by a topolog-
ical drawing of K4. Allowing up to two sign-changes is equivalent to forbidding
the two patterns + − +− and − + −+.

If χ is alternating and avoids the two patterns + − +− and − + −+ on
sorted indices, i.e., χ(ijk), χ(ijl), χ(ikl), χ(jkl) has at most two sign-changes for
all i < j < k < l, then it avoids the two patterns in χ(abc), χ(abd), χ(acd), χ(bcd)
for any pairwise distinct a, b, c, d ∈ [n]. We refer to this as the symmetry property
of the forbidden patterns.

The symmetry property allows us to define generalized signotopes as alternat-
ing mappings χ : [n]3 → {+,−} with at most two sign-changes on χ(abc), χ(abd),
χ(acd), χ(bcd) for any pairwise different a, b, c, d ∈ [n]. We conclude:

Proposition 1. Every topological drawing of Kn induces a generalized signotope
on n elements.

3 Kirchberger’s Theorem

Two closed sets A,B ⊆ R
d are called separable if there exists a hyperplane H

separating them, i.e., A ⊂ H1 and B ⊂ H2 with H1, H2 being the two closed half-
spaces defined by H. It is well-known that, if two non-empty compact sets A,B
are separable, then they can also be separated by a hyperplane H containing
points of A and B. Kirchberger’s Theorem (see [30] or [15]) asserts that two
finite point sets A,B ⊆ R

d are separable if and only if for every C ⊆ A∪B with
|C| = d + 2, C ∩ A and C ∩ B are separable.

Goodman and Pollack [23] proved duals of Kirchberger’s Theorem and further
theorems like Radon’s, Helly’s, and Carathéodory’s Theorem for arrangements
of pseudolines. Their results also transfer to pseudoconfigurations of points and
thus to pseudolinear drawings. To be more precise, they proved a natural general-
ization of Kirchberger’s Theorem to pseudoline-arrangements in the plane which,
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by duality, is equivalent to a separating statement on pseudoconfigurations of
points in the plane (cf. Theorem 4.8 and Remark 5.2 in [23]).

The 2-dimensional version of Kirchberger’s Theorem can be formulated in
terms of triple orientations. We show a generalization for topological drawings
using generalized signotopes. Two sets A,B ⊆ [n] are separable if there exist
i, j ∈ A ∪ B such that χ(i, j, x) = + for all x ∈ A \ {i, j} and χ(i, j, x) = −
for all x ∈ B \ {i, j}. In this case we say that ij separates A from B and write
χ(i, j, A) = + and χ(i, j, B) = −. Moreover, if we can find i ∈ A and j ∈ B,
we say that A and B are strongly separable. As an example, consider the 4-
element generalized signotope of the type-Ib drawing of K4 in Fig. 3. The sets
A = {1, 2} and B = {3, 4} are strongly separable with i = 2 and j = 3 because
χ(2, 3, 1) = + and χ(2, 3, 4) = −.

Theorem 1 (Kirchberger’s Theorem for Generalized Signotopes). Let
χ : [n]3 → {+,−} be a generalized signotope, and let A,B ⊆ [n] be two non-
empty sets. If for every C ⊆ A ∪ B with |C| = 4, the sets A ∩ C and B ∩ C are
separable, then A and B are strongly separable.

Note that, since every topological drawing yields a generalized signotope,
Theorem 1 generalizes Kirchberger’s Theorem to topological drawings of com-
plete graphs. We remark that also a stronger version of the converse of the
theorem is true: If A and B are separable, then for every C ⊆ A ∪ B with
|C| = 4, the sets A ∩ C and B ∩ C are separable.

Proof. First, an elaborate case distinction, which we defer to [16], shows that all
4-tuples C ⊆ A ∪ B with C ∩ A and C ∩ B non-empty which are separable are
also strongly separable. Hence in the following we assume that all such 4-tuples
from A ∪ B are strongly separable.

By symmetry we may assume |A| ≤ |B|. First we consider the cases |A| =
1, 2, 3 individually and then the case |A| ≥ 4.

Let A = {a}, let B′ be a maximal subset of B such that B′ is strongly
separated from {a}, and let b ∈ B′ be such that χ(a, b,B′) = −. Suppose that
B′ �= B, then there is a b∗ ∈ B\B′ with

χ(a, b, b∗) = +. (1)

By maximality of B′ we cannot use the pair a, b∗ for a strong separation of {a}
and B′ ∪ {b∗}. Hence, for some b′ ∈ B′:

χ(a, b∗, b′) = +. (2)

Since χ is alternating (1) and (2) together imply b′ �= b. Since b′ ∈ B′ we
have χ(a, b, b′) = −. From this together with (1) and (2) it follows that the
four-element set {a, b, b′, b∗} has no separator. This is a contradiction, whence
B′ = B.
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As a consequence we obtain:

� Every one-element set {a} with a ∈ A can be strongly separated from B.
Since χ is alternating there is a unique b(a) ∈ B such that χ(a, b(a), B) = −.

Now consider the case that A = {a1, a2}. Let bi = b(ai), i.e., χ(ai, bi, B) = −
for i = 1, 2. If χ(a1, b1, a2) = + or if χ(a2, b2, a1) = +, then a1b1 or a2b2,
respectively, is a strong separator for A and B. Therefore, we may assume that
χ(a1, b1, a2) = −, χ(a2, b2, a1) = − and therefore b1 �= b2. We get the sequence
+ − −+ for the four-element set {a1, a2, b1, b2} which has no strong separator,
a contradiction.

The case |A| = 3 works similarly but is more technical. A proof of this case
is given in [16].

For the remaining case |A| ≥ 4 consider a counterexample (χ,A,B) minimiz-
ing the size of the smaller of the two sets. We have 4 ≤ |A| ≤ |B|.

Let a∗ ∈ A. By minimality A′ = A\{a∗} is separable from B. Let a ∈ A′ and
b ∈ B such that χ(a, b, A′) = + and χ(a, b,B) = −. Hence

χ(a, b, a∗) = −. (3)

Let b∗ = b(a∗), i.e., χ(a∗, b∗, B) = −. There is some a′ ∈ A′ such that

χ(a∗, b∗, a′) = −. (4)

If a′ = a, then b �= b∗ because of (3) and (4). From (3), (4), χ(a, b,B) = −,
and χ(a∗, b∗, B) = − it follows that the four-element set {a, a∗, b, b∗} has the
sign pattern + − −+, hence there is no separator. This shows that a′ �= a.

Let b′ = b(a′). If b �= b′ we look at the four elements {a, b, a′, b′}. It corre-
sponds to +−∗− so that we can conclude χ(a, a′, b′) = −. If b = b′, then a′ ∈ A′

implies χ(a, b, a′) = + which yields χ(a′, b′, a) = −.
Hence, regardless whether b = b′ or b �= b′ we have

χ(a′, b′, a) = − . (5)

Since |A| ≥ 4, we know by the minimality of the instance (χ,A,B) that the
set {a, b, a′, b′, a∗, b∗}, which has 3 elements of A and at least 1 element of B,
is separable. It follows from χ(a, b,B) = χ(a′, b′, B) = χ(a∗, b∗, B) = − that
the only possible strong separators are ab, a′b′, and a∗b∗. They, however, do not
separate because of (3), (4) and (5) respectively. This contradiction shows that
there is no counterexample. �

4 Carathéodory’s Theorem

Carathéodory’s Theorem asserts that, if a point x lies in the convex hull of a
point set P in R

d, then x lies in the convex hull of at most d + 1 points of P .
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Fig. 4. (a) and (b) give an illustration of the proof of Theorem 2.

As already mentioned in Sect. 3, Goodman and Pollack [23] proved a dual of
Carathéodory’s Theorem, which transfers to pseudolinear drawings.

A more general version of Carathéodory’s Theorem in the plane is due to
Balko, Fulek, and Kynčl, who provided a generalization to topological drawings.
In this section, we present a shorter proof for their theorem.

Theorem 2 (Carathéodory for Topological Drawings [11, Lemma4.7]).
Let D be a topological drawing of Kn and let x ∈ R

2 be a point contained in
a bounded connected component of R2 − D. Then there is a triangle in D that
contains x in its interior.

Proof. Suppose towards a contradiction that there is a pair (D,x) violating the
claim. We choose D minimal with respect to the number of vertices n.

Let a be a vertex of the drawing. If we remove all incident edges of a from D,
then, by minimality of the example, x becomes a point of the outer face. There-
fore, if we remove the incident edges of a one by one, we find a last subdrawing D′

such that x is still in a bounded face. Let ab be the edge such that in the drawing
D′ − ab the point x is in the outer face.

There is a simple curve P connecting x to infinity, which does not cross any
of the edges in D′ − ab. By the choice of D′, curve P has at least one crossing
with ab. We choose P minimal with respect to the number of crossings with ab.

We claim that P intersects ab exactly once. Suppose that P crosses ab more
than once. Then there is a lense C formed by P and ab, that is, two crossings
of P and ab such that the simple closed curve ∂C, composed of a subcurve P1

of P and a part P2 of edge ab between the crossings, encloses a simply connected
region C, see Fig. 4(a).

Now consider the curve P ′ from x to infinity which is obtained from P by
replacing the subcurve P1 by a curve P ′

2 which is a close copy of P2 in the
sense that it has the same crossing pattern with all edges in D and the same
topological properties, but is disjoint from ab. As P was chosen minimal with
respect to the number of crossings with ab, there has to be an edge of the
drawing D′ that intersects P ′

2 (and by the choice of P ′
2 also P2). This edge has

no crossing with P , by construction, and crosses ab at most once, so it has one
of its endpoints inside the lense C and one outside C. Depending on whether
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b ∈ C or not, we choose an endpoint c1 of that edge such that the edge bc1 in D′

intersects ∂C. But since they are adjacent, bc1 cannot intersect ab and by the
choice of P it does not intersect P . The contradiction shows that P crosses ab
in a unique point p.

If a has another neighbor c2 in the drawing D′ then, since only edges incident
to a have been removed there is an edge connecting b to c2 in D′. The edges ac2
and bc2 do not cross P , so x is in the interior of the triangle abc2 and we are
done.

If there is no edge ac2 in D′, then deg(a) = 1 in D′. As x is not in the outer
face of D′, there must be an edge cd in D′ which intersects the partial segment of
the edge ab starting in a and ending in p, in its interior. Let c be the point on the
same side of ab as x; see Fig. 4(b). The edges bc and bd of D′ cross neither P nor
ab. Consequently, the triangle bcd (drawn blue) must contain a in its interior.
We claim that the edge ac in the original drawing D (drawn red dashed) lies
completely inside the triangle bcd: The bounded region defined by the edges ab,
cd, and bd of D′ contains a and c. Since D is a topological drawing, and ac has
no crossing with ab and cd, ac has no crossing with bd. This proves the claim.
Now the curve P does not intersect ac, and the only edge of the triangle abc
intersected by P is ab. Therefore, x lies in the interior of the triangle abc. This
contradicts the assumption that (D,x) is a counterexample. �

Colorful Carathéodory Theorem

Bárány [13] generalized Carathéodory’s Theorem as follows: Given finite point
sets P0, . . . , Pd from R

d such that there is a point x ∈ conv(P0)∩ . . .∩ conv(Pd),
then x lies in a simplex spanned by p0 ∈ P0, . . . , pd ∈ Pd. Such a simplex is
called colorful. The theorem is known as the Colorful Carathéodory Theorem.

A strengthening, known as the Strong Colorful Carathéodory Theorem, was
shown by Holmsen, Pach, and Tverberg [26] (cf. [27]): It is sufficient if there
is a point x with x ∈ conv(Pi ∪ Pj) for all i �= j, to find a colorful simplex.
The Strong Colorful Carathéodory Theorem was further generalized to oriented
matroids by Holmsen [25]. In particular, the theorem applies to pseudolinear
drawings (which are in correspondence with oriented matroids of rank 3).

There are several ways to prove Colorful Carathéodory Theorem for pseudo-
linear drawings. Besides Holmsen’s proof [25], which uses sophisticated methods
from topology, we have also convinced ourselves that Bárány’s proof [13] can
be adapted to pseudoconfigurations of points in the plane. However, Bárány’s
proof idea does not directly generalize to higher dimensions because oriented
matroids of higher ranks do not necessarily have a representation in terms of
pseudoconfigurations of points in d-space (cf. [17, Chapter 1.4]).

Another way to prove the Strong Colorful Carathéodory Theorem for pseu-
dolinear drawings is by computer assistance: Since the statement of the theorem
only involves 10 points and only the relative positions play a role (not the actual
coordinates), one can verify the theorem by checking all combinatorially different
point configurations using the order type database (cf. [1] and [33, Section 6.1]).
Alternatively, one can – similar as in [34] – formulate a SAT instance that models
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Fig. 5. A face-convex drawings of K9. If the cell fo is chosen as the outer face, then
Colorful Carathéodory Theorem does not hold for the colored triangles and x. The
special cell of the pseudolinear drawing is marked f∞.

the statement of the Strong Colorful Carathéodory Theorem. Using modern SAT
solvers one can then verify that there is no 10-point configuration that violates
the theorem.

The following result shows that in the convexity hierarchy of topological
drawings of Kn the Colorful Carathéodory Theorem is not valid beyond the
class of pseudolinear drawings.

Proposition 2. The Colorful Carathéodory Theorem does not hold for the face-
convex drawing of Fig. 5.

Proof. The drawing depicted in Fig. 5 is face-convex because it is obtained from
a straight-line drawing by choosing fo as outer face. The point x is contained in
the three colored triangles. This point is separated from the outer face only by
three colored edges. Therefore, there is no triangle containing x with a vertex of
each of the three colors. �

5 Helly’s Theorem

The Helly number of a family of sets F with empty intersection is the size of the
smallest subfamily of F with empty intersection. Helly’s Theorem asserts that
the Helly number of a family of n convex sets S1, . . . , Sn from R

d is at most d+1,
i.e., the intersection of S1, . . . , Sn is non-empty if the intersection of every d + 1
of these sets is non-empty.

In the following we discuss the Helly number in the context of topological
drawings, where the sets Si are triangles of the drawing.
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From the results of Goodman and Pollack [23] it follows that Helly’s Theorem
generalizes to pseudoconfigurations of points in two dimensions, and thus for
pseudolinear drawings. A more general version of Helly’s Theorem was shown
by Bachem and Wanka [9]. They prove Helly’s and Radon’s Theorem for oriented
matroids with the “intersection property”. Since all oriented matroids of rank 3
have the intersection property (cf. [9] and [10]) and oriented matroids of rank 3
correspond to pseudoconfigurations of points, which in turn yield pseudolinear
drawings, the two theorems are valid for pseudolinear drawings.

We show that Helly’s Theorem does not hold for face-convex drawings, more-
over, the Helly number can be arbitrarily large in face-convex drawings. Note
that the following proposition does not contradict the Topological Helly Theorem
[24] (cf. [22]) because there are triangles whose intersection is disconnected.

Proposition 3. Helly’s Theorem does not generalize to face-convex drawings.
Moreover, for every integer n ≥ 3, there exists a face-convex drawing of K3n with
Helly number at least n, i.e., there are n triangles such that for any n − 1 of the
triangles, their bounded sides have a common interior point, but the intersection
of the bounded sides of all n triangles is empty.

Proof. Consider a straight-line drawing D of K3n with n triangles Ti as shown
for the case n = 7 in Fig. 6. With D′ we denote the drawing obtained from D by
making the gray cell fo the outer face. Let Oi be the side of ∂Ti that is bounded
in D′. For 1 ≤ i < n the set Oi corresponds to the outside of ∂Ti in D while On

corresponds to the inside of ∂Tn.
In D′ we have

⋂n−1
i=1 Oi �= ∅, indeed any point pn which belongs to the outer

face of D is in this intersection. Since Tn ⊂
⋃n−1

i=1 Ti, we have Tn ∩
⋂n−1

i=1 Oi = ∅,
i.e.,

⋂n
i=1 Oi = ∅. For each i ∈ {1, . . . , n − 1} there is a point pi ∈ Ti ∩ Tn which

is not contained in any other Tj . Therefore, pi ∈
⋂n

j=1;j �=i Oi.
In summary, the intersection of any n − 1 of the n sets O1, . . . , On is non-

empty but the intersection of all of them is empty. �

6 Discussion

We conclude this article with three further classical theorems from Convex
Geometry.

Lovász (cf. Bárány [13]) generalized Helly’ Theorem as follows: Let C0, . . . , Cd

be families of compact convex sets from R
d such that for every “colorful” choice

of sets C0 ∈ C0, . . . , Cd ∈ Cd the intersection C0 ∩ . . . ∩ Cd is non-empty. Then,
for some k, the intersection

⋂
Ck is non-empty. This result is known as the

Colorful Helly Theorem. Kalai and Meshulam [28] presented a topological version
of the Colorful Helly Theorem, which, in particular, carries over to pseudolinear
drawings. Since Helly’s Theorem does not generalize to face-convex drawings (cf.
Proposition 3), neither does the Colorful Helly Theorem.

The (p, q)-Theorem (conjectured by Hadwiger and Debrunner, proved by
Alon and Kleitman [3], cf. [29]) says that for any p ≥ q ≥ d + 1 there is a
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Fig. 6. A drawing D of K21 is obtained by adding the remaining edges as straight-line
segments. Making the gray cell fo the outer face, we obtain a face-convex drawing with
Helly number 7.

finite number c(p, q, d) with the following property: If C is a family of convex
sets in R

d, with the property that among any p of them, there are q that have
a common point, then there are c(p, q, d) points that cover all the sets in C. The
case p = q = d+1 is Helly’s Theorem, i.e., c(d+1, d+1, d) = 1. A (p, q)-Theorem
for triangles in topological drawings can be derived from [18, Theorem 4.6]:

Theorem 3. For p ≥ q ≥ 2, there exists a finite number c̃(p, q) such that, if T
is a family of triangles of a topological drawing and among any p members of T
there are q that have a common point, then there are c̃(p, q) points that cover all
the triangles of T .

Last but not least, we would like to mention Tverberg’s Theorem, which
asserts that every set V of at least (d+1)(r−1)+1 points in R

d can be partitioned
into V = V1 ∪̇ . . . ∪̇ Vr such that conv(V1) ∩ . . . ∩ conv(Vr) is non-empty. A
generalization of Tverberg’s Theorem applies to pseudolinear drawings [32] and
to drawings of K3r−2 if r is a prime-power [31] (cf. [12]). Also a generalization of
Birch’s Theorem, a weaker version of Tverberg’s Theorem, was recently proven
for topological drawings of complete graphs [20]. The general case, however,
remains unknown. For a recent survey on generalizations of Tverberg’s Theorem,
we refer to [14].

In future work, we study the structure of generalized signotopes in more
detail. There we show that the number of generalized signotopes on n elements
is of order 2Θ(n3), and deduce that most of them are not induced by a topological
drawing.
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Abstract. We consider the problem of stretching pseudolines in a planar
straight-line drawing to straight lines while preserving the straightness
and the combinatorial embedding of the drawing. We answer open ques-
tions by Mchedlidze et al. [9] by showing that not all instances with two
pseudolines are stretchable. On the positive side, for k ≥ 2 pseudolines
intersecting in a single point, we prove that in case that some edge-
pseudoline intersection-patterns are forbidden, all instances are stretch-
able. For intersection-free pseudoline arrangements we show that every
aligned graph has an aligned drawing. This considerably reduces the gap
between stretchable and non-stretchable instances.

1 Introduction

Every planar graph G = (V,E) has a straight-line drawing [8,11]. In a restricted
setting one seeks a drawing of G that obeys given constraints, e.g., Biedl
et al. [1,2] studied whether a bipartite planar graph has a drawing where the
two sets of the partitions can be separated by a straight line; refer to Fig. 1a.
Da Lozzo et al. [4] generalized this result and characterized the planar graphs
with a partition L ∪ R ∪ S = V of the vertex set that have a planar straight-line
drawing such that the vertices in L and R lie left and right of a common line l,
respectively, and the vertices in S lie on l. In this case S is called collinear. In
particular, they showed that S is collinear if and only if there is a drawing of
G such that there is an open simple curve P that starts and ends in the outer
face of G, separates L from R, collects all vertices in S and that either entirely
contains or intersects at most once each edge. We refer to P as a pseudoline with
respect to G.

Dujmovic et al. [5] proved the following surprising result: If S is a collinear
set, then for every point set P with |S| = |P | there is a straight-line drawing
Γ of G such that S is mapped to P . Another recent research stream considers
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the problem of drawing all vertices on as few lines as possible [3]. Eppstein [7]
proved that for every integer l there is a cubic planar graph graph G with O(l3)
vertices such that not all vertices of G can lie on l lines.

Mchedlidze et al. [9] generalized the concept of a single pseudoline with
respect to an embedded graph to arrangements of pseudolines and introduced
the notion of aligned graphs, i.e, a pair (G,A) where G is a planar embed-
ded graph and A = {L1, . . . ,Lk} is a set of pseudolines Li with respect to G
that intersect pairwise at most once. We cite the original definition of aligned
drawings [9]. A tuple (Γ,A) is an aligned drawing of (G,A) if and only if the
arrangement of the union of Γ and A has same combinatorial properties as the
union of G and A. In the following, we specify these combinatorial properties. Let
A = {L1, L2, . . . , Lk}, i.e., line Li corresponds to pseudoline Li. A (pseudo)-line
arrangement divides the plane into a set of cells C1, C2, . . . , C�. If A is homeomor-
phic to A, then there is a bijection φ between the cells of A and the cells of A. If
(Γ,A) is an aligned drawing of (G,A), then it has the following properties: (i) the
arrangement of A is homeomorphic to the arrangement of A, (ii) Γ is a straight-
line drawing homeomorphic to the planar embedding of G, (iii) the intersection
of each vertex v and each edge e with a cell C of A is non-empty if and only if
the intersection of v and e with φ(C) in (Γ,A), respectively, is non-empty, (iv)
if an edge uv (directed from u to v) intersects a sequence of cells C1, C2, . . . , Cr

in this order, then uv intersects in (Γ,A) the cells φ(C1), φ(C2), . . . , φ(Cr) in this
order, and (v) each line Li intersects in Γ the same vertices and edges as Li in
G, and it does so in the same order.

Fig. 1. (a) An aligned graph on one (blue) pseudoline. The color indicates the vertex
partition L ∪ R ∪ S. (b) Aligned graph of alignment complexity (⊥, 3, ⊥) that does not
have an aligned drawing [9]. (c) Allowed types of edges in aligned graphs of alignment
complexity (1, 0, 0). The green edge is aligned. The purple edge is free. (c) Aligned
graph of alignment complexity (2, 1, ⊥). (Color figure online)

Mchedlidze et al. observed that not every aligned graph has an aligned draw-
ing. For example, the modification of the Pappus configuration in Fig. 1b does
not have an aligned drawing. Note that one endpoint of the edge is anchored on
some pseudolines and that the edge crosses three pseudolines. Hence, Mchedldize
et al. studied a restricted subclass of aligned graphs that only contains edges uv
that are either (see Fig. 1c and Fig. 1d)
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– free, i.e, the entire edge uv is in a single cell,
– aligned, i.e., the entire edge uv is on a single pseudoline,
– one-sided anchored, i.e., u or v is on a pseudoline but not both, and uv does

not cross a pseudoline,
– 1-crossed, i.e., u and v are in the interior of a cell and uv crosses one pseudo-

line.

For this restricted class Mchedlidze et al. proved that every aligned graph
has an aligned drawing. For this purpose they reduced their instances to aligned
graphs that do neither have free edges nor aligned edges nor separating triangles.
Then the original instance has an aligned drawing if the reduced instance has
an aligned drawing. Thus, the key to success is to characterize the reduced
instances and to prove that every reduced instance has an aligned drawing.
In the reduced setting, Mchedlidze et al. were able to show that each cell of
the pseudoline arrangement contains at-most a single vertex. Since the union
of two adjacent cells in the line arrangement is convex, any placement of the
vertices that adheres the ordering constraints along the lines induces a valid
aligned drawing of the reduced aligned graph. If we additionally allow two-sided
anchored edges, i.e., edges where both endpoints are on pseudolines but that do
not cross a pseudoline, then it is possible to construct a family of aligned graphs
such that each cell can contain a number of vertices that is not bounded by the
number of pseudolines.

Contribution. We show that every aligned graph on k ≥ 2 pseudolines inter-
secting in a single point with free, aligned, one-sided and two-sided anchored,
and 1-crossed edges has an aligned drawing. If we allow an additional edge type,
we show that there is an aligned graph on two pseudolines that does not have an
aligned drawing. Note that in the counterexample given in Fig. 1b, no point in
the green cell is visible from the red vertex within the polygon defined by union
of the (colored) cells traversed by the edge. Hence, this instance trivially does
not admit an aligned drawing. In contrast, each edge in Fig. 3a can be drawn
independently as a straight-line segment. We show that the entire instance does
not admit a straight-line drawing. Further, we show that every aligned graph
(G,A) has an aligned drawing, if A does not have crossings, i.e., A corresponds
to an arrangement A of parallel lines. This couples aligned graphs to hierarchi-
cal (level) graphs. This significantly narrows the gap in the characterization of
realizable an non-realizable aligned graphs.

2 Preliminaries

We first introduce some notation used in context of aligned graph on k pseu-
dolines intersecting in a single point. Let O be a point called the origin.
Let X = {X1,X2, . . . ,Xk} be a pseudoline arrangement where the pseudo-
lines pairwise intersect in O; refer to Fig. 2. We refer to an aligned graph
(G,X ) as an k-star aligned graph. Correspondingly, we refer to (Γ,X), with
X = {X1,X2, . . . , Xk} as an aligned drawing of (G,X ), where the lines in X
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Fig. 2. (a,b) (Pesudo)-line arrangements of a 3-star aligned graph. The green region
indicates a cell. (Color figure online)

Fig. 3. (a) A 2-aligned graph that does not have an aligned drawing. (b) We have
λ1/λ2 = tan(α) < tan(β) = |y1|/(λ2 + |x1|).

pairwise intersect in the origin O. The curves in X divide the plane into a set
of cells Q1, . . . ,Q2k in counterclockwise order. These cells naturally correspond
to the regions Q1, . . . , Q2k bounded by the lines in X.

We refer to an edge (vertex) as free if it is entirely in the interior of a cell.
An aligned edge (vertex) is entirely on a pseudoline. For each l-crossed edge e
there are l but not l + 1 pseudolines that intersect e in its interior. An edge e
is i-anchored if i of its endpoints lie on i distinct pseudolines. Mchedlidze et al.
used a triple (l0, l1, l2), with li ∈ N∪{⊥} to describe the complexity of an aligned
graph (G,A). Let Ei be the set of i-anchored edges; note that, the set of edges is
the disjoint union E0 ·∪ E1 ·∪ E2. A non-empty edge set A ⊂ E is l-crossed if l is
the smallest number such that every edge in A is at most l-crossed. An aligned
graph (G,A) has alignment complexity (l0, l1, l2), if Ei is at most li-crossed or
has to be empty, if li = ⊥. In particular, Mchedlidze et al. proved that every
aligned graph of alignment complexity (1, 0,⊥) has an aligned drawing. Our
results can be restated as that every 2-aligned graph of alignment complexity
(1, 0, 0) has an aligned drawing. Further, there is an aligned graph of alignment
complexity (⊥, 1,⊥) that does not have an aligned drawing.
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3 Star Aligned Graphs

In this section, we study whether k-star aligned graphs have aligned drawings.
We first prove that the 2-star aligned graph in Fig. 3a does not have an aligned
drawing.

Fig. 4. (a) This 2-aligned graph does not have an aligned drawing. (b,c) The green
curve indicates the Jordan curve that completes the black edge. The edge in (b) is
an edge of a ccw-aligned graph. The edge depicted in (c) is forbidden in ccw-aligned
graphs. (d) A comb of edges e, f . (Color figure online)

Theorem 1. There is a 2-star aligned graph of alignment complexity (⊥, 1,⊥)
that does not have an aligned drawing.

Proof. Assume that the aligned graph in Fig. 3a has an aligned drawing. For
i = 1, . . . , 4 let (xi, yi) be the point for vi, let λi be the distance of ui to the
origin O and let λ5 = λ1. Since u2v1 intersects the y-axis above u1, edge u2v1
has a steeper slope than the segment u2u1; see Fig. 3b. We obtain λ1/λ2 <
|y1|/(λ2 + |x1|) and therefore |x1| < λ2/λ1 · |y1|. Analogously, we obtain

|xi| <
λi+1

λi
· |yi|, i = 1, 3 |yi| <

λi+1

λi
· |xi|, i = 2, 4. (1)

Since vi+1wi, with v5 = v1, are embedded as straight lines, we further get
estimation (2) that |yi| < |yi+1| for i = 1, 3 and |xi| < |xi+1| for i = 2, 4 and

x5 = x1. By multiplying the left and the right sides we obtain |x1|·|y2|·|x3|·|y4|
(1)
<

|y1| · |x2| · |y3| · |x4| · λ2λ3λ4λ1
λ1λ2λ3λ4

= |y1| · |x2| · |y3| · |x4|
(2)
< |y2| · |x3| · |y4| · |x1|. A

contradiction. ��

3.1 Aligned Drawings of Counterclockwise Star Aligned Graphs

We now consider aligned drawings of k-star aligned graphs (G,A) for k ≥ 2.
Recall that the aligned graph in Fig. 4a does not have an aligned drawing. The
crux is that the source of the red edges are free and the source of green edges are
aligned. In the following we introduce so-called counterclockwise aligned graphs
and show that they have aligned drawings.
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We orient each non-aligned edge uv of an aligned graph (G,X ) such that
it can be extended to a Jordan curve, i.e., a closed simple curve, Cuv with the
property that it intersects each pseudoline exactly twice and has the origin to
its left. A counterclockwise aligned (ccw-aligned) graph is a k-star aligned graph
of alignment complexity (1, 1, 0) whose orientation does not contain 1-anchored
1-crossed edges with a free source vertex.

We prove that every ccw-aligned graph has an aligned drawing. To prove this
statement we follow the same proof strategy as Mchedlidze et al. In particular,
we have to ensure that there is a proper ccw-aligned triangulation. Further, we
use that for each aligned graph (G,X ) there is a reduced aligned graph (GR,X )
(i.e., it does neither contain (i) separating triangles, nor (ii) free edges, nor (iii)
aligned edges that are not incident to the origin O) with the property that (G,X )
has an aligned drawing if (GR,X ) has an aligned drawing. In contrast to aligned
graphs of alignment complexity (1, 0,⊥) the size of (GR,X ) is not bounded by a
constant. The aim of Lemma 3 and Lemma 4 is to describe the structure of the
reduced instances. This helps to prove Lemma 5 that states that each reduced
instance has an aligned drawing.

We first introduce further notations. A k-star aligned graph (G,X ) is a proper
k-star aligned triangulation if each inner face is a triangle, the boundary of the
outer face is a 2k-cycle of 2-anchored edges, the outer face does not contain the
origin and there is a degree-2k vertex o on the origin incident to four aligned
edges. We refer to a reduced proper ccw-aligned triangulation as a reduced aligned
triangulation. We refer to 1-anchored 1-crossed and 2-anchored edges as sepa-
rating. The region within a cell that is bounded by two separating edges e and
f is an edge region (Fig. 4d). An inclusion-minimal edge region is a comb.

The following lemma is a consequence from the results by Mchedlitze
et al. [9]. For further details we refer to the full version.

Lemma 2. For every ccw-aligned graph (G,X ) there is a reduced aligned tri-
angulation (GR,X ) such that (G,X ) has an aligned drawing if (GR,X ) has an
aligned drawing.

Hence, our main contribution is to characterize reduced k-star aligned trian-
gulations and then, to prove that every such instance has an aligned drawing.

Lemma 3. Let (GR,X ) be a reduced aligned triangulation and let o be the vertex
on the origin. Then in (GR − o,X ) each pseudolines Xi alternately intersect
vertices and edges, and each comb contains at most one vertex.

Proof. Assume that there are two consecutive aligned vertices u and v. Since
G is triangulated and u and v are consecutive, G contains the edge uv. This
contradicts the assumption that (G,X ) does not contain aligned edges.

The following modification helps us to prove that there are no two consecutive
edges along a pseudoline and that no comb contains two free vertices.

Let ρi be the parts of Xi and Xi+1 that are on the boundary of the cell Qi, see
Fig. 5. We modify ρi as follows. We first, join the endpoints of ρi in the infinity
such that it becomes a simple closed curve. Let u be a vertex that lies on ρi.
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Fig. 5. The curve ρi (a) and its modification in (b).

We reroute ρi such that u now lies outside of ρi. Since G is triangulated and ρi

only intersects edges, ρi corresponds to a cycle in G� and therefore to a cut Ci

in G. Note, each edge of a connected component in G − Ci is a free edge.
Now assume that there are two distinct edges e, f that consecutively cross a

pseudoline Xi ∈ X . By the premises of the lemma there is a vertex that lies on
the origin O. Hence both e and f cross Xi on the same side with respect to O.
Since e and f are distinct and (G,X ) is ccw-aligned, there is a cell Qj such that
Qj contains two distinct vertices u and w incident to e and f , respectively. Since
G is triangulated and e and f are consecutive along Xi, u and w are vertices
in the same connected component of G − Cj . Therefore, (G,X ) contains a free
edge. A contradiction.

Consider a comb C in a cell Qi that contains two distinct vertices u and v
in its interior. Since G is triangulated and C is inclusion-minimal (it does not
contain another edge-region), u and v belong to the same connected component
of G − Ci. Therefore (G,X ) contains a free edge. ��

We call a comb closed if its two separating edges have the same source vertex.

Lemma 4. For every reduced aligned triangulation (GR,X ) there is a reduced
aligned triangulation (G′′

R,X ) where no closed comb contains a vertex such that
(GR,X ) has an aligned drawing if (G′′

R,X ) has an aligned drawing.

Proof. By Lemma 3 we know that each comb contains at most one vertex. We
apply induction over the number of closed combs that contain a vertex. Let
v be a free vertex in a closed comb with separating edges uw1, uw2. Then we
obtain an aligned graph (G′

R,X ) by contracting edge uv in the embedding. Since
(GR,X ) is reduced ccw-aligned, all edges outgoing from the free vertex v are 1-
anchored 0-crossed or 0-anchored 1-crossed. In (G′

R,X ) they are now 2-anchored
0-crossed or 1-anchored 1-crossed with free target vertex. Since there is no other
vertex in the comb and the comb is closed, v only has uv as incoming edge
which is contracted. Therefore (G′

R,X ) is ccw-aligned. Assume that (G′
R,X )

has an aligned drawing. Since v is a free vertex, we obtain an aligned drawing of
(G,X ) by placing v close to u within in its closed comb. By Lemma 2 we obtain
a reduced aligned triangulation (G′′

R,X ) from (G′
R,X ) such that (G′

R,X ) has
an aligned drawing if (G′′

R,X ) has an aligned drawing. In the construction the
number of closed combs that contain a vertex is not increased. ��
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We can now show that each reduced instance has an aligned drawing.

Lemma 5. Every reduced ccw-aligned triangulation has an aligned drawing.

Proof. By Lemma 4 we can assume that in our triangulation (G,X ) the closed
combs contain no vertices. By Lemma 3 we know that each comb contains at
most one vertex and no vertex if it is closed. The main problem is to draw the 1-
crossed edges. For those, we place each free vertex v close to the right boundary
of its comb. This allows to draw the incoming edges. Since (G,X ) is ccw-aligned,
the target of each 1-crossed edge vu is free and allows to draw vu.

Fig. 6. (a) Placement of a free vertex v in cell Q2. It may be placed within the gray
triangle. (b) Example for the observations with u′

1 = x3 and u′
2 = x4. (Color figure

online)

We construct the aligned drawing (Γ,X) as follows. Let o be the vertex on
the origin. We call the sources of separating edges corners. First place o and all
corners on X in the order induced from X . For i = 1, . . . , 2|X|, let Hi be the
half-pseudoline that is the right boundary of cell Qi. Let mi denote the vertex
on Hi that is adjacent to o and let ri denote the vertex incident to the outer face
on Hi. Note that mi, ri are corners. We write u <i v if u lies between o and v
on Hi where u, v may be vertices and intersections of edges with Hi. Note that
<i is a linear order. Define Hi correspondingly for X; see Fig. 7. The indices for
mi, Qi, etc. are considered mod 2|X|. In the following, we denote by uv the line
through two distinct points u, v. Now consider a free vertex v in some cell Qi;
see Fig. 6a. It lies in a comb that is bounded by two separating edges u1w1, u2w2

with u1 <i u2 on Hi. Note that we have u1 	= u2 since the comb contains v and
is thus not closed. We place v within the triangle bounded by mi+1u2, ri+1u1,
Hi and between mi−1u1, ri−1u2 (if these lines cross within Qi, then this means
within the triangle bounded by mi−1u1, ri−1u2, Hi). Note that v lies in Qi . We
will show that the intersections of 1-crossed edges with Hi and the corners on
Hi respect the order <i. Finally, we place for i = 1, . . . , 2|X| the vertices on Hi

that are neither o nor a corner arbitrarily on Hi respecting the order <i. This
finishes the construction (edges are placed accordingly).
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We next show that the vertices and edges of G appear for 1 ≤ i ≤ |X| along
Xi and Xi in the same order. Consider the free vertex v and the separating edges
u1w1, u2w2 as defined above. Let mi−1 = x1 <i−1 · · · <i−1 xk = ri−1 denote
the corners on Hi−1. The following three observations imply that all 1-crossed
edges with target v cross Hi in the correct order between u1 and u2; refer to
Fig. 6b.

1. mi−1v and ri−1v cross Hi between u1 and u2.
2. x1v, . . . , xkv intersect Hi in the same order as x1, . . . , xk lie on Hi−1.
3. Let v′ be a free vertex in Qi−1. Let u′

1w
′
1, u′

2w
′
2 be the separating edges of

the comb containing v′. Then v′v crosses Hi between u′
1v ∩ Hi and u′

2v ∩ Hi.

Fig. 7. The vertex o and the half-lines Hi and the vertices mi, ri for i = 1, . . . , 4. All
remaining edges and vertices lie in the green area. (Color figure online)

For Observation 1, note that v lies between mi−1u1, ri−1u2. For Observa-
tion 2, note that x1v, . . . , xkv cross pairwise in v and thus not in section Qi−1.
These two observations imply that x1v, . . . , xkv cross Hi−1 between u1 and u2.
For Observation 3 note now that v′ lies in the triangle bounded by Hi−1, u′

2mi

and u1ri
′. Observation 3 follows from v and this triangle lying between u1mi−1

and u2ri−1.
We now show that all 1-crossed edges with target v cross Hi in the correct

order between u1 and u2. By Observations 2, 3 the 1-crossed edges with target v
cross Hi between mi−1v ∩Hi and ri−1v ∩Hi. With Observation 1, they cross Hi

between u1 and u2. By Observation 2, we know that the 1-anchored 1-crossed
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edges with target v cross Hi in the correct order. By Observations 2, 3, we obtain
that each pair of a 0-anchored 1-crossed and a 1-anchored 1-crossed edge cross
Hi in the correct order. Since the sources of 0-anchored 1-crossed edges with
target v lie in different combs, they lie pairwise on different sides of some edge
xjv by Observation 3. Observation 2 then yields their correct ordering.

Since the corners on Hi respect <i and all 1-crossed edges have free target
vertices (as the triangulation is ccw-aligned), this implies that the intersections
of 1-crossed edges with Hi and the corners on Hi respect the order <i. By
construction, we placed the vertices on Hi that are not corners such that they
also respect order <i. Thus the lines Xj intersect the vertices and edges in the
same order as Xj .

We next show that our embedding is planar by showing that there is no
location where edges cross. Since the order of intersections with lines in X is
correct, there are no crossings on X. This leaves us with the cells. Since the
separating edges of Qi appear in the same order on Hi and Hi+1, they also
appear in the same order on Hi and Hi+1. Thus, separating edges of the same cell
do not cross each other. We further obtain the same combs for (Γ,XY ). Consider
again a free vertex v in Qi and the corresponding separating edges u1w1, u2w2;
see Fig. 6a. Since v lies in the triangle bounded by Hi, T1 and mi+1u2, it also
lies in the comb bounded by u1w1, u2w2. Hence, every free vertex lies in the
correct comb. Let e be an edge incident to v. Then its other end vertex does not
lie within the comb of v. It must therefore intersect Hi between u1 and u2 if it
is incoming, and it must intersect Hi+1 between u1w1 ∩ Hi+1 and u2w2 ∩ Hi+1

if it is outgoing. Since we have the same order on Hi and Hi+1 respectively,
edge e crosses neither u1w1 nor u2w2 and thus not the interior of any other
comb in Qi. This means that 1. There are no crossings on separating edges in
the corresponding cells. And that 2. Only edges incident to the free vertex v
in a comb intersect the interior of that comb. Those edges are all adjacent in
v and do not cross. We obtain that there are no crossings on X, no crossings
on separating edges in the corresponding cells and no crossings within combs.
Hence, our embedding is planar.

Since there are no free edges and the order of intersections with lines in X is
fixed, the order of incident edges around a free vertex is also fixed. For a vertex
u on X we note that each adjacent free vertex is in another comb and therefore
the order of incident edges around u is also fixed. Therefore, our embedding Γ
induces the same combinatorial embedding as the embedding of G. ��

From Lemma 2 and Lemma 5 we directly obtain our main theorem.

Theorem 6. Every ccw-aligned graph (G,X ) has an aligned drawing.

4 Parallel Lines

In this section, we prove that every aligned graph (G,A) has an aligned drawing,
if A is intersection free, i.e., the line arrangement A is a set of parallel lines.
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Our result uses a result of Eades at al. [6], and of Pach and Toth [10]. Eades
et al. consider hierarchical plane graphs. A graph G = (V,E) with a mapping
of the vertices to a layer Li is a hierarchical graph, where a set of layers L is a
set of ordered parallel horizontal lines Li ∈ L. A hierarchical plane drawing of a
hierarchical graph is a planar drawing where each vertex is on its desired layer
and each edge is drawn as a y-monotone curve. Two hierarchical drawings are
equivalent if each layer, directed from −∞ to ∞, crosses the same set of edges
and vertices in the same order. Eades et. al. [6] proved that for every hierarchical
planar drawing of a graph there is an equivalent hierarchical planar straight-line
drawing. Pach and Toth [10] proved a similar result stating that for every y-
monotone drawing where no two vertices have the same y-coordinate there is
an equivalent y-monotone straight-line drawing such that each vertex keeps its
y-coordinate. In contrast to these two results, we have that the y-coordinate is
only prescribed for a subset of the vertices, i.e., there are some (free) vertices
that have to be positioned between two layers (lines). The proof strategy is to
extend the initial pseudoline arrangement with an additional set of intersection-
free pseudolines such that there are no free vertices.

Due to [9] (compare Lemma 2), we can assume that there are neither free
nor aligned edges. For the purpose of this section, a reduced aligned graph is an
aligned graph that has no aligned edges and no free vertices. Note that previ-
ously only free edges were forbidden. Thus, the current definition is more restric-
tive. The following theorem is an immediate corollary from the results of Eades
et al. [6], and Pach and Toth [10].

Theorem 7. For every intersection-free pseudoline arrangement, every reduced
aligned graph (G,A) has an aligned drawing.

Lemma 8. Let A be an intersection-free pseudoline arrangement and let A be
a line arrangement homeomorphic to A. For every aligned graph (G,A) there
is a reduced aligned graph (G,A′) such that A ⊂ A′ and (G,A) has an aligned
drawing if (G,A′) has an aligned drawing.

Fig. 8. Construction of the new pseudoline Lv (red) that contains v. The red-dotted
pseudoline L′

v indicates the copy of L (bottom blue) that crossed the edges in EL

(green) in the same order as L (Color figure online)

Proof. We first insert for each free vertex v a new pseudoline Lv to A such that
v is on L. Thus, the aligned graph (G,A′) does not have free vertices.
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Let L be a pseudoline that is on the boundary the region Rv of A that
contains v. Let EL be the set of edges of G that are (partially) routed through
Rv and that are either crossed by L or that have an endpoint on L. We assume
that L is directed. Then the direction of L induces a total order of the edges in
EL. We obtain a curve L′

v that crosses the edges in EL in this order and in their
interior. Since v is free, G is triangulated and (G,A) contains neither free nor
aligned edges, there is at-least one edge e ∈ EL that is incident to v. Denote by
ef and el in EL the first and last edge incident to v. We obtain a pseudoline Lv

that contains v from L′
v by rerouting L′

v along ef and el such that it is does not
cross these edges in their interior and such that v is on the line (Fig. 8).

Now, let (G,A′) be the aligned graph that is obtained by the previous pro-
cedure for each free vertex v. Let A′ be any set of parallel lines that contains A
and corresponds to A′. Clearly, (Γ,A) is an aligned drawing of (G,A) if (Γ,A′)
is an aligned drawing of (G,A′). This finishes the proof. ��

Theorem 7 and Lemma 8 together prove the following theorem.

Theorem 9. Let A be an intersection-free pseudoline arrangement and let A
be a (parallel) line arrangement homeomorphic to A. Then every aligned graph
(G,A) has an aligned drawing (G,A).

5 Conclusion

In the paper, we showed that every aligned graph (G,A) has an aligned drawing
if (G,A) is either a ccw-aligned graph or if A is intersection-free. Further, we
provided a non-trivial example of a 2-star aligned graph that does not admit
an aligned drawing. Thus, in our opinion the most intriguing open question is
whether every aligned graph of alignment complexity (1, 0, 0) has an aligned

Fig. 9. There is no mapping of free vertices to aligned vertices on the boundary of
the same cell such that moving the free vertices onto their image results in an aligned
graph of alignment complexity (1, 0, 0).
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drawing, for general stretchable pseudoline arrangements A. Our counter exam-
ple shows that this statement is not true for aligned graphs of alignment com-
plexity (1, 1, 0). Our stretchability proof of counterclockwise aligned graphs uses
the fact that we can move each free vertex v to an aligned vertex u on the cell
of v. Performing this operation for all free vertices at once ensures that we do
not introduce edges of a forbidden alignment complexity. Figure 9 indicates that
for general aligned graphs of alignment complexity (1, 0, 0) there is not always a
consistent mapping of free vertices to aligned vertices such that that the result-
ing graph has the same alignment complexity. Thus it is unclear whether the
techniques used in the paper can be used to decide whether every aligned graph
of alignment complexity (1, 0, 0) has an aligned drawing.
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Abstract. By optimizing aesthetics, graph diagrams can be generated
that are easier to read and understand. However, the challenge lies in
identifying suitable aesthetics. We present a novel approach based on
repertory grids to explore the design space of aesthetics systematically.
We applied our approach with three independent groups of participants
to systematically identify graph aesthetics. In all three cases, we were
able to reproduce the aesthetics with positively evaluated influence on
readability without any prior knowledge. We also applied our approach
to two- and three-dimensional domain-specific software visualizations to
demonstrate its versatility. In this case, we were also able to acquire
several aesthetics that are relevant for perceiving the visualization.

Keywords: Aesthetics · Graph · Repertory grid technique · Software
visualization · Visual analytics

1 Introduction

Making visualizations easier to read and to understand is a challenging task
and has been researched for decades [8]. Aesthetics are a suitable method to
address this problem [31]. They represent heuristics to predict human perception
of the visualization. Aesthetics are visual metrics that must be both objectively
measurable and perceptible to the observer [1]. They are independent of the
semantic context of a visualization and refer only to visual properties.

For graph layouts consisting of nodes and edges, aesthetics are well
researched. Typical aesthetics are, e.g., edge crossings and cutting angles of
edges [31]. These criteria are used as optimization goals, e.g., minimizing the
number of edge crossings or maximizing the average cutting angle to generate
perceivable and comprehensible graph layouts. Aesthetics have been adapted to
other visualizations, e.g., different sorts of diagrams [9,34] as well as complex
graphical user interfaces such as websites [27]. Each type of visualization has its
own aesthetics. Therefore, the state of the art research process has to be repeated
for every type of visualization. The process is always similar and comprises the
following steps.

1. Define one or multiple aesthetics. Every aesthetic must be measurable.
There is no established way to derive aesthetics. Many aesthetics are only
chosen because they seem to be plausible, so this step is subjective.
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2. Evaluate impact of proposed aesthetics empirically. In this step, par-
ticipants solve tasks using different visualizations, measuring error rate and
time to complete the task. It is necessary to be able to trace possible differ-
ences in solving the tasks back to different aesthetics. This can be achieved,
for example, by changing one aesthetic while keeping all others approximately
constant. This is often only possible to a limited extent due to dependencies
between different aesthetics.

3. Implement layout algorithm. To make the positively evaluated aesthetics
usable in practice, it is necessary to provide a suitable layout algorithm.
It should have a reasonable runtime behavior and take care of conflicting
optimization goals.

The whole process is iterative. Depending on the procedure, step 3 might
be performed before step 2. When new aesthetics are defined, the subsequent
steps have to be repeated accordingly. However, this approach leads to significant
problems. Without being aware of all relevant aesthetics, interactions between
them cannot be considered. Unknown but relevant aesthetics might distort the
outcome of empirical evaluations significantly [18]. In addition, some aesthetics
are not obvious, especially for complex visualizations with many different visual
primitives. Hence, there is a risk that important aesthetics may be overlooked.
The whole process is very tedious because aesthetics are also defined and exam-
ined that have no measurable effect on readability.

In this paper, we want to improve the identification of aesthetics by making
the process more reproducible and less based on the researcher’s intuition. We
use a novel approach based on the repertory grid technique (RGT). This is an
interview technique that triggers the participants’ creativity to describe verbally
the differences between certain elements. These descriptions then serve as a basis
for the definition of aesthetics. Therefore, more relevant aesthetics are known
when it comes to conducting the evaluations. This will simplify the outlined
research process and help to overcome the mentioned problems.

2 Related Work

Several models and guidelines exist for designing and evaluating visualiza-
tions [23,24,26]. However, these process models do not use any aesthetics. The
only framework known to us that takes aesthetics into account is [22]. It assumes
that aesthetics and its effects are already known. Most aesthetics are selected
based on intuition without giving an explicit rationale. Bennett et al. [4] justify
established aesthetics with Gestalt principles. However, they do not show how
new aesthetics can be derived from Gestalt principles.

We are only aware of one approach to improve the iterative process by making
it less subjective and more efficient: drawings [28]. The participants are asked
to draw visualizations with a given structure, often node-link diagrams. Sub-
sequently, it is examined by statistical means which aesthetics the respondent
applied to their drawing. Drawings can help to some extent to weigh aesthetics
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or identify any irrelevant aesthetics. However, the capabilities of this approach
to explore the aesthetics design space are limited. This approach requires well-
defined aesthetics to check if they have been used by the subject or not. Also,
drawings will not work for complex or three-dimensional visualizations, since
most participants will be unable to express their mental model adequate in a
drawing of such visualizations.

We see drawings as a step towards improving the described research pro-
cess. Nevertheless, some problems remain unsolved, which we address within
this paper. Our approach is based on the RGT. We are not aware that this
method has already been used in the context of aesthetics. In our previous
work [1] we used RGT to identify neglected and overemphasized information in
visualizations.

3 Repertory Grid Technique

The RGT is an empirical and qualitative research method. Its basic assumption is
that everybody describes and evaluates elements based on a large set of personal
constructs that can be expressed by using bipolar constructs [10, p. 15]. Elements
are for example objects, persons, experiences, or even products. A construct is
defined as “a way in which two or more things are alike and thereby different from
a third or more things” [20, p. 61]. These constructs consist of two opposite poles,
e.g., “clear” and “confusing” as well as a construct continuum in between, i.e.,
different degrees of clarity. The RGT is an approach to make these constructs
explicit and visible. The process is reproducible and facilitates the structured
exploration of an unknown domain. To apply the RGT, multiple design decisions
have to be made, e.g., how elements and constructs are selected. In the following,
we will discuss the research design that corresponds to our research questions.
We will not discuss variants that are not reasonable for exploring design spaces
such as constructs provided by the researcher.

3.1 Element Selection

Every interview is done with the same set of elements. They are selected by
the researcher and should represent as much breadth of the domain as possi-
ble. The RGT helps to recognize differences between those elements. Something
that all elements have in common will most likely not be taken into account by
the participants. For example, if all visualizations only consist of black entities,
no constructs for color mapping can be expected. The constructs obtained in
this way are still valid, but it is possible that they only describe a subset of
the domain. This threat can be reduced by asking the subject to provide addi-
tional elements that differ from those given [13]. Placeholder elements such as
“ideal visualization” or “worst visualization” can also be used to ensure adequate
coverage of the domain [11]. The elements can be based on real or artificially
generated data.
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3.2 Construct Elicitation

The constructs are not predefined. It will be investigated which constructs the
participants use to describe the elements shown to them. For this purpose, three
elements are randomly selected and presented at once to the participant (cf. 1.
The participant has to answer the following question: “How are any two of these
alike in some way?”, complemented by “What is the opposite of that?” [12].
The answers to both questions are the respective poles. For example, a partici-
pant might describe those visualizations with two bipolar constructs, “helpful –
unhelpful” and “ugly – beautiful”. For them, these are the relevant attributes in
which the two visualizations differ. Constructs differ in their level of abstraction.
Some constructs are abstract, e.g., “ugly – beautiful”, others are very concrete,
e.g., “no edge crossings – many edge crossings”. Abstract constructs are less
helpful for our research question since they are subjective and hard to measure.
These abstract constructs might lead to furtheer constructs if they are investi-
gated in depth. It is not uncommon that a construct implies another construct.
They only vary in their level of abstraction. The process of using a construct
to attain a more concrete construct is called laddering and is a common part of
the repertory grid interview [11,13]. This can be done by asking “Why does this
visualization appear more beautiful to you?”. For example, the answer could
lead to the construct “symmetrical – asymmetrical”. The whole procedure is
repeated by using other randomly selected elements as long as the participant
creates new constructs to distinguish between the elements. It is not feasible to
use all possible combinations during the interview, hence a reasonable stop cri-
terion is necessary. We advise stopping the interview when three times in a row
the participant did not use any new constructs. This will lead to enough con-
structs and does not prolong the interview unnecessarily. During the interview,
the participants have no access to any constructs they used before. Otherwise,
participants may try to avoid repetition or use synonyms to find as many con-
structs as possible. Further, there is no restriction on how many constructs may
be named.

The interviewer must understand what the participant describes with a con-
struct. For this reason, informal communication between both persons is a reg-
ular and intended part of the RGT. This may include further explanations by
the participant, showing examples or simple drawings. The RGT demands high
standards of the interviewer and the research design. The interviewer should be
familiar with the established guidelines for conducting the interviews. We have
mainly followed the recommendation of Kurzhals et al. [21] and Fransella [11].

Normally, a repertory grid interview also includes the creation of the name-
giving grids. The participant evaluates for each element and each construct which
pole is more appropriate. For us, however, this information is of little value as
we are interested in the constructs used. For this reason, we have skipped this
step.
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3.3 Analysis

The output of the interview is a list of constructs, that has to be further analyzed.
Some constructs will represent aesthetics directly, but many constructs are not
interesting to us. This is expected and cannot be avoided. Kurzhals et al. propose
the following categorization to analyze the constructs of repertory grid interviews
to explore the design space [21]:

– Visual Mapping This category covers all constructs, that refer to the use
of visual primitives (e.g., straight edges – bent edges) and color mapping.

– Composition This category consists of constructs that refer to the compo-
sition of visualization elements, i.e., layout, alignment, and visual density.

– Data-related Constructs are data-related and therefore belong to the third
category, if they depend on the underlying data, such as “few nodes – many
nodes”.

– Visual experience The last category describes the hedonistic qualities of
visualizations, such as “ugly – beautiful” [15].

For our research question, only the first two categories are interesting since
they represent aesthetics. Data-related constructs do not describe the properties
of the visualization but of the underlying data. Constructs of the last category
are often vague and used as a starting point for laddering during the interview.
In the process, more concrete constructs can be revealed that refer to visual map-
ping or composition. The last step is to reformulate the constructs as aesthetics.
“straight edges – bend edges” becomes “edge curve” and so on. This step is
straight forward and should not cause any problems. If ambiguities should arise
here, the laddering was not sufficiently performed. The final result is a compre-
hensive list of aesthetics. The method of extraction ensures that all aesthetics
are perceivable for human beings. However, there is no guarantee that all of
them will have a significant influence on the readability of the visualization.

4 Evaluation

Many graph aesthetics have been proposed, and some of them have been evalu-
ated in empirical studies [6]. We define positively evaluated aesthetics as aesthet-
ics for which a significant influence on readability has already been empirically
demonstrated. We applied the RGT to the domain of graph visualization to
check the following hypotheses:

– H1: With RGT all positively evaluated aesthetics can be reproduced.
– H2: The results of RGT can be reproduced when using different elements

and different participants.

H1 is used to check whether the RGT provides valid results. With H2, we
check whether the results are reproducible or depend on the selected elements or
participants. We are not aware of any other approach to systematically explore
the design space of aesthetics. A comparative evaluation with other approaches
is therefore not possible.
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4.1 Ground Truth

To verify the results of our evaluation, we have conducted an extensive literature
study following the guideline from vom Brocke et al. [39] to establish a ground
truth for H1. It contains all the aesthetics proposed in the literature and whether
a significant influence on readability could be empirically evaluated. We have
searched the databases available to us with the search terms listed in Table 1.

Table 1. In- and exclusion criteria for literature study

Database Search term Inclusion (+) and Exclusion (–) Criteria

ScienceDirect graph aesthetics + Publication Type: Research Article

+ Journal: Computer Aided Design

+ Journal: Journal of Visual Languages

ACM (+graph +aesthetics)

IEEE graph aesthetics – Publication Type: Book

SpringerLink graph aesthetics + Publication Type: Conference Papers

+ Discipline: Computer Science

+ Subdiscipline: Information Systems Appl.

+ Subdiscipline: User Interfaces and HCI

The additional inclusion and exclusion criteria are necessary because the
term aesthetics is used in many different disciplines with different meanings. In
total, we received 519 hits, 47 from ScienceDirect, 69 from ACM, 42 from IEEE,
and 373 from SpringerLink. Two entries had to be removed due to duplicates,
leaving 517 entries. We then manually sorted out the publications where the
term aesthetics is not used in the sense mentioned here. Then, we performed a
backward search on the 95 remaining publications. This was necessary because
many publications use aesthetics, but it was not the original source in which
the metric was proposed. We also included the summaries from Taylor [37] and
Bennett [4], who did a similar literature study with a smaller focus. The first
three columns of Table 2 summarize the results of our literature study. All in all,
we identified 29 different graph aesthetics proposed in 14 different publications.
For 13 aesthetics we could find an empirical evaluation that showed a significant
influence on readability. For some aesthetics, we were not able to trace them
back to exactly one source. In such a case we listed all found publications.

Most aesthetics refer to the position of the nodes, edge intersections, the
length and curvature of the edges, and the angles between them. Some aes-
thetics refer to paths, i.e., combinations of edges. For example, path bendiness
describes how straight a path is or how many bends it has. Most aesthetics can
be sorted into the “Composition” category since they refer to layouting. Only a
few aesthetics belong to the “Visual Mapping” category, they are highlighted in
Table 2.
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Table 2. List of all aesthetics derived from literature. Entries of the category “Visual
Mapping” are highlighted.

Name Source Evaluation Group A Group B Group C

Angular resolution [8,32,37] [18] 4 3 3

Area [36,37] [33] 10 8 8

Aspect ratio [8] 3 4 3

Cluster similar nodes [36,37] [16] 5 5 4

Convex faces [36] – – –

Consistent flow direction [32] 3 4 6

Crossing angle [17,18,40] [18,40] 8 9 7

Degree of edge bends [7,32,36] [30,31,33] 9 9 10

Difference between angles [19] – – –

Distribute nodes evenely [36,37] 6 8 8

Edge orthogonality [32] [33] 5 4 4

Global symmetry [5,36] [31] 4 3 4

Keep nodes apart from edges [7] 3 6 7

Local symmetry [5,36] [33] 8 10 8

Maximum bends [8] 9 9 8

Maximum edge length [8,36,37] 6 4 4

Node orthogonality [32] – 3 –

Nodes should not overlap [35] 4 3 3

Number of bends [8] 3 3 4

Number of branches [40] [40] 5 3 5

Number of edge crossings [5,7,32,36,37] [29–31,33] 6 3 8

Path bendiness [40] [40] 3 3 5

Shortest path length [40] [40] 4 3 3

SD of crossing angles [18] – – –

SD of angular resolution [18] – – –

Total edge length [36,37] – – –

Uniform edge bends [37] 3 3 4

Uniform edge lengths [5,7,14,36] 4 3 3

Whitespace to ink ratio [29,38] [29] 3 3 6

4.2 Study Design

Elements. For each group, we used 12 undirected graphs as elements. They
can be found in the full version [2]. They consist only of black nodes and black
undirected edges. We did not use any text labels or color mappings to keep
the graphs as simple as possible. The graphs are not based on real but on arti-
ficially generated data. We used the igraph library for R1 to generate random
graphs. The smallest graph contains 5 edges, the largest graph contains 69 edges.
Each node position was assigned randomly, i.e., overlaps could and did occur.

1 https://igraph.org/r/.

https://igraph.org/r/
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For each edge, the degree and direction of edge curvature were determined ran-
domly as well as which nodes the edge connects. No other properties were taken
into account. Figure 1 shows three of the used graphs.

Participants. In total, we interviewed 30 participants. Initially, these partici-
pants were divided into three groups to check H2. We decided on a group size of
10 because it has proven to be sufficient in many studies. If the method is widely
applied, it may be possible to find a convergence point at which additional partic-
ipants do not add any value. All participants were bachelor or master students of
economics and have received an expense allowance. They were all native speak-
ers of German, which was also the language of the interviews. In group A, the
students were between 19 and 40 years old (mean: 23.3 years). 50% were female,
50% male. In group B, the students were between 18 and 29 years old (mean:
21.9 years). 40% were female, 60% male. In group C, the students were between
19 and 25 years old (mean: 21.5 years). 60% were female, 40% male. Participants
of the same group have worked with the same elements.

Interview. The complete evaluation was done using the evaluation server of
Getaviz [3]. It displays three random graphs at the same time (see Fig. 1). The
participant cannot interact with the visualizations, i.e., there are no tooltips and
it is not possible to navigate or zoom in and out. In the prestudy, we noticed
that sometimes rather vague terms such as “simple” or “complex” were used
as constructs. To improve the laddering, we asked the participants to draw for
instance a “very simple” or “very complex” graph and used it as an additional
element. Having additional elements with extreme properties helps the partici-
pant to name differences between the elements [20]. Besides that, we conducted
the interview as described in the method section.

Fig. 1. User interface for repertory grid interview showing three graphs
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Table 3. List of all novel aesthetics elicited in the evaluation

Name Group A Group B Group C

Face area 2 3 3

Uniform faces 4 3 3

4.3 Results and Discussion

The interview procedure led to a set of 56 different constructs from all partic-
ipants. These constructs are divided into the four categories as follows: Visual
Mapping (4 constructs), Composition (21 constructs), Data-related (11 con-
structs), Visual Experience (20 constructs). The distribution of the categories
is similar to previous studies but with fewer constructs referring to visual map-
ping [21]. That was to be expected since the visual mapping was given by using
node-link diagrams and corresponds to the distribution of published graph aes-
thetics, which refer to the composition in most cases as well. The further analysis
will focus on the 25 constructs from the first two categories since the other con-
structs are not relevant concerning aesthetics. For each aesthetic in Table 2 it
is indicated which groups have used it. We can fully confirm hypothesis H1.
An aesthetic was used by 51.7% of the participants on average (min: 33.3%,
max: 93.3%) With a softer stop criterion, some aesthetics might have been used
by more participants. It is neither necessary nor likely that all participants use
identical constructs.

We were able to reproduce all published graph aesthetics that have an empir-
ically verified impact on readability with all three groups. Group A reproduced
82%, Group B reproduced 86%, and Group C reproduced 82% of published graph
aesthetics. The five aesthetics not mentioned were not positively evaluated with-
out exception. In the case of differences between smallest and optimal crossing
angle, standard deviation of crossing angles, and standard deviation of angular
resolution this is not surprising. Participants of all groups referred to crossing
angles quite often, but not in such a mathematical way.

Table 3 lists all elicited aesthetics that are novel, which means that we could
not find a corresponding aesthetic in our literature study. Both novel aesthetics
refer to faces, i.e., the empty white areas that are bordered by edges. So far
in the literature, it has only been suggested to consider whether the faces are
convex or concave. This was not relevant for any of the participants. However,
participants of all groups distinguished between faces with a small area and faces
with a huge area. They also took into account, whether the graph consists of
faces with a similar shape or not. The results of our evaluation indicate that
the area and shape of the faces might influence how a graph is perceived. It has
to be verified empirically whether these aesthetics have a significant impact on
understandability and readability.

With one exception, the used aesthetics are consistent among all three groups.
Only participants of Group 2 used node orthogonality to differentiate between
the elements. Therefore, we can accept hypothesis H2 conditionally.



Exploring the Design Space of Aesthetics with the Repertory Grid Technique 317

(a) “Ideal Graph” (b) “Worst Graph”

Fig. 2. Two example graphs drawn by participants

4.4 Threats to Validity

For the interviews, we have specified the elements and deliberately used ran-
dom values for different properties of the graphs. There is a risk that thereby
the aesthetics are predetermined and reflect only our assumptions. However, the
participants mentioned aesthetics that have no direct connection to the ran-
domized graph properties. For example, all groups used global symmetry as a
construct. None of the given elements was symmetric or designed with respect
to symmetry. However, many self-drawn graphs were symmetrical as shown in 2a,
making them different from the elements provided.

All interviews were conducted by the same person, therefore there is a risk of
confirmation bias. Other potential confounding factors are the background and
degree of experience of the participants.

5 Application to Software Visualization

Software visualization is a subdomain of information visualization about visual-
izing the structure, behavior, and evolution of software systems. These visualiza-
tions are used in visual analytics tools to support software developers, project
managers, and other stakeholders to improve their understanding of develop-
ment artifacts and corresponding activities. Software visualizations are complex
domain-specific diagrams that might contain multiple thousand data points, var-
ious relationships between them, and a multitude of different visual primitives.
Presenting this amount of information in such a way that it can be processed well
by a human being is a central challenge of this domain. The Recursive Disk (RD)
Metaphor (Fig. 3a) [25] and the City Metaphor (Fig. 3b) [41] are two approaches
to adequately visualize these data.

Both metaphors are hierarchical visualizations that represent the internal
structure of a software system. The RD Metaphor is an abstract two-dimensional
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(a) RD Metaphor (b) City Metaphor

Fig. 3. Software visualizations generated by Getaviz (Color figure online)

metaphor. It consists of two different kinds of disks (gray and purple) as well as
two different kinds of disk segments (blue and yellow). The disks can be nested
to represent contains-relationships between the elements as shown in Fig. 3a.
The area of the disks and disk segments is also used to visualize the properties
of the software system. The City metaphor is a three-dimensional real-world
metaphor. It consists of gray districts and purple buildings as shown in Fig. 3b.
The building’s height and base area also represent the properties of the software
system.

A high degree of readability and comprehensibility is a central requirement
for these kinds of diagrams. To improve them, however, no aesthetics have been
considered to date, i.e., there are no known aesthetics at all for this kind of visu-
alization. One of the reasons for this is that the described problems of the current
research process are even greater with such complex visualizations. Therefore, we
apply our approach to software visualizations to elicit aesthetics that will help
improve readability and comprehensibility in the future. We have conducted one
study on RD visualizations and one on City visualizations. Both studies are
independent of each other. However, since the study design is very similar, we
will describe both studies together.

5.1 Study Design

For each study, we used 12 visualizations as elements. We chose 12 different
software systems based on software metrics (number of packages, number of
classes, number of methods, number of attributes, and number of statements) to
cover a wide range. We used Getaviz to generate the corresponding visualizations
for each system. For RD, we conducted interviews with ten participants (50%
male, 50% female). Their age varies between 19 and 52 years (mean: 22.8 years).
For City, we conducted interviews with ten different participants (70% male, 30%
female). Their age varies between 18 and 38 years (mean: 24 years). During the
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construct elicitation we gave participants the possibility to navigate, i.e., rotate
the visualization as well as zoom in and out, so they could view the visualization
as they liked. Otherwise, it would not be possible to perceive all visual entities
since some entities might be occluded or too small to perceive. Apart from that,
the interviews were the same as described in Sect. 4.2.

5.2 Results and Discussion

We elicited 53 constructs during the RD interviews, 19 of them qualified as
aesthetics. Each participant used 15.5 constructs on average. To describe the
city metaphor, 45 constructs were used, 15 of them are aesthetics. Each partici-
pant used 13.5 constructs on average. Table 4 lists all elicited aesthetics for both
metaphors. The aesthetics for the RD visualizations are mostly about color dis-
tribution and nesting, i.e., many aesthetics refer to a local context. This makes
sense considering the recursive structure of the visualizations. City visualizations
have a similar structure, but buildings are clearly dominant since most aesthet-
ics refer to buildings. Some aesthetics refer to the three-dimensionality of the
visualization, where the height of the buildings plays a major role.

Table 4. Elicited aesthetics for RD and city metaphor

RD aesthetics City aesthetics

Area Area

Blue segments evenly distributed (global) Aspect ratio (global)

Blue segments evenly distributed (local) Aspect ratio of districts (local)

Centered focus Buildings in a row

Edge thickness Building density

Face area Clustering of similar buildings

Global symmetry Empty district area

Length of spiral windings Gap between buildings

Local symmetry Largest difference in building height

Nesting depth Nesting depth

Number of spiral turns Share of empty area

Share of empty area Sort buildings by height

Sorting of purple disks (local) Uniform base area of buildings

Uniform size of gray disks Uniform buildings

Uniform size of purple disks Uniform faces

Uniform structure of gray disks

Uniform structure of purple disks

Yellow segments evenly distributed (global)

Yellow segments evenly distributed (local)
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It is particularly noticeable that fewer constructs were used compared to
graphs, both per interview and overall. This is most likely because the edges of
the graphs have many degrees of freedom that are not present in the RD and
City visualizations. Due to the semantic constraints, e.g., a building must always
be located in a district, the design space is not as extensive as it is for graphs.

The elicited aesthetics serve as a starting point to design better layout algo-
rithms. In previous work, only density and area were considered. The elicited
aesthetics must now be empirically evaluated to find out which of them have a
significant influence on readability.

6 Conclusion

Our approach to explore aesthetics design space using repertory grids has been
effective. We have evaluated the approach as far as possible and were able to show
in an empirical study that with only 10 participants all published and positively
evaluated aesthetics can be identified. We could also show that our approach
delivers reproducible results and can be applied to diverse visualizations. The
quality and validity of the results depend above all on the selection of the suitable
elements. The inclusion of drawings and placeholder elements was particularly
helpful. However, the assessment of a domain expert is still necessary to create
and select suitable elements. Nevertheless, the process is much less subjective
and intuition-based than before.

The analysis of the repertory grid data applied in this paper is rather simple
and could be enhanced in the future. For example, we did not analyze how often
certain aesthetics have been used by participants. In our future work, we will
evaluate the derived aesthetics from software visualizations to further validate
the results.
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Abstract. Storyline visualizations depict the temporal dynamics of
social interactions, as they describe how groups of actors (individuals
or organizations) change over time. A common constraint in storyline
visualizations is that an actor cannot belong to two different groups at
the same time instant. However, this constraint may be too severe in
some application scenarios, thus we generalize the model by allowing an
actor to simultaneously belong to distinct groups at any point in time.
We call this model Storyline with Ubiquitous Actors (SUA). Essential to
our model is that an actor is represented as a tree rather than a single
line. We describe an algorithmic pipeline to compute storyline visualiza-
tions in the SUA model and discuss case studies on publication data.

Keywords: Storyline visualization · Ubiquitous actors

1 Introduction

Storyline visualizations have been the focus of intense research in the last decade.
Originally introduced to describe the narrative of a movie [12], this visualization
paradigm has been successfully used to represent the temporal dynamics of the
interactions between actors (individuals or organizations) in a social network or
in a working environment [10,14,16–20]. In a storyline visualization, the narra-
tive unfolds from left to right, each actor is represented as a line, and two lines
may converge or diverge at a time instant based on whether the two correspond-
ing actors interact or not at that instant; see Fig. 1(a). Since a group of lines
bundled together usually reflects an in-person meeting, a common constraint in
a storyline visualization is that an actor cannot belong to two different groups at
the same point in time. However, this constraint represents a severe limitation for
some application scenarios, for example when groups model associations that are
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not in-person meetings (e.g., paper co-authorships) or when each point in time
of the storyline corresponds to a relatively long time interval (e.g., one year).

In this paper we generalize the classical storyline model by allowing an actor
to simultaneously belong to distinct groups. We call this model Storyline with
Ubiquitous Actors (SUA); see Fig. 1(b). Essential to our model is that an actor
is represented as a tree rather than a single line. Our contribution is: (i) We
propose a visualization paradigm for the SUA model and identify quality metrics
for it. (ii) We define an algorithmic pipeline for storyline visualizations in the
SUA model. (iii) We provide a proof-of-concept implementation and apply it to
produce visualizations in real-life scenarios.

Related Work. Tanahashi and Ma [18] present a general framework for gen-
erating aesthetically pleasing storyline visualizations. Subsequent papers focus
on specific optimization problems like crossing minimization [5,7,8] and wig-
gle minimization [6]. Padia et al. [15,16] consider storyline visualizations with
multiple timelines. Efficient approaches that compute storyline visualizations
with hierarchical relationships or with streaming data are described by Liu
et al. [10] and by Tanahashi et al. [19], respectively. Qiang and Bingjie [17]
present a system that embeds storyline visualizations into a radial layout. For a
broader dissertation on storytelling and visualization refer to the survey of Tong
et al. [20]. We remark that our scenario is strongly related to the dynamic sets
visualization; see, e.g., [11,13], and [3] for a survey. In this regard, it is worth
mentioning a recent work by Agarwal and Beck [2], who adopt storylines for
visualizing dynamic sets.

2 Storyline Visualizations and Ubiquitous Actors

We first recall basic definitions and principles of classical storyline visualizations
and then define our visualization for the SUA model.

Classical Storyline Visualizations. A storyline S = (A,G) consists of a
set A = {a1, a2, . . . , an} of actors and a set G = {G1, G2, . . . , Gk} of groups.
Each group Gi ∈ G is a triple 〈A(Gi), bi, ei〉, where A(Gi) ⊆ A is a subset of
actors, bi is the begin-time of Gi and ei is the end-time of Gi. We say that Gi is
active at any time instant in the interval [bi, ei], and that each actor aj ∈ A(Gi)
participates to Gi. A common assumption is that an actor cannot participate to
two distinct groups at the same point in time, i.e., if Gi and Gj are two distinct
groups such that [bi, ei] ∩ [bj , ej ] �= ∅ then A(Gi) ∩ A(Gj) = ∅.

In a storyline visualization, each actor aj is represented as a line �j that flows
from left to right; see Fig. 1(a). Some basic principles are considered: (i) For each
group Gi, the lines representing the actors in A(Gi) are adjacent, i.e., they run
close together from the begin-time bi to the end-time ei of Gi; (ii) lines of actors
that are not in the same group at the same time are depicted relatively far from
one another; (iii) a line should not deviate unless it converges or diverges with
another line. In addition, common quality metrics for the readability of storyline
visualizations are: (a) Line or block crossings – a line crossing occurs when two
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lines intersect while a block crossing is caused by two blocks of parallel lines
that pairwise intersect. (b) Line wiggles – line deviations that, when frequent,
negatively affect the visual flow of the layout. (c) White space gaps – white areas
used to separate lines of actors that do not participate to the same group.

a1
a2
a3 a6

a7

a4
a5

t0 t1 t2 t3 t4 t5 t6 t7

G1

G2

G3

G4

G5

G6

G7

G8

(a)
t0 t1 t2 t3 t4 t5 t6 t7

a5

a2
a1

a3
a4

G1

G2

G3

G4

G5

G6

G7

G8

(b)

Fig. 1. Storyline visualization: (a) Classical model. (b) SUA model.

Visualizations with Ubiquitous Actors. To support the visualization of
ubiquitous actors, we represent an actor aj as a tree τj rather than as a line
(see Sect. 3 for a formal definition of τj). Informally speaking, when an actor
simultaneously participates to different groups, the line of the actor branches
out and forms a tree. For example, in Fig. 1(b) we see the trees of five actors
a1, . . . , a5. At time t1 actor a2 participates to group G1 while at time t2 it
simultaneously participates to groups G1 and G3. As a consequence, the line of
a2 at time t1 is split into two branches. The choice of a tree is motivated by
the fact that we want to represent each actor by a connected geometric feature
(avoiding discontinuities); at the same time, we want to keep such geometric
feature as simple as possible, since the addition of edges may increase the number
of crossings. Such tree representations add new quality metrics:

– Actor planarity. It is natural to require that each tree representing an actor
is not self-intersecting. While this is trivially guaranteed when an actor is a
line, it requires an algorithmic effort in the SUA model.

– Branch continuity. To avoid interruptions in the continuity of the story, the
number of branches of an actor at time th that continue at time th+1 should
be maximized. If an actor participates to m groups at time th and to m′ ≥ m
groups at time th+1, all branches at time th should continue at time th+1.

– Branch degree. When an actor tree needs new branches at some time
instant th, it is desirable that the maximum number of branches that
emanates from a common branch at time th−1 is minimized.

We note that such new metrics may be in conflict with classical ones (see Fig. 2).

3 The SUA Algorithmic Pipeline

We compute storyline visualizations in the SUA model by means of an algorith-
mic pipeline based on the concept of actor-tree τj associated with an actor aj .
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Fig. 2. (a) A layout with optimal branch continuity. (b) Violating branch continuity for
a3 at t3 and for a1 at t5 removes 9 crossings and reduces line wiggles. (c) A layout with
optimal branch degree. (d) Violating branch degree for a3 at t3 reduces line wiggles
and removes 2 crossings.

The life-time of actor aj is the interval between the first and the last time instant
at which aj belongs to some group. Tree τj is defined as follows. Node set – Tree
τj has a root rj . For each time instant th in the life-time of aj : If aj participates
to at least one group Gi (i > 0) active at th, τj has a node uh,i for each such
group; otherwise τj has a single node uh,0 that is not associated with any group.
Edge set – The parent of a node uh,i (i ≥ 0) is assigned as follows: If th−1 is not
in the life-time of aj , the parent of uh,i is the root rj . Else, if i > 0 and Gi is
active before time th, the parent of uh,i is uh−1,i. Else, the parent of uh,i is one
of the nodes uh−1,l. Our algorithmic pipeline consists of four steps:

1. Actor-tree Initialization. It defines an initial actor-tree τj for each actor aj .
Namely, given the nodes of τj , it assigns the parent to each node of τj .

2. Branch Permutation. For each time instant th this step computes a permutation
(i.e., a vertical order) of all nodes at time th in the union of all actor-trees .

3. Actor-tree Untangling. For each actor-tree τj , it redefines the parent of some
nodes, so to reduce self-intersections of τj without changing its node degrees.

4. Branch-coordinate Assignment. It assigns the y-coordinates to actor-tree nodes.
In Step 1 we aim to optimize branch continuity and branch degree. Step 2

aims to minimize block or line crossings. Step 3 tries to enforce actor planarity.
Step 4 aims to reduce line wiggles and space gaps. Different algorithmic strategies
are applicable to each step. We briefly describe our solution; see also Fig. 4.

Actor-Tree Initialization. For any actor-tree τj , let Vh−1 and Vh be the sets of
nodes at time instant th−1 and th. The parents of the nodes in Vh are chosen
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Fig. 3. (a) Transformation of an actor tree into a set of disjoint paths. (b) Crossing
removal when merging two copies of the same node. (c) Actor-tree untangling. (d)
Preservation of the edge order around a node when splitting it.

among the nodes in Vh−1 so that the distribution of the degrees in Vh−1 is as
uniform as possible. For each node uh,i in Vh that belongs to the same group
of a node uh−1,i in Vh−1, the parent of uh,i is uh−1,i. For the remaining nodes
of Vh, we adopt a round robin policy to assign children to the nodes in Vh−1 so
that the difference of the degrees of any two nodes of Vh−1 is at most one.

Branch Permutation. We exploit a state-of-the-art algorithm for classical storyline
visualizations, namely the algorithm by van Dijk et al. [5] based on a SAT
formulation, which optimally solves the problem of minimizing block crossings.
To this aim, we transform the output of Step 1 into an instance for a classical
storyline visualization: Each actor tree is partitioned into a set of edge-disjoint
paths by duplicating each node with k ≥ 2 children into k nodes each having one
child (see Fig. 3(a)). Each path is processed by the algorithm in [5] as a distinct
actor. All copies of the same node are then recombined into a single node to
restore the tree. However, if disjoint paths originating from two copies of the same
node are treated independently, they can create many crossings when recombined
back into the tree. To alleviate this drawback, we let the initial node of each path
belong to the same group of its original duplicate, unless this operation makes
the path belonging to multiple groups at some other point in time. Moreover,
when copies of the same node are recombined into a single node, two edges
incident to this node may create a crossing, which is easily removed as depicted
in Fig. 3(b). Hence, a crossing in an actor tree only involves independent edges.

Actor-Tree Untangling. For each actor-tree τj , we redefine the parent of some
nodes to reduce the number of crossings between the edges of τj . If two edges
(uh−1,p, uh,q) and (uh−1,r, uh,s) (p �= q, r �= s) of τj cross, we replace them with
two new edges (uh−1,p, uh,s) and (uh−1,r, uh,q) (see Fig. 3(c)). This operation
removes at least one self-intersection and does not create any new one. Also,
the degree of uh−1,p, uh,q, uh−1,r, and uh,s does not change. We repeat this
procedure until it is no longer possible to remove self-intersections from τj .

Branch-Coordinate Assignment. As in the Branch-permutation step, we consider
the set of paths that decompose the tree and make them disjoint by duplicating
each node with k ≥ 2 children into k nodes each having one child. The cyclic
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Fig. 4. Illustration of the algorithmic pipeline.

order of the edges around each node defines the permutation of the lines that
correspond to these edges (see Fig. 3(d)). Any technique that assigns coordinates
to the paths, while reducing line wiggles and white space gaps can be applied (see,
e.g., [6,18]). This assignment preserves the vertical permutations of the paths.

4 Implementation and Case Studies

We developed a prototype web application, StoryTreeViewer, which imple-
ments the algorithmic pipeline of Sect. 3, see https://bit.ly/2yS3Fvi. Story-
TreeViewer offers a simple interactive interface, which we used to evaluate
effectiveness and limits of our model through two case studies on publication
data extracted from DBLP [9] and Scopus [1].

Case Study 1. The first case study, see Fig. 5(a), describes scientific collab-
orations among the authors of this work in the various editions of the Graph
Drawing Symposium (GD) since 1999. Each actor is an author and a group Gi is
a subset of actors who co-authored some papers. Gi is active in [bi, ei] if all their
members co-authored at least one paper in each year from bi to ei. The layout
reveals the following dynamic. In the first part of the story there is a strong col-
laboration between the three oldest actors (pink, green, and blue), in particular
they form a group lasting from 2004 to 2009. In 2003, the pink actor was the chair

https://bit.ly/2yS3Fvi
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Fig. 5. Visualizations of our case studies. See the full version [4] for larger images.
(Color figure online)

of GD, which prevented him to publish together with the other two authors. In
2010 and 2011 the collaboration of the three actors is weaker, as they mainly col-
laborated with researchers outside their university. The dynamic becomes more
involved in the last years, when two new members joined the group (cyan and
orange), and new theoretical and application research topics were activated.

Case Study 2. The second case study, see Fig. 5(b), describes scientific collab-
orations among five of the research teams (universities) with the highest num-
ber of papers published at GD. The actors are the teams and the groups are
defined as in case study 1. Namely, a group Gi is a subset of teams that appear
together in some papers (in terms of author affiliations); Gi is active in [bi, ei]
if all its teams appear together in at least one paper in each year from bi to ei.
The layout shows some interesting facts. From 1999 to 2002 there is a strong
collaboration between Roma Tre and Perugia, witnessing that the group in Peru-
gia stems from researchers coming from Rome. The collaboration between the
five research teams increases since 2007 and becomes stronger since 2011. This
is partly explained by the series of workshops started around 2006 (BWGD,
HOMONOLO, GNV, etc.) that increased international collaborations.

Limits. Working on the case studies, we observed some limits of our approach:
(i) The implementation for the Branch Permutation step exploits the algorithm
in [5], splitting each actor-tree into multiple disjoint paths. The size of this trans-
formed instance raises some computational complexity issues. (ii) Our visualiza-
tions appear to be readable for relatively few actors and further work is needed
to better evaluate the effectiveness of the SUA model on larger instances.
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5 Conclusions and Future Work

We introduced the SUA model, which allows ubiquitous actors in storyline visu-
alizations. This model extends the spectrum of applications for this type of rep-
resentation and opens up to many intriguing research directions. Among them:
(i) Are there more effective ways of modeling ubiquitous actors other than using
trees? (ii) Design and experiment different algorithms for the SUA pipeline.
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ryline visualization. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801,
pp. 367–381. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-
2 29
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Abstract. Motivated by the fact that in a space where shortest paths
are unique, no two shortest paths meet twice, we study a question posed
by Greg Bodwin: Given a geodetic graph G, i.e., an unweighted graph in
which the shortest path between any pair of vertices is unique, is there
a philogeodetic drawing of G, i.e., a drawing of G in which the curves
of any two shortest paths meet at most once? We answer this question
in the negative by showing the existence of geodetic graphs that require
some pair of shortest paths to cross at least four times. The bound on
the number of crossings is tight for the class of graphs we construct.
Furthermore, we exhibit geodetic graphs of diameter two that do not
admit a philogeodetic drawing.
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1 Introduction

Greg Bodwin [1] examined the structure of shortest paths in graphs with edge
weights that guarantee that the shortest path between any pair of vertices is
unique. Motivated by the fact that a set of unique shortest paths is consistent in
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v1

v2

v5

v4

v3

Fig. 1. A drawing of the geodetic graph K5. It has a crossing formed by edges v1v3
and v2v5. In addition, edges v1v4 and v2v4 meet but do not cross since their meet
includes vertex v4. Finally, edges v2v5 and v3v5 meet twice violating the property of
philogeodetic drawings.

the sense that no two such paths can “intersect, split apart, and then intersect
again”, he conjectured that if the shortest path between any pair of vertices in a
graph is unique then the graph can be drawn so that any two shortest paths meet
at most once. Formally, a meet of two Jordan curves γ1, γ2 : [0, 1] → R2 is a pair
of maximal intervals I1, I2 ⊆ [0, 1] for which there is a bijection ι : I1 → I2 so that
γ1(x) = γ2(ι(x)) for all x ∈ I1. A crossing is a meet with (I1 ∪ I2) ∩ {0, 1} = ∅.
Two curves meet k times if they have k pairwise distinct meets. For example,
shortest paths in a simple polygon (geodesic paths) have the property that they
meet at most once [6].

A drawing of a graph G in R2 maps the vertices to pairwise distinct points
and maps each edge to a Jordan arc between the two end-vertices that is dis-
joint from any other vertex. Drawings extend in a natural fashion to paths:
Let ϕ be a drawing of G, and let P = v1, . . . , vn be a path in G. Then let
ϕ(P ) denote the Jordan arc that is obtained as the composition of the curves
ϕ(v1v2), . . . , ϕ(vn−1vn). A drawing ϕ of a graph G is philogeodetic if for every
pair P1, P2 of shortest paths in G the curves ϕ(P1) and ϕ(P2) meet at most once.

An unweighted graph is geodetic if there is a unique shortest path between
every pair of vertices. Trivial examples of geodetic graphs are trees and complete
graphs. Observe that any two shortest paths in a geodetic graph are either
disjoint or they intersect in a path. Thus, a planar drawing of a planar geodetic
graph is philogeodetic. Also every straight-line drawing of a complete graph
is philogeodetic. Refer to Fig. 1 for an illustration of a drawing of a complete
graph that is not philogeodetic; this example also highlights some of the concepts
discussed above. It is a natural question to ask whether every (geodetic) graph
admits a philogeodetic drawing.

Results. We show that there exist geodetic graphs that require some pair of
shortest paths to meet at least four times (Theorem 1). The idea is to start with
a sufficiently large complete graph and subdivide every edge exactly twice. The
Crossing Lemma [8] can be used to show that some pair of shortest paths must
cross at least four times. By increasing the number of subdivisions per edge, we
can reduce the density and obtain sparse counterexamples. The bound on the
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number of crossings is tight because any uniformly subdivided Kn can be drawn
so that every pair of shortest paths meets at most four times (Theorem 2).

On one hand, our construction yields counterexamples of diameter five. On
the other hand, the unique graph of diameter one is the complete graph, which
is geodetic and admits a philogeodetic drawing (e.g., any straight-line drawing
since all unique shortest paths are single edges). Hence, it is natural to ask what
is the largest d so that every geodetic graph of diameter d admits a philogeodetic
drawing. We show that d = 1 by exhibiting an infinite family of geodetic graphs
of diameter two that do not admit philogeodetic drawings (Theorem 3). The
construction is based on incidence graphs of finite affine planes. The proof also
relies on the crossing lemma.

Geodetic Graphs. Geodetic graphs were introduced by Ore who asked for a char-
acterization as Problem 3 in Chap. 6 of his book “Theory of Graphs” [7, p. 104].
An asterisk flags this problem as a research question, which seems justified, as
more than sixty years later a full characterization is still elusive.

Stemple and Watkins [14,15] and Plesńık [10] resolved the planar case by
showing that a connected planar graph is geodetic if and only if every block is
(1) a single edge, (2) an odd cycle, or (3) stems from a K4 by iteratively choosing
a vertex v of the K4 and subdividing the edges incident to v uniformly. Geodetic
graphs of diameter two were fully characterized by Scapellato [12]. They include
the Moore graphs [3] and graphs constructed from a generalization of affine
planes. Further constructions for geodetic graphs were given by Plesńık [10,11],
Parthasarathy and Srinvasan [9], and Frasser and Vostrov [2].

Plesńık [10] and Stemple [13] proved that a geodetic graph is homeomorphic
to a complete graph if and only if it is obtained from a complete graph Kn by
iteratively choosing a vertex v of the Kn and subdividing the edges incident to
v uniformly. A graph is geodetic if it is obtained from any geodetic graph by
uniformly subdividing each edge an even number of times [9,11]. However, the
graph G obtained by uniformly subdividing each edge of a complete graph Kn an
odd number of times is not geodetic: Let u, v, w be three vertices of Kn and let
x be the middle subdivision vertex of the edge uv. Then there are two shortest
x-w-paths in G, one containing v and one containing u.

2 Subdivision of a Complete Graph

The complete graph Kn is geodetic and rather dense. However, all shortest paths
are very short, as they comprise a single edge only. So despite the large number
of edge crossings in any drawing, every pair of shortest paths meets at most
once, as witnessed, for instance, by any straight-line drawing of Kn. In order to
lengthen the shortest paths it is natural to consider subdivisions of Kn.

As a first attempt, one may want to “take out” some edge uv by subdividing
it many times. However, Stemple [13] has shown that in a geodetic graph every
path where all internal vertices have degree two must be a shortest path. Thus,
it is impossible to take out an edge using subdivisions. So we use a different
approach instead, where all edges are subdivided uniformly.
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Theorem 1. There exists an infinite family of sparse geodetic graphs for which
in any drawing in R2 some pair of shortest paths meets at least four times.

Proof. Take an even number t and a complete graph Ks for some s ∈ N. Subdi-
vide each edge t times. The resulting graph K(s, t) is geodetic. See Fig. 4 for a
drawing of K(8, 2). Note that K(s, t) has n = s+t

(
s
2

)
vertices and m = (t+1)

(
s
2

)

edges, with m ∈ O(n), for s fixed and t sufficiently large. Consider a drawing Γ
of K(s, t).

Let B denote the set of s branch vertices in K(s, t), which correspond to the
vertices of the original Ks. For two distinct vertices u, v ∈ B, let [uv] denote
the shortest uv-path in K(s, t), which corresponds to the subdivided edge uv of
the underlying Ks. As t is even, the path [uv] consists of t + 1 (an odd number
of) edges. For every such path [uv], with u, v ∈ B, we charge the crossings in Γ
along the t + 1 edges of [uv] to one or both of u and v as detailed below; see
Fig. 2 for illustration.

– Crossings along an edge that is closer to u than to v are charged to u;
– crossings along an edge that is closer to v than to u are charged to v; and
– crossings along the single central edge of [uv] are charged to both u and v.

u

v

Fig. 2. Every crossing is charged to at least one endpoint of each of the two involved
(independent) edges. Vertices are shown as white disks, crossings as red crosses, and
charges by dotted arrows. The figure shows an edge uv that is subdivided four times,
splitting it into a path with five segments. A crossing along any such segment is assigned
to the closest of u or v. For the central segment, both u and v are at the same distance,
and any crossing there is assigned to both u and v. (Color figure online)

Let Γs be the drawing of Ks induced by Γ : every vertex of Ks is placed at
the position of the corresponding branch vertex of K(s, t) in Γ and every edge
of Ks is drawn as a Jordan arc along the corresponding path of K(s, t) in Γ .
Assuming

(
s
2

) ≥ 4s (i.e., s ≥ 9), by the Crossing Lemma [8], at least

1
64

(
s
2

)3

s2
=

1
512

s(s − 1)3 ≥ c · s4

pairs of independent edges cross in Γs, for some constant c. Every crossing in Γs

corresponds to a crossing in Γ and is charged to at least two (and up to four)
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vertices of B. Thus, the overall charge is at least 2cs4, and at least one vertex
u ∈ B gets at least the average charge of 2cs3.

Each charge unit corresponds to a crossing of two independent edges in Γs,
which is also charged to at least one other vertex of B. Hence, there is a vertex
v 	= u so that at least 2cs2 crossings are charged to both u and v. Note that there
are only s − 1 edges incident to each of u and v, and the common edge uv is not
involved in any of the charged crossings (as adjacent rather than independent
edge). Let Ex, for x ∈ B, denote the set of edges of Ks that are incident to x.

We claim that there are two pairs of mutually crossing edges incident to u
and v, respectively; that is, there are sets Cu ⊂ Eu \ {uv} and Cv ⊂ Ev \ {uv}
with |Cu| = |Cv| = 2 so that e1 crosses e2, for all e1 ∈ Cu and e2 ∈ Cv.

Before proving this claim, we argue that establishing it completes the proof of
the theorem. By our charging scheme, every crossing e1 ∩ e2 happens at an edge
of the path [e1] in Γ that is at least as close to u as to the other endpoint of e1.
Denote the three vertices that span the edges of Cu by u, x, y. Consider the two
subdivision vertices x′ along [ux] and y′ along [uy] that form the endpoint of the
middle edge closer to x and y, respectively, than to u; see Fig. 3 for illustration.

u

x y

︸ ︷︷ ︸t/2 vertices

︸ ︷︷ ︸t/2 vertices
︸ ︷︷ ︸

t/2
vert

ices

︸ ︷︷ ︸

t/2
vert

ices
x′ y′

Fig. 3. Two adjacent edges ux and uy, both subdivided t times, and the shortest path
between the “far” endpoints x′ and y′ of the central segments of [ux] and [uy].

The triangle uxy in Ks corresponds to an odd cycle of length 3(t + 1) in
K(s, t). So the shortest path between x′ and y′ in K(s, t) has length 2(1+t/2) =
t+2 and passes through u, whereas the path from x′ via x and y to y′ has length
3(t + 1) − (t + 2) = 2t + 1, which is strictly larger than t + 2 for t ≥ 2. It follows
that the shortest path between x′ and y′ in K(s, t) is crossed by both edges
in Cv. A symmetric argument yields two subdivision vertices a′ and b′ along
the two edges in Cv so that the shortest a′b′-path in K(s, t) is crossed by both
edges in Cu. By definition of our charging scheme (that charges only “nearby”
crossings to a vertex), the shortest paths x′y′ and a′b′ in K(s, t) have at least
four crossings.

It remains to prove the claim. To this end, consider the bipartite graph X
on the vertex set Eu ∪ Ev where two vertices are connected if the corresponding
edges are independent and cross in Γs. Observe that two sets Cu and Cv of
mutually crossing pairs of edges (as in the claim) correspond to a 4-cycle C4 in
X. So suppose for the sake of a contradiction that X does not contain C4 as a
subgraph. Then by the Kővári-Sós-Turán Theorem [5] the graph X has O(s3/2)
edges. But we already know that X has at least 2cs2 = Ω(s2) edges, which yields
a contradiction. Hence, X is not C4-free and the claim holds. ��
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The bound on the number of crossings in Theorem 1 is tight.

Theorem 2. A graph obtained from a complete graph by subdividing the edges
uniformly an even number of times can be drawn so that every pair of shortest
paths crosses at most four times.

Proof (Sketch). Place the vertices in convex position. Draw the subdivided edges
along straight-line segments. For each edge, put half of the subdivision vertices
very close to one endpoint and the other half very close to the other endpoint
(Fig. 4). As a result, all crossings fall into the central segment of the path. ��

Fig. 4. A drawing of K(8, 2), the complete graph K8 where every edge is subdivided
twice, so that every pair of shortest paths meets at most four times. Two shortest paths
that meet four times are shown bold and orange. (Color figure online)

3 Graphs of Diameter Two

In this section we give examples of geodetic graphs of diameter two that cannot
be drawn in the plane such that any two shortest paths meet at most once.

An affine plane of order k ≥ 2 consists of a set of lines and a set of points
with a containment relationship such that (i) each line contains k points, (ii) for
any two points there is a unique line containing both, (iii) there are three points
that are not contained in the same line, and (iv) for any line � and any point p
not on � there is a line �′ that contains p, but no point from �. Two lines that do
not contain a common point are parallel. Observe that each point is contained
in k + 1 lines. Moreover, there are k2 points and k + 1 classes of parallel lines
each containing k lines. The 2-dimensional vector space F2 over a finite field F

of order k with the lines {(x,mx + b); x ∈ F}, m, b ∈ F and {(x0, y); y ∈ F},



Drawing Shortest Paths in Geodetic Graphs 339

x0 ∈ F is a finite affine plane of order k. Thus, there exists a finite affine plane
of order k for any k that is a prime power (see, e.g., [4]).

Scapellato [12] showed how to construct geodetic graphs of diameter two as
follows: Take a finite affine plane of order k. Let L be the set of lines and let P
be the set of points of the affine plane. Consider now the graph Gk with vertex
set L ∪ P and the following two types of edges: There is an edge between two
lines if and only if they are parallel. There is an edge between a point and a line
if and only if the point lies on the line; see Fig. 5. There are no edges between
points. It is easy to check that Gk is a geodetic graph of diameter two.

. . . k2 points

. . . k + 1 cliques of
k parallel lines each

Gk : . . .. . .

Fig. 5. Structure of the graph Gk.

Theorem 3. There are geodetic graphs of diameter two that cannot be drawn
in the plane such that any two shortest paths meet at most once.

Proof. Let k ≥ 129 be such that there exists an affine plane of order k (e.g., the
prime k = 131). Assume there was a drawing of Gk in which any two shortest
paths meet at most once. Let G be the bipartite subgraph of Gk without edges
between lines. Observe that any path of length two in G is a shortest path in Gk.
As G has n = 2k2+k vertices and m = k2(k+1) > kn/2 edges, we have m > 4n,
for k ≥ 8. Therefore, by the Crossing Lemma [8, Remark 2 on p. 238] there are
at least m3/64n2 > k3n/512 crossings between independent edges in G.

Hence, there is a vertex v such that the edges incident to v are crossed more
than k3/128 times by edges not incident to v. By assumption, (a) any two edges
meet at most once, (b) any edge meets any pair of adjacent edges at most once,
and (c) any pair of adjacent edges meets any pair of adjacent edges at most
once. Thus, the crossings with the edges incident to v stem from a matching.
It follows that there are at most (n − 1)/2 = (2k2 + k − 1)/2 such crossings.
However, (2k2 + k − 1)/2 < k3/128, for k ≥ 129. ��

4 Open Problems

We conclude with two open problems: (1) Are there diameter-2 geodetic graphs
with edge density 1 + ε that do not admit a philogeodetic drawing? (2) What is
the complexity of deciding if a geodetic graph admits a philogeodetic drawing?
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10. Plesńık, J.: Two constructions of geodetic graphs. Math. Slovaca 27(1), 65–71
(1977). https://dml.cz/handle/10338.dmlcz/136134
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Abstract. We introduce a model for random geodesic drawings of the
complete bipartite graph Kn,n on the unit sphere S

2 in R
3, where we

select the vertices in each bipartite class of Kn,n with respect to two
non-degenerate probability measures on S

2. It has been proved recently
that many such measures give drawings whose crossing number approx-
imates the Zarankiewicz number (the conjectured crossing number of
Kn,n). In this paper we consider the intersection graphs associated with
such random drawings. We prove that for any probability measures, the
resulting random intersection graphs form a convergent graph sequence
in the sense of graph limits. The edge density of the limiting graphon
turns out to be independent of the two measures as long as they are
antipodally symmetric. However, it is shown that the triangle densi-
ties behave differently. We examine a specific random model, blowups
of antipodal drawings D of K4,4, and show that the triangle density in
the corresponding crossing graphon depends on the angles between the
great circles containing the edges in D and can attain any value in the
interval

(
83

12288
, 128
12288

)
.

Keywords: Crossing number · Graph limits · Geodesic drawing ·
Random drawing · Triangle density

1 Introduction

The crossing number cr(G) of a graph G is the minimum number of crossings
obtained by drawing G in the plane (or the sphere). In this paper we consider the
(spherical) geodesic crossing number cr0(G), for which we minimize the number
of crossings taken over all drawings of G in the unit sphere S

2 in R
3 such that
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each edge uv is a geodesic segment joining points u and v in S
2. Recall that

geodesic segments (or geodesic arcs) in S
2 are arcs of great circles whose length

is at most π. Also note that cr(G) ≤ cr0(G) for every graph G.
Crossing number minimization has a long history and is used both in appli-

cations and as a theoretical tool in mathematics. We refer to [14] for an overview
about the history and the use of crossing numbers. Despite various breakthrough
results about crossing numbers, some of the very basic questions remain open
as of today, two of the most intriguing being what are the crossing numbers
of the complete graphs Kn and what are the crossing numbers of the complete
bipartite graphs Kn,n (the Turán Brickyard Problem). The asymptotic versions
of both problems are strongly related [13] and a lower bound for the limiting
crossing number of Kn,n gives a related lower bound for Kn. The asymptotic
version of the rectilinear crossing number of Kn is related to Sylvester’s Four
point problem in the plane [15,16], see also [14] for recent results. The geodesic
version on the sphere, which we discuss in this paper, is a spherical version of
Sylvester’s problem.

1.1 Outline

In this paper we initiate the study of limiting properties of intersection graphs
associated with drawings of complete and complete bipartite graphs. We limit
ourselves to geodesic drawings on the unit sphere in R

3 in which case the draw-
ings are determined by the choice of the placements of the vertices on the sphere.
The first main result of this work shows that whenever the vertices in each bipar-
tite class of Kn,n are selected according to some (non-degenerate) probability
measure on S

2 (where the two measures used for each class can be different),
then, with probability 1, the intersection graphs form a convergent sequence of
graphs in the sense of graph limits [7]. See Theorem 2.

The basic combinatorial property of convergent graph sequences is that of
subgraph densities. The density of edges in the crossing graphs corresponds to
the asymptotic crossing number. In addition to this, we examine one particular
related basic question: what is the density of triangles. We show that their den-
sity can be substantially different among different randomized models. Although
this result may be seen as “expected”, it is still somewhat surprising. Indeed,
it shows that there is a large variety of drawings of Kn,n, all attaining the
Zarankiewicz bound, in which the number of triples of mutually crossing edges
varies significantly, and can attain any value in the interval

(
83

12288 , 128
12288

)
. See

Theorems 4 and 6. We believe that further exploring of subgraph densities in
crossing graphons may give a deeper insight into the basic Turán’s Brickyard
Problem for geodesic drawings on the sphere.

1.2 Asymptotic Zarankiewicz Conjecture

During World War II, Hungarian mathematician Pál Turán worked in a brick
factory near Budapest. There the bricks were transported on wheeled trucks
from kilns to storage yards. It was difficult to push the trucks past the rail
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crossings and it would result in extra work if bricks fell of the trucks. Therefore
Turán wondered if there was a way of arranging the rails such that there would
be less crossings between them. Seeing the kilns and storage yards as parts of a
bipartite graph, this led to the more general question of the minimum number of
crossings in drawings of complete bipartite graphs Kn,n. Zarankiewicz [19] and
Urbanik [17] suggested drawings that involved

Z(m,n) = �n
2 � �n−1

2 � �m
2 � �m−1

2 � =

⎧
⎨

⎩

1
16n(n − 2)m(m − 2), n,m are even;
1
16n(n − 2)(m − 1)2, n is even, m is odd;
1
16 (n − 1)2(m − 1)2, n,m are odd

(1)
crossings. Whether this value is the best possible remains unanswered to this
day despite numerous attacks using powerful machinery in trying to resolve this
conjecture.

A general construction of drawings of complete bipartite graphs attaining
the Zarankiewicz bound was recently exhibited [10]. All of them are geodesic
drawings in S

2 and they show that

cr(Kn,n) ≤ cr0(Kn,n) ≤ Z(n, n) for every n ≥ 1. (2)

It is not hard to see that the following limits exist:

λ := lim
n→∞ n−4 cr(Kn,n) and λ0 := lim

n→∞ n−4 cr0(Kn,n).

Clearly, (2) implies that λ ≤ λ0 ≤ 1
16 . The asymptotic Zarankiewicz conjecture

for the usual and the geodesic crossing number is also open.

Conjecture 1. λ = λ0 = 1
16 .

1.3 Random Drawings of Complete Bipartite Graphs

In 1965, Moon [12] proved that a random set of n points on the unit sphere S
2 in

R
3 joined by geodesics gives rise to a drawing of Kn whose number of crossings

asymptotically approaches the conjectured value. It was proved recently [11] that
the same phenomenon appears in a much more general random setting. These
results can also be extended to random drawings of the complete bipartite graphs
Kn,n where it was shown that under a symmetry condition on the probability
measures the crossings in such drawings converge to the Zarankiewicz value.

A probability distribution μ on S
2 is nondegenerate if for every great circle

Q ⊂ S
2, μ(Q) = 0. It is antipodally-symmetric if for every measurable set A ⊆ S

2

the measure of its antipodal set A is the same, μ(A) = μ(A).

Theorem 1 ([11]). Let μ1, μ2 be nondegenerate antipodally-symmetric prob-
ability distributions on the unit sphere S

2. Then a μ1-random set of n points
on S

2 joined by geodesics (segments of great circles) to a μ2-random set of n
points gives rise to a drawing Dn of the complete bipartite graph Kn,n such that
cr(Dn)/Z(n, n) = 1 + o(1) a.a.s.

The random drawing model in the theorem will be referred to as (μ1, μ2)-
random drawing of the complete bipartite graph Kn,n.
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1.4 Crossing Graphon

Let N = {n1, n2, n3, . . . } be an infinite set of positive integers, where n1 < n2 <
n3 < · · · . Suppose that for each n ∈ N , we have a drawing Dn of Kn,n. To each
such drawing we associate the crossing graph Xn = Xn(Dn), whose vertices are
all n2 edges in Dn, and two of them are adjacent in Xn if they cross in Dn. Then
we can consider what may be the limit of the sequence (Xn)n∈N . The notion
of graph limits has been introduced by Lovász et al. [3,4,9], see [7]. The basic
setup is described below.

Let (Xn)n∈N be a sequence of graphs. For any fixed graph H, let k = |H|
be its order, and let hom(H,Xn) denote the number of graph homomorphisms
H → Xn, i.e. the number of maps φ : V (H) → V (Xn) such that for each edge
uv ∈ E(H), φ(u)φ(v) ∈ E(Xn). Then we define the homomorphism density for
H as

t(H,Xn) =
hom(H,Xn)

|Xn|k .

Note that this is the probability that a random mapping V (H) → V (Xn) is a
homomorphism. If the sequence t(H,Xn) converges, we denote its limit by t(H).
If t(H) exists for every H, then we say that (Xn) is a convergent sequence of
graphs. In that case there is a well-defined object W , called a graphon, and the
graphon W is called the limit of this convergent sequence [3,4]. We define the
homomorphism densities of W by setting t(H,W ) = limn→∞ t(H,Xn) = t(H).

The space of all graphons is a compact metric space [7,9]. Given any graphon
W , one can define W -random graphs [8]. A sequence (Rn) of W -random graphs
is convergent with probability 1, and its limit is W .

In this paper we consider nondegenerate probability measures on S
2. For each

pair of such probability measures μ1 and μ2, we have a (μ1, μ2)-random sequence
of drawings Dn of complete bipartite graphs Kn,n and we consider their crossing
graphs Xn. We prove that these sequences are convergent with probability 1
and discuss their homomorphism densities with the goal to better understand
Conjecture 1.

Theorem 2. Let μ1 and μ2 be nondegenerate probability measures on S
2. Let

An and Bn be a μ1-random and a μ2-random set of n points in S
2, respectively,

let Dn be the corresponding (μ1, μ2)-random geodesic drawing of Kn,n on parts
An and Bn, and let Xn be its crossing graph. The sequence of graphs (Xn) is
convergent with probability 1 and there is a graphon W = W (μ1, μ2) that is the
limit of this convergent sequence.

Since the number of edges in the crossing graph corresponds to the number
of crossings in Dn, we have

t(K2,Xn) =
2|E(Xn)|

|Xn|2 =
2cr(Dn)

n4
.

Thus, Theorem 1 shows a tight relationship with the asymptotic Zarankiewicz
conjecture and can be expressed as follows.
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Theorem 3. Let μ1, μ2 be nondegenerate antipodally-symmetric probability
measures on S

2. Let W = W (μ1, μ2) be the corresponding graphon of the sequence
(Xn) as defined above. Then

t(K2,W (μ1, μ2)) =
1
8
.

1.5 Definitions

We follow standard terminology from [2,5] for graph theory and from [14] for
drawings of graphs. A drawing of a graph is good if any two edges cross at
most once, no two edges with a common endvertex cross, and no three edges
cross at the same point. The first two conditions are clear when we consider
geodesic drawings, and the third condition can always be satisfied if we make an
infinitesimal perturbation.

We say that a set of points on the unit sphere S
2 is in general position if no

two of the points are antipodal to each other, no three of them lie on the same
great circle and no three geodesic arcs joining pairs of points cross at the same
point. If μ is a nondegenerate probability distribution on S

2, then randomly
chosen vertices will be in general position with probability 1.

2 The Proof of Theorem 2

In the following we want to draw a comparison of subgraph densities of the
crossing graphs Xn to a concept similar to the Buffon Needle Problem (see,
e.g. [6] or [18]). We pick endpoints of segments randomly w.r.t. some probability
distribution and consider the crossings formed by the segments. If the probability
distribution is uniform on the sphere, it is equivalent as throwing a (bended)
needle onto the sphere, where the needle length varies. Now considering a small
number of such segments on the sphere we ask how they will cross each other.

Let μ1 and μ2 be nondegenerate probability measures on S
2. A (μ1, μ2)-

random geodesic segment is a geodesic segment uv whose endpoints u, v are
chosen randomly w.r.t. μ1 and μ2, respectively. For a given graph H of order
k = |H|, we pick k (μ1, μ2)-random geodesic segments on the sphere and look
at the probability that H is a subgraph of their intersection graph. Let A =
{a1, . . . , ak} be a μ1-random set of points in S

2 and B = {b1, . . . , bk} be a μ2

random set of points in S
2. The segments we are considering are a1b1, . . . , akbk.

Note that the probability that H is a subgraph of the intersection graph of
a1b1, . . . , akbk depends on μ1 and μ2 only.

Definition 1. Let X be the intersection graph of k (μ1, μ2)-random geodesic
segments a1b1, . . . , akbk and let H be a graph of order k. For a bijection φ :
V (H) → V (X) we define

pH := Pr[φ is a graph homomorphism].
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Observe that pH is independent of φ, since the segments aibi (i = 1, . . . , k) are
selected independently.

We want to compare the above model with another model where we pick
n 
 k points with respect to μ1 and μ2 each, and consider the corresponding
crossing graph Xn of a drawing Dn of Kn,n. We will show that the models are
closely related: with growing n, picking k vertices from Xn, they will with high
probability come from k independent geodesic segments and therefore represent
(μ1, μ2)-random geodesic segments. In the following we fix a graph H and a
mapping φ : V (H) → V (Xn).

Definition 2. For given Xn, let φ : V (H) → V (Xn) and we define the random
variable yH,φ on Xn to be

yH,φ(Xn) =

{
1 if φ is a graph homomorphism H → Xn

0 otherwise

and denote its expectation by

Eφ := E[yH,φ].

Note that Eφ is not the same for every φ. For example, if H is a complete
graph, then Eφ = 0 whenever im(φ) contains edges that share a vertex, as those
edges never cross and hence are not adjacent in the crossing graph.

Lemma 1. Let (Xn) be a sequence of the crossing graphs of (μ1, μ2)-random
geodesic drawings Dn of Kn,n for n = 1, 2, . . . , and let H be a fixed graph of
order k. Then

lim
n→∞

1
|Xn|k

∑

φ:V (H)→V (Xn)

Eφ = pH .

Proof. Let im(φ) = {v1w1, . . . , vkwk}. Then if |{v1, . . . , vk, w1, . . . , wk}| = 2n we
are in the setup of Definition 1 and E[yH,φ] = pH . Moreover, there are O(n2k−1)
choices for φ for which |{v1, . . . , vk, w1, . . . , wk}| < 2n and the result follows. ��

Let us now consider the sum of the above defined random variables

YH :=
∑

φ:V (H)→V (Xn)

yH,φ, (3)

and note that YH(Xn) = hom(H,Xn) and E[YH ] =
∑

φ:V (H)→V (Xn) Eφ. The
aim is to show that YH is in general not far from its expectation. This then gives
us the tool to show the existence of limn→∞

|YH |
|Xn|k = t(H) with probability 1.

Proposition 1. Let YH be defined as in (3). Then we have

var(YH) = O(n4k−2).
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The proof of the proposition can be found in the full version [1].

Proof (of Theorem 2). By Proposition 1 and Chebyshev’s inequality there exists
a constant C such that

Pr
[|YH − E[YH ]| ≥ kCn2k−1

] ≤ 1
k2

.

Now if we choose k = k(n) appropriately such that k(n)n−1 converges to zero
and the sum

∑∞
n=1

1
k(n)2 is finite we can use the Borel-Cantelli Lemma. For

example, we can choose k = n3/4 and using Lemma 1 we get

Pr

[∣
∣
∣
∣

|YH |
|Xn|k − pH

∣
∣
∣
∣ −

∣
∣
∣
∣pH − E[YH ]

|Xn|k
∣
∣
∣
∣ ≥ Cn2k−1/4

|Xn|k
]

≤ 1
n3/2

=⇒ Pr

[∣
∣
∣
∣

|YH |
|Xn|k − pH

∣
∣
∣
∣ ≥ C ′

n1/4

]
≤ 1

n3/2
.

for some constant C ′. Then the Borel-Cantelli Lemma implies the following.

Claim. For each fixed H, |YH |
|Xn|k → pH := t(H) with probability 1.

Given that for each H, t(H,Xn) → t(H) with probability 1, and since the proba-
bilities are countably additive, it follows with probability 1 that t(H,Xn) → t(H)
for every H. Consequently, the sequence of random crossing graphs (Xn) is con-
vergent with probability 1. ��

3 Blowup of an Antipodal Drawing of K4,4

In the previous sections, we have established the existence of crossing graphons
and determined densities t(H) for H = K2 if our measures μ1, μ2 are antipo-
dally symmetric. Somewhat surprisingly, these edge densities are the same for
any “suitable” measures μ1, μ2. It is natural to ask what happens with other
homomorphism densities in these crossing graphons. The purpose of this section
is to show that the homomorphism densities of triangles behave differently. To
us, this was not a priori clear. We study a particular case of (μ1, μ2)-random
drawings of complete bipartite graphs and determine t(K3) for the corresponding
graphon W (μ1, μ2).

In the following we fix a drawing D4 of the complete bipartite graph K4,4

where each part consists of two antipodal pairs of vertices on S
2 as in Fig. 1.

We will be considering a blowup drawing D
(n)
4 of D4 for which we replace

each vertex from D4 with a circle of some small radius r = r(n) that is centered
at that vertex, and position n evenly spaced vertices on that circle. These n
vertices will be referred to as the node of the corresponding vertex of K4,4. We
also assume that all 8n vertices obtained in this way are in general position. In
that way, each edge of K4,4 is replaced by a complete bipartite graph between the
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v2

w2

v1

v1

w1

w1

α

β γ

δ

Fig. 1. The left part shows a drawing D4 of a K4,4 on parts {v1, v1, v2, v2} and
{w1, w1, w2, w2}. The angles α and β are in the triangle formed by w2, v2 and a
crossing, whereas γ and δ are in a triangle formed by v1, w1 and the same crossing.
The right-hand side shows part of a D

(3)
4 drawing with the circles of w2 and v2 each

containing 3 vertices and with nine edges for each incident bundle emanating from
these two nodes.

corresponding nodes which we call the edge bundle. This means for N = 4n that
D

(n)
4 is a drawing of KN,N . In what follows, we discuss the number of triangles

in the intersection graph (of edges in D
(n)
4 ) when n grows large. To simplify our

discussion about triangles, we first classify the crossings in D
(n)
4 .

3.1 Types of Crossings in D
(n)
4

In the blowup drawing D
(n)
4 , we distinguish three types of crossings, depending

on what they stem from, as depicted in Fig. 2.

(C) (B) (N)

Fig. 2. Possible crossings in the blow up: Bundle-bundle crossings (C), bundle crossings
(B) and node crossings (N).
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Let us define these types (B), (C), and (N) more precisely and state their
count. The corresponding counting process is described in the full version [1].

(C) Two edge-bundles cross in a small neighborhood of a previous crossing in D4.
We call these bundle-bundle crossings (C). Since each edge-bundle consists
of n2 edges, this gives n4 bundle-bundle crossings for each crossing in D4.

(B) Two edges cross within a bundle. We call these bundle crossings (B). Here
we have

(
n
2

)2 crossings per bundle assuming r(n) � n−1 and a suitable
rotation of the circles.

(N) Two edge-bundles cross at a node. We call these node crossings (N). Let
α ∈ (0, π) be the angle between two incident edges e, f in D4 which were
blown up to the edge-bundles, and let crα be the resulting number of node
crossings between the edges in the corresponding edge-bundles. Then we
have: crα + crπ−α = n3(n−1)

2 .

3.2 Triangle Densities in D
(n)
4

The crossings in a triangle need to stem from bundle-bundle crossings (C), bun-
dle crossings (B) or node crossings (N) as specified above. We first prove the
following lemma.

Lemma 2. Let D4 be a spherical drawing of a K4,4 where each part consists of
two pairs of antipodal vertices. Then no edge in D4 is crossed twice.

Proof. Let the parts of the K4,4 be A = {v1, v1, v2, v2} and B = {w1, w1, w2, w2}.
Note that the edge v1w1 can only be crossed by an edge between the other
antipodal pairs, i.e. v2w2, v2w2, v2w2, v2w2. All of them lie on the great circle
defined by v2w2 so in fact only one of these edges can cross v1w1. By symmetry
the same holds for the other edges. ��

We classify the triangles in the intersection graph of the blowup drawing D
(n)
4

as follows. We assign each crossing (which is an edge in the intersection graph) a
type (C), (B), or (N) depending on whether it is a bundle-bundle, within bundle
or a node crossing. We say a triangle c1c2c3 is of type (l(c1)l(c2)l(c3)) where l(ci)
is the type of crossing ci.

Fig. 3. Triangles of type (CCC) and (CCN).
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The above lemma shows that there are no (CCC) or (CCN) triangles in D
(n)
4

(Fig. 3). Also note that (CBB), (BBN) and (CBN) are not possible in general
since BB suggests that all edges are from the same bundle and the bundled edges
in (CBN) cross the third edge either at a node or at a bundle-bundle crossing
but not at both. Triangles of type (NNN) either appear at three different nodes
or at one node. However, we can not have (NNN) triangles at three different
nodes since K4,4 is bipartite and hence triangle-free. By the following lemma,
the number of (NNN) triangles with all three crossings at one node is only of
order rn6 and can therefore be neglected.

Fig. 4. Two edges from node A leading to antipodal nodes B and B can cross. If
d = min{d1, d2} and r ≤ d, then |Lx| = O(rn).

Lemma 3. The number of (NNN) triangles in D
(n)
4 that correspond to three

edges at the same node is O(rn6). Moreover, if r(n) � n−1, there are no such
triangles.

Proof. Let us refer to Fig. 4 and consider the possibility that an edge incident
with a vertex y and leading to a node B crosses an edge incident with a vertex
x that leads to the antipodal node B. If the geodesics from x to B intersect the
circle CA corresponding to A, we denote by Lx the set of vertices in A that are
on the smallest circular arc that contains those intersections.

Then it is easy to see that either x ∈ Ly or y ∈ Lx (or both as shown in
the figure). It can be shown (details can be found in the full paper) that the
number of cases where y ∈ Lx or x ∈ Ly is O(rn). In particular, if r � n−1 then
Lx is empty. For each such pair x, y, the number of vertices z whose incident
edges leading to a node different from B and B make an (NNN) crossing triangle
with two edges incident with x and y, respectively, is O((t + r)n), where t is the
number of vertices on the arc between x and y. We define the parameter l which
is the number of vertices in the node A between x and the lowest point on the
circle of A (assuming that x is in the lower half of the circle and on the left side).
Then t ∈ [2l − Θ(rn), 2l + Θ(rn)]. This gives the following upper bound for the
number of such triples (x, y, z):

4
n/4∑

l=1

O(rn)O(2l + rn) = O(rn3).
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Finally, since each such triple involves O(n3) triples of mutually crossing edges
incident with x, y, z, we confirm that the number of considered (NNN) triangles
is O(rn6). ��

We are left with the following four cases.
(CNN) We consider pairwise crossings of three edges such that two cross at a

bundle-bundle crossing and the third edge crosses one edge each at one node each.
These crossings depend on the angles α, β, γ, δ as depicted in Fig. 1. By Section
(N) in the full version [1] the number of pairs of vertices x, y such that all edges at
angle α incident to x cross all horizontal edges incident to y is π−α

2π n2+O(rn2+n).
It is easy to see that the number of crossings we get in the triangle including α

and β is
(

π−α
2π

) (
π−β
2π

)
n6 + O(rn6 + n5). We have a similar count for the angles

γ and δ. Then we have to add three other contributions corresponding to other
crossings in D4. The antipodal crossing involves a triangles with α, β and γ, δ,
whereas the other two crossings involve triangles with α, γ and β, δ. Overall, this
gives 2

n2 (crα + crδ)(crγ + crβ) + O(rn6 + n5) triangles of this kind.
(BBB) We consider pairwise crossings of three edges such that all edges are

from one bundle. For each bundle we get
(
n
3

)2+O(rn6) such triangles by Section
(B) in the full version [1]. There are 16 bundles so in total we have ∼ 4

9n6+O(rn6)
triangles of the type (BBB).

(CCB) We consider pairwise crossings of three edges such that two edges
are in one bundle and cross the third edge at a bundle-bundle crossing. There
are 2

(
n
2

)2
n2 + O(rn6) triangles per each crossing in D4. We have 4 crossings so

in total ∼ 2n6 + O(rn6) triangles of this kind.
(BNN) We consider pairwise crossings of three edges such that two are in the

same bundle and cross the third edge at a node. The argument is analogous to
the one for crossings of type (N). Starting at the top vertex, we enumerate the
vertices clockwise along the cycle. We consider an edge at angle α which ends in
the i-th vertex in part (A) and its crossings to horizontal edges. From Section
(N) in the full version [1], we know that |Si| = 2i+O(rn), where Si is as defined
there. We can choose from

(
2i+O(rn)

2

)
pairs of left endpoints and

(
n
2

)
pairs of

right endpoints for a triangle. The number of triangles with an edge ending in
i and another edge ending in a vertex in Wx = {y ∈ A | x ∈ Ly} is of order
O(rn4), where Ly is defined as in the proof of Lemma 3. We consider now edges
at angle α ending in a vertex x in (B). Note that |Sx| = π−α

π n + O(rn). We

can choose for any one of
(π−α

π n+O(rn)
2

)
pairs of left endpoints

(
n
2

)
pairs of right

endpoints for a triangle. The number of triangles with another edge ending in a
vertex in Wx is of order O(rn4). The contribution of triangles from edges in (C)
is the same as for edges in (A). Hence the number of triangles of type (BNN) is

2

⎛

⎝n

(π−α)n/2π∑

i=1

(
2i

2

)
·
(

n

2

)
⎞

⎠ +
( α

2π
n2

)
·
(π−α

π n

2

)(
n

2

)
+ O(rn6 + n5).
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For α and π − α added together, this gives

1
12

n6 − α(π − α)
8π2

n6 + O(rn6 + n5).

Now note that for two bundles at angle α we can choose one of the bundles to
contain the bundled edges. This gives two options. At each node we have two
pairs of bundles meeting at angle α and two pairs of bundles meeting at angle
π − α. (In addition to these possibilities we get further (BNN) triangles from
two bundles at the same node that lead to antipodal nodes and correspond to
the value of α = π. They give only O(rn6 + n5) triangles.) If α, β, γ, δ are the
angles as in Fig. 1, the overall number of (BNN) triangles is

α(α − π) + β(β − π) + γ(γ − π) + δ(δ − π)
π2

n6 +
8
3
n6 + O(rn6 + n5).

If we leave out smaller order terms, the total number of triangles in the
intersection graph by summing up the number of (CNN), (BBB), (CCB) and
(BNN) triangles is

α2 + β2 + γ2 + δ2 − π(α + β + γ + δ)

π2
n6 +

(2π − α − δ)(2π − γ − β)

2π2
n6 +

46

9
n6.

Theorem 4. Given a drawing D4 of a K4,4 where each part has two antipodal
pairs, let D

(n)
4 be the blowup drawing, and let α, β, γ, δ be the angles defined

above. Then the limiting triangle density t(K3) of the sequence D
(1)
4 ,D

(2)
4 , . . . is

equal to

3
212π2

(
(2π − α − δ)(2π − γ − β) + 2(α2 + β2 + γ2 + δ2) − 2π(α + β + γ + δ)

)

+
23

3 · 210
+ O(r).

Proof. We have determined the number of triangles in the intersection graphs.
Dividing by the number of possible triangles in the intersection graph,

(
16n2

3

)
=

163

6 n6 + O(n5), gives the triangle density. ��

4 Blowups as Graphons

Finally, let us show that the crossing graphs of drawings D
(n)
4 can be interpreted

as certain graphons.

Theorem 5. For fixed r > 0 let μ1 and μ2 be uniform distributions over two
pairs of antipodal circles on S

2 of radius r each and let W (μ1, μ2) be the crossing
graph limit of corresponding drawings. If we consider blowup drawings D

(n)
4 w.r.t.

the centers of the circles of radius r, then the crossing graphs of D
(n)
4 converge

and their limit is the graphon W (μ1, μ2).
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Proof. All we need to show is that the density t1(H) in the random case limit and
the density t2(H) of the blowup drawing limit are the same for each graph H. Let
k = |H| be the number of vertices of H and let φ : V (H) → [k] be a bijection.
For distinct points x1, . . . , xk, y1, . . . , yk in S

2, let X(x1, . . . , xk, y1, . . . , yk) be
the intersection graph of the geodesic segments x1y1, . . . , xkyk. Consider the
following function

f(x1, . . . , xk, y1, . . . , yk) =

{
1, if v �→ xφ(v)yφ(v) is a hom. H → X(x1, . . . , yk)
0, otherwise.

Let S1 and S2 be the two circles on which μ1 and μ2 are defined, respectively.
Since f as defined above is measurable because f−1(1) is open, we can represent
t1(H) as

t1(H) =
1

(8πr)k

∫

x∈Sn
1 ×Sn

2

f(x) dx.

In order to approximate t1(H) consider a set Cn which consists of n equidistant
points on each of the cycles from S1, S2. Let πn : S1 ∪ S2 → Cn be the function
that maps a points from S1 ∪ S2 to its closest point in X. Let gn be a function
gn : (S1 ∪ S2)2n → (Cn)2n that applies πn componentwise. Then fn = f ◦ gn

converges pointwise to f on Sn
1 × Sn

2 . By the bounded convergence theorem

t1(H) =
1

(8πr)k

∫

x∈Sn
1 ×Sn

2

f(x) dx =
1

(8πr)k
lim

n→∞

∫

x∈Sn
1 ×Sn

2

fn(x) dx = t2(H). ��
The theorem shows that the same values for triangle densities in the (μ1, μ2)-

random setting hold as for the blowup limit in Theorem 4.

Theorem 6. For fixed r > 0 let μ1 and μ2 be uniform distributions over two
pairs of antipodal circles on S

2 of radius r each and let W (μ1, μ2) be the crossing
graph limit of the corresponding drawings. Then

83
3 · 212

+ O(r) ≤ t(K3,W (μ1, μ2)) ≤ 1
3 · 25

+ O(r),

and these bounds are best possible. The limiting triangle density t(K3) depends
on the angles α, β, γ, δ, and any value in the interval

(
83

12288 , 128
12288

)
is possible.

The proof can be found in the full version [1].

5 Conclusion

It should be noted that the proofs of Theorem 2 and Theorem 3 also extend to
the case of the complete graph Kn where we choose n points from the sphere with
respect to some antipodally symmetric probability measure μ. (Let us observe
that antipodal symmetry is needed for such a result.) In Theorem 4 the value
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23
3·210 = 0.00748 appears which is included in the interval given by Theorem 6.
Numerical experiments show that the triangle density with respect to the uni-
form distribution is close to 0.0075. This matches the mentioned special value
from the blowup setting. It would be of interest to study the crossing graph limit
for drawings on the sphere of the complete graph or the complete bipartite graph
when we restrict our probability measure to a uniform measure on the sphere.
As Moon already showed in 1965 [12], it holds asymptotically almost surely that
t(K2) = 1

8 , so it would be of interest to find a closed expression for t(K3).
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Abstract. We call a multigraph non-homotopic if it can be drawn in
the plane in such a way that no two edges connecting the same pair of
vertices can be continuously transformed into each other without passing
through a vertex, and no loop can be shrunk to its end-vertex in the same
way. It is easy to see that a non-homotopic multigraph on n > 1 vertices
can have arbitrarily many edges. We prove that the number of crossings
between the edges of a non-homotopic multigraph with n vertices and

m > 4n edges is larger than cm2

n
for some constant c > 0, and that this

bound is tight up to a polylogarithmic factor. We also show that the
lower bound is not asymptotically sharp as n is fixed and m −→ ∞.

Keywords: Crossing number · Loop · Homotopic

1 Introduction

A standard parameter for measuring the non-planarity of a graph G is its crossing
number, which is defined as the smallest number cr(G) of crossing points in any
drawing of G in the plane. For many interesting variants of the crossing number,
see [11,13,14,16]. Computing cr(G) is an NP-complete problem [5].

Perhaps the most useful result on crossing numbers, is the so-called crossing
lemma, proved independently by Ajtai, Chvátal, Newborn, Szemerédi [3] and
Leighton [8], according to which the crossing number of any graph with n vertices
and m > 4n edges is at least cm3

n2 , for a suitable constant c > 0. For the best
known value of the constant c, see [1,10]. This result, which is tight up to the
constant factor, has been successfully applied to a variety of problems in discrete
and computational geometry, additive number theory, algebra, and elsewhere [4,
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15]. In some applications, it was the bottleneck that one needed a lower bound
on the crossing number of a multigraph rather than a graph. Obviously, the
crossing lemma does not hold in this case, as stated. Indeed, one can connect
a pair of vertices (n = 2) with m parallel edges without creating any crossing.
However, for multigraphs G with maximum edge multiplicity k and m > 4kn

edges, Székely [15] established the lower bound cr(G) > c′ m3

kn2 , where c′ > 0 is
another constant. This bound is also tight, up to the constant factor. Ágoston
and Pálvölgyi [2] observed that c′ can be chosen to be the same as the best
known constant c in the crossing lemma (presently, 1

29 ).
As the multiplicity k increases, Székely’s bound gets weaker and weaker.

Luckily, the term k in the denominator can be eliminated in several special
cases; see [7,12]. That is, the result holds without putting any upper bound on
the edge multiplicity. However, in all of these cases, we have to assume (among
other things) that no two adjacent edges cross.

In this paper, we study the analogous question under the weakest possible
assumption. Obviously, we need to assume that no pair of parallel edges or loops
are homotopic, i.e., they cannot be continuously deformed into each other so
that their interiors do not pass through any vertex. As we have noted above,
without this assumption, a multigraph can have arbitrarily many non-crossing
edges. For simplicity, we will also assume that there are no trivial loops, that is,
no loop can be transformed into a point. Clearly, this latter assumption can be
eliminated as the first condition already implies that there is at most a single
trivial loop at any vertex.

To state our results, we need to agree about the definitions.
A multigraph is a graph in which parallel edges and loops are permitted. A

topological graph (or multigraph) is a graph (multigraph) G = (V,E) drawn in the
plane with the property that every vertex is represented by a distinct point and
every edge e ∈ E is represented by a continuous curve, i.e., a continuous function
fe : [0, 1] → R

2 with fe(0) and fe(1) being the endpoints of e. In terminology, we
do not distinguish between the vertices and the points representing them. In the
same spirit, if there is no danger of confusion, we often use the term edge instead
of the curve fe representing it or the image of fe. As we deal with non-oriented
multigraphs, we treat the functions fe(t) and fe(1 − t) as being the same. We
assume that no edge passes through any vertex (i.e., fe(t) �∈ V for 0 < t < 1).

The crossing number of a topological multigraph G is the number of cross-
ings between its edges, i.e, the number of unordered pairs of distinct pairs
(e, t), (e′, t′) ∈ E × (0, 1) with fe(t) = fe′(t′). With a slight abuse of notation,
this number will be denoted also by cr(G).

Two parallel edges, e, e′, connecting the same pair of vertices, u, v ∈ V are
homotopic, if there exists a continuous function (homotopy) g : [0, 1]2 → R

2

satisfying the following three conditions.

g(0, t) = fe(t) and g(1, t) = fe′(t) for all t ∈ [0, 1],

g(s, 0) = u and g(s, 1) = v for all s ∈ [0, 1],

g(s, t) �∈ V for all s, t ∈ (0, 1).
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Recall that we do not distinguish fe from fe(1−t), so we call e and e′ homotopic
also if fe(1 − t) and fe′(t) are homotopic in the above sense. A loop at vertex u
is said to be trivial if it is homotopic to the constant function f(t) = u.

A topological multigraph G = (V,E) is called non-homotopic if it does not
contain two homotopic edges, and does not contain a trivial loop.

Obviously, if G is a simple topological graph (no parallel edges or loops), then
it is non-homotopic. A non-homotopic multigraph with zero or one vertex has
no edge. However, if the number of vertices n is at least 2, the number of edges
can be arbitrarily large, even infinite. Our first result provides a lower bound on
the crossing number of non-homotopic topological multigraphs in terms of the
number of their vertices and edges.

Theorem 1. The crossing number of a non-homotopic topological multigraph G

with n > 1 vertices and m > 4n edges satisfies cr(G) ≥ 1
24

m2

n .

This bound is tight up to a polylogarithmic factor.

Theorem 2. For any n ≥ 2, m > 4n, there exists a non-homotopic multigraph
G with n vertices and m edges such that its crossing number satisfies cr(G) ≤
30m2

n log22
m
n .

The constant 30 in the theorem was chosen for the proof to work for all n and m,
and we made no attempt to optimize it. However, it can be replaced by 1 + o(1)
if both n and m/n go to infinity.

Define the function cr(n,m) as the minimum crossing number of a non-
homotopic multigraph with n vertices and m edges. Theorems 1 and 2 can be
stated as

1
24

m2

n
≤ cr(n,m) ≤ 30

m2

n
log22

m

n
,

for any n ≥ 2 and m > 4n. We have been unable to close the gap between these
bounds. Our next theorem shows that the lower bound is not tight.

Theorem 3. The minimum crossing number of a non-homotopic multigraph
with n ≥ 2 vertices and m edges is super-quadratic in m. That is, for any fixed
n ≥ 2, we have

lim
m→∞

cr(n,m)
m2

= ∞.

More precisely, we obtain cr(n,m)
m2 = Ω(log m1/(6n)/n7).

Let n, k be positive integers, and consider a set S obtained from the Euclidean
plane by removing n distinct points. Fix a point x ∈ S. An oriented loop in S that
starts and ends at x is called an x-loop. An x-loop may have self-intersections.
Contrary to our convention for edges of a topological multigraph, we do dis-
tinguish between an x-loop and its reverse. We consider the homotopy type of
x-loops in S, that is, we consider two loops homotopic if one can be continuously
transformed to the other within S. When counting self-intersections of x-loops
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or intersections between two x-loops, we count points of multiple intersections
with the appropriate multiplicity.

To establish Theorems 2 and 3, we study the following topological problem
of independent interest [6].

Problem 1. Let n, k ≥ 1 be integers, let S denote the set obtained from R
2

by removing n distinct points, and let us fix x ∈ S. Determine or estimate the
maximum number f(n, k) of pairwise non-homotopic x-loops in S such that none
of them passes through x, each of them has fewer than k self-intersections and
every pair of them cross fewer than k times.

It is not at all obvious that f(n, k) is finite. However, in the sequel we show
that this is the case. This fact is crucially important for the proof of Theorem 3.

Theorem 4. For any integers n ≥ 2 and k ≥ 1, we have

f(n, k) < 2(2k)
2n

.

Our proof of Theorem 2 is based on a lower bound on f(n, k). For this
application, all we need is the n = 2 special case. Next we state a lower bound
valid for all n.

Theorem 5. Let n ≥ 2 and k ≥ 1 be integers. If 2 ≤ n ≤ 2k, then

f(n, k) ≥ 2
√
nk/3

holds. For n ≥ 2k, we have

f(n, k) ≥ (n/k)k−1.

There is a huge gap between this bound and the upper bound in Theorem 4.
We suspect that the truth is to the lower bound. More precisely, we conjecture
that log f(n, k) can be bounded from above by a polynomial of k whose degree
does not depend on n. For n = 2 we have 2

√
k/3 ≤ f(2, k) ≤ 216k

4
.

Our paper is organized as follows. In Sect. 2, we establish Theorem 1. In
Sect. 3, we present some constructions proving Theorem 5, and apply them to
deduce Theorem 2. In Sect. 4, we prove Theorem 4. The proof of Theorem 3 is
omitted in this version.

2 Loose Multigraphs—Proof of Theorem 1

One can also define topological multigraphs and non-homotopic multigraphs on
the sphere S2. If we consider S2 as the single point compactification of the plane
with the ideal point p∗, then any topological multigraph H drawn in the plane
remains a topological multigraph on the sphere. However, it may lose the non-
homotopic property, as the addition of the ideal point p∗ may turn a loop trivial
or two parallel edges homotopic. This can be avoided by adding p∗ as an isolated
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Fig. 1. A non-homotopic loose multigraph with 3 vertices and 6 edges (loops).

vertex to H: in this case, the resulting multigraph H∗ is non-homotopic even on
the sphere.

We say that a topological multigraph is loose if no pair of distinct edges cross
each other. An edge (in particular, a loop) is allowed to cross itself. We start
by finding the maximum number of edges in a loose non-homotopic multigraph
on the sphere or in the plane, for a given number of vertices. We will see that
despite allowing parallel edges, loops, and self-intersections, loose non-homotopic
multigraphs with n > 2 vertices on the sphere cannot have more than 3n − 6
edges, the maximum number of edges of a simple planar graph. However, there
are many other nontrivial examples, for which this bound is tight. The interested
reader can verify that, for all n > 2, there are extremal examples, all of whose
edges are loops. See Fig. 1 for the case of three vertices in the plane.

Lemma 1. On the sphere, any loose non-homotopic multigraph with n > 2
vertices has m ≤ 3n − 6 edges. For n = 2, the maximum number of edges is 1.

The proof of Lemma 1 is omitted in this version.

Lemma 2. In the plane, any loose non-homotopic multigraph with n ≥ 1 ver-
tices has at most 3n − 3 edges. This bound can be achieved for every n.

Proof. Let H be a loose non-homotopic multigraph in the plane with n ≥ 1
vertices and m edges. Consider the plane as the sphere S2 with a point p∗

removed. Add p∗ to H as an isolated vertex, to obtain a topological multigraph
H ′ on the sphere. Then H ′ is a loose non-homotopic multigraph with n + 1
vertices and m edges. If n > 1, applying Lemma 1 to H ′, we obtain that m ≤
3n − 3, as required. If n = 1, then H is a single-vertex topological multigraph
in the plane, so all of its edges must be trivial loops. However, by definition,
a non-homotopic multigraph cannot have any trivial loop. This completes the
proof of the upper bound.
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There are many different constructions for loose non-homotopic multigraphs
for which the bound in the lemma is achieved. Such a topological multigraph
may have several components and several self-intersecting loops. (However, all
self-crossings of non-loop edges must be “homotopically trivial”: the removal of
the closed curve produced by such a self-crossing does not change the homotopy
type of the edge.)

Here, we give a very simple construction. If n > 2, we start with a trian-
gulation with n vertices and 3n − 6 edges. Let uvw be the boundary of the
unbounded face. Add another non-self-intersecting edge connecting u and v in
the unbounded face, which is not homotopic with the arc uv of uvw. Finally, we
add two further loops at u. First, a simple loop l that has all other edges and
vertices (except u) in its interior, and then another loop l′ outside of l, which
goes twice around l. (Of course, l′ must be self-intersecting.)

If n = 1, the graph with no edge achieves the bound of the lemma. For n = 2,
draw an edge e connecting the two vertices, u and v. Then add two loops at u,
as above: a simple loop l around e and another loop l′ that winds around l twice.

�

Proof of Theorem 1. Let G be a non-homotopic topological multigraph in the
plane with n > 1 vertices and m > 4n edges.

Let D denote the non-crossing graph of the edges of G, that is, let V (D) =
E(G) and connect two vertices of D by an edge if and only if the corresponding
edges of G do not share an interior point. Any clique in D corresponds to a loose
non-homotopic sub-multigraph of G. Therefore, by Lemma 2, D has no clique
of size 3n − 2. Thus, by Turán’s theorem [17],

|E(D)| ≤ |V (D)|2
2

(
1 − 1

3n − 3

)
=

m2

2

(
1 − 1

3n − 3

)
.

The crossing number cr(G) is at least the number of crossing pairs of edges in
G, which is equal to the number of non-edges of D. Since m > 4n, we have

crG ≥
(

m

2

)
− m2

2

(
1 − 1

3n − 3

)
≥ 1

24
m2

n
,

as claimed. �
The proof above gives a lower bound on the number of crossing pairs of

edges in G, and in this respect it is tight up to a constant factor. To see this,
suppose for simplicity that n is even and m is divisible by n. Let G0 be a non-
homotopic topological multigraph with two vertices and 2m

n non-homotopic loops
on one of its vertices. Taking n

2 disjoint copies of G0, we obtain a non-homotopic
topological multigraph with n vertices, m edges, and < m2

n crossing pairs.

3 Two Constructions—Proofs of Theorems 5 and 2

The aim of this section is to demonstrate how to construct topological graphs
with many edges and families consisting of many loops, without creating many
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crossings. The constructions are based on the description of the fundamental
group of the plane from which a certain number of points have been removed.

Proof of Theorem 5. Let S = R
2 \ {a1, . . . , an}, where a1, . . . , an are distinct

points in the plane, and let x ∈ S be also fixed. Assume without loss of gen-
erality that ai = (i, 0), 1 ≤ i ≤ n, and x = (0,−1). Recall that an x-loop is a
(possibly self-crossing) oriented path in S from x to x, i.e., a continuous function
f : [0, 1] → S with f(0) = f(1) = x.

Note that the homotopy group of S is the free group Fn generated by
g1, . . . , gn, where gi can be represented by a triangular x-loop around ai, for
example the one going from x to (2i − 1, 1), from here to (2i + 1, 1), and then
back to x along three straight-line segments; see [9].

We define an elementary loop to be a polygonal x-loop with intermediate
vertices

(1,±1/2), (2,±1/2), . . . , (n,±1/2), (n + 1,−1),

in this order. There are 2n distinct elementary loops, depending on the choice of
the signs. Each of them represents a distinct homotopy class of the form gi1 · · · git ,
where the indices form a strictly increasing sequence. By making infinitesimal
perturbations on the interior vertices of the elementary loops, we can make
sure that every pair of them intersect in at most n − 1 points. Thus, we have
f(n, n) ≥ 2n.

We call 1 ≤ i < n a sign change in the elementary loop l if l passes through
both (i, 1/2) and (i + 1,−1/2), or both (i,−1/2) and (i + 1, 1/2). There are
precisely 2

(
n−1
j

)
elementary loops with exactly j sign changes. The reader can

easily verify that crossings between perturbed elementary loops are unavoidable
only if a sign change occurs. More precisely, for k ≤ n, one can perturb all
elementary loops with at most k − 1 sign changes such that every pair cross at
most k − 1 times. Hence, we have f(n, k) ≥ 2

∑k−1
j=0

(
n−1
j

) ≥ 2
(

n
k−1

)
> (n/k)k−1,

completing the proof of the theorem, whenever n ≥ 2k.
If k ≤ n ≤ 2k, we have f(n, k) ≥ f(k, k) ≥ 2k < 2

√
nk/3. Similarly, if

n ≤ k ≤ 9n, we have f(n, k) ≥ f(n, n) ≥ 2n ≥ 2
√
nk/3, and we are done.

Finally, in the case k > 9n, we consider all x-loops which can be obtained

as the product (concatenation) of j = �
√

k−1
n 	 ≥ 3 elementary loops. Unfortu-

nately, some of these concatenated x-loops will be homotopic. For example, if the
elementary loops l1, l2, l3, and l4 represent the homotopy classes g1, g2g3, g1g2,
and g3, respectively, then l1l2 and l3l4 are homotopic. To avoid this complica-
tion, we only use the 2n−1 elementary loops that represent homotopy classes
involving g1 (that is, the ones with (1,+1/2) as their first intermediate vertex).
Then no two of the resulting 2j(n−1) x-loops will be homotopic. By infinitesi-
mal perturbation of the interior vertices of these x-loops (including the j − 1
interior vertices at x), we can attain that they do not pass through x, and no
two polygonal paths corresponding to a single elementary loop intersect more
than n times. Therefore, any pair of perturbed concatenated loops cross at most
j2n < k times, and the same bound holds for the number of self-intersections of
any concatenated loop. This yields that f(n, k) ≥ 2j(n−1) ≥ 2

√
nk/3. �
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Proof of Theorem 2. We want to construct a non-homotopic topological multi-
graph G with n vertices, m edges, and few crossings. We distinguish 3 cases.

Case A: If n = 3, we set k = 
2 log22(2m)�. Theorem 5 guarantees that f(2, k) ≥
2m. Thus, there are 2m pairwise non-homotopic x-loops in S = R

2 \ {a1, a2}
such that each of them has fewer than k self-intersections and any pair intersect
fewer than k times. Regard this arrangement as a topological multigraph G with
2m edges on the vertex set {a1, a2, x}. All edges are x-loops. At most one of them
is trivial, and for each loop edge there is at most one other loop edge homotopic
to it (which must come from an x-loop with inverse orientation). Therefore, we
can always select m edges that form a non-homotopic multigraph. Obviously, we
have cr(G) < k(m +

(
m
2

)
).

Case B: If n > 3, we set n∗ = �n/3	, m0 = 
m/n∗�. Take n∗ disjoint copies of
the non-homotopic multigraph G0 with 3 vertices and m0 edges constructed in
Case A. We add at most 2 isolated vertices and remove a few edges if necessary
to obtain a non-homotopic multigraph on n vertices and m edges. We clearly
have cr(G) ≤ n∗cr(G0).

Clearly, the crossing numbers of the graphs constructed in Cases A and B
are within the bound stated in the theorem.

Case C: If n = 2, we cannot use Theorem 5 directly. Note that all edges of the
non-homotopic multigraphs G constructed in Case A were loops at a vertex x,
and these x-loops were pairwise non-homotopic even in the set obtained from
the plane by keeping x, but removing every other vertex. Now we cannot afford
this luxury without creating Ω(m3) crossings. However, even for n = 2, we can
construct a topological multigraph G with many pairwise non-homotopic edges
and relatively few crossings, as sketched below.

Let V (G) = {a1, a2}, where a1 and a2 are distinct points in the plane, and
set S = R \ V (G). Choose a base point x ∈ S not on the line a1a2. Now the
homotopy group of S is the free group generated by two elements, g1 and g2, that
can be represented by triangular x-loops around a1 and a2, respectively. By the
proof of Theorem 4, with the notation used there, we can construct 2j pairwise
non-homotopic x-loops in S with few crossings. Each of these x-loops, l, can be
turned into either a loop edge at the vertex a1 or into an a1a2 edge, as follows:
we start with the straight-line segment a1x, then follow l, finally add a straight-
line segment from x to either a1 (for a loop edge) or to a2 (to obtain a non-loop
edge). After infinitesimally perturbing the resulting edges, one can easily bound
the crossing number. However, now we face a new complication: there may be a
large number of pairwise homotopic edges. In Case A, when we regarded x-loops
as loop edges in a topological multigraph having x as a vertex, two loop edges
could only be homotopic if the corresponding x-loops represented the same or
inverse homotopy classes. Now the situation is more complicated: a loop edge
constructed from an x-loop representing an element g in the homotopy group
is homotopic to an another edge constructed from another x-loop representing
g′ if and only if we have g′ = gs1ggt1 or g′ = gs1g

−1gt1 for some integers s and t.
(For non-loop edges the corresponding condition is g′ = gs1ggt2.) We may have
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constructed more than two (even an unbounded number of) homotopic edges,
but a closer look at the 2j x-loops constructed in the proof of the lower bound
on f(2, k) reveals that 2j−2 of them yield pairwise non-homotopic edges. �

Remark. For n ≥ 3, in our constructions all edges are loops. By splitting the
base points of the loops, we can get constructions with no loops.

4 Loops with Bounded Number of Pairwise
Intersections—Proof of Theorem 4

Consider a loop (oriented closed curve) l in the plane, and a point r not belonging
to l. The winding number of l around r is the number of times the loop goes
around r in the counter-clockwise direction. Going around r in the clockwise
direction counts negatively.

Let S be obtained by removing a single point r from the plane. It is well
known that two loops in S are homotopic if and only if their winding numbers
around r are the same.

Lemma 3. Let l be any loop in the plane with fewer than k self-intersections,
and let x be a point that does not belong to l. Then the absolute value of the
winding number of l around x is at most k.

Proof. Removing the image of l from the plane, it falls into connected com-
ponents, called faces. Obviously, the winding number of l is the same around
any two points, x and y, that belong to the same face. Take a point in each
face and connect two distinct points if the corresponding faces have a common
boundary curve. We get a connected graph. If x and y are adjacent, then the
winding number of l around x and y differs by precisely 1. As l has fewer than k
self-intersections, the number of faces is at most k +1. The winding number of l
around any point of the unbounded face is zero. Therefore, the winding number
of l around any point not belonging to l is between −k and +k, as claimed. �

Corollary 1. For any integer k > 0, we have f(1, k) ≤ 2k + 1.

Proof. Let x and a be two distinct points in the plane R
2. Any two x-loops

in S = R
2 \ {a} are homotopic if they have the same winding number around

a. For an x-loop with fewer than k self-crossing this is winding number is takes
values between −k and k. therefore, any collection of pairwise non-homotopic
such loops has cardinality at most 2k + 1. �

In the rest of this section, we estimate the function f(n, k) for n > 1. By
the definition of f(n, k), we have to consider a set S that can be obtained from
R

2 by removing n distinct points. As before, we consider the 2-sphere S2 as
the compactification of the plane with a single point p∗, the “ideal point”. To
simplify the presentation, we view S as a set obtained from S2 by the removal
of a set T of n + 1 points (including p∗). We also fix the common starting point
x ∈ S of all loops in S that we consider.
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Let L be a collection of loops in S. The connected components of S2 minus
the set of all points of the elements of L are called L-faces. Obviously, all L-faces
are homeomorphic to the plane and the points of T are scattered among them.
We call L balanced if no L-face contains n or n + 1 points of T .

Lemma 4. Let k be a positive integer, let x ∈ S, and let H be a collection of
pairwise non-homotopic nontrivial x-loops in S, each of which has fewer than k
self-intersections.

If |H| > 2k + 1, then there is a balanced pair, L, of loops in H.

Proof. For n = 1, there is no balanced family. Nevertheless, formally the state-
ment holds even in this case, because Lemma 3 implies that |H| ≤ 2k + 1. (In
fact, now |H| < 2k + 1 because of the non-triviality condition.)

Suppose that n > 1. Consider any loop l ∈ H. If {l} is balanced, then any
pair containing l is also balanced and we are done. Otherwise, there is an {l}-face
F containing at least n points of T . It cannot contain all points of T , because
then l would be contractible, that is, trivial.

Therefore, we can assume that there is a single point t ∈ T outside F . We
say that l separates t. If two loops, l1, l2 ∈ H, separate distinct points, t1, t2 ∈ T ,
respectively, then L = {l1, l2} is a balanced pair, because t1 and t2 must lie in
separate L-faces, distinct from all L-faces containing other points of T .

Hence, we may assume that all loops in H separate the same point t ∈ T .
By symmetry, we may also assume t �= p∗ (t is not the ideal point), so t is in
the plane. By Lemma 3, the winding number of any loop l ∈ H around t is
between −k and +k. If |H| > 2k + 1, by the pigeonhole principle, there are two
distinct loops, l1, l2 ∈ H, with the same winding number around t. This implies
that L = {l1, l2} is a balanced pair. Indeed, otherwise all points in T \ {t} would
be in the same L-face F . In this case, all points of T \ {t, r} would lie in the
unbounded face of the arrangement of the loops l1 and l2 in the plane. Since l1
and l2 have the same winding number around t, it would follow that they are
homotopic, a contradiction. �

Now we are in a position to establish the following recurrence relation for
f(n, k), which, together with Lemma 1, implies the upper bound in Theorem 4.

Lemma 5. For any n > 1, k > 0, we have f(n, k) ≤ (6kf(n − 1, k))2k.

Proof. Consider a family H of loops for which in the definition of f(n, k) the
maximum is attained. That is, consider S = S2 \ T with |T | = n + 1, fix a
point x ∈ S, and let H consist of f(n, k) pairwise non-homotopic x-loops in S
not passing through x, such that each loop has fewer than k self-intersections
and every pair of loops intersect in fewer than k points. We may also assume,
by infinitesimal perturbations, that there is no triple-intersection and that any
intersection point of the loops is a transversal crossing, where one arc passes
from one side of the other arc to the other side.
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If |H| ≤ 2k + 1, we are done. Suppose that |H| > 2k + 1. By Lemma 4, there
exists a balanced two-element subset L ⊂ H. Fix such a subset L, and turn
the arrangement of the two loops in L to a multigraph drawn on the sphere,
as follows. Regard x and all intersection points as vertices, so that we obtain
a planar drawing of a 4-regular connected multigraph G with at most 3k − 2
vertices. Thus, the number of edges of G satisfies |E(G)| ≤ 6k − 4. For any edge
f of G, we designate an arbitrary curve in S starting at x and ending at an
internal point of f , and we call it the leash of f . (For example, we may choose
the leash to pass very close to the edges of G.) For any internal point a of f , the
standard path from x to a is the leash of f followed by the piece of f between
the endpoint of the leash and a. When referring to the standard path to x, we
mean the single point curve.

Consider a loop l ∈ H \ L. Here l starts at x and has later some j ≤ 2k − 2
further intersections with the edges of G, each time properly crossing an edge
from one face of G to another. Define the signature of l as the sequence of these
j edges of G, together with the information where the loop starts and ends in
a tiny neighborhood of x. For the latter, we just record the cyclic order of the
initial and final portions of l and the edges of G as they appear around x, so
we have at most 20 possibilities. (For the initial portion, we have 4 possibilities
and for the final one 5.) For the sequence of edges, we have at most |E(G)|j
possibilities. Taking into account that 0 ≤ j ≤ 2k − 2 and |E(G)| ≤ 6k − 4, the
number of different signatures of the loops in H \ L is smaller than (6k)2k.

L

lil

l*i

x

Fig. 2. The definition of the x-loops l∗i .

Next, we fix a signature and bound the number of elements in the subset
H∗ ⊆ H \ L of all loops that have this signature. Any element l ∈ H∗ that has
j crossings with the edges of G, is divided into j + 1 curve-segments (or, simply,
segments) l0, l1, . . . , lj . We extend each li into an x-loop l∗i as follows. Let l∗i
start with the standard path from x to the initial point of li, followed by li, and
then completed by the reverse of the standard path from x to the final point b
of li. See Fig. 2. Note that the product l∗0l

∗
1 . . . l∗j is an x-loop homotopic to l.
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This means that for any two distinct (and, therefore, non-homotopic) loops l, l′ ∈
H∗, there must be an index 0 ≤ i ≤ j such that (the extension of) the ith segment
of l is not homotopic to (the extension of) the ith segment of l′.

We claim that for any fixed i, the number of distinct homotopy classes of
the ith segments of the loops in H∗ is at most f(n − 1, k). If true, this would
immediately imply that |H∗| ≤ (f(n − 1, k))j+1. Summing this bound over all
signatures would eventually imply that

f(n, k) = |H| ≤ (6k)2k(f(n − 1, k))2k.

It remains to prove the claim. We fix i and a subset H0 ⊆ H∗ such that the
ith segments of the loops in H0 are pairwise non-homotopic. Let F be the L-face
(i.e., face of the drawing of the graph G) that contains the ith segment li of a
loop l ∈ H∗, and let f denote the edge at which li starts. Let us fix a point
x′ ∈ F very close to f . (For i = 0, the segment li starts at x, between two edges
of G, consecutive in the cyclic order. Then we pick x′ very close to x, between
these two consecutive edges.) Assign to each l ∈ H0 an x′-loop l∗ in F \ T , as
follows. First, l∗ follows f very closely till it reaches the ith curve-segment li
of l close to its starting point. The second piece of l∗ follows li almost to its
endpoint, and then its third piece follows the boundary of F very closely to get
back to p′. If li ends on the same edge f of G where it starts, the third piece
of l∗ follows f very closely. Otherwise, it follows the boundary of F in a fixed
cyclic direction.

If the pieces of l∗ that follow the boundary of F run closer to it than the
distance of any point in T ∩ F from the boundary of F , then the homotopy
type of l∗ determines the homotopy type of l∗i , and hence all the |H0| x′-loops
will be pairwise non-homotopic. We can also choose these new loops in such a
way that every self-intersection of l∗ is also a self-intersection of li, and hence
there are fewer than k such self-intersections. In a similar manner, we can make
sure that every intersection between two new loops is actually an intersection
between the corresponding loops in H0, and hence any two new loops intersect
fewer than k times. These new loops are pairwise non-homotopic in S. All of
them lie in F \ T ⊂ S, therefore they are also non-homotopic there. Since F is
homeomorphic to the plane, F \T can be obtained from the plane by discarding
|F ∩ T | points. We know that |F ∩ T | ≤ n − 1, because F is an L-face and L is
balanced. This completes the proof of the claim and, hence, the lemma. �

Fix any k ≥ 1. According to Corollary 1, the upper bound in Theorem 4
holds for n = 1 and any k ≥ 1. Let n ≥ 2 and suppose that we have already
verified the inequality f(n − 1, k) < 2(2k)

2(n−1)
. By Lemma 5, we obtain

f(n, k) ≤ (6kf(n − 1, k))2k < (6k2(2k)
2(n−1)

)2k < 2(2k)
2n

,

completing the proof of Theorem 4.
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6. Juvan, M., Malnič, A., Mohar, B.: Systems of curves on surfaces. J. Comb. Theory
Ser. B 68, 7–22 (1996)
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Abstract. The crossing number of a graph G is the minimum number
of edge crossings over all drawings of G in the plane. A graph G is k-
crossing-critical if its crossing number is at least k, but if we remove
any edge of G, its crossing number drops below k. There are examples
of k-crossing-critical graphs that do not have drawings with exactly k
crossings. Richter and Thomassen proved in 1993 that if G is k-crossing-
critical, then its crossing number is at most 2.5k + 16. We improve this
bound to 2k + 6

√
k + 47.

Keywords: Crossing critical · Crossing number · Graph drawing

1 Introduction

The crossing number cr(G) of a graph G is the minimum number of edge cross-
ings over all drawings of G in the plane. In the optimal drawing of G, crossings
are not necessarily distributed uniformly on the edges. Some edges can be more
“responsible” for the crossing number than others. For any positive integer k,
there exists a graph G whose crossing number is k, but it has an edge e such
that G − e is planar.

On the other hand, Richter and Thomassen [6] (Sect. 3) conjectured that if
cr(G) = k, then G contains an edge e such that cr(G − e) ≥ k − c

√
k for some

constant c. They observed that this bound would be optimal, as shown, e.g.,
by the graph K3,n. They managed to prove a much weaker bound, namely, if
cr(G) = k, then G contains an edge e such that cr(G − e) ≥ 2k/5 − 8.

A graph G is k-crossing-critical if cr(G) ≥ k, but cr(G − e) < k for any
edge e of G.

The structure and properties of crossing-critical graphs are fundamental in
the study of crossing numbers. It is easy to describe 1-crossing-critical graphs,
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and there is an almost complete description of 2-crossing-critical graphs [3]. For
k > 2, a description of k-crossing-critical graphs seems hopeless at the moment.

It has been proved recently, that the bounded maximum degree conjecture
for k-crossing-critical graphs holds for k ≤ 12 and does not hold for k > 12 [2].
More precisely, there is a constant D with the property that for every k ≤ 12,
every k-crossing-critical graph has maximum degree at most D, and for every
k > 12, d ≥ 1, there is a k-crossing-critical graph with maximum degree at least
d.

We rephrase the result and conjecture of Richter and Thomassen [6] as fol-
lows. They conjectured that if G is k-crossing-critical, then cr(G) ≤ k + c′√k
for some c′ > 0 and this bound would be optimal. They proved that if G is
k-crossing-critical, then cr(G) ≤ 2.5k + 16. This result has been improved in
two special cases.

Lomeĺı and Salazar [5] proved that for any k there is an n(k) such that if G
is k-crossing-critical and has at least n(k) vertices, then cr(G) ≤ 2k + 23.

Salazar [7] proved that if G is k-crossing-critical and all vertices of G have
degree at least 4, then cr(G) ≤ 2k + 35.

It is an easy consequence of the Crossing Lemma [1] that if the average degree
in a k-crossing-critical graph is large, then its crossing number is close to k [4].
More precisely, if G is k-crossing critical and it has at least cn edges, where
c ≥ 7, then cr(G) ≤ kc2/(c2 − 29).

In this note, we obtain a general improvement.

Theorem 1. For any k > 0, if G is a k-crossing-critical multigraph, then
cr(G) ≤ 2k + 6

√
k + 47.

We need a few definitions and introduce now several parameters for the proof.
We also list them at the end of the paper.

Let G be a graph. We call a pair (C, v), where C is a cycle of G and v is a
vertex of C, the cycle C with special vertex v . (The special vertex meant to be
a vertex with large degree.) When it is clear from the context, which one is the
special vertex, we just write C instead of (C, v).

Suppose C is a cycle with special vertex v. Let x be a vertex of C. An edge,
adjacent to x but not in C, is hanging from x in short. Let l(C) = l(C, v) be the
length of C , that is, the number of its edges. For any vertex x, let d(x) denote
the degree of x. Let h(C) = h(C, v) =

∑
u∈C,u �=v(d(u) − 2), that is, the total

number of hanging edges from all non-special vertices of C (with multiplicity).
A set of edges is independent if no two of them have a common endvertex.

2 The Proof of Richter and Thomassen

In [6], the most important tool in the proof was the following technical result.
In this section we review and analyze its proof. The algorithmic argument finds
a cycle C recursively such that h(C) is small.
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Theorem 0. [6] Let H be a simple graph with minimum degree at least 3. Assume
that H has a set E of t edges such that H − E is planar. Then H has a cycle K
with special vertex v such that h(K) ≤ t + 36.

Proof of Lemma 0. The proof is by induction on t. The induction step can
be considered as a process, which constructs a graph H∗ from graph H, and
cycle K of H, either directly, or from cycle K∗ in H∗. For convenience, for any
planar graph H, define H∗ = ∅. In the rest of the paper we refer to this as
the Richter-Thomassen procedure. The statement of Theorem 0 for t = 0 is the
following.

Lemma 0. [6] Let H be a simple planar graph with minimum degree at least 3.
Then H has a cycle K with special vertex v such that l(K) ≤ 5 and h(K) ≤ 36.

Here we omit the proof of Lemma 0. Suppose now that t > 0 and we have
already shown Theorem 0 for smaller values of t. Let H be a simple graph with
minimum degree at least 3. Assume that H has a set E of t edges such that
H − E is planar and let e = uw ∈ E. Let H ′ = H − e. We distinguish several
cases.

1. H ′ has no vertex of degree 2. By the induction hypothesis, H ′ has a cycle
K∗ with a special vertex v such that h(K∗) ≤ t + 35. If e is not a chord of
K∗, then K = K∗ with the same special vertex satisfies the conditions for H.
Let H∗ = H ′.
If e is a chord of K∗, then K∗ + e determines two cycles, and it is easy to
see that either one satisfies the conditions. So, let K be one of them. If K,
contains v, then v remains the special vertex. If K does not contain v, then
we can choose the special vertex of K arbitrarily. Let H∗ = H ′.

2. H ′ has a vertex of degree 2. Clearly, only u and w can have degree 2.
Suppress vertices of degree 2. That is, for each vertex of degree 2, remove the
vertex and connect its neighbors by an edge. Let H ′′ be the resulting graph.
It can have at most two sets of parallel edges.

2.1. H ′′ has no parallel edges. By the induction hypothesis, H ′′ con-
tains a cycle K∗ with a special vertex v such that h(K∗) ≤ t + 35. It
corresponds to a cycle K ′ in H. Let H∗ = H ′′.

2.1.1. The edge e is not incident with K ′. In this case, K = K ′ satisfies
the conditions, with the same special vertex as H∗.
2.1.2. The edge e has exactly one endvertex on K ′. In this case, let
K = K ′ with the same special vertex. Now h(K) = h(K∗)+1 ≤ t+36
and we are done.
2.1.3. The edge e has both endvertices on K ′. Now, just like in Case
1, K ′ + e determines two cycles and it is easy to see that either
one satisfies the conditions. If the new cycle contains v, then it will
remain the special vertex, if not, then we can choose the special vertex
arbitrarily.

2.2. H ′′ has one set of parallel edges. Let x and y be the endvertices
of the parallel edges. We can assume that one of the xy edges in H ′′

corresponds to the path xuy in H and H ′. Clearly, d(u) = 3.
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2.2.1. Another xy edge in H ′′ corresponds to the path xwy in H and
H ′. In this case d(u) = d(w) = 3, so for the cycle K = uxw with
special vertex x we have h(K) ≤ 2 and we are done. Let H∗ = ∅. We
do not define K∗ in this case.
2.2.2. No xy edge in H ′′ corresponds to the path xwy in H and H ′

and either d(x) ≤ 37+ t or d(y) ≤ 37+ t. Assume that d(x) ≤ 37+ t,
the other case is treated analogously. Since there were at least two
xy edges in H ′′, H contains the edge xy. For the cycle K = uxy,
with special vertex y, we have h(K) ≤ 35+ t+1, so we are done. Let
H∗ = ∅.
2.2.3. No xy edge in H ′′ corresponds to the path xwy in H and
H ′ and both d(x), d(y) > 37 + t. Replace the parallel edges by a
single xy edge in H ′′. In the resulting graph H∗, we can apply the
induction hypothesis and get a cycle K∗ with special vertex v such
that h(K∗) ≤ 35 + t. Now K∗ cannot contain both x and y and if it
contains either one, then it has to be the special vertex. Therefore,
the cycle K in H, corresponding to K∗, with the same special vertex,
satisfies the conditions, since the only edge that can increase h(K) is
e, and e is not a chord of K.

2.3. H ′′ has two sets of parallel edges, xy and ab say. Now H contains
the edges xy and ab. We can assume by symmetry that H contains the
paths xuy and awb. Also d(u) = d(w) = 3 in H.

2.3.1. At least one of a, b, x, y has degree at most 37+t in H. Assume
that d(x) ≤ 37 + t, the other cases are treated analogously. For the
cycle K = uxy with special vertex y, we have h(K) ≤ 35 + t + 1, so
we are done. Let H∗ = ∅.
2.3.2. d(x), d(y), d(a), d(b) > 37 + t. Replace the parallel edges by
single edges xy and ab in H ′′. In the resulting graph H∗, we can apply
the induction hypothesis and get a cycle K∗ with special vertex v such
that h(K∗) ≤ 35 + t. However, K∗ can contain at most one of x, y,
a, and b, and if it contains one, that has to be the special vertex.
Therefore, the cycle K in H, corresponding to K∗ with the same
special vertex satisfies the conditions.

This finishes the proof of Theorem 0. �

3 Proof of Theorem 1

The main idea in the proof of Richter and Thomassen [6] is the following. Suppose
that G is k-crossing-critical. Then it has at most k edges whose removal makes
G planar. Then by Theorem 0, we find a cycle C with special vertex v such that
h(C) ≤ k+36. Let e be an edge of C, adjacent to v. We can draw G − e with at
most k − 1 crossings. Now we add the edge e, along C − e, on the “better” side.
We get additional crossings from the crossings on C − e, and from the hanging
edges and we can bound both.
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Our contribution is the following. Take a “minimal” set of edges, whose
removal makes G planar. Clearly, this set would contain at most k edges. How-
ever, we have to define “minimal” in a slightly more complicated way, but still,
our set contains at most k+

√
k edges. We carefully analyze the proof of Richter

and Thomassen, extend it with some operations, and find a cycle C with special
vertex v such that (roughly) l(C) + h(C)/2 ≤ k + 6

√
k. Now, do the redraw-

ing step. If h(C), or the number of crossings on C − e is small, then we get an
improvement immediately. If both of them are large, then l(C) is much smaller
than the number of crossings on C − e. But in this case, we can remove the
edges of C, and get rid of many crossings. This way, we can get a bound on the
“minimal” set of edges whose removal makes G planar.

As we will see, for the proof we can assume that G is simple and all vertices
have degree at least 3. But if we want to prove a better bound, say, cr(G) ≤
(2 − ε)k + o(k), then we cannot prove that the result for simple graphs implies
the result for multigraphs. Therefore, the whole proof collapses. Moreover, even
if we could assume without loss of generality that G is simple, we still cannot go
below the constant 2 with our method. We cannot rule out the possibility that
all (or most of the) k − 1 crossings are on C − e.

Proof of Theorem 1. Suppose that G is k -crossing-critical. Just like in the
paper of Richter and Thomassen [6], we can assume that G is simple and all
vertices have degree at least 3. We sketch the argument.

If G has an isolated vertex, we can remove it from G. Suppose that a vertex
v of G has degree 1. Then cr(G) = cr(G− v), contradicting crossing criticality.
Suppose now that v has degree 2. We can suppress v (remove it and connect its
neighbors by an edge). The resulting (multi)graph is still k-crossing-critical and
has the same crossing number as G.

Clearly, G cannot contain loops, as adding or removing a loop does not
change the crossing number. Finally, suppose that e and f are parallel edges,
both connecting x and y. Since G is k-crossing-critical, we have cr(G−e) ≤ k−1.
Take a drawing of the graph G− e with at most k − 1 crossings. Add the edge e,
drawn very close to f . The obtained drawing of G has at most 2k − 2 crossings.

So, we assume in the sequel, that G is simple and all vertices have degree at
least 3.

Let k′ be the smallest integer with the property that we can remove k′ edges
from G so that the remaining graph is planar. Define the function f(x, y) =√

kx + y.
Let (t, t′) be the pair of numbers that minimizes the function f(t, t′) =

√
kt+

t′ subject to the following property: There exists a set E of t edges such that
G − E is planar, and the set E contains at most t′ independent edges. In the
next lemma, part (i) is from [6], we repeat it here for completeness.

Lemma 1. The following two statements hold.

(i) [6] k′ ≤ k, and
(ii) t ≤ k′ +

√
k.
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Proof of Lemma 1. (i) Since G is k-crossing-critical, G − e can be drawn with
at most k − 1 crossings for any edge e. Remove one of the edges from each
crossing in such a drawing. We removed at most k edges in total and got a
planar graph. (ii) Let E′ be a set of k′ edges such that G−E′ is planar. Suppose
that E′ contains at most k′′ independent edges. Now k′′ ≤ k′. By the choice of
(t, t′), f(t, t′) ≤ f(k′, k′′). Consequently,

√
kt ≤ √

kt + t′ = f(t, t′) ≤ f(k′, k′′) ≤√
kk′ + k′. Therefore, t ≤ k′ + k′/

√
k ≤ k′ +

√
k. �

Now set E = {e1, e2, . . . , et}, where E contains at most t′ independent edges,
and G−E is planar. Apply the Richter-Thomassen procedure recursively starting
with H0 = G. We obtain a sequence of graphs H0,H1, . . . , Hs, (s ≤ t) such that
for 0 ≤ i ≤ s − 1, H∗

i = Hi+1, and H∗
s = ∅. The procedure stops with graph Hs,

where we obtain a cycle Cs either directly, in cases 2.2.1, 2.2.2, and 2.3.1, or by
Lemma 0, when Hs is planar. In all cases, l(Cs) ≤ 5. Following the procedure
again, we also obtain cycles Cs−1, . . . , C0 of Hs−1, . . . , H0 respectively such that
0 ≤ i ≤ s − 1, C∗

i = Ci+1. Let C0 = C with special vertex v.

Lemma 2. There is a cycle K of G such that l(K) + h(K)/2 ≤ t + 5
√

k + 48.

Proof of Lemma 2. The cycle K will be either C, or a slightly modified version
of C. It is clear from the procedure that C does not have a chord in G since we
always choose C as a minimal cycle.

Consider the moment of the procedure, when we get cycle K from K∗. All
hanging edges of K correspond to a hanging edge of K∗, with the possible
exception of e = uw. Therefore, if we get a new hanging edge e, then e ∈ E.
Taking into account the initial cases in the procedure, that is, when we apply
Lemma 0, or we have Cases 2.2.1, 2.2.2, or 2.3.1, we get the following easy
observations. We omit the proofs.

Observation 1. (i) All but at most 36 edges of G−C adjacent to a non-special
vertex of C are in E.
(ii) For all but at most 4 non-special vertices z′ of C, all edges of G−C incident
to z′, are in E. �

Suppose that l(C) > t′+6. Consider t′+5 consecutive vertices on C, none of
them being the special vertex v. By Observation 1 (ii), for at least t′+1 of them,
all hanging edges are in E. Consider one of these hanging edges at each of these
t′ + 1 vertices. By the definition of t′, these t′ + 1 edges cannot be independent,
at least two of them have a common endvertex, which is not on C. Suppose that
x, y ∈ C, z �∈ C, xz, yz ∈ E. Let a be the xy arc of C, which does not contain
the special vertex v. Take two consecutive neighbors of z. Assume for simplicity,
that they are x and y. Let the cycle (C ′, z) be formed by arc a of C, together
with the path xzy. See Fig. 1. The cycle C ′ does not have a chord in G. We have
l(C ′) ≤ t′ + 6, h(C ′) ≤ h(C). The edges zx and zy are the only new hanging
edges of C ′ from a non-special vertex. They might not be in E, therefore, the
statement of Observation 1 holds in a slightly weaker form.
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Observation 2. (i) All but at most 38 edges of G−C ′ adjacent to a non-special
vertex of C ′ are in E.
(ii) For all but at most 6 non-special vertices z′ of C ′, all edges of G−C ′ incident
to z′, are in E. �

Let cycle K = C, if l(C) ≤ t′ + 6, and let K = C ′, if l(C) > t′ + 6. In
both cases, for the rest of the proof, let v denote the special vertex of K. Let
h = h(K), l = l(K). We have

l ≤ t′ + 6. (1)

The cycle K does not have a chord. In particular, none of e1, e2, . . . , et can
be a chord of K. Now we partition E into three sets, E = Ep ∪ Eq ∪ Em, where
Ep is the subset of edges of E, which have exactly one endvertex on K (these
are the hanging edges in E), Eq = E ∩K, Em is the subset of edges of E, which
do not have an endvertex on K. Let p = |Ep|, q = |Eq|, m = |Em|. Let p′ denote
the number of edges of Ep hanging from the special vertex v. By definition,

t = p + q + m (2)

and p ≥ p′.

z

x

y

v

C C’

Fig. 1. Cycles C and C′.

It follows from Observations 1 (i) and 2 (i) that

h ≥ p − p′ ≥ h − 38. (3)

Therefore,
h + q + m ≤ p + q + m + 38 = t + 38.

Since all vertices have degree at least 3, and K does not have a chord,

h ≥ l − 1.
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Now, at each vertex x of C, where all hanging edges belong to Ep, take
one such edge. The set of these edges is E′. By Observations 1 (ii) and 2 (ii),
|E′| ≥ l − 7. See Fig. 2. Let F = Ep ∪ E(K)∪ Em − E′ where E(K) is the set of
edges of K. Since F ∪ E′ ⊇ E, G′ = G − (F ∪ E′) is a planar graph. Let G′′ =
G′∪E′ = G−F . In G′′, each edge of E′ has an endvertex of degree one. Therefore,
we can add all edges of E′ to G′ without losing planarity. Consequently, the graph
G′′ = G′ ∪ E′ = G − F is planar.

v

C
E’

Fig. 2. The edge set E′.

The set F has at most |F | ≤ p + l + m − (l − 7) = p + 7 + m ≤ t + 7 edges
by (2). That is

|F | ≤ t + 7 (4)

Let F ′ ⊆ F be a maximal set of independent edges in F . To estimate |F ′|,
observe that apart from the edges in Em ∩ F ′, all edges in F ′ are adjacent to a
vertex of C. Moreover, at most p − p′ − (l − 7) + 1 of them have one vertex on
K, the rest have two. Therefore,

|F ′| ≤ p − p′ − (l − 7) + 1 + (l − (p − p′ − l + 8))/2 + m = (p − p′)/2 + 4 + m.

By the choice of the pair (t, t′),
√

kt + t′ ≤ √
k|F | + |F ′|.

Therefore, (p − p′)/2 + 4 + m ≥ |F ′| ≥ √
kt + t′ − √

k|F | ≥ t′ − 5
√

k, using (4).

Now evoking (3): h/2 + 4 + m ≥ (p − p′)/2 + 4 + m ≥ t′ − 5
√

k.
Therefore, h/2 + m ≥ t′ − 4 − 5

√
k ≥ l − 10 − 5

√
k by (1).

Summarizing, we have

h + m ≤ t + 38, h/2 + m ≥ l − 10 − 5
√

k,

which implies

m ≤ t − h + 38, h/2 + t − h + 38 ≥ l − 10 − 5
√

k,



380 J. Barát and G. Tóth

and finally
t + 5

√
k + 48 ≥ l + h/2.

This concludes the proof of Lemma 2. �
Now we can finish the proof of Theorem 1. By Lemma 2, we have a cycle K

in G with special vertex v such that h(K)/2 + l(K) ≤ t + 5
√

k + 48. Let e be
an edge of K adjacent to v. Since G was k-crossing-critical, the graph G− e can
be drawn with at most k − 1 crossings. Let us consider such a drawing D. Let
h = h(K), l = l(K).

Suppose the path K − e has cr crossings in D. Remove the edges of K from
the drawing, and one edge from each crossing not on K − e. Together with e,
we removed at most k + l − cr edges from G to get a planar graph. Therefore,
l + k − cr ≥ k′. Combining it with Lemma 1 (ii) we have

l + k − cr ≥ t −
√

k.

Consequently, l + k − cr ≥ t − √
k ≥ l + h/2 − 48 − 6

√
k by Lemma 2. That is

k + 6
√

k + 48 ≥ cr + h/2.

v

e K

Fig. 3. Adding the missing edge e.

Consider the drawing D of G−e. We can add the missing edge e drawn along
the path K − e on either side. See Fig. 3. The two possibilities together create
at most h + 2cr crossings. Choose the one which creates fewer crossings. That
makes at most h/2 + cr crossings.

Since k + 6
√

k + 48 ≥ cr + h/2, we can add e with at most k + 6
√

k + 48
additional crossings. Hence cr(G) ≤ 2k + 6

√
k + 47. �
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Notations

Here we give a list of the parameters and their definitions, used in the proof.

k: G is k-crossing-critical
k′: the smallest integer with the property that we can remove k′ edges from
G so that the remaining graph is planar.
(t, t′): the pair of numbers that minimizes the function f(t, t′) =

√
kt + t′

subject to the following property: There exists a set E of t edges such that
G − E is planar, and the set E contains at most t′ independent edges.
p = |Ep|: the number of edges in E that have exactly one endvertex on C.
q = |Eq|: the number of edges in E ∩ C.
m = |Em|: the number of edges in E that do not have an endvertex on C.
p′: the number of edges of Ep hanging from the special vertex v of C.
h = h(C) = h(C, v) =

∑
u∈C,u �=v(d(u) − 2), the total number of hanging

edges from all non-special vertices of C (with multiplicity).
l = l(C): the length of C.
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2. Bokal, D., Dvorák, Z., Hlinený, P., Leaños, J., Mohar, B., Wiedera, T.: Bounded
degree conjecture holds precisely for c-crossing-critical graphs with c ≤ 12. In:
35th International Symposium on Computational Geometry (SoCG 2019), pp. 14:1–
14:15. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2019)

3. Bokal, D., Oporowski, B., Richter, R.B., Salazar, G.: Characterizing 2-crossing-
critical graphs. Adv. Appl. Math. 74, 23–208 (2016)
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5. Lomeĺı, M., Salazar, G.: Nearly light cycles in embedded graphs and crossing-critical
graphs. J. Graph Theory 53(2), 151–156 (2006)

6. Richter, B.R., Thomassen, C.: Minimal graphs with crossing number at least k. J.
Comb. Theory Ser. B 58, 217–224 (1993)

7. Salazar, G.: On a crossing number result of Richter and Thomassen. J. Comb.
Theory Ser. B 79, 98–99 (2000)



On the Maximum Number of Crossings
in Star-Simple Drawings of Kn with No

Empty Lens

Stefan Felsner1 , Michael Hoffmann2 , Kristin Knorr3(B) ,
and Irene Parada4

1 Institute of Mathematics, Technische Universität Berlin, Berlin, Germany
felsner@math.tu-berlin.de

2 Department of Computer Science, ETH Zürich, Zürich, Switzerland
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other vertices, every common point of two edges is either a proper crossing or a
common endpoint, and no three edges cross at a single point. A simple drawing
is a topological drawing in which adjacent edges do not cross, and independent
edges cross at most once.

We study a broader class of topological drawings, which are called star-
simple drawings, where adjacent edges do not cross, but independent edges may
cross any number of times; see Fig. 1 for illustration. In such a drawing, for
every vertex v the induced substar centered at v is simple, that is, the drawing
restricted to the edges incident to v forms a plane drawing. In the literature
(e.g., [1,2]) these drawings also appear under the name semi-simple, but we
prefer star-simple because the name is much more descriptive.

(a) simple (b) star-simple but not simple (c) not star-simple

Fig. 1. Topological drawings of K6 and a (nonempty) lens (shaded in (b)).

In contrast to simple drawings, star-simple drawings can have regions or cells
whose boundary consists of two continuous pieces of (two) edges. We call such
a region a lens; see Fig. 1b. A lens is empty if it has no vertex in its inte-
rior. If empty lenses are allowed, the number of crossings in star-simple draw-
ings of graphs with at least two edges is unbounded (twisting), as illustrated in
Fig. 2a. We restrict our attention to star-simple drawings with no empty lens.
This restriction is—in general—not sufficient to guarantee a bounded number of
crossings (spiraling), as illustrated in Fig. 2b. However, we will show that star-
simple drawings of the complete graph Kn with no empty lens have a bounded
number of crossings.

(a) twisting (b) spiraling

Fig. 2. Constructions to achieve an unbounded number of crossings.
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Empty lenses also play a role in the context of the crossing lemma for multi-
graphs [5]. This is because a group of arbitrarily many parallel edges can be
drawn without a single crossing. Hence, for general multigraphs there is no hope
to get a lower bound on the number of crossings as a function of the number
of edges. However, if we forbid empty lenses, we cannot draw arbitrarily many
parallel edges.

Kynčl [3, Section 5], “Picture hanging without crossings”] proposed a con-
struction of two edges in a graph on n vertices with an exponential number (2n−4)
of crossings and no empty lens; see Fig. 3. This configuration can be completed
to a star-simple drawing of Kn, cf. [6]. For n = 6 it is possible to have one more
crossing while maintaining the property that the drawing can be completed to a
star-simple drawing of K6; see Fig. 4. Repeated application of the doubling con-
struction of Fig. 3 leads to two edges with 2n−4 +2n−6 crossings in a graph on n
vertices. This configuration can be completed to a star-simple drawing of Kn.
We suspect that this is the maximum number of crossings of two edges in a
star-simple drawing of Kn.

Fig. 3. The doubling construction yields an exponential number of crossings.

(a) 5 crossings (b) star-simple completion (c) the stars of the drawing

Fig. 4. Two edges with 2n−4+2n−6 crossings in a star-simple drawing of Kn, for n = 6.
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2 Crossing Patterns

In this section we study the induced drawing D(e, e′) of two independent edges e
and e′ in a star-simple drawing D of the complete graph. We start by observing
that the endpoints of e and e′ must lie in the same region of D(e, e′). This fact
was also used in earlier work by Aichholzer et al. [1] and by Kynčl [4].

Lemma 1. The four vertices incident to e and e′ belong to the same region
of D(e, e′).

Proof. Assuming that the two edges cross at least two times, the drawing D(e, e′)
has at least two regions. Otherwise, the statement is trivial. If the four vertices
do not belong to the same region of D(e, e′), then there is a vertex u of e and
a vertex v of e′ that belong to different regions. Now consider the edge uv in
the drawing D of the complete graph. This edge has ends in different regions
of D(e, e′), whence it has a crossing with either e or e′. This, however, makes
a crossing in the star of u or v. This contradicts the assumption that D is a
star-simple drawing.

Lemma 1 implies that the deadlock configurations as shown in Fig. 5a do
not occur in star-simple drawings of complete graphs. Formally, a deadlock is a
pair e, e′ of edges such that not all incident vertices lie in the same region of the
drawing D(e, e′).

Now suppose that D is a star-simple drawing of a complete graph with no
empty lens. In this case we can argue that e and e′ do not form a configuration
as the black edge e and the red edge e′ in Fig. 5b. Indeed, that configuration
has an interior lens L and by assumption this lens is non-empty, i.e., L contains
a vertex x. Let e and e′ be the black and the red edge in Fig. 5b, respectively,
and let u be a vertex of e. The edge xu (the green edge in the figure) has no
crossing with e, hence it follows the “tunnel” of the black edge. This yields a
deadlock configuration of the edges xu and e′. Note that if in Fig. 5b instead of
drawing the green edge xu we connect x with an edge f to one of the vertices of
the red edge e′ such that f and the red edge have no crossing, then f and the
black edge e form a deadlock.

e

e′

e

e′

(a) deadlocks

x

u

e

e′

(b) spiral

Fig. 5. Constructions to achieve an unbounded number of crossings.
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We use this intuition to formally define a spiral. Two edges e, e′ form a spiral
if they form a lens L such that if we place a vertex x in L and draw a curve γ
connecting x to a vertex u of e so that γ does not cross e, then γ and e′ form a
deadlock. The discussion above proves the following lemma:

Lemma 2. A star-simple drawing of a complete graph with no empty lens has
no pair e, e′ of edges that form a spiral.

3 Crossings of Pairs of Edges

In this section we derive an upper bound for the number of crossings of two
edges in a star-simple drawing of Kn with no empty lens.

Theorem 1. Consider a star-simple drawing of Kn with no empty lens. If C(k)
is the maximum number of crossings of a pair of edges that (a) form no deadlock
and no spiral and such that (b) all lenses formed by the two edges can be hit by k
points, then C(k) ≤ e · k!, where e ≈ 2.718 is Euler’s number.

Proof. Due to Lemma 1 we can assume that all four vertices of e and e′ are on
the outer face of the drawing D(e, e′). We think of e′ as being drawn red and
horizontally and of e as being a black meander edge. Let p1, . . . , pk be points
hitting all the lenses of the drawing D(e, e′). Let u be one of the endpoints of e.
For each i = 1, . . . , k we draw an edge ei connecting pi to u such that ei has no
crossing with e and, subject to this, the number of crossings with e′ is minimized.
Figure 6 shows an example.

Note that we do not claim that all these edges e1, . . . , ek together with e
and e′ can be extended to a star-simple drawing of a complete graph. Therefore,
we cannot use Lemma 2 directly but state the assumption (a) instead.

pi

ei

e

u

e′

Fig. 6. The drawing D(e, e′) and an edge ei connecting pi to u.

We claim the following three properties:

(P1) The edges ei and e′ form no deadlock and no spiral.
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(P2) All lenses of ei and e′ are hit by the k − 1 points p1, . . . , pi−1, pi+1, . . . , pk.
(P3) Between any two crossings of e and e′ from left to right, i.e., in the order

along e′, there is at least one crossing of e′ with one of the edges ei.

Before proving the properties, we show that they imply the statement of the
theorem by induction on k. The base case 1 = C(0) ≤ e · 0! = e is obvious.
From (P1) and (P2) we see that the number Xi of crossings of ei and e′ is upper
bounded by C(k − 1). From (P3) we obtain that C(k) ≤ 1 +

∑
i Xi. Combining

these we get

C(k) ≤ k · C(k − 1) + 1 ≤ k! ·
k∑

s=0

1
s!

≤ k! · e. ��

For the proof of the three claims we need some notation. Let ξ1, ξ2, . . . , ξN
be the crossings of e and e′ indexed according to the left to right order along the
horizontal edge e′. Let gi and hi be the pieces of e′ and e, respectively, between
crossings ξi and ξi+1. The bounded region enclosed by gi ∪ hi is the bag Bi

and gi is the gap of the bag. In the drawing D(e, e′) the bags Bi where hi is a
crossing free piece of e are exactly the inclusion-wise minimal lenses formed by e
and e′. From now on when referring to a lens we always mean such a minimal
lens. Indeed if there is no empty minimal lens, then there is no empty lens. The
following observation is crucial.

Observation 2. For two bags Bi and Bj the open interiors are either disjoint
or one is contained in the other.

Proof. Every bag is bounded by a closed Jordan curve, and the boundaries of
two distinct bags do not cross (at most they may touch at a single point that is
one of ξ1, ξ2, . . . , ξN ).

Observation 2 implies that the containment order on the bags is a downwards
branching forest. The minimal elements in the containment order are the lenses.
Consider a lens L and the point pi inside L. Since the vertex u of e is in the outer
face of D(e, e′), the edge ei has to leave each bag that contains L. Furthermore,
by definition ei does not cross e and therefore it has to leave a bag B containing L
through the gap g of B. We now reformulate and prove the third claim (P3).

(P3’) For each pair ξi, ξi+1 of consecutive crossings on e′ there is a lens L and a
point pj ∈ L such that ej crosses e′ between ξi and ξi+1.

Proof sketch for (P3 ’). The pair ξi, ξi+1 is associated with the bag Bi. In the
containment order of bags a minimal bag below Bi is a lens, let L be any of the
minimal elements below Bi. By assumption, L contains a point pj . Since L ⊆ Bi,
we have that also pj ∈ Bi. Thus, it follows that ej has a crossing with the gap gi,
i.e., ej has a crossing with e′ between ξi and ξi+1.

Proof sketch for (P1 ). We have to show that ei and e′ form no deadlock and no
spiral. The minimality condition in the definition of ei implies that if L = Bi1 ⊂
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Bi2 ⊂ . . . ⊂ Bit is the maximal chain of bags with minimal element L, then ei
crosses the gaps of these bags in the given order and has no further crossings
with e′. If γ is a curve from L to u that avoids e, then in the ordered sequence of
gaps crossed by γ we find a subsequence that is identical to the ordered sequence
of gaps crossed by ei. Since e and e′ form no spiral, there is such a curve γ that
forms no deadlock with e′. Therefore, ei forms no deadlock with e′, either.

Now assume that ei and e′ form a spiral. Let B be the largest bag contain-
ing pi. Think of B as a drawing of ei with a broad pen, which may also have some
extra branches that have no correspondence in ei, see Fig. 7. The formalization
of this picture is that for every bag β formed by ei with e′ there is a bag B(β)
formed by e and e′ with B(β) ⊂ β. Now, if there is a lens λ formed by ei with e′

such that every ei-avoiding1 curve to u is a deadlock with e′, then there is a
lens L(λ) formed by e and e′ with L(λ) ⊂ λ such that every e-avoiding curve
from L(λ) to u is also B-avoiding and hence ei-avoiding. Thus, every such curve
has a deadlock with e′, whence e and e′ form a spiral, contradiction. ��
Proof sketch for (P2 ). We know by P1 that ei and e′ form no deadlock. Therefore,
by Lemma 1, the vertices of ei and e′ belong to the same region of D(ei, e′). All
crossings of ei with e′ correspond to bags of e and e′, therefore the vertices of e
and e′ are in the outer face of D(ei, e′). Together this shows that pi is also in the
outer face of D(ei, e′). Since every lens of D(ei, e′) contains a lens of D(e, e′),
it also contains one of the points hitting all lenses of D(e, e′). Hence, all lenses
of D(ei, e′) are hit by the k − 1 points p1, . . . , pi−1, pi+1, . . . , pk. ��

e

pi

ei

pj
u

e′

Fig. 7. An edge ei(green) that forms a spiral with e′. The bag B in gray and the
lens L(λ) marked with the vertex pj(blue). (Color figure online)

1 That is, disjoint from ei except for possibly a shared endpoint.
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4 Crossings in Complete Drawings

Accounting for the four endpoints of the two crossing edges we have k ≤ n−4 in
Theorem 1. Therefore, we obtain that the number of crossings of a pair of edges
in a star-simple drawing of Kn without empty lens is upper bounded by 3(n−4)!.
This directly implies that the drawing of Kn has at most n! crossings. This is the
first finite upper bound on the number of crossings in star-simple drawings of the
complete graph Kn. We know drawings of Kn in this drawing mode that have
an exponential number of crossings. Thus, it would be interesting to reduce the
huge gap between the upper and the lower bound. Specifically, can a star-simple
drawing of Kn have two edges with more than 2n−4 + 2n−6 crossings?
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Abstract. Every finite graph admits a simple (topological) drawing, that
is, a drawing where every pair of edges intersects in at most one point.
However, in combination with other restrictions simple drawings do not
universally exist. For instance, k-planar graphs are those graphs that can
be drawn so that every edge has at most k crossings (i.e., they admit a k-
plane drawing). It is known that for k ≤ 3, every k-planar graph admits
a k-plane simple drawing. But for k ≥ 4, there exist k-planar graphs
that do not admit a k-plane simple drawing. Answering a question by
Schaefer, we show that there exists a function f : N → N such that every
k-planar graph admits an f(k)-plane simple drawing, for all k ∈ N. Note
that the function f depends on k only and is independent of the size
of the graph. Furthermore, we develop an algorithm to show that every
4-planar graph admits an 8-plane simple drawing.
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1 Introduction

A topological drawing of a graph G in the plane is a representation of G in
which the vertices are mapped to pairwise distinct points in the plane and edges
are mapped to Jordan arcs that do not pass through (the images of) vertices.
Moreover, no three Jordan arcs pass through the same point in the plane, and
every pair of Jordan arcs has finitely many intersection points, each of which is
either a common endpoint or a crossing, where the two arcs cross transversally.
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A graph is k-planar if it admits a topological drawing in the plane where every
edge is crossed at most k times, and such a drawing is called a k-plane drawing.
A simple topological drawing of a graph refers to a topological drawing where
no two edges cross more than once and no two adjacent edges cross. We study
simple topological drawings of k-planar graphs.

It is well known that drawings of a graph G that attain the minimum number
of crossings (i.e., the crossing number of G) are simple topological drawings
[4, p. 18]. However, a drawing that minimizes the total number of crossings need
not minimize the maximum number of crossings per edge; and a drawing that
minimizes the maximum number of crossings per edge need not be simple. A
k-plane simple topological drawing is a simple topological drawing where every
edge is crossed at most k times. We study the simple topological drawings of k-
planar graphs and prove that there exists a function f : N → N such that every
k-planar graph admits an f(k)-plane simple topological drawing by designing
an algorithm to obtain the simple topological drawing from a k-plane drawing.
The function f in our bound is exponential in k, more precisely f(k) ∈ O∗(3k).
It remains open whether this can be improved to a bound that is polynomial in
k. We also present a significantly better bound for 4-planar graphs.

In a k-plane drawing adjacent edges may cross, and two edges may cross many
times. To obtain a simple topological drawing, we need to eliminate crossings
between adjacent edges and ensure that any two edges cross at most once.

Related Work. It is easy to see that every 1-planar graph admits a 1-plane simple
topological drawing [3]. Pach et al. [2, Lemma 1.1] proved that every k-planar
graph for k ≤ 3 admits a k-plane simple topological drawing. However, these
results do not extend to k-planar graphs, for k > 3. In fact, Schaefer [4, p. 57]
constructed k-planar graphs that do not admit a k-plane simple topological
drawing for k = 4. The construction idea can be extended to all k > 4. The
local crossing number lcr(G) of a graph G is the minimum integer k such that
G admits a drawing where every edge has at most k crossings. The simple local
crossing number lcr∗(G) minimizes k over all simple topological drawings of G.
Schaefer [4, p. 59] asked whether the lcr∗(G) can be bounded by a function of
lcr(G). We answer this question in the affirmative and show that there exists a
function f : N → N such that lcr∗(G) ≤ f(lcr(G)).

The family of k-planar graphs, for small values of k, was instrumental in
proving the current best bounds on the multiplicative constant in the Crossing
Lemma and the Szemerédi-Trotter theorem on point-line incidences [1,2]. Ack-
erman [1] showed that every graph with n ≥ 3 vertices that admits a simple
4-plane drawing has at most m ≤ 6n − 12 edges, and claims that this bound
holds for all 4-planar graphs. Pach et al. [2, Conjecture 5.4] conjectured that
for all k, n ≥ 1, the maximum number of edges in a k-planar n-vertex graph is
attained by a graph that admits a simple k-plane drawing.
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2 Preliminaries

Lenses in Topological Drawings. We start with definitions needed to describe the
key operations in our algorithms. In a topological drawing, we define a structure
called lens. Consider two edges, e and f , that intersect in two distinct points, α
and β (each of which is either a common endpoint or a crossing). Let eαβ (resp.,
fαβ) denote the portion of e (resp., f) between α and β. The arcs eαβ and fαβ

together are called a lens if eαβ and fαβ do not intersect except at α and β. See
Fig. 1 for examples. The lens is denoted by L(eαβ , fαβ). A lens L(eαβ , fαβ) is
bounded by independent arcs if both α and β are crossings, else (if α or β is a
vertex of G) it is bounded by adjacent arcs.

Lemma 1. If a pair of edges e and f intersect in more than one point, then
there exist arcs eαβ ⊂ e and fαβ ⊂ f that form a lens.

Fig. 1. Lenses formed by two edges.

Operations. We present algorithms that transform a k-plane drawing into a
simple topological drawing by a sequence of elementary operations. Each oper-
ation modifies one or two edges that form a lens so that the lens is eliminated.
We use two elementary operations, Swap and Reroute. Both have been used
previously (e.g., in [2, Lemma 1.1]); we describe them here for completeness.

The common setup in both operations is the following. Let e = uv and f = st
be edges that form a lens L(eαβ , fαβ), where α and β are each a crossing or a
common endpoint. Assume that the Jordan arc of e visits u, α, β, v, and the
Jordan arc of f visits s, α, β, and t in this order. Let α and β be sufficiently small
disks centered at α and β, resp., so that their boundary circles each intersect e
and f twice, but do not intersect any other edge.

Swap Operation. We modify the drawing of e and f in three steps as follows.
(1) Redraw e such that it follows its current arc from u to α, then continues
along fαβ to β, and further to v along its original arc. Similarly, redraw f such
that it follows its current arc from s to α, then continues along eαβ to β, and
further to t along its original arc. (2) Replace the portion of e and f in α and
β by straight line segments. (3) Eliminate self-crossings, if any is introduced, by
removing any loops from the modified arcs of e and f . The swap operation is
denoted by Swap(eαβ , fαβ); see Fig. 2 for illustrations. The swap operation for
a lens bounded by adjacent arcs is defined similarly.
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Fig. 2. Swap(eαβ , fαβ) applied to the two lenses in Fig. 1

Observation 1. Let D be a topological drawing of a graph G, and let
L(eαβ , fαβ) be a lens. Operation Swap(eαβ , fαβ) produces a topological draw-
ing that has at least one fewer crossing than D.

Reroute Operation. We modify the drawing of f in three steps as follows.
(1) Redraw f such that it follows its current arc from s to the first intersec-
tion with α, it does not cross e in α, and then it closely follows arc eαβ to β,
and further follows its original arc from β to t. (2) Replace the portion of f in
the interior of α and β by straight line segments. (3) Eliminate self-crossings,
if any are introduced, by removing any loops from the modified arc of f . The
reroute operation is denoted by Reroute(eαβ , fαβ); see Fig. 3 for illustrations.
The reroute operation for a lens bounded by adjacent arcs is defined similarly.

Fig. 3. Reroute(eαβ , fαβ) operation on the two lenses in Fig. 1

Observation 2. Let D be a topological drawing of a graph G, and let
L(eαβ , fαβ) be a lens. Operation Reroute(eαβ , fαβ) produces a topological
drawing.

While a Reroute(eαβ , fαβ) operation modifies only the edge f , it may
increase the total number of crossings, as well as the number of crossings on f .

Planarization. Let D be a topological drawing of a graph G. Denote by N the
planarization of D (i.e., we introduce a vertex of degree four at every crossing
in D). We call this graph a network. We refer to the vertices and edges of N
as nodes and segments, respectively, so as to distinguish them from the corre-
sponding entities in G. Our algorithms in Sect. 3–4 use the planarization N of
a drawing D, then successively modify the drawing D, and ultimately return a
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simple topological drawing of G. We formulate invariants for these algorithms in
terms of the planarization N of the initial drawing. In other words, N remains
fixed (in particular, N will not be the planarization of the modified drawings).
As Reroute operations redraw edges to closely follow existing edges, our algo-
rithms will maintain the following invariants:

(I1) Every edge in D closely follows a path in the network N ;
(I2) every pair of edges in D cross only in a small neighborhood of a node of N ;
(I3) every pair of edges crosses at most once in each such neighborhood.

Length of an Arc and Number of Crossings. Let a be a Jordan arc that closely
follows a path in N such that its endpoints are in the small neighborhoods of
nodes of N . The length of a, denoted by �(a), is the graph-theoretic length of
the path of N that a closely follows. Let x(a) denote the number of crossings
on the arc a in a drawing D. Note that the length �(a) is measured in terms of
the (fixed) network N , and x(a) is measured in terms of the (varying) drawing
D. For instance, in Fig. 3(b) we have �(f) = 3 both before and after rerouting,
whereas x(f) = 2 before and x(f) = 1 after rerouting.

3 General Bound for k-Planar Graphs

In this section we describe and analyze an algorithm to transform a topolog-
ical drawing into a simple topological drawing whose local crossing number is
bounded by a function of the local crossing number of the original drawing.

Algorithm 1
Let D0 be a topological k-plane drawing of a graph G = (V,E). Let N be the
planarization of D0. Let D := D0.
While there exists a lens in D, do the following.
Let L(eαβ , fαβ) be a lens so that w.l.o.g. �(eαβ) < �(fαβ), or �(eαβ) = �(fαβ)
and x(eαβ) ≤ x(fαβ). Modify D by applying Reroute(eαβ , fαβ).
When the while loop terminates, return the drawing D.

Observation 3. Algorithm 1 maintains invariants (I1)–(I3), and the length of
every edge decreases or remains the same.

Corollary 1. Algorithm 1 maintains the following invariant:

(I4) The length of every edge in D is at most k + 1.

Lemma 2. Algorithm 1 terminates and transforms a k-plane topological draw-
ing into a simple topological drawing of G.

Proof. Let the sum of lengths of all edges in the drawing be defined as the total
length of the drawing (recall that the length of an edge is the length of the cor-
responding path in N). By Observation 3, the total length of the drawing mono-
tonically decreases. If the total length remains the same in one iteration of the
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while loop, then �(eαβ) = �(fαβ) and x(eαβ) ≤ x(fαβ). Since Reroute(eαβ , fαβ)
eliminates a crossing at α or β, the total number of crossings strictly decreases
in this case. Thus, the algorithm terminates. By Observations 1–2, the algorithm
maintains a topological drawing. The drawing D′ returned by the algorithm does
not contain lenses. By Lemma 1, any two edges in D′ intersect in at most one
point. Consequently, D′ is a simple topological drawing of G. ��
Lemma 3 (Crossing Lemma [1, Theorem 6]). Let G be a graph with n
vertices and m edges and D be a topological drawing of G. Let cr(D) be defined
as the total number of crossings in D, and cr(G) be defined as the minimum of
cr(D) over all drawings D of G. If m ≥ 6.95n, then cr(G) ≥ 1

29
m3

n2 .

Theorem 1. There exists a function f(k) such that every k-planar graph admits
an f(k)-plane simple topological drawing, and there exists an algorithm to obtain
an f(k)-plane simple topological drawing from a given k-plane drawing of a graph.

Proof. The statement holds for k ≤ 3 with f(k) = k [2, Lemma 1.1]. Hence we
may suppose that k ≥ 4. Consider the drawing D′ returned by Algorithm 1,
and a node γ of the network N that corresponds to a crossing. We analyse the
subgraph Gγ of G formed by the edges of G that in D′ pass through a small
neighborhood γ of γ. Let nγ and mγ be the number of vertices and edges of Gγ ,
respectively. By (I4), every edge in D′ corresponds to a path of length at most
k + 1 in N . If an edge uv passes through γ in D′, then N contains a path of
length at most k from γ to u (resp., v) in which internal vertices correspond to
crossings in D0. Every node in N that corresponds to a crossing has degree 4.
Hence the number of vertices reachable from γ on such a path is nγ ≤ 4 · 3k−1.

We apply Lemma 3 to the graph Gγ , and distinguish between two cases:
Either mγ < 6.95n, otherwise mγ ≥ 6.95n and then cr(Gγ) ≥ 1

29m3
γ/n2

γ .
Since Gγ has mγ edges and each edge has at most k crossings in D, we obtain
1
29m3

γ/n2
γ ≤ mγk/2, which implies mγ ≤ √

29k/2 nγ . The combination of both
cases yields an upper bound mγ ≤ max{6.95nγ ,

√
29k/2 nγ}. So, for k ≥ 4 we

have mγ ≤ √
29k/2 nγ .

Since mγ edges pass through γ, by invariant (I3) every edge passing through
γ has at most mγ − 1 crossings at γ. By invariant (I4), every edge in G passes
through (the neighborhood of) at most k nodes of N . By (I2), an edge passing
through γ1, . . . , γk crosses at most

∑k
i=1(mγi

− 1) edges in D′. Combining the
upper bounds on mγ and nγ , we obtain that every edge in the output drawing
D′ has at most

√
29k/2 · 4k · 3k−1 = 2

3

√
58 · k3/2 · 3k crossings, for k ≥ 4. ��

4 An Upper Bound for 4-Planar Graphs

The function f from our proof of Theorem 1 yields

f(4) =
2
3

√
58 · 43/2 · 34 ≈ 3290.01
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and so every 4-plane drawing can be transformed into a 3290-plane simple topo-
logical drawing. In this section we improve this upper bound and show that 8
crossings per edge suffice.

Theorem 2. Every 4-planar graph admits an 8-plane simple topological draw-
ing. Given a 4-plane drawing of a graph with n vertices, an 8-plane simple topo-
logical drawing can be computed in O(n) time.

The proof of Theorem 2 is constructive: Let D0 be a 4-plane drawing of a 4-
planar graph G = (V,E) with n = |V | vertices and m = |E| edges. The Crossing
Lemma implies that a k-planar graph on n vertices has at most 3.81

√
kn edges.

For k = 4, this implies m ≤ 7.62n. (We note that Ackerman [1] proved a bound
m ≤ 6n − 12 for 4-plane simple topological drawings with n ≥ 3 vertices; this
bound is not applicable here.)

We want to eliminate all lenses using swap and reroute operations. We define
three types of special lenses that we handle separately. A lens L(eαβ , fαβ) is

– a 0-lens if eαβ has no crossings;
– a quasi-0-lens if the arc eαβ has exactly one crossing γ, where e crosses an

edge h, the edges h and f have a common endpoint s, and the arcs fsα and
hsα cross the same edges in the same order (see Fig. 5(a) for an example);

– a 1-3-lens if x(e) = 4, x(eαβ) = 1, and x(fαβ) = 3; see Fig. 4(a).

We show that all lenses other than 0-lenses and 1-3-lenses can be eliminated
by swap operations while maintaining a 4-plane drawing (Lemma 6). And 0-
lenses can easily be eliminated by reroute operations (Lemma 4). The same holds
for quasi-0-lenses (Lemma 5), which are of no particular concern in the initial
drawing but are important for the analysis of the last phase of our algorithm.
The main challenge is to eliminate 1-3-lenses, which we do by rerouting the arc
with 3 crossings along the arc with 1 crossing.

Our algorithm proceeds in three phases: Phase 1 eliminates all lenses other
than 1-3-lenses. We show that it maintains a 4-plane drawing (Lemma 8). Phase 2
eliminates every 1-3-lens using reroute operations. We show that this phase pro-
duces an 8-plane drawing. Phase 2 may also create new lenses, but only 0- and
quasi-0-lenses, which are eliminated in Phase 3 without creating any new lenses.

Fig. 4. Reroute(euβ , fuβ) applied to a 1-3-lens L(euβ , fuβ).

The initial 4-plane drawing has O(n) crossings since the graph has O(n)
edges and each edge has at most four crossings. The set of lenses in the initial
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drawing can be identified in O(n) time. Due to the elimination of a single lens,
a constant number of other lenses can be affected, which can be computed in
constant time. Further, each elimination operation strictly decreases the total
number of crossings in the drawing. Consequently, Algorithm 2 performs O(n)
elimination operations and can be implemented in O(n) time.

Lemma 4. Let L(eαβ , fαβ) be a 0-lens. Then operation Reroute(eαβ , fαβ)
decreases the total number of crossings and does not create any new crossing.
Further, if any two edges have at most two points in common, then it does not
create any new lens.

Proof. The operation Reroute(eαβ , fαβ) modifies only the edge f , by rerouting
the arc fαβ to closely follow eαβ . Since the arc eαβ is crossing-free, the edge f
loses one of its crossings and no edge gains any new crossing. Overall, the total
number of crossings decreases, as claimed.

Assume that any two edges have at most two points in common before the
operation. Consider a lens L(gγδ, hγδ) in the drawing after the operation. As no
new crossings are created, γ and δ are already common points of g and h before
the operation. Since g and h have no other common points by assumption, the
lens L(gγδ, hγδ) is already present before the operation. ��

For quasi-0-lenses we define the operation Quasi-0-Reroute(eαβ , fαβ) as
follows; see Fig. 5. Let h be the edge that crosses eαβ at γ and shares an endpoint
s with f . Redraw f such that it closely follows h from s to γ, it does not cross e
in γ, and then it closely follows arc eαβ to β, and further follows its original arc
from β to t. The analogue of Lemma 4 reads as follows.

Fig. 5. Quasi-0-Reroute(eαβ , fαβ) applied to a quasi-0-lens L(eαβ , fαβ).

Lemma 5. Let L(eαβ , fαβ) be a quasi-0-lens, where h denotes the edge that
crosses eαβ at γ and shares an endpoint s with f . Then operation Quasi-
0-Reroute(eαβ , fαβ) decreases the total number of crossings, and does not
increase the number of crossings between any pair of edges. Further, if any two
edges have at most two points in common, then it does not create any new lens.

Proof. The operation Quasi-0-Reroute(eαβ , fαβ) modifies only the edge f , by
rerouting the arc fsβ to closely follow first h from s to γ and then eαβ to β.
Let f ′ denote the new drawing of f . Since (1) e has at least one fewer crossing
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with f ′ than with f , and (2) every crossing of f ′ along the arc between s and
γ corresponds to a crossing of f along the arc from s to α, the total number of
crossings strictly decreases, and for each pair of edges the number of crossings
between them does not increase, as claimed.

Assume that any two edges have at most two points in common before the
operation. Suppose Quasi-0-Reroute(eαβ , fαβ) creates a new lens. This lens
must be formed by f ′ and another edge, say g. Then f ′ and g must have at
least two points in common, and g must cross fαβ , implying that f and g have
at least three points in common before the operation. However, by assumption,
edges f and g have at most two points in common, which is a contradiction.
Consequently, every lens in the resulting drawing corresponds to a lens in the
original drawing, where the arc fsα is shifted to the arc of f ′ from s to γ. ��
Lemma 6. Let L(eαβ , fαβ) be a lens either bounded by nonadjacent arcs with
x(eαβ) ≤ x(fαβ) ≤ x(eαβ) + 2, or by adjacent arcs with x(eαβ) ≤ x(fαβ) ≤
x(eαβ)+1. Then the operation Swap(eαβ , fαβ) produces a drawing in which the
total number of crossings on each edge does not increase, and the total number
of crossings decreases.

Proof. The operation Swap(eαβ , fαβ) modifies only the edges e and f , by
exchanging arcs eαβ and fαβ , and eliminating any crossing at the endpoints of
these arcs. In particular, the number of crossings on other edges cannot increase.
This already implies that the total number of crossings decreases.

Let e′ and f ′ denote the new drawing of e and f . If both α and β are crossings,
then both crossings are eliminated, hence x(e′) = x(e)−2+(x(fαβ)−x(eαβ)) ≤
x(e) and x(f ′) = x(f)−2+(x(eαβ)−x(fαβ)) ≤ x(f)−2. If α or β is a vertex of G,
then only one crossing is eliminated, hence x(e′) = x(e)−1+(x(fαβ)−x(eαβ)) ≤
x(e) and x(f ′) = x(f) − 1 + (x(eαβ) − x(fαβ)) ≤ x(f) − 1, as required. ��
Lemma 7. Let D be a 4-plane drawing of a graph, and let L(eαβ , fαβ) be a lens
with x(eαβ) ≤ x(fαβ).

1. If x(fαβ) − x(eαβ) ≥ 2, then L(eαβ , fαβ) is either a 0-lens or x(eαβ) = 1 and
x(fαβ) = 3.

2. If x(eαβ) = 1 and x(fαβ) = 3, then eαβ and fαβ are adjacent arcs.

Proof. As D is 4-plane, we have x(e) ≤ 4 and x(f) ≤ 4. Assume first that
both α and β are crossings, and so x(fαβ) ≤ x(f) − 2 ≤ 2. Combined with
x(fαβ) − x(eαβ) ≥ 2, this implies x(eαβ) = 0, hence L(eαβ , fαβ) is a 0-lens.
Assume next that α or β is a vertex in G. Then x(fαβ) ≤ x(f) − 1 ≤ 3. With
x(fαβ) − x(eαβ) ≥ 2, this implies x(eαβ) = 0, or x(eαβ) = 1 and x(fαβ) = 3. ��

Algorithm 2
Input. Let D0 be a 4-plane drawing of a graph G = (V,E).
Phase 1. While there is a lens L(eαβ , fαβ) that is not a 1-3-lens, do:
If it is a 0-lens, then Reroute(eαβ , fαβ), else Swap(eαβ , fαβ).
Phase 2. Let L be the set of 1-3-lenses. For every L(eαβ , fαβ) ∈ L, if neither
eαβ nor fαβ has been modified in previous iterations of Phase 2 (regardless
of whether x(eαβ) or x(fαβ) has changed), apply Reroute(eαβ , fαβ).
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Phase 3. While there is a 0-lens L(eαβ , fαβ), do: Reroute(eαβ , fαβ).
While there is a quasi-0-lens L(eαβ , fαβ), do: Quasi-0-Reroute(eαβ , fαβ).

For i ∈ {1, 2, 3}, let Di denote the drawing obtained at the end of Phase i.
We analyse the three phases separately.

Lemma 8. Phase 1 terminates, and D1 is a 4-plane drawing in which every
lens is a 1-3-lens, and any two edges have at most two points in common.

Proof. By Lemma 4 and Observation 1, each iteration of the while loop reduces
the total number of crossings. Since D0 has at most 1

2 ·4m ∈ O(n) crossings, the
while loop terminates after O(n) iterations. By Lemma 7 all lenses satisfy the
conditions of Lemma 6, except for 0-lenses and lenses L(eαβ , fαβ) with x(eαβ) =
1 and x(fαβ) = 3. Each lens of the latter type is either a 1-3-lens, which remains
untouched, or x(e) < 4 and the lens is eliminated by a swap operation. In this
case, though the number of crossings on the edge e increases, it does not exceed
four and the total number of crossings in the drawing strictly decreases. In all
other cases we can apply either Lemma 4 or Lemma 6 to conclude that each
iteration maintains a 4-plane drawing. By the end condition of the while loop,
all lenses other than 1-3-lenses are eliminated.

To prove the final statement, suppose to the contrary, two edges e and f in D1

have three or more points in common. By Lemma 1, there exist arcs eαβ ⊂ e and
fαβ ⊂ f such that L(eαβ , fαβ) is a lens, which is necessarily a 1-3-lens. We may
assume without loss of generality that x(e) = 4, x(eαβ) = 1, and x(fαβ) = 3.
Denote by γ a common point of e and f other than α and β. Since D1 is a
4-plane drawing and x(fαβ) = 3, we may assume that α is common endpoint of
e and f , furthermore γ is a crossing in the interior of fαβ . Since eαβ and fαβ

form a lens, the arc eαβ cannot pass through γ. Hence γ is a crossing between
fαβ and e \ eα,β . By Lemma 1, eβγ and fβγ form a lens, which is necessarily a
1-3-lens. However, x(eβγ) ≤ 2 and x(fβγ) ≤ 2, which is a contradiction. ��

For the analysis of Phases 2 and 3, we introduce some notation. Let N denote
the planarization of D1. Note that N is a simple graph, since a double edge would
correspond to a lens whose arcs are crossing-free (i.e., a 0-lens). Phases 2 and
3 apply only Reroute and Quasi-0-Reroute operations. Hence the resulting
drawings satisfy invariants (I1)–(I3). For a node α of N , we denote by α a small
neighborhood of α. Recall that the length �(a) of an arc a along an edge of G is
the combinatorial length of the path in N that the arc closely follows.

Lemma 9. D2 has the following properties: (i) the length of every edge is at
most five; (ii) at most two edges of G pass along every segment of N ; (iii) through
every node ν of N , at most two rerouted edges of G pass through ν; and (iv) at
each node α of N , an edge passing through α crosses at most two edges in α;
(v) any two edges have at most two points in common.

Proof. (i) By Lemma 8, the drawing D1 is a 4-plane drawing. Therefore, every
edge in D1 passes through at most 4 crossings, hence its length is at most 5.
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Each Reroute operation in Phase 2 replaces an edge of length 5 with an edge
of length 3 (cf. Fig. 4(a)). Property (i) follows.
(ii) Each Reroute(eαβ , fαβ) operation in Phase 2 reroutes the longer arc along
the shorter arc of a 1-3-lens in L. Let A be the set paths of length 2 in N
that correspond to shorter arcs eαβ in some 1-3-lens L(eαβ , fαβ) ∈ L. By the
definition of 1-3-lenses, �(e) = 5 and eαβ consists of the first two segments of
N along e. Thus every segment γδ of N is contained in at most one path in A.
Consequently, at most one new edge can pass along γδ due to reroute operations.
(iii) Let γ be a node in N that corresponds to a crossing in the drawing D1.
Then γ is incident to at most two paths in A (at most one along each of the two
edges that cross at γ). Hence at most two rerouted edges can pass through γ.
(iv) Let γ be a node of N , and let e be an edge that passes through γ in D2. By
property (ii), at most 4 edges pass through γ. If at most 3 edges pass through
γ, then it is clear that e crosses at most two edges in γ. Suppose that four edges
pass through γ. Then the four segments of N incident to γ are each contained
in the shorter arc of some 1-3-lens in D1. Consequently, γ is the middle vertex
of two distinct arcs in A. In the drawing D2 (after Reroute operations), two
edges run in parallel in each of these shorter arcs. Hence each edge that passes
through γ crosses at most two other edges in γ, as claimed.
(v) Suppose f1 and f2 have three points in common in D2. By Lemma 8, we may
assume that f1 has been rerouted in Phase 2, and f1 follows a path (v, γ, δ, u) in
N and (v, γ, δ) ∈ A. Since f1 and f2 have at most one common endpoint, they
cross in both γ and δ. After the rerouting operation, f1 does not cross any edge
of D1 in δ, which implies that f2 has also been rerouted in Phase 2. Since both
f1 and f2 have length three and pass through γ and δ, and N is a simple graph,
both f1 and f2 pass along segment γδ, which contradicts the fact that at most
one new edge can pass along γδ (see the proof of (ii) above). ��
Corollary 2. D2 is an 8-plane drawing of G.

Proof. Every edge of G passes through the small neighborhood of at most four
nodes of N by Lemma 9(i). In each such neighborhood, it crosses at most two
other edges by Lemma 9(iv), and it has at most one crossing with each by (I3).
Overall, every edge has at most eight crossings in D2. ��

Unfortunately, Phase 2 may create new lenses, but only of very specific types.
We analyze these types and argue that all remaining lenses are removed.

Lemma 10. Phase 3 terminates with an 8-plane simple topological drawing D3.

Proof. The while loops in Phase 3 terminate, as each iteration decreases the
number of crossings by Lemmas 4 and 5. The drawing D2 at the beginning of
Phase 3 is 8-plane by Corollary 2, and remains 8-plane and no new lens is created
by Lemmas 4 and 5. It remains to show that Phase 3 eliminates all lenses of D2.

Every lens in D1 is a 1-3-lens by Lemma 8, and they are all in L. Phase 2
modifies an arc in every lens in L. Thus the lenses of D1 are no longer present
in D2. (The two edges that form a lens L ∈ L may still form a lens L′ in D2,
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but technically this is a new lens, that is, L �= L′, which is created in Phase 2
and will be discussed next.)

We classify the new lenses created in Phase 2. Assume that edges e and
f = uw form a lens in D2. Without loss of generality, the edge f was modified
in Phase 2. Each iteration in Phase 2 applies a reroute operation on a 1-3-lens,
which decreases the length of an edge from 5 to 3. Therefore Phase 2 modifies
every edge at most once. The drawing of edge f in D2 was produced by a
Reroute(guβ , fuβ) operation, for some edge g, where u is a common endpoint of
f and g. The resulting drawing of f in D2 closely follows a path (u, α, β) in N and
then the original arc (in D1) from β to w. After operation Reroute(guβ , fuβ),
edges f and g do not cross each other.

Suppose first that f crosses e in β. Then e was redrawn in Phase 2 to closely
follow f from w to β and beyond; as in Fig. 6. However, in this case, e and
f have a common endpoint at w. No other edges follow segment βw in N by
Lemma 9(ii), hence e and f form a 0-lens. All such 0-lenses are eliminated in
Phase 3, without creating any new lenses (cf. Lemma 4). Therefore, we may
assume that f does not cross any edge in β.

Fig. 6. New 0-lens formed by e and f crossing in β.

By Lemma 9(iv), the edge f crosses at most two other edges in α. If it crosses
exactly one other edge, and f forms a lens L with that edge, then this crossing
in α is the only crossing of f in D2 and, thus, L is a 0-lens. Otherwise, f crosses
two edges, denote them by e (for which we know that it crosses f) and h; one
of them was redrawn in a Reroute operation in Phase 2 to closely follow the
other, which passes through α; see Fig. 7 and 8. Therefore, e and h are adjacent,
and they do not cross at the end of that operation. Thus, they do not cross in
D2, either; otherwise, three rerouted edges would pass through α, contradicting
Lemma 9(iii). As no new crossing is introduced in Phase 3, the edges e and h
do not cross anytime during (and after) Phase 3, either.

If the common endpoint of e and h is u or w (see Fig. 7), then both e
and h form a lens with f : One of these lenses is a 0-lens, and when this lens
is eliminated, the other lens either disappears, or it becomes a 0-lens as well.
Hence Phase 3 eliminates both crossings.

If e and h share distinct endpoints with f , without loss of generality e and
f are adjacent at u and h and f are adjacent at w. As e and h do not cross, the
crossing e ∩ f is closer to u and the crossing h ∩ f is closer to w along f . Hence,
e and h each form a 0-lens with f , both of which are eliminated in Phase 3.
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Fig. 7. f crosses two edges at α and forms two 0-lenses.

Fig. 8. f crosses two edges at α and forms a quasi-0-lens.

It remains to consider the case that only e is adjacent to f (while h is not).
Assume first that e and f are adjacent at w (see Fig. 8). If the crossing e ∩ f is
closer to w along f than the crossing h∩ f , then the lens formed by e and f is a
0-lens; else it forms a quasi-0-lens. In any case, the lens is eliminated in Phase 3.
The same argument works in case that e and f are adjacent at u. ��
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Abstract. The 2-layer drawing model is a well-established paradigm
to visualize bipartite graphs. Several beyond-planar graph classes have
been studied under this model. Surprisingly, however, the fundamen-
tal class of k-planar graphs has been considered only for k = 1 in this
context. We provide several contributions that address this gap in the
literature. First, we show tight density bounds for the classes of 2-layer
k-planar graphs with k ∈ {2, 3, 4, 5}. Based on these results, we pro-
vide a Crossing Lemma for 2-layer k-planar graphs, which then implies a
general density bound for 2-layer k-planar graphs. We prove this bound
to be almost optimal with a corresponding lower bound construction.
Finally, we study relationships between k-planarity and h-quasiplanarity
in the 2-layer model and show that 2-layer k-planar graphs have path-
width at most k + 1.
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1 Introduction

Beyond-planarity is an active research area that studies graphs admitting draw-
ings that avoid certain forbidden crossing configurations. Research on this sub-
ject has attracted considerable interest due to its theoretical appeal and due to
the need of visualizing real-world non-planar graphs. A great deal of attention
has been captured by two important graph families. The k-planar graphs, with
k ≥ 1, for which the forbidden configuration is an edge crossing more than k
other edges, and the h-quasiplanar graphs, with h ≥ 3, for which the forbid-
den configuration is a set of h pairwise crossing edges. The study of these two
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families finds its origins in the 1960’s [12,41], when the question arose about
the density of these graphs, that is, the maximum number of edges of graphs in
these families.

Many works have addressed this extremal graph theoretical question and
established upper bounds for k-planar and h-quasiplanar graphs for various val-
ues of k and h. For small k and h, these upper bounds have been proven to
be tight by lower bound constructions achieving the corresponding density. The
most significant results include tight density bounds for 1-planar graphs [40]
(4n − 8 edges), 2-planar graphs [40] (5n − 10 edges), 3-planar graphs [14,37]
(5.5n − 20), and 4-planar graphs [2] (6n − 12). For general k, the currently best
upper bound is 3.81

√
k n, which can be derived from the result of Ackerman [2] on

4-planar graphs and from the renowned Crossing Lemma [5]. For h-quasiplanar
graphs, despite considerable research efforts, a density upper bound that is linear
in the number of vertices exists only for h ≤ 4 [1,3,4,38]. In particular, a tight
upper bound exists for simple 3-quasiplanar (for short, quasiplanar) graphs.
Here, simple means that any two edges meet in at most one point, which is
either a common endvertex or an internal point. For general h, only super-linear
upper bounds are known [19,30,31,39,44,45] while a linear bound has been con-
jectured [39].

These two families have also been studied from other perspectives. A
notable relationship is that every simple k-planar graph is also simple (k + 1)-
quasiplanar [7], for every k ≥ 2. It is also known that every optimal 3-
planar graph, namely one with the maximum possible number of edges (5.5n −
20), is also 3-quasiplanar. This latter result follows from a characterization of the
optimal 3-planar graphs [15], which also exists for the optimal 1- and 2-planar
graphs [15,40]. Note that these characterizations do not directly yield recognition
algorithms; in fact, recognizing (non-optimal) k-planar graphs is NP-complete
for every k ≥ 1 [35]. The complexity of recognizing h-quasiplanar graphs is still
open for any h ≥ 3.

Aside these two major families, we mention the fan-planar graphs, in which
no edge is crossed by two independent edges or by two adjacent edges from
different directions [13,17,18,34], and the RAC graphs, in which the edges are
poly-lines with few bends and crossings only happen at right angles [8,24,25,
28]. These and other graph classes have been also investigated with respect to
their density, recognition, and relationship with other classes; see also the recent
survey [26].

Beyond-planar classes have also been studied under additional constraints on
the placement of the vertices. In the outer model [11,13,20,21,23,32,33] every
vertex is incident to the unbounded region of the drawing, while in the 2-layer
model [17,18,22,23] the vertices lie on two horizontal lines and every edge is a
y-monotone curve. The latter model requires the graph to be bipartite, and the
constraints on the placement of the vertices emphasize the bipartite structure.
Beyond-planar bipartite graphs have also been considered in the general drawing
model, without any additional restriction [9]. We remark that the 2-layer model
lies at the core of the Sugiyama framework for general layered drawings [42,43].
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In [22], it was shown that 2-layer RAC graphs have at most 3
2n − 2 edges

and that this bound is tight, exploiting a characterization which also leads to an
efficient recognition algorithm. Later, Didimo [23] observed that 2-layer 1-planar
graphs are 2-layer RAC graphs, and that the optimal graphs in these two classes
coincide. Thus, the tight bound of 3

2n − 2 edges extends to 2-layer 1-planar
graphs. For h-quasiplanar graphs, Walczak [46] provided a density upper bound
of (h − 1)(n − 1) edges, following from the fact that convex bipartite geometric
h-quasiplanar graphs can be (h − 1)-colored so that edges with the same color
do not cross. For (3-)quasiplanar graphs, the 2n − 2 bound can be improved to
2n−4 by observing that they are planar bipartite graphs. Since fan-planar graphs
are also quasiplanar, this density bound holds for 2-layer fan-planar graphs, as
well. Further, this bound is tight for both classes, since the complete bipartite
graph K2,n is 2-layer fan-planar. Note that 2-layer fan-planar graphs have been
characterized [17] and can be recognized when the graph is biconnected [17] or
a tree [16]. Another property that has been investigated in the 2-layer model is
the pathwidth. Namely, 2-layer fan-planar graphs have pathwidth 2 [16], while
2-layer graphs with at most c crossings in total have pathwidth 2c + 1 [27]; note
that both results can be extended to general layered graphs.

Our Contribution. From the above discussion it is evident that, in the wide
literature on the 2-layer model, the study of the central class of k-planar graphs
is completely missing, except for the special case k = 1. In this paper, we make
several contributions towards filling this gap. We provide tight density bounds for
2-layer k-planar graphs with k ∈ {2, 3, 4, 5} in Sect. 3. Exploiting these bounds,
we deduce a Crossing Lemma for 2-layer graphs in Sect. 4. This implies a density
upper bound for general values of k. We then show a lower bound construction
that is within a factor of 1/1.84 from the upper bound. Finally, in Sect. 5, we
investigate two additional properties. First, we prove that 2-layer 2-planar graphs
are 2-layer quasiplanar, as in the case where the vertices are not restricted to two
layers [7]. For larger k, we show a stronger relationship, namely, every 2-layer k-
planar graph is 2-layer h-quasiplanar for h =

⌈
2
3k + 2

⌉
. Second, we demonstrate

that 2-layer k-planar graphs have pathwidth at most k + 1, which is the first
result of this type, since they may have a linear number of crossings and may
not be fan-planar [10].

2 Preliminaries

The 2-Layer Model. A bipartite graph G = (U ∪̇V,E) is a graph with vertex
subsets U and V , so that E ⊆ U × V . A topological 2-layer graph is a bipartite
graph drawn in the plane so that the vertices in U and V are mapped to dis-
tinct points on two horizontal lines Lu and Lv, respectively, and the edges are
mapped to y-monotone Jordan arcs. A topological 2-layer graph can be assumed
to be simple, that is, no two adjacent edges cross each other, and every two
independent edges cross each other at most once.

Let G be a topological 2-layer graph. We denote the vertices in U and in V
as u1, . . . , up and v1, . . . , vq, respectively, in the order in which they appear in
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positive x-direction along Lu and Lv. We denote the number of vertices of G by
n = p + q and the number of edges in E by m. We call G k-planar if each edge
is crossed at most k times, and h-quasiplanar if there is no set of h pairwise
crossing edges. Further, we say that a bipartite graph G is 2-layer k-planar (h-
quasiplanar) if there exists a topological 2-layer k-planar (resp. h-quasiplanar)
graph whose underlying abstract graph is isomorphic to G.

The maximum number of edges of a graph class C is a function mC : N → N

such that (i) every n-vertex graph in C has at most mC(n) edges, and (ii) for
every n, there is an n-vertex graph in C with mC(n) edges. The (maximum
edge) density of C is a function dC : N → N such that (i) for every n, it holds
that dC(n) ≥ mC(n), and (i) there are infinitely many values of n such that
dC(n) = mC(n). We say that an n-vertex graph in C with dC(n) edges is optimal.

Note that 2-layer quasiplanar graphs are equivalent to the convex bipartite
geometric quasiplanar graphs, where vertices lie on a convex shape so that the two
partition sets are well-separated [46]. Since these graphs are planar bipartite, as
discussed in Sect. 1, and include K2,n, their density can be established using the
same argumentation as for convex bipartite geometric quasiplanar graphs in [46]:

Theorem 1. An n-vertex 2-layer quasiplanar graph has at most 2n − 4 edges
for n ≥ 3. Also, there exist infinitely many 2-layer quasiplanar graphs with n
vertices and 2n − 4 edges.

Tree and Path Decomposition. A tree decomposition of a graph G = (V,E) is
a tree T on vertices B1, . . . , Bn called bags such that the following properties
hold: (P.1) each bag Bi is a subset of V , (P.2) V =

⋃n
i=1 Bi, (P.3) for every edge

(u, v) ∈ E, there exists a bag Bi such that u, v ∈ Bi, and (P.4) for every vertex
v, the bags containing v induce a connected subtree of T . If T is a path, we call
T a path decomposition. The width of a tree decomposition T is the maximum
cardinality of any of its bags minus one, i.e., width(T ) = maxi∈{1,...,n}(|Bi|− 1).
The treewidth of a graph G is the minimum width of any of its tree decompo-
sitions, whereas the pathwidth of G is the minimum width of any of its path
decompositions.

3 Tight Density Results for Small Values of k

In this section, we establish the density of 2-layer k-planar graphs for small
values of k. We start with a preliminary observation, which follows from the fact
that the density of k-planar graphs can be upper bounded by a linear function
in n [2,40] and that the density of 2-layer 1-planar graphs is lower bounded by
3
2n − 2 [22]. This allows us to derive the following:

Lemma 1. For k ≥ 1, there exist positive rational numbers ak ≥ 3
2 and bk ≥ 0

such that (i) every n-vertex 2-layer k-planar graph has at most akn − bk edges
for n ≥ nk with nk a constant, and (ii) there is a 2-layer k-planar graph with n
vertices and exactly akn − bk edges for some n > 0.
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· · ·

· · ·
(a)

· · ·
· · ·

· · ·
(b)

Fig. 1. (a) A maximal topological 2-layer 2-planar graph that is not optimal, as shown
by the graph in (b). Differences between the two graphs are dashed blue. (Color figure
online)

We then define a useful concept for the analysis of 2-layer k-planar graphs:

Definition 1. Let G be a topological 2-layer k-planar graph and let G[i, j|x, y],
with 1 ≤ i ≤ j ≤ p and 1 ≤ x ≤ y ≤ q, be the topological subgraph of G induced
by vertices {ui, . . . , uj , vx, . . . , vy}. G[i, j|x, y] is a brick if it contains two distinct
crossing-free edges, namely (ui, vx) and (uj , vy), that are also crossing-free in G.

The smallest brick, called trivial, contains one vertex of one partition set, say
ui = uj , and two consecutive vertices of the second one, say vx and vy = vx+1.

Observation 1. Every optimal topological 2-layer k-planar graph contains pla-
nar edges (u1, v1) and (up, vq), and hence at least one brick.

Regarding the connectivity we observe the following. If a topological 2-layer
k-planar graph G is not connected, we can draw the connected components as
consecutive bricks and connect two consecutive bricks with another edge. Hence,
we conclude the following:

Observation 2. Every optimal topological 2-layer k-planar graph is connected.

Next, we establish a useful property of an optimal 2-layer k-planar graph G.

Lemma 2. Let G be an optimal topological 2-layer k-planar graph with exactly
akn − bk edges. Then G contains no vertex of degree 1 and no trivial brick.

Proof. Assume that G contains a degree-1 vertex v and consider the graph G′

obtained from G by removing v. This graph has m′ = m−1 edges and n′ = n−1
vertices. Then, m′ = akn − bk − 1 = ak(n − 1) − bk + (ak − 1), which is larger
than ak(n − 1) − bk since ak ≥ 3

2 , by Lemma 1; a contradiction.
Second, assume that G contains a trivial brick G[i, i|x, x+1]. Then, consider

the graph G′ obtained from G by identifying vertices vx and vx+1. Clearly G′

has m′ = m−1 edges (edges (ui, vx) and (ui, vx+1) coincide in G′) and n′ = n−1
vertices. This leads to the same contradiction as in the previous case. 	
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Fig. 2. Illustrations for the proof of Lemma 3.

3.1 2-Layer 2-Planar Graphs

We start with an observation about maximal topological 2-layer 2-planar graphs,
that is, in which no edge may be inserted without violating 2-planarity.

Observation 3. There exists a maximal topological 2-layer 2-planar graph that
is not optimal; see Fig. 1.

We now characterize the structure of bricks in optimal 2-layer 2-planar
graphs.

Lemma 3. Let G be an optimal topological 2-layer 2-planar graph with exactly
a2n− b2 edges and let G[i, j|x, y] be a brick of G. Then, j ≥ i+1 and y = x+1,
or j = i + 1 and y ≥ x + 1.

Proof. By Lemma 2, G[i, j|x, y] is not a trivial brick. Assume, for a contradiction,
that both y ≥ x + 2 and j ≥ i + 2. We first observe that ui is connected to some
vt �= vx, while vx is connected to some us �= ui. If this were not the case,
say if ui were only incident to vx, then a crossing-free edge (vx, ui+1) could be
inserted, contradicting the optimality of G; see Fig. 2a and recall that a brick
has no crossing-free edge, except for (ui, vx) and (uj , vy). So in the following
assume that (ui, vt) and (vx, us) belong to G[i, j|x, y], with vt �= vx and us �= ui,
such that there exists no edge (ui, vt′) with t′ > t and no edge (vx, vs′) with
s′ > s. Next, we consider ui+1 and vx+1. Assume first that ui+1 �= us and
that vx+1 �= vt. Then, all edges incident to ui+1 and vx+1 have a crossing with
(ui, vt) or (vx, us). Since (ui, vt) and (vx, us) cross each other, there can be at
most two such edges, and thus ui+1 or vx+1 has degree one; see Figs. 2b and 2c.
By Lemma 2, this contradicts the optimality of G. Hence, assume w.l.o.g. that
vx+1 = vt. Note that us �= ui+1, as otherwise the crossing-free edge (ui+1, vx+1)
could be inserted, contradicting the optimality of G. In addition, us = ui+2,
since otherwise ui+1 and ui+2 could only be incident to a total of two edges, by
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ui uj

vx vx+1

(a)

ui ui+1
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vx+1vx+2vx
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b1 b2 bβ· · ·
u1

v1
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up

vq

(d)

Fig. 3. The unique 2-layer drawings of (a) K2,4; (b) K2,2; (c) K2,3. (d) An optimal
2-layer 2-planar graph is a sequence of bricks joint at planar edges.

the same argument as above, resulting in a degree-1 vertex, which contradicts
the optimality of G. 	


By Lemma 2, both ui+1 and vx+1 have degree at least 2. Let us′ and vt′ denote
the neighbors of vx+1 and ui+1 respectively, such that s′ and t′ are maximal. First
assume that t′ �= t. If s′ = i + 1, the crossing-free edge (us, vt) can be inserted,
contradicting the optimality of G. We observe that edge (ui+1, vt′) is crossed
by edges (vx, us) and (vt, us′). If us �= u′

s, we can obtain a topological 2-layer
2-planar graph G′ by removing edge (vx, us) and inserting edges (vt, us) and
(vt, ui+1); see Fig. 2d. This clearly contradicts the optimality of G. If us = u′

s,
we can obtain a topological 2-layer 2-planar graph G′ by removing edge (ui, vt)
and inserting edges (vx, ui+1) and (vt, ui+1); see Fig. 2e. This again contradicts
the optimality of G. We conclude that t′ = t.

Since (vx, us) is crossed by edges (ui, vt) and (ui+1, vt), we conclude that
(us, vt) can be inserted without crossings, contradicting the optimality of G. 	


By Lemmas 2 and 3, we get that every brick must be a K2,h for some h ≥ 2.
The following observation shows that h ≤ 3; see also Fig. 3a:

Observation 4. The complete bipartite graph K2,4 is not 2-layer 2-planar.

We are ready to prove a tight bound for the density of 2-layer 2-planar graphs:

Theorem 2. Any 2-layer 2-planar graph on n vertices has at most 5
3n − 7

3
edges. Moreover, the optimal 2-layer 2-planar graphs with exactly 5

3n − 7
3 edges

are sequences of K2,3’s such that consecutive K2,3’s share one planar edge.

Proof. Lemmas 2 and 3, and Observation 4 imply that G contains only K2,2- and
K2,3-bricks; see Figs. 3b and 3c. Moreover, the planar edges separate G into a
sequence of β bricks (b1, . . . , bβ) such that bi and bi+1 share one planar edge. Let
β2 denote the number of K2,2-bricks. Then, G has β −β2 K2,3-bricks. Moreover,
n = 2β+2+(β−β2) = 3β−β2+2 since each of the β+1 planar edges is incident
to two distinct vertices while each K2,3-brick contains an additional vertex; see
Fig. 3c. Finally, m = β+1+2β2+4(β−β2) = 5β−2β2+1 since every K2,2-brick
contains two non-planar edges while every K2,3-brick contains four. For a fixed
value of n, β = 1

3n + 1
3β2 − 2

3 and the density is m = 5
3n − 1

3β2 − 7
3 . This is

clearly maximized for β2 = 0. Hence, the maximum density is m = 5
3n− 7

3 which
is tightly achieved for graphs in which every brick is a K2,3. 	
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Fig. 4. A family of 3-planar graphs on n = 2p vertices with 2n− 4 edges. (Color figure
online)
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Fig. 5. (a) A family of 4-planar graphs on n = 2p vertices with 2n − 3 edges. (b) A
triple of pairwise crossing edges and at most 4 additional edges separates an optimal
2-layer 4-planar graph into graphs G1 and G2.

3.2 2-Layer 3-Planar Graphs

Next, we give a tight bound on the density of 2-layer 3-planar graphs. We first
present a lower bound construction:

Theorem 3. There exist infinitely many 2-layer 3-planar graphs with n vertices
and 2n − 4 edges.

Proof. We describe a family of graphs where p = q; refer to Fig. 4. Each graph
has the following edges: (ui, vi) for 1 ≤ i ≤ p (red edges in Fig. 4); (ui, vi+1) for
1 ≤ i ≤ p − 1, and (ui, vi−1) for 2 ≤ i ≤ p (green edges in Fig. 4); (ui, vi+2) for
1 ≤ i ≤ p − 2 (dashed blue edges in Fig. 4). Vertices u1, up−1, v2 and vp have
degree 3, up and v1 have degree 2, and all other vertices have degree 4, yielding
4n − 8 for the sum of the vertex degrees and hence 2n − 4 edges. 	


The following theorem provides the corresponding density upper bound:

Theorem 4. Let G be a topological 2-layer 3-planar graph on n vertices. Then
G has at most 2n−4 edges for n ≥ 3. Moreover, if G is optimal, it is quasiplanar.

Proof (Sketch). We show that optimal 2-layer 3-planar graphs are quasiplanar,
which implies the statement, by Theorem 1. 	


3.3 2-Layer 4-Planar Graphs

We first present a lower bound construction for this class of graphs:

Theorem 5. There exist infinitely many 2-layer 4-planar graphs with n vertices
and 2n − 3 edges.
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Fig. 6. (a) A family of 5-planar graphs on n = 2p vertices with 9
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S with n = 8 vertices and m = 14 > 9
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· 8 − 9
2

= 13.5 edges.
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Fig. 7. (a) A triple (ui, vy), (us, vt), (uj , vx) of pairwise crossing edges and at most six
other edges separates an optimal 2-layer 5-planar graph into subgraphs G1 and G2. If
G1 consists of a single edge, (b) there can be edges (us, vz), (us, vz′), (vt, uh), (vt, uh′),
in which case (c) G2 consists of a graph G′

2, vertices uj , vy and at most four of the
green edges. (Color figure online)

Proof. We describe a family of graphs where p = q; see Fig. 5a. Each topological
graph G consists of a sequence (b1, . . . , bβ) of K3,3-bricks such that bi and bi+1

share a planar edge for 1 ≤ i ≤ β − 1. Then G has n = 4β + 2 vertices and
m = 8β + 1 = 2n − 3 edges. 	


Next, we provide a matching upper bound.

Theorem 6. Any 2-layer 4-planar graph on n vertices has at most 2n−3 edges.

Proof (Sketch). We first prove that in an optimal topological 2-layer 4-planar
graph G, every triple of pairwise crossing edges is such that removing the triple
and at most four other edges separates G into two subgraphs G1 and G2 as
shown in Fig. 5b. Based on this observation, we apply induction on the number
of such triples in G. Note that in the base case, i.e., no triples of pairwise crossing
edges exist, the graph is quasiplanar. 	


3.4 2-Layer 5-Planar Graphs

We first provide a lower bound construction for this class of graphs:

Theorem 7. There exist infinitely many 2-layer 5-planar graphs with n vertices
and 9

4n − 9
2 edges.
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Proof. We augment the construction from Theroem 5 by a path of length β − 1,
where β is the number of K3,3 subgraphs; see the dashed blue edges in Fig. 6a.
The obtained graph has n = 4β + 2 vertices and m = 9β = 9

4n − 9
2 edges. 	


For the specific value n = 8, we can provide a denser lower bound construc-
tion.

Observation 5. There exists a topological 2-layer 5-planar graph S with n = 8
vertices and m = 14 > 9

4n − 9
2 edges; see Fig. 6b.

We show that the graph S is in fact an exception, by demonstrating that the
lower bound construction in Theorem 7 is tight for all other values of n.

Theorem 8. Any 2-layer 5-planar graph on n ≥ 3 vertices has at most 9
4n − 9

2
edges, except for graph S which has 8 vertices and 14 edges.

Proof (Sketch). First observe that the theorem is clearly fulfilled if G = S.
Otherwise, we apply an argument similar to the proof of Theorem 6. Namely,
we first prove that if there is a triple of pairwise crossing edges in an optimal
topological 2-layer 5-planar graph, the removal of few edges separates the graph
into two components G1 and G2; see Fig. 7a. We then apply induction on the
number of such triples in G. In particular, we consider some special cases, namely
G1 could be S or a single edge; see also Fig. 7b. In the latter case, we also
investigate the structure of graph G2 in more careful detail to prove our result;
see also Fig. 7c. 	


4 A Crossing Lemma and General Density Bounds

In this section we generalize the well-known Crossing Lemma [6,29,36] to a meta
Crossing Lemma for general graphs (Theroem 9), which also yields a density
upper bound for k-planar graphs. We denote by R a restriction on graphs, e.g.,
R can be “bipartite” or “2-layer”. We assume that for a fixed t > 0, there are
αi, βi ∈ R for i ∈ {0, . . . , t − 1} such that m ≤ αin − βi is an upper bound
for the number of edges in R-restricted i-planar graphs. Let α :=

∑t−1
i=0 αi and

β :=
∑t−1

i=0 βi. The proof of the next theorem follows the probabilistic technique
of Chazelle, Sharir and Welzl (see e.g. [5, Chapter 35]).

Theorem 9. Let G be a simple R-restricted graph with n ≥ 4 vertices and
m ≥ 3α

2t n edges. The following inequality holds for the crossing number cr(G):

cr(G) ≥ 4t3

27α2

m3

n2
. (1)

The meta Crossing Lemma is used to obtain the following theorem regarding
the density. We follow closely the proof for corresponding statements for k-planar
and bipartite k-planar graphs [2,9].
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Fig. 9. Illustrations for the proof of Theroem 12.

Theorem 10. Let G be a simple R-restricted k-planar graph with n ≥ 4 vertices
for some k ≥ t. Then

m ≤ max

{

1,

√
3
2t

√
k

}

· 3α

2t
n.

We apply Theorem 9 and 10 to 2-layer k-planar graphs for t = 6. By [23],
Theorems 2, 4, 6 and 8, we have (α0, α1, α2, α3, α4, α5) = (1, 3

2 , 5
3 , 2, 2, 9

4 ), yield-
ing α = 125

12 . By substituting the numbers in Theroem 9 we obtain the following.

Corollary 1. Let G be a simple 2-layer graph with n ≥ 4 vertices and m ≥ 125
48 n

edges. Then, the following inequality holds for the crossing number cr(G):

cr(G) ≥ 4.608
15.625

m3

n2
≈ 0.295

m3

n2
.

By plugging the result into Theorem 10 we obtain.

Corollary 2. Let G be a simple 2-layer k-planar graph with n ≥ 4 vertices for
some k > 5. Then

m ≤ max
{

125
48

,
125
96

√
k

}
· n.

Note that for 2-layer 6-planar graphs, Corollary 2 certifies that m ≤ 3.19n.
We can show that there is only a gap of 0.69n towards an optimal solution:

Theorem 11. There exist infinitely many 2-layer 6-planar graphs with n ver-
tices and 5

2n − 6 edges.
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Fig. 10. A set of h pairwise crossing edges in a topological 2-layer graph.

Proof. We augment the construction from Theorem 7 by a path of length β − 1,
where β is the number of K3,3 subgraphs; refer to the dotted blue path in Fig. 8.
The obtained graph has n = 4β + 2 vertices and m = 10β − 1 = 5

2n − 6 edges. 	

In the next theorem, we additionally show that the multiplicative constant

from Colloary 2 is within a factor of 1.84 of the optimal achievable upper bound.

Theorem 12. For any k, there exist infinitely many 2-layer k-planar graphs
with n vertices and m =

⌊√
k/2

⌋
n − O(f(k)) ≈ 0.707

√
kn − O(f(k)) edges.

Proof (Sketch). We choose p = q and a parameter � = √k/2�. We connect
vertex ui to the � vertices vi+1 . . . , vi+� and vertex vi to vertices ui+1 . . . , ui+�.
Note that by symmetry, ui is also incident to the � vertices vi−1 . . . , vi−� and
vertex vi to vertices ui−1 . . . , ui−�. Clearly, this gives the density bound in the
statement of the theorem. Then, we consider an edge (ui, vi+r) and the crossings
it forms with edges incident to some other vertices; see Fig. 9. This allows us to
establish that each edge has at most k crossings. 	


5 Properties of 2-Layer k-Planar Graphs

In this section, we present some properties of 2-layer k-planar graphs.
In Theorem 4, we have established that every optimal 2-layer 3-planar graph

is (3-)quasiplanar, which is also the case in the general, non-layered, drawing
model [15]. A more general relationship between the classes of k-planar and h-
quasiplanar graphs was uncovered in [7], where it is proven that every k-planar
graph is (k + 1)-quasiplanar, for every k ≥ 2. Next, we show that for 2-layer
drawings an even stronger relationship holds.

Theorem 13. For k ≥ 3, every 2-layer k-planar graph is 2-layer
⌈
2
3k + 2

⌉
-

quasiplanar. Further, every 2-layer 2-planar graph is 2-layer (3-)quasiplanar.

Proof. Let G be a topological 2-layer k-planar graph, with k ≥ 3, which we
assume w.l.o.g. to be connected. Suppose for a contradiction that G contains
h := � 2

3k + 2� mutually crossing edges (u′
i, v

′
h+1−i) for 1 ≤ i ≤ h in G, such

that u′
1, . . . , u

′
h and v′

1, . . . , v
′
h appear in this order in u1, . . . , up and v1, . . . , vq,

respectively. Observe that (u′
1, v

′
h) and (v′

1, u
′
h) have h − 1 crossings from this
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Fig. 11. Illustrations for the proof of Theorem 14.

h-tuple. Moreover, both endvertices of all the h − 2 edges (u′
i, v

′
h+1−i), for i =

2, . . . , h − 1, are located in regions bounded by e(1) := (u′
1, v

′
h) and e(2) :=

(v′
1, u

′
h); see Fig. 10. Since G is connected, for each 2 ≤ i ≤ h − 1, the edge

(u′
i, v

′
h+1−i) is adjacent to another edge ei. Note that either ei = ej for some

j �= i, and ei crosses e(1) and e(2), or ei �= ej for all j �= i, and ei crosses
one of e(1) and e(2). This implies h − 2 additional crossings for {e(1), e(2)}, and,
consequently, e(1) or e(2) is crossed by at least h − 1 + �(h − 2)/2� edges. We
obtain h − 1 + �(h − 2)/2� ≥ 3

2h − 2 ≥ 3
2

(
2
3k + 2

) − 2 = k + 1 crossings for e(1)

or e(2), a contradiction.
For the case k = 2, assume that G contains three mutually crossing edges

e1 = (u′
1, v

′
3), e2 = (u′

2, v
′
2) and e3 = (u′

3, v
′
1), such that u′

1, u
′
2, u

′
3 and v′

1, v
′
2, v

′
3.

appear in this order in u1, . . . , up and v1, . . . , vq, respectively. As e1 and e3 are
already crossed twice, e2 represents a connected component; contradiction. 	


Next, we show that the pathwidth of 2-layer k-planar graphs is bounded by
k + 1. We point out that similar results are known for layered graphs with a
bounded total number of crossings [27] and for layered fan-planar graphs [16],
and that these bounds do not have any implication on 2-layer k-planar graphs.

Theorem 14. Every 2-layer k-planar graph has pathwidth at most k + 1.

Proof. Let G be a topological 2-layer k-planar graph with parts U and V . We first
define a total ordering ≺ on the edges as follows: We say that edge e1 = (ui, vx)
precedes edge e2 = (uj , vy), or e1 ≺ e2, if ui, uj ∈ U and either (i) i < j, or (i)
i = j and x < y. Let E = (e1, . . . , em) be the set of edges ordered with respect
to ≺. Let ei = (us, vt) be an edge and let vy be a vertex in V . Further let ey−

and ey+ be the first and the last edge incident to vy in ≺, respectively. We call
vy related to ei if vy is incident to an edge crossing ei and if y− < i < y+. For
every edge ei = (us, vt) ∈ E, we construct a bag Bi that contains us, vt and all
the (at most k) related vertices of ei. Then, we connect Bi to bags Bi−1 and
Bi+1 (if they exist), obtaining a path of bags P .

In the following we show that P is a valid path decomposition of G. Since
we assigned at most k + 2 vertices to each bag of P the width of P is at most
k + 1. Properties P.1 and P.3 of a tree decomposition are fulfilled for P by
construction. We may assume that G is connected, otherwise we compute a
path decomposition for each connected component and link the obtained vertex
disjoint paths. Hence also P.2 is fulfilled. Moreover, by the choice of ≺, all the
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edges incident to a vertex ui ∈ U occur in a consecutive sequence, i.e. ui is
incident to edges ej , . . . , ek for some 1 ≤ j ≤ k ≤ m and then ui appears in all
of bags Bj , . . . , Bk, which is a subpath of P . Therefore, Property P.4 also holds
for all vertices in U .

It remains to show that Property P.4 holds for every vertex vy ∈ V . Let ey− =
(uy′ , vy) and ey+ = (uy′′ , vy). Note that each of the edges ey− , ey−+1, . . . , ey+ is
either incident to vy (see Fig. 11a), or it crosses one of ey− and ey+ , since its
endvertex in U is some ui with y′ ≤ i ≤ y′′; see Figs. 11b to 11d. Note that
for the endvertex vz in V necessarily z > y if ui = uy′ or z < y if ui = uy′′

by definition of ≺; see Fig. 11c or Fig. 11d, respectively. Hence vy belongs to all
bags By− , By−+1, . . . , By+ and P.4 holds. The statement follows. 	


6 Conclusions

We gave results for 2-layer k-planar graphs regarding their density, relationship
to 2-layer h-quasiplanar graphs, and pathwidth. Tight density bounds for 2-layer
k-planar graphs with k = 6 may be achievable following similar arguments to the
proof of Theorem 8, which would also improve upon our results for the Crossing
Lemma, and in turn on the density for general k. Moreover, a better lower bound
for general k may exist. The relationship to other beyond-planar graph classes
is also of interest. With respect to the pathwidth, we conjecture that our upper
bound is tight. Finally, the recognition and characterization of 2-layer k-planar
graphs remain important open problems.
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40. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997). https://doi.org/10.1007/BF01215922

41. Ringel, G.: Ein Sechsfarben problem auf der Kugel. Abh. Math. Sem. Univ. Hamb.
29, 107–117 (1965). https://doi.org/10.1007/BF02996313

42. Sugiyama, K.: Graph drawing and applications for software and knowledge engi-
neers. In: Series on Software Engineering and Knowledge Engineering, vol. 11.
WorldScientific (2002). https://doi.org/10.1142/4902

43. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. SMC-11 11(2), 109–125
(1981). https://doi.org/10.1109/TSMC.1981.4308636

44. Suk, A., Walczak, B.: New bounds on the maximum number of edges in k-quasi-
planar graphs. Comput. Geom. 50, 24–33 (2015)

https://doi.org/10.1007/978-1-4614-0110-0_10
https://doi.org/10.1145/3301281
https://doi.org/10.1145/3301281
https://doi.org/10.1007/s00453-007-9151-1
https://doi.org/10.1016/j.dam.2012.11.019
https://doi.org/10.2307/2319261
https://doi.org/10.1007/s00453-014-9890-8
https://doi.org/10.1016/j.dam.2018.08.018
https://doi.org/10.1016/j.dam.2018.08.018
https://doi.org/10.1002/jgt.21630
https://doi.org/10.1002/jgt.21630
https://doi.org/10.1007/s00454-006-1264-9
https://doi.org/10.1007/978-3-540-44400-8_24
https://doi.org/10.1007/BF01215922
https://doi.org/10.1007/BF02996313
https://doi.org/10.1142/4902
https://doi.org/10.1109/TSMC.1981.4308636


2-Layer k-Planar Graphs 419

45. Valtr, P.: On geometric graphs with no k pairwise parallel edges. Discrete Comput.
Geom. 19(3), 461–469 (1998)

46. Walczak, B.: Old and new challenges in coloring graphs with geometric repre-
sentations. In: Archambault, D., Tóth, C.D. (eds.) Graph Drawing and Network
Visualization - 27th International Symposium, GD 2019, Prague, Czech Repub-
lic, 17–20 September 2019, Proceedings. Lecture Notes in Computer Science, vol.
11904. Springer, Heidelberg (2019). Invited talk



Planarity



Planar Rectilinear Drawings of
Outerplanar Graphs in Linear Time

Fabrizio Frati(B)

Roma Tre University, Rome, Italy
frati@dia.uniroma3.it

Abstract. We show how to test in linear time whether an outerpla-
nar graph admits a planar rectilinear drawing, both if the graph has a
prescribed plane embedding and if it does not. Our algorithm returns a
planar rectilinear drawing if the graph admits one.

1 Introduction

Planar orthogonal graph drawings with a minimum number of bends have been
studied for decades. In 1987, Tamassia [20] proved that, for an n-vertex planar
graph with a prescribed plane embedding, a planar orthogonal drawing with the
minimum number of bends can be constructed in polynomial time, thereby estab-
lishing a result that lies at the very foundations of the graph drawing research
area. The running time of Tamassia’s algorithm is O(n2 log n), which has been
improved to O(n7/4

√
log n) [11] and then to O(n3/2) by Cornelsen and Karren-

bauer [4]. However, achieving a linear running time is still an elusive goal.
Bend minimization in the variable embedding setting is a much harder prob-

lem; indeed, Garg and Tamassia [12] proved that testing whether a graph admits
a planar orthogonal drawing with zero bends is NP-hard. However, some nat-
ural restrictions on the input make the problem tractable. A successful story
is the one about n-vertex degree-3 planar graphs. Di Battista et al. [5] proved
that, for such graphs, a planar orthogonal drawing with the minimum number
of bends can be constructed in O(n5 log n) time. After some improvements [3,9],
a recent breakthrough result by Didimo et al. [8] has shown that O(n) time is
indeed sufficient. Di Battista et al. [5] also presented an O(n4)-time algorithm for
minimizing the number of bends in a planar orthogonal drawing of an n-vertex
biconnected series-parallel graph. This result was first extended to not necessar-
ily biconnected series-parallel graphs by Bläsius et al. [1] and then improved to
an O(n3 log n) running time by Di Giacomo et al. [6].

Evidence has shown that the bend-minimization problem is not much eas-
ier if one is only interested in the construction of planar orthogonal drawings
with zero bends; these are also called planar rectilinear drawings (see Figs. 1(a)
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)c()b()a(

Fig. 1. (a) An outerplanar rectilinear drawing. (b) A planar rectilinear drawing of
an outerplanar graph G. The graph G has no outerplanar rectilinear drawing. (c) An
outerplanar graph G that has no 3-cycle and no planar rectilinear drawing.

and 1(b) for two such drawings). Namely, the cited NP-hardness proof of Garg
and Tamassia [12] is designed for planar rectilinear drawings. Further, almost
every efficient algorithm for testing the existence of planar rectilinear draw-
ings [14,17,19] has been eventually subsumed by an algorithm in the more gen-
eral bend-minimization scenario [8,18,21]. A notable exception is that of planar
graphs with a fixed embedding, for which the fastest known algorithms for the
bend-minimization problem and for the rectilinear-planarity testing problem run
in O(n3/2) time [4] and in O(n log3 n) time [2,20], respectively.

In this paper, we show that the existence of a planar rectilinear drawing
can be tested in O(n) time for an n-vertex outerplanar graph. Our algorithm
is constructive and covers both the fixed and the variable embedding scenar-
ios, where the previously best known time bounds were O(n log3 n) [2,20] and
O(n3 log n) [6], respectively; our algorithm also allows us to test in O(n) time
whether an n-vertex outerplanar graph admits an outerplanar rectilinear draw-
ing. Given how common it is to study outerplanar graphs for a problem which
is too difficult or too computationally expensive on general planar graphs, it is
surprising that a systematic study of planar orthogonal and rectilinear drawings
of outerplanar graphs has not been done before. The only result we are aware of
that is tailored for outerplanar graphs is the one by Nomura et al. [16], which
states that an outerplanar graph with maximum degree 3 admits a planar recti-
linear drawing if and only if it does not contain any 3-cycle. This characterization
is not true for outerplanar graphs with vertices of degree 4; see, e.g., Fig. 1(c).

We outline our algorithm for the variable embedding setting.
The first, natural, idea is to reduce the problem to the 2-connected case. This

reduction builds on (an involved version of) a technique introduced by Didimo
et al. [8] that, roughly speaking, allows us to perform postorder traversals of
the block-cut-vertex tree of the graph in total linear time so that each edge is
traversed in both directions; during these traversals, information is computed
that allows us to decide whether solutions for the subproblems associated to the
blocks of the graph can be combined into a solution for the entire graph. This
reduction to the 2-connected case comes at the expense of having to solve a
harder problem, in which some vertices of the graph have restrictions on their
incident angles in the sought planar rectilinear drawing.
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An analogous technique allows us to reduce the problem to the case in which
the input 2-connected graph has a prescribed edge that is required to be incident
to the outer face. The role that in the previous reduction is played by the block-
cut-vertex tree is here undertaken by the “extended dual tree” of the outerplanar
graph. Each edge of this tree is dual to an edge of the outerplanar graph; the
latter edge splits the outerplanar graph into two smaller outerplanar graphs.
These are the sub-instances whose solutions might be combined into a solution
for the entire graph; whether this combination is possible is decided based on
information that is computed during the traversals of the extended dual tree.

The core of our algorithm consists of an efficient solution for the problem
of testing whether a 2-connected outerplanar graph admits a planar rectilinear
drawing in which a prescribed edge is required to be incident to the outer face.
Our starting point is a characterization of the positive instances in terms of
the existence of a sequence of numerical values satisfying some conditions; these
values represent certain geometric angles of a planar rectilinear drawing. Some of
these numerical values can be chosen optimally, based on recursive solutions to
smaller subproblems; further, a constant number of them have to be chosen in all
possible ways; finally, we reduce the problem of finding the remaining numerical
values to the one of testing for the existence of a set of integers, each of which is
required to be in a certain interval, so that a linear equation on these integers is
satisfied. We characterize the solutions to the latter problem so that not only it
can be solved efficiently, but a solution can be modified in constant time if the
interval associated to each integer changes slightly; this change corresponds to
a different edge chosen to be incident to the outer face.

Together with our submission to GD 2020, another paper on the rectilinear-
planarity testing problem was accepted to the same conference. Namely, Didimo
et al. [7] presented an O(n)-time algorithm which tests whether an n-vertex 2-
connected series-parallel graph with fixed embedding admits a planar rectilinear
drawing; the techniques by Didimo et al. are different from ours.

In what follows, we assume w.l.o.g. that every considered graph is connected
and has maximum degree 4. Because of space limitations, we only present our
algorithm for outerplanar graphs with a variable embedding. We also neglect the
construction of planar rectilinear drawings and focus on testing their existence.
Finally, all proofs are omitted and deferred to the full version of the paper [10].

2 Preliminaries

A block of a connected graph G is a maximal 2-connected subgraph of G; it is
trivial if it is a single edge and non-trivial otherwise. The BC-tree T of G [13,15] is
the tree that has a B-node for each block of G and a C-node for each cut-vertex of
G; a B-node b and a C-node c are adjacent in T if c lies in the block corresponding
to b (we often identify a C-node and the corresponding cut-vertex).

A drawing of a graph maps each vertex to a point in the plane and each edge
to a curve between its endpoints. A drawing is planar if no two edges cross and
it is rectilinear if each edge is either a horizontal or a vertical segment. A planar
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Fig. 2. The extended dual tree (represented by white disks and thick lines) of an
outerplane embedding of a 2-connected outerplanar graph.

drawing divides the plane into topologically connected regions, called faces; the
only unbounded face is the outer face, while all the other faces are internal.

Two planar drawings Γ1 and Γ2 of a connected planar graph G are equivalent
if: (i) for each vertex w of G, the clockwise order of the edges incident to w is
the same in Γ1 and Γ2; and (ii) the clockwise order of the edges incident to the
outer face is the same in Γ1 and Γ2. A plane embedding is an equivalence class of
planar drawings. Two drawings that correspond to the same plane embedding
have faces delimited by the same walks, hence we often speak about faces of a
plane embedding. We denote by f∗

E the outer face of a plane embedding E .
Two planar rectilinear drawings of a 2-connected planar graph G are equiv-

alent if they correspond to the same plane embedding E and if, for every face
f of E and for every vertex w incident to f , the angle at w in f is the same in
both drawings. A rectilinear representation of G is an equivalence class of pla-
nar rectilinear drawings of G. A rectilinear representation is hence a pair (E , φ),
where E is a plane embedding of G and φ is a function that assigns an angle
φ(w, f) ∈ {90◦, 180◦, 270◦} to every pair (w, f) such that w is a vertex incident
to a face f of E . For a rectilinear representation (E , φ) and a vertex u incident
to f∗

E , we denote by φint(u) the sum of the internal angles incident to u, that is,
φint(u) =

∑
f φ(u, f), where the sum is over all the internal faces f of E incident

to u. For planar graphs that are not 2-connected, the notions of equivalence
between planar rectilinear drawings and of rectilinear representation are similar,
however a vertex w might have several occurrences w1, . . . , wx on the boundary
of a face f , hence φ assigns an angle to every pair (wk, f), for k ∈ {1, . . . , x};
further, the value 360◦ is admissible for φ(wk, f).

An outerplanar drawing is a planar drawing such that all the vertices are
incident to the outer face. An outerplane embedding is an equivalence class of
outerplanar drawings. A graph is outerplanar if it admits an outerplanar draw-
ing. The extended dual tree T of an outerplane embedding O of an n-vertex
2-connected outerplanar graph is obtained from the dual graph of O by replac-
ing the vertex corresponding to f∗

O with n new degree-1 nodes. See Fig. 2.
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Fig. 3. A 2-connected outerplanar graph G rooted at uv. The uv-subgraphs of G are
colored gray; G2 and G3 are trivial, while G1, G4, G5, and G6 are not.

3 Testing Algorithm for Outerplanar Graphs

In this section, we show how to test in O(n) time whether an n-vertex outerpla-
nar graph G with a variable embedding admits a planar rectilinear drawing. In
Sect. 3.1, we assume that G is 2-connected and that an edge of G is prescribed to
be incident to the outer face. In Sect. 3.2, we get rid of the second assumption.
In Sect. 3.3, we get rid of the first assumption.

3.1 2-Connected Outerplanar Graphs with a Prescribed Edge

Let G be an n-vertex 2-connected outerplanar graph, let O be its outerplane
embedding, let uv be an edge incident to f∗

O, and let χ be a set of degree-2
vertices of G. A χ-constrained representation of G is a rectilinear representation
(E , φ) of G such that, for every vertex x ∈ χ and every face f of E incident to x,
we have φ(x, f) ∈ {90◦, 270◦}. We now show how to test in O(n) time whether
G admits a χ-constrained representation (E , φ) in which uv is incident to f∗

E .
The reason for introducing this seemingly artificial problem is the following.

Consider an outerplanar graph H and assume that H contains a degree-4 cut-
vertex v that belongs to two non-trivial blocks Hb1 and Hb2 of H. For i = 1, 2, in
any plane embedding of H, the two edges of Hbi incident to v are consecutive in
clockwise order around v. Hence, in the restriction of a rectilinear representation
of H to Hbi , the angles incident to v are 90◦ and 270◦. In Sect. 3.3, we will use
the algorithm that tests whether a block Hbi of a simply-connected outerplanar
graph H admits a χ-constrained representation as one of the main ingredients
for testing whether H admits a rectilinear representation.

We say that uv is the root of G. Let C∗
uv = (u = u0, u1, . . . , uk = v) be the

cycle delimiting the internal face of O incident to uv; see Fig. 3. The blocks of
the graph obtained from G by removing the edge uv are the uv-subgraphs of G.
These are denoted by G1, . . . , Gk, where the root of Gi is ui−1ui. The assumption
that uv is incident to the outer face of the desired plane embedding E ensures
that C∗

uv lies in the outer face of each uv-subgraph Gi of G in E . Conversely,
each uv-subgraph Gi of G might lie inside or outside C∗

uv in E .
A χ-constrained representation (E , φ) in which the root uv is incident to

f∗
E and the angles φint(u) and φint(v) are equal to μ and ν, respectively, is

called a (χ, μ, ν)-representation of G. We show how to test, for any μ, ν ∈
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Fig. 4. A planar rectilinear drawing of the outerplanar graph G in Fig. 3.

{90◦, 180◦, 270◦}, whether G admits a (χ, μ, ν)-representation. The following
lemma is one of the main ingredients for our algorithm. For i = 1, . . . , k, let
χi := χ ∩ V (Gi). An in-out assignment is an assignment of each non-trivial
uv-subgraph Gi of G either to the inside or to the outside of C∗

uv. Refer to Fig. 4.

Lemma 1. For any μ, ν ∈ {90◦, 180◦, 270◦}, we have that G admits a (χ, μ, ν)-
representation if and only if there exist an in-out assignment A and a sequence
of values ρ0, ρ1, μ1, ν1, ρ2, μ2, ν2, . . . , ρk, μk, νk in {0◦, 90◦, 180◦, 270◦} so that the
following properties are satisfied.

(V1): for i = 0, . . . , k, we have ρi ≥ 90◦; further, if ui ∈ χ, then either
ρi = 90◦ or ρi = 270◦;
(V2): for i = 1, . . . , k, if Gi is trivial then μi = νi = 0◦, otherwise μi, νi ∈
{90◦, 180◦} and Gi admits a (χi, μi, νi)-representation;
(V3): for i = 1, . . . , k − 1, we have that νi + ρi + μi+1 ≤ 270◦;
(V4): ρ0 + μ1 = μ and ρk + νk = ν; and
(V5): for i = 1, . . . , k, if Gi is trivial or is assigned by A to the outside of C∗

uv,
then σi = 0◦, else σi = μi+νi; then we have

∑k
i=0 ρi+

∑k
i=1 σi = (k−1)·180◦.

Let (E , φ) be a rectilinear representation of G and let fuv
E be the internal face

of E incident to uv. Then, roughly speaking, ρi represents φ(ui, f
uv
E ); further,

if Gi is non-trivial, then μi and νi represent the sums of the internal angles
incident to ui−1 and ui, respectively, in the restriction of (E , φ) to Gi.

Due to Lemma 1, our goal becomes that of testing for the existence of a
sequence ρ0, ρ1, μ1, ν1, . . . , ρk, μk, νk and of an in-out assignment A such that
Properties (V1)–(V5) are satisfied. Property (V2) implies that, for every triv-
ial uv-subgraph Gi of G, the values μi and νi can be set equal to 0◦ without
loss of generality. The values μi and νi can also be chosen “optimally” for every
non-trivial uv-subgraph Gi of G, except for G1 and Gk. This choice selects one
of the pairs (μi, νi) with μi, νi ∈ {90◦, 180◦} such that Gi admits a (χi, μi, νi)-
representation, as required by Property (V2), and has to guarantee that Prop-
erty (V3) is not violated. Subject to these constraints, the optimal pair (μi, νi)
for Gi is the one for which μi + νi is minimum. Choosing the optimal pair for
Gi only requires to check information associated to Gi−1, Gi, and Gi+1, hence
it can be done in O(1) time, and thus in O(k) time for all graphs G2, . . . , Gk−1.
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If the optimal sequence of values μ2, ν2, μ3, ν3, . . . , μk−1, νk−1 was established
(otherwise we conclude that G admits no (χ, μ, ν)-representation), then we con-
sider all the 36 ∈ O(1) tuples (μ1, ν1, μk, νk, ρ0, ρk) such that μ1, ν1, μk, νk ∈
{0◦, 90◦, 180◦} and ρ0, ρk ∈ {90◦, 180◦, 270◦}. For each of the tuples, we test in
O(1) time whether it violates Properties (V1)–(V4), and in the positive case
we discard the tuple. If we discarded all the tuples (μ1, ν1, μk, νk, ρ0, ρk), we
conclude that G admits no (χ, μ, ν)-representation. Every tuple that was not
discarded, together with the optimal sequence, forms a promising sequence. We
process each promising sequence independently and check whether it is extensi-
ble, i.e., whether there exist an in-out assignment A and values ρ1, ρ2, . . . , ρk−1

that, together with the promising sequence, satisfy Properties (V1)–(V5).
In particular, the choice of A and ρ1, ρ2, . . . , ρk−1 is done so as to satisfy

Property (V5), i.e.,
∑k

i=0 ρi +
∑k

i=1 σi = (k − 1) · 180◦, while complying with
Properties (V1) and (V3). For example, if a vertex ui belongs to χ, then we
need to set either ρi = 90◦ or ρi = 270◦. Recall that the sum μi + νi is now
fixed, for i = 1, . . . , k. Suppose, for example, that μi + νi = 360◦. If A assigns
Gi to the inside of C∗

uv, this contributes 360◦ to the sum
∑k

i=1 σi, otherwise it
contributes 0◦. Let a be the number of uv-subgraphs for which μi + νi = 360◦;
then A can assign any 0 ≤ a′ ≤ a of such graphs to the inside of C∗

uv, and this
will contribute a′ · 360◦ to the sum

∑k
i=1 σi. Similar considerations allow us to

reduce the problem of testing for the extensibility of a promising sequence to the
problem of deciding whether integer values 0 ≤ a′ ≤ a, 0 ≤ b′ ≤ b, 0 ≤ c′ ≤ c,
and 0 ≤ d′ ≤ d exist such that 4a′ + 3b′ + 2c′ + d′ = t, where a, b, c, d, and t are
given integers inherent to the values of the promising sequence; the values a, b,
c, d, and t can be computed in O(k) time from the promising sequence.

If t is “very small” or “very large”, then the existence of the values a′, b′, c′,
and d′ can be decided in O(1) time by means of exhaustive search. For values of
t that are neither too small nor too large, we characterize the positive instances
a, b, c, d, t as the ones satisfying a certain (constant size) boolean formula. For
example, if d ≥ 3, a solution to 4a′ + 3b′ + 2c′ + d′ = t subject to 0 ≤ a′ ≤ a,
0 ≤ b′ ≤ b, 0 ≤ c′ ≤ c, and 0 ≤ d′ ≤ d always exists, while if d = 2 it exists if
and only if b > 0, or c > 0, or t �≡ 3 mod 4.

This concludes the description of our algorithm to test whether G admits
a (χ, μ, ν)-representation. The algorithm runs in O(k) time, assuming that the
pairs (μi, νi) with μi, νi ∈ {90◦, 180◦} such that each uv-subgraph Gi of G
admits a (χi, μi, νi)-representation are known. In particular, once the values
μ1, ν1, . . . , μk, νk, ρ0, ρk, a, b, c, d, t have been computed, the algorithm concludes
the test in O(1) time (for each promising sequence).

We now use this algorithm inductively on the subgraphs of G. Namely, we
root the extended dual tree T of the outerplane embedding of G at the leaf r∗

such that the edge of T incident to r∗ is dual to uv. Then, for any internal node
s of T , let Gs be the subgraph of G dual to the subtree of T rooted at s, let
χs = χ∩V (Gs), and let s1, . . . , sk be the children of s in T . We use the described
algorithm to determine in O(k) time the pairs (μ, ν) with μ, ν ∈ {90◦, 180◦, 270◦}
such that Gs admits a (χs, μ, ν)-representation, starting from the pairs (μi, νi)
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with μi, νi ∈ {0◦, 90◦, 180◦} such that Gsi admits a (χsi , μi, νi)-representation,
for i = 1, . . . , k. This results in the following.

Theorem 1. Let G be an n-vertex 2-connected outerplanar graph, uv be an edge
incident to the outer face of the outerplane embedding of G, and χ be a subset
of the degree-2 vertices of G. There is an O(n)-time algorithm which tests, for
any values μ, ν ∈ {90◦, 180◦, 270◦}, whether G admits a (χ, μ, ν)-representation.

By independently considering all the pairs (μ, ν) with μ, ν ∈
{
90◦, 180◦,

270◦}, Theorem 1 also allows us to test whether a χ-constrained representation
of G exists such that uv is incident to the outer face.

3.2 2-Connected Outerplanar Graphs

We now get rid of the assumption that there is a prescribed edge uv incident to
the outer face of the rectilinear representation we seek, while maintaining the
assumption that the input n-vertex outerplanar graph G is 2-connected. We are
again required to look for χ-constrained representations.

Our O(n)-time algorithm to solve this problem will actually perform a more
general task. Namely, our algorithm will label every vertex u of G whose
degree is not larger than 3 with a set γ(u) which contains all the values
μ ∈ {90◦, 180◦, 270◦} such that G admits a χ-constrained representation (E , φ)
in which u is incident to f∗

E and φint(u) = μ.
First, we reduce the problem of computing the labels γ(u) to the problem

of computing labels Ns→t and Nt→s for each edge st of the extended dual tree
T of the outerplane embedding O of G. The label Ns→t is defined as follows
(the label Nt→s is defined symmetrically). Refer to Fig. 5. Let uv be the edge of
G dual to st. The removal of the edge st splits T into two trees. Let Ts→t be
the one containing s. If s is an internal node of T , then let Gs→t be the graph⋃

x∈Ts→t
Cx, where Cx is the cycle of G delimiting the face of O dual to the node

x of T . If s is a leaf of T , then let Gs→t be the edge uv. In both cases, Gs→t is
rooted at uv. Let χs→t = χ ∩ V (Gs→t). If s is an internal node of T , then Ns→t

contains all the pairs (μ, ν) with μ, ν ∈ {90◦, 180◦, 270◦} such that Gs→t admits
a (χs→t, μ, ν)-representation, while if s is a leaf, then Ns→t = {(0◦, 0◦)}.

The sets γ(u) can be easily recovered from the labels Ns→t. Let
u1v1, . . . , unvn be the edges of G incident to f∗

O, in any order. The labels Ns→t

are computed by means of n postorder traversals of T ; during the h-th traversal,
T is rooted at the leaf r∗

h such that the edge r∗
hrh incident to r∗

h is dual to uhvh.
When processing a node s with parent t during one of the traversals, we

compute the label Ns→t. The computation of Ns→t exploits the values of the
already computed labels Ns1→s, . . . ,Nsk→s, where s1, . . . , sk are the neighbors
of s in T different from t. This is the problem we solved in Sect. 3.1! Namely, we
want to compute the pairs (μ, ν) with μ, ν ∈ {90◦, 180◦, 270◦} such that Gs→t

admits a (χs→t, μ, ν)-representation (these define Ns→t), starting from the pairs
(μi, νi) with μi, νi ∈ {0◦, 90◦, 180◦} such that Gsi→s admits a (χsi→s, μi, νi)-
representation (these define Ns1→s, . . . ,Nsk→s). When Nsi→s = ∅, in
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Fig. 5. (a) The graph G (represented with thin lines and black disks) and the extended
dual tree T (represented with thick lines and white disks) of the outerplane embedding
O of G. (b) The graph Gs→t and the tree Ts→t. (c) The graph Gt→s and the tree Tt→s.

particular, we also have Ns→t = ∅. That is, the non-existence of a (χsi→s, μi, νi)-
representation of Gsi propagates towards the root of T in the current traversal.

Clearly, we cannot afford to perform each traversal independently of the other
ones, as this would result in a quadratic running time. Then, as in [8], we re-
use the already computed labels Ns→t; this implies that a postorder traversal is
not invoked on a tree Ts→t if the label Ns→t has been computed by a previous
traversal. As a result, during the traversals of T , each edge is traversed at most
once in each direction and each node with degree k is processed O(k) times.
Differently from [8], we need to handle the possibility that, when a node s of
T is visited in a traversal after the first one, we might not have the sets Nsi→s

ready, even for most children of s. This is a consequence of the propagation of the
empty sets Ns→t described above. Indeed, we cannot even afford to look at all the
children si of s and see which sets Nsi→s have already been computed and which
have not; if the degree of s is k, this would take Ω(k) time whenever we visit s
(potentially k times), which would again result in a quadratic running time.

We cope with this problem by using, for each node of T , some auxiliary labels
that are dynamically computed during the traversals. For example, a label η(s)
points to a neighbor si of s for which Nsi→s = ∅, two labels start(s) and
end(s) delimit the interval of neighbors of s for which an optimal pair has
already been computed, and a label a(s) stores the number of computed optimal
pairs (μi, νi) such that μi + νi = 360◦. The labels allow us to quickly determine
which sets Nsi→s have already been computed and which have not, and to invoke
a traversal recursively on the subtrees Tsi→s for which the sets Nsi→s have not
been computed yet. Some labels (for example a(s)) store aggregate information
on the values of the optimal pairs for the graphs Gsi→s. Thus, when the sets
Nsi→s have been computed for all the children si of s, and we are hence in a
position to apply the algorithm described in Sect. 3.1, we do not have to spend
O(k) time to compute the values a, b, c, d, and t, but we can extract them from
the labels associated to s in O(1) time, and then decide in O(1) time whether a
solution to the equation 4a′ +3b′ +2c′ +d′ = t subject to 0 ≤ a′ ≤ a, 0 ≤ b′ ≤ b,
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Fig. 6. (a) A graph G and its BC-tree T . The cut-vertices of G are empty disks; the
blocks of G are surrounded by gray regions. (b) The graphs Gbi→c and the trees Tbi→c,
for i = 1, 2, 3, where c is a C-node and b1, b2, and b3 are its adjacent B-nodes in T .

0 ≤ c′ ≤ c, and 0 ≤ d′ ≤ d exists; this ultimately determines whether a pair
(μ, ν) belongs to Ns→t. We obtain the following.

Theorem 2. Let G be an n-vertex 2-connected outerplanar graph and χ be a set
of degree-2 vertices of G. There is an O(n)-time algorithm that labels every vertex
u of G whose degree is not larger than 3 with a set γ(u), which contains all the
values μ ∈ {90◦, 180◦, 270◦} such that G admits a χ-constrained representation
(E , φ) in which u is incident to f∗

E and φint(u) = μ.

3.3 General Outerplanar Graphs

In this section we remove the assumption that the input graph is 2-connected
and show how to test whether an n-vertex outerplanar graph G admits a planar
rectilinear drawing in O(n) time. Consider the BC-tree T of G [13,15] and denote
by Gb the block corresponding to a B-node b.

We now define a set χb for every non-trivial block Gb of G. We initialize
χb = ∅. Then, for every cut-vertex c that is shared by two non-trivial blocks Gb1

and Gb2 of G, we add c to both χb1 and χb2 . This concludes the construction of
the sets χb. The next lemma justifies our study of χ-constrained representations.

Lemma 2. For any non-trivial block Gb of G, the restriction to Gb of any rec-
tilinear representation of G is a χb-constrained representation of Gb.

Refer to Fig. 6. Consider any edge bc of T , where b is a B-node and c is a C-
node. The removal of bc splits T into two trees. Let Tb→c be the one containing
b. Let Gb→c be the subgraph of G composed of the blocks corresponding to
B-nodes in Tb→c. Let χb→c be the restriction of χ to the vertices of Gb→c.

We present an O(n)-time algorithm that computes, for every edge bc of T
where b is a B-node and c is a C-node, a set Nb→c, which contains all the val-
ues μ ∈ {0◦, 90◦, 180◦, 270◦} such that Gb→c admits a rectilinear representation
(Eb→c, φb→c) in which c is incident to f∗

Eb→c
and φint

b→c(c) = μ.
Let b be a B-node of T , let ci be a C-node adjacent to b, and let bi,1, . . . , bi,m(i)

be the B-nodes adjacent to ci and different from b. We say that ci is a
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friendly neighbor of b if, for every j = 1, . . . ,m(i), we have that Nbi,j→ci ∩
{0◦, 90◦, 180◦} �= ∅ and Gb is trivial, or we have that Nbi,j→ci ∩ {0◦, 90◦} �= ∅
and Gb is non-trivial.

Determining the set Nb→c for every edge bc of T is sufficient for determining
whether G admits a rectilinear representation.

Lemma 3. We have that G admits a rectilinear representation if and only if
there exists a B-node b∗ in T such that: (i) if Gb∗ is non-trivial, then it admits
a χb∗-constrained representation; and (ii) every neighbor of b∗ in T is friendly.

The first step of our algorithm for computing the sets Nb→c labels, for each
non-trivial block Gb of G, each vertex v of Gb whose degree in Gb is smaller than
or equal to 3 with a set γb(v); this set contains all the values μ ∈ {90◦, 180◦, 270◦}
such that Gb admits a χb-constrained representation (Eb, φb) in which v is inci-
dent to f∗

Eb
and φint

b (v) = μ. By Theorem 2, this can be done in O(nb) time for
each non-trivial block Gb of G with nb vertices, and hence in O(n) time for all
the non-trivial blocks of G. Further, for each trivial block Gb of G, we label each
end-vertex c of Gb with a set γb(c) = {0◦}.

For each leaf b of T , we then have Nb→c = γb(c). If b is an internal node of
T , in order to compute Nb→c, our algorithm exploits the following tool.

Lemma 4. Let b be an internal B-node of T and let c be a C-node of T adjacent
to b. Further, let c1, . . . , ch be the C-nodes adjacent to b and different from c; for
i = 1, . . . , h, let bi,1, . . . , bi,m(i) be the B-nodes adjacent to ci and different from
b. Finally, let μ ∈ {0◦, 90◦, 180◦, 270◦}. We have that μ ∈ Nb→c if and only if
μ ∈ γb(c) and ci is a friendly neighbor of b, for every i = 1, . . . , h.

Similarly to Sect. 3.2, we construct the sets Nb→c by performing several
traversals of T . Some auxiliary labels are used also in this case, namely η(b)
points to a neighbor ci of b that is not friendly and ξ(b) tells us whether every
neighbor, or almost every neighbor, of b is friendly. Lemma 4 is used in order to
propagate the values Nb→c in the tree. We obtain the following main theorem.

Theorem 3. There is an O(n)-time algorithm that tests whether an n-vertex
outerplanar graph admits a planar rectilinear drawing.

4 Conclusions

In this paper, we proved that the existence of a planar rectilinear drawing of
an outerplanar graph can be tested in linear time, both if the plane embedding
of the outerplanar graph is prescribed and if it is not. We conclude with two
natural generalizations of the questions we answered in this paper. Is it possible
to determine in O(n) time the minimum number of bends for a planar orthogonal
drawing of an n-vertex outerplanar graph? Is it possible to test in O(n) time
whether an n-vertex series-parallel graph admits a planar rectilinear drawing?
Didimo et al. [7] proved that the latter question has a positive answer for 2-
connected series-parallel graphs with fixed embedding.
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Abstract. A plane graph is rectilinear planar if it admits an embedding-
preserving straight-line drawing where each edge is either horizontal or
vertical. We prove that rectilinear planarity testing can be solved in opti-
mal O(n) time for any plane series-parallel graph G with n vertices. If G
is rectilinear planar, an embedding-preserving rectilinear planar drawing
of G can be constructed in O(n) time. Our result is based on a charac-
terization of rectilinear planar series-parallel graphs in terms of intervals
of orthogonal spirality that their components can have, and it leads to
an algorithm that can be easily implemented.

Keywords: Orthogonal drawings · Rectilinear planarity testing ·
Series-parallel graphs

1 Introduction

A planar orthogonal drawing Γ of a planar graph G is a crossing-free drawing of G
that maps each vertex to a distinct point of the plane and each edge to a sequence
of horizontal and vertical segments between its end-points [4,10,15]. A graph is
rectilinear planar if it admits a planar orthogonal drawing without bends.

Testing whether a graph is rectilinear planar is a fundamental question in
graph drawing. The problem can be either studied for plane graphs, that is
graphs that come with a fixed embedding, or in the variable embedding setting,
where the algorithm can choose one of the planar embeddings of the input graph.
Besides being an interesting topic on its own right, rectilinear planarity testing
is at the core of efficient algorithms that compute orthogonal drawings with
minimum number of bends. For example, Rahman et al. [18] characterize the
rectilinear plane 3-graphs (i.e., graphs with vertex degree at most three) and then
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use this characterization to design linear time bend-minimization algorithms for
these graphs in the fixed embedding setting [16,17]. On the other hand, Garg
and Tamassia [12] prove that rectilinear planarity testing is NP-complete for
planar 4-graphs in the variable embedding setting. Remarkably, the study of
rectilinear plane 3-graphs has turned out to be an essential tool to design linear-
time rectilinear planarity testing and bend-minimization algorithms for planar
3-graphs in the variable embedding setting [9,14].

In this paper we study rectilinear planarity testing in the fixed embedding
setting. A seminal paper of Tamassia [19] implies that in this setting the problem
can be solved in O(n2 log n), where n is the number of vertices of the input
graph; its approach is based on solving a min-cost flow network problem to
compute a bend-minimum orthogonal drawing of the input graph. Since its time
of publication, establishing a lower bound on the time complexity of computing
bend-minimum orthogonal drawings of plane graphs has remained a fascinating
open problem (see, e.g., [2,4,7]). Garg and Tamassia [13] improve the complexity
to O(n

7
4
√

log n) and then Cornelsen and Karrenbauer [3] further improve the
upper bound to O(n1.5). For rectilinear planarity testing, the approach in [19]
reduces to compute a maximum flow in an n-vertex planar network with multiple
sources and sinks; Borradaile et al. [1] prove that this problem can be solved
in O(n log3 n) time. Since, as already mentioned, an O(n)-time algorithm for
rectilinear planarity testing is known when the input is a plane 3-graph, the
challenge is to understand whether an O(n)-time bound exists for plane 4-graphs.

This paper sheds some light on this question by answering it for series-parallel
graphs. An essential aspect of our approach is to tackle the problem without
using any network-flow computation. Our results are as follows:

(i) We give a characterization of those plane series-parallel graphs (with two ter-
minals s and t) that are rectilinear planar. This characterization is expressed
in terms of values of spirality that each series or parallel component can have
in a rectilinear drawing. Intuitively, the spirality of a component measures
how much it can be “rolled-up” in a rectilinear drawing of the graph.

(ii) While the possible values of spirality for each component may be linear, we
can encode them in constant space. This makes it possible to design a linear-
time rectilinear planarity testing algorithm for a two-terminal series-parallel
graph G based on a bottom-up visit of its decomposition tree T . If the test
is positive, we compute in linear time a rectilinear drawing of G through a
top-down visit of T . The algorithm is easy to implement.

The paper is organized as follows. Section 2 recalls basic concepts. Section 3
gives our characterization of rectilinear planar series-parallel graphs in terms of
their orthogonal spirality. Section 4 describes the linear-time testing and drawing
algorithm. Section 5 lists some open problems. For space restrictions some proofs
are sketched or omitted and can be found in [8].

Together with our submission to GD 2020, another paper by Frati [11] was
accepted to the same conference. The work of Frati is based on a different tech-
nique and it presents an O(n)-time algorithm for rectilinear planarity testing
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of outerplanar graphs. While the result of [11] does not apply to the family of
graphs that are studied in this paper, it covers the variable embedding setting
and the case of 1-connected outerplanar graphs.

2 Preliminaries

Orthogonal Representations. We focus on orthogonal representations rather
than orthogonal drawings. An orthogonal representation H describes the shape
of a class of orthogonal drawings in terms of sequences of bends along the edges
and angles at the vertices. An (orthogonal) drawing Γ of H can be computed in
linear time [19]. If H has no bend, it is a rectilinear representation (see Fig. 1(b)).
The degree deg(v) of a vertex v denotes the number of edges incident to v.

Series-Parallel Graphs and Decomposition Trees. A two-terminal series-
parallel graph, also called series-parallel graph in the rest of the paper, has two
distinct vertices s and t, called its source and its sink, respectively, and it is
inductively defined as follows: (i) A single edge (s, t) is a series-parallel graph
with source s and sink t. (ii) Given p ≥ 2 series-parallel graphs G1, . . . , Gp, each
Gi with source si and sink ti (i = 1, . . . , p), a new series-parallel graph G can
be obtained with any of these two operations: Series composition – It identifies
ti with si+1 (i = 1, . . . , p − 1); G has source s = s1 and sink t = tp. Parallel
composition – It identifies all sources si together and all sinks ti together; G has
source s = si and t = ti (i = 1, . . . , p).

A series-parallel graph G is naturally associated with a decomposition tree T ,
which describes the series and parallel compositions that build G. Tree T has
three types of nodes: S-, P-, and Q∗-nodes. If G is the series composition of p ≥ 2
graphs Gi that are not all single edges, the root of T is an S-node whose subtrees
are the decomposition trees Ti of Gi. If G is the parallel composition of p ≥ 2
graphs Gi, the root of T is a P-node whose subtrees are the decomposition trees
Ti of Gi. If G is a series composition of � ≥ 1 edges, its decomposition tree is a
single Q∗-node and for brevity we say that � is the length of this node.

For a node ν of T , the pertinent graph Gν of ν is the series-parallel subgraph
of G formed by all edges associated with the Q∗-nodes in the subtree rooted
at ν. We also call Gν a component of G. If u and v are the source and the sink
of Gν , respectively, we say that {u, v} are the poles of Gν and of ν: u is the
source pole and v is the sink pole. If G is a biconnected plane series-parallel
graph, for any edge e = (s, t) on the external face of G, we can associate with
G a decomposition tree T where the root is a P-node representing the parallel
composition between e and the rest of the graph. Thus, the root of T is always
a P-node with two children, one of which is a Q∗-node corresponding to e. It
will be called the (unique) Pr-node of T , to distinguish it by the other P-nodes.
Edge e is the reference edge of T and T is the SPQ∗-tree of G with respect to e.
Also, it is always possible to make T such that each P-node (distinct from the
root) has no P-node child and each S-node has no S-node child. Since we only
deal with graphs of vertex-degree at most four, a P-node has either two or three
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Fig. 1. (a) A biconnected series-parallel graph G. (b) A rectilinear planar representa-
tion H of G. (c) The SPQ∗-tree T of G with reference edge (1, 33).

children. From now on we assume that T always satisfies the properties above
for a biconnected series-parallel graph. Observe that the number of nodes of T
is O(n), where n is the number of vertices of G. Figure 1 shows a biconnected
series-parallel graph G, a rectilinear planar representation H of G, and the SPQ∗-
tree T of G with respect to the reference edge (1, 33).

3 Characterizing Rectilinear Plane Series-Parallel Graphs

Let G be a plane series-parallel graph. If G is biconnected let e = (s, t) be
any edge on the external face of G; otherwise, by definition of two-terminal
series-parallel graph, we can add a dummy edge e on the external face of G
to make it biconnected. We assume that the external face of G is to the right
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of e while moving from s to t (as in Fig. 1(b)). Let T be an SPQ∗-tree of
G with respect to e. An overview of our algorithm is as follows. It visits T
in post-order (a node is visited after its children). When the algorithm visits
a node ν, it tests whether Gν admits a planar rectilinear representation by
checking whether a certain condition, which we call representability condition,
is verified: In the negative case, the algorithm halts and rejects the instance;
else it stores in ν its representability interval Iν . Such an interval is a compact
representation of the possible values of orthogonal spirality that the pertinent
graph Gν of ν may have in a rectilinear representation of G. Informally speaking,
the orthogonal spirality is a measure of how much a rectilinear representation
of pertinent graph Gν is “rolled-up” in a rectilinear planar representation of
G. As we shall see, the representability interval is such that for every value
k ∈ Iν graph Gν admits a planar rectilinear representation with spirality k,
while it does not for any value outside Iν . If the testing algorithm does not
halt and it reaches the root, two cases are considered: If e is a real edge of G,
then the algorithm executes a final test to check whether a rectilinear planar
representation of G can be obtained by merging a straight-line representation of
e with a rectilinear representation of the child component of the root other than
e. If e is a dummy edge added to make G biconnected this check is not required,
because e is not present in the final representation and can arbitrarily bend.

We now present the characterization of the rectilinear planar components in
terms of representability conditions and intervals that is at the base of the test-
ing algorithm. We start in Sect. 3.1 with a formal definition of spirality. We
characterize Q∗-, S-, and P-components with three children in Sect. 3.2, and
P-components with two children in Sect. 3.3. We summarize in Sect. 3.4.

3.1 Spirality of Series-Parallel Graphs

Let T be an SPQ∗-tree of a biconnected plane series-parallel graph G for a
given reference edge e = (s, t). Let H be an embedding-preserving orthogonal
representation of G. Also, let ν be a node of T with poles {u, v}, and let Hν be
the restriction of H to the pertinent graph Gν of ν. We also say that Hν is a
component of H. For each pole w ∈ {u, v}, let indegν(w) and outdegν(w) be the
degree of w inside and outside Hν , respectively. Define two (possibly coincident)
alias vertices of w, denoted by w′ and w′′, as follows: (i) if indegν(w) = 1,
then w′ = w′′ = w; (ii) if indegν(w) = outdegν(w) = 2, then w′ and w′′ are
dummy vertices, each splitting one of the two distinct edge segments incident
to w outside Hν ; (iii) if indegν(w) > 1 and outdegν(w) = 1, then w′ = w′′ is a
dummy vertex that splits the edge segment incident to w outside Hν .

Let Aw be the set of distinct alias vertices of a pole w. Let Puv be any
simple path from u to v inside Hν and let u′ ∈ Au and v′ ∈ Av. The path Su′v′

obtained concatenating (u′, u), Puv, and (v, v′) is called a spine of Hν . Denote by
n(Su′v′

) the number of right turns minus the number of left turns encountered
along Su′v′

while moving from u′ to v′. The spirality σ(Hν) of Hν is defined based
on the following cases: (a) Au = {u′} and Av = {v′}. Then σ(Hν) = n(Su′v′

).
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(b) Au = {u′} and Av = {v′, v′′}. Then σ(Hν) = n(Su′v′
)+n(Su′v′′

)
2 . (c) Au =

{u′, u′′} and Av = {v′}. Then σ(Hν) = n(Su′v′
)+n(Su′′v′

)
2 . (d) Au = {u′, u′′} and

Av = {v′, v′′}. Without loss of generality, assume that (u, u′) precedes (u, u′′)
counterclockwise around u and that (v, v′) precedes (v, v′′) clockwise around v.

Then σ(Hν) = n(Su′v′
)+n(Su′′v′′

)
2 . Notice that, by definition, the spirality of Hν

also depends on the angles at the poles of Hν , not only on the shape of Hν .
Di Battista et al. [5] showed that the spirality of Hν does not vary with the

choice of path Puv and that two distinct representations of Gν with the same
spirality are interchangeable. Figure 2 reports the spiralities of some P- and S-
components in the representation H of Fig. 1(b). For brevity, we shall denote
by σν the spirality of an orthogonal representation of Gν .
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Fig. 2. Spiralities (left-bottom corners) of some components in the representation H
of Fig. 1(b). Small squares indicate alias vertices.

Lemma 1 ([5]). Let ν be an S-node of T with children μ1, . . . , μh. The following
relationship holds: σν =

∑h
i=1 σμi

.

If ν is a P-node with two children, we denote by μl and μr the left child and
the right child of ν, respectively. If ν is a P-node with three children, we denote
by μl, μc, and μr, the three children of ν from left to right. Also, for each pole
w ∈ {u, v} of ν, the leftmost angle at w in H is the angle formed by the leftmost
external edge and the leftmost internal edge of Hν incident to w. The rightmost
angle at w in H is defined symmetrically. We define two binary variables αl

w and
αr

w as follows: αl
w = 0 (αr

w = 0) if the leftmost (rightmost) angle at w in H is of
180◦, while αl

w = 1 (αr
w = 1) if this angle is of 90◦. Observe that if deg(w) = 4,

then αl
w = αr

w = 1. Also, if ν has two children, define two additional variables
kl

w and kr
w as follows: kd

w = 1 if indegμd
(w) = outdegν(w) = 1, while kd

w = 1/2
otherwise, for d ∈ {l, r}.

For example, in Fig. 2 the P-component of ν4 has poles u = 4 and v = 13,
and we have kl

u = kr
v = 1, kr

u = kl
v = 1

2 , and αl
u = αr

u = αl
v = αr

v = 1. The
P-component of ν10 has poles u = 6 and v = 13, and we have kl

u = kr
u = 1,
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kl
v = kr

v = 1
2 , αl

u = 0, and αr
u = αl

v = αr
v = 1. Figure 3 reports all the values of

kd
w for the possible types of P-nodes with two children.

Lemma 2 ([5]). Let ν be a P-node of T with two children μl and μr. The
following relationships hold: σν = σμl

− kl
uαl

u − kl
vαl

v = σμr
+ kr

uαr
u + kr

vαr
v.

Lemma 3 ([5]). Let ν be a P-node of T with three children μl, μc, and μr. The
following relationships hold: σν = σμl

− 2 = σμc
= σμr

+ 2.

About the values of spirality σν that a component Hν can take, if ν is a Q∗-
node or a P-node with three children, σν is always an integer. If ν is an S-node
or a P-node with two children, σν is either integer or semi-integer depending on
whether the total number of alias vertices for the poles of ν is even or odd.

3.2 Q∗-nodes, S-nodes, and P-nodes with Three Children

From now on, when we say that the spirality σν of an orthogonal planar rep-
resentation of Gν can take all values in an interval [a, b], we mean that such
values are either all the integer numbers or all the semi-integer numbers in [a, b],
depending on the cases described above for ν.

Lemma 4. Let ν be a Q∗-node of length �. Graph Gν is always rectilinear planar
(i.e., its representability condition is always true) and its representability interval
is Iν = [−� + 1, � − 1].

Proof. Gν is a path with �−1 degree-2 vertices. For any integer k ∈ [−�+1, 0], a
rectilinear planar representation Hν of Gν with spirality k is obtained by making
a left turn at k degree-2 vertices of Gν (going from the source to the sink pole),
and no turn at any remaining vertex of Gν . Symmetrically, for any k ∈ (0, �−1],
we realize Hν with spirality k by making a right turn at exactly k degree-2
vertices of Gν . It is clear that no values of spirality out of Iν can be achieved. �

Lemma 5. Let ν be an S-node with h children μ1, . . . , μh. Suppose that, for
every i ∈ [1, h], the representability interval of Gμi

is Iμi
= [mi,Mi]. Graph Gν

is always rectilinear planar (i.e., its representability condition is always true)
and its representability interval is Iν = [

∑h
i=1 mi,

∑h
i=1 Mi].

Proof. We use induction on the number of children of ν. In the base case h = 2.
By hypothesis Iμ1 = [m1,M1] and Iμ2 = [m2,M2]. By Lemma 1, a series compo-
sition of a rectilinear representation of Gμ1 with spirality σμ1 and of a rectilinear
representation of Gμ2 with spirality σμ2 results in a rectilinear representation of
Gν with spirality σν = σμ1 +σμ2 . Hence, if M1 = m1 +r1 and M2 = m2 +r2, for
two non-negative integers r1 and r2, then the possible values for σν are exactly
m1 + m2,m1 + 1 + m2, . . . ,m1 + r1 + m2, . . . ,m1 + r1 + m2 + 1, . . . ,m1 +
r1 + m2 + r2, i.e., all values in the interval [m1+m2,M1+M2]. In the inductive
case h ≥ 3; consider the series composition G′

1 of Gμ1 , . . . , Gμh−1 . Graph Gν is
the series composition of G′

1 and Gμ2 . By inductive hypothesis the representabil-
ity interval of G′

1 is [
∑h−1

i=1 mi,
∑h−1

i=1 Mi] and by Lemma 1 applied to G′
1 and

Gμ2 we have Iν = [
∑h

i=1 mi,
∑h

i=1 Mi], using the same reasoning as for the base
case. �
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Lemma 6. Let ν be a P-node with three children μl, μc, and μr. Suppose that
Gμl

, Gμc
, and Gμr

are rectilinear planar and that their representability intervals
are Iμl

= [ml,Ml], Iμc
= [mc,Mc], and Iμr

= [mr,Mr], respectively. Graph Gν

is rectilinear planar if and only if [ml−2,Ml−2] ∩ [mc,Mc]∩[mr+2,Mr+2] �= ∅.
Also, if this representability condition holds then the representability interval of
Gν is Iν = [max{ml − 2,mc,mr + 2},min{Ml − 2,Mc,Mr + 2}].

Proof. Representability Condition. Suppose first that Gν is rectilinear planar and
let Hν be a rectilinear planar representation of Gν with spirality σν . By Lemma 3,
the spiralities σμl

, σμc
, and σμr

for the representations of Gμl
, Gμc

, and Gμr
in

Hν are such that σμl
= σν +2, σμc

= σν , and σμr
= σν −2. Since σμl

∈ [ml,Ml],
σμc

∈ [mc,Mc], σμr
∈ [mr,Mr], we have σν ∈ [ml −2,Ml −2] ∩ [mc,Mc] ∩ [mr +

2,Mr + 2]. Suppose vice versa that [ml−2,Ml−2] ∩ [mc,Mc] ∩ [mr + 2,Mr + 2] �=
∅, and let k be any value in such intersection. Setting σμl

= k + 2, σμc
= k, and

σμr
= k − 2 we have σμl

∈ [ml,Ml], σμc
∈ [mc,Mc], and σμr

∈ [mr,Mr]. By
Lemma 3, Gν is rectilinear planar for a value of spirality σν = k.

Representability Interval. Assume that Gν is rectilinear planar. Clearly [max{ml −
2,mc,mr + 2},min{Ml − 2,Mc,Mr + 2}] = [ml − 2,Ml − 2] ∩ [mc,Mc] ∩
[mr + 2,Mr + 2], and by the truth of the feasiblity condition we have
[max{ml − 2,mc,mr + 2},min{Ml − 2,Mc,Mr + 2}] �= ∅. Similarly to the first
part of the proof of the representability condition, any rectilinear planar repre-
sentation of Gν has a value of spirality in the interaval [max{ml − 2,mc,mr +
2},min{Ml −2,Mc,Mr +2}]. On the other hand, let k ∈ [max{ml −2,mc,mr +
2},min{Ml −2,Mc,Mr +2}]. Analogously to the second part of the proof of the
representability condition, we can construct a rectilinear planar representation
of Gν with spirality σν = k, by combining in parallel rectilinear planar repre-
sentations of Gμl

, Gμc
, and Gμr

with spiralities σμl
= σν + 2, σμc

= σν , and
σμr

= σν − 2, respectively. �

3.3 P-nodes with Two Children

For a P-node ν with two children μl and μr, the representability condition and
interval depend on the indegree and outdegree of the poles of ν in Gν , Gμl

, and
Gμr

. We define the type of ν and of Gν as follows (refer to Fig. 3):

– I2Oαβ : Both poles of ν have indegree two in Gν ; also one pole has outdegree
α in Gν and the other pole has outdegree β in Gν , for 1 ≤ α ≤ β ≤ 2. This
gives rise to the specific types I2O11, I2O12, and I2O22.

– I3dOαβ : One pole of ν has indegree two in Gν , while the other pole has
indegree three in Gν and indegree two in Gμd

for d ∈ {l, r}; also one pole has
outdegree α in Gν and the other has outdegree β in Gν , for 1 ≤ α ≤ β ≤ 2,
where α = β = 2 is not possible. This gives rise to the specific types I3lO11,
I3rO11, I3lO12, I3rO12.

– I3dd′ : Both poles of ν have indegree three in Gν ; one of the two poles has
indegree two in Gμd

and the other has indegree two in Gμd′ , for dd′ ∈
{ll, lr, rr} (both poles have outdegree one in Gν). Hence, the specific types
are I3ll, I3lr, I3rr.
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Fig. 3. Schematic illustration of the different types of P-nodes with two children.

To characterize P-nodes of type I2Oαβ we start with the following result.

Lemma 7. Let Gν be a P-node of type I2Oαβ with children μl and μr. Gν is
rectilinear planar if and only if Gμl

and Gμr
are rectilinear planar for values of

spiralities σμl
and σμr

such that σμl
− σμr

∈ [2, 4 − γ], where γ = α + β − 2.

Sketch of Proof. We only give the proof for α = β = 2. The other cases are
treated similarly (see [8]). In this case Gν is of type I2O22 and we prove that Gν

is rectilinear planar if and only if Gμl
and Gμr

are rectilinear planar for values
of spiralities σμl

and σμr
such that σμl

− σμr
= 2. We have kl

u = kr
u = 1

2 . If
Gν is rectilinear planar, we have that αl

u + αr
u = αl

v + αr
v = 2. By Lemma 2,

σμl
= σν + 1 and σμr

= σν − 1; hence σμl
− σμr

= 2.
Suppose vice versa that σμl

− σμr
= 2. We show that Gν admits a recti-

linear planar representation Hν . We obtain Hν by combining in parallel the
two rectilinear planar representations of Gμl

and Gμr
and by suitably setting

αd
u and αd

v (d ∈ {l, r}). For any cycle C through u and v, the number of 90◦

angles minus the number of 270◦ angles in the interior of C can be expressed
by ac = σμl

− σμr
+ 1 + 1 (both the angles at u and v inside C is always of 90◦

degrees). We then set αl
u = αl

v = αr
u = αr

v = 1, which guarantees ac = 4. Also,
any other cycle not passing through u and v is an orthogonal polygon because
it belongs to a rectilinear planar representation of either Gμl

or Gμr
.

Lemma 8. Let ν be a P-node of type I2Oαβ with children μl and μr. Suppose
that Gμl

and Gμr
are rectilinear planar with representability intervals Iμl

=
[ml,Ml] and Iμr

= [mr,Mr], respectively. Graph Gν is rectilinear planar if and
only if [ml − Mr,Ml − mr] ∩ [2, 4 − γ] �= ∅, where γ = α + β − 2. Also, if
this representability condition holds then the representability interval of Gν is
Iν = [max{ml − 2,mr} + γ

2 ,min{Ml,Mr + 2} − γ
2 ].
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Sketch of Proof. We consider the case α = β = 2. The other cases are treated
similarly (see [8]). In this case Gν is of type I2O22 and we prove that Iν =
[max{ml − 2,mr} + 1,min{Ml,Mr + 2} − 1].

Assume first that Gν is rectilinear planar and let Hν be a rectilinear planar
representation of Gν with spirality σν . Let Hμl

and Hμr
be the rectilinear planar

representations of Gμl
and Gμr

contained in Hν , and let σμl
and σμr

their
spiralities. Since both u and v have outdegree two in Gν we have that αl

u +αr
u =

αl
v +αr

v = 2. By Lemma 2, σμl
= σν +1 and σμr

= σν −1. By the representability
condition σμr

= σμl
− 2. Hence σμr

≥ ml − 2 and σμr
≥ max{ml − 2,mr}. Also

by σν = σμr
+ 1, σν ≥ max{ml − 2,mr} + 1. Similarly, by the representability

condition σμl
= σμr

+2. Hence σμl
≤ Mr +2 and σμl

≤ max{Ml,Mr +2}. Since
σμl

= σν + 1 we have σν ≤ max{Ml,Mr + 2} − 1.
Assume vice versa that k is an integer in the interval Iν = [max{ml −

2,mr} + 1,min{Ml,Mr + 2} − 1]. We show that there exists a rectilinear planar
representation of Gν with spirality σν = k. We have k + 1 ∈ [max{ml,mr +
2},min{Ml,Mr + 2}] and therefore k + 1 ∈ [ml,Ml]. Hence there is a recti-
linear planar representation Hμl

of Gμl
with spirality σμl

= k + 1. Similarly,
k−1 ∈ [max{ml−2,mr},min{Ml−2,Mr}] and therefore k−1 ∈ [mr,Mr]. Hence
there is a rectilinear planar representation Hμr

of Gμr
with spirality σμr

= k−1.
By the representability condition, Gν has a rectilinear planar representation Hν ;
with the same construction as in Lemma 7, the spirality of Hν is σν = k. �

The proofs of the next lemmas are similar to Lemma 8 (see [8]).

Lemma 9. Let ν be a P-node of type I3dOαβ with children μl and μr. Suppose
that Gμl

and Gμr
are rectilinear planar with representability intervals Iμl

=
[ml,Ml] and Iμr

= [mr,Mr], respectively. Graph Gν is rectilinear planar if and
only if [ml − Mr,Ml − mr] ∩ [ 52 , 7

2 − γ] �= ∅, where γ = α + β − 2. Also, if
this representability condition holds then the representability interval of Gν is
Iν = [max{ml − 3

2 ,mr + 1} + γ−ρ(d)
2 ,min{Ml − 1

2 ,Mr + 2} − γ+ρ(d)
2 ], where ρ(·)

is a function such that ρ(r) = 1 and ρ(l) = 0.

Lemma 10. Let ν be a P-node of type I3dd′ with children μl and μr. Suppose that
Gμl

and Gμr
are rectilinear planar with representability intervals Iμl

= [ml,Ml]
and Iμr

= [mr,Mr], respectively. Graph Gν is rectilinear planar if and only if
3 ∈ [ml−Mr,Ml−mr]. Also, if this representability condition holds then the rep-
resentability interval of Gν is Iν = [max{ml − 1,mr + 2} − ρ(d)+ ρ(d′)

2 ,min{Ml −
1,Mr + 2} − ρ(d)+ ρ(d′)

2 ], where ρ(·) is a function such that ρ(r) = 1 and ρ(l) = 0.

3.4 Characterization

Lemmas 4, 5, 6, 8, 9, and 10 give rise to the following characterization.

Theorem 1. Let G be a plane series-parallel graph and let T be an SPQ∗-tree
of G. Let ν be any non-root node of T . The plane graph Gν is rectilinear planar
if and only if it satisfies the representability condition given in Table 1. Also, if
such condition is satisfied, Gν admits a rectilinear planar representation for all
and only the values of spirality in the representability interval given in Table 1.
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Table 1. Representability conditions and intervals for the different types of nodes. In
the formulas γ = α + β − 2 and ρ(·) is such that ρ(r) = 1 and ρ(l) = 0.

Q∗-node of length � – Lemma 4

Representability Condition True

Representability Interval [−� + 1, � − 1]

S-node with h children – Lemma 5

Representability Condition true

Representability Interval [
∑h

i=1 mi,
∑h

i=1 Mi]

P-node with three children – Lemma 6

Representability Condition [ml − 2, Ml − 2] ∩ [mc, Mc] ∩ [mr + 2, Mr + 2] �= ∅
Representability Interval [max{ml − 2, mc, mr + 2}, min{Ml − 2, Mc, Mr + 2}]
P-node with two children − I2Oαβ – Lemma 8

Representability Condition [ml − Mr, Ml − mr ] ∩ [2, 4 − γ] �= ∅
Representability Interval [max{ml − 2, mr} + γ

2 , min{Ml, Mr + 2} − γ
2 ]

P-node with two children − I3dOαβ – Lemma 9

Representability Condition [ml − Mr, Ml − mr ] ∩ [ 52 , 7
2 − γ] �= ∅

Representability Interval [max{ml − 3
2 , mr + 1} +

γ−ρ(d)
2 , min{Ml − 1

2 , Mr + 2} − γ+ρ(d)
2 ]

P-node with two children − I3dd′ – Lemma 10

Representability Condition 3 ∈ [ml − Mr, Ml − mr ]

Representability Interval [max{ml − 1, mr + 2} − ρ(d)+ρ(d′)
2 , min{Ml − 1, Mr + 2} − ρ(d)+ρ(d′)

2 ]

4 Rectilinear Planarity Testing Algorithm

Theorem 2. Let G be an n-vertex plane series-parallel graph. There exists an
O(n)-time algorithm that tests whether G admits a planar rectilinear represen-
tation and that constructs one in the positive case.

Proof. If G is biconnected let e be an edge of G on the external face; otherwise,
let e be a dummy edge added on the external face to make G biconnected. Let
T be an SPQ∗-tree of G with respect to e. We first show how to perform the
test in linear time. If the test is positive, we show how to efficiently construct a
rectilinear planar representation of G.
Testing Algorithm. Based on Theorem 1, the algorithm visits T in post-order
and, for each non-root node ν of T , it checks the representability condition of
ν and computes interval Iν if the condition is positive. If the representability
condition is violated for some node, the algorithm halts and returns a negative
answer. Otherwise, the algorithm reaches the root ρ of T . If e is a dummy edge,
the algorithm halts and returns a positive answer (since e will not appear in the
representation, the algorithm does not need to check anything else). If e is real,
let η be the child of ρ other than the child associated with e (see Fig. 1(c)).
To complete the test, the algorithm must check the root condition, i.e., whether
there exists a rectilinear planar representation Hη that can be merged with a
straight-line representation of e. The spirality ση that Hη must have to be merged
with e depends on the alias vertices for the poles of Gη: (i) If both these vertices
coincide with the poles then ση = 2; (ii) if exactly one of them coincides with a
pole of Gη then ση = 3 (one alias vertex subdivides e); (iii) if none of the alias
vertices coincides with a pole of Gη (they both subdivide e) then ση = 4.
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About the time complexity, each node of T is visited exactly once. By Theo-
rem 1, for each non-root node ν, the representability condition for ν is checked in
O(1) time and the representability interval of ν is computed in O(1) time. Also,
the root condition is easily checked in O(1) time. Finally, since T is computed
in O(n) time and has O(n) nodes, the whole test is executed in O(n) time.

Construction Algorithm. Suppose that the test is positive and that ση is the
spirality required by a rectilinear planar representation of Gη (if e is dummy, we
can set ση as any value in Iη). To construct a rectilinear planar representation H
of G, the algorithm visits T top-down and determine the right value of spirality
required by the component associated with each node of T . Once the spiralities
for all nodes of T are determined, H is easily defined by fixing the vertex angles
in each component as described in the proofs of Lemmas 4–6, 8–10. To compute
the spiralities for the children of η we distinguish the following cases:

Case 1: η is an S-node, with children μ1, . . . , μh (i ∈ {1, . . . , h}). Let Iμi
=

[mi,Mi] be the representability interval of μi. We must find a value σμi
∈

[mi,Mi] for each i = 1, . . . , h such that
∑h

i=i σμi
= ση. To this aim, initially

set σμi
= Mi for each i = 1, . . . , h and consider δ =

∑h
i=i σμi

− ση. By Theo-
rem 1, δ ≥ 0. If δ = 0 we are done. Otherwise, iterate over all i = 1, . . . , h and
for each i decrease both σμi

and δ by the value min{δ,Mi − mi}, until δ = 0.

Case 2: η is a P-node with three children, μl, μc, and μr. By Lemma 3, it suffices
to set σμl

= ση + 2, σμc
= ση, and σμr

= ση − 2.

Case 3: η is a P-node with two children, μl and μr. Let u and v be the poles of η.
By Lemma 2, σμl

and σμr
must be fixed in such a way that σμl

= ση+kl
uαl

u+kl
vαl

v

and σμr
= ση − kr

uαr
u − kr

vαr
v. The values of kl

u, kl
v, kr

u, and kr
v are fixed by the

indegree and outdegree of u and v. Hence, it suffices to choose the values of
αl

u, αl
v, αr

u, αr
v such that they are consistent with the type of η and they yield

σμl
∈ Iμl

and σμr
∈ Iμr

. Since each αd
w (w ∈ {u, v}, d ∈ {l, r}) is either 0 or 1

there are at most four possible combinations of values to consider.
Once the spiralities for the children of η are computed, the algorithm con-

tinues its top-down visit, and for each node ν for which a spirality σν has been
fixed, it computes the spiralities of the children of ν with same procedure as for η.
Concerning the time complexity, the procedure in Case 1 takes linear time in
the number of children of the S-node, while the procedures in Case 2 and Case 3
take constant time. Therefore the whole visit requires O(n) time.

Table 2 shows a running example based on Fig. 1. For each P- and S-
component it reports the representability interval computed in the bottom-up
visit of the tree and the spirality fixed in the top-down visit (see also Fig. 2).
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Table 2. Running example based on Fig. 1.

Node Label Node Type Repres. Interval Spirality in H

η S-node [−3, 3] 3

ν1 P-node (2 children) – I3rO11 [−2, 2] 2

ν2 S-node [−4, 4] 4

ν3 S-node [− 5
2 , 1

2 ]
1
2

ν4 P-node (2 children) – I3lr [0, 0] 0

ν5 P-node (3 children) [−1, 0] 0

ν6 P-node (2 children) – I2O12 [− 3
2 , 1

2 ]
1
2

ν7 P-node (2 children) – I2O22 [0, 0] 0

ν8 S-node [− 3
2 , 3

2 ]
3
2

ν9 S-node [− 3
2 , 3

2 ] − 3
2

ν10 P-node (2 children) – I2O12 [− 1
2 , 1

2 ]
1
2

ν11 P-node (2 children) – I2O12 [− 1
2 , 1

2 ] − 1
2

5 Conclusions and Open Problems

We proved that rectilinear planarity testing can be solved in linear time for
series-parallel graphs with two terminals. Several open problems can be studied:

OP1. Can we extend Theorem 2 to 1-connected plane 4-graphs whose bicon-
nected components are two-terminal series-parallel graphs (i.e., partial 2-trees)?
The work in [11] solves the problem for 1-connected outerplanar graphs.

OP2. What is the time complexity of rectilinear planarity testing for general
plane 4-graphs? The question is interesting even for triconnected plane 4-graphs.
A linear-time solution exists for plane 3-graphs [16,17].

OP3. Testing rectilinear planarity is NP-complete in the variable embedding
setting but it can be solved in O(n3 log n)-time for series-parallel graphs [6]. It
is interesting to determine whether this complexity bound can be improved.
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Abstract. In this paper, we present new quality metrics for dynamic
graph drawings. Namely, we present a new framework for change faith-
fulness metrics for dynamic graph drawings, which compare the ground
truth change in dynamic graphs and the geometric change in drawings.

More specifically, we present two specific instances, cluster change
faithfulness metrics and distance change faithfulness metrics. We first
validate the effectiveness of our new metrics using deformation exper-
iments. Then we compare various graph drawing algorithms using our
metrics. Our experiments confirm that the best cluster (resp. distance)
faithful graph drawing algorithms are also cluster (resp. distance) change
faithful.

1 Introduction

Quality metrics (or aesthetic criteria [3]) for graph drawings play an important
role in evaluating graph drawings as well as designing new algorithms to optimize
the metrics. Traditional quality metrics for graph drawings mainly evaluate the
readability of a drawing, such as edge crossings, edge bends, total edge length,
and angular resolution [3]. Most of these metrics focus on static graphs.

Network data are abundant in various domains, from social media to chem-
ical pathways, and they are often changing with dynamics. Compared to static
graph drawing, dynamic graph drawing brings its own challenges, such as the
preservation of the user’s mental map as the drawing evolves [12]. To evaluate
dynamic graph drawing algorithms, we need quality metrics to measure how well
a drawing of a dynamic graph reflects the changes in the graph.

Faithfulness metrics measure how faithfully the ground truth about the data
is displayed in the visualization [29]. For dynamic graphs, change faithfulness
measures how proportional the change in the drawings of dynamic graphs is to
the change in the graphs.

However, existing work on quality metrics of dynamic graph drawings, such as
preservation of the mental map [8,10,12], mainly focus on the readability metrics,
which only measure the geometric change in the drawing without considering
how well the change represents the change in the graph. Furthermore, recent
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D. Auber and P. Valtr (Eds.): GD 2020, LNCS 12590, pp. 450–465, 2020.
https://doi.org/10.1007/978-3-030-68766-3_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68766-3_35&domain=pdf
https://doi.org/10.1007/978-3-030-68766-3_35


New Quality Metrics for Dynamic Graph Drawing 451

qualitative studies have shown that mental map preservation alone may not be
sufficient to aid users in understanding dynamic graphs [1].

In this paper, we present a new framework for change faithfulness metrics
of dynamic graphs, quantitatively measuring how faithfully the ground truth
change in dynamic graphs is proportionally displayed as the geometric change
in dynamic graph drawings.

Based on the framework, we present two new quality metrics, cluster change
faithfulness metrics and distance change faithfulness metrics. We validate the
effectiveness of our new metrics using deformation experiments, and then com-
pare various graph drawing algorithms using our metrics.

More specifically, we present the following contributions:

1. We present a general change faithfulness metric framework for dynamic
graphs, which compares the ground truth change in dynamic graphs and
the geometric change in the drawings.

2. We present the cluster change faithfulness metrics CCQ as an instance of the
change faithfulness metrics, comparing the change in ground truth clustering
of dynamic graphs to the change in geometric clustering of the drawing.

3. We present the distance change faithfulness metrics DCQ as another specific
instance of the change faithfulness metrics, which compares the change in
graph theoretic distance of dynamic graphs to the change in geometric distance
of the drawing.

4. We validate the effectiveness of the cluster change faithfulness metrics and
distance change faithfulness metrics using deformation experiments on draw-
ings. Results of the experiments confirm that the CCQ and DCQ metrics
decrease as the drawings are distorted such that the change between draw-
ings are more disproportionate to the change in ground truth information.

5. We compare various graph drawing algorithms using the CCQ and DCQ met-
rics. Experiments confirm that the most cluster faithful layouts and distance
faithful layouts indeed also obtain high cluster change faithfulness and dis-
tance faithfulness respectively. Interestingly, we also discover that in some
cases, higher information faithfulness does not necessarily lead to higher
change faithfulness.

2 Related Work

2.1 Quality Metrics for Graph Drawing

Traditional aesthetic criteria [3] for graph drawings are mainly concerned with
the readability of graphs, such as the minimization of edge crossings, bends,
total edge lengths and drawing area. They have been established as criteria to
be optimized by graph drawing algorithms [3].

HCI studies have verified the correlation between aesthetic criteria with spe-
cific task performance on graphs. For example, few edge crossings [34,35] and
large crossing angles [19] are important criteria for finding shortest paths between
two vertices. However, these studies tend to focus on small graphs.
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More recently, a new concept of faithfulness metrics have been introduced for
large graphs, measuring how faithfully the ground truth information of graphs
is displayed in graph drawings [29]. Subsequently, a series of new faithfulness
metrics have been developed [11,26–28].

Shape-based metrics [11] are introduced to evaluate large graph drawings,
where traditional metrics such as edge crossings do not scale well. More specif-
ically, the metrics compare the similarity between the original graph G with a
shape graph (or proximity graph) G′ computed from a drawing D of G.

The cluster metrics CQ [26,27] measure how faithfully the ground truth
clusters of a graph is displayed in a drawing, by comparing the ground truth
clusters to the geometric clustering in a graph drawing.

The symmetry metrics [28] measure how faithfully the ground truth auto-
morphisms of a graph (rotational or axial) and automorphism groups (cyclic or
dihedral), are displayed as symmetries in a drawing, computed by approximate
symmetry detection algorithms in O(n log n) time. A O(n log n) time algorithm
for exact symmetry detection is also presented.

2.2 Quality Metrics for Dynamic Graph Drawing

A dynamic graph is defined by a sequence of static graphs G1, G2, . . . , Gk span-
ning k time steps, where Gi is a time slice of the graph at time step i [5]. Dynamic
graphs are most commonly visualized using small multiples [39] or animation.

A long standing challenge with dynamic graph drawings is preserving the
user’s mental map [12], where dramatic changes in the positions of vertices can
make it difficult for users to keep track of the state of a dynamic graph. The
mental map can be modelled using e.g.. orthogonal ordering, clustering, or topol-
ogy [12]. Related is the concept of dynamic stability, which aims to minimize the
geometric distance between subsequent drawings [6,37]. Stability has been shown
to assist users in performing analytical tasks on dynamic graphs [2].

A recent survey on dynamic graph drawing [5] addresses that evaluation
is one of the most important research questions on dynamic graph drawings.
Quantitatively, dynamic graph drawings can be evaluated using distance metrics,
including Euclidean distance, orthogonal distance, and edge routing, to measure
the extent of mental map preservation [8,10].

However, specific change faithfulness metrics for dynamic graph drawings
have yet to be developed to measure how the ground truth change in dynamic
graphs are proportionally displayed as geometric change in drawings.

3 Change Faithfulness Metric Framework

We propose the change faithfulness metric for measuring how well dynamic graph
drawings show the structural changes in dynamic graphs. Roughly speaking, a
drawing is change faithful if the extent of change in the drawing is proportional
to the extent of (ground truth) change in the graph. Figure 1 illustrates the
general framework for change faithfulness metrics.
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Fig. 1. Change faithfulness metric framework: The change faithfulness metric is com-
puted by comparing the ground truth change Δ(G1, G2) between two graphs G1 and
G2, and the geometric change Δ(D1, D2) in drawings of graphs.

In practice, the vertex set of a dynamic graph may change; in this paper we
focus on cases where only the edge set changes. Let G1 = (V,E1) and G2 =
(V,E2) be two time slices of a dynamic graph, with the change denoted as
Δ(G1, G2). The change faithfulness metrics are computed as follows:

Step 1: Compute a drawing D1 (resp. D2) of G1 (resp. G2).
Step 2: Compute the geometric change Δ(D1,D2) between D1 and D2.
Step 3: Compute the change faithfulness metrics by comparing the ground truth

change Δ(G1, G2) to Δ(D1,D2).

The framework in Fig. 1 is a general framework applicable to various
types of change in dynamic graphs. The detailed definitions for Δ(G1, G2) and
Δ(D1,D2), as well as how to compare them, depend on the nature of the con-
sidered change.

3.1 Cluster Change Faithfulness Metrics

We present the cluster change faithfulness metric CCQ as an example of a
change faithfulness metric. CCQ measures how faithfully the change in ground
truth clustering is reflected as a change in the geometric clustering between
drawings of different time slices of a dynamic graph.

Let C1 (resp. C2) be the ground truth clustering of the vertices of G1 (resp.
G2), with the change between the clusterings denoted as Δ(C1, C2). The cluster
change faithfulness is defined as follows:

Step 1: Compute a drawing D1 (resp. D2) of G1 (resp. G2).
Step 2: Compute geometric clustering C ′

1 (resp. C ′
2) based on vertex positions

in D1 (resp. D2), and compute the change in geometric clustering Δ(C ′
1, C

′
2).

Step 3: Compute CCQ by comparing Δ(C1, C2) to Δ(C ′
1, C

′
2).

To compute Δ(C1, C2) and Δ(C ′
1, C

′
2), any clustering comparison metrics can

be used. In this paper, we use ARI (Adjusted Rand Index) [20,36] and FMI
(Fowlkes-Mallows Index) [14], which showed superior performance in measuring
cluster faithfulness in static graph drawing [27]. ARI is based on the number of
pairs of elements classified into the same and different groups in two clusterings
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of the same set. FMI is computed using the number of true positives, false
positives, and false negatives.

For Step 2, any geometric clustering algorithm can be used to compute C ′
1

and C ′
2. In this paper we use k-means clustering, which partitions a set into k

subsets that minimize the within-class variance [24]. It is a widely used clustering
method with efficient heuristic approximation.

For Step 3, we define CCQ as follows:

CCQ = 1 − |Δ(C1, C2) − Δ(C ′
1, C

′
2)|

max(Δ(C1, C2),Δ(C ′
1, C

′
2))

(1)

Specifically, we take the difference between Δ(C1, C2) to Δ(C ′
1, C

′
2), and

express the difference as a fraction of the larger value between the two, as both
are normalized to the same range by using the same clustering quality metrics.
We then negate the result from 1, such that 1 represents completely change
faithful drawings and less change faithful drawings obtain values closer to 0.

3.2 Distance Change Faithfulness Metrics

We also present the distance change faithfulness metric DCQ as another instance
of change faithfulness metric. We define distance faithfulness as how faithfully
graph theoretic distances between vertices in a graph are displayed as geomet-
ric distances between the positions of vertices in a drawing. Similarly, distance
change faithfulness measures how faithfully the change in graph theoretic dis-
tances is reflected as a proportional change in the geometric distances.

Let Δ(SP1, SP2) be the change in graph theoretic distances between two
time slices of a dynamic graph, G1 and G2. More specifically, the distance change
faithfulness metric is defined as follows:

Step 1: Compute a drawing D1 (resp. D2) of G1 (resp. G2).
Step 2: Compute the change in geometric distance Δ(GD1, GD2).
Step 3: Compute DCQ by comparing Δ(SP1, SP2) to Δ(GD1, GD2).

One example measure of distance faithfulness is stress [3]. For each pair
of vertices vi, vj in a graph G, the stress is defined by the difference between
the graph theoretic distance (i.e., shortest path) between vi and vj , and the
geometric distance between the positions of vi and vj in a drawing D of G.

Using stress measures, we present two types of distance change faithfulness
metrics DCQ. The first metric DCQ1 is based on the target edge length used
in some stress-based layouts (e.g. [16]). Given a target edge length tl, we expect
neighboring vertices (i.e. path length 1) to have a geometric distance of tl. We
thus scale the geometric distance between each pair of vertices in D by tl.

Let Δ(vi, vj) = |δ1(vi, vj) − δ2(vi, vj)|/max(δ1(vi, vj), δ2(vi, vj)) and
S(vi, vj) = |s1(vi, vj) − s2(vi, vj)|/max(s1(vi, vj), s2(vi, vj)), where δ1(vi, vj)
(resp. δ2(vi, vj)) is the graph theoretic distance between vertices vi, vj in G1

(resp. G2) and s1(vi, vj) (resp. s2(vi, vj)) is the geometric distance between ver-
tices vi, vj in D1 (resp. D2). Scaling S(vi, vj) by tl to ensure the change in
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geometric distance is scaled to the target edge length, we define DCQ1 as fol-
lows:

DCQ1 = 1 − 2
|V |2

|V |∑

i=0

|V |∑

j=i+1

∣∣∣∣Δ(vi, vj) − S(vi, vj)
tl

∣∣∣∣ (2)

In practice, not every layout algorithm takes an target edge length as input.
Therefore, we instead use the average of all edge lengths as tl.

For the second type of distance change faithfulness metric DCQ2, we scale
both the graph theoretic and geometric distances by the maximum distance.
For graph theoretic distances, it is the diameter of graph G, while for geometric
distances, it is the largest distance between any pair of vertices in drawing D.

The scaled graph theoretic distance is given as δ′(i, j) = δ(vi, vj)/diam(G),
where diam(G) is the diameter of G. The scaled geometric distance is given as
s′(i, j) = s(vi, vj)/max(s), where max(s) is the maximum distance between any
two vertices in D. We define DCQ2 as follows:

DCQ2 = 1 − 2
|V |2

|V |∑

i=0

|V |∑

j=i+1

||δ′
1(i, j) − δ′

2(i, j)| − |s′
1(i, j) − s′

2(i, j)|| (3)

4 Cluster Change Faithfulness Validation Experiment

To validate the cluster change faithfulness metrics, we design deformation exper-
iments. Given two dynamic graph time slices G1 and G2 with ground truth clus-
tering C1 and C2, we start with cluster faithful drawings D1 and D2, i.e. the
geometric clustering C ′

1 of D1 (resp. C ′
2 of D2) is the same as C1 (resp. C2). This

gives Δ(C1, C2) = Δ(C ′
1, C

′
2), i.e. cluster change faithful.

We then progressively deform drawing D2. In each experiment, we perform
10 steps of deformation, where in each step, the coordinates of each vertex from
the previous step are perturbed by a value in the range [0, δ], where δ is the size
of the drawing area multiplied by a value in the range [0.05,0.1]. We compute
CCQ and compare the scores across all steps of the deformation.

We expect that CCQ will decrease with the deformation steps, as Δ(C ′
1, C

′
2)

will grow further away from Δ(C1, C2). We formulate the following hypothesis:

Hypothesis 1. CCQARI and CCQFMI decrease as D2 is deformed.

We generate ten dynamic graph data sets for the CCQ validation experiment,
with 200–1000 vertices each, as follows: First, we create a small graph (up to
30 vertices). We replace each vertex with a larger, denser graph, which becomes
a cluster in G1. We then replace each edge with inter-cluster edges between a
randomly selected subset of vertices from each cluster. To create G2, we change
the cluster membership of vertices, either by merging clusters through randomly
adding inter-cluster edges until a desired density for the new cluster is achieved,
or splitting clusters by deleting edges between two partitions of the cluster until
a desired lower intra-cluster edge density is reached.
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(a) D1 (b) D2 step 0 (c) D2 step 3 (d) D2 step 10

Fig. 2. Deformation experiment for clusts − tree − 30, showing deformation steps.

Fig. 3. Average of CCQ for all validation experiments. The decreasing trend for all
versions of CCQ validates Hypothesis 1.

To compute the initial layouts, we use the Backbone layout from Visone [4],
which produces cluster faithful layouts (i.e. CQ = 1) for our validation datasets.
We use cluster comparison metric implementation from scikit-learn [33].

Figure 2 shows a deformation experiment example, where vertices are colored
based on ground truth cluster membership. Figures 2 (a) and (b) show D1 and
D2 at step 0. As the positions are perturbed in Figs. 2 (c) and (d), vertices in the
same cluster grow further apart and mix with vertices from other clusters, mak-
ing the drawing less cluster faithful and subsequently increasing the difference
between the geometric clustering in D1 and D2.

Figure 3 shows the average CCQ scores for each deformation step, averaged
for all data sets. Clearly, we can see that CCQ metrics decrease after each
deformation step, validating Hypothesis 1.

4.1 Discussion and Summary

Figure 3 clearly shows a downward slope of the CCQ metrics, which validates
the usage of both CCQARI and CCQFMI metrics with our framework. Pre-
vious work on cluster faithfulness metrics CQ on static graphs [27] has shown
that ARI is more sensitive to changes than FMI. To a lesser extent, a similar
pattern can be seen here, where CCQARI decreases to a lower score on latter
perturbation steps compared to CCQFMI , indicating that it may be better in
capturing changes in cluster change faithfulness as well.

In summary, the validation experiments have shown that the CCQ metrics
effectively reflect the cluster change faithfulness of drawings of dynamic graphs



New Quality Metrics for Dynamic Graph Drawing 457

with dynamic clusters. Furthermore, we see that CCQARI is slightly more effec-
tive in capturing cluster change faithfulness than CCQFMI .

5 Cluster Change Faithfulness Layout Comparison

After validating the effectiveness of the cluster change faithfulness metrics, we
use the CCQ metrics to compare the performance of various graph drawing algo-
rithms. We select the following layout algorithms: LinLog [30], a force-directed
layout emphasizing clusters; Backbone [31], which uses Simmelian backbones to
extract communities; tsNET [22], which uses t-SNE [23] and aims to preserve
point neighborhoods; and sfdp [18], a multi-level force-directed layout.

LinLog, Backbone, and tsNET are designed to display clusters, and sfdp was
seen to be more cluster faithful than other non-cluster-focused layouts [27].

As LinLog was shown to be the most cluster faithful [27], we also expect it
to be the most cluster change faithful, formulating the following hypothesis:

Hypothesis 2. LinLog scores the highest CCQ metrics.

We use Tulip [9] (LinLog), visone [4] (Backbone), Graphviz [13] (sfdp), and
tsNET [21]. We use thirteen dynamic graphs including synthetic data created
similarly as in Sect. 4, and real-world data the Social Evolution set [25]; the
graph sizes range from around 80–1000 vertices.

Table 1 shows a layout comparison example, with a cluster split (yellow into
yellow and pastel green). The CQ cell shows the cluster faithfulness metrics:
green and orange show the CQARI metric for G1 and G2 respectively, and purple
and pink show the CQFMI metric for G1 and G2 respectively. The CCQ cell
shows the CCQ metrics: red for CCQARI and blue for CCQFMI .

LinLog obtains the highest CCQ score, supporting Hypothesis 2. We also
see a case of higher CQ not always corresponding to higher CCQ: for example,
tsNET obtains higher CQ than sfdp, however, it obtains lower CCQ than sfdp.

Figure 4 shows the average CCQ scores across all data sets used for the
layout comparison experiment. On average, LinLog obtains the highest CCQ
metrics, at 0.98 on CCQARI , validating Hypothesis 2.

5.1 Discussion and Summary

Our experiments confirm that the LinLog layout, which was previously shown as
the most cluster faithful layout for static graphs, also obtains the highest cluster
change faithfulness for dynamic graphs.

We also find cases where better cluster faithfulness does not always corre-
spond to better cluster change faithfulness, as seen in Table 1. This may be
due to the clusters “moving around” between the drawings produced by tsNET,
causing different misclassifications. For example, in D1, some members of the
pink cluster were misclassified to the dark purple or lime green clusters in D1;
however, they are misclassified into the lime green or orange instead in D2.
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Table 1. Layout comparison on gnm 10 25

G1 Backbone G1 LinLog G1 sfdp G1 tsNET

G2 Backbone G2 LinLog G2 sfdp G2 tsNET

CQ CCQ

Fig. 4. Average of CCQ for layout comparison experiments. LinLog obtains the highest
CCQ, validating Hypothesis 2. sfdp unexpectedly obtains the second highest CCQ.

Meanwhile, sfdp produces drawings where relative positions of the cluster are
more stable, causing the misclassifications to be more “consistent”, e.g. members
of the pink cluster are misclassified only into the lime green and orange clusters in
both D1 and D2. Stability alone does not always lead to high change faithfulness,
however, as seen from Backbone in Fig. 1, where the cluster positions are stable
yet CCQ is still low as CQ is lower compared to the other layouts.
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In summary, our experiments confirm Hypothesis 2, showing that LinLog
produces the most cluster change faithful drawings. We also show that cluster
faithfulness does not always translate to cluster change faithfulness, in cases
where subsequent drawings do not preserve the relative locations of the clusters.

6 Distance Change Faithfulness Validation Experiment

We also validate the distance change faithfulness metrics, using validation exper-
iments. Given two graph time slices G1 and G2, we start with stress faithful
drawings D1 and D2. We then perturb D2 as follows: before perturbing, we
divide the edges into two sets E′

1 and E′
2. In each step, we select edges from E′

1

to extend their lengths, and select edges from E′
2 to shorten their lengths.

We expect that the DCQ scores decrease with the deformation steps. We
therefore formulate the following hypothesis:

Hypothesis 3. DCQ1 and DCQ2 decrease as the drawing D2 is deformed, and
DCQ1 performs better than DCQ2 in measuring distance change faithfulness.

To create the validation data sets, we start with a randomly-generated graph
G1, typically with a long diameter. To create G2, we add edges to G1 that
significantly reduces the diameter and introduces smaller cycles into the graph.
We generate ten dynamic graphs with 20–300 vertices and draw them using the
Stress Majorization layout from Tulip [9] to obtain low stress drawings.

(a) D1 (b) D2 step 0 (c) D2 step 3 (d) D2 step 10

Fig. 5. Deformation experiment for powertree 25 1, showing deformation steps.

Figure 5 shows a deformation experiment example, where Figs. 5(a) and (b)
show D1 and D2 at step 0 respectively, computed by the Stress Majorization
layout to produce stress faithful drawings. As the positions are perturbed in
Figs. 5(c) and (d), the geometric distances between the vertices are perturbed
to be more disproportionate to their graph theoretic distance.

Figure 6 shows the average DCQ for each deformation step, averaged for all
data sets. DCQ decreases with each deformation step, confirming Hypothesis 3.

We can also see that DCQ1 decreases to a lower value in latter deformation
steps compared to DCQ2, which only decreases by about 0.1. Considering how
far the drawings are from the initial distance faithful drawings at step 10, e.g.
Fig. 5(d), the minor decrease with DCQ2 does not capture the extent of change
as closely as DCQ1. This indicates that DCQ1 is more effective at capturing
the distance change faithfulness, also supporting Hypothesis 3.
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Fig. 6. Average of DCQ metrics for all validation experiments. The decreasing trend,
especially with DCQ1, validates Hypothesis 3.

6.1 Discussion and Summary

Our deformation experiment validates the effectiveness of DCQ metrics to mea-
sure the distance change faithfulness of drawings of dynamic graphs. We also
observe that DCQ1 is more effective at capturing differences in distance change
faithfulness than DCQ2. This may be due to the fact that scaling by maximum
distance in DCQ2 can be more susceptible to outliers, and may cause smaller
distance changes to be underrepresented. Therefore, we will focus on DCQ1 as
the main comparison metric for the next experiments.

In summary, our experiments have validated Hypothesis 3, showing that
DCQ effectively reflects the distance change faithfulness of dynamic graph draw-
ing, and that DCQ1 captures distance change faithfulness more effectively than
DCQ2.

7 Distance Change Faithfulness Layout Comparison

After validating the effectiveness of the distance change faithfulness metrics,
we compare the performance of a number of graph drawing algorithms using
the DCQ metrics. We select the following layout algorithms: Stress-based lay-
outs Stress Majorization [17] and Sparse Stress Minimization [32]; MDS (Multi-
Dimensional Scaling) layouts Pivot MDS [7] and Metric MDS [38]; tsNET [21];
FR (Fruchterman-Reingold) [15]; and LinLog [30].

Stress-based layouts aim to minimize stress (i.e. high distance faithfulness),
therefore we expect them to be the most distance change faithful. As the concept
of stress was adapted from MDS, we expect that MDS layouts will also perform
quite well. Meanwhile, we expect force-directed layouts such as FR and LinLog to
be less distance change faithful. We therefore formulate the following hypothesis:

Hypothesis 4. Stress Majorization and Sparse Stress Minimization obtain the
highest DCQ scores, while FR and LinLog obtain the lowest DCQ scores.

We again use a mix of synthetic graphs and real-world graphs from the Social
Evolution set [25], in total fifteen sets of dynamic graphs with 20–300 vertices.
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Table 2. Layout comparison for tree 100 1

Table 2 shows a layout comparison example. The stress of the drawings are
shown in magenta (D1) and cyan (D2), and DCQ1 and DCQ2 are shown in
red and blue respectively. Stress Majorization and Sparse Stress Minimization
obtains the two highest DCQ, while FR and LinLog obtain notably higher stress
and lower DCQ than other layouts, supporting Hypothesis 4.

Figure 7 shows the average stress and DCQ scores across all layout compar-
ison experiment data sets. On average, Stress Majorization and Sparse Stress
Minimization obtain the lowest stress and highest DCQ metrics, at around 0.86
on DCQ1, and FR and LinLog obtain the highest stress and lowest DCQ metric,
at around 0.7 and 0.66 respectively on DCQ1, supporting Hypothesis 4.
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(a) Stress (b) DCQ

Fig. 7. (a) Average stress scores; (b) average DCQ metrics for layout comparison
experiments. Stress Majorization and Sparse Stress Minimization obtain the highest
DCQ, while FR and LinLog obtain the lowest DCQ, supporting Hypothesis 4.

7.1 Discussion and Summary

Our experiments have supported Hypothesis 4, showing that the stress-based
layouts, which explicitly aim to achieve low stress drawings, also obtain high
DCQ, while FR and LinLog, which are not specifically designed to minimize
stress, obtain lower DCQ.

While LinLog obtains the best results in the CCQ layout comparison, in
this case, it obtains the lowest DCQ. This shows a case where a layout that is
optimal for one metric may not perform as well on other metrics.

In summary, our experiments have supported Hypothesis 4 for stress-based
layouts, which obtain the highest DCQ metrics on average. We also observe that
a layout obtaining good performance on one change faithfulness metric may not
perform as well on other change faithfulness metrics.

8 Conclusion and Future Work

We introduce a general framework for measuring change faithfulness in dynamic
graph drawings. Based on the framework, we present cluster change faithful-
ness metrics CCQ and distance change faithfulness metrics DCQ, as specific
instances of the framework.

We validate the effectiveness of both metrics using deformation experiments,
and then compare various graph drawing layouts using the metrics. Our experi-
ments confirm that LinLog obtains the highest cluster change faithfulness, while
stress-based layouts obtain the highest distance change faithfulness.

Future work include designing other specific instances of the change faithful-
ness metric framework. More specifically, DCQ can be extended by using other
notions of distance. As the general nature of the change faithfulness metric frame-
work allows for the development of other specific metrics, this also presents the
opportunity for designing new layout algorithms to optimize such new metrics.
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6. Böhringer, K.F., Paulisch, F.N.: Using constraints to achieve stability in automatic
graph layout algorithms. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 43–51 (1990)

7. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling
of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp.
42–53. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6 6

8. Branke, J.: Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing
Graphs. LNCS, vol. 2025, pp. 228–246. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44969-8 9
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Abstract. Do algorithms for drawing graphs pass the Turing Test? That
is, are their outputs indistinguishable from graphs drawn by humans? We
address this question through a human-centred experiment, focusing on
‘small’ graphs, of a size for which it would be reasonable for someone to
choose to draw the graph manually. Overall, we find that hand-drawn
layouts can be distinguished from those generated by graph drawing algo-
rithms, although this is not always the case for graphs drawn by force-
directed or multi-dimensional scaling algorithms, making these good can-
didates for Turing Test success. We show that, in general, hand-drawn
graphs are judged to be of higher quality than automatically generated
ones, although this result varies with graph size and algorithm.

Keywords: Empirical studies · Graph drawing algorithms · Turing
test

1 Introduction

It is common practice to use node-link diagrams when presenting graphs to
an audience (e.g., online, in an article, to support a verbal presentation, or for
educational purposes), rather than the alternatives of adjacency matrices or edge
lists. Automatic graph layout algorithms replace the need for a human to draw
graphs; it is important to determine how well these algorithms fulfil the task of
replacing this human activity,

Such algorithms are essential for creating drawings of large graphs; it is less
clear that this is the case for drawing smaller graphs. In our experience as graph
drawing researchers, it is often preferable to draw a small graph ourselves, how we
wish to depict it, than be beholden to the layout criteria of automatic algorithms.
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The question therefore arises: are automatic graph layout algorithms any
use for small graphs? Indeed, for small graphs, is it even possible to tell the
difference? If automatic graph layout algorithms were doing their job properly
for small graphs, then they should produce drawings not dissimilar to those we
would choose to create by hand.

Distinguishing human and algorithmic graph drawings can be considered a
‘Turing Test’; as in Turing’s 1950 ‘Imitation Game’ [44], if someone cannot tell
the difference between machine output and human output more than half the
time, the machine passes the Turing Test. Thus, if someone cannot tell the dif-
ference between an algorithmically-drawn graph and a hand-drawn graph more
than half the time, the algorithm passes the Turing Test: it is doing as good a job
as human graph drawers. Of course, algorithms are useful for non-experts and
for large graphs that cannot be drawn by humans effectively, but in the context
of experts presenting a small graph, can their creations be distinguished from
products from layout algorithms? Turing Tests have never yet been performed
on graph layout algorithms.

This paper presents the results of an experiment where participants were
asked to distinguish between small hand-drawn graphs and those created by
four common graph layout algorithms. Using different algorithms and graphs of
different size allows us to investigate under what conditions an algorithm might
pass the Turing Test. Our Turing Test results led us to also ask, in common with
the Non-photorealistic rendering Turing Test observational study [30], which of
the two methods of graph drawing (by hand, or by algorithm) produce better
drawings. We find that distinguishing hand-drawn layouts from automatically
generated ones depends on the type of the layout algorithm, and that subjectively
determined quality depends on graph size and the type of the algorithm.

2 Related Work

2.1 Automatic Graph Layout Algorithms

We focus on four popular families of layout algorithms [13,25]: force-directed,
stress-minimisation, circular and orthogonal.

Most general-purpose graph layout algorithms use a force-directed (FD) [15,
19] or stress model [12,34]. FD works well for small graphs, but does not scale
for large networks. Techniques to improve scalability often involve multilevel
approaches, where a sequence of progressively coarser graphs is extracted from
the graph, followed by a sequence of progressively finer layouts, ending with a
layout for the entire graph [8,21,26,28,29].

Stress minimisation, introduced in the general context of multi-dimensional
scaling (MDS) [36] is also frequently used to draw graphs [31,35]. Simple stress
functions can be optimised by exploiting fast algebraic operations such as majori-
sation. Modifications to the stress model include the strain model (classical scal-
ing) [43], PivotMDS [12], COAST [22], and MaxEnt [23].

Circular layout algorithms [41] place nodes evenly around a circle with edges
drawn as straight lines. Layout quality (in particular the number of crossings)
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is influenced by the order of the nodes on the circle. Crossing minimisation in
circular layouts is NP-hard [37], and various heuristics attempt to find good
vertex orderings [9,24,33].

The orthogonal drawing style [16] is popular in applications requiring a clean
and schematic appearance (e.g., in software engineering or database schema).
Edges are drawn as polylines of horizontal and vertical segments only. Orthogo-
nal layouts have been investigated for planar graphs of maximum degree four [42],
non-planar graphs [10] and graphs with nodes of higher degree [11,20].

We seek to understand if drawings produced by these types of algorithms can
be distinguished from human-generated diagrams for small networks. We do this
by asking experimental participants to identify the hand-drawn layout when it
is paired with an algorithmically-created one.

2.2 Studies of Human-Created Graph Layouts

Early user studies [38,39] confirmed that many of the aesthetic criteria incor-
porated in layout algorithms (e.g., uniform edge length, crossing minimisation)
correlate with user performance in tasks such as path finding. Van Ham and
Rogowitz [27] investigated how humans modified given small graph layouts so as
to represent the structure of these graphs. They found that force-directed lay-
outs were already good representations of human vertex distribution and cluster
separation. Dwyer et al. [14] focused on the suitability of graph drawings for
four particular tasks (identifying cliques, cut nodes, long paths and nodes of low
degree), and found that the force-based automatic layout received the highest
preference ratings, but the best manual drawings could compete with these lay-
outs. Circular and orthogonal layouts were considerably less effective. Purchase
et al. [40] presented graph data to participants as adjacency lists and asked them
to create drawings by sketc.hing; their findings include that the participants pre-
ferred planar layouts with straight-line edges (except for some non-straight edges
in the outer face), nodes aligned with an (invisible) grid, and somewhat similar
edge lengths. Kieffer et al. [32] focused on orthogonal graph layouts, asking par-
ticipants to draw a few small graphs (13 or fewer nodes) orthogonally by hand.
The human drawings were compared to orthogonal layouts generated by yEd [46]
and the best human layouts were consistently ranked better than automatic ones.
They then developed an algorithm for creating human-like orthogonal drawings.

This paper builds on this prior work by considering drawings of small to
medium-sized graphs (up to 108 nodes) and an example from each of four families
of standard graph layout algorithms. We address the question of whether people
can distinguish between algorithmic and human created drawings, and if so, is
this the case for all layout algorithms?
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Table 1. Characteristics of the experimental graphs. The size column indicates how
the graphs were divided into sub-sets (small, medium, large) for the purposes of the
experiment; (rw): real-world graphs; (ab): abstract graphs.

Graph Nodes Edges Density Mean
shortest path

Clustering
coefficient

Diam. Planar Size Reference

G1(rw) 108 156 0.03 5.03 0.11 11 N L Causes of obesity [7]

G2(rw) 22 164 0.71 1.30 0.78 2 N S Causes of social problems in Alberta, Canada [4]

G3(rw) 85 104 0.03 6.05 0.04 13 Y L Cross posting users on a newsgroup (final timeslice) [18]

G4(rw) 34 77 0.14 2.45 0.48 5 N M Social network [47]

G5(ab) 20 30 0.16 2.63 0.00 5 Y S Fullerene graph with 20 nodes [3]

G6(ab) 24 38 0.14 3.41 0.64 6 N S A block graph (chordal, every biconnected component is a clique) [2]

G7(ab) 42 113 0.13 2.55 0.48 5 Y M A maximal planar graph [6]

G8(ab) 37 71 0.11 2.76 0.70 5 Y M A planar 2-tree [5]

G9(ab) 18 27 0.18 2.41 0.00 4 N S Pappus graph (bipartite, 3-regular) [1]

Mean 43.3 86.7 0.18 3.18 0.36 6.2

Median 34 77 0.14 2.63 0.48 5

3 Experiment

3.1 Stimuli

The Graphs. Our experiment compares unconstrained hand-drawn graphs
with the same graphs laid out using different algorithmic approaches. We con-
sidered 24 graphs, from which we selected 9, based on the following criteria:

– A balanced split between real-world graphs and abstract graphs, the abstract
graphs being ones of graph-theoretic interest;

– A balanced split between planar and non-planar graphs;
– A range in the number of nodes between 15 and 108;
– A range in the number of edges (for our graphs, between 27 and 164);
– Connected and undirected graphs only: directionality was removed from the

real-world graphs as necessary.

The diversity of our graphs is demonstrated by the range of values for other
graph characteristics (diameter, density, average shortest path length, clustering
coefficient) that they exhibit (Table 1).

The Algorithms. We included examples of major families of graph draw-
ing algorithms (Table 2: force-directed, stress-based, circular, orthogonal), as
implemented in yEd [46] and GraphViz [17]. HOLA [32] was considered, but
its orthogonal design was deliberately based on human preferences (unlike the
other algorithms), and so its inclusion would introduce a bias that could distort
human judgements. We considered structure-specific algorithms (e.g., algorithms
designed for planar graphs or trees), but for generality used generic algorithms
that could handle all nine graphs, leaving specific algorithms for future work.
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Table 2. The four graph layout algorithms used.

Algorithm ID Algorithm type Original name Parameters

AFD Force-directed Organic [46] Default

AMDS Stress-based MDS [17] Default

AC Circular Circular [46] Default

AO Orthogonal Orthogonal [46] Classic, default

The Hand-Created Drawings. The process of creating hand-drawn graphs
mimicked the context of a graph drawing researcher deciding whether to man-
ually draw a small graph, or to use a well-established graph layout algorithm.
Thus, the graphs were drawn in the knowledge they would compete against
drawings created by algorithms, making the Turing test as hard as possible.
This process was therefore a mini-experiment, with four of the authors (all with
graph drawing expertise, called the ‘drawers’, D1-D4) as participants, the con-
text of the study being clear to them. While the drawers might have recognised
some of the graphs they were asked to draw, this scenario is comparable to a
real-world situation where graph drawing researchers might know the nature of
the graph to be drawn.

The first author asked the drawers to lay out the graphs using yEd [46],
starting from a random layout (the yEd ‘Random’ tool). There were no other
instructions: it was not specified, for example, that edges needed to be straight
lines rather than splines or multiple segments, nor that nodes should not overlap,
nor edges cross over nodes. To improve ecological validity, all drawers were told
that they could use yEd tools to support their drawing process if they wished
(as likely to happen in practice). However, somewhat surprisingly, they all drew
the graphs without any yEd tool support (automatic layout or otherwise). The
drawers suggested doing the exercise again on a ‘manually-adjusted’ basis; that
is, using the output from a yEd layout algorithm of their choice as an initial
starting point. However, once we paired the algorithmic drawings with their
manually-adjusted versions, most of them were visually almost identical. We
therefore only used the initial hand-drawn versions.

The mini-experiment output is a set of visual stimuli comprising 9 graphs
(G1, ..., G9), each with four layout algorithms applied G1AFD, G1AMDS, . . . ,
G2AC, . . . , G9AO) and each with four hand-drawn versions (G1D1, G1D2, . . . ,
G2D1, . . . , G9D4), all represented in yEd. All 72 drawings were subject to the
same automatic scaling process to ensure the same vertex size and edge thickness.
After scaling, all drawings were automatically converted into jpeg images.

3.2 Experimental Design

Each experimental trial (Fig. 1) comprises two versions of the same graph, one
hand-drawn, and one created by a layout algorithm. For each graph, we firstly
paired the four algorithmic versions (on the left) with the four hand-drawn ver-
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Fig. 1. Screen shot of the experimental system.

sions (right) (16 pairs). We then flipped the algorithmic versions along the y axis
(reducing the possibility of participants remembering the algorithm drawings),
and paired the flipped versions (right) with the four drawn versions (left) (32
pairs for each graph). Putting all graphs in one experiment means 288 trials,
an unreasonably long experiment. The alternative of running a separate exper-
iment for each graph means several very small experiments, greatly increasing
the number of participants needed. As a compromise, we divided our 9 graphs
into three sets, (loosely ‘small’, ‘medium’ and ‘large’ (Table 1)), a convenience
decision so as to reduce the duration of each experiment while ensuring we would
be able to recruit enough participants. We thus had three sub-experiments, one
‘small’ (128 trials), one ‘medium’ (96 trials) and one ‘large’ (64 trials).

Using a custom-built online experimental system, participants read instruc-
tions and information about graphs (referred to as ‘networks’) and indicated
consent before proceeding. They were told it would always be the case that the
two drawings presented were the same graph. Twelve practice trials used a differ-
ent graph of similar size for familiarisation purposes. Experimental trials were
presented in random order, with no distinction between graphs. Participants
took a self-timed break every 20 trials, and demographic data was collected.

4 Results and Data Analysis

The experimental link was distributed to authors’ colleagues, students, family
and friends. Participants were considered outliers if their mean time over all trials
was unreasonably low (less than 1 s, n = 2), or if they consistently responded
one side for a large number of consecutive trials (e.g., always left, n = 1). No
participants consistently alternated left and right. We removed the data from
one participant who used a very small screen (198 × 332 pixels), unconvinced
that the stimuli could be perceived sufficiently well. Although some participants
did not complete the experiment, since the answer to each trial is a data point
in its own right (i.e., it is independent and its value to the experiment does
not depend on answers to any other trial), we retained all data for participants
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who completed at least 3/4 of the trials, inferring that those who did not do so
(n = 20) might not have taken the experiment seriously.

Data from 46 participants was analysed; a total of 4364 independent deci-
sions. We categorised participants as expert (n = 21) if their self-declared knowl-
edge of network drawings was ‘expert’, ‘highly knowledgeable’, or ‘knowledge-
able’, and novice (n = 22) for ‘somewhat knowledgeable’ or ‘no knowledge’.
Three participants did not provide full demographic details.

4.1 Data Analysis Methods

Our data was analysed in three parts: Part 1 investigates the extent to which
‘human’ was chosen over ‘algorithm’, comparing the proportion of responses with
random selection. We look at overall responses, responses for each algorithm, for
each graph size, for novice and expert participants, for planar and non-planar
graphs, and consider the combination of graph size and algorithm. The Binomial
distribution test compares observed proportion against the ‘random’ proportion
of 0.5, where each trial is independent; its calculated p-value represents the
probability that the mean of the population distribution (based on the observed
samples) is equal to 0.5. A p-value < 0.05 indicates a significant result: that is,
the observed choice proportion is so much greater than 0.5 that there is a very
low probability that the hand-drawn and algorithmically drawn graphs cannot
be distinguished; statistically, this means there is insufficient evidence to indicate
Turing Test success. A p-value > 0.05 is a high probability that hand-drawn and
algorithmically drawn graphs cannot be distinguished: thus, Turing Test success.
We apply p-value Bonferroni corrections when dividing the data sets.

Part 2 considers response times with respect to different algorithms, sizes,
expertise, and planarity, using non-parametric tests since our data is not nor-
mally distributed. Response time is considered as a proxy for the perception of
difficulty of the task: participants will take longer if they find the task difficult.

Part 3 identifies trials with extreme responses (high or low response time, or
extreme proportional choice).

A choice for a hand-drawn graph is scored as 1; a choice for an algorithmic
drawings is 0. Thus, proportions > 0.5 indicate that the human drawing was
selected more often on average. Proportions < 0.5 indicate that the algorithmic
drawing was (incorrectly) selected with greater frequency.

4.2 Results

Choice of Drawing. Our hypotheses are:

– H0: It is not possible to distinguish algorithmic drawings from hand-drawn
ones; thus, the true proportion = 0.5; the algorithm passes the Turing test.
This hypothesis is accepted if the Binominal p-value > 0.05.

– H1: It is possible to distinguish algorithmic drawings from hand-drawn ones;
thus, the true proportion �= 0.5.
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Table 3. Binomial test results for ‘Which network was drawn by a human?’ Accepting
H0 indicates Turing Test ’pass’. Although 0.049 < 0.05, statistical correction means
the MDS p-value threshold is 0.05/4 = 0.0125. The corrected Novice p-value threshold
is 0.05/2 = 0.025, a significant result.

Number of
samples

Mean
response
time (s)

Observed
proportion

Binomial p-value Result

All trials 4364 3.14 0.56 p < 0.001 Reject H0

Force-Directed (AFD) 1094 4.26 0.51 p = 0.566 Accept H0

MDS (AMDS) 1090 3.32 0.53 p = 0.049 Reject H0

Circular (AC) 1090 2.85 0.56 p < 0.001 Reject H0

Orthogonal (AO) 1090 2.79 0.65 p < 0.001 Reject H0

Small graphs (G2, G5, G6, G9) 1656 2.58 0.55 p < 0.001 Reject H0

Medium graphs (G4, G7, G8) 1817 3.08 0.55 p < 0.001 Reject H0

Large graphs (G1, G3) 891 4.28 0.62 p < 0.001 Reject H0

Expert participants 1915 3.99 0.63 p < 0.001 Reject H0

Novice participants 2101 2.74 0.53 p = 0.016 Reject H0

Planar graphs 2069 3.15 0.55 p < 0.001 Reject H0

Non-planar graphs 2295 3.49 0.58 p < 0.001 Reject H0

Binomial test results over all 4364 data points are shown in Table 3. Accepting
H0 means it is not possible to distinguish between hand-drawn and algorithmic
drawings: the Turing Tests succeeds. Rejecting it means that there is insufficient
support for the hypothesis; we infer that telling the difference is possible. There
are no proportions < 0.5, so no cases where, on average, algorithmically-drawn
graphs were incorrectly selected more often than hand-drawn ones.

Table 4. Binomial test results by graph size and algorithm; * indicates responses
sufficiently close to random for Turing Test ‘pass’.

Force-Directed MDS Circular Orthogonal

Proportion P-value Proportion P-value Proportion P-value Proportion P-value

Small 0.52* 0.432 0.57* 0.006 0.51* 0.786 0.62 < 0.001

Medium 0.49* 0.851 0.52* 0.542 0.53* 0.205 0.64 < 0.001

Large 0.52* 0.640 0.49* 0.789 0.73 < 0.001 0.74 < 0.001

The results indicate that people can distinguish between algorithmic and
hand-drawn graphs (over all graphs and algorithms), correctly choosing the
hand-drawn graph 56% of the time (p < 0.001). This result applies equally well
regardless of graph size, viewer expertise, or graph planarity: the tests all reveal
significant difference between the observed proportion and 0.5. Thus, overall, the
Turing test fails.

There is a difference, however, when the algorithm is taken into account:
the observed proportion for Force-Directed algorithm trials was 0.51, sufficiently
close to the random response proportion of 0.50 that we can accept H0, and state
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that this algorithm passes the Turing Test. The proportion of 0.53 for MDS is
very close (but not really close enough in statistical terms), and we clearly reject
H0 for circular and orthogonal algorithms.

The size/algorithm combination (threshold p-value = 0.05/12 = 0.0042)
reveals additional results according to the size of the graph (Table 4). As
expected, the Force-Directed algorithm gives proportions close to 0.5 for all graph
sizes. The MDS results suggest Turing Test success for all three sizes when anal-
ysed separately (albeit a marginal result for the smallest graphs), even though
the overall MDS result reported above (at p = 0.049) indicates rejection of the
null hypothesis. The MDS result is therefore clearly on the boundary of suc-
cess. There are Turing Test passes for small and medium graphs for the Circular
algorithm.

Response Time. Non-parametric tests on response time for algorithm and
graph size (Table 3) reveals that MDS decisions were slower than orthogonal ones
(adjusted pairwise comparison after repeated measures Freidman, p = 0.022),
decisions on large graphs were slower than on small graphs (adjusted pairwise
comparison after independent measures Kruskal Wallis, p = 0.039), and experts
made slower decisions than novices (independent measures Mann-Whitney, p =
0.014). There was no statistical difference between response times with respect
to graph planarity.

Extreme Examples. Extreme trials (response time: Fig. 2; proportion: Fig. 3)
are identified as GiAj and GiDk: Gi (graph), Aj (algorithm), Dk(drawer). All
experimental stimuli jpeg files can be found in the supplementary material (visit
http://www.dcs.gla.ac.uk/∼hcp/GD2020).

Three slow trials relate to a particular FD graph, suggesting that this form of
drawing was seen by participants as possibly hand-drawn – it shows clusters and
symmetry, while the drawers all attempted to remove crosses. The combinations
of G4AMDS/G4D4 and G7AC/G7D4 (top row of Fig. 2) are interesting because,
for each, the overall shape of the human-drawn graph is similar to that produced
by the algorithm: it is not hard to see why participants found this choice difficult.
Three quick responses (G5AFD/G5D3, G5AC/G5D4, G9AMDS/G9D1, bottom
row of Fig. 2) demonstrate effort on the part of the drawer to depict symmetry
that is not highlighted by the algorithms; the other two relate to the orthogonal
algorithm, which, as noted above, produced worst performance in making a
human vs algorithm judgements.

Of the four combinations where participants gave mostly correct responses,
it is not hard to see why for G1AC/G1D2 and G1AC/G1D1 (top row of Fig. 3),
since the human-drawn graphs lack any clear structure or visual elegance in
comparison with those created by the circular algorithm. The fact that G5AMDS

is geometrically precise in its node positioning (while G5D2 has slight mis-
positionings) can explain the 0.92 accuracy for this combination, although we
note that this decision still took above average time (32.4 s). More difficult to
explain is the high proportion associated with G6AFD/G6D3, since the human

http://www.dcs.gla.ac.uk/~hcp/GD2020
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Slow Response Time (Seconds)

G4AMDS/G4D4 G7AC/G7D4 G3AFD/G3D2 G3AFD/G3D1 G3AFD/G3D4
(47.88s) (48.09s) (48.32s) (49.49s) (50.03s)

prop = 0.40 prop = 0.45 prop = 0.46 prop = 0.43 prop = 0.61
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Fast Response Time (Seconds)

G5AFD/G5D3 G8AO/G8D1 G5AC/G5D4 G7AO/G7D1 G9AMDS/G9D1
(16.86s) (19.16s) (19.44s) (19.50s) (19.98s)

prop = 0.58 prop = 0.68 prop = 0.58 prop = 0.66 prop = 0.62
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Fig. 2. Trials with slow response times (top) and quick response times (bottom). Time
in seconds, and human-selection proportion shown.

drawing is highly structured and symmetrical. Of the combinations where the
average accuracy is low, three algorithmic drawings depict some extent of sym-
metry (G3AMDS, G9AC , G5AFD, bottom row of Fig. 3), while the fourth is
compared against a human drawing which used an approach that, if adopted
by an algorithm, would have resulted in a more geometrically precise diagram.
The examples in Fig. 3 (top and bottom rows) suggest that regular node and
edge placements (that is, grid-like or evenly spaced on a circle), indicate an
algorithmically-drawn graph.

Key factors affecting the human vs algorithm choice were thus depiction of
symmetry (even if only approximate), and geometric precision (i.e. very precise
node placement, with regular spacing or grid-like).
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High proportion of correct answers (human selected)

G6AFD/G6D3 G1AC/G1D2 G1AC/G1D1 G5AMDS/G5D2
(27.27s) (37.89s) (32.01s) (32.40s)

prop = 0.85 prop = 0.85 prop = 0.86 prop = 0.92
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High proportion of incorrect answers (algorithm selected)

G3AMDS/G3D1 G9AC/G9D2 (28.6s) G2AMDS/G2D1 G5AFD/G5D1 G3AMDS/G3D3
(38.59s) (28.6s) (23.14s) (26.60s) (34.30s)

prop = 0.18 prop = 0.23 prop = 0.27 prop = 0.27 prop = 0.29
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Fig. 3. Trials with a high proportion of correct (human drawing chosen, upper) and
incorrect (algorithm drawing chosen, lower) answers.

5 Discussion

In general, over all graphs and algorithms, participants can correctly distinguish
hand-drawn layouts from algorithmically created ones: graph drawing algorithms
(in general) effectively fail the Turing Test. The only exception is the Force-
Directed algorithm, where we did not find evidence that participants could reli-
ably distinguish between the algorithmic and hand-drawn layouts. We speculate
this might be because our drawers (consciously or unconsciously) created draw-
ings with similar FD layout principles in mind: separating unconnected nodes,
and clustering connected ones together. The MDS algorithm provided some evi-
dence of passing the test (in particular for medium and large graphs); it produces
similar shapes to FD.
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Table 5. Results for the ‘Which is better’ question, by graph size and algorithm.
* indicates statistically significant results (p < 0.05/12 = 0.0042)

Force-Directed MDS Circular Orthogonal

Proportion P-value Proportion P-value Proportion P-value Proportion P-value

Small 0.83* < 0.001 0.68* < 0.001 0.55 0.040 0.62* < 0.001

Medium 0.44 0.006 0.42* 0.001 0.62* < 0.001 0.74* < 0.001

Large 0.19* < 0.001 0.42 0.009 0.41* 0.002 0.63* < 0.001

We were not surprised that it was easy to distinguish circular (especially large
circular) and orthogonal graph drawings from hand-drawn ones, since they make
use of precise node placement: equal separation around the circle circumference,
placement on equally-spaced horizontal lines or on an underlying unit grid. While
the human drawers sometimes used such placements (G2D1 and G5D1 in Fig. 3),
in many cases (G8D1 in Fig. 2, G5D2 in Fig. 3) they did not. We were also not
surprised to find that larger graphs took more time than the smaller ones, but
were surprised that experts took longer than novices – we had expected the
converse; perhaps experts made more considered analytical decisions as opposed
to novices’ more spontaneous ones.

6 Subjective Quality of the Drawings

Our study shows that some graph drawing algorithms produce diagrams that
are obviously perceived as different from those drawn by graph drawing experts.
This raises the question: if algorithmic drawings are perceived as being different
from hand-drawn ones, are they any better? And even if they are not perceived
as different, is there a perceived difference in quality?

We followed our Turing experiment with a supplementary, almost identical
study, using the same paired stimuli and experimental system. The only differ-
ence was the question asked: ‘Which drawing is better?’. We deliberately did
not give a definition for ‘better’, since (at least for this initial study), we wished
to get an overall judgement, rather than, for example, one based on a particular
task or defined aesthetic. 52 participants took part, producing a total of 4887
data points. As before, hand-drawn graphs are scored 1, and algorithmic draw-
ings 0. Thus, proportions > 0.5 indicate the human drawing was, on average,
considered better. Over all graphs and algorithms, the vote was for hand-drawn
graphs (proportion = 0.57, p< 0.001). However, size and algorithm data show
variations within this overall result (Table 5). Hand-drawn graphs were always
preferred over orthogonal drawings; FD and MDS were preferred for medium
and large graphs, and circular only for the large graphs.

Thus, even when hand-drawn and algorithmic drawings are indistinguish-
able (as shown for FD and MDS in the first experiment), subjective judgement
(experiment 2) determines that the algorithmic versions are ‘better’, especially
for the larger graphs. The orthogonal algorithm had no wins: it did not pass the
Turing Test, and was always considered worse than the hand-drawn versions.
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There were mixed results for the circular algorithm: easy to distinguish from
hand-drawn layouts when small or medium, and only preferred when large.

7 Conclusions and Future Work

This is the first experiment that compares graphs drawn by graph drawing
researchers to those produced by graph drawing algorithms as a Turing Test.
Overall, we found that hand-drawn graphs could be reliably distinguished from
those generated by algorithms – thus, on average, Turing Test failure. However,
we did not find evidence that force-directed and (marginally) MDS algorithms
could be reliably distinguished from hand-drawn layouts – they therefore effec-
tively ‘pass’ the Turing Test. We speculate that this is the case because of the
prevalence of these algorithms in the popular media (e.g., for depicting social
networks); further studies could establish exactly why these two algorithms per-
form differently from the others.

The generalisability of our conclusions is, of course, limited by our experi-
mental scope. While we used a good range of real-world and abstract graphs,
differently sized graphs, planar and non-planar graphs, and good coverage of
various graph metrics, our data set comprises nine experimental graphs. Using
only ‘small’ graphs (15 to 108 nodes) was an obvious design decision when con-
sidering the feasibility of creating hand-drawn layouts. We chose four common
layout algorithms representing different approaches, and four human drawers
(experts in graph drawing research). Despite these experimental limitations, our
results represent the first empirical attempt to compare perception of a range of
hand-drawn versus algorithmic graph layouts as a ‘Turing Test’.

Our motivation for these studies arose from a desire to determine whether
algorithms depicting small graphs produce results that are similar to human
efforts. Our results show that, in general, people notice when a graph has been
hand-drawn. This result must, of course, be weighed against the length of time
that it takes to draw a graph: we found that it takes much longer than we had
anticipated to create drawings by hand. We also need to consider that, when
considering the algorithmic approaches separately, some algorithmic versions
were considered ‘better’ than the hand-drawn ones – the notable exception being
the orthogonal algorithm.

Graph drawing algorithms are often inspired by assumptions about what a
human would do in generating a drawing. Therefore, understanding what makes
a drawing human-like will help inform future algorithm designers to make algo-
rithms of higher quality. In future work, we would like to explore whether we get
similar results if we explicitly match graph structure with graph algorithm (e.g.,
tree algorithms for trees, planar algorithms for planar graphs), use other less
common algorithms (e.g., HOLA [32], Wang et al. [45]), and use graphs drawn
by a wider range of people (including non-experts). In addition, gathering both
quantitative and qualitative data in future studies will help determine those
attributes of a graph drawing that suggest that it is human-like or machine-like.
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33. Klawitter, J., Mchedlidze, T., Nöllenburg, M.: Experimental evaluation of book
drawing algorithms. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp.
224–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1 19

https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1109/TVCG.2008.11
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1007/3-540-63938-1_57
https://doi.org/10.1007/3-540-63938-1_57
https://doi.org/10.7155/jgaa.00052
https://doi.org/10.1007/978-3-319-03841-4_24
https://doi.org/10.1007/978-3-319-03841-4_24
https://doi.org/10.1109/TVCG.2012.299
https://doi.org/10.1109/TVCG.2012.299
https://doi.org/10.1007/978-3-540-70904-6_37
https://doi.org/10.1177/1473871612455749
https://doi.org/10.1177/1473871612455749
https://doi.org/10.1016/S0166-218X(00)00389-9
https://doi.org/10.1016/S0166-218X(00)00389-9
https://doi.org/10.1109/TVCG.2008.155
https://doi.org/10.1109/TVCG.2008.155
https://doi.org/10.7155/jgaa.00051
https://doi.org/10.1145/1124728.1124747
https://doi.org/10.1145/1124728.1124747
https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1109/TVCG.2015.2467451
https://doi.org/10.1109/TVCG.2015.2467451
https://doi.org/10.1007/978-3-319-73915-1_19


The Turing Test for Graph Drawing Algorithms 481

34. Koren, Y., Carmel, L., Harel, D.: ACE: A fast multiscale eigenvectors computation
for drawing huge graphs. In: Proceedings of IEEE Symposium on Information
Visualization, pp. 137–144. IEEE (2002). https://doi.org/10.1109/INFVIS.2002.
1173159

35. Kruskal, J.B., Seery, J.B.: Designing network diagrams. In: General Conference on
Social Graphics, vol. 49, p. 22 (1980)

36. Kruskal, J.B., Wish, M.: Multidimensional Scaling. Sage Press, Thousand Oak
(1978)

37. Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Crossing minimization in
linear embeddings of graphs. IEEE Trans. Comput. 39(1), 124–127 (1990). https://
doi.org/10.1109/12.46286

38. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021827

39. Purchase, H.: Which aesthetic has the greatest effect on human understanding? In:
DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1 67

40. Purchase, H.C., Pilcher, C., Plimmer, B.: Graph drawing aesthetics created by
users, not algorithms. IEEE Trans. Vis. Comput. Graph. 18(1), 81–92 (2012).
https://doi.org/10.1109/TVCG.2010.269

41. Six, J.M., Tollis, I.G.: Circular drawing algorithms. In: Tamassia, R. (ed.) Hand-
book of Graph Drawing and Visualization, chap. 9, pp. 285–315. CRC Press, Boca
Raton (2013)

42. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987). https://doi.org/10.1137/0216030

43. Torgerson, W.S.: Multidimensional scaling: I. theory and method. Psychometrika
17(4), 401–419 (1952). https://doi.org/10.1007/BF02288916

44. Turing, A.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950).
https://doi.org/10.1093/mind/LIX.236.433

45. Wang, Y., et al.: Revisiting stress majorization as a unified framework for inter-
active constrained graph visualization. IEEE Trans. Vis. Comput. Graph. 24(1),
489–499 (2018). https://doi.org/10.1109/TVCG.2017.2745919

46. Wiese, R., Eiglsperger, M., Kaufmann, M.: yFiles: visualization and automatic
layout of graphs. In: Proceedings of Graph Drawing (GD 2001), pp. 453–454. LNCS
(2002). https://doi.org/10.1007/978-3-642-18638-7 8

47. Zachary, W.W.: An information flow model for conflict and fission in small groups.
J. Anthropol. Res. 33, 452–473 (1977). https://doi.org/10.1086/jar.33.4.3629752,
https://www.cise.ufl.edu/research/sparse/matrices/Newman/karate.html

https://doi.org/10.1109/INFVIS.2002.1173159
https://doi.org/10.1109/INFVIS.2002.1173159
https://doi.org/10.1109/12.46286
https://doi.org/10.1109/12.46286
https://doi.org/10.1007/BFb0021827
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1109/TVCG.2010.269
https://doi.org/10.1137/0216030
https://doi.org/10.1007/BF02288916
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1109/TVCG.2017.2745919
https://doi.org/10.1007/978-3-642-18638-7_8
https://doi.org/10.1086/jar.33.4.3629752
https://www.cise.ufl.edu/research/sparse/matrices/Newman/karate.html


Plane Spanning Trees in Edge-Colored
Simple Drawings of Kn

Oswin Aichholzer1 , Michael Hoffmann2 , Johannes Obenaus3 ,
Rosna Paul1 , Daniel Perz1 , Nadja Seiferth3 , Birgit Vogtenhuber1 ,

and Alexandra Weinberger1(B)

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{oaich,ropaul,daperz,bvogt,aweinber}@ist.tugraz.at

2 Department of Computer Science, ETH Zürich, Zürich, Switzerland
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Abstract. Károlyi, Pach, and Tóth proved that every 2-edge-colored
straight-line drawing of the complete graph contains a monochromatic
plane spanning tree. It is open if this statement generalizes to other
classes of drawings, specifically, to simple drawings of the complete graph.
These are drawings where edges are represented by Jordan arcs, any two
of which intersect at most once. We present two partial results towards
such a generalization. First, we show that the statement holds for cylin-
drical simple drawings. (In a cylindrical drawing, all vertices are placed
on two concentric circles and no edge crosses either circle.) Second, we
introduce a relaxation of the problem in which the graph is k-edge-
colored, and the target structure must be hypochromatic, that is, avoid
(at least) one color class. In this setting, we show that every �(n+5)/6�-
edge-colored monotone simple drawing of Kn contains a hypochromatic
plane spanning tree. (In a monotone drawing, every edge is represented
as an x-monotone curve.)

Keywords: Simple drawing · Cylindrical drawing · Monotone
drawing · Plane subdrawing

1 Introduction

A simple drawing of a graph represents vertices by pairwise distinct points (in
the Euclidean plane) and edges by Jordan arcs connecting their endpoints such
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that (1) no (relative interior of an) edge passes through a vertex and (2) every
pair of edges intersect at most once, either in a common endpoint or in their
relative interior, forming a proper crossing. Simple drawings (also called good
drawings [8] or simple topological graphs [12]) have been well studied, amongst
others, in the context of crossing minimization (see e.g. [15]), as it is known
that every crossing-minimal drawing of a graph is simple. Also every straight-
line drawing is simple. Further well-known classes of simple drawings relevant
for this work are pseudolinear drawings, where every edge can be extended to a
bi-infinite Jordan arc such that every pair of them intersects exactly once; cylin-
drical simple drawings, where all vertices are placed on two concentric circles, no
edge crosses either circle, and edges between two vertices on the outer (inner)
circle lie completely outside (inside) that circle; 2-page book drawings, where all
vertices lie on a line and no edge crosses that line; and monotone simple drawings,
where all edges are x-monotone curves. Unless explicitly mentioned otherwise,
all considered drawings are simple, and the term simple is mostly omitted.

In this paper we are concerned with finding plane substructures in simple
drawings. Specifically, we study the existence of plane spanning trees in edge-
colored simple drawings of the complete graph Kn. A k-edge-coloring of a graph
is a map from its edge set to a set of k colors.1 A subgraph H of a k-edge-colored
graph G is hypochromatic if the edges of H use at most k − 1 colors, that is, H
avoids at least one of the k color classes. If all edges of H have the same color,
then H is monochromatic. We are inspired by the following conjecture.

Conjecture 1. Every 2-edge-colored simple drawing of Kn contains a monochro-
matic plane spanning tree.

Károlyi, Pach, and Tóth [10] proved the statement for straight-line drawings,
where the 2-edge-coloring can also be interpreted as a Ramsey-type setting,
where one color corresponds to the edges of the graph and the other color to the
edges of its complement. Such an interpretation is less natural in the topological
setting, where the edges are not implicitly defined by placing the vertices.

Unfortunately, a proof of Conjecture 1 seems elusive. However, we show that
it holds for specific classes of simple drawings, such as 2-page book drawings,
pseudolinear drawings, and cylindrical drawings. The result for 2-page book
drawings can be shown straightforwardly. The statement for pseudolinear draw-
ings follows from generalizing the proof for straight-line drawings by Károlyi,
Pach, and Tóth [10] to this setting.

Proposition 1. Every 2-edge-colored 2-page book drawing of Kn contains a
plane monochromatic spanning tree.

Proposition 2. Every 2-edge-colored pseudolinear drawing of Kn contains a
plane monochromatic spanning tree.

See Appendix A in the full version of this paper [3] for proofs of those state-
ments.
1 Note that the coloring need not be proper nor have any other special properties.
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The result for cylindrical drawings is more involved; it forms our first main
contribution.

Theorem 1. Every 2-edge-colored cylindrical simple drawing of Kn contains a
monochromatic plane spanning tree.

In light of the apparent challenge in attacking Conjecture 1, we also consider
the following generalized formulation, which uses more colors.

Conjecture 2. For k ≥ 2, every k-edge-colored simple drawing of Kn contains a
hypochromatic plane spanning tree.

Note that both conjectures are in fact equivalent: On the one hand, Con-
jecture 2 implies Conjecture 1 by setting k = 2. On the other hand, assuming
Conjecture 2 holds for some k, it also holds for every larger k′ because we can
simply merge color classes until we are down to k colors. Avoiding any one of
the resulting color classes also avoids at least one of the original color classes.

Our second result is the following statement about monotone drawings.

Theorem 2. Every �(n + 5)/6�-edge-colored monotone simple drawing of Kn

contains a hypochromatic plane spanning tree.

Finally, note that some assumptions concerning the drawing are necessary to
obtain any result on the existence of plane substructures. Without any restric-
tion, every pair of edges may cross. The class of simple drawings is formed by
two restrictions: forbid adjacent edges to cross and forbid independent edges to
cross more than once. Both restrictions are necessary in the statement of Con-
jecture 1. If adjacent edges may cross, then one can construct drawings where
every pair of adjacent edges crosses (e.g., in the neighborhood of the common
vertex), implying that no plane substructure can have a vertex of degree more
than one. And for star-simple drawings, where adjacent edges do not cross but
independent edges may cross more than once, already K5 admits 2-edge-colored
star-simple drawings without any monochromatic plane spanning tree; see Fig. 1.

Fig. 1. Star-simple drawings of K5 without monochromatic plane spanning tree.
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Related Work. The problem of finding plane subdrawings in a given drawing
has gained some attention over the past decades. We mention only a few results
from the vast literature on plane substructures. In 1988, Rafla [13] conjectured
that every simple drawing of Kn contains a plane Hamiltonian cycle. By now
the conjecture is known to be true for n ≤ 9 [1] and several classes of simple
drawings (e.g., 2-page book drawings, monotone drawings, cylindrical drawings),
but remains open in general. See also [4–6,11,14] for some results about plane
spanning trees in straight-line drawings of complete graphs. In an edge-colored
setting, many other coloring schemes were studied in this context, see e.g. [7,9].

Observe that if one color class of a drawing is not spanning, the drawing
of the remaining colors contains a complete bipartite graph as a subdrawing.
Recently, it has been shown that every simple drawing of the complete bipartite
graph contains a plane spanning tree [2]. Consequently, this implies the following
lemma, which turns out to be useful later on (see Appendix A of [3] for the proof).

Lemma 1. Let D be a k-edge-colored simple drawing of Kn, for k ≥ 2. If one
of the color classes is not spanning, then D contains a hypochromatic plane
spanning tree.

2 Cylindrical Drawings

This section is devoted to Theorem 1, which states that every 2-edge-colored
cylindrical drawing of Kn contains a monochromatic plane spanning tree. We
give a detailed outline of the proof. The full proof can be found in Appendix B
of [3].

For easier readability, we introduce some names for the different elements
of a cylindrical drawing (cf. Fig. 2). We call the vertices on the inner (outer)
circle inner (outer) vertices. Similarly, we call edges connecting two inner (outer)
vertices inner (outer) edges; the remaining edges are called side edges. The edges
between consecutive vertices on the inner (outer) circle are called cycle edges
and the union of all inner (outer) cycle edges are called inner (outer) cycle. The
definition of cylindrical drawings implies that all cycle edges are uncrossed. The
rotation of a vertex v is the circular ordering of all edges incident to v. In this
ordering, the cycle edges separate the inner (outer) edges from the side edges.
Hence, the rotation of v induces a linear order on the side edges incident to v.

Proof (sketch). Our proof consists of two steps. In Step 1, we restrict consider-
ations to drawings fulfilling two properties, for which we compute a monochro-
matic plane spanning subgraph using a multi-stage sweep algorithm. In Step 2,
we show how to handle drawings that do not fulfill all properties from Step 1.
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Fig. 2. Sketch of a cylindrical drawing. Inner edges are drawn blue, outer edges red,
and side edges black. vw is the first side edge in the clockwise rotation of v. (Color
figure online)

Step 1. Let D be a 2-edge-colored cylindrical drawing that fulfills the following
properties:

(P1) D has inner and outer vertices, and
(P2) D’s inner and outer cycle are both monochromatic, but of different color.

Assume without loss of generality that the inner cycle of D is blue and hence
the outer cycle is red. We will refer to them as the blue and red cycle and to the
vertices on them as blue and red vertices, respectively.

We use the following algorithm to compute a (bichromatic) subdrawing H
of D consisting of some side edges of D and their endpoints (cf. Fig. 3).

Phase 0. Initially, let H be empty. Choose an arbitrary inner vertex as initial
rotation vertex vcur, set the rotation direction to clockwise, and set the first
side edge of vcur in the rotation direction as initial current edge ecur.

Phase 1. We repeat the following process while ecur is a side edge and while H
is still missing vertices from the cycle of D not containing vcur: Add ecur to H;
If ecur does not have the same color as vcur, set vcur to be the other endpoint
of ecur and reverse the rotation direction (clockwise ↔ counterclockwise); In
any case, set ecur to be the next edge incident to vcur after ecur in the (possibly
changed) rotation direction.

Phase 2. If H contains all vertices of D from the cycle not containing vcur:
Return H.

Phase 3. Otherwise: Set Hprev = H, reset H to be empty, reverse the rotation
direction, set ecur to be the first side edge of vcur in the new rotation direction,
and restart with Phase 1.

The following invariants hold for the algorithm (see Appendix B of [3] for a
proof):

(J1) At any time, the union of H and the two cycles of D forms a plane drawing.
(J2) Any blue (red) vertex in H is incident to a red (blue) edge in H, except

for the current rotation vertex.
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v v v

v′ v′ v′
w w w

Fig. 3. The first steps of the algorithm. The black arc at vertex v indicates that vv′ is
the first side edge of v in clockwise order (the initial rotation direction). (Color figure
online)

(J3) Assume that Phase 1 is performed more than once and let V (H) be the
set of vertices of H. Then for any i ≥ 2, after round i of Phase 1, either
V (H) is a strict superset of V (Hprev) or H contains all vertices from the
cycle not containing vcur, the current rotation vertex (or both conditions
hold).

Using those invariants, we can now complete Step 1: By (J3), the algorithm
terminates. And by (J1) and (J2), at least one of the color classes of the union
of H and the two cycles of D is a monochromatic plane spanning graph for D.

Step 2. Now assume that D violates at least one of the properties (P1) and (P2)
If it violates (P1), then D is isomorphic to a 2-page book drawing and hence

contains a monochromatic plane spanning tree (see Proposition 1).
If D does not fulfill (P2), then we remove vertices whose cycle edges are

of different color until we reach a subdrawing D′ where both cycles are mono-
chromatic, find a plane monochromatic spanning tree on D′ by either Step 1 or
Lemma 1, and then extend it to a monochromatic spanning tree on D. ��

3 Monotone Drawings

In this section, we prove the existence of hypochromatic plane spanning trees in
k-edge-colored monotone drawings of Kn, for k linear in n.

Lemma 2. Conjecture 1 holds for any simple drawing of Kn with n ≤ 7 vertices.

For n ≤ 4 this can easily be observed by hand. For n = 5, . . . , 7 we considered
all weak isomorphism classes2 of simple drawings of Kn [1] and checked for all
possible 2-edge colorings that there exists a monochromatic plane spanning tree.
Computations for n = 8 are currently out of reach, as there are 5,370,725 weak

2 Two simple drawings of Kn are weakly isomorphic iff they have the same crossing
edge pairs.
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isomorphism classes of simple drawings [1] and more than 108 possible colorings
for each of them.

Proof (of Theorem 2). Let d ≥ 2 be an integer constant, and let k = �(n + d −
1)/d� = �(n − 1)/d� + 1. The argument works for any d so that Conjecture 1
holds for all monotone drawings on up to d + 1 vertices.

Consider a k-edge-colored monotone drawing D of Kn, and let
v0, v1, . . . , vn−1 denote the sequence of vertices in increasing x-order. We parti-
tion the vertices into k − 1 groups G0, . . . , Gk−2 of size at most d+ 1 by setting
Gi = (vdi, vdi+1, . . . , vdi+d). (The last group may have less than d + 1 vertices.)
Observe that Gi ∩ Gi+1 = {vd(i+1)}.

We proceed in two phases. In both phases we consider each group separately.
At the end of the first phase, we choose which color to remove. At the end of the
second phase, we have an induced plane spanning tree Ti for Gi that avoids the
chosen color, for each i ∈ {0, . . . k − 2}. As D is monotone, the union

⋃k−2
i=0 Ti

forms a hypochromatic plane spanning tree in D.
In the first phase, we consider each group Gi, and check whether it has a

monochromatic plane spanning tree in some color c. If so, we put c in a set S
of colors to keep. If not, then by Conjecture 1 (which we assume to hold for Gi,
as Gi has at most d+ 1 vertices) we can remove any single color and still find a
monochromatic plane spanning tree in Gi. (If c is the color to be removed, then
consider the bicoloring where all colors other than c are merged into a single
second color.) As |S| ≤ k − 1, we can choose a color not in S to be removed at
the end of the first phase.

In the second phase, for each group Gi we either select a monochromatic
plane spanning tree (if it exists), or find a plane spanning tree that avoids the
chosen color.

To obtain the statement of Theorem 2, we use the result of Lemma 2. ��

4 Open Problems

Besides resolving the conjectures in full generality, it would be interesting to
prove them for other specific classes of drawings (e.g., monotone). A useful step
in this direction would be to expand the range of k for which Conjecture 2 holds.
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Abstract. We study noncrossing geometric graphs and their disjoint
compatible geometric matchings. Given a cycle (a polygon) P we want
to draw a set of pairwise disjoint straight-line edges with endpoints on
the vertices of P so that these new edges neither cross nor contain any
edge of the polygon. We prove NP-completeness of deciding whether
there is such a perfect matching. For any n-vertex polygon, with n ≥ 4,
we show that such a matching with < n/7 edges is not maximal, that
is, it can be extended by another compatible matching edge. We also
construct polygons with maximal compatible matchings with n/7 edges,
demonstrating the tightness of this bound. Tight bounds on the size of a
minimal maximal compatible matching are also obtained for the families
of d-regular geometric graphs for each d ∈ {0, 1, 2}. Finally we consider
a related problem. We prove that it is NP-complete to decide whether a
noncrossing geometric graph G admits a set of compatible noncrossing
edges such that G together with these edges has minimum degree five.

Keywords: Geometric graph · Compatible matching · Graph
augmentation

1 Introduction

A geometric graph is a graph drawn in the plane with straight-line edges.
Throughout this paper we additionally assume that all geometric graphs are
noncrossing. Let G be a given (noncrossing) geometric graph G. We want to aug-
ment G with a geometric matching on the vertices of G such that no edges cross
in the augmentation. We call such a (geometric) matching compatible with G.
Note that our definition of a compatible matching implies that the matching is
noncrossing and avoids the edges of G. Questions regarding compatible match-
ings were first studied by Rappaport et al. [14,15]. Rappaport [14] proved that it
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is NP-hard to decide whether for a given geometric graph G there is a compatible
matching M such that G + M is a (spanning) cycle. Recently Akitaya et al. [3]
confirmed a conjecture of Rappaport and proved that this holds even if G is a
perfect matching. Note that in this case also M is necessarily a perfect matching.
However, for some compatible perfect matchings M the union G + M might be
a collection of several disjoint cycles. There are graphs G that do not admit any
compatible perfect matching, even when G is a matching. Such matchings were
studied by Aichholzer et al. [1] who proved that each m-edge perfect matching G
admits a compatible matching of size at least 4

5m. Ishaque et al. [10] confirmed
a conjecture of Aichholzer et al. [1] which says that any perfect matching G with
an even number of edges admits a compatible perfect matching. For a geometric
graph G let d(G) denote the size of a largest compatible matching of G and for a
family F of geometric graphs let d(F) = min{d(G) | G ∈ F}. Aichholzer et al. [2]
proved that for the family Tn of all n-vertex geometric trees 1

10n ≤ d(Tn) ≤ 1
4n

holds and for the family Pn of all n-vertex simple polygons n−3
4 ≤ d(Pn) ≤ 1

3n
holds.

We continue this line of research and consider the following problems. Given
a polygon, we first show that it is NP-complete to decide whether the polygon
admits a compatible perfect matching. Then we ask for the “worst” compatible
matchings for a given polygon. That is, we search for small maximal compatible
matchings, where a compatible matching M is maximal if there is no compatible
matching M ′ that contains M . We study such matchings also for larger families
of d-regular geometric graphs.

The first studied problem can also be phrased as follows: Given a geometric
cycle, can we add edges to obtain a cubic geometric graph? In the last section,
we consider a related augmentation problem. Given a geometric graph, we show
that it is NP-complete to decide whether the graph can be augmented to a
graph of minimum degree five. The corresponding problem for the maximum
vertex degree asks to add a maximal set of edges to the graph such that the
maximum vertex degree is bounded from above by a constant. This problem is
also known to be NP-complete for maximum degree at most seven [11].

A survey of Hurtado and Tóth [9] discusses several other augmentation prob-
lems for geometric graphs. Specifically it is NP-hard to decide whether a geomet-
ric graph can be augmented to a cubic geometric graph [13] and also whether an
abstract planar graph can be augmented to a cubic planar graph (not preserv-
ing any fixed embedding) [8]. Besides the problems mentioned in that survey,
decreasing the diameter [6] and the continuous setting (where every point along
the edges of an embedded graph is considered as a vertex) received considerable
attention [4,7].
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Fig. 1. (a) This gadget al.lows for simulating a “bend” in the polygon without a vertex
that needs to be matched. The construction is scaled such that the eight points marked
with squares do not see any other point outside of the gadget (in particular, narrowing
it horizontally). (b) A possible matching is shown in red. (Color figure online)

2 Compatible Perfect Matchings in Polygons

Theorem 1. Given a simple polygon, it is NP-complete to decide whether it
admits a compatible perfect matching.

Proof. The problem is obviously in NP, as a certificate one can merely provide
the added edges. NP-hardness is shown by a reduction from positive planar
1-in-3-SAT. In this problem, shown to be NP-hard by Mulzer and Rote [12],
we are given an instance of 3-SAT with a planar variable–clause incidence graph
(i.e., the graph whose vertices are the variables and clauses, which are connected
by an edge if and only if the variable occurs in the clause) and no negative
literals; the instance is considered satisfiable if and only if there is exactly one
true variable per clause.

For a given 1-in-3-SAT formula, we take an embedding of its incidence graph
and replace its elements by gadgets. We first show that finding compatible match-
ings for a set of disjoint simple polygons is hard and we then show how to connect
the individual polygons to obtain a single polygon.

Our construction relies on a gadget that restricts the possible matching edges
of vertices. In particular, we introduce a polygonal chain, whose vertices need
to be matched to each other in any perfect matching. This is achieved by the
twin-peaks gadget as shown in Fig. 1. The gadget is scaled such that the eight
vertices in its interior (which are marked with squares in Fig. 1) do not see any
edges outside of the gadget. (We say that a vertex sees another vertex if the
relative interior of the segment between them does not intersect the polygon.)
The two topmost vertices must have an edge to the vertices directly below as
the vertices below do not see any other (nonadjacent) vertices. The remaining
six “square” vertices do not have a geometric perfect matching on their own, so
any geometric perfect matching containing them must connect them to the two
bottommost vertices. Clearly, there is such a matching.
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Fig. 2. (a) A wire gadget and its two truth states (one in dashed, the other in solid
red). (b) A bend in a wire gadget. (c) A split gadget that transports the truth setting
of one wire to two other ones. This is used for representing the variables.

We now present the remaining gadgets (wire, split, and clause) for our reduc-
tion. The ideas are inspired by the reduction of Pilz [13] who showed that
augmenting an arbitrary geometric graph to a crossing-free cubic graph is NP-
complete. In the following illustrations, vertices of degree two are drawn as a dot.
Other vertices in the figures represent a sufficiently small twin-peaks gadget.

The wires propagate the truth assignment of a variable. A wire consists of a
sequence of polygons, each containing four vertices of degree two (ignoring twin-
peak vertices). There are only two possible global matchings for these vertices;
see Fig. 2(a). A bend in a wire can be drawn as shown in Fig. 2(b). The truth
assignment of a wire can be duplicated by a split gadget ; see Fig. 2(c). A variable
is represented by a cyclic wire with split gadgets. Recall that in our reduction, we
do not need negated variables. The clause gadget is illustrated in Fig. 3, where

Fig. 3. The clause gadget. The visibility among the vertices of degree two is indicated
by the lighter lines. Exactly one vertex of degree two of the part in the circle must be
connected to a wire above that carries the true state.
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Fig. 4. Merging neighboring polygons to a single polygon.

the wires enter from the top. The vertices there can be matched if and only if
one of the vertices is connected to a wire that is in the true state. The vertices
at the bottom of the gadget make sure that if there are exactly two wires in the
false state, then we can add an edge to them. Hence, this set of polygons has a
compatible perfect matching if and only if the initial formula was satisfiable.

It remains to “merge” the polygons of the construction to one simple polygon.
Observe that two neighboring polygons can be merged by a small tunnel using
four new bends with twin-peaks gadgets line in Fig. 4, without affecting the
possible compatible perfect matchings of the other vertices. We can consider
the incidence graph to be connected (otherwise the reduction splits into disjoint
problems). Hence, we can always merge two distinct neighboring polygons, until
there is only a single polygon left. ��

3 Compatible Maximal Matchings in Geometric Graphs

For a geometric graph G let mm(G) denote the size of a minimal maximal
compatible matching of G and for a family F of geometric graphs let mm(F) =
min{mm(G) | G ∈ F}. For a geometric graph G and a maximal compatible
matching M we define the following parameters (illustrated in Fig. 5):

– iGM denotes the number of isolated vertices in G + M ,
– ΔGM denotes the number of triangular faces in G incident to unmatched

vertices only,
– σGM denotes the number of faces of G+M incident to matched vertices only,
– νGM denotes the number of edges uv in G where u is unmatched, v is matched,

and uv is incident to a reflex angle at u in G + M (see Fig. 7),
– ruGM and rmGM denote the number of unmatched and matched vertices incident

to a reflex angle in G + M , respectively.

Here, we call an angle reflex if it is of degree strictly larger than π (there is
an angle of degree 2π at vertices of degree 1 in G + M and there is no angle
considered at isolated vertices). Analogically, we call an angle convex if it is of
degree π or smaller than π.

We assume that the vertices of the considered graphs are in general position.
That means that no three vertices are collinear.

The following lemma gives a general lower bound on the size of any maximal
matching in terms of the parameters introduced above. We use this bound later
to derive specific lower bounds for various classes of geometric graphs below.
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Fig. 5. A geometric graph G (black) and a maximal compatible matching M (red).
Here iGM = ΔGM = 1, σGM = 2, νGM = 10, ruGM = 11, and rmGM = 10. (Color figure
online)

Fig. 6. The geometric graph (black) with maximal matching (red) from Fig. 5 where
each reflex angle is cut by a gray edge. (Color figure online)

Lemma 1. For each geometric graph G and each maximal compatible match-
ing M of G we have

2 |V (G)| + νGM + 2σGM − ruGM − 2 rmGM −
∑

u∈V (M)

dG(u) − ΔGM − 2 ≤ 2 |E(M)| .

Proof. We subdivide the plane into cells as follows. First draw a rectangle enclos-
ing G in the outer face (with four vertices and four edges). For each isolated
vertex in G + M (one after the other) draw two collinear straight-line edges,
both starting at that vertex and until they hit some already drawn edges e
and e′. The direction of these new edges is arbitrary as long as they do not
hit any vertex. Their endpoints become new vertices (subdividing e and e′).
Similarly, for each vertex u ∈ V (G) incident to some reflex angle in the result-
ing drawing we draw (one after the other) a straight-line edge starting at u.
The direction of this new edge is chosen such that it cuts the reflex angle at
u into two convex angles and such that it stops on some already drawn edge
(but not a vertex) which is then subdivided by a new vertex. Avoiding to hit
vertices is possible as the points are in general position. See Fig. 6. Let D denote
the final plane graph. Then each bounded face in D is convex and D is con-
nected. Further, D has exactly |V (G)| + ruGM + rmGM + 2 iGM + 4 vertices and
|E(G)| + |E(M)| + 2(rmGM + ruGM + 2 iGM ) + 4 edges (each edge starting at an
isolated vertex and each edge cutting a reflex angle creates a new vertex and
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Fig. 7. An edge uv ∈ E(G) where u ∈ V (G) \V (M) and v ∈ V (M) with a reflex angle
at u (in G + M). Then u is the only vertex from V (G) \ V (M) incident to the face F
(obtained by cutting the reflex angle at u) since M is maximal.

subdivides an existing edge into two parts). By Euler’s formula the number FD

of faces in D is exactly

FD = |E(D)|−|V (D)|+2 = |E(G)|−|V (G)|+ |E(M)|+rmGM +ruGM +2 iGM +2.

Let U = V (G)\V (M) denote the set of unmatched vertices of G and let Fi denote
the number of faces in D with exactly i vertices of U in their boundary. Each
isolated vertex in G+M is incident to exactly two faces of D, each vertex u ∈ U
not incident to a reflex angle in G + M is incident to exactly dG(u) faces of D,
and each remaining vertex u ∈ U is incident to exactly dG(u) + 1 faces of D.
Therefore

2 iGM + ruGM +
∑

u∈U

dG(u) =
∑

i≥1

i Fi. (1)

Consider two vertices in U incident to a common face F in D. The line seg-
ment connecting these two vertices is an edge of G, otherwise M is not maximal.
So either F has at most two vertices from U or F is a triangular face of G
incident to vertices from U only. This shows that F3 = ΔGM and Fi = 0 for
each i ≥ 4. Further, each face incident to a vertex that is isolated in G + M
is not incident to any other unmatched vertex. Similarly, for each edge counted
by νGM there is a face in D with only one unmatched vertex in its boundary,
see Fig. 7. Hence F1 ≥ 2 iGM + νGM . The outer face does not contain any ver-
tices of U and hence F0 ≥ 1 + σGM . Combining these observations with (1) and
F2 = FD − F0 − F1 − F3 yields

2 iGM + ruGM +
∑

u∈U

dG(u)

= F1 + 2F2 + 3ΔGM

= 2FD − 2F0 − F1 + ΔGM

≤ 2 |E(G)| − 2 |V (G)| + 2 |E(M)|
+ 2 iGM + 2 rmGM + 2 ruGM + ΔGM − νGM − 2σGM + 2.

Now the desired result follows using
∑
u∈U

dG(u) = 2 |E(G)| − ∑
u∈V (M)

dG(u). ��

The bound of Lemma 1 is particularly applicable for regular graphs.
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Fig. 8. Geometric graphs (black) with minimal maximal compatible matchings (red).
(Color figure online)

Theorem 2. Consider an n-vertex geometric graph G.

a) If G is 0-regular (a point set) we have mm(G) ≥ n−1
3 .

b) If G is 1-regular (a perfect matching) we have mm(G) ≥ n−2
6 .

c) If G is 2-regular (disjoint polygons) we have mm(G) ≥ n−3
11 .

All these bounds are tight for infinitely many values of n.

Proof. First consider a 0-regular n-vertex graph G (a point set). Then ruGM = 0,
rmGM = 2 |E(M)|, νGM = ΔGM = 0, and σGM ≥ 0 for any maximal compatible
matching M of G. By Lemma 1 we have 2n − 4 |E(M)| − 2 ≤ 2 |E(M)|. This
shows mm(G) ≥ (n − 1)/3. This is tight due to the graphs G and the maximal
matchings given in Fig. 8 (left).

Next consider a 1-regular n-vertex graph G. Each vertex in G is reflex in
G + M . Then ΔGM = 0, νGM ≥ 0, ruGM = n − 2 |E(M)|, rmGM = 2 |E(M)|, and
σGM ≥ 0 for any maximal compatible matching M of G. By Lemma 1 we have
n − 4 |E(M)| − 2 ≤ 2 |E(M)|. This shows mm(G) ≥ (n − 2)/6. This is tight due
to the graphs G and the maximal matchings given in Fig. 8 (middle).

Finally consider a 2-regular n-vertex geometric graph G. Each vertex in
V (G) \ V (M) is reflex in G + M . Then νGM ≥ 0, ruGM = n − 2 |E(M)|, rmGM ≤
2 |E(M)|, σGM ≥ 0, and ΔGM ≤ (n − 2 |E(M)|)/3 for any maximal compatible
matching M of G. By Lemma 1 we have n − 6 |E(M)| − (n − 2 |E(M)|)/3 − 2 ≤
2 |E(M)|. This shows mm(G) ≥ (n−3)/11. This is tight due to the graph G and
the maximal matching M given in Fig. 8 (right), as an infinite family is obtained
by repeatedly replacing an arbitrary triangle with a (scaled) copy of G + M . ��
Theorem 3. Let n ≥ 4 and let Pn denote the family of all n-vertex polygons.
Then mm(Pn) ≥ 1

7n for all n and this bound is tight for infinitely many values
of n.

Proof. The construction in Fig. 9 shows that for infinitely many values of n there
is an n-vertex polygon with a compatible maximal matching of size n

7 . This shows
mm(Pn) ≤ n

7 for infinitely many values of n.
It remains to prove the lower bound. Let P be an n-vertex polygon with a

maximal compatible matching M . Since n ≥ 4, we have |E(M)| ≥ 1, ΔPM = 0,
rmPM ≤ 2 |E(M)|, and σPM ≥ 0. Let U = V (P ) \ V (M) denote the unmatched
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Fig. 9. A polygon (black) with a maximal matching (red) with n
7

edges (here n = 42).
Note that there are exactly two matching edges between the 14 vertices in the gray
area which can be repeated along a cycle arbitrarily often. (Color figure online)

vertices of P and let EUM denote the set of edges uv in P where u ∈ U and
v ∈ V (M). Each vertex in U has a reflex angle. Hence ruPM = n − 2 |E(M)| and
νPM = |EUM |. There are 2 + |E(M)| faces in P + M . Each of them either has
no vertex from U in its boundary or at least two edges from EUM . So P + M
has 2 + |E(M)| − σPM faces incident to at least two edges from EUM each.
Each edge in EUM is on the boundary of two faces of P + M . Together we have
2 |EUM | ≥ 2(2+|E(M)|−σPM ) and hence νPM +σPM ≥ 2+|E(M)|. Combining
these observations with Lemma 1 yields |E(M)| ≥ n/7, because

2n + 2 + |E(M)| − n − 2 |E(M)| − 4 |E(M)| − 4 |E(M)| ≤
2n + νPM + 2σPM − ruPM − 2 rmPM −

∑

u∈V (M)

dP (u) − ΔPM − 2 ≤ 2 |E(M)|

��
For nonregular (abstract) graphs Ĝ determining a geometric drawing G min-

imizing mm(G) seems harder. For an integer n and a real number d with 0 ≤ d ≤
3, let Fn

d denote the family of all (noncrossing) geometric graphs with n vertices
and at most dn edges. Further let mm(d) = lim inf

n→∞ min{mm(G)/n | G ∈ Fn
d }.

For each n and each d ≥ 2 the set Fn
d contains a triangulation of a convex

polygon (on 2n − 3 edges). This shows mm(d) = 0 for d ≥ 2. Theorem 2 shows
mm(0) = 1/3 and mm(1/2) ≤ 1/6. The construction in the following lemma
shows mm(d) ≤ (2 − d)/13 for 7/10 < d < 2.

Lemma 2. For any integers m, n with n ≥ 5, 7n+95
10 ≤ m ≤ 2n + 2 there is a

geometric graph on n vertices and m edges with a maximal compatible matching
of size

⌈
2n−m+3

13

⌉
.

Proof. Let k =
⌈
2n−m+3

13

⌉
. Then k ≥ 1 since m ≤ 2n + 2. First suppose that

2n − m + 3 is divisible by 13, that is, m = 2n + 3 − 13k. We shall construct a
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Fig. 10. A geometric graph (black) with a maximal compatible matching (red). (Color
figure online)

geometric graph on n vertices and m edges with a maximal compatible matching
of size k.

Choose a (noncrossing, geometric) perfect matching M of 2k points in convex
position and an (inner) triangulation of that geometric graph. See Fig. 10 (left).
There are 2k − 2 triangular faces and 2k edges in the boundary of the outer
face. Place an isolated edge in the interior of each triangular face. Further for
all but one of the outer edges e place another (tiny) isolated edge close to e in
the outer face (so that there are no visibilities between these). So far there are
2k+(4k−4)+(4k−2) = 10k−6 vertices and (3k−3)+(2k−2)+(2k−1) = 7k−6
edges not in M . Close to the remaining outer edge we place a triangulation T of
a convex polygon on n−10k+6 vertices (so that there are no visibilities between
these vertices and the isolated edges not in M). See Fig. 10 (right). Note that
n−10k+6 ≥ 2 since m ≥ 7n+95

10 . So the graph T contains 2n−20k+9 = m−7k+6
edges. The final graph has in total n vertices and m edges not in M . Further M
is a maximal matching by construction.

It remains to consider the case that 2n − m + 3 is not divisible by 13. In this
case we apply the construction above with m′ = 2n + 3 − 13k edges. To add the
remaining m − m′ ≤ 12 edges we replace the triangulation T by an appropriate
triangulation of another point set that has some interior points (and hence has
more edges). ��

4 Augmenting to Minimum Degree Five

In this section, we show that augmenting to a geometric graph with minimum
degree five is NP-complete.

Theorem 4. Given a geometric crossing-free graph G, it is NP-complete to
decide whether there is a set of compatible edges E such that G+E has minimum
degree five.

Proof. The problem is obviously in NP, a certificate provides the added edges.
NP-hardness is shown by a reduction from monotone planar rectilinear
3-SAT.

In this problem, shown to be NP-hard by de Berg and Khosravi [5], we are
given an instance of monotone (meaning that each clause has only negative or
only positive variables) 3-SAT with a planar variable-clause incidence graph. In
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this graph, the variable and clause gadgets are represented by rectangles. All
variable rectangles lie on a horizontal line. The clauses with positive variables
lie above the variables and the clauses with negative variables below. The edges
connecting the clause gadgets to the variable gadgets are vertical line segments
and no edges cross. See Fig. 11.

variables

clause

clause

clause

clause

clause

clause

clause

clause

Fig. 11. A monotone planar 3-SAT instance with a corresponding embedding.

Fig. 12. A (geometric) subgraph whose copies will form a wire gadget.

For a given monotone planar 3-SAT formula, we take an embedding of its
incidence graph (as discussed) and replace its elements by gadgets. Note that the
corresponding rectilinear layout can be computed in polynomial time and has
coordinates whose size is bounded by a polynomial [16]. We use a wire gadget
that propagates the truth assignments; see Fig. 12. It consists of a linear sequence
of similar subgraphs, each containing exactly four vertices of degree four (the
other vertices have at least degree five). The gray areas contain subgraphs where
all vertices have at least degree five. The main idea is that we need to add an
edge to each of the vertices of degree four surrounding the big gray squares. But
due to blocked visibilities this can only be achieved by a “windmill” pattern,
which has to synchronize with the neighboring parts; see Fig. 13. Thus, we have
exactly two ways to add edges in order to augment the wire to a graph with
minimum degree five.
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A bend in a wire is shown in Fig. 14. The truth assignment of a wire can be
duplicated by the split gadget as shown in Fig. 14.

Fig. 13. The wire gadget with its only true possible augmentations, associated with
the assignment true (a) and false (b).

Fig. 14. A bended wire (a) and the split gadget (b).

A variable is represented by a long wire with split gadgets. Recall that in
our reduction, all variables lie on a horizontal line. The clauses with positive
variables lie above and the ones with negated variables lie below this line. We
can control whether a variable or a negated variable is transmitted to the clause
gadget by choosing appropriate positions for the corresponding split gadgets. In
particular, if we translate the split gadget at the wire by one position to the
left or right and keep the truth assignment for the wire, the orientation of the
augmentation at the position of the new split gadget is flipped.

The clause gadget is illustrated in Fig. 15. The wires enter from left, right
and below (respectively above). The 7-gon in the middle of the clause gadget
can be augmented to a subgraph with minimum degree five if and only if it is
connected to at least one wire in the true state. See also Fig. 16. ��
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Fig. 15. A clause gadget, the three bold segments represent that the corresponding
literals are set to true. The central 7-gon (blue) can be augmented to a subgraph of
degree at least five if and only if at least one literal is true. (Color figure online)

Fig. 16. The three valid possibilities to augment the 7-gon in the clause gadget if one
literal is true.

5 Conclusions

We study how many noncrossing straight-line matching edges can be drawn on
top of a geometric graph G without crossing or using the edges of G. From an
algorithmic point of view we show that it is hard to decide whether a perfect
matching can be drawn on top of a polygon in this way. Our results on minimal
maximal matchings show that a greedy algorithm will always draw at least n

7
edges on top of any n-vertex polygon. However, there are instances where it may
draw not more than this amount of edges, although larger compatible matchings
exist.

We are interested in how the function mm(G) (the size of a minimal max-
imal compatible matching of G) behaves among all geometric graphs G on n
vertices and at most dn edges for any value d ∈ [0, 3]. Our results show that
degree constraints (like d-regularity) help to determine mm(G) and also increase
the value of mm(G) (compared to graphs on the same average degree). Indeed,
we show that any 2-regular graph has at least (n − 3)/11 edges in any maxi-
mal compatible matching while the construction in Lemma 2 shows that there
is a geometric graph G on n vertices with n edges and mm(G) = (n + 3)/13.
We do not know whether there is a family of such geometric graphs with val-
ues of mm(G) (asymptotically) even smaller than n/13. It is also not clear for
which graphs mm(G) is maximized. For some drawings of empty graphs G we
have mm(G) = �n

3 �. Is this the (asymptotically) largest possible value?
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3. Akitaya, H.A., Korman, M., Rudoy, M., Souvaine, D.L., Tóth, C.D.: Circumscrib-
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Abstract. This report describes the 27th Annual Graph Drawing Con-
test, held in conjunction with the 28th International Symposium on
Graph Drawing and Network Visualization (GD’20) in Vancouver, BC,
Canada. Due to the global COVID-19 pandemic, the contest was held
completely online. The mission of the Graph Drawing Contest is to
monitor and challenge the current state of the art in graph-drawing
technology.

1 Introduction

Following the tradition of the past years, the Graph Drawing Contest was divided
into two parts: the creative topics and the live challenge.

Creative topics were comprised by two data sets. The first data set described
the genealogy and interactions in the Icelandic Saga Hrafnkels Saga. The second
data set modeled various types of relationships between Korean artists, bands,
and management and recording companies. Both data sets were provided by
Timothy R. Tangherlini, whose research interests concern among others folk
narrative and popular culture. The data sets were published a year in advance,
and contestants submitted their visualizations before the conference started.

The live challenge took place during the conference in a format similar to a
typical programming contest. Teams were presented with a collection of challenge
graphs and had one hour to submit their highest scoring drawings. This year’s
topic was to minimize the number of crossings an upward straight-line drawing
of a graph with vertex locations restricted to a grid.

Overall, we received 29 submissions: 9 submissions for the creative topics and
20 submissions for the live challenge.

2 Creative Topics

The general goal of the creative topics was to model each data set as a graph and
visualize it with complete artistic freedom, and with the aim of communicating
c© Springer Nature Switzerland AG 2020
D. Auber and P. Valtr (Eds.): GD 2020, LNCS 12590, pp. 507–519, 2020.
https://doi.org/10.1007/978-3-030-68766-3_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68766-3_39&domain=pdf
https://doi.org/10.1007/978-3-030-68766-3_39
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as much information as possible from the provided data in the most readable
and clear way.

We received 5 submissions for the first topic, and 4 for the second. Submis-
sions were evaluated according to their aesthetic quality, domain-specific require-
ments, readability and clarity of the visualization, faithfulness of the data repre-
sentation, and novelty of the visualization concept. We noticed overall that it is
a complex combination of several aspects that make a standing out submission.
These aspects include but are not limited to the understanding of the structure
of the data, investigation of the additional data sources, applying intuitive and
powerful for the case of the data visual metaphors, careful design choices, hand
post-processing of the automatically created visualizations, as well as finding the
thin balance between the amount of data to be represented and the clarity of
the visualization. We made all the submissions available on the contest website
in the form of a virtual poster exhibition. During the conference, we presented
these submissions and announced the winners. We will now review the top three
submissions for each topic (for a complete list of submissions, refer to http://
www.graphdrawing.org/gdcontest/contest2020/results.html).

2.1 Hrafnkels Saga

Hrafnkels saga is one of the Icelanders’ sagas, which tells of struggles between
chieftains and farmers in the east of Iceland in the 10th century. The provided
Hrafnkel Saga Network models relationships between the actants of the saga. The
network was available as an Excel file with a spreadsheet for nodes, a spreadsheet
for edges, and two spreadsheets for code references. The graph consisted of 43
nodes and 110 edges.

The Hrafnkel Saga network contained two disconnected components, one of
them having only 6 vertices. We decided to leave this small component in the
graph as it is typical for sagas, representing a “time stamp”.

Third Place: Henry Fürster, Axel Kuckuk, and Lena Schlipf (Univer-
sity of Tübingen). The authors have chosen to present Hrafnkels Saga in a
story-line visualization. They have carefully studies the text of the Saga and
augmented their visualization with pieces of text describing the corresponding
events. The authors designed the visualization in such a way that the drawing
can be printed, cut out, folded, and glued together to form a rune stone where
every face corresponds to a chapter of the saga. The committee was impressed by
the understanding of the data that the authors had developed and the creativity
of the design choices.

http://www.graphdrawing.org/gdcontest/contest2020/results.html
http://www.graphdrawing.org/gdcontest/contest2020/results.html
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Second Place: Fabian Jogl, Melanie Paschinger, and Anna Chmurovic
(TU Wien). The authors have chosen to represent the actants by concen-
tric circular arcs, and the interactions among the actants by directed segments
between the arcs. The types of the interactions were made clear with a variety of
easy to understand glyphs, while the family trees were presented separately in a
classical layout. The committee especially valued the readability of the drawing
and the careful design choices leading to an intuitive visualization.



510 P. Kindermann et al.

Winner: Tamara Drucks, Moritz Leidinger, and Giulio Pace (TU
Wien). The authors have chosen a metro-map metaphor for their visualiza-
tion. The characters were represented by metro-lines and the interactions by
metro-stations, the type of which was additionally marked by glyphs. The com-
mittee was impressed by the aesthetics and the clarity of the visualization. We
especially valued the design choices such as the spiral layout of the story-line
visualization – giving the poster a creative look, the color palette, the carefully
chosen glyphs, and the clever usage of the background image of Iceland in com-
bination with the careful placement of text on it.
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“
To represent the cyclic nature of the saga, we shaped the graph as a spiral
where the development of the story is shown by character lines that pass
through action nodes. The colors of the character lines stand for the differ-
ent families, whereas the action types are represented by a set of different
icons. The spiral is superimposed onto a map of Iceland to give, where
possible, an approximate localization to the events.
Giulio Pace ”

2.2 K-Pop

K-pop, short for Korean pop, is an umbrella term for popular music orig-
inating from South Korea. The provided K-pop network models relations
between Korean artists, bands (groups), and management & recording com-
panies (labels). The network consisted of 4674 nodes and 5094 edges.
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Though given as source-target, the edges did not always represent directed
relations. The type of relation was not part of the data, but can be inferred
from the related node types – though ambiguities may be present. Primarily,
relations are management (label to group or artist) or membership (artist or
group to group), with other relations being general association.

The graph consisted of one large connected component, a few smaller compo-
nents and various triples, pairs and isolated nodes. Authors may have selected
which parts of the graph to visualize to highlight structures of interest. This
should have been described in the submission. More information about the data
can be found in Broadwell et al.1

Third Place: Markus Wallinger, Hsiang-Yun Wu (TU Wien). The
authors chose to visualize the big data set as a so-called Hive Plot, where nodes
are represented on a radially oriented axis with a coordinate system based on
properties of the network, and connections are represented as curves. The com-
mittee especially valued that the visualization, if the data is filtered appropri-
ately, reveals interesting trends in the data, for example that smaller labels are
more inclined to take male artists under contract.

1 Peter M. Broadwell, Timothy R. Tangherlini, and Hyun Kyong Hannah Chang.
Online Knowledge Bases and Cultural Technology: Analyzing Production Networks
in Korean Popular Music. Series on Digital Humanities 7 (2016): 369–394.
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Second Place: Philipp Christoph Hekeler, Lucas Joos, Merle Kammer,
Marco Piechotta, Markus Schramm, Kathrin Seßler, Friederike Maite
Siemers, Andreas Tanner, Felix Weckesser, Henry Förster, and Axel
Kuckuk (University of Tübingen). The authors have designed and imple-
mented an interactive system which allowed to investigate the data set in details:
in overview mode, the user sees the whole data and can see links between groups
by hovering over nodes. By selecting a subset of the data with a lasso, the user
can enter Exploration Mode to see the selected data in more detail. If one node
is selected, some additional information about the node is shown in an infobox.
The interactive tool is available online: http://algo.inf.uni-tuebingen.de/kpop/.

http://algo.inf.uni-tuebingen.de/kpop/
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The committee appreciated the interactive features that give the possibility to
understand the data after some investigations.

Winner: Rupert Ettrich, Julian Haumer, and Samantha Fuchs (TU
Wien). The authors used a hierarchical layout in the style of a vintage star
map, depicting labels as circles, and groups and artists that are signed by the
label as smaller circles and icons inside. The authors decided to restrict the
visualization to the largest component of the graph, consisting of 2422 nodes
and 4190 edges. The committee appreciated the careful choice of the subset of
data to be visualized which was sufficient to give an overview over the biggest
labels in Korean pop music and the careful design choices which leaded to an
aesthetically pleasing, readable and intuitive visualization.
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“
To deal with the large dataset, we decided early that we want to focus
only on the largest connected component. This allowed us to manually
research all remaining label to label relations in order to further simplify
the graph. For example, we noticed that some relations simply represent
a renaming of a label. Thus, we were able to remove these kind of edges
and display this information in another way. While initially being a force
based layout, we manually adjusted label vertices to remove edge crossings
and have only downward pointing edges to suggest hierarchy in-between
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labels. Within label vertices we display subgraphs of corresponding artists
and groups with a force based layout with additional manual adjustments
to improve legibility. The size of a group is reflected by the radius of its
node. To achieve our Map of K-Pop Stars, we used D3 and built a custom
web-based editor.
Julian Haumer ”

3 Live Challenge

The live challenge took place during the conference and lasted exactly one hour.
During this hour, local participants of the conference could take part in the
manual category (in which they could attempt to draw the graphs using a sup-
plied tool2), or in the automatic category (in which they could use their own
software to draw the graphs). Because of the global COVID-19 pandemic, we
allowed everybody in both categories to participate remotely. To coordinate the
contest, give a brief introduction, answering questions, and giving participants
the possibility to form teams, we setup a gather.town space3.

The challenge focused on minimizing the number of crossings in an upward
straight-line embedding of a given directed graph, with vertex locations restricted
to a grid. The results were judged solely with respect to the number of crossings;
other aesthetic criteria were not taken into account. This allows an objective way
to evaluate each drawing.

3.1 The Graphs

In the manual category, participants were presented with six graphs. These were
arranged from small to large and chosen to contain different types of graph
structures. In the automatic category, participants had to draw the same six
graphs as in the manual category, and in addition another seven larger graphs.
Again, the graphs were constructed to have different structure.

For illustration, we include the sixth graph, which depicts a map of Western
Europe, in the form we created the graph, in its initial state with vertices moved
around randomly, the best manual solution we received (by team upwürz), and
the best automatic solution we received (by team wildcat).

2 http://graphdrawing.org/gdcontest/tool/.
3 https://gather.town/eIfIsr1xGfJm1HCW/gdcontest2020.

http://graphdrawing.org/gdcontest/tool/
https://gather.town/eIfIsr1xGfJm1HCW/gdcontest2020
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The sixth graph The provided drawing

)zrüwpu(noituloslaunamtsebehT The best automatic solution (wildcat)

For the complete set of graphs and submissions, refer to the contest website at
http://www.graphdrawing.org/gdcontest/contest2020/results.html. The graphs
are still available for exploration and solving Graph Drawing Contest Submission
System4.

Similarly to the past years, the committee observed that manual (human)
drawings of graphs often display a deeper understanding of the underlying graph
structure than automatic and therefore gain in readability. The committee was
also impressed by the fact that for four of the six small graphs the manual draw-
ings were as good than the automatic drawings, while for one graph the manual
drawings were better, and for one graph the automating drawings performed
better.

4 https://graphdrawingcontest.appspot.com.

http://www.graphdrawing.org/gdcontest/contest2020/results.html
https://graphdrawingcontest.appspot.com
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3.2 Results: Manual Category

Below we present the full list of scores for all teams. The numbers listed are
the numbers of crossings in the drawings; the horizontal bars visualize the cor-
responding scores.

Shared third place: This time we brought 3 chargers!, consisting of Fouli
Argyriou, Martin Gronemann, and Henry Förster; and Good luck, consisting
of Oksana Firman.
Second place: ↑, consisting of Maarten Löffler.
Winner: upwürz, consisting of Jonathan Klawitter and Johannes Zink.

“
We want to thank all the fallen crossings for their support and without
whom this success would not have been possible. If it was not for their
honorable self-sacrifice, we would not have been able to achieve our winning
scores with our strategy of merely searching for more comfy places for
vertices.
Jonathan Klawitter ”

3.3 Results: Automatic Category

In the following we present the full list of scores for all teams that participated
in the automatic category. The numbers listed are the numbers of crossings in
the drawings; the horizontal bars visualize the corresponding scores.
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Third place: graphX, consisting of Luca Castelli Aleardi, Victor Bourdeaudhui,
Lucas Guirardel, Auguste Poiroux, Geoffrey Saunois, Thomas Sepulchre, and
Antoine Stark.
Second place: Simple is best, consisting of Sebastian Benner and Dominik
Dürrschnabel.
Winner: NothingChangedFromGD19, consisting of Solveig Klepper, Axel
Kuckuk, Paul Palomero Bernardo, Maximilian Pfister, Patrizio Angelini,
Michalis Bekos, Henry Förster, and Michael Kaufmann.

“
The hill-climbing probabilistic approach that we adopted last year was
efficient enough to give us the first place in the contest even though the
competition was stronger this year. We believe that we managed to win
over the second placed team because we had a close look at the rank-
ing formula and adjusted our optimization tactic over the input graphs
accordingly.
Maximilian Pfister ”

Acknowledgments. The contest committee would like to thank the organizing and
program committee of the conference; the generous sponsors of the symposium; and
all the contestants for their participation. We especially thank Timothy R. Tangherlini
for providing us the data for this year’s creative topics. Further details including all
submitted drawings and challenge graphs can be found at the contest website:

http://www.graphdrawing.org/gdcontest/contest2020/results.html
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Hierarchical graphs are important for many applications [4, 5] in several areas of
research and business. They are directed (often acyclic) graphs and their visual-
ization has received significant attention recently [3, 6, 7]. We present algorithms
that are based on the concepts of path and channel decomposition of such graphs
as proposed in the framework presented in [8, 9]. We present an extension of the
framework of [9] by (a) compacting the drawing in the vertical direction, and (b)
drawing the path transitive edges that were not drawn in [9]. This approach nat-
urally splits the edges of G into: (a) path edges that connect consecutive vertices
in the same path, (b) cross edges that connect vertices that belong to different
paths, and (c) path transitive edges that connect non-consecutive vertices in the
same path. A user may use a different color for each category. Our algorithms
run in O(km) time, where k is the number of paths, and provide better upper
bounds than the ones given in [9] e.g.., the height of the resulting drawings is
equal to the length of the longest path of G. Additionally, we bundle and draw
all edges of the DAG in O(m + n log n) time, using minimum width per path.

The Path Based Hierarchical Drawing Framework (PBF ) is based on the
idea of partitioning the vertices of a graph G into (a minimum number of)
channels/paths, that we call channel/path decomposition of G, which can be
computed in polynomial time. PBF is orthogonal to Sugiyama framework in
the sense that it is a vertical (instead of horizontal) decomposition of G into
(vertical) paths/channels. Figure 1 shows two different hierarchical drawings of
G with 31 nodes and 69 edges: Part (a) shows a drawing Γ1 of G which follows
our framework; part (b) shows a drawing Γ2 of G as computed by OGDF [2] that
follows the Sugiyama framework [10]. Drawing Γ1 has 74 crossings, 33 bends,
width 14, and height 16 (area 224). On the other hand, drawing Γ2 has 72
crossings, 64 bends, width 42 and height 16 (area 672). The width and height
reported by OGDF are 961 and 2273, respectively. We normalized all such figures
(also in Fig. 2) in order to provide a reasonable comparison.

Figure 2 results regarding the number of crossings, bends, width, height and
area of the drawings. The experiments show that the drawings produced by our
algorithms have a significantly lower number of bends and are much smaller in
area than the ones produced by OGDF. On the other hand, the drawings of
OGDF have a lower number of crossings when the input graphs are relatively
sparse. As expected, OGDF is better than our algorithms in the number of cross-
ings since OGDF places a significant weight in minimizing crossings, whereas we
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(a) (b)

Fig. 1: (a) Drawing Γ1 of G computed by our algorithms and visualized by Tom
Sawyer Perspectives [1]. (b) Drawing Γ2 of G as computed by OGDF.

Fig. 2: Results on number of crossings, bends, width, height and area for PBF
and OGDF using different DAGs.

do not explicitly minimize crossings. Hence, this approach offers an interesting
alternative to visualize hierarchical graphs.
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1 Introduction

A 1-planar graph is a graph that can be drawn in the plane such that every edge
has at most one crossing. Many graph-theoretic and graph-drawing results are
known for 1-planar graphs, see for example [5]. One subclass is the class of outer-
1-planar (o1p) graphs, which have a 1-planar drawing such that additionally
every vertex is on the outer-face (the unbounded region of the drawing).

Outer-1-planar graphs were introduced by Eggleton [4] and later studied
extensively by Auer, Bachmeier, Brandenburg, Gleißner, Hanauer, Neuwirth and
Reislhuber [1]. Among others, they characterize the forbidden minors of outer-
1-planar graphs, give a recognition algorithm, and give bounds on various graph
parameters such as number of edges, treewidth, stack number and queue number.
Finally they turn to drawing algorithms for outer-1-planar graphs, and here claim
the following result: “Every o1p graph has a planar visibility representation in
O(n log n) area.” (Theorem 8).

2 Lower Bound

We show that the claim by Auer et al. is incorrect, and construct an outer-
1-planar graph that requires Ω(n2) area in any planar poly-line drawing (this
implies the lower bound for visibility representations as well [3]). Our lower-
bound graph GL (for L ≥ 2) consists of a 2 × L-grid with every inner face filled
with a crossing. Clearly this is an outer-1-planar graph, see Fig. 1.

v1 v2

w1 w2

vL

wL

vN

wN vL wL

x

y

y′
GL\K

TL

TL−1

Fig. 1. The outer-1-planar graph G7, and three 1-fused stacked triangles.
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Call a set of triangles T1, . . . , T� (in a planar embedding) 1-fused stacked
triangles [2] if for i = 2, . . . , � the region bounded by Ti includes every vertex of
Ti−1, and Ti and Ti−1 have at most one vertex in common.

Enumerate the vertices of GL as in Fig. 1.

Lemma 1. Fix L ≥ 2. Any planar embedding Γ of GL with (vL, wL) on the
outer-face contains L − 1 1-fused stacked triangles, of which one is the outer-
face and has vertices in K := {vL, wL, vL−1, wL−1}.
Proof. The vertices of K form a K4; its induced embedding ΓK is hence unique
up to renaming. By assumption the outer-face TL of ΓK contains vL, wL and
one vertex y ∈ {vL−1, wL−1}; set x = {vL−1, wL−1} \ y.

If L = 2, then we are done (use triangle TL). If L > 2, then graph GL \ K is
connected, so must reside entirely within one face of ΓK . It contains neighbours
of x and y, so it must reside within one of the interior faces of ΓK adjacent to
(x, y). Thus TL is the outer-face not only of ΓK but also of Γ .

The graph G′ := GL \ {vL, wL} is a copy of GL−1. Since GL \ K resides
within one interior face of ΓK , edge (vL−1, wL−1) = (x, y) is on the outer-face of
the induced drawing Γ ′ of G′. Applying induction to Γ ′, we hence obtain L − 2
1-fused stacked triangles T2, . . . , TL−1, where TL−1 = {vL−1, wL−1, y

′} for some
y′ ∈ {vL−2, wL−2}. Adding TL to this gives the desired set of 1-fused stacked
triangles for G, since TL and TL−1 have only vertex y in common.

Fix an integer N . The graph GL (for L = 2N+1) contains two copies of GN ,
and in any planar drawing one copy has (vN , wN ) on the outer-face. In this copy
we can find N − 1 1-fused stacked triangles, which require width and height at
least N in any planar drawing [2]. Since GL has 4N − 2 vertices, we have:

Theorem 1. There exists an n-vertex outer-1-planar graph that requires width
and height at least (n + 2)/4 in any planar poly-line grid-drawing.

3 Outlook

Where is the error in [1]? They used a visibility representation of area O(n log n)
of an outer-planar subgraph G′ [2], and added the edges of G \ G′. The drawing
of [2] is created by splitting the graph, drawing parts recursively, and putting
them together. Auer et al. assume that the edges of G\G′ occur in one particular
way relative to this graph-split. But the graph-split is determined by the size of
the sub-graphs, and so they have missed some cases where edges of G \G′ could
be. (As our results show, it would be impossible to do the other cases without
adding crossings or increasing the area.)

We can achieve O(n log n) area if we allow crossings and bends, and even
exactly reflect the outer-1-planar drawing. To do so, use again the visibility
representation of [2] of an outer-planar subgraph G′. Adding edges of G \ G′

can easily be done if we allow crossings and up to 4 bends per edge; the area at
most doubles. As we will show in a forthcoming paper, up to 2 bends per edge is
sufficient if we modify the algorithm of [2] a bit. Achieving O(n log n) area and
0 bends remains an open problem.
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Abstract. We present contacts of circular arcs representations (CCA-
representation) of tight surface graphs where the vertices are interior
disjoint circular arcs in the flat surface and each edge is realised by an
endpoint of one arc touching the interior of another.

Keywords: Surface graphs · Tight graph · Geometric representation

1 Tight Surface Graphs

Let G be a surface graph [1] and let V and E be the set of the vertices and
edges, respectively, of G. G is called (2, 2)-sparse if for every nonempty surface
subgraph H of G, |EH | ≤ 2|VH | − 2 where VH respectively EH is the set of the
vertices respectively edges of H. G is called (2, 2)-tight if it is (2, 2)-sparse and
|E| = 2|V | − 2. We mention that there are many other kinds of tight and sparse
graphs, see for example [2]. However, we focus on (2, 2)-tight surface graphs. In
[3], we considered studying constructions of higher genus surface graphs which
are tight. Such a study was partly motivated by the connection to gain graphs
[4] and related sparsity counts. We were interested in investigating torus graphs
that correspond via the universal covering construction [5] to doubly periodic
plane graphs. Thus, our geometric application can be viewed as a partial char-
acterisation of a certain type of crystallographic structure in the flat plane, [6].
In the following we exhibit inductive constructions for the classes of (2, 2)-tight
cylinder and torus graphs. In general, an inductive construction consists of two
main tools; a set of inductive operations, Fig. 1, and a set of small graphs in
which no contraction is possible, we call such graphs irreducible.

Theorem 1. [3] Every (2, 2)-tight cylinder and torus graph can be constructed
from one of 2 and 116, respectively, irreducible (2, 2)-tight cylinder and torus
graphs by a sequence of digon, triangle or quadrilateral splitting operations.

2 Contacts of Circular Arcs Representations

One of the fundamental topics in geometric graph theory is the geometric repre-
sentations of graphs. Such a topic investigates whether a given graph admits a
c© Springer Nature Switzerland AG 2020
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certain kind of geometric representation. Many kinds of geometric contexts have
been used in geometric representations of graphs such as triangles [7] and poly-
gons [8]. For tight graphs, representations of such graphs have been considered in
various studies, see [9, 10] and [11]. We are interested in geometric contexts that
are circular arcs such that contacts are allowed while crossing are not and there
are not two circular arcs have interior points in common. A CCA-representation
of a surface graph G is a configuration of circular arcs embedded in the surface
so that the graph induced by the contacts between the arcs is isomorphic to G.
In [12], it is shown that (2, 2)-tight plane graphs admit CCA-representations in
the flat plane. Our main result, Theorem 2, can be proved by showing that each
irreducible (2, 2)-tight cylinder and torus graph admits CCA-representation and
the inductive operations in Fig. 1 are CCA-representable.

Fig. 1. (a), (b) and (c), respectively, illustrates a digon, triangle and quadrilateral
splitting, respectively, and its CCA-rep. is given in (a’), (b’) and (c’), respectively.

Theorem 2. Every (2, 2)-tight cylinder and torus graph admits a CCA-
representation in the flat cylinder and torus, respectively.

Fig. 2. (a) (2,2)-tight cylinder graph and (b) its CCA-representation in the flat
cylinder. (c) (2, 2)-tight torus graph and (d) its CCA-representation in the flat torus.
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1 Introduction

Communities in dynamic networks evolve and exhibit different behavioral actions
through time. These community actions: birth, death, growth, contraction, merg-
ing, splitting, continuity, and resurgence are fundamentally driven by changes in
the underlying network topology. While it is interesting to visualize community
evolution and network topology on their own, there is often a need to visualize
each in coordination together to further understand network characteristics. We
present a novel visualization technique for viewing the change in communities
while simultaneously visualizing its relationship with the underlying network
structure of a dynamic graph. We showcase the efficacy of our technique in sup-
porting dynamic network analysis by presenting an example from economic trade
data [1].

2 Motivation

Existing visualization methods attempt to preserve network structure by adjoin-
ing node-link diagrams next to community alluvial diagrams [3]. This approach
requires the use of limited force-directed layouts by restricting the horizontal
axis on which a node can appear. There are a few issues with this approach.
Node-link diagrams do not scale well to large networks and will likely cause the
observer to be overwhelmed, especially in cases when individual communities
are large. Also, individual node-link diagrams for each community make it diffi-
cult to show inter-community edges. Because each node-link diagram’s layout is
oblivious to other communities, connecting all of the nodes between communities
is not feasible without cluttering the visualization. Traditional approaches have
tried to remedy this issue by displaying inter-community edges via overlaid arcs
or curved links. While these curved links allow the user to see inter-community
relationships, this approach creates dissonance between the visualization of inter-
community edges and intra-community edges.
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3 Our Approach

We employ a novel strategy for dealing with these issues. Our visualization tech-
nique superimposes a static Biofabric-like diagram [2] atop each timestep of a
traditional alluvial community flow diagram. Our technique improves upon exist-
ing work by allowing the visualization of communities in larger networks all while
preserving the awareness of the underlying structure of the graph topology. Visu-
alizing the structure of networks in addition to community evolution is important
in understanding overall network dynamics and the concrete underpinnings for
specific changes in individual communities. Our approach consolidates visualiz-
ing inter-community edges and intra-community edges by displaying all types
of edges in a congruent manner, eliminating the need to employ two different
strategies to visualize each edge type, creating a more cohesive display of net-
work characteristics. This new visualization approach allows researchers to more
adequately verify different community detection algorithms, locate noisy nodes
and anomalous data, and find useful trends and patterns in the dynamics of an
evolving network. Figure 1 shows an example of our approach on vehicle trade
data [1].

Fig. 1. An example of our visualization technique on vehicle trade data [1] for the years
1995 and 1996.
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This work is devoted to the visualization of so-called chaotic attractors, describ-
ing chaotic dynamic systems. Such systems arise in physics, celestial mechanics,
electronics, fractals theory, chemistry, biology, genetics, and population dynam-
ics. Birman and Williams [1], investigating how the orbits of attractors are knot-
ted, described their topological structure via tangles (described below). Mindlin
et al. [4] characterized attractors via integer matrices containing numbers of
swaps between the orbits.

Olszewski et al. [5] studied computational aspects of visualizing chaotic
attractors. In the framework of their paper, one is given a set of y-monotone
curves called wires that hang off a horizontal line in a fixed order, and a multi-
set of swaps between the wires (called list). A tangle is a visualization of these
swaps, i.e., a sequence of permutations of the wires such that consecutive permu-
tations differ only in swaps of neighboring wires (but disjoint swaps can be done
simultaneously). We call a list feasible if there is a tangle realizing it. Olszewski
et al. gave an exponential-time algorithm for minimizing the height of a tangle
(that is, the number of permutations) and tested it on a benchmark set.

Later, we [3] showed that tangle-height minimization is NP-hard (by reduc-
tion from 3-Partition). We also presented another (exponential-time) algo-
rithm for the problem. Using an extended benchmark set, we showed that in
most cases our algorithm is faster than the algorithm of Olszewski et al.

In this work, we strengthen our previous complexity result and show that it
is even NP-hard to decide, given a multiset of swaps and a start permutation of
the wires, whether there is any tangle that realizes the given swaps. We call this
problem List-Feasibility.

Theorem 1. List-Feasibility is NP-hard (even if every pair of wires has at
most eight swaps).

In the proof we use a reduction from Positive NAE 3-SAT Diff, a variant
of the NP-hard problem Not-All-Equal 3-SAT, where no negative literals are

This abstract is based on the paper [2].
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Fig. 1. Left: a variable gadget (in true/false state); right: a clause gadget

admitted and each clause contains three different variables. In the full version
of this paper [2], we show that Positive NAE 3-SAT Diff is also NP-hard.

We sketch the idea behind our reduction. Given an instance F of Positive
NAE 3-SAT Diff, we construct in polynomial time a list L of swaps such that
there is a tangle T realizing L if and only if F has a satisfying truth assignment.

In L we have two “central” wires λ and λ′ that swap eight times; see Fig. 1.
This yields two types of loops: four λ′–λ loops, where λ′ is on the left and λ is on
the right side, and three λ–λ′ loops with λ on the left and λ′ on the right side.
Each variable gadget contains a specific wire, the variable wire, that represents
the variable, and each clause gadget contains a specific wire, the clause wire,
that represents the clause. For each occurrence of a variable in a clause, the
corresponding variable and clause wires swap twice in one of the four λ′–λ loops.
We call the first two λ′–λ loops true-loops, and the last two λ′–λ loops false-
loops. If the variable is true, then the corresponding variable wire swaps twice
with the corresponding clause wires in a true-loop, otherwise in a false-loop.

We first describe the variable gadgets. In order to prevent a variable wire vj
from intersecting both a true- and a false-loop, we introduce two wires αj and α′

j .
These wires neither swap with vj nor with each other, but they have two swaps
with both λ and λ′. Using additional wires, we force αj and α′

j to have the two
true-loops on their right and the two false-loops on their left, or vice versa. This
ensures that vj cannot reach both a true- and a false-loop.

We now turn to the clause gadgets. We force each clause wire ci to appear
in all λ′–λ loops by using additional wires. Since every clause has exactly three
different positive variables, we want to force variable wires that belong to the
same clause to swap with the corresponding clause wire in different λ′–λ loops.
This way, every clause contains at least one true and at least one false variable
if F is satisfiable. We call a part of a clause wire ci that is inside a λ′–λ loop—
i.e., a λ′–ci loop—an arm of the clause ci. In order to “protect” the arm that
is intersected by a variable wire from other variable wires, we use the wire γj

i .
Three additional wires help us to force γj

i to protect the correct arm.
Finally, we argue why our reduction is correct. If F is satisfiable, we obtain

a tangle from F as described above. The tangle realizes L, so L is feasible.
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On the other hand, if there is a tangle that realizes the list L that we obtain
from the reduction, then F is satisfiable. This follows from the rigid structure
of a tangle that realizes L. The only flexibility is in which type of loop (true or
false) a variable wire swaps with the corresponding clause wire.

References

1. Birman, J.S., Williams, R.F.: Knotted periodic orbits in dynamical systems–I:
Lorenz’s equation. Topology 22(1), 47–82 (1983). https://doi.org/10.1016/0040-
9383(83)90045-9

2. Firman, O., Felsner, S., Kindermann, P., Ravsky, A., Wolff, A., Zink, J.: The com-
plexity of finding tangles. Arxiv report (2020). http://arxiv.org/abs/2002.12251

3. Firman, O., Kindermann, P., Ravsky, A., Wolff, A., Zink, J.: Computing height-
optimal tangles faster. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS,
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1 University of Arizona, Tucson, AZ, USA
bjacobsen@email.arizona.edu,kobourov@cs.arizona.edu

2 TU Wien, Vienna, Austria
{mwallinger,noellenburg}@ac.tuwien.ac.at

Milhouse

Martin Prince; Ralph; Bart

Nelson

Fat Tony; Sideshow Bob

Mr.Burns; Smithers Krusty

Homer; Carl Carlson; Lenny

Barney; Mo

Step 1 Milhouse

Nelson

Krusty

Martin Prince

Ralph

Bart

Fat Tony

Sideshow Bob

Smithers

Mr.Burns

Carl Carlsson

Homer

Lenny

Mo

Barney

Marge

Jacqueline Bouvier

Grampa

Ned

Kent Brockman

Lisa
Milhouse

Nelson

Krusty

Martin Prince

Ralph

Bart

Fat Tony

Sideshow Bob

Smithers

Mr.Burns

Carl Carlsson

Homer

Lenny

Mo

Barney

M
ar
ge

Ja
cq
ue
lin
e B

ou
vie
rGrampa

Ned

Kent Brockman

Li
sa

Step 2 Step 3 Step 4Preprocessing

Milhouse

Nelson

Krusty

Martin Prince

Ralph

Bart

Fat Tony

Sideshow Bob Smithers Mr.Burns

Carl Carlsson Homer LennyMo

Barney

Marge

Jacqueline Bouvier

Grampa

Ned

Kent Brockman

Lisa

Milhouse

Martin Prince; Ralph; Bart

Nelson

Fat Tony; Sideshow Bob

Mr.Burns; Smithers
Krusty

Homer; Carl Carlson; Lenny

Barney; Mo

Milhouse

Nelson

Krusty

Martin Prince

Ralph

Bart

Fat Tony

Sideshow Bob Smithers Mr.Burns

Carl Carlsson Homer LennyMo

Barney

Marge

Jacqueline Bouvier

Grampa

Ned

Kent Brockman

Lisa

Fig. 1. The MetroSets pipeline. The input set system (here: characters of The Simp-
sons) is first compressed into a combinatorially equivalent smaller instance; Step 1
creates an optimized path support graph; Step 2 reinserts temporarily discarded ele-
ments; Step 3 creates an initial layout of the support graph; finally Step 4 schematizes
the layout as a metro map and places the labels.

A path-based support of a hypergraph H = (V,S) is a simple graph G = (V,E)
with the same vertex set V , with the property that the subgraph of G induced
by each hyperedge in S contains a Hamiltonian path. A metro map drawing of
a hypergraph consists of a path-based support, which has been embedded in the
plane and adheres to the metro map design goals. Each path corresponding to
a hyperedge is drawn as a colored curve traversing its vertices, analogous to the
way that subway lines traverse subway stations. This style of visualization has
been applied in scientific works [11, 14] and information graphics [2, 5, 15].

We have created MetroSets [9], a flexible, online system for visualizing hyper-
graphs as metro-map drawings. MetroSets decomposes this task into a four-step
pipeline, see Fig. 1, with additional pre- and post-processings steps. Because
many of the underlying problems involved are NP-hard, we implement multiple
heuristic algorithms for each step, which can be freely mixed and matched to
produce different visualizations of the same data.

We begin by creating a combinatorially equivalent smaller instance of the
input hypergraph H, called H′. For this we set aside all vertices that are only
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incident to one hyperedge and afterwards merge all sets of vertices that are inci-
dent to the exact same set of hyperedges. Then, we create a path-based support
of H′, which is equivalent to determining a total order for the vertices along
each path. We implement two methods for this task. The first method tries to
minimize the total number of edges needed to draw the support graph, such that
whenever the intersection of two hyperedges contains two or more vertices, the
hyperedges should be drawn in parallel, rather than branching of and rejoining.
The second approach assigns a cost to each edge in the support graph, which is
lower for pairs of nodes that share many hyperedges, and attempts to find an
ordering which minimizes this cost for each path.

The next step reintroduces the previously discarded vertices. The merged
vertices can be expanded trivially, while vertices belonging to single hyperedges
present a more interesting choice, as they could in principle be introduced at
any position in the given path. The first-viable approach introduces vertices at
the beginning or end of their respective support path, leading to long, trailing
lines of single-hyperedge vertices. The split-insert approach instead places half
of the vertices at the beginning of the line, and distributes the others evenly
throughout all of the candidate positions along the path.

After the support graph is constructed, we determine an initial layout for
it. The simpler approach is to use a force-based approach [8], which embeds
the graph purely based on the structure determined in the previous steps. The
second approach instead iterates between first laying out the graph, using either
Kamada-Kawai [10] or Neato [7], and then secondly revising the ordering of
vertices each path, incorporating the Euclidean distance between vertices into
the cost function.

This embedding is then used as input for the schematization algorithms. We
implemented the force-based schematization approach of Chivers and Rodgers
[4], as well as an adapted version of Lutz et al. [6] least squares approximation.
Finally, in a post-processing step we optimize line orders [3, 13] and apply the
greedy labeling algorithm of Niedermann and Haunert [12].

Having implemented multiple algorithms for each step of the pipeline, we
naturally wanted to determine which choices of steps were optimal for which
purposes. To this end, we defined different quality criteria (e.g., octolinearity,
edge length uniformity) and evaluated every possible pipeline configuration with
a dataset of 4096 hypergraphs, which are subgraphs of a large (6,714 vertices,
39,774 hyperedges) hypergraph of recipes [1]. Based on our analysis of this data,
we found three pipeline presets which worked particularly well for broad opti-
mization goals (e.g., the speed with which the map is generated, or the simplicity
of the drawing produced), and included these prominently in our system’s inter-
face, with the goal of increasing its usability.

The final map is presented interactively in the browser. MetroSets is fully
implemented, and can be accessed online at https://metrosets.ac.tuwien.ac.at.
Thanks to the modular design of the MetroSets pipeline, it is possible in the
future to develop and incorporate more sophisticated algorithms in place of
some of those sketched above.

https://metrosets.ac.tuwien.ac.at
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Introduction. The data-driven business analytics and technologies are giving
rise to petabyte-scale data repositories. Graphs with millions (even billions) of
nodes and edges are becoming increasingly common in social media databases
[14]. Therefore, the need for improving the scalability of the network layout
algorithms is being felt more today than ever before [15]. A natural question in
this context is how much can we push the boundary of scalability for network
layout algorithms by leveraging cutting edge hardware technologies and ideas of
network summaries maintaining layout accuracy or trustworthiness.

Traditional layout algorithms [7] may take hours in single-threaded execu-
tion. Graph summarizing and then creating the layout [6, 13] is a common
approach to achieve scalability. However, dealing with massive networks would
require implementing these techniques in parallel [12] or leverage distributed
computing [1]. Graph parallel processing is often challenging to implement effi-
ciently, and hence most graph algorithms partition the graphs to be processed by
active threads. However, graph partitioning algorithms are also costly for massive
graphs. Increasing the number of processing units may speed-up the computa-
tion, but it may also require more time (while synchronizing the results) as the
number of partitions increase.

We attempted to leverage GPU technologies and streaming community detec-
tion algorithms to create approximate visualizations of networks with millions
of nodes and edges. GPUs can create enormous parallel processing threads with
the least possible overhead, but it also makes the implementation challenging as
some computations (e.g., frequency counting) are difficult to handle using GPU
while fully utilizing the power of parallelism. Since we use streaming algorithms,
we trade layout quality with time, however, for large networks, this trade-off is
beneficial for the following reasons: (a) Big communities take most display space
in a traditional ForceAtlas2 layout [8] and those communities are also revealed
by our approach. (b) Since our method takes a few seconds, it helps interac-
tive exploration. In addition, users can quickly create many layouts by changing
layout parameters and choose the one that best suits their need.

Our Approach and Results. ForceAtlas2 [8] is a well-known graph layout
algorithm designed for social network visualization in Gephi [2]. A recent GPU
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Fig. 1. (left) web-BerkStan [10] network with 685,230 nodes and 7,600,595 edges pro-
duced in 138 s by [3]. (middle) Communities are colored by a streaming community
detection algorithm. (right) A layout of the compressed network by our method in 6 s.

accelerated implementation of ForceAtlas2 [3] showed the GPU assisted layout
can be over 40 times faster compared to existing CPU implementations. However,
for large networks it still takes a few minutes. Furthermore, the output does not
clearly distinguish the communities (Fig. 1(left)).

Instead of adapting complex network summarization algorithms [11] or graph
sampling methods [6], we leveraged streaming algorithms for community detec-
tion [5]. This is a one-pass algorithm which reads the edges exactly once to label
the vertices with their community labels. The crux of our GPU implementation
is to compress the network using an approximate counting technique (count–min
sketch [4]) that produces a compressed network in another one-pass reading of
the edges. The nodes of the compressed network represents communities, and
they are weighted based on the number of edges in the corresponding communi-
ties. The edges are weighted by the number of edges between the corresponding
pair of communities. We draw the compressed graph using the GPU accelerated
ForceAtlas2 algorithm [3] (Fig. 1(right)).

The communities revealed by the streaming community detection algorithm
were highly consistent with the ones found by ForceAtlas2 (Fig. 1(middle)). As
shown in the following table, with a compression rate of above 80%, we have
been able to achieve a speedup above 83% for real life graphs with millions
of edges (when compared to the existing GPU accelerated implementation of
ForceAtlas2). The visual inspection shows that the compressed graph layout
retains most big communities detected by ForceAtlas2, and the relative distances
between communities provide a better understanding of how they interact.

Network Nodes Edges Time (ms) Avg. Deg Speedup (%) Compr. (%)
web-Google [10] 916,427 5,105,039 10905 11.14 91.72 91.74
web-BerkStan [10] 685,230 7,600,595 6137 22.18 95.56 93.99
Com-youtube [16] 1,157,827 2,987,624 39050 5.16 83.30 81.91
WikiTalk [9] 2,394,384 5,021,410 15754 4.19 96.07 95.24
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