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Abstract. While deep neural networks (DNNs) have proven to be effi-
cient for numerous tasks, they come at a high memory and computation
cost, thus making them impractical on resource-limited devices. How-
ever, these networks are known to contain a large number of parameters.
Recent research has shown that their structure can be more compact
without compromising their performance.

In this paper, we present a sparsity-inducing regularization term based
on the ratio l1/l2 pseudo-norm defined on the filter coefficients. By defin-
ing this pseudo-norm appropriately for the different filter kernels, and
removing irrelevant filters, the number of kernels in each layer can be
drastically reduced leading to very compact Deep Convolutional Neural
Networks (DCNN) structures. Unlike numerous existing methods, our
approach does not require an iterative retraining process and, using this
regularization term, directly produces a sparse model during the training
process. Furthermore, our approach is also much easier and simpler to
implement than existing methods. Experimental results on MNIST and
CIFAR-10 show that our approach significantly reduces the number of
filters of classical models such as LeNet and VGG while reaching the
same or even better accuracy than the baseline models. Moreover, the
trade-off between the sparsity and the accuracy is compared to other loss
regularization terms based on the l1 or l2 norm as well as the SSL [1],
NISP [2] and GAL [3] methods and shows that our approach is outper-
forming them.

Keywords: Deep learning · Compression · Neural networks ·
Architecture

1 Introduction

Since the advent of Deep Neural Networks (DNNs) and especially Deep Con-
volutional Neural Networks (DCNNs) and their massively parallelized imple-
mentations [4,5], deep learning based methods have achieved state-of-the-art
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performance in numerous visual tasks such as face recognition, semantic seg-
mentation, object classification and detection, etc. [4,6–9]. Accompanied with
the high performance, also high computation capabilities and large memory
resources are needed as these models usually contain millions of parameters.
These issues prevent them from running on resource-limited devices such as
smartphones or embedded devices. Network compression is a common approach
in this context, i.e. to reduce the inherent redundancy in the parameters and
thus in the computation.

Numerous methods have been developed to obtain compact DNNs. Since a
large number of these networks are built upon convolutional layers and since
the convolution operations are the most computationally demanding, we are
focusing on the reduction of these layers. A simple reduction strategy consists
in removing non-relevant filters using pruning methods. For example, Li et al.
[10] proposed to remove filters that are identified as having a small effect on the
output accuracy. Another approach by Luo et al. [11] is evaluating information
at the filter level using statistical and optimization methods.

Our approach is motivated and inspired by (1) previous works demonstrating
the redundancy among the weights of a DCNN [12]; (2) numerous sparsity meth-
ods proposed in the literature [13] and (3) the fact that these sparsity methods
have rarely been used to remove unimportant weights during training [1]. We
therefore propose a new strategy, based on l1/l2-norm, to obtain a subset of
kernels with all weights equal to zero (such as that the associated filters can be
removed). The main idea is to express the filter reduction problem by introduc-
ing sparsity on a set of pseudo-norms computed on each kernel but not directly
on the kernels actual values. Figure 1 illustrates the general idea of our method.
Each kernel of the network is transformed to a single value using a pseudo-norm.
All these values are concatenated into a global vector (its size being the number
of filters) called kernel norm vector. Our global kernel-sparsity is defined by the
sparsity on this vector and is estimated by a l1/l2-norm ratio. Since a kernel
with all weights equal to zero produces a pseudo-norm of zero, the number of
filters can be reduced by enforcing sparsity on the kernel norm vector. In this
paper, we propose the l1/l2-norm for two reasons: (1) the so-called l1/l2-norm is
a simple group norm to implement and (2) the use of the l1-norm can increase
the performance, interpretability and sparsity of a model [14–16] combined with
the l2-norm allows to converge to stable solution and maintain sparsity at a good
level.

We propose a l1/l2-norm computed on the global vector (vector of kernel
pseudo-norms) such that adding this sparsity term to minimize to the global
loss will reduce the number of (non-zero) filters of a DCNN. Compared to other
approaches, our method presents several advantages:

1. All steps are done during training, i.e. no additional fine-tuning operations
are needed.

2. Our method being based on simple l1 and l2 norms, is straightforward to
implement and compute compared to other methods that remove weights
during training.
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Fig. 1. Visual representation of our method and the computation of the kernel norm
vector using a pseudo-norm.

3. As we are keeping track of the evolution of the network at every step during
training, it is possible to choose the best model based on a trade-off between
compression and accuracy.

In the following, we will first present existing work related to network pruning
and weight sparsity, in Sect. 2. In Sect. 3, we describe our l1/l2 pseudo-norm
method. Finally, in Sect. 4, we show experimental results of our method with
LeNet and VGG network architectures trained on the MNIST and CIFAR-10
datasets. We demonstrate that our method is able to significantly improve the
sparsity among convolutional layers in these DCNNs without significant drops
in accuracy.

2 Related Work

Many studies have been done on DNN compression. Knowledge distillation
[17,18] tackles the problem of transferring the encoded information from a big-
ger model into a smaller one. Lowering numerical precision is also an extensive
field [19–21]. Many works, are focused on designing compressed and optimal
models architectures. SqueezeNet [22] and MobileNets [23] both propose struc-
tures of convolutional layers to improve memory and computation time. Some
Neural Architecture Search (NAS) [24–26] methods use reinforcement learning
and genetic algorithms to search the best possible networks designs for a given
task. Depending on the size of the search space, finding an optimized model with
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these methods can be enormously time-consuming. However, the most promis-
ing approaches try to reduce the model redundancy and among them: parame-
ter quantization [27,28] and network pruning [10,11,29–31]. Our method can be
classified in this last category.

2.1 Network Pruning

Pruning methods are aiming to remove unimportant parameters of a neural net-
work. Han et al. [27,29] proposed to prune parameters of AlexNet and VGG with
connection pruning by setting a threshold and removing any parameters under
it. As opposed to our method, most of the reduction is done on fully connected
layers and not on convolutional layers. However, compression of convolutional
layers is essential nowadays as new DNNs are mostly DCNNs with fewer fully
connected layers e.g., only 3.99% parameters of Resnet [9]. Closer to our app-
roach, structured pruning methods are removing directly structured parts e.g.,
kernels or layers, to compress CNNs. Li et al. [10] used l1-norm to remove filters.
He et al. [32] used a LASSO regression based channel selection to prune filters.
Channel pruning methods are preferred on widely-used DCNNs. For example,
the selection of unimportant feature maps can be done using l1-regularization
[33].

These past few years, numerous networks compression algorithms using prun-
ing methods and achieving state-of-the-art results have emerged. Yu et al. [2]
proposed a neurons importance score propagation (NISP) method based on the
response of the final layers to evaluate the pruning impact of the prior layers.
Zhuang et al. [34] developed discrimination-aware losses in order to determine
the most useful channels in intermediate layers. Some methods such as Filter
Pruning Via Geometric Median (FPGM) [35] are not focused on pruning filters
with less importance but only by evaluating their redundancy. Similarly, Lin
et al. [3] tackled the problem of redundant structures by proposing a generative
adversarial learning method (GAL) (not only to remove filters, but also branches
and blocks).

Still, standard pruning methods usually construct non structured and irreg-
ular connectivity in a network, leading to irregular memory access. In most
of these approaches, the DNN is trained first. Then each parameter is evalu-
ated to understand if it brings information to the network. If not, the param-
eter is removed. Therefore, a fine-tuning needs to be performed afterwards to
restore the model accuracy. These steps take time. Most of them are done offline
and need costly reiterations of decomposing and fine-tuning to find an optimal
weight approximation maintaining high accuracy and high compression rate.
Unlike these methods, our approach is able to directly increase the sparsity of
the network during training, identifying which kernels to prune without any
considerable extra computational overhead.
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2.2 Weight Sparsity

An important factor for the compression of a model is its sparsity i.e. the number
of parameters set to zero. However, this sparsity must be structured in order to
be memory-efficient and time-efficient. Liu et al. [36] obtained a sparsity of 90%
on AlexNet with only 2% accuracy loss using sparse decomposition and a sparse
matrix multiplication algorithm. This method also employed group Lasso [37],
an efficient regularization to learn sparse structures. It is also used by Wen et al.
[1] to regularize the structure of a DNN at different levels (i.e. filters, channels,
filter shapes and layer depth). This approach leads to DNNs with reduced com-
putational cost and efficient acceleration due to the structured sparsity induced
by the method. We propose to use a different type of regularization based on
the norm ratio l1/lq [13,38]. It allows to dynamically maximize the sparsity of
a model with one hyper-parameter (q) without additional iterations and severe
drops in accuracy while being straightforward to implement.

3 Training with Kernel-Sparsity

We mainly focus on inducing sparsity on convolutional layers to regularize and
compress the structure of DCNNs during the training steps. We propose a generic
method to regularize DCNNs using the l1/l2 pseudo-norm.

3.1 Kernel-Sparsity Regularization

Let N be a DCNN with L convolutional layers. We define W l,k as the kth ∈
{1, ..N l

k} 3d-tensor (kernel) associated with the lth convolutional layer. Thus,
a weight of kernel k in the convolutional layer l is defined as: and W l,k

w,h,c ∈
R

N l
w,N l

h,N
l
c the (width, height, channel) weight of kernel k of layer l.

W l,k
w,h,c ∈ R

N l
w,N l

h,N
l
c (1)

Here, w ∈ {1, ..N l
w} is the column, h ∈ {1, ..N l

h} is the row and c ∈ {1, ..N l
c}

is the channel index of the kth kernel matrix in the convolutional layer l. The key
idea is to express sparsity on pseudo-norms of kernels. Let nl

k be the pseudo-norm
defined by the l1-norm of the flattened kernel W l,k:
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w∑

w=1

N l
h∑

h=1

N l
c∑

c=1

|W l,k
w,h,c|
N l

k

(2)

The vector �N l concatenates, for layer l, the N l
k norms nl

k:
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N l
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k=1

nl
k (3)



Learning Sparse Filters in DCNN with a l1/l2 Pseudo-Norm 667

We introduce kernel-sparsity for a layer as a value linked to the number of
kernels of this layer with all weights equal to zeros. Therefore, the kernel-sparsity
of layer l can be linked with the number of values of the vector �N l equal to zero.
Global kernel-sparsity can be expressed from the concatenation of vectors �N l for
each layer:

�N
.=

L�

l=1

�N l (4)

For better understanding, we visualize these operations in Fig. 2. In order
to normalize the value of N, each of its component is divided by the number of
values (or norms) that it contains. Finally, the global kernel-sparsity is defined
by the sparsity of �N and can be estimated by a l1/l2 ratio function:

Ls
.=

�N1

�N2

(5)

Minimizing this term will encourage zero-valued coefficients (numerator), cor-
responding to the different kernels, while keeping the remaining coefficients at
large values (denominator), thus producing convolution layers with few non-zero
kernels.

3.2 Training with Kernel-Sparsity Regularization

Let LN be the loss function that is minimized to find the optimal weight con-
figuration for a given task (e.g. cross entropy). We propose to simply add the
kernel-sparsity regularization term weighted by the coefficient λ ∈ R:

Lall = LN + λLs . (6)

We will discuss how to set an appropriate values of λ in the experimental section.

Fig. 2. Visualization of the computation of the kernels pseudo-norm and how the global
kernel norm vector �N is obtained.
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3.3 Setting Kernels to Zero

Our method induces sparsity in a DCNN, i.e. the pseudo-norm regularization
pushes some kernels to have only zero-valued coefficients. However, in practice,
during optimization, the actual values of these kernels will not be exactly zero
but very small. Thus, to compress the network effectively, our approach identifies
these kernels during training and forces them to be zero in order to remove them.

More specifically, the algorithm works as follows: each pseudo-norm of the
kernels is contained in the global kernel pseudo-norm vector �N . Thus, at each
epoch, we normalize the values of �N so that

∑K
i=1

�Ni = 1. Sorting these vectors
in ascending order will allow us to objectively determine which pseudo-norms
are the smallest. We then define a percentage (or a threshold) under which the
cumulative sum of these sorted values is judged too small to be kept, i.e. the cor-
responding filters are considered unimportant and set to zero. Once the weights
of a kernel are set to zero, they are keeping this value until the end of the train-
ing, and these parameters are no longer updated. This ensures that the potential
errors and imprecision introduced by removing these kernels can be compensated
by the remaining kernels during the training converging to a stable solution with
high accuracy.

To summarize, our approach consists of two steps at each epoch:

1. The l1/l2 pseudo-norm is computed on each kernel of the model and is inte-
grated to the loss function. Thus the training stage is minimizing the loss
function and inducing sparsity at the kernel level, pushing some weights to
have a near zero value.

2. Sort kernels according to their ascending normalized pseudo-norm and com-
pute a cumulative sum vector from the sorted normalized pseudo-norm vec-
tor. The kernels participating to the cumulative sum under a threshold t are
removed. This set of operations aims at keeping kernels that produce more
than t% of the global norm.

4 Experiments

We evaluated the performance of the l1/l2 pseudo-norm on two classification
models (LeNet and VGG) and two datasets: MNIST and CIFAR-10. Our method
is implemented in Pytorch, running on various Nvidia GPUs using CUDA.
The weights of the networks are initialized randomly and hyper-parameters are
selected manually for optimal results. The chosen λ value is the one allowing the
model to have an accuracy close to its baseline accuracy while sparsifying the
most the kernels norms. In all the experiments, the threshold under which the
kernels are removed by evaluating the cumulative sum of the smallest norms is
set to 1%. We found that this value was the best trade-off between a converging
accuracy of the models and a slow removal of the kernels during the training
phase.
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Fig. 3. Evolution of the 20 kernels of the first convolutional layer of LeNet and the
global kernel-sparsity regularization term Ls during a training on the MNIST dataset.
For a better visualization, each kernel is flatten from 3 dimensions to 2 dimensions.

4.1 Experiments on LeNet

In the experiments with LeNet [39], we investigate the effectiveness of the l1/l2
pseudo-norm on the MNIST and CIFAR-10 datasets. In order to compare our
results with state-of-the-art methods such as SSL [1], NISP [2] and GAL [3], we
decide to chose the LeNet model implemented by Caffe. All these methods are
using evaluation and regression at different level i.e Lasso-group regression at
different level of a convolutional layer in the SSL method, which makes it more
complex to implement than our method. There is no data augmentation for the
training on both datasets.

LeNet on MNIST : As previously described, the l1/l2 pseudo-norm is applied
on the filters of a DCNN to penalize them. Hence our method is inducing sparsity
among the filters of the convolutional layers in LeNet. To visualize the effect on
our approach on the kernels, Fig. 3 shows the evolution of the kernels of the
first convolutional layer of LeNet during a training on MNIST with our kernel-
sparsity regularization. We see that the kernel-sparsity term Ls is decreasing
epoch after epoch and that the number of filters in the layer is also decreasing
with it. The complete evolution of the kernel-sparsity Ls can be seen on Fig. 4.
Ls being computed on the pseudo-norm of the kernels and kernels weights being
set to zero over time: this result shows the effectiveness of our method.

Table 1 summarizes the results on MNIST of different methods. In the best
case scenario that we have tested, the l1/l2 pseudo-norm with a λ value set to 0.5
is able to achieve an accuracy better than the baseline by 0.2%. Furthermore the
number of filters is dropping drastically in both convolutional layers respectively
from 20 to 5 and from 50 to 18. Compared to the other state-of-the-art methods,
the l1/l2 pseudo-norm is able to achieve a better accuracy while penalizing more
filters too. We also compare our method to the l1-norm and l2-norm. During our
evaluations, both of these norms were able to reach a higher level of sparsity by
setting to zero more kernels. However they were never able to reach the same or
a better level of accuracy than the baseline.

To visualize the effect of our method on the parameters, we show the learned
filters of the first convolutional layer in Fig. 5. For λ = 0.5 and for different level
of sparsity, it can be seen that the number of remaining filters can be set to only 2
or 4. Furthermore between the baseline and our method, the accuracy is the same
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Fig. 4. Evolution of the cross-entropy loss function LN and the global kernel-sparsity
regularization term Ls during training with λ = 0.5. Evaluations are done on LeNet on
the MNIST dataset. Vertical lines show which epochs were taken to construct Fig. 3.

Fig. 5. Learned filters of the first convolutional of LeNet on MNIST. Top is LeNet
baseline, middle and bottom are l1/l2-norm with λ = 0.5 and different level of sparsity.

or is increased. This shows that there is effectively a large amount of redundancy
between filters and that most of them are not required. Moreover, compared to
the baseline, it seems that the remaining filters are more structured, with more
regular patterns. This assumption seems especially true when only two filters are
remaining. Thus, we arrive at the same conclusion than [1]: the baseline has a
high freedom in the parameter space and our method is able to obtain the same
accuracy by optimizing the filters into more regularized patterns.

LeNet on CIFAR-10 : In order to test the l1/l2 pseudo-norm and visualize its
effect on a more difficult classification task than MNIST, we decided to use the
CIFAR-10 dataset with the same LeNet model. The results are summarized in
Table 2. The baseline LeNet is not performing as well on CIFAR-10 than it is
performing on MNIST, i.e. the classification accuracy is only around 70%. As a
result, the accuracy of our approach also drops but the l1/l2 pseudo-norm is still
able to perform well on this model, even for this classification task. With a λ
value set to 0.7, we are able to decrease the number of filters in the first and the
second convolutional layers respectively from 20 to 10 and from 50 to 25, which
means that half of the filters of LeNet are removed. With this configuration,
our method performs 1.7% worse than the baseline. We were able to remove
up to 80% of the filters in our experiments, but the resulting accuracy was too
low to be interesting (more than 20% behind the baseline). Hence, more filters
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Table 1. Results after penalizing unimportant filters in LeNet on MNIST. Baseline
is the simple LeNet Caffe model. l1 and l2 are the best results found by using the l1-
norm and l2-norm regularization on the kernels. SSL, NISP and GAL are the pruning
methods respectively from [1–3]. l1/l2 is our method with λ = 0.5.

Method λ Error Conv1 filter #
(Sparsity)

Conv2 filter #
(Sparsity)

Total sparsity

Baseline – 0.9% 20 50 0%

l1 0.5 1.2% 4
(80%)

5
(90%)

87.1%

l2 0.5 1.2% 3
(85%)

5
(90%)

88.6%

SSL 1 – 0.8% 5
(75%)

19
(62%)

65.7%

SSL 2 – 1.0% 3
(85%)

12
(76%)

78.6%

NISP – 0.8% 10
(50%)

25
(50%)

50.0%

GAL – 1.0% 2
(90%)

15
(70%)

75.7%

l1/l2 0.5 0.7% 5
(75%)

18
(64%)

67.1%

are needed in order to classify correctly the CIFAR-10 dataset compared to the
MNIST dataset. The best trade-off between filters and accuracy that we found
was still with a value of λ set to 0.7. In both convolutional layers, the number
of filters is dropping respectively from 20 to 14 and from 50 to 30. This means
that our method is able to zero out more than a third of the filters with only a
drop of 0.9% in accuracy. Compared to the l1-norm and the l2-norm, the l1/l2
pseudo-norm also shows good results. Indeed, both the l1-norm and l2-norm
where unable to reach the same level of accuracy and setting to zero as many
filters as the l1/l2 pseudo-norm can do.

As previously done with the MNIST dataset, we visualize the learned filters
of the first convolutional layer in Fig. 6. From this visualization, we can draw
the same conclusion than with the MNIST dataset. The more we are removing
filters, the more the remaining ones seems to have a defined structure, as opposed
to the baseline where each of the filters seems blurry. It is even more remarkable
when we let our algorithm run until only a couple of filters are remaining. Even
if the model does not reach a satisfactory accuracy, the two remaining filters
have learned remarkable patterns. Thus, the l1/l2 pseudo-norm is still able to
smooth a high freedom of parameter space into fewer filters with more regularized
patterns.
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Fig. 6. Learned filters of the first convolutional layer of LeNet on CIFAR-10. Top is
LeNet baseline, middle and bottom are l1/l2-norm with λ = 0.7 and different level of
sparsity.

Table 2. Results after penalizing unimportant filters in LeNet on CIFAR-10. Baseline is
the simple LeNet Caffe model. l1/l2 is our method with different coefficient of regulation
λ = 0.7.

Method λ Error Conv1 filter #
(Sparsity)

Conv2 filter #
(Sparsity)

Total sparsity

Baseline - 28.4% 20 50 0%

l1 0.7 35.4% 7
(65%)

14
(72%)

70.0%

l2 0.7 29.8% 12
(40%)

24
(52%)

48.6%

l1/l2 0.7 30.1% 10
(50%)

25
(50%)

50.0%

l1/l2 0.7 29.3% 14
(30%)

30
(40%)

37.1%

4.2 VGG on CIFAR10

To demonstrate the generalization of our method on larger DNNs, we evaluate
the performance of our method on the well-known VGG [6], a deeper model than
LeNet, with several convolutional layers. A VGG model can have different sizes,
notably depending on the number of layers. We chose the VGG11 model with
a total of 8 convolutional layers. We implemented it using Pytorch, running on
various Nvidia GPUs using CUDA. The model is trained without data augmen-
tation and evaluated on the CIFAR-10 dataset. In this experiment, the kernels
pseudo-norms are not normalized on the full network, which explains why the λ
values are smaller than the ones used with LeNet.

With LeNet, the l1/l2 pseudo-norm method was applied on only 2 convolu-
tional layers, with 50 filters at most in the second convolutional layer. In VGG11
our method is applied on 8 different convolutional layers with a number of filters
set to 64 in the first convolutional layer and a maximum of 512 filters in the
last four convolutional layers. The results are shown in Table 3. The baseline
model, with all the filters and a classical loss function (cross-entropy), obtains
an error of 17.6% on the test dataset. Using the l1/l2 pseudo-norm with a λ
set to 0.005, the model achieves a classification accuracy roughly 1% inferior to
the baseline. However the number of filters is vastly reduced. Moreover, it seems
that the deeper we go in the network, the more the proportion of filter sets to
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zero is important. For example, the second convolutional layer has around 10%
of its filters set to zero while the last convolutional layer has over 65% of filters
set to zero. Thus we could deduce that the last convolutional layers keep less
important information for the model than the first ones or that there is more
redundancy in the last layers. However, the first convolutional layer seems to
be an exception as approximately half of its filters can be removed. We suppose
that the shapes learned in the first layer are not decisive for the model and can
be balanced by the following layers and the more defined shapes that they have
assimilated.

By decreasing the λ coefficient to 0.001, we confirm the results that the last
convolutional layers seem to contain more filters with non decisive or redundant
information than the first ones. Indeed, only the last two layers have filters
set to zero. But more importantly, the removal of a few filters in the last two
convolutional layers leads to a classification error of only 16.8%, which is 0.8%
less than the baseline. Thus, our method, by only removing a few filters, is able
to achieve a better accuracy than the baseline model. Compared to the l1-norm
and the l2-norm, the l1/l2 pseudo-norm is also performing well. The l1-norm
is able to zero out numerous filters but is unable to achieve a correct level of
accuracy, always performing worse than the baseline or our approach. Nearly
the same conclusions can be drawn from the l2-norm. Under certain conditions,
the l2-norm is able to zero out slightly more filters than our method in the
last convolution layers. However, the models are not able to obtain a satisfying
accuracy, always around 1% behind the baseline.

In order to conclude this study, we visualize in Fig. 7 the evolution of the
accuracy of the model against the number of kernel set to zero in the first and
second convolutional layers for different coefficient of regularization λ. When
λ = 0, the l1/l2 pseudo-norm is not taken into account, resulting into the base-
line model. The order that the filters are set to zero is determined by the filters

Table 3. Results after penalizing unimportant filters in VGG11 on CIFAR-10. Base-
line is the VGG11 network baseline. l1/l2 is our method with different coefficient of
regulation λ.

Method λ Error Conv1 to conv 8 filter
#

Total sparsity

Baseline - 17.6% 64 - 128 - 256 - 256 -
512 - 512 - 512 - 512

0%

l1 0.0001 19.3% 52 - 128 - 255 - 256 -
175 - 147 - 97 - 123

55.2%

l2 0.005 18.2% 64 - 128 - 256 - 256 -
511 - 474 - 434 - 299

12%

l1/l2 0.005 18.8% 35 - 115 - 238 - 176 -
354 - 195 - 190 - 175

46.3%

l1/l2 0.001 16.8% 64 - 128 - 256 - 256 -
512 - 512 - 510 - 380

5%
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pseudo-norm arranged by ascending order. These tests are done at a single con-
volutional layer level. Meaning that during training, the only filters that are
evaluated and set to zero are the ones belonging to the studied layer. The other
layers are remaining untouched. We visualize that for both layers, we are able
to set numerous filters to zero without a noticeable decrease of the accuracy,
even when our method is not active. This result shows that there is unimportant
information in the layer and that it is possible to remove it, even if there are no
methods that are defined to emphasize this phenomenon. With the implemen-
tation of the l1/l2 pseudo-norm (λ > 0), we see that (1) more kernels are set
to zero before the beginning of the accuracy drop compared to the baseline and
(2) a greater λ value means that more kernels are zeroed-out but at the price of
an inferior accuracy. Based on these conclusions, our method is increasing the
sparsity of the filters within a layer, shifting information between them in order
to centralize the information. However this sparsity has its limits. The more we
force it (with a significant λ value), the more we increase the chances to lose
important information that could be never recovered.
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(a) First convolutional layer of VGG11
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(b) Second convolutional layer of VGG11

Fig. 7. Visualization of the effect of setting kernels to zero in the first two convolutional
layers of VGG11 against the accuracy of the network. Each line represents a different
value for the coefficient of regulation λ of the l1/l2 pseudo-norm method.

5 Conclusion

In this work, we proposed a new regularization approach for inducing kernel
sparsity in DCNNs based on the l1/l2 pseudo-norm. This method reorganizes
the weights of the convolutional layers in order to learn more compact structures
during training. These compact DCNNs can reach almost the same accuracy as
the original models and in some cases even perform better. Our experiments
have demonstrated the benefits of our approach and its generalization to deep
structures: it is straightforward to implement, it operates during the training
process and it is possible to choose between the compactness and the accuracy
of the model. So far, we have only applied our method to classification problems.
To go beyond, in the future, the method needs to be applied on deeper models
such as Resnet [9] and bigger datasets. Autoencoders, fully convolutional net-
works and segmentation problems are also an important focus. Furthermore, it
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would be interesting to generalize the l1/l2-norm to the l1/lq-norm to study its
properties in more detail and improve on different model structures and learning
problems.
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