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Abstract The class of constrained Willmore (CW) surfaces in space-forms consti-
tutes a Möbius invariant class of surfaces with strong links to the theory of integrable
systems, with a spectral deformation [8], defined by the action of a loop of flat met-
ric connections, and Bäcklund transformations [9], defined by a dressing action by
simple factors. Constant mean curvature (CMC) surfaces in 3-dimensional space-
forms are [25] examples of CW surfaces, characterized by the existence of some
polynomial conserved quantity [21, 22, 24]. Both CW spectral deformation and CW
Bäcklund transformation preserve [21, 22, 24] the existence of such a conserved
quantity, defining, in particular, transformations within the class of CMC surfaces in
3-dimensional space-forms, with, furthermore [21, 22, 24], preservation of both the
space-form and the mean curvature, in the latter case. A classical result by Thomsen
[28] characterizes, on the other hand, isothermic Willmore surfaces in 3-space as
minimal surfaces in some 3-dimensional space-form. CW transformation preserves
[8, 9] the class of Willmore surfaces, as well as the isothermic condition, in the
particular case of spectral deformation [8]. We define, in this way, a CW spectral
deformation andCWBäcklund transformations ofminimal surfaces in 3-dimensional
space-forms into new ones, with preservation of the space-form in the latter case.
This paper is dedicated to a reader-friendly overview of the topic.
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1 Introduction

A central theme in Mathematics is that of the search for the optimal representative
within a certain class of objects, often driven by the minimization of some energy,
reflecting what occurs in many physical processes. From the early 1960s, Thomas
Willmore devoted particular attention to the quest for the optimal immersion of a
given closed surface in Euclidean 3-space, regarding the minimization of some natu-
ral energy, motivated by questions on the elasticity of certain biological membranes
and the energetic cost associated with membrane bending deformations.

We can characterize how much a membrane is bent at a particular point on the
membrane by means of the curvature of the osculating circles of the planar curves
obtained as perpendicular cross sections through the point. The curvature of these
circles consists of the inverse of their radii, with a positive or negative sign depending
on whether the membrane curves upwards or downwards, respectively. The minimal
and maximal values of the radii of the osculating circles associated with a particular
point on the membrane define the principal curvatures, k1 and k2, and, from these,
the mean curvature, H = (k1 + k2)/2 and the Gaussian curvature, K = k1k2, at the
point.

In modern literature on the elasticity of membranes, a weighed sum

a
∫

H + b
∫

H 2 + c
∫

K ,

of the total mean curvature, the total squared mean curvature and the total Gaussian
curvature, is considered to be the elastic bending energy of a membrane. By physical
considerations, the total mean curvature is neglected. On the other hand, from the
perspective of critical points of energy, in deformations conserving the topological
type, the total Gaussian curvature can be ignored, according to Gauss–Bonnet the-
orem. What’s left is what Willmore considered to be the elastic bending energy of
a compact, oriented Riemannian surface, without boundary, isometrically immersed
in IR3, nowadays known as the Willmore energy.

The Willmore energy had already made its appearance early in the nineteenth
century, through the works of Marie-Sophie Germain [15, 16] and Siméon Poisson
[20] and their pioneering studies on elasticity and vibrating properties of thin plates,
with the claim that the elastic force of a thin plate is proportional to itsmean curvature.
Since then, the mean curvature has remained a key concept in the theory of elasticity.
TheWillmore energy appeared again in the 1920s, in the works ofWilhelm Blaschke
[1] and Gerhard Thomsen [28], but their findings were forgotten and only brought
to light after the increased interest on the subject motivated by the work of Thomas
Willmore.

Willmore surfaces are the critical points of the Willmore energy functional. Min-
imal surfaces, in their turn, are defined variationally as the stationary configurations
for the area functional, amongst all those spanning a given boundary.
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Minimal surfaces were first considered by Joseph-Louis Lagrange [17], in 1762,
who raised the question of existence of surfaces of least area among all those spanning
a given closed curve in Euclidean 3-space as boundary. Earlier, Leonhard Euler
[14] had already discussed minimizing properties of the surface now known as the
catenoid, although he only considered variations within a certain class of surfaces.
The problem raised by Lagrange became known as the Plateau’s Problem, referring
to Joseph Plateau [19], who first experimented with soap films.

A physical model of a minimal surface can be obtained by dipping a wire loop
into a soap solution. The resulting soap film is minimal in the sense that it always
tries to organize itself so that its surface area is as small as possible whilst spanning
the wire contour. This minimal surface area is, naturally, reached for the flat position,
which happens to be a position of vanishing mean curvature. This does not come
as a particular feature of this rather simple example of minimal surface. In fact, the
Euler–Lagrange equation of the variational problem underlying minimal surfaces
turns out to be precisely the zero mean curvature equation, as discovered by Jean
BaptisteMeusnier [18]. The flat position of the soap film is also the position in which
the membrane is the most relaxed. These surfaces are elastic energy minimals and,
in this way, examples of Willmore surfaces.

Unlike flat soap films, soap bubbles exist under a certain surface tension, in an
equilibrium where slightly greater pressure inside the bubble is balanced by the
area-minimizing forces of the bubble itself. With their spherical shape, soap bubbles
are examples of area-minimizing surfaces under the constraint of volume enclosed.
These are surfaces of (non-zero) constant mean curvature and examples of con-
strained Willmore surfaces, the generalization of Willmore surfaces that arises when
we consider critical points of the Willmore functional only with respect to infinites-
imally conformal variations.

A very interesting fact about the Willmore energy is that it is scale-invariant: if
one dilates the surface by any factor, theWillmore energy remains the same. Think of
a round sphere in IR3 as an example: if one increases the radius, the surface becomes
flatter and its squared mean curvature decreases, but, at the same time, the surface
area gets larger, which increases the value of the total squared mean curvature over
the surface. One can show that these two phenomena counterbalance each other
on any surface. In fact, the Willmore energy has the remarkable property of being
invariant under any conformal transformation of IR3, as established in a paper by
James White [30] and, actually, already known to Blaschke [1] and Thomsen [28].

The class of constrained Willmore surfaces in space-forms constitutes a Möbius
invariant class of surfaces with strong links to the theory of integrable systems, with
a spectral deformation, defined by Fran Burstall, Franz Pedit and Ulrich Pinkall [8],
by the action of a loop of flat metric connections, and Bäcklund transformations [9],
defined by a dressing action by simple factors.

Constant mean curvature surfaces in 3-dimensional space-forms are examples of
constrained Willmore surfaces, as established by Jörg Richter [25], characterized by
the existence of some polynomial conserved quantity [21, 22, 24]. Both constrained
Willmore spectral deformation and constrained Willmore Bäcklund transformation
preserve [21, 22, 24] the existence of such a conserved quantity, for special choices
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of parameters, defining, in particular, transformations within the class of constant
mean curvature surfaces in 3-spaces, with, furthermore [21, 22, 24], preservation of
both the space-form and the mean curvature, in the latter case.

A classical result by Thomsen [28] characterizes, on the other hand, isothermic
Willmore surfaces in 3-space as minimal surfaces in some 3-dimensional space-
form. Constrained Willmore transformation preserves [8, 9] the class of Willmore
surfaces, as well as, in the particular case of spectral deformation [8], the isothermic
condition.

We define, in this way, a constrained Willmore spectral deformation and con-
strained Willmore Bäcklund transformations of minimal surfaces in 3-dimensional
space-forms into new ones, with preservation of the space-form, in the latter case.
This paper is dedicated to a reader-friendly overview of the topic. A detailed account
of elementary computations can be found in [22, 23].

Along this text, we shall make no explicit distinction between a bundle and its
complexification, and move from real tensors to complex tensors by complex mul-
tilinear extension, preserving notation. Our theory is local and, throughout this text,
restriction to a suitable non-empty open set shall be underlying. Underlying through-
out will be, as well, the identification

∧2IRn+1,1 ∼= o(IRn+1,1)

of the exterior power ∧2IRn+1,1 with the orthogonal algebra o(IRn+1,1) via

u ∧ v(w) := (u, w)v − (v,w)u,

for u, v, w ∈ IRn+1,1.

2 The Willmore Energy

Among the classes of Riemannian submanifolds, there is that of Willmore surfaces,
named after Willmore [31], in the 1960s, although the topic was mentioned by
Blaschke [1] and Thomsen [28], in the 1920s, as a variational problem of optimal
realization of a given closed surface in Euclidean 3-surface, regarding the mini-
mization of some natural energy, motivated by questions on the elasticity of certain
biological membranes and vesicles.

In modern literature on the elasticity of membranes, a weighed sum of the total
squared mean curvature and the total Gaussian curvature, is considered to be the
elastic energy of a membrane. From the perspective of critical points of energy, in
deformations conserving the topological type, the total Gaussian curvature can be
ignored, according to Gauss–Bonnet theorem. What’s left is what is defined as the
Willmore energy,
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W =
∫

M
H 2d A,

of a compact, oriented (Riemannian) surface M , without boundary, (isometrically)
immersed in IR3.

From the perspective of energy extremals, the Willmore functional can be
extended to compact, oriented (Riemannian) surfaces (isometrically) immersed in a
general Riemannian manifold M̂ with constant sectional curvature, or space-form,
by means of

W =
∫

M
|�0|2d A,

the total squared norm of the trace-free part �0 of the second fundamental form: by
the Gauss equation, relating the curvature tensors of M and M̂ , we have

|�0|2 = 2(|H|2 − K + K̂ ),

forH the mean curvature vector and K and K̂ the sectional curvatures of M and M̂ ,
respectively, so that, in the particular case of surfaces in IR3,

|�0|2 = 2(H 2 − K ),

and, therefore, the two functionals share critical points. Willmore surfaces are the
critical points of the Willmore functional.

3 Conformal Invariance and the Central Sphere
Congruence

It is well-known that the Levi-Civita connection is not a conformal invariant (see, for
example, [32, Sect. 3.12]). Although the second fundamental form is not conformally
invariant, under a conformal change of themetric, its trace-free part remains invariant
(see [23, Sect. 2.1]), so the respective squared norm and the area element change
in inverse ways, leaving the Willmore energy unchanged and establishing the class
of Willmore surfaces as a conformally invariant class. There is then no reason for
carrying a distinguished metric—instead, we consider a conformal class of metrics.

Our study is one of surfaces in n-dimensional space-forms, with n ≥ 3, from a
conformally invariant point of view. So let Sn be the conformal n-sphere, in which,
by stereographic projection, we find, in particular, the Euclidean n-space, as well as
two copies of hyperbolic n-space. Our surfaces are immersions

Λ : M → Sn



234 Á. C. Quintino

of a compact, oriented surface M , which we provide with the conformal structure
CΛ induced by Λ and with the canonical complex structure (that is, 90◦ rotation in
the positive direction in tangent spaces, a notion that is, obviously, invariant under
conformal changes of the metric). We find a convenient setting in Darboux’s light-
cone model of the conformal n-sphere [11].We follow the modern account presented
in [3]. So consider the Lorentzian space IRn+1,1 and its light-cone L, and fix a unit
time-like vector t0. We identify v ∈ Sn ⊆ IRn+1 with the light-line through v + t0,
identifying, in this way, Sn with the projectivized light-cone,

Sn ∼= IP(L).

For us, a surface is, in this way, a null line subbundle Λ = 〈σ〉 of the trivial bun-
dle IRn+1,1 = M × IRn+1,1, with σ : M → L a never-zero section of Λ. For further
reference, set

Λ1,0 := Λ ⊕ dσ(T 1,0M), Λ0,1 := Λ ⊕ dσ(T 0,1M),

independently of the choice of a never-zero σ ∈ Γ (Λ), and then

Λ(1) := Λ1,0 + Λ0,1.

A fundamental construction in conformal geometry of surfaces is the mean curva-
ture sphere congruence, or central sphere congruence, the bundle of 2-spheres tangent
to the surface and sharing with it mean curvature vector at each point (although the
mean curvature vector is not conformally invariant, under a conformal change of the
metric, it changes in the same way for the surface and the osculating 2-sphere). In
the light-cone picture, 2-spheres correspond to (3, 1)-planes in IRn+1,1 and, in this
way, the central sphere congruence defines a map

S : M → Gr(3,1)(IR
n+1,1),

into the Grassmannian G := Gr(3,1)(IRn+1,1) of (3, 1)-planes in IRn+1,1. We have,
therefore, a decomposition

IRn+1,1 = S ⊕ S⊥

and then a decomposition of the trivial flat connection d as

d = D + N ,

forD the connection given by the sum of the connections induced by d on S and S⊥,
respectively, through orthogonal projection.

Given μ, η ∈ �1(S∗TG), let (μ ∧ η) be the 2-form defined from the metric on
S∗TG:

(μ ∧ η)(X,Y ) = (μX , ηY ) − (μY , ηX ),
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for all X, Y ∈ Γ (T M). Next we present a manifestly conformally invariant for-
mulation of the Willmore energy. It follows the definition presented in [7], in the
quaternionic setting, for the particular case of n = 4. The intervention of the con-
formal structure restricts to the Hodge ∗-operator, which is conformally invariant on
1-forms over a surface.

Theorem 1 ([7])

W(Λ) = 1

2

∫
M

(d S ∧ ∗d S).

Note that
(d S ∧ ∗d S) = −(∗d S ∧ d S) = (d S, d S)d A,

(d S ∧ ∗d S) is a conformally invariant way of writing (d S, d S)gd Ag , for g ∈ CΛ,
with d Ag denoting the area element of (M, g) and ( , )g denoting theHilbert–Schmidt
metric on L((T M, g), S∗TG). It follows that the Willmore energy of Λ coincides
with the Dirichlet energy of S with respect to any of the metrics in the conformal
class CΛ,

W(Λ) = E(S).

4 Constrained Willmore Surfaces and Harmonicity

Harmonic maps are the critical points of the Dirichlet energy functional. Willmore
surfaces are closely related to harmonic maps via the central sphere congruence, in a
key result established by Blaschke [1], for n = 3, and, independently, Ejiri [13] and
Rigoli [26], for general n:

Theorem 2 ([1, 13, 26]) Λ is a Willmore surface if and only if its central sphere
congruence S is a harmonic map.

The well-developed theory of harmonic maps into Grassmannians now applies.
First of all, it provides a zero-curvature characterization of Willmore surfaces: for a
map into aGrassmannian, the harmonicity amounts to the flatness of a certain1 family
of connections, as established by Uhlenbeck [29], and so does then the Willmore
surface condition:

Theorem 3 Λ is a Willmore surface if and only if dλ := D + λN 1,0 + λ−1N 0,1 is
a flat connection, for all λ ∈ S1.

A larger class of surfaces arises when one imposes the weaker requirement that a
surface extremize the Willmore functional only with respect to infinitesimally con-
formal variations: these are the constrained Willmore surfaces. The introduction of
a constraint in the variational problem equips surfaces Λ with Lagrange multipliers,

1In the literature, the associated family of flat connections corresponding to a different choice of
orientation in M can also be found.



236 Á. C. Quintino

as first proven by Burstall–Pedit–Pinkall [8] and then given the following manifestly
conformally invariant formulation by Burstall–Calderbank [4]:

Theorem 4 ([4, 8]) Λ is a constrained Willmore surface if and only if there exists
a real form q ∈ �1(Λ ∧ Λ(1)) such that

dλ
q := D + λN 1,0 + λ−1N 0,1 + (λ2 − 1)q1,0 + (λ−2 − 1)q0,1

is a flat connection, for all λ ∈ S1. Such a form q is said to be a (Lagrange) multiplier
for Λ and Λ is said to be a q-constrained Willmore surface. At times, it will be
convenient to make an explicit reference to the central sphere congruence of Λ,
writing dλ,q

S for dλ
q .

Willmore surfaces are the constrained Willmore surfaces admitting the zero mul-
tiplier. This is not necessarily the only multiplier, as we shall see.

5 Isothermic Constrained Willmore Surfaces

Isothermic surfaces are classically defined by the existence of conformal curvature
line coordinates. Although the second fundamental form is not conformally invariant,
conformal curvature line coordinates are preserved under conformal changes of the
metric and, therefore, so is the isothermic surface condition. The next result presents
a manifestly conformally invariant formulation of the isothermic surface condition,
established by Burstall–Donaldson–Pedit–Pinkall [6].

Proposition 1 ([6]) Λ is an isothermic surface if and only if there exists a non-zero
closed real 1-form η ∈ �1(Λ ∧ Λ(1)). In this case, we say that Λ is a η-isothermic
surface.

If q1 �= q2 are multipliers for Λ, then Λ is a ∗(q1 − q2)-isothermic surface, and,
reciprocally, if Λ is a η-isothermic q-constrained Willmore surface, then the set of
multipliers for Λ is the affine space q + 〈∗η〉IR. Hence:
Proposition 2 ([9]) A constrained Willmore surface Λ admits a unique multiplier
if and only if Λ is not an isothermic surface.

A classical result by Thomsen [28] characterizes isothermic Willmore surfaces
in 3-space as minimal surfaces in some 3-dimensional space-form. (In contrast to
constrainedWillmore surfaces, constantmean curvature surfaces are not conformally
invariant objects, requiring a distinguished space-form to be considered.)

Theorem 5 ([28]) Λ is a minimal surface in some 3-dimensional space-form if and
only if Λ is an isothermic Willmore surface in 3-space.

Constant mean curvature surfaces in 3-dimensional space-forms are examples
of isothermic constrained Willmore surfaces, as proven by Richter [25]. However,
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isothermic constrained Willmore surfaces in 3-space are not necessarily constant
mean curvature surfaces in some space-form, as established by an example due to
Burstall, presented in [2], of a constrained Willmore cylinder that does not have
constant mean curvature in any space-form.

6 Transformations of Constrained Willmore Surfaces

The zero-curvature characterization of constrained Willmore surfaces presented
above allows one to deduce two types of symmetry.

Suppose that Λ is a q-constrained Willmore surface. The two types of transfor-
mations that we describe next apply to any choice of the multiplier q (when there is
a choice to be made) and depend on it. In the particular case that Λ is a Willmore
surface, we consider q to be the zero multiplier, without further reference.

6.1 Spectral Deformation

The simplest transformation of Λ into new constrained Willmore surfaces arises
from exploiting a scaling freedom in the spectral parameter, as follows.

For each λ ∈ S1, the flatness of the metric connection dλ
q establishes, at least

locally, the existence of an isometry of bundles

φλ : (IRn+1,1, dλ
q ) → (IRn+1,1, d),

preserving connections, defined on a simply connected component of M and unique
up to a Möbius transformation. We define a spectral deformation of Λ = 〈σ〉 by
setting, for each λ ∈ S1,

Λλ := φλΛ = 〈φλσ〉.

For each λ ∈ S1, set

qλ := φλ ◦ (λ2q1,0 + λ−2q0,1) ◦ (φλ)
−1.

The central sphere congruence of Λλ is φλS and, given μ ∈ S1, we have

dμ,qλ

φλ S = φλ ◦ dμλ,q
S ◦ (φλ)

−1,

establishing the flatness of dμ,qλ

φλ S from the one of dμλ,q
S (note that μλ ∈ S1). It follows

that:

Theorem 6 Λλ is a qλ-constrained Willmore surface, for all λ ∈ S1.

In particular, this spectral deformation preserves the zero multiplier.
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Corollary 1 If Λ is a Willmore surface, then so is Λλ, for all λ ∈ S1.

This spectral deformation coincides, up to reparameterization, with the one pre-
sented in [8], in terms of the Hopf differential and the Schwarzian derivative (see
[22, Sect. 6.4.1]).

The isothermic surface condition is known [8] to be preserved under constrained
Willmore spectral deformation. In our setting, one can verify (see [23, Sect. 2.3.5])
that, if Λ is also a η-isothermic surface, then Λλ is a ηλ-isothermic surface, for

ηλ := φλ ◦ (λη1,0 + λ−1η0,1) ◦ (φλ)
−1.

Proposition 3 ([8]) If Λ is an isothermic surface, then so is Λλ, for all λ ∈ S1.

From Theorem 5, it follows that:

Corollary 2 If Λ is a minimal surface in some 3-dimensional space-form, then so is
Λλ, for each λ ∈ S1 (although not necessarily with preservation of the space-form).

As we shall see later in this text, this spectral deformation preserves, as well, the
class of constant mean curvature surfaces in 3-dimensional space-forms, for special
choices of the spectral parameter.

6.2 Bäcklund Transformation

Having exploited the equivalence of dλ,q
S to the trivial flat connection, as flat metric

connections, by means of
dλ,q

S = (φλ)
−1 ◦ d ◦ φλ,

we now explore equivalences starting from dλ,q
S , i.e., equivalences given by

dλ,q∗
S∗ = r(λ) ◦ dλ,q

S ◦ r(λ)−1,

for some q∗ and some S∗, with r(λ) ∈ Γ (O(IRn+1,1)), so that the flatness of dλ,q
S

establishes that of dλ,q∗
S∗ . The difficulties involved are of two different orders, namely,

the preservation of the algebraic shape of dλ,q
S , together with ensuring that S∗ is the

central sphere congruence of some surface, so that the family of flat connections
dλ,q∗

S∗ is the associated family to some constrained Willmore surface. A version of
the Terng–Uhlenbeck [27] dressing action by simple factors proves to offer a simple
construction, out of two parameters, a complex number α and a null line bundle L ,
parallel with respect to dα,q

S , from which we define, respectively, the eigenvalues
and the eigenspaces of two different types of linear fractional transformations, out
of which we define r(λ), as follows.
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Let ρ denote reflection across S,

ρ = πS − πS⊥ ,

for πS and πS⊥ the orthogonal projections of IRn+1,1 onto S and S⊥, respectively.
Given α ∈ C and L a null line subbundle of IRn+1,1 such that ρL ∩ L⊥ = 0, set

pα,L(λ) := I

⎧⎨
⎩

α−λ
α+λ

on L
1 on (L ⊕ ρL)⊥
α+λ
α−λ

on ρL
,

for λ ∈ C\{±α} and I ∈ Γ (O(IRn+1,1)) the identity map of IRn+1,1. Let qα,L denote
the map obtained from pα,L by considering the additive inverses of the eigenvalues
associated to the eigenspaces L and ρL , respectively. Define pα,L(∞) and qα,L(∞)

by holomorphic extension of

pα,L , qα,L : C\{±α} → Γ (O(IRn+1,1))

respectively.
Now consider α ∈ C\(S1 ∪ {0}) and L a dα,q

S -parallel null line subbundle of
IRn+1,1 such that ρL ∩ L⊥ = 0 (whose existence is established in [9]). Setα∗ := α−1,
L ′ := pα,L(α∗)L and, for each λ ∈ IP1\{±α},

r(λ) := qα∗,L ′(λ) pα,L(λ).

Set, furthermore,

Λ∗ := (r(1)−1 r(0)Λ1,0) ∩ (r(1)−1 r(∞)Λ0,1).

Theorem 7 ([9]) Λ∗ is a q∗-contrained Willmore surface, for

q∗ := r(1)−1 ◦ (r(∞) ◦ q1,0 ◦ r(∞)−1 + r(0) ◦ q0,1 ◦ r(0)−1) ◦ r(1),

with central sphere congruence

S∗ := r(1)−1S;

said to be the Bäcklund transform of Λ of parameters α, L.

In particular, Bäcklund transformation preserves the zero multiplier.

Corollary 3 If Λ is a Willmore surface, then so is Λ∗.

It is not clear that if Λ is an isothermic surface, then so is Λ∗. So far, it is not
clear either that Bäcklund transformation preserves the class of minimal surfaces
in 3-dimensional space-forms. However, as we shall see later, that proves to be the
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case. We shall see, furthermore, that Bäcklund transformation preserves the class of
constant mean curvature surfaces in 3-dimensional space-forms, for special choices
of parameters, with preservation of both the mean curvature and the curvature of
space.

7 Polynomial Conserved Quantities for Constrained
Willmore Surfaces

The isothermic surface condition amounts [6], just as well, to the flatness of a certain
family ∇ t of connections, indexed in IR. In [10], the classical notion of special
isothermic surface, introduced by Darboux [12], is given a simple explanation in
terms of the integrable systems approach to isothermic surfaces. They are realized as
a particular case of a hierarchy of classes of isothermic surfaces filtered by an integer
d. Here is the basic idea: The theory of ordinary differential equations ensures that
one can find ∇ t -parallel sections depending smoothly on the spectral parameter t .
The existence of such sections with polynomial dependence of degree d on t is of
particular geometric significance, as first observed by Burstall–Calderbank [5], and
gave rise to the notion of polynomial conserved quantity of type d, developed in [10],
in the isothermic context, where the notion of special isothermic surface of type d is
introduced, having the classical notion as a particular case (d = 2).

We are in this way led to the notion of special constrained Willmore surface of
type d, presented in [24]:

Definition 1 Let Λ be a q-constrained Willmore surface and d ∈ IN0. A Laurent
polynomial

p(λ) = p
d
λ−d + · · · + p

1
λ−1 + p

0
+ p

1
λ + · · · + p

d
λd

with
p

d
∈ Γ (S⊥)

and p
k

∈ Γ (S⊥) if and only if k and d have the same parity, or, otherwise, p
k

∈ Γ (S);
is said to be a polynomial conserved quantity of type d of Λ if

p(1) �= 0

and
dλ

q p(λ) = 0,

for all λ ∈ S1. We say that Λ is a special constrained Willmore surface of type d if
it admits a polynomial conserved quantity of type d.
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The case d = 1 recovers the notion of conserved quantity presented in [21, 22],
an idea by Burstall–Calderbank [5].

The fact that p(λ) is a polynomial conserved quantity of type d of Λ establishes,
in particular, that p(1) is real and constant, that is, p(1) ∈ IRn+1,1. As we shall see,
p(1) carries very important information regarding both the curvature of space in
which, under some conditions, Λ proves to have constant mean curvature, and the
mean curvature of the surface Λ in such a space.

In the isothermic context, type 1 characterizes [5] H -generalised surfaces, sur-
faces admitting a parallel unit normal vector field which has constant inner product
with the mean curvature vector (see also [10]). In the constrained Willmore context,
type 1 with parallel top term characterizes surfaces with parallel mean curvature
vector:

Theorem 8 ([24]) Λ is a special constrained Willmore surface of type 1, admitting
a polynomial conserved quantity with parallel top term, if and only if Λ has parallel
mean curvature vector in some space-form.

In codimension 1, the condition of parallelism of the top term of a polynomial
conserved quantity of type 1 proves [24] to be vacuous. It follows that, in codimension
1, type 1 characterizes constantmean curvature surfaces, in both contexts, recovering,
in particular, a result established in [21, 22]:

Theorem 9 ([21, 22, 24]) Suppose that Λ ⊂ S3. Then Λ is a special constrained
Willmore surface of type 1 if and only if Λ has constant mean curvature in some
space-form.

Furthermore:

Theorem 10 ([21, 22, 24]) Suppose that Λ ⊂ S3. If p(λ) is a polynomial conserved
quantity of type 1 of Λ, then Λ has constant mean curvature H, with

H 2 = |πS⊥(p(1))|2, (1)

in a space-form with sectional curvature

K = −(p(1), p(1)). (2)

Reciprocally, if Λ has constant mean curvature H in some space-form with sec-
tional curvature K , then Λ admits a polynomial conserved quantity p(λ), of type 1,
satisfying (1) and (2).

Corollary 4 Suppose that Λ ⊂ S3. Then Λ is a minimal surface in some space-form
if and only if Λ is a constrained Willmore surface admitting a polynomial conserved
quantity p(λ) of type 1 with

p(1) ∈ Γ (S).
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8 Transformations of Special Constrained Willmore
Surfaces

The class of special constrained Willmore surfaces of any given type d is preserved
under both spectral deformation andBäcklund transformation, defining, in particular,
for special choices of parameters, as established in [21, 22] (d = 1) and [24] (general
d), as follows.

Let Λ be a q-constrained Willmore surface.

Theorem 11 ([21, 22, 24]) Let λ be in S1 and φλ : (IRn+1,1, dλ
q ) → (IRn+1,1, d) be

an isometry of bundles, preserving connections. Suppose that p(μ) is a polynomial
conserved quantity of type d of Λ, with p(λ) non-zero. Then

pλ(μ) := φλ p(λμ)

is a polynomial conserved quantity of type d of the spectral deformation φλΛ, of
parameter λ, of Λ.

As for Bäcklund transformation of special constrained Willmore surfaces:

Theorem 12 ([21, 22, 24]) Suppose that p(λ) is a polynomial conserved quantity
of type d of Λ. Suppose that α, L are Bäcklund transformation parameters for Λ

with
p(α) ⊥ L.

Then
p∗(λ) := r(1)−1r(λ −1)p(λ)

is a polynomial conserved quantity of type d of the Bäcklund transform Λ∗ of Λ, of
parameters α, L.

Note that
p∗(1) = p(1),

establishing the preservation of the curvature of space, when carrying a distinguished
one.

9 Constant Mean Curvature Surfaces Under Constrained
Willmore Transformation

From Theorems 9 and 11, we conclude that the class of constant mean curvature
surfaces in 3-dimensional space-forms is preserved under spectral deformation, for
special choices of the spectral parameter. Recall, furthermore, that, for each λ ∈ S1,
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the central sphere congruence of Λλ is φλS. According to Theorem 10, it follows
that:

Corollary 5 If Λ is a constant mean curvature surface in some 3-dimensional space-
form, then so is Λλ (although not necessarily with preservation of the space-form),
for special choices of the parameter λ ∈ S1. Furthermore: if p(μ) is a polynomial
conserved quantity of type 1 of Λ, with p(λ) non-zero, then Λλ has constant mean
curvature Hλ with

H 2
λ = |πS⊥(p(λ))|2

in a space-form with sectional curvature

Kλ = −(p(λ), p(λ)).

Both constrained Willmore spectral deformation and Bäcklund transformation
prove [24] to preserve, furthermore, the parallelism of the top term of a polynomial
conserved quantity, for special choices of parameters. Hence:

Theorem 13 ([24]) The class of parallel mean curvature surfaces in space-forms is
preserved under both spectral deformation and Bäcklund transformation, for special
choices of parameters, with preservation of the space-form, in the latter case.

In particular, the class of constantmean curvature surfaces in 3-dimensional space-
forms is preserved under Bäcklund transformation, for special choices of parameters,
with preservation of the space-form. Furthermore, recovering a result established in
[21, 22]:

Theorem 14 ([21, 22, 24]) If Λ is a constant mean curvature surface in some
3-dimensional space-form, then so is Λ∗, for special choices of parameters, with
preservation of both the space-form and the mean curvature.

Corollary 6 If Λ is a minimal surface in some 3-dimensional space-form, then so
is Λ∗, for special choices of parameters, with preservation of the space-form.
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