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Abstract. In recent years there has been a growing interest in the use of elec-
tric vehicles. This has resulted in the need to develop the necessary charging
infrastructure. In this paper, the issue of optimizing the locations and capacity
of charging stations is analyzed through the evaluation of its expansion. This is
achieved using a model based on a mixed integer program. Since this is a highly
practical problem, one of the main focuses of this work is in using real world
data like population density and the state of the electrical distribution system. An
efficient approach is proposed for acquiring such data and its integration into the
model. The developed model is used for evaluating the expansion of EV charging
infrastructure for the cities of Doha and San Francisco.

Keywords: Mixed integer programming · Electrical vehicles · Charging
infrastructure

1 Introduction

In the recent years there has been an extensive increase in the use of electrical vehicles
(EV). EVs can play a major role in the progressive decarbonisation of road transport and
in the improvement of air quality in urban areas. For this reason governments have been
strongly supporting their adoption through a combination of purchase subsidies, non
monetary incentives (free parking and use of car pooling lanes), the provision of public
charging networks, etc. This has resulted in rapid adoption of EVs. Public chargers are
a key enabler of EV adoption [18,28] and therefore for the market to continue to grow
the existing networks need to continue to expand as well.

On the other hand the adoption of electric cars has had a high growth and is steadily
increasing. In contrast to fossil fuel vehicles, where the only way of refueling is visiting
a station, EV’s pose several possibilities due to different charger speeds [9]. To be more
precise, it is possible to charge a vehicle using slow Level 1 chargers at home or using
faster ones for out-of-home charging. For example, Level 2 (medium speed) chargers
can be used at office parking lots with many positive impacts [12,19,31]. This type of
infrastructure has the additional benefit of being suitable for use in demand management
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systems [15,21,26]. The last approach is the use of Level 3 (fast) chargers, which can
fully charge a typical EV in around 30min. Level 3 chargers come at a high cost and
are frequently close to 10 times more expensive than Level 2 ones, but are a necessity.

As the EV industry expands, drivers are becoming increasingly concerned about
the comfort of usage, which is highly dependent on the available charging infrastruc-
ture. [20]. Due to the high cost of stations with Level 3 chargers, it is necessary to
optimize their network. A large amount of research on EV charging infrastructure is
modeled as location-allocation problems [22]. The high computational complexity of
these problems, generally NP-Hard, has resulted in a large number of metaheuristics
being developed for solving them [7,10,27].

A major body of this research is dedicated to optimizing infrastructure for long
distance and regional travel due to range anxiety. In such systems one of the main goals
is to make it possible for a majority of EVs to be able to reach EV stations with the
minimal need for additional travel [14,23]. An essential part of such models is the use
of origin-destination pairs and attempting to position charging stations at locations that
catch the majority of traffic [17]. Another part of this research is focused on optimal
locations of charging infrastructure within a city [6,13]. This research sites a more dense
network of charging stations, over a city. Consequently, the models used for finding
optimal locations of charging stations and their capacity has a high similarity to classical
covering problems [10,25,32]. This is due to the assumption that an additional drive to
reach a station is expected to be relatively short. An extended commute is acceptable
for drivers if the waiting time is lower, this type of behavior is commonly observed for
petrol car users.

In this paper, the focus is on developing a tool that makes it possible to assist in
the decision making for the expansion of the EV charging network. This is done using a
mixed integer program (MIP) for modeling the potential charging network of a city. The
primary objective is to find the optimal locations of charging stations and their capacity.
The optimality is observed as the minimization of the number of new stations that are
installed. The second objective is to minimize the travel distances needed by an EV user
to reach the charging stations.

The proposed model is used to assess the expansion strategies of charging infras-
tructure through case studies for two cities having different levels of existing infras-
tructure. This is done through using real world data on population density and existing
charging infrastructure. In order to achieve a more realistic model, data regarding the
electric distribution system is also used to specify the potential locations for new charg-
ing stations. The model is used to evaluate the expansion of the charging infrastructure
for an increasing numbers of chargers per 10,000 population.

The paper is organized as follows. The second section introduces the mixed integer
program for the problem of interest. The next section provides information how real
world data is used to generate the instances for the model. The fourth section is dedi-
cated to the case studies of the selected cities. The paper concludes with a discussion of
the main insights derived from the study performed.
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2 Mathematical Model

In this section, we present the mixed integer linear program for modeling the expan-
sion of existing EV charging infrastructure on a city level. This type of problem is
closely related to the capacitated facility location problem (CFLP) [30]. In the CFLP, it
is expected that most facilities can satisfy demand from all locations and the distance
only influences the cost. When modeling locations and capacities of EV charging sta-
tions this is not the case due to the fact that EV drivers are not willing to commute very
far to use them. On the other hand, it is assumed that drivers will wish to avoid stations
with long queuing times and in such cases they will go to a charging station that is not
necessarily the closest. This common behavior of drivers often manages to balance the
demand for charging stations over the whole system.

When setting up such infrastructure, the main question is how to select the best
locations for new charging stations and their capacity. This should be done based on the
population density of a city and the potential locations of charging stations based on
the existing electrical distribution system. In practice, a complete EV charging systems
for a city is not setup at once but through the expansion of an existing one with the
goal of lowering the number of EVs per charger. The objective of the proposed MIP
formulation is to be able to find the best locations and capacities of stations in this type
of system.

In the proposed mathematical model several assumptions and simplifications are
made. Firstly, it is assumed that the modeling is done on city scale and that the city is
divided into sections. Each section has a fixed population and is considered as a single
location. Each location has a potential capacity of EV charging that it can provided.
More precisely, at each location some additional maximum charging capacity can be
installed. The demand for EV charging for a location is proportional to its population.
It is assumed that all the demand for EV charging must be satisfied. A demand can only
be satisfied from a charging location that an EV driver is willing to travel to.

In addition, it is assumed that there is already some infrastructure in place which
can provide charging. This is an additional property for each location. A location can
at most satisfy the amount of charging demand that is less or equal to its capacity. It
is expected that the majority of the cost for setting up the charging system is related to
setting up a new locations and less to the number of chargers included. Because of this
the objective will be to minimize the number of new locations that will be selected. It
is assumed that a new location is being set up even if there are some existing charging
facilities at the same area.

In formulating this model is it important to define the used parameters:

– Let N be the number of locations in the city. In relation let us define the set V =
{1..N} as the set of all locations.

– It is assumed that the distance between any two locations i and j is known. Let us
define a real parameters di j for each pair i, j ∈ V equal to the distance between the
locations i and j. Note that the distance between location i to itself will be equal to
zero.

– Let us define a parameter cv for each v ∈ V corresponding to the potential additional
charging capacity of location v
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– Let us define the parameter ev for each v ∈ V corresponding to the existing capacity
of location v

– Let us define the parameter pv for each v ∈ V corresponding to the population of
location v.

– Let W be the maximal distance a driver is willing to compute to the EV charging
stations.

– Let α be the number of chargers needed per a 10 000 population.

Next, let us define the set of decision variables needed to fully specify the model.

– Let xi be defined as a binary decision variable for each location i ∈ V . It has a value
of 1 if at least one new charging stations will be set at location i and 0 otherwise.

– For each two locations i, j ∈ V , a real variables ri j is defined. ri j holds the informa-
tion on how much of the population of location j is using the chargers at location
i.

It is assumed that if a new charging facility is installed at location i that its total
additional capacity can be used by EV drivers. The objective is to minimize the number
of used locations for installing the additional chargers as follows:

minimize
∑

v∈V
xv (1)

Let us define the constraints that these variables need to satisfy in the following way.

∑

j∈V
rv j ≤ xicv + ev v ∈ V (2)

∑

i,v∈V
riv = αpv v ∈ V (3)

ri j = 0 i, j ∈ V ∧ di j > W (4)

0 ≤ ri j ≤ ci + ei i, j ∈ V (5)

xi ∈ {0, 1} i, j ∈ V (6)

ri j ∈ R i, j ∈ V (7)

The constraint given in (2) states that the maximal charge that can be provided from
location v is less or equal to the sum of existing capacity and additional capacity. The
constraints given in (3) guaranties that all the charging demand of a location is covered.
Note that all the charging demand of a location is satisfied if it has α chargers per 10,000
population. The constraints given in Eq. (4) state that a location j can use chargers from
location i only if the distance is less than a specified maximal distance.

The MIP with the objective (1) using constraints (2)–(6) provides us with the min-
imal number of locations needed to satisfy a specific number of chargers per 10 000
population. The MIP indirectly provides the additional capacity of location v ∈ V and is
equal to

∑
j∈V rv j. More precisely, the capacity needed at location v is equal to number

of chargers used by other locations in the city. Note that this sum is a real value and can
be rounded up to the nearest integer value.
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As previously stated, the majority of costs is related to the setup of new charging
locations and significantly less to the number of chargers used at such a location. The
setup of the new charging infrastructure is in essence a dual objective problem. Whilst
the first one is related to the minimizing the cost, the second one is related to satisfaction
of EV drivers. In case of the later, a good measure is to minimize the average distance
the EV drivers need to reach the station. In practice, our goal is to find the optimal
capacities for each new charging location. This can be done in two steps. The first one
is finding the minimal number L of new locations using the previously presented model.
Secondly, finding the capacities of the L locations. This can be achieved by a new model
having the following objective function

minimize
∑

i, j∈V
ri jdi j (8)

Equation (9) states that the objective is to minimize the sum of distances traveled by the
EV drivers. The constraints of the new MIP use the Eq. (2)–(6) but with an additional
constraint that fixes the number of new stations as follows.

∑

i∈V
xi = L (9)

3 Use of Real World Data

The main goal of this work is to evaluate the expansion of existing EV charging net-
works in metropolitan areas, because of this, special attention is given to generating
instance based on real word data. In this section an overview of the used information
and how it is converted to parameters of the model are given.

In generating instances for the model, the following real world data has been used.

– Population density is essential for specifying the population of each of the locations
in the model.

– Latitude and longitude data on existing charging infrastructure is used so that the
model can build upon this.

– Data on transformer substations provide the information on the potential new loca-
tions for EV charging stations. This property has been selected since it is possible to
add large energy consumers, like an EV charging stations, close to them without a
high increase in capital expenditure (CAPEX)

The first step in converting this type of data to an instance is defining what is con-
sidered a location within the model. In the conducted work, a grid approach is used in
the following way. The area corresponding to the city of interest is divided into a grid
(rectangular subsections of the city) and each location resembles to a cell in the grid.
The next step is specifying the methods for calculating the parameters in the model.
The distance between locations i and j is equal to the distance between cell centers cal-
culated using their latitudes and longitudes based on the Haversine formula [29]. The
used measure unit for distances is kilometer.

The value of the population parameter pv, for location v, is calculated based on the
population density. To be exact, the used population density data provides the density
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for the region of a specific cell (location) and based on its area the corresponding total
population can be trivially calculated. The parameter for the existing capacity ev, for a
location v, is calculated based on the locations of existing charging stations. It is equal
to the total number of charging stations with a location that is inside the region of the
corresponding cell.

The parameter cv corresponding to the potential additional charging capacity has
been calculated using the locations of transformer substations. New charging stations
can be added in areas that are less than a specific maximal distance to transformer
substations. To be more precise, if the distance from a charging cell is less than a value l
it can provide an additional capacity of 1 to that cell. In the proposed instance generation
method the value cv of location v is be equal to the sum of all the additional charging
capacity of all substations based on distance of the substation to the corresponding cell
and the l value.

4 Case Studies

In this section the proposed model and the method for integrating real world data are
used to evaluate the growth of EV charging infrastructure. This has been done through
two case studies for Doha, Qatar and San Francisco, USA. Firstly, the specifics for
data collection for these two cities are presented. Next, an analysis of the results of the
conducted computational results using this data and the proposed model are given.

4.1 Instance Generation

To represent the versatility of the model, it was important to select cities with a variety
of economic, demographic, and geographical landscapes. The cities selected were Doha
and San Francisco. These exemplified urban areas with ambitious EV targets but differ-
ing EV markets, demographic characteristics, and geographical landscapes. Doha is an
example of a very small EVMarket, it currently only hosts 9 charging stations but looks
to expand its charging network to reach targets of 10% EV penetration by 2030 [24].
Comparatively, San Francisco has a comprehensive network of 155 charging stations,
but also seeks an expansion of its charging facilities to reach 100% EVs by 2030 [11].
Moreover, whilst both cities are considered densely populated, much of Doha’s popula-
tion is concentrated in a relatively small area towards the east, whereas San Francisco’s
population is more equally dispersed throughout the city. Furthermore, whilst San Fran-
cisco is surrounded by sea and hosts several lakes and large parks, Doha has sea on one
side and has relatively little water bodies or parks in the city but large areas of desert.
Hence, by selecting urban areas with differing geographical landscapes, demographic
characteristics and EV markets, the adaptability of the model can be represented.

The real-world data for both cities (population density, pre-existing charging facili-
ties and transformer substation) used for generating instances, was gathered from freely
accessible online resources. For San Francisco pre-existing charging data was accessed
from ‘Open Charge Map’ [5], transformer substation data from ‘The Homeland Infras-
tructure Foundation’ [2], and population data from ‘WorldMap’ [1]. For Doha, pre-
existing charging information was extracted from online news articles and from a case
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Fig. 1. Illustration of the conversion of population density to values of parameters within the
model for Doha and San Francisco. The input data is on the left and the values of parameters
corresponding to the population at a location (pv) are on the right.

study regarding the hindrances of EV adoption in Qatar [16]. Moreover, transformer
substation data was collected from ‘Overpass Turbo’ [4] and population data from
‘WorldMap’. As sources such as ‘Overpass Turbo’ and ‘Open Charge Map’ used pub-
lic contributions as part of their information, the reliability of their data was ensured
through reviewing sites on Google Earth.

The data was extracted and reviewed, and adjustments were made to ensure it was
suitable to be collected in the grid format and read into the optimization model. The
accessible population data (density) for all the urban areas was only available online
via census block data. Illustration of it’s transformation to the model parameters can be
seen in Fig. 1. The location of each transformer substation was assigned a 1-mile buffer
zone (Fig. 2) to indicate the reach of its capacity, as recommended by [8]. Hence, any
new charging station had to be located within a buffer zone of a Transformer Substation.
The pre-existing charging data did not require any adjustments and so could be directly
read into the grid data collection format (Fig. 3).
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Fig. 2. Illustration of the conversion of transformer substation location data to values of param-
eters within the model for Doha and San Francisco. Red circles are used to indicate the 1-mile
buffer zone for a substations. The input data is on the left and the values of parameters corre-
sponding to the potential additional capacity that can be installed at a location (cv) are on the
right.

4.2 Computational Experiments

In this section the results of the conducted computational experiments are presented.
The main objective was to analyze the expansion of the charging infrastructure based
on the proposed model and real world data.

In the case studies for Doha and San Francisco, the selected maximal distance that
a driver is willing to travel to a charging station (W) has 10 km. This value has been
chosen to be an improvement to the current distance of EV drivers to the charging
stations. For example is San Francisco, an EV drivers has a charging station with-in
16 km from his home [3].

In case of Doha and San Francisco there was a total of 127 and 213 potential loca-
tions (grid cells), respectively. The evaluation was done for several values of the number
of chargers per 10 000 population (α). The selected lower bound was equal to the value
of αl for the current infrastructure, simply as the number of chargers divided by the total
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Fig. 3. Illustration of the conversion of existing charging stations positions to values of parameters
within the model for Doha and San Francisco. The green circles indicate the locations of the
stations. The input data is on the left and the values of parameters corresponding to the existing
capacity at a location (ev) are on the right. (Color figure online)

population scaled by 10 000. The upper bound αu was calculated in the same way using
the sum of existing number of chargers and the maximal number of potential additional
ones. It should be noted that due to the constraints related to parameter W, in practice
these values could not be reached. The tests have been done for a 10 intermediate values
αi calculated as follows:

αi = αl + i
αu − αl
10

(10)

The propose MILP has been implemented using OPL in IBM ILOG CPLEX Opti-
mization Studio Version: 12.6.1.0, and executed using the default solver settings. A
single problem instance could be solved to optimality within less than five seconds.
The main results of the case studies for Doha and San Francisco are summarized in
Figures 4 and 5, respectively. In addition in Table 1, the growth in the number of new
charging locations that are needed to achieve different levels of charger availability,
corresponding to values of αi, are given.
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Fig. 4. Illustration of the expansion of charging infrastructure for Doha from current state to high
levels of adoption. The numbers indicate the amount of charging capacity that is inside a location
(cell in the grid) in the city.

In the case of Doha, where the EV charging infrastructure is at a very early stage,
the initial stations have been deployed as test beds. Therefore, they are not positioned
at the most densely populated areas of the city. The model indicates that the expansion
of the infrastructure should be done initially at the most densely populated areas. In
addition it can be observed that it is advantages to have the earlier stages of expansion
focused in areas that can provide a high level of new charging capacity. It should be
noted that for most areas the initial amount of charging provided would be equal to the
maximal potential capacity.

This type of behavior is less noticeable in case of San Francisco, were an extensive
EV charging network already exists. In this case, it is common that the charging capac-
ity of an area would be expanded at later stages. The additional capacity is generally
added mostly in densely populated areas. In case of both cities, in later stages of infras-
tructure development the network becomes more evenly distributed over the areas were
installation is possible. It can also be observed that even at later stages of infrastructure
expansion some areas do not have near by charging stations. One reason for this is that
the objective in the model is minimal average distance from a charging station. Some
of the disadvantages of this is that a small number of EV drivers will need to travel
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Fig. 5. Illustration of the expansion of charging infrastructure for San Francisco from current state
to high levels of adoption. The numbers indicate the amount of charging capacity that is inside a
location (cell in the grid) in the city.

Table 1. Number of new locations need to achieve different levels of chargers per 10 000 popu-
lation for the cities of Doha and San Francisco.

Doha

Chargers
per 10
000 (α)

0.024 0.102 0.126 0.176 0.227 0.278 0.329 0.380 0.430 0.481 0.532

Num.
new
locations

0 4 9 14 21 27 34 41 52 65 78

San Francisco

Chargers
per 10
000 (α)

1.688 1.846 2.005 2.164 2.323 2.481 2.640 2.799 2.958 3.116 3.275

Num.
new
locations

0 7 15 25 37 49 61 81 104 128 151
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further and there is a potential that the high density of charging stations in some areas
will result in potential traffic congestion.

5 Conclusion

In this paper, a new approach has been presented for analyzing the expansion of EV
charging infrastructure. The method uses information related to existing charging and
electrical distribution infrastructure in combination with population density. The pro-
posed method is based on a mixed integer linear program. One of the main objectives
of the conducted research was to develop a method that can be used for real world
application, consequently a large amount of effort has been dedicated to data collec-
tion. The analysis has been done through two case studies for the cities of Doha and
San Francisco. It should be noted, that the data sources used for this have information
for a wide range of other cities and the presented approach can easily be applied to
them. The proposed MIP can be used to solve this problem for real world cities for a
low computational cost. The two case studies indicate that by optimizing each stage of
the infrastructure growth can results in a non-optimal final solution.

In the future we plan to extend this model to include additional parameters for the
selection of charging stations like land area costs, points of interest, traffic and similar.
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