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Abstract. This paper investigates the usage of generating functions
(GFs) encoding measures over the program variables for reasoning about
discrete probabilistic programs. To that end, we define a denotational
GF-transformer semantics for probabilistic while-programs, and show
that it instantiates Kozen’s seminal distribution transformer semantics.
We then study the effective usage of GFs for program analysis. We show
that finitely expressible GFs enable checking super-invariants by means
of computer algebra tools, and that they can be used to determine ter-
mination probabilities. The paper concludes by characterizing a class
of—possibly infinite-state—programs whose semantics is a rational GF
encoding a discrete phase-type distribution.

Keywords: Probabilistic programs · Quantitative verification ·
Semantics · Formal power series

1 Introduction

Probabilistic programs are sequential programs for which coin flipping is a first-
class citizen. They are used e.g. to represent randomized algorithms, probabilistic
graphical models such as Bayesian networks, cognitive models, or security pro-
tocols. Although probabilistic programs are typically rather small, their analysis
is intricate. For instance, approximating expected values of program variables at
program termination is as hard as the universal halting problem [22]. Determin-
ing higher moments such as variances is even harder. Deductive program verifica-
tion techniques based on a quantitative version of weakest preconditions [20,25]
enable to reason about the outcomes of probabilistic programs, such as what is
the probability that a program variable equals a certain value. Dedicated anal-
ysis techniques have been developed to e.g., determine tail bounds [5], decide
almost-sure termination [7,26], or to compare programs [1].
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This paper aims at exploiting the well-tried potential of probability generating
functions (PGFs) [19] for analyzing probabilistic programs. In our setting, PGFs
are power series representations encoding discrete probability mass functions of
joint distributions over program variables. PGF representations — in particular
if finite—enable a simple extraction of important information from the encoded
distributions such as expected values, higher moments, termination probabilities
or stochastic independence of program variables.

To enable the usage of PGFs for program analysis, we define a denota-
tional semantics of a simple probabilistic while-language akin to probabilistic
GCL [25]. Our semantics is defined in a forward manner: given an input distri-
bution over program variables as a PGF, it yields a PGF representing the result-
ing subdistribution. The “missing” probability mass represents the probability
of non-termination. More accurately, our denotational semantics transforms for-
mal power series (FPS). Those form a richer class than PGFs, which allows for
overapproximations of probability distributions. The meaning of while-loops are
given as least fixed points of FPS transformers. It is shown that our semantics
is in fact an instantiation of Kozen’s seminal distribution-transformer seman-
tics [23].

The semantics provides a sound basis for program analysis using PGFs. Using
Park’s Lemma, we obtain a simple technique to prove whether a given FPS over-
approximates a program’s semantics i.e., whether an FPS is a so-called super-
invariant. Such upper bounds can be quite useful: for almost-surely terminating
programs, such bounds can provide exact program semantics, whereas, if the
mass of an overapproximation is strictly less than one, the program is provably
non-almost-surely terminating. This result is illustrated on a non-trivial random
walk and on examples illustrating that checking whether an FPS is a super-
invariant can be automated using computer algebra tools.

In addition, we characterize a class of—possibly infinite-state—programs
whose PGF semantics is a rational function. These homogeneous bounded pro-
grams (HB programs) are characterized by loops in which each unbounded vari-
able has no effect on the loop guard and is in each loop iteration incremented
by a quantity independent of its own value. Operationally speaking, HB pro-
grams can be considered as finite-state Markov chains with rewards that can
grow unboundedly large. It is shown that the rational PGF of any program
that is equivalent to an almost-surely terminating HB program represents a
multi-variate discrete phase-type distribution [29]. We illustrate this result by
obtaining a closed-form characterization for the well-studied infinite-state duel-
ing cowboys example [25,32].

Related Work. This paper presents a denotational semantics of probabilistic pro-
grams using PGFs and shows how the PGF representation can be exploited for pro-
gram analysis. Our PGF semantics is defined in a forward manner: starting from
an initial distribution on inputs, it determines the exact probability distribution
over the program variables on termination. This fits within the realm of Kozen’s
denotational semantics [23]. Di Pierro and Wiklicky [10] provided a forward, deno-
tational semantics of a similar programming language using infinite-dimensional
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Hilbert spaces to provide a basis for program analysis by means of probabilistic
abstract interpretation. Other semantics include backward denotational seman-
tics using weakest preconditions [25] and operational semantics, e.g., using Markov
chains [13].

Whereas advanced simulation techniques are the primary analysis technique
for modern probabilistic programming languages, our approach using PGFs is
exact. Our PGF approach is a forward approach and yields full probability dis-
tributions for a given program input. This is similar in spirit as in EfProb [8],
a calculus based on a categorical semantics to reason about loop-free programs
with discrete, continuous and quantum probability. Wp-reasoning [25] is an alter-
native analysis technique to prove properties of probabilistic programs. It deter-
mines the weakest pre-expectation function—the quantitative analogue of pre-
conditions in classical program verification—in a backward manner for a given
post-expectation, the property to be proven. Related program analysis tech-
niques include the usage of couplings to prove program equivalence [1], abstract
interpretation [9] and Hoare logics [15].

To the best of our knowledge, PGFs have recent scant attention in the anal-
ysis of probabilistic programs. A notable exception is [4] in which generating
functions of finite Markov chains are obtained by Padé approximation. Com-
puter algebra systems have been used to transform probabilistic programs [6],
and more recently in the automated generation of moment-based loop invari-
ants [2].

Organization of this Paper. After recapping FPSs and PGFs in Sects. 2–3, we
define our FPS transformer semantics in Sect. 4, discuss some elementary prop-
erties and show it instantiates Kozen’s distribution transformer semantics [23].
Section 5 presents our approach for verifying upper bounds to loop invariants
and illustrates this by various non-trivial examples. In addition, it characterizes
programs that are representable as finite-state Markov chains equipped with
rewards and presents the relation to discrete phase-type distributions. Section 6
concludes the paper. The full paper can be found on ArXiv.1

2 Formal Power Series

Our goal is to make the potential of probability generating functions available
to the formal verification of probabilistic programs. The programs we consider
will, without loss of generality, operate on a fixed set of k program variables.
The valuations of those variables range over N. A program state σ is hence a
vector in N

k. We denote the state (0, . . . , 0) by 0.
A prerequisite for understanding probability generating functions are (multi-

variate) formal power series—a special way of representing a potentially infinite
k-dimensional array. For k=1, this amounts to representing a sequence.

1 https://arxiv.org/abs/2007.06327.

https://arxiv.org/abs/2007.06327


234 L. Klinkenberg et al.

Definition 1 (Formal Power Series). Let X = X1, . . . , Xk be a fixed
sequence of k distinct formal indeterminates. For a state σ = (σ1, . . . , σk) ∈ N

k,
let Xσ abbreviate the formal multiplication Xσ1

1 · · ·Xσk

k . The latter object is called
a monomial and we denote the set of all monomials over X by Mon (X). A (mul-
tivariate) formal power series (FPS) is a formal sum

F =
∑

σ∈Nk

[σ]F · Xσ , where [ · ]F : N
k → R

∞
≥0 ,

where R
∞
≥0 denotes the extended positive real line. We denote the set of all FPSs

by FPS. Let F,G ∈ FPS. If [σ]F < ∞ for all σ ∈ N
k, we denote this fact by

F � ∞. The addition F + G and scaling r · F by a scalar r ∈ R
∞
≥0 is defined

coefficient-wise by

F + G =
∑

σ∈Nk

(
[σ]F + [σ]G

) · Xσ and r · F =
∑

σ∈Nk

r · [σ]F · Xσ .

For states σ = (σ1, . . . , σk) and τ = (τ1, . . . , τk), we define σ + τ = (σ1 +
τ1, . . . , σk + τk). The multiplication F · G is given as their Cauchy product (or
discrete convolution)

F · G =
∑

σ,τ∈Nk

[σ]F · [τ ]G · Xσ+τ .

Drawing coefficients from the extended reals enables us to define a complete
lattice on FPSs in Sect. 4. Our analyses in Sect. 5 will, however, only consider
FPSs with F � ∞.

3 Generating Functions

A generating function is a device somewhat similar to a bag. Instead of
carrying many little objects detachedly, which could be embarrassing, we
put them all in a bag, and then we have only one object to carry, the bag.

— George Pólya [31]

Formal power series pose merely a particular way of encoding an infinite k-
dimensional array as yet another infinitary object, but we still carry all objects
forming the array (the coefficients of the FPS) detachedly and there seems to
be no advantage in this particular encoding. It even seems more bulky. We will
now, however, see that this bulky encoding can be turned into a one-object bag
carrying all our objects: the generating function.

Definition 2 (Generating Functions). The generating function of a formal
power series F =

∑
σ∈Nk [σ]F · Xσ ∈ FPS with F � ∞ is the partial function

f : [0, 1]k ��� R≥0, (x1, . . . , xk) �→
∑

σ=(σ1,...,σk)∈N
k

[σ]F · xσ1
1 · · · xσk

k .
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In other words: in order to turn an FPS into its generating function, we merely
treat every formal indeterminate Xi as an “actual” indeterminate xi, and the
formal multiplications and the formal sum also as “actual” ones. The generating
function f of F is uniquely determined by F as we require all coefficients of
F to be non-negative, and so the ordering of the summands is irrelevant: For
a given point x ∈ [0, 1]k, the sum defining f(x) either converges absolutely to
some positive real or diverges absolutely to ∞. In the latter case, f is undefined
at x and hence f may indeed be partial.

Since generating functions stem from formal power series, they are infinitely
often differentiable at 0 = (0, . . . , 0). Because of that, we can recover F from f
as the (multivariate) Taylor expansion of f at 0.

Definition 3 (Multivariate Derivatives and Taylor Expansions). For
σ = (σ1, . . . , σk) ∈ N

k, we write f (σ) for the function f differentiated σ1 times
in x1, σ2 times in x2, and so on. If f is infinitely often differentiable at 0, then
the Taylor expansion of f at 0 is given by

∑

σ∈Nk

f (σ) (0 )
σ1! · · · σk!

· xσ1
1 · · · xσk

k .

If we replace every indeterminate xi by the formal indeterminate Xi in the
Taylor expansion of generating function f of F , then we obtain the formal power
series F . It is in precisely that sense, that f generates F .

Example 1 (Formal Power Series and Generating Functions). Consider the infi-
nite (1-dimensional) sequence 1/2, 1/4, 1/8, 1/16, . . .. Its (univariate) FPS—the
entity carrying all coefficients detachedly—is given as

1
2

+
1
4
X +

1
8
X2 +

1
16

X3 +
1
32

X4 +
1
64

X5 +
1

128
X6 +

1
256

X7 + . . . . (†)

On the other hand, its generating function—the bag—is given concisely by

1
2 − x

. (�)

Figuratively speaking, (†) is itself the infinite sequence an := 1
2n , whereas (�) is

a bag with the label “infinite sequence an := 1
2n ”. The fact that (†) generates

(�), follows from the Taylor expansion of 1
2−x at 0 being 1

2 + 1
4x + 1

8x2 + . . .. �
The potential of generating functions is that manipulations to the functions—

i.e. to the concise representations—are in a one-to-one correspondence to the
associated manipulations to FPSs [12]. For instance, if f(x) is the generating
function of F encoding the sequence a1, a2, a3, . . ., then the function f(x) · x is
the generating function of F · X which encodes the sequence 0, a1, a2, a3, . . .

As another example for correspondence between operations on FPSs and
generating functions, if f(x) and g(x) are the generating functions of F and G,
respectively, then f(x) + g(x) is the generating function of F + G.
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Example 2 (Manipulating Generating Functions). Revisiting Example 1, if we
multiply 1

2−x by x, we change the label on our bag from “infinite sequence
an := 1

2n ” to “a 0 followed by an infinite sequence an+1 := 1
2n ” and—just by

changing the label—the bag will now contain what it says on its label. Indeed,
the Taylor expansion of x

2−x at 0 is 0 + 1
2x + 1

4x2 + 1
8x3 + 1

16x4 + . . . encoding
the sequence 0, 1/2, 1/4, 1/8, 1/16, . . . �
Due to the close correspondence of FPSs and generating functions [12], we use
both concepts interchangeably, as is common in most mathematical literature.
We mostly use FPSs for definitions and semantics, and generating functions in
calculations and examples.

Probability Generating Functions. We now use formal power series to rep-
resent probability distributions.

Definition 4 (Probability Subdistribution). A probability subdistribution
(or simply subdistribution) over N

k is a function

μ : N
k → [0, 1], such that |μ| =

∑

σ∈Nk

μ(σ) ≤ 1 .

We call |μ| the mass of μ. We say that μ is a (full) distribution if |μ| = 1,
and a proper subdistribution if |μ| < 1. The set of all subdistributions on N

k is
denoted by D≤(Nk) and the set of all full distributions by D(Nk).

We need subdistributions for capturing non-termination. The “missing” prob-
ability mass 1 − |μ| precisely models the probability of non-termination.

The generating function of a (sub-)distribution is called a probability gen-
erating function. Many properties of a distribution μ can be read off from its
generating function Gμ in a simple way. We demonstrate how to extract a few
common properties in the following example.

Example 3 (Geometric Distribution PGF). Recall Example 1. The presented for-
mal power series encodes a geometric distribution μgeo with parameter 1/2 of a
single variable X. The fact that μgeo is a proper probability distribution, for
instance, can easily be verified computing Ggeo(1) = 1

2−1 = 1. The expected
value of X is given by G′

geo(1) = 1
(2−1)2 = 1. �

Extracting Common Properties. Important information about probability
distributions is, for instance, the first and higher moments. In general, the kth

factorial moment of variable Xi can be extracted from a PGF by computing
∂kG
∂Xk

i

(1, . . . , 1).2 This includes the mass |G| as the 0th moment. The marginal dis-
tribution of variable Xi can simply be extracted from G by G(1, . . . , Xi, . . . , 1).
We also note that PGFs can treat stochastic independence. For instance, for a
bivariate PGF H we can check for stochastic independence of the variables X
and Y by checking whether H(X,Y ) = H(X, 1) · H(1, Y ).

2 In general, one must take the limit Xi → 1 from below.
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4 FPS Semantics for pGCL

In this section, we give denotational semantics to probabilistic programs in terms
of FPS transformers and establish some elementary properties useful for program
analysis. We begin by endowing FPSs and PGFs with an order structure:

Definition 5 (Order on FPS). For all F,G ∈ FPS, let

F 	 G iff ∀σ ∈ N
k : [σ]G ≤ [σ]F .

Lemma 1 (Completeness of 	 on FPS). (FPS, 	) is a complete latttice.

4.1 FPS Transformer Semantics

Recall that we assume programs to range over exactly k variables with valuations
in N

k. Our program syntax is similar to Kozen [23] and McIver & Morgan [25].

Definition 6 (Syntax of pGCL [23,25]). A program P in probabilistic Guarded
Command Language ( pGCL) adheres to the grammar

P ::= skip
∣∣ xi := E

∣∣ P ;P
∣∣ {P} [p] {P}

∣∣ if(B) {P} else {P} ∣∣ while (B) {P} ,

where xi ∈ {x1, . . . , xk} is a program variable, E is an arithmetic expression over
program variables, p ∈ [0, 1] is a probability, and B is a predicate (called guard)
over program variables.

The FPS semantics of pGCL will be defined in a forward denotational style,
where the program variables x1, . . . , xk correspond to the formal indeterminates
X1, . . . , Xk of FPSs.

For handling assignments, if-conditionals and while-loops, we need some
auxiliary functions on FPSs: For an arithmetic expression E over program vari-
ables, we denote by evalσ(E) the evaluation of E in program state σ. For a
predicate B ⊆ N

k and FPS F , we define the restriction of F to B by

〈F 〉B :=
∑

σ∈B

[σ]F · Xσ ,

i.e. 〈F 〉B is the FPS obtained from F by setting all coefficients [σ]F where σ �∈ B
to 0. Using these prerequisites, our FPS transformer semantics is given as follows:

Definition 7 (FPS Semantics of pGCL). The semantics [[P ]] : FPS → FPS of
a loop-free pGCL program P is given according to the upper part of Table 1.

The unfolding operator ΦB,P for the loop while (B) {P} is defined by

ΦB,P : (FPS → FPS) → (FPS → FPS), ψ �→ λF . 〈F 〉¬B + ψ
(
[[P ]]

(〈F 〉B

))
.

The partial order (FPS, 	) extends to a partial order
(
FPS → FPS, �)

on FPS
transformers by a point-wise lifting of 	. The least element of this partial order is
the transformer 0 = λF . 0 mapping any FPS F to the zero series. The semantics
of while (B) {P} is then given by the least fixed point (with respect to �) of its
unfolding operator, i.e. [[while (B) {P}]] = lfp ΦB,P .
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Table 1. FPS transformer semantics of pGCL programs.

P [[P ]](F )

skip F

xi := E
∑

σ∈Nk μσXσ1
1 · · · Xevalσ(E)

i · · · Xσk
k

{P1} [p] {P2} p · [[P1]](F ) + (1 − p) · [[P2]](F )

if (B) {P1} else {P2} [[P1]]
(〈F 〉B

)
+ [[P2]]

(〈F 〉¬B

)

P1� P2 [[P2]]
(
[[P1]](F )

)

while(B){P} (
lfp ΦB,P

)
(F ) , for

ΦB,P (ψ) = λF . 〈F 〉¬B + ψ
(
[[P ]]

(〈F 〉B

))

Example 4. Consider the program P = {x := 0} [1/2] {x := 1}� c := c + 1 and
the input PGF G = 1, which denotes a point mass on state σ = 0. Using the
annotation style shown in the right margin, denoting that [[P ′]] (G) = G′, we
calculate [[P ]] (G) as follows:

�� G

P ′

�� G′

�� 1
{x := 0} [1/2] {x := 1}�

��
1
2 + X

2

c := c + 1
��

C
2 + CX

2

As for the semantics of c := c + 1, see Table 2. �
Before we study how our FPS transformers behave on PGFs in particular, we
now first argue that our FPS semantics is well-defined. While evident for loop-
free programs, we appeal to the Kleene Fixed Point Theorem for loops [24],
which requires ω-continuous functions.

Theorem 1 (ω-continuity of pGCLSemantics). The semantic functional [[ · ]]
is ω-continuous, i.e. for all programs P ∈ pGCL and all increasing ω-chains
F1 	 F2 	 . . . in FPS,

[[P ]]
(

sup
n∈N

Fn

)
= sup

n∈N

[[P ]] (Fn) .
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Theorem 2 (Well-definedness of FPS Semantics). The semantics func-
tional [[ · ]] is well-defined, i.e. the semantics of any loop while (B) {P} exists
uniquely and can be written as

[[while (B) {P}]] = lfp ΦB,P = sup
n∈N

Φn
B,P (0) .

Table 2. Common assignments and their effects on the input PGF F (X, Y ).

P [[P ]](F )

x := x + k Xk · F (X, Y )

x := k · x F (Xk, Y )

x := x + y F (X, XY )

4.2 Healthiness Conditions of FPS Transformers

In this section we show basic, yet important, properties which follow from [23].
For instance, for any input FPS F , the semantics of a program cannot yield as
output an FPS with a mass larger than |F |, i.e. programs cannot create mass.

Theorem 3 (Mass Conservation). For every P ∈ pGCL and F ∈ FPS, we
have

∣∣[[P ]](F )
∣∣ ≤ |F |.

A program P is called mass conserving if |[[P ]](F )| = |F | for all F ∈ FPS. Mass
conservation has important implications for FPS transformers acting on PGFs:
given as input a PGF, the semantics of a program yields a PGF.

Corollary 1 (PGF Transformers). For every P ∈ pGCL and G ∈ PGF, we
have [[P ]] (G) ∈ PGF.

Restricted to PGF, our semantics hence acts as a subdistribution transformer.
Output masses may be smaller than input masses. The probability of non-
termination of the programs is captured by the “missing” probability mass.

As observed in [23], semantics of probabilistic programs are fully defined by
their effects on point masses, thus rendering probabilistic program semantics
linear. In our setting, this generalizes to linearity of our FPS transformers.

Definition 8 (Linearity). Let F,G ∈ FPS and r ∈ R
∞
≥0 be a scalar. The func-

tion ψ : FPS → FPS is called a linear transformer (or simply linear), if

ψ(r · F + G) = r · ψ(F ) + ψ(G) .

Theorem 4 (Linearity of pGCL Semantics). For every program P and
guard B, the functions 〈 · 〉B and [[P ]] are linear. Moreover, the unfolding operator
ΦB,P maps linear transformers onto linear transformers.

As a final remark, we can unroll while loops:

Lemma 2 (Loop Unrolling). For any FPS F ,

[[while (B) {P}]] (F ) = 〈F 〉¬B + [[while (B) {P}]]
(
[[P ]]

( 〈F 〉B

))
.
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4.3 Embedding into Kozen’s Semantics Framework

Kozen [23] defines a generic way of giving distribution transformer semantics
based on an abstract measurable space (Xn,M (n)). Our FPS semantics instanti-
ates his generic semantics. The state space we consider is Nk, so that (Nk,P(Nk))
is our measurable space.3 A measure on that space is a countably-additive func-
tion μ : P(Nk) → [0,∞] with μ(∅) = 0. We denote the set of all measures on our
space by M. Although, we represent measures by FPSs, the two notions are in
bijective correspondence τ : FPS → M, given by

τ(F ) = λS.
∑

σ∈S

[σ]F .

This map preserves the linear structure and the order 	.
Kozen’s syntax [23] is slightly different from pGCL. We compensate for this by

a translation function T, which maps pGCL programs to Kozen’s. The following
theorem shows that our semantics agrees with Kozen’s semantics.4

Theorem 5. The FPS semantics of pGCL is an instance of Kozen’s semantics,
i.e. for all pGCL programs P , we have

τ ◦ [[P ]] = T(P ) ◦ τ .

Equivalently, the following diagram commutes:

FPS M

FPS M

[[P ]]

τ

T(P )

τ

For more details about the connection between FPSs and measures, as well as
more information about the actual translation, see Appendix A.3.

5 Analysis of Probabilistic Programs

Our PGF semantics enables the representation of the effect of a pGCL program on
a given PGF. As a next step, we investigate to what extent a program analysis
can exploit such PGF representations. To that end, we consider the overap-
proximation with loop invariants (Sect. 5.1) and provide examples showing that
checking whether an FPS transformer overapproximates a loop can be checked
with computer algebra tools. In addition, we determine a subclass of pGCL pro-
grams whose effect on an arbitrary input state is ensured to be a rational PGF
encoding a phase-type distribution (Sect. 5.2).
3 We note that we want each point σ to be measurable, which enforces a discrete

measurable space.
4 Note that Kozen regards a program P itself as a function P : M → M.
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5.1 Invariant-Style Overapproximation of Loops

In this section, we seek to overapproximate loop semantics, i.e. for a given loop
W = while (B) {P}, we want to find a (preferably simple) FPS transformer ψ,
such that [[W ]] � ψ, meaning that for any input G, we have [[W ]] (G) 	 ψ(G)
(cf. Definition 7). Notably, even if G is a PGF, we do not require ψ(G) to be
one. Instead, ψ(G) can have a mass larger than one. This is fine, because it still
overapproximates the actual semantics coefficient-wise. Such overapproximations
immediately carry over to reading off expected values (cf. Sect. 3), for instance

∂
∂X [[W ]] (G) (1) ≤ ∂

∂X ψ(G)(1) .

We use invariant-style reasoning for verifying that a given ψ overapproximates
the semantics of [[W ]]. For that, we introduce the notion of a superinvariant
and employ Park’s Lemma [30]—well-known in fixed point theory—to obtain a
conceptually simple proof rule for verifying overapproximations of while loops.

Theorem 6 (Superinvariants and Loop Overapproximations). Let ΦB,P

be the unfolding operator of while(B){P} (cf. Def. 7) and ψ : FPS → FPS. Then

ΦB,P (ψ) � ψ implies [[while (B) {P}]] � ψ .

We call a ψ satisfying ΦB,P (ψ) � ψ a superinvariant. We are interested in linear
superinvariants, as our semantics is also linear (cf. Theorem 4). Furthermore,
linearity allows to define ψ solely in terms of its effect on monomials, which
makes reasoning considerably simpler:

Corollary 2. Given f : Mon (X) → FPS, let the linear extension f̂ of f be

f̂ : FPS → FPS, F �→
∑

σ∈Nk

[σ]F f(Xσ) .

Let ΦB,P be the unfolding operator of while (B) {P}. Then

∀σ ∈ N
k : ΦB,P (f̂)(Xσ) � f̂(Xσ) implies [[while (B) {P}]] � f̂ .

We call an f satisfying the premise of the above corollary a superinvariant-
let. Notice that superinvariantlets and their extensions agree on monomials, i.e.
f(Xσ) = f̂(Xσ). Let us examine a few examples for superinvariantlet-reasoning.

Example 5 (Verifying Precise Semantics). In Program 1.1, in each iteration, a
fair coin flip determines the value of x. Subsequently, c is incremented by 1.
Consider the following superinvariantlet:

f(XiCj) = Cj ·
{

C
2−C , if i = 1;
Xi, if i �= 1.
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while (x = 1){
{x := 0} [ 1/2 ] {x := 1}�

c := c + 1

}
Program 1.1. Geometric distribution generator.

To verify that f is indeed a superinvariantlet, we have to show that

ΦB,P (f̂)(XiCj) =
〈
XiCj

〉
x�=1

+ f̂
(
[[P ]]

( 〈
XiCj

〉
x=1

))

!� f̂
(
XiCj

)
.

For i �= 1, we get

ΦB,P (f̂)(XiCj) =
〈
XiCj

〉
x�=1

+ f̂([[P ]] (0))

= XiCj = f(XiCj) = f̂(XiCj) .

For i = 1, we get

ΦB,P (f̂)(X1Cj) = f̂
(
1
2X0Cj+1 + 1

2X1Cj+1
)

= 1
2f

(
X0Cj+1

)
+ 1

2f
(
X1Cj+1

)
(by linearity of f̂)

= Cj+1

2−C = f
(
X1Cj

)
= f̂

(
X1Cj

)
. (by definition of f)

Hence, Corollary 2 yields [[W ]](X) � f (X) = C
2−C .

For this example, we can state even more. As the program is almost surely
terminating, and

∣∣f(XiCj)
∣∣ = 1 for all (i, j) ∈ N

2, we conclude that f̂ is exactly
the semantics of W , i.e. f̂ = [[W ]]. �

while (x > 0){
{x := x + 1} [ 1/2 ] {x := x - 1}�

c := c + 1

}
Program 1.2. Left-bounded 1-dimensional random walk.

Example 6 (Verifying Proper Overapproximations). Program 1.2 models a one
dimensional, left-bounded random walk. Given an input (i, j) ∈ N

2, this program
can only terminate in an even (if i is even) or odd (if i is odd) number of steps.
This insight can be encoded into the following superinvariantlet:

f(X0Cj) = Cj and

f(Xi+1Cj) = Cj ·
{

C
1−C2 , if i is odd;

1
1−C2 , if i is even.
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It is straightforward to verify that f is a proper superinvariantlet (proper because
C

1−C2 = C +C3 +C5 + . . . is not a PGF) and hence f properly overapproximates
the loop semantics. Another superinvariantlet for Program 1.2 is given by

h(XiCj) = Cj ·
⎧
⎨

⎩

(
1−√

1−C2

C

)i

, if i ≥ 1;

1, if i = 0.

Given that the program terminates almost-surely [16] and that h is a superin-
variantlet yielding only PGFs, it follows that the extension of h is exactly the
semantics of Program 1.2. An alternative derivation of this formula for the case
h(X) can be found, e.g., in [17].

For both f and h, we were able to prove that they are indeed superinvari-
antlets semi-automatically, using the computer algebra library SymPy [27]. The
code is included in Appendix B (Program 1.5). �

while (x > 0){
{x := x - 1} [ 1/x ] {x := x + 1}

}
Program 1.3. A non-almost-surely terminating loop.

Example 7 (Proving Non-almost-sure Termination). In Program 1.3, the branch-
ing probability of the choice statement depends on the value of a program vari-
able. This notation is just syntactic sugar, as this behavior can be mimicked by
loop constructs together with coin flips [3, pp. 115f].

To prove that Program 1.3 does not terminate almost-surely, we consider the
following superinvariantlet:

f(Xi) = 1 − 1
e

·
i−2∑

n=0

1
n!

, where e = 2.71828 . . . is Euler’s number.

Again, the superinvariantlet property was verified semi-automatically, by this we
mean that we have constructed functions f and Φ by hand and Mathematica [18]
confirmed that Φ(f) − f = 0. Now, consider for instance f(X3) = 1 − 1

e ·(
1
0! + 1

1!

)
= 1 − 2

e < 1. This proves, that the program terminates on X3 with
a probability strictly smaller than 1, witnessing that the program is not almost
surely terminating. Note that in general this technique cannot be used for proving
almost-sure termination. �

5.2 Rational PGFs

In several of the examples from the previous sections, we considered PGFs which
were rational functions, that is, fractions of two polynomials. Since those are a
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particularly simple class of PGFs, it is natural to ask which programs have
rational semantics. In this section, we present a semantic characterization of a
class of while-loops whose output distribution is a (multivariate) discrete phase-
type distribution [28,29]. This implies that the resulting PGF of such programs
is an effectively computable rational function for any given input state. Let us
illustrate this by an example.

while (x < 1 and t < 2){
if (t = 0){

{x := 1} [ a ] {t := 1}� c := c + 1

} else {
{x := 1} [ b ] {t := 0}� d := d + 1

}
}

Program 1.4. Dueling cowboys.

Example 8 (Dueling Cowboys). Program 1.4 models two dueling cowboys [25].
The hit chance of the first cowboy is a and the hit chance of the second cowboy
is b, where a, b ∈ [0, 1].5 The cowboys shoot at each other in turns, as indicated
by the variable t, until one of them gets hit (x is set to 1). The variable c counts
the number of shots of the first cowboy and d those of the second cowboy.

We observe that Program 1.4 is somewhat independent of the value of c. More
specifically, placing the additional statement c := c + 1 either immediately
before or after the loop yields two equivalent programs. In our notation, this is
expressed as [[W ]](C · H) = C · [[W ]](H) for all PGFs H. By symmetry, the same
applies to variable d. Unfolding the loop once on input 1, yields

[[W ]](1) = (1 − a)C · [[W ]](T ) + aCX .

A similar equation for [[W ]](T ) involving [[W ]](1) on its right-hand side holds.
This way we obtain a system of two linear equations, although the program
itself is infinite-state. The linear equation system has a unique solution [[W ]](1)
in the field of rational functions over the variables C,D, T , and X which is the
PGF

G :=
aCX + (1 − a)bCDTX

1 − (1 − b)(1 − a)CD
.

From G we can easily read off the following: The probability that the first cowboy
wins (x = 1 and t = 0) equals a

1−(1−a)(1−b) , and the expected total number of
shots of the first cowboy is ∂

∂C G(1) = 1
a+b−ab . Notice that this quantity equals

∞ if a and b are both zero, i.e. if both cowboys have zero hit chance.
If we write GV for the PGF obtained by substituting all but the variables in

V with 1, then we moreover see that GC · GD �= GC,D. This means that C and
D (as random variables) are stochastically dependent. �
5 These are not program variables.
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The distribution encoded in the PGF [[W ]](1) is a discrete phase-type distri-
bution. Such distributions are defined as follows: A Markov reward chain is a
Markov chain where each state is augmented with a reward vector in N

k. By def-
inition, a (discrete) distribution on N

k is of phase-type iff it is the distribution of
the total accumulated reward vector until absorption in a Markov reward chain
with a single absorbing state and a finite number of transient states. In fact,
Program 1.4 can be described as a Markov reward chain with two states (X0T 0

and X0T 1) and 2-dimensional reward vectors corresponding to the “counters”
(c, d): the reward in state X0T 0 is (1, 0) and (0, 1) in the other state.

Each pGCL program describes a Markov reward chain [13]. It is not clear which
(non-trivial) syntactical restrictions to impose to guarantee for such chains to be
finite. In the remainder of this section, we give a characterization of while-loops
that are equivalent to finite Markov reward chains. The idea of our criterion is
that each variable has to fall into one of the following two categories:

Definition 9 (Homogeneous and Bounded Variables). Let P ∈ pGCL be
a program, B be a guard and xi be a program variable. Then:

– xi is called homogeneous for P if [[P ]](Xi ·G) = Xi · [[P ]](G) for all G ∈ PGF.
– xi is called bounded by B if the set {σi | σ ∈ B} is finite.

Intuitively, homogeneity of xi means that it does not matter whether one incre-
ments the variable before or after the execution of P . Thus, a homogeneous
variable behaves like an increment-only counter even if this may not be explicit
in the syntax. In Example 8, the variables c and d in Program 1.4 are homoge-
neous (for both the loop-body and the loop itself). Moreover, x and t are clearly
bounded by the loop guard. We can now state our characterization.

Definition 10 (HB Loops). A loop while (B) {P} is called homogeneous-
bounded (HB) if for all program states σ ∈ B, the PGF [[P ]](Xσ) is a polynomial
and for all program variables x it either holds that

– x is homogeneous for P and the guard B is independent of x, or that
– x is bounded by the guard B.

In an HB loop, all the possible valuations of the bounded variables satisfying B
span the finite transient state space of a Markov reward chain in which the
dimension of the reward vectors equals the number of homogeneous variables.
The additional condition that [[P ]](Xσ) is a polynomial ensures that there is only
a finite amount of terminal (absorbing) states. Thus, we have the following:

Proposition 1. Let W be a while-loop. Then [[W ]](Xσ) is the (rational) PGF
of a multivariate discrete phase-type distribution if and only if W is equivalent
to an HB loop that almost-surely terminates on input σ.

To conclude, we remark that there are various simple syntactic conditions for
HB loops: For example, if P is loop-free, then [[P ]](Xσ) is always a polynomial.
Similarly, if x only appears in assignments of the form x := x + k, k ≥ 0,
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then x is homogeneous. Such updates of variables are e.g. essential in constant
probability programs [11]. The crucial point is that such conditions are only
sufficient but not necessary. Our semantic conditions thus capture the essence of
phase-type distribution semantics more adequately while still being reasonably
simple (albeit—being non-trivial semantic properties—undecidable in general).

6 Conclusion

We have presented a denotational distribution transformer semantics for prob-
abilistic while-programs where the denotations are generating functions (GFs).
The main benefit of using GFs lies in representing the entire probability distri-
bution for a given input. Moreover, we have provided a simple invariant-style
technique to prove that a given GF overapproximates the program’s semantics
and identified a class of (possibly infinite-state) programs whose semantics is a
rational GF encoding a discrete phase-type distribution. Directions for future
work include the (semi-)automated synthesis of invariants and the development
of notions on how precise overapproximations by invariants actually are. On
that end, a rule for verifying underapproximations (e.g. à la [14], which provides
inductive rules for underapproximating expected values) would be a major step
in that direction.

Another direction for future work is to support Z-valued program variables.
For expected values, work on verifying signed random variables exists [21]—for
PGFs, the situation is less clear. An obvious choice would be to employ formal
Laurent series, but those only allow for finitely many negative indices, thus
eluding distributions with both infinite positive and infinite negative support.

Acknowledgements. The authors thank the reviewers for their constructive and
helpful comments and Marcel Hark for fruitful discussions.
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