
Maribel Fernández (Ed.)
LN

CS
 1

25
61

Logic-Based
Program Synthesis
and Transformation
30th International Symposium, LOPSTR 2020
Bologna, Italy, September 7–9, 2020
Proceedings

Lecture Notes in Computer Science 12561

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Maribel Fernández (Ed.)

Logic-Based
Program Synthesis
and Transformation
30th International Symposium, LOPSTR 2020
Bologna, Italy, September 7–9, 2020
Proceedings

123

Editor
Maribel Fernández
King’s College London
London, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-68445-7 ISBN 978-3-030-68446-4 (eBook)
https://doi.org/10.1007/978-3-030-68446-4

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
Chapter “Resourceful Program Synthesis from Graded Linear Types” is licensed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For
further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-68446-4
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains a selection of the papers presented at LOPSTR 2020, the 30th
International Symposium on Logic-Based Program Synthesis and Transformation, held
7–9 September 2020.

The aim of the LOPSTR series is to stimulate and promote international research
and collaboration on logic-based program development. Topics of interest cover all
aspects of logic-based program development (including in domain-specific languages),
all stages of the software life cycle, and issues of both programming-in-the-small and
programming-in-the-large, including: synthesis; transformation; specialisation; com-
position; optimisation; specification; analysis and verification; testing and certification;
program and model manipulation; inversion; machine learning for program develop-
ment; transformational techniques in SE; applications and tools.

LOPSTR 2020 was part of the Bologna Federated Conference on Programming
Languages (together with PPDP, WFLP and Microservices), which was organised as a
virtual conference. Previous editions of LOPSTR were held in Porto, Namur, Edinburgh,
Siena, Canterbury, Madrid, Leuven, Odense, Hagenberg, Coimbra, Valencia, Lyngby,
Venice, London, Verona, Uppsala, Madrid, Paphos, London, Venice, Manchester,
Leuven, Stockholm, Arnhem, Pisa, Louvain-la-Neuve, Manchester and Frankfurt.

LOPSTR has a reputation for being a lively, friendly forum that allows the pre-
sentation and discussion of both finished work and work in progress. Formal pro-
ceedings are produced only after the event so that authors can incorporate the feedback
from the conference presentation and discussion. This year, 31 papers were submitted
from 20 different countries. Seventeen papers were selected for presentation at
LOPSTR 2020. In addition the programme included invited talks by Philipp Rümmer
(Uppsala University, Sweden), Ekaterina Komendantskaya (Heriot-Watt University,
UK), joint speaker with PPDP 2020, and José Meseguer (University of Illinois at
Urbana-Champaign, USA), BOPL keynote speaker. The Program Committee accepted
one full paper for immediate inclusion in the formal proceedings, and 14 additional
papers presented at the symposium were accepted after a revision and another round of
reviewing. Each submission was reviewed by at least 3 program committee members or
external referees. In addition to the 15 accepted papers, this volume includes two
papers contributed by invited speakers:

– Symbolic Computation in Maude: Some Tapas, by José Meseguer
– Reasoning in the Theory of Heap: Satisfiability and Interpolation, by Zafer Esen

and Philipp Rümmer

Thanks to Springer's sponsorship, two awards were available this year. After dis-
cussion within the program committee, the awards were given to the following papers:

– Resourceful Program Synthesis from Graded Linear Types, by Jack Hughes and
Dominic Orchard;

– Generating Functions for Probabilistic Programs, by Lutz Klinkenberg, Kevin Batz,
Benjamin Lucien Kaminski, Joost-Pieter Katoen, Joshua Moerman and Tobias
Winkler.

I would like to thank all those who contributed to LOPSTR 2020, particularly the
invited speakers, authors, program committee members and external reviewers. I am
very grateful to the Local Organization Committee in Bologna, chaired by Maurizio
Gabbrielli, for providing a great virtual environment for BOPL, and to the Steering
Committee, chaired by Alberto Pettorossi, for their support. It was a pleasure to work
with the program chairs of the events colocated with LOPSTR 2020 in BOPL. We are
grateful to Springer for sponsoring the LOPSTR 2020 awards and to EasyChair for
providing support to deal with the submission and reviewing process.

December 2020 Maribel Fernández

vi Preface

Organization

Steering Committee

Fabio Fioravanti D'Annunzio University of Chieti–Pescara, Italy
Maurizio Gabbrielli University of Bologna, Italy
John Gallagher Roskilde University, Denmark
Manuel Hermenegildo IMDEA, Spain
Pedro López-García IMDEA, Spain
Fred Mesnard Université de la Réunion, France
Alberto Pettorossi (Chair) Università di Roma Tor Vergata, Italy
Peter Stuckey Monash University, Australia

Local Organization Committee

Roberto Amadini University of Bologna, Italy
Davide Berardi University of Bologna, Italy
Francesca del Bonifro University of Bologna, Italy
Maurizio Gabbrielli

(General Chair)
University of Bologna, Italy

Saverio Giallorenzo
(Financial Chair)

University of Bologna, Italy

Andrea Melis University of Bologna, Italy
Stefano Pio Zingaro

(Publicity Chair)
University of Bologna, Italy

Marco Prandini (Chair) University of Bologna, Italy
Gianluigi Zavattaro University of Bologna, Italy

Programme Committee

Elvira Albert Complutense University of Madrid, Spain
Mara Alpuente Universitat Politècnica de València, Spain
Mauricio Ayala-Rincón University of Brasilia, Brazil
Clara Bertolissi Aix-Marseille University, France
Emanuele De Angelis CNR Inst. for Systems Analysis and Computer Science,

Italy
Maribel Fernández (Chair) King’s College London, UK
Mário Florido University of Porto, Portugal
Maurizio Gabbrielli University of Bologna, Italy
Robert Glück University of Copenhagen, Denmark
Gopal Gupta University of Texas at Dallas, US
Michael Hanus University of Kiel, Germany
Delia Kesner Université de Paris, France

Andy King University of Kent, UK
Temur Kutsia Johannes Kepler University of Linz, Austria
Giselle Reis Carnegie Mellon University in Qatar, Qatar
Masahito Sakai Nagoya University, Japan
René Thiemann University of Innsbruck, Austria
Alwen Tiu The Australian National University, Australia
Germán Vidal Universitat Politècnica de València, Spain

Additional Reviewers

Sandra Alves
Joaquin Arias
Pablo Barenbaum
Kinjal Basu
Aleś Bizjak
Francesca del Bonifro
Ralph Bottesch
Thomas Ehrhard
Maria João Frade
Samir Genaim
Pablo Gordillo
Max W. Haslbeck
Nao Hirokawa
Joost-Pieter Katoen

Cynthia Kop
Robbert Krebbers
Daniele Nantes-Sobrinho
Antonina Nepeivoda
Naoki Nishida
Gethin Norman
Vincent van Oostrom
Hugo Pacheco
Alberto Pettorossi
Fernando Sáenz-Pérez
Farhad Shakerin
Sarat Chandra Varanasi
Daniel Ventura

viii Organization

Contents

Rewriting

Symbolic Computation in Maude: Some Tapas . 3
José Meseguer

Runtime Complexity Analysis of Logically Constrained Rewriting 37
Sarah Winkler and Georg Moser

Confluence and Commutation for Nominal Rewriting Systems
with Atom-Variables . 56

Kentaro Kikuchi and Takahito Aoto

Pattern Eliminating Transformations . 74
Horatiu Cirstea, Pierre Lermusiaux, and Pierre-Etienne Moreau

Unification

Nominal Unification with Letrec and Environment-Variables 95
Manfred Schmidt-Schauß and Yunus Kutz

Terminating Non-disjoint Combined Unification . 113
Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen

Types

slepice: Towards a Verified Implementation of Type Theory
in Type Theory. 133

František Farka

Resourceful Program Synthesis from Graded Linear Types. 151
Jack Hughes and Dominic Orchard

Verification

Reasoning in the Theory of Heap: Satisfiability and Interpolation 173
Zafer Esen and Philipp Rümmer

Algorithm Selection for Dynamic Symbolic Execution:
A Preliminary Study . 192

Roberto Amadini, Graeme Gange, Peter Schachte, Harald Søndergaard,
and Peter J. Stuckey

Translation of Interactive Datalog Programs for Microcontrollers to Finite
State Machines . 210

Mario Wenzel and Stefan Brass

Model Checking and Probabilistic Programming

Generating Functions for Probabilistic Programs . 231
Lutz Klinkenberg, Kevin Batz, Benjamin Lucien Kaminski,
Joost-Pieter Katoen, Joshua Moerman, and Tobias Winkler

Verification of Multiplayer Stochastic Games via Abstract
Dependency Graphs . 249

Søren Enevoldsen, Mathias Claus Jensen, Kim Guldstrand Larsen,
Anders Mariegaard, and Jiří Srba

Program Analysis and Testing

Testing Your (Static Analysis) Truths . 271
Ignacio Casso, José F. Morales, P. López-García,
and Manuel V. Hermenegildo

Slicing Unconditional Jumps with Unnecessary Control Dependencies 293
Carlos Galindo, Sergio Pérez, and Josep Silva

Logics

A Formal Model for a Linear Time Correctness Condition of Proof Nets
of Multiplicative Linear Logic . 311

Satoshi Matsuoka

Synthesis of Modality Definitions and a Theorem Prover for Epistemic
Intuitionistic Logic . 329

Paul Tarau

Author Index . 345

x Contents

Rewriting

Symbolic Computation in Maude:
Some Tapas

José Meseguer(B)

Department of Computer Science, University of Illinois, Urbana-Champaign, USA
meseguer@illinois.edu

Abstract. Programming in Maude is executable mathematical model-
ing. Your mathematical model is the code you execute. Both determin-
istic systems, specified equationally as so-called functional modules and
concurrent ones, specified in rewriting logic as system modules, are math-
ematically modeled and programmed this way. But rewriting logic is also
a logical framework in which many different logics can be naturally rep-
resented. And one would like not only to execute these models, but to
reason about them at a high level. For this, symbolic methods that can
automate much of the reasoning are crucial. Many of them are actually
supported by Maude itself or by some of its tools. These methods are
very general: they apply not just to Maude, but to many other logics,
languages and tools. This paper presents some tapas about these Maude-
based symbolic methods in an informal way to make it easy for many
other people to learn about, and benefit from, them.

1 Introduction

1.1 What is Maude?

Maude is a high-performance declarative language whose modules are theories
in rewriting logic, a simple, yet expressive, computational logic to specify and
program concurrent systems as rewrite theories. A rewrite theory is a triple
R = (Σ, E ∪ B,R) where:

– Σ specifies a signature of typed function symbols.
– (Σ, E∪B) is an equational theory specifying the concurrent system’s states as

elements of the algebraic data type (initial algebra) TΣ/E∪B defined by (Σ, E ∪
B).

– R are rewrite rules specifying the system’s local atomic transitions.
– Concurrent Computation = Deduction in R = Concurrent Rewriting in

R.

In Maude, a rewrite theory R named FOO is specified —with mostly self-
explanatory syntax—as a so-called system module of the form: mod FOO is

(Σ, E ∪ B,R) endm.

c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 3–36, 2021.
https://doi.org/10.1007/978-3-030-68446-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-68446-4_1

4 J. Meseguer

But, since when R = ∅, R = (Σ, E ∪ B,R) becomes just an equational theory,
Maude has a functional sublanguage of so-called functional modules. A functional
module BAR is specified as follows: fmod BAR is (Σ, E ∪ B) endfm, where:

– B Ď {A,C,U} is any combination of associativity (A) and/or commutativity
(C) and/or identity (U) axioms, specified with the corresponding assoc, comm,
and id: keywords, and

– the equations E, when used as left-to-right simplification rules, are convergent,
i.e., Church-Rosser and terminating,1 modulo the axioms B.

We make the exact same assumptions about B and E for a system module mod
FOO is (Σ, E ∪ B,R) endm. What this intuitively means is that the states of the
concurrent system so specified enjoy structural axioms B, and can also have state-
updating functions computable by equational left-to-right simplification with the
equations E modulo B.

1.2 Symbolic Computation in Maude

Since all computation in Maude is performed by logical deduction in equational
logic and/or rewriting logic, talking about symbolic computation seems tauto-
logical. But it isn’t. The point is that the usual computations in a functional
or system module involve elements of an algebraic data type TΣ/E∪B, which are
represented as ground terms (terms without variables) in the syntax of Σ. But
Maude supports many useful computations involving terms with variables. For
example, for u and v terms with variables among the x1, . . . , xn, solving the so-
called E ∪ B-unification problem u(x1, . . . , xn) =? v(x1, . . . , xn) means answering
the question of whether the constraint u(x1, . . . , xn) = v(x1, . . . , xn) is satisfi-
able in the algebraic data type TΣ/E∪B for some instantiation of the variables
x1, . . . , xn. So, roughly speaking, problems involving logical variables and their
solutions are those I shall describe as symbolic computation problems. Maude,
either directly or through Maude-based tools, supports the following symbolic
computation features:

1. B-Unification (modulo any B Ď {A,C,U}),
2. B-Generalization (modulo any B Ď {A,C,U}),
3. E, B-Variants of a term t in a convergent (Σ, E ∪ B), which is finitary iff

(Σ, E ∪ B) has the finite variant property (FVP), in the sense explained in
Sect. 4,

4. E∪B-Unification for any convergent (Σ, E∪B), which is finitary iff (Σ, E∪B)
is FVP,

5. Domain-Specific SMT-Solving, thanks to CVC4 [19] and Yices [74] inter-
faces,

6. Theory-Generic SMT-Solving for FVP theories (Σ, E ∪ B) under natural
requirements about their constructors,

1 Termination can of course be dropped for some applications: the lambda calculus
or a deterministic Turing machine can be easily specified as functional modules in
Maude.

Symbolic Computation in Maude: Some Tapas 5

7. Symbolic Reachability Analysis of any system module mod (Σ, E ∪
B,R) endm with (Σ, E ∪ B) FVP,

8. B-Homeomorphic Embedding (modulo any B Ď {A,C}).

In this paper I will focus on features (1), (3)–(4), and (6)–(7) in the above list.
For generalization modulo B—which is dual to unification and is also called “anti-
unification”—please see [2,4]. Homeomorphic embedding is a very useful relation
for termination criteria in various symbolic analyses. It has been generalized for
the first time to work in an order-sorted setting and modulo combinations of
associativity and commutativity axioms, with new efficient algorithms, in [1].
Both generalization and homeomorphic embedding modulo axioms are crucial
components of the variant-based partial evaluation (PE) approach for Maude
functional modules presented in [3].

1.3 Tapas and Paper Napkins

To explain the symbolic features (1), (3)–(4), and (6)–(7) requires explaining
some basic technical ideas that convey the precise meaning of such features.
But this runs the risk of getting us bogged down in technicalities. How shall we
proceed? I propose that we use our imagination a little: think of this paper as
an informal conversation that you, dear reader, and I are having in a Tapas Bar,
as we share some pleasant tapas and wash them down with some good Rioja.
The bar’s setting is informal: instead of sitting at a formal table, we sit at a
small wooden table where there is a stack of small paper napkins. Tapas are now
gradually making their appearance at two levels: each time our waiter brings us
the next tapas serving, there are also some Maude tapas that I explain to you
by scribbling on the paper napkins in the stack. The Maude tapas have to be
small, since these are cocktail napkins. I have also brought my laptop to run
a few examples; but the main action is our conversation, scribbling on paper
napkins. Of course, a few technicalities have to be glossed over: I just give you
the main intuitions; but I promise to email you some material to fill in those
details later. This is what we are going to do here. In this paper, that more
precise technical background can be found in Sect. 7 and in the list of references;
but let us disregard them for now.

2 First Tapas Serving: Rewriting Modulo Axioms B

I have always claimed and felt that Maude, unlike other programming languages,
can be explained on a paper napkin to somebody with no prior acquaintance with
computing. Here is the example I would write on such a napkin:

fmod NATURAL is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

6 J. Meseguer

vars N M : Nat .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

endfm

This module, defining natural number addition in Peano notation, does of course
fit the general pattern fmod BAR is (Σ, E ∪ B) endfm, where here the module’s
name BAR is NATURAL, the typed signature Σ has a single type (called a sort
in Maude), which we have chosen to call Nat, a constant 0 and two function
symbols: s and _+_, where the underbars indicate argument positions, and where
the ctor attribute is declared for 0 and s as data constructors to distinguish them
from the defined function _+_, which is defined by the two equations E. In this
case there are no attributes B, although, if we wished, we could have declared _+_

with the assoc and comm keywords as an associative and commutative operator.
How do we compute with this module? By simplifying any arithmetic expres-

sion to its result as a data value, i.e., either to 0 or to sn(0) for some n � 1, using
the two equations E to perform left-to-right replacement of equals for equals in
the usual way this is done in algebraic simplification. This process is called term
rewriting ; and the result of thus simplifying an expression is called its normal
form. Let us see (in another paper napkin) how this process reduces adding 2
plus 2, i.e., the arithmetic expression s(s(0)) + s(s(0)) to 4, i.e., the data
value s(s(s(s(0)))). For this, it is useful to add some simple notation to indi-
cate where in an expression a simplification is applied. I will use the notation
t[u] to indicate that we are focusing on the subexpression u of the expression, or
term, t. The process in this notation is as follows:

[s(s(0)) + s(s(0))] Ñ s([s(s(0)) + s(0)]) Ñ s(s([s(s(0)) + 0])) Ñ s(s(s(s(0)))

where we have applied the second equation in the first two steps, and the first
equation in the last step, to corresponding instances by some matching sub-
stitution instantiating the equation’s variables to the term or subterm to be
simplified. For example, in the second step, the variables N and M have been
instantiated by the substitution θ = {N �Ñ s(s(0)),M �Ñ 0}, so that the subterm
we focus on, s(s(0)) + s(0), becomes an instance of the pattern term N + s(M)
in the second equation’s lefthand side, and is replaced in this step by the cor-
responding instance of the righthand side s(N + M). We can summarize this
(focused) step in the following notation:

s(s(0)) + s(0) ” (s(N) + M)θÑ s(N + M)θ ” s(s(s(0)) + 0)

where ” denotes syntactic equality, and tθ denotes the result of instantiating a
pattern term, i.e., a term with variables t, by a substitution θ.

Symbolic Computation in Maude: Some Tapas 7

But Maude’s functional modules do support this kind of algebraic simpli-
fication modulo structural axioms B. Let us illustrate this case with a simple
example (it fits on another paper napkin) of a data type of sets:

fmod SET is

sort Set .

ops mt a b c d e f g : -> Set [ctor] .

op _U_ : Set Set -> Set [ctor assoc comm] . *** union

vars S S’ : Set .

eq S U mt = S [variant] . *** identity

eq S U S = S [variant] . *** idempotency

eq S U S U S’ = S U S’ [variant] . *** idempotency

endfm

Its constants are a b c d e f g and the empty set constant mt. There is also
a union operator, for which we have chosen2 the syntax _U_, which has been
declared associative (A) and commutative (C) by the assoc and comm attributes.
Note that in this module all constants and _U_ are data constructors. Set union
is defined by the three equations (the third one follows from the second: it is
added for technical reasons) of mt as identity element for set union, and set
idempotency. Disregard for the moment the [variant] attribute in the equa-
tions: it will become clear in Sect. 4. Let us see an example of how we compute
in this module modulo AC.

mt ∪ [a ∪ c ∪ b ∪ a ∪ b] Ñ [mt ∪ a ∪ b ∪ c] Ñ a ∪ b ∪ c

where we have used the third equation in the first step, and the first equation
in the second step. Note that, because of associativity, we, as well as the Maude
parser, can dispense with parentheses. The most interesting step is the first one,
which uses the substitution θ = {S �Ñ (a∪ b), S ′ �Ñ c}. This step can be applied
because:

(S ∪ S ∪ S ′)θ ” (a ∪ b) ∪ (a ∪ b) ∪ c =AC a ∪ c ∪ b ∪ a ∪ b.

Since, thanks to the AC axioms, reordering and parentheses do not matter, the
crucial point is that the subterm a ∪ c ∪ b ∪ a ∪ b is an instance of the lefthand
side pattern S ∪S ∪S ′ modulo AC. For the same reason, the fact that mt appears
on the left of the expression instead than on the right is no obstacle for applying
the first equation in the second step modulo AC.

It can be easily checked that the equations in NATURAL, resp. SET, are con-
vergent, and therefore the normal forms of, for example, s(s(0)) + s(s(0)), resp.
mt ∪ a∪ c∪ b∪ a∪ b, namely, s(s(s(s(0))), resp. a∪ b∪ c, are unique modulo B,
regardless of the order in which the equations are applied to the original term.
For example, b ∪ c ∪ a is the same normal form as a ∪ b ∪ c modulo AC. The
Maude command computing a term’s normal form is the reduce command.

2 In Maude, all syntax for sort and operator names is user-definable.

8 J. Meseguer

A Little Notation Does Not Hurt Anybody. The process of performing
one step of rewriting a term t (focusing on some subterm) using one of the
equations in E modulo the axioms B to obtain a term t′ is called E, B-rewriting,
and is denoted t ÑE,B t′. Likewise, t Ñ∗

E,B t′ denotes performing zero, one or more
steps of E, B-rewriting. The special case when B = ∅ is called E-rewriting, and
then we use the notation t ÑE t′ and t Ñ∗

E t′. The E, B-normal form of term t
(unique up to B-equality assuming E convergent) is denoted t!E,B, resp. t!E when
B = ∅.

3 Second Tapas Serving: Unification and Narrowing
Modulo B

As already mentioned, solving a B-unification problem u(x1, . . . , xn) =
? v(x1, . . . , xn) means answering the question of whether the constraint
u(x1, . . . , xn) = v(x1, . . . , xn) is satisfiable in the algebraic data type TΣ/B, where
terms are identified modulo the axioms B, such as any combination of A and/or
C and/or U axioms. The case B = ∅ is called syntactic unification. It is well-
known from the Prolog language, where the analog of the data type TΣ is the so-
called Herbrand model, which extends TΣ by adding predicate symbols. Maude
supports unification modulo B in any module where the axioms B have been
declared. Furthermore, this B-unification is order-sorted, i.e., it is carried out
with variables which can have different sorts, where some of them can be sub-
sorts of other sorts. In particular, since for the module NATURAL we have B = ∅,
we can perform syntactic unification in it with Maude’s unify command.

Since the syntactic case is well-known, and we will revisit it soon, let us focus
instead on the more interesting case of the SET module, where we can perform
AC-unification. What does this mean? Except for the fact that we are not dealing
with the equation making mt the identity for _U_, this means that we can solve
multiset equations, as opposed to solving set equations (but, please, be patient:
we will also solve set equations in the next serving of tapas). For example, we
may wish to solve the multiset equation: a ∪ a ∪ b ∪ S = a ∪ c ∪ S ′, that is, seek
substitutions θ such that (a∪a∪b∪S)θ =AC (a∪c∪S ′)θ, i.e., both side instances
yield the same multiset. We can do so in Maude by giving the command:

Maude> unify in SET : a U a U b U S =? a U c U S’ .

Unifier 1

S --> c U #1:Set

S’ --> a U b U #1:Set

Unifier 2

S --> c

S’ --> a U b

where the second solution is the most obvious, and the first solution allows
adding to the multiset a ∪ a ∪ b ∪ c obtained by the second solution an extra
multiset denoted by the extra variable #1:Set.

Symbolic Computation in Maude: Some Tapas 9

Maude supports unification modulo any possible combinations of A, C, and
U axioms in B; also when some axioms in B are declared associative but are
not commutative. This is noteworthy, since it is well-known that the number of
A-unifiers (or AU-unifiers) of a problem can be infinite. For example, if a is a
constant and · is associative, then the equation a·x = x ·a has the infinite set of
solutions: {{x �Ñ an} | n � 1}. When some operators are A or AU only, Maude’s
implementation of B-unification takes the following pragmatic approach: (i) the
unification algorithm is designed to favor the cases where the number of A or
AU-unifiers is known to be finite; and (ii) in all other cases, it searches for solu-
tions in a complete manner, but within a bound, so that: (a) if all solutions are
found before reaching the bound, it just returns them, but (b) if the bound is
reached without the certainty of having found all solutions, the solutions already
found are returned with a warning that the set of solutions may be incom-
plete. The good news is that, for a good number of applications—for example in
the symbolic analysis of various cryptographic protocols involving associativity
axioms—such warnings are never encountered, i.e., the corresponding analyses
are then, luckily, complete.

Narrowing. This is just technical jargon for symbolic execution, in the usual
sense one would expect: executing a program, not on concrete inputs, but on
“symbolic” inputs specified by variables [38,40]. In our case, a Maude functional
module and a term with variables in its syntax. For example, in our NATURAL

functional module for natural number addition, the symbolic expression x + y
cannot be evaluated in the standard sense: it is already in normal form, since
no equation in NATURAL can be used to further simplify it. However, it can be
executed symbolically. What does this mean? It means answering the following
question:

Are there instances of x + y that can be executed in the standard sense?
And, if so, can we systematically describe them and their results?

The answer, for any equational theory (Σ, E ∪ B) where the equations E are
convergent modulo the axioms B is an emphatic Yes! The method is very simple,
and amounts to a slight generalization of the already-described E, B-rewriting
relation ÑE,B between terms, to the more general E, B-narrowing relation �E,B

between terms. What is this generalization like? Very simple: we replace the
process of B-matching a subterm u as a substitution instance of the lefthand
side t of an equation t = t′ by one of B-unifying t and u, that is, of solving the
equation t =? u modulo B.

In which sense is this a slight generalization? In the precise sense that when
u is a ground term, i.e., it has no variables, then B-unification coincides with
B-matching. For example, the matching substitution θ = {S �Ñ (a ∪ b), S ′ �Ñ c}
by which we showed that (S ∪S ∪S ′)θ =AC a∪c∪b∪a∪b is indeed an AC-unifier
(not the only one) of the equality (S ∪ S ∪ S ′) =? a ∪ c ∪ b ∪ a ∪ b.

The crucial point, however, is that when the term u to be evaluated does
have variables, B-unification is strictly more general than B-matching and makes

10 J. Meseguer

symbolic execution possible: because we now view the variables of u as logical
variables in the Prolog sense, which can be instantiated. Let us see how x + y
can be symbolically executed this way. In NATURAL we have two equations E =
{N+0 = N, N+ s(M) = s(N+M)}. Focusing on the entire term x+y we get two
corresponding unification problems N + 0 =? x + y and N + s(M) =? x + y with
respective unifiers θ0 = {N �Ñ x, y �Ñ 0} and θ1 = {N �Ñ x,M �Ñ y′, y �Ñ s(y′)}.
Applying these substitutions to the righthand sides of the equations we get the
narrowing steps:

[x + y] �θ0
E x and [x + y] �θ1

E s(x + y′)

where we have indicated for each step the substitution used: θ0, resp. θ1. Narrow-
ing is never performed on variables, so the first narrowing step cannot be contin-
ued. But the second can, focusing on the subterm x + y′, again in two ways, by
the substitutions: θ′0 = {N �Ñ x, y′ �Ñ 0} and θ′1 = {N �Ñ x,M �Ñ y′′, y′ �Ñ s(y′′)},
yielding narrowing steps:

s([x + y′]) �θ′0
E s(x) and s([x + y′]) �θ′1

E s(s(x + y′′))

And, obviously, since s(x) cannot be unified with any lefthand side, it is only
the second term (focusing on x+ y′′) that can be narrowed again, in exactly the
same way, ad infinitum. We get this way what is called an (infinite) narrowing
tree rooted at our original term x+ y. But we could have started with any other
term in the syntax of NATURAL. In the same way, but in this case performing uni-
fication modulo AC, the three equations E in the SET module define a narrowing
relation �E,AC which performs symbolic execution of set expressions. Of course,
we also have a reflexive-transitive closure �∗

E,AC, which, when annotated with a

substitution, θ�∗
E,AC makes explicit the composed or “accumulated” substitution

θ = θ1 · · · θn for a length-n narrowing sequence.
Note the interesting fact that, although the equations E of a convergent

theory, such as NATURAL or SET, are always terminating, the associated narrowing
relation �E,B in general is not. When does it terminate? This is a topic that we
can save for the next tapas serving.

4 Third Tapas Serving: Variants, and Unification Modulo
E ∪ B

Let us you, dear reader, DR, and I, JM, play a little language game à la Wittgen-
stein. JM: What is a variant? DR: I don’t know what you are talking about. JM:
I mean, what is a variant in the Comon-Delaune [18] sense? DR: I don’t know:
you tell me. JM: An answer to a question. DR: Which question? JM: What are
the normal forms that a term t in a Maude functional module evaluates to? DR:
But the answer to your question is trivial, since we have already seen that, since
the module’s equations E are assumed convergent modulo its axioms B, up to

Symbolic Computation in Maude: Some Tapas 11

B-equality there is just one answer, namely, the unique normal form t!E,B of t,
which is the answer provided by Maude’s reduce command. JM: Sorry, what I
really meant is: What are the normal forms that a term t symbolically evaluates
to? Or, slightly more broadly: What are the normal forms of the instances of
t by various substitutions? DR: Well, that sounds more interesting. Can you
give me an example? JM: Why, of course! We have just seen an example! DR:
Where? JM: In the last paper napkin I scribbled for you, where I sketched the
narrowing tree for x + y. DR: What do you mean? JM: (1) A little reflection
shows that, if we have a narrowing sequence: t θ�∗

E,B u, and u is normalized, then,
by construction, u =B (tθ)!E,B and u is therefore a variant in the exact sense I
meant. (2) But if you inspect the narrowing tree for x + y, all the terms in that
tree are either of the form: sn(x), n � 0, or sn(x + y′n), n � 1, which are all in
normal form. So they are all variants of x + y in the sense I just meant. DR:
Ok, now I see your point. This looks interesting. Tell me more. JM: Of course,
these terms are not all the variants of x + y. But they cover all the variants of
x+y as instances. For example, the substitution θ = {x �Ñ s(0+ x′), y �Ñ s(s(z))}
yields the variant: ((x + y)θ)!E = s(s(s(0 + x′) + z)), which is itself an instance
of the term s(s(x+ y′′)) in x+ y’s narrowing tree. Therefore,—because of the so-
called lifting property of narrowing (references in Sect. 7.2)—we can use a term’s
t narrowing tree to compute a complete set of most general variants of t by just
selecting those narrowing paths in such a tree of the form t

θ�∗
E,B u, where u is

normalized. A little more notation cannot hurt. For technical reasons, we
do not call such a u a variant of t. Instead, we formally define that variant as
the pair (u, θ). This is because we might have a quite different (u′, γ), with u′

just a variable renaming of u, obtained by a completely different narrowing path
t
γ�∗
E,B u

′, and where γ itself might not be a variable renaming of θ. We shall see
examples like this during this tapas serving.

The Finite Variant Property. Here are two closely-related, yet different,
questions. Given a Maude functional module, say, fmod BAR is (Σ, E∪B) endfm,
as always with E assumed convergent modulo B,

1. When is it the case that any term t in this module has a finite, complete set
of most general variants—i.e., that, up to B-equality, any other variant of t
is a substitution instance of one in this finite set? If this holds, we then say
that (Σ, E ∪ B) has the finite variant property (FVP).

2. When does E, B-narrowing terminate for any term t in this module?

Since, as we have just seen, a complete set of variants of a term t can be
computed by narrowing, if E, B-narrowing terminates for all inputs t, then (Σ, E∪
B) is obviously FVP. But the converse does not hold in general: a term t may
have a finite set of most general variants and yet have an infinite narrowing
tree. Why? Because we should do something smarter than just generating t’s
narrowing tree. The problem we can easily face when generating t’s narrowing
tree is that, after a while, if we had looked carefully enough, we would have seen

12 J. Meseguer

it all. That is, seen that any variant to be generated further down the (infinite!)
tree is going to be an instance of one that we have already seen. But how can we
find that out, since the tree is infinite? By using the folding variant narrowing
strategy in [27]. This strategy has the useful property that: (1) (Σ, E∪B) is FVP
iff (2) folding variant E, B-narrowing terminates for any input term t. Folding
variant narrowing computes the desired finite set of most general variants of
a term t when (Σ, E ∪ B) is FVP; and in all cases —i.e., for any convergent
(Σ, E ∪ B)—it computes a complete set of variants of t, which may of course be
infinite. For example, NATURAL is not FVP. This is obvious from the fact that,
for any two n, k � 1, the terms sn(x + y′n) and sn+k(x + y′n) have disjoint sets of
instances.

But how does folding variant narrowing work? As its name suggests, by
folding. That is, we do not generate a tree, but a graph in a breadth first way.
But when we generate a new normalized node, we do not just add it to the graph:
we first check to see if in the graph generated so far we already have another
node of which this new one is an instance and, if so, we fold the new node into
that most general instance. If at some depth all new generated nodes must be
folded, then we have terminated with a finite graph that contains a set of most
general variants of the input term t.

Folding variant narrowing has been implemented in Maude. The set of vari-
ants of a term t can be computed with Maude’s get variants command. Since
in general this set can be infinite, the user can provide a bound n to get the
first n variants of a term t. But how can we know if a given (Σ, E ∪ B) is FVP?
This property is undecidable [8]. However, as explained in [12], if (Σ, E ∪ B)
is actually FVP, provided that B-unification is finitary,3 we can find this out
very easily in Maude by computing the variants of each term f (x1, . . . , xn) for
each function symbol f in Σ. For example, our SET example, which can easily be
shown convergent, is FVP, since Maude provides the following answer:

Maude> get variants in SET : S U S’ .

Variant 1

Set: #1:Set U #2:Set

S --> #1:Set

S’ --> #2:Set

Variant 2

Set: %1:Set

S --> mt

S’ --> %1:Set

Variant 3

Set: %1:Set

S --> %1:Set

3 As already mentioned, if B contains axioms of associativity without commutativity,
B-unification will not be finitary. The FVP property has been studied for this more
general case in [49].

Symbolic Computation in Maude: Some Tapas 13

S’ --> mt

Variant 4

Set: %1:Set

S --> %1:Set

S’ --> %1:Set

Variant 5

Set: %1:Set U %2:Set U %3:Set

S --> %1:Set U %2:Set

S’ --> %1:Set U %3:Set

Variant 6

Set: %1:Set U %2:Set

S --> %1:Set U %2:Set

S’ --> %2:Set

Variant 7

Set: %1:Set U %2:Set

S --> %2:Set

S’ --> %1:Set U %2:Set

No more variants.

which shows that SET is FVP. Note that, in general, a functional module’s equa-
tional theory (Σ, E ∪ B) need not be FVP. In reality, what the get variants

command for a term t provides is a very space-efficient way of describing the
narrowing tree of a term t, not as a tree, but as a graph with folding storing
only normalized nodes. In comparison with the tree description itself, this space
efficiency is enormous in all cases; and in the FVP case it can reduce an infinite
tree to a finite graph. Pragmatically,—particularly in the case of axioms such
as AC where the number of unifiers of a unification problem can be huge and
therefore the narrowing tree can have large degrees of branching—the difference
between a term’s narrowing tree and its narrowing graph with folding is one
between a hopeless procedure that can be easily overwhelmed at very small tree
depths and a practical procedure that can be used in many applications.

Constructor Variants. As we have seen in the NATURAL and SET modules,
Maude supports the distinction between constructor operators, which build data
and are specified with the ctor attribute, e.g., 0 and s in NATURAL, and the
remaining defined function symbols, like _+_ in NATURAL. This offers a very nat-
ural distinction at the level of variants: we call a variant (u, θ) of a term t a
constructor variant iff u is a constructor term, that is, a term built using only
constructor symbols and variables. Since in the SET module all symbols are con-
structor symbols, the above seven variants of the term S U S’ are all constructor
variants. Instead, in the already-described complete set of variants for the term
x + y in NATURAL, only the family of terms {sn(x) | n � 0} are constructor vari-

14 J. Meseguer

ants. This distinction between variants and constructor variants will prove useful
in our next tapas serving.

Variant E ∪ B-Unification. So far, we have only discussed Maude’s algorithm
for B-unification, with B any combination of A, C, and U axioms. Though very
useful, this is also very limited. Assuming, as I will do throughout, that all sorts
are inhabited, i.e., algebraic data types that do not have empty types/sorts,
what B-unification really means is that we can answer satisfiability questions for
constraints of the form:

∧
1�i�n ui = vi in algebraic data types of the form TΣ/B.

But, of course, what we would like to be able to do is to solve the same kind
of constraints for any Maude functional module, under the assumptions that
it is convergent and that its equations are unconditional. That is, to be able
to solve the above constraints over algebraic data types of the form TΣ/E∪B. In
other words, to perform E ∪ B-unification. For example, we already saw that for
(Σ, E∪AC) the equational theory of the SET module, AC-unification, i.e., solving
equations in TΣ/AC essentially amounted to multiset unification—up to a minor
quibbling about the empty set that could have been solved adding an extra U
axiom. But what we really would like to perform is set unification, i.e., to solve
constraints of the above form in the data type TΣ/E∪AC of sets. Can we do this?
The answer is Yes! Because we can reduce such a unification problem to one of
computing variants. Let us see how. All we need to do4 is to add to our functional
module of choice a new sort Pred of predicates with constant true, and a new
equality predicate. Let us illustrate this idea for the SET module, extended to the
module:

fmod SET-EQ is protecting SET .

sort Pred . *** Predicates sort

op true : -> Pred [ctor] .

op _=?_ : Set Set -> Pred [ctor] . *** equality predicate

vars S S’ : Set .

eq S =? S = true [variant] . *** equality definition

endfm

It is easy to check that this module is also FVP. This is a general fact: the
extension of an FVP theory (Σ, E ∪ B) to a theory (Σ=?, E=? ∪ B) by adding
an equality predicate =? is always also FVP. This can be easily checked
in this example by computing the variants of the term S =? S’. Recall that,
using AC unification, we were able to answer the multiset unification problem:
a U a U b U S =? a U c U S’. But what we would like to do is to solve the
set unification problem: a U a U b U S =? a U c U S’. We can do so by com-
puting variants in SET-EQ of the equality term a U a U b U S =? a U c U S’.
Maude returns 88 such variants. But the only ones that interest us are those

4 For simplicity, I treat the case of solving a single equation. The case of solving
systems of equalities and disequalities can likewise be treated by adding a binary
conjunction operator to Pred with identity true.

Symbolic Computation in Maude: Some Tapas 15

of the form: (true, θ), since those θ are the desired unifiers for this set unifica-
tion problem. There are only 24 variants of the form (true, θ), which give us our
desired family of set unifiers. Here are the first and the last of these:

Maude> get variants in SET-EQ : a U a U b U S =? a U c U S’ .

...

Variant 2

Pred: true

S --> c U %1:Set

S’ --> b U %1:Set

...

Variant 88

Pred: true

S --> b U c

S’ --> a U b U c

But why are these the unifiers of our set equation? Never let a theorem
that fits on a paper napkin go to waste! Because, as explained in Sect. 7.2,
for any convergent theory (Σ, E ∪ B) we have the Church-Rosser Equivalence:
t =E∪B t′ ⇔ t!E,B =B t′!E,B. Therefore, a substitution θ solves an equation u =? v
in TΣ/E∪B iff (uθ)!E,B =B (vθ)!E,B, i.e., iff ((u =?v)θ)!E=?,B =B true. That is, iff θ
is an instance of some γ in some variant of u =?v of the form (true , γ). q.e.d.
Note that this proof is much more general than: (i) solving equations for the
SET module; (ii) solving equations for any FVP theory (Σ, E ∪ B); since (iii) it
solves them for any convergent theory (Σ, E∪B). That is, this method provides a
general E∪B-unification procedure for any convergent theory (Σ, E∪B), which we
call the variant unification procedure. However, the case when (Σ, E∪B) is FVP
is noteworthy since, if B-unification is finitary (the case when any A axiom is
also AC), then variant E∪B-unification is also finitary and in fact a satisfiability
decision procedure. That is, we can decide in a finite number of steps whether
a constraint of the form

∧
1�i�n ui = vi is satisfiable in the algebraic data type

TΣ/E∪B. For the same reason, we can also decide the satisfiability in TΣ/E∪B of
any positive (no negations) DNF formula of the form:

Ž
1�i�n

∧
1�i. j�ni

ui. j = vi. j.
This suggests the question: What about satisfiability of any quantifier free (QF)
formula in TΣ/E∪B? We will revisit this question in the next tapas serving.
E ∪ B-unification is so important that, rather than solving a E ∪ B-unification
problem u =? v by computing the variants of the term u =?v in (Σ=?, E=? ∪ B),
which would yield other useless variants, Maude supports it directly in (Σ, E∪B),
for systems of equations

∧
1�i�n ui = vi, by the variant unify command. But

since the set of E ∪ B-unifiers computed this way often contains some unifiers
that are less general than some other unifier in the set and are therefore redun-
dant, Maude also supports a somewhat more expensive—yet quite practical for
reducing the size of many symbolic search problems— command that filters out
redundant E ∪ B-unifiers, namely, the filtered variant unify command. For
our example, it reduces the number of set unifiers from 24 to 9:

16 J. Meseguer

Maude> filtered variant unify in SET : a U b U c U S =? a U b U S’ .

Unifier 1

S --> %1:Set

S’ --> c U %1:Set

Unifier 2

S --> a U #1:Set

S’ --> c U #1:Set

Unifier 3

S --> b U #1:Set

S’ --> c U #1:Set

Unifier 4

S --> #1:Set

S’ --> a U c U #1:Set

Unifier 5

S --> #1:Set

S’ --> b U c U #1:Set

Unifier 6

S --> a U b U %1:Set

S’ --> c U %1:Set

Unifier 7

S --> a U %1:Set

S’ --> b U c U %1:Set

Unifier 8

S --> b U %1:Set

S’ --> a U c U %1:Set

Unifier 9

S --> %1:Set

S’ --> a U b U c U %1:Set

No more unifiers.

5 Fourth Tapas Serving: Variant Satisfiability

In computer science, decision procedures are used to automate reasoning about
data types. In a conventional language, such data types may include integers,
rational numbers, strings of characters, arrays, and so on. There is typically a
finite collection of such data types used in a given programming language, which
are often well supported by current SMT solvers. A theorem prover to verify
programs in a conventional language can make very good use of such decision

Symbolic Computation in Maude: Some Tapas 17

procedures to automate large portions of a program’s proof of correctness. In
Maude the situation is quite different. Why? Because in Maude algebraic data
types are completely user-definable. That is, any functional module fmod BAR

is (Σ, E ∪ B) endfm for any, finitely specifiable, convergent equational theory
(Σ, E ∪ B) can be specified by a Maude user to define the algebraic data type
TΣ/E∪B of his/her choice. And, unlike the case of a conventional language, there
is an infinite collection of such data types. Of course, for some specific Maude
data types, for example integers or rationals, existing domain-specific decision
procedures supported by an SMT solver may be available. But to automate rea-
soning about arbitrary Maude functional modules as much as possible, we need a
new kind of SMT solving: what I call theory-generic decision procedures, which
apply, not to a given data domain, but to an infinite class of user-definable data
types. The generic decision procedure in question is called variant satisfiability
[56], and is what this tapas serving is about.

The first piece of good news is that, for B any combination of A, C, and U
axioms, where any A symbol f must also be C, satisfiability of QF formulas in
the data type TΣ/B is decidable [56]. The million-dollar question is: How can we
take advantage of this piece of good news to obtain a much more general theory-
generic satisfiability decision procedure to help us reason about any algebraic
data type TΣ/E∪B defined by a Maude functional module fmod BAR is (Σ, E∪B)
endfm? Of course, we know a priori that the class of algebraic data types TΣ/E∪B

for which we can hope to have decidable satisfiability, even if infinite, must have
some restrictions: since just for the data type of natural numbers with addition
and multiplication, that is, just by adding a multiplication operator ∗ and the
equations N ∗ 0 = 0, N ∗ s(M) = N + (N ∗ M) to our NATURAL module, Gödel’s
Incompleteness Theorem rears its head dashing all our decidable satisfiability
hopes to the ground. So, one way to both rephrase the original question and
advance towards an answer is to ask the more precise question:

Given a Maude functional module fmod BAR is (Σ, E ∪ B) endfm, is there
a general method by which we could seek, and find, a sublanguage of QF
formulas, say, determined by a subsignature Σ1 Ď Σ such that satisfiability
of QF Σ1-formulas in TΣ/E∪B is decidable?

What is promising about trying to answer this question is its practical character:
hoping for decidable satisfiability of just any algebraic data type is both an act
of self-delusion and a mark of ignorance. But hoping for a subclass of formulas
enjoying decidable satisfiability is an eminently practical idea, which can help
automate large parts of a program’s proof of correctness effort.

The second piece of good news is that a general method answering the above
question does indeed exist. It is based on the idea of a telescope, i.e., a chain of
convergent theory inclusions of the form:

(Ω, BΩ) Ď (Σ1, E1 ∪ B1) Ď (Σ, E ∪ B)

such that: (i) Ω is the subsignature of operators that were specified as construc-
tors, with the ctor attribute, in the functional module specifying (Σ, E ∪ B), (ii)

18 J. Meseguer

BΩ Ď B are the axioms declared for such constructors, (iii) the constructors are
true constructors, i.e., for any ground term in the syntax of Σ we have t!E,B ∈ TΩ,
(iv) any u ∈ TΩ is already in normal form: u =BΩ u!E,B, and (v) the intermediate
theory (Σ1, E1 ∪ B1) is convergent, has also Ω as its constructors, is FVP, and
any A symbol f ∈ Σ1 is also C.

The third and last piece of good news is that, under conditions (i)–(v), sat-
isfiability of QF Σ1-formulas in TΣ/E∪B is decidable [56], which is what we were
fishing for; and there is a theory-generic satisfiability decision procedure for such
formulas, namely, variant satisfiability [56]. Of course, at the very least we may
have (Ω, BΩ) = (Σ1, E1 ∪ B1), and in that case just get decidable satisfiability
for QF Ω-formulas in TΣ/E∪B. But quite often, finding an FVP (Σ1, E1 ∪ B1)
having a strict containment (Ω, BΩ) ⊂ (Σ1, E1 ∪ B1) is relatively easy to do. For
example, any selector functions for the constructors in Ω will automatically be
in (Σ1, E1 ∪ B1) [30].
Eh bien! But how does this theory-generic decision procedure work? Recall that
solving the problem of the satisfiability in the data type TΣ/E∪B of any QF Σ1-
formula ϕ means to either: (i) effectively exhibiting a solution, i.e., a ground
substitution ρ such that the ground formula ϕρ is true in TΣ/E∪B [which by our
telescope is the case iff ϕρ is true in TΣ1/E1∪B1], or (ii) effectively showing that
there is no such solution. If this problem is solvable, in one blow, we have also
solved the validity problem for a QF Σ1-formula ϕ in TΣ/E∪B. That is, we can
either: (i) effectively prove that ϕ is a theorem of TΣ/E∪B, or (ii) effectively show
a counterexample when it is not: since ϕ will be a theorem of TΣ/E∪B iff ¬ϕ is
unsatisfiable in TΣ/E∪B. We will solve the satisfiability problem for a QF Σ1-
formula ϕ in TΣ/E∪B by reducing it to that of the satisfiability of QF Ω-formulas
in TΩ/BΩ , which we already know how to decide. Since, without loss of generality,
we may assume ϕ in DNF, that is,

ϕ ”
ł

1�i�n

(
∧

1�i. j�ni

ui. j = vi. j ^
∧

1�i.k�mi

wi.k �= w′
i.k)

it is enough to decide the satisfiability of a Σ1-conjunction of literals
∧

1�i�n ui =
vi ^ ∧

1� j�m wj �= w′
j. But we already know how to decide the satisfiability of the

positive part by variant unification. Therefore, the problem reduces to solving
the satisfiability of:

ł

α∈Unif E1∪B1
(
∧

1�i�n ui=vi)

(
∧

1� j�m

wj �= w′
j)α

That is, it is enough to decide the satisfiability of a Σ1-conjunction of disequal-
ities

∧
1� j�m wj �= w′

j. But, as sketched out in Footnote 4, we can view such a
conjunction of disequalities as a term in the FVP theory (Σ=?

1 , E1 ∪ B1), which
has (Ω=?, BΩ) as its subspecification of constructors [i.e., Ω=? contains true, ^
and �= as added constructors]. But, if we now recall the notion of constructor
variants, this reduces to the equivalent problem of deciding the satisfiability of
the disjunction of conjunctions of Ω-disequalities:

Symbolic Computation in Maude: Some Tapas 19

ł

1�i�n

(
∧

1� j�m

qij �= rij)

in TΩ/BΩ , where the {∧1� j�m qij �= rij | 1 � i � n} are the constructor variants of
the Σ=?

1 -term:
∧

1� j�m wj �= w′
j. So, we have reduced the problem to one of QF

satisfiability in TΩ/BΩ and we are done!
To be really done, we just need to know how satisfiability of a conjunction

of Ω-disequalities
∧

1� j�m qj �= r j is decided in TΩ/BΩ . But this is really easy
[56]. First of all, we can reduce to the case where each variable xi : si in the
conjunction ranges over a sort si such that TΩ/BΩ,si is an infinite set: since if
any x j : s j ranges over a finite set TΩ/BΩ,s j , we can replace our conjunction by a
disjunction of conjunctions where x j : s j has been instantiated in all possible ways
by one of the values in the finite set TΩ/BΩ,s j . Under this infinite-sorts assumption,
the conjunction

∧
1� j�m qj �= r j is satisfiable in TΩ/BΩ iff q j �=BΩ r j, 1 � j � m,

which is a trivial check in Maude.

Presburger Arithmetic on a Paper Napkin. There are entire book chap-
ters on Presburger arithmetic decision procedures. But to give you a feeling for
the general applicability of variant satisfiability, the good news is that by now
you already know everything you need to know to realize that satisfiability of
QF formulas in Presburger arithmetic is decidable, and to decide any such QF
formula by yourself in Maude. The theory of Presburger arithmetic does indeed
fit on a paper napkin, as the functional module:

fmod PRESBURGER is protecting TRUTH-VALUE .

sort Nat .

ops 0 1 : -> Nat [ctor] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

op _>_ : Nat Nat -> Bool .

vars N M K : Nat .

eq N + 1 + M > N = true [variant] .

eq N > N + M = false [variant] .

endfm

which imports TRUTH-VALUE, with just two constants true, false of sort Bool.
Note that in PRESBURGER we have just specified natural number addition as the
free commutative monoid generated by 1 with 0 as the identity element. This
module is FVP, as one can easily check by computing the three variants of the
term N > M for its only defined symbol _>_. Furthermore, all its other operators
define a subsignature Ω of constructor symbols, so that it has a constructor sub-
specification of the form (Ω, ACU). Therefore, satisfiability of QF Ω-formulas in
TΩ/ACU is decidable. And so is also the satisfiability of QF formulas in Presburger
arithmetic by our theory-generic variant satisfiability procedure. For example,
the transitivity law N > M = true ^ M > K = true ñ N > K = true is
valid, because its negation N > M = true ^ M > K = true ^ N > K �= true is
unsatisfiable, since we get a single solution for the variant unification problem:

20 J. Meseguer

Maude> filtered variant unify in PRESBURGER : N > M =? true /\ M > K =? true .

Unifier 1

N --> 1 + 1 + %1:Nat + %2:Nat + %3:Nat

M --> 1 + %1:Nat + %2:Nat

K --> %2:Nat

No more unifiers.

and when we compute the instantiation (N > K)θ for this unifier θ and reduce
it to its normal form we get:

Maude> reduce 1 + 1 + %1:Nat + %2:Nat + %3:Nat > %2:Nat .

result Bool: true

making the disequality true �= true unsatisfiable. q.e.d. Of course, since variant
satisfiability is a very general theory-generic procedure, there is no fair com-
petition possible with a highly optimized domain-specific algorithm for Pres-
burger arithmetic. But this is OK for three reasons: (i) as already mentioned,
Maude has interfaces to both the CVC4 and Yices SMT solvers, so optimized
implementations of Presburger arithmetic are available that way; (ii) variant
satisfiability’s sweetspot is not in competing with already existing, optimized
domain-specific decision procedures, but rather in complementing such proce-
dures by making SMT solving extensible to an infinite class of user-definable
algebraic data types; and (iii) nevertheless, a variant satisfiability procedure
for Presburger arithmetic is not entirely useless: other colleagues and I have
used it in various automated deduction applications, and—as we shall see in a
moment—it enjoys the non-negligible advantage of having a seamless integration
with other variant satisfiability decision procedures.

A Decision Procedure for S-Expressions. This might seem like a bad exam-
ple to pick in order to show the usefulness of variant satisfiability; but it isn’t.
After all, domain-specific decision procedures for LISP’s S-Expressions go back,
at least, to the one by the late Derek Oppen [62]; and similar procedures are
a dime a dozen in the SMT solving literature. So, why beating a dead horse?
Because it isn’t dead. The dirty little secret is that all the procedures of this
kind I am aware of are problematic. Why so? They are problematic in their cor-
ner cases, namely, in cases when an S-Expression can be undefined. For example,
according to the LISP 1.5 Programmer’s Manual [45], expressions such as car[A]
or cdr[A] for A an atom are undefined. The problem is that all the S-Expression
decision procedures I am aware of are based on either unsorted or many-sorted
first-order logic. But, as my late friend Joseph Goguen and I showed in [58], the
problem of faithfully specifying data types involving partial functions such as
those for the data selectors car and cdr in LISP, cannot be solved in unsorted

Symbolic Computation in Maude: Some Tapas 21

or many-sorted first-order logic.5 But, as we showed in [58], it is solved by spec-
ifying such data types in order-sorted equational logic; or in the even more
general membership equational logic [53] used by Maude’s functional modules.
The upshot of all this is that the existing decision procedures are forced to cut
some corners: the answers you will get in such corner cases are anybody’s guess
or, if documented, they will depend on some arbitrary choices about how to
make such partial functions total in the undefined cases.

So, the horse is not really dead yet. And there is something to be gained
by revisiting this venerable topic of decision procedures for S-Expressions as
a representative instance of the much more general problem of having faithful
decision procedures for algebraic data types with constructors and selectors.
Furthermore, it gives me a good opportunity to introduce you, dear reader, to
the expressive power of order-sorted specifications in Maude, which is actually
crucial for many variant satisfiability procedures.

LISP is of course an untyped language. However, what might be called LISP’s
ontology of S-Expressions, which is part of the lore and essential to know what
you are doing when programming in LISP, is captured by the following struc-
ture of subsorts of the main sort SExp. Since S-Expressions are parametric on
the type of Atoms, which are basic data values, like numbers, Booleans, iden-
tifiers, etc., this can be specified in Maude as a parameterized module with the
TRIV parameter theory, which just has an Elt parameter sort/type that can be
instantiated to any chosen sort/type of basic values, i.e., of atoms.

fmod S-EXP{A :: TRIV} is protecting TRUTH-VALUE .

sorts List NeList NLExp NLPair SExp .

subsorts NeList < List < SExp .

subsorts A$Elt NLPair < NLExp < SExp .

op nil : -> List [ctor] .

op [_._] : SExp SExp -> SExp [ctor] .

op [_._] : SExp List -> NeList [ctor] .

op [_._] : SExp NLExp -> NLPair [ctor] .

op car_ : NeList -> SExp . *** left selector

op car_ : NLPair -> SExp . *** left selector

op cdr_ : NeList -> List . *** right selector

op cdr_ : NLPair -> NLExp . *** right selector

ops atom? nelist? list? nlpair? nlexp? : SExp -> Bool . *** sort preds

var A : A$Elt . var NeL : NeList . var L : List .

var NLE : NLExp . var NLP : NLPair . var SE : SExp .

eq car[SE . L] = SE [variant] . eq cdr[SE . L] = L [variant] .

eq car[SE . NLE] = SE [variant] . eq cdr[SE . NLE] = NLE [variant] .

eq atom?(A) = true [variant] . eq nelist?(NeL) = true [variant] .

5 Unless of course such partial functions are represented as binary relations, or the
specification itself is changed by introducing coercion functions in the way Goguen
and I showed in [29].

22 J. Meseguer

eq atom?(NLP) = false [variant] . eq nelist?(nil) = false [variant] .

eq atom?(L) = false [variant] . eq nelist?(NLE) = false [variant] .

eq list?(L) = true [variant] . eq nlpair?(NLP) = true [variant] .

eq list?(NLE) = false [variant] . eq nlpair?(A) = false [variant] .

eq nlexp?(NLE) = true [variant] . eq nlpair?(L) = false [variant] .

eq nlexp?(L) = false [variant] .

endfm

This is the only example in this paper that may not fit on a cocktail paper
napkin: we may have to unfold one, or to ask our waiter for a dinner paper
napkin. The main ideas about the ontology carved out by the above subsort
structure can be summarized by the following remarks about LISP lore: (1) An
SExp is either an Atom (of the parameter sort A$Elt), or nil, or a binary tree
having either atoms or nil in its leaves. (2) A List is either nil, or a binary
tree whose rightmost leaf is nil. (3) A NeList is a non-nil List. (4) A NLExp

is any non-list SExp. (5) A NLPair is any non-atom NLExp. Of course, car and
cdr select the left, resp. right, subtrees of any S-Expression that is a binary
tree. They make no sense otherwise. The sort predicates have lower case names
for their respective sorts: they are true for elements of that sort, and false

otherwise. Thanks to order-sortedness, some operators are overloaded.
This module is FVP. Termination is trivial, since all the equations decrease

term size; confluence follows from the absence of order-sorted critical pairs; full
definition of functions can be easily checked by the method in [47]; and FVP itself
can be easily checked by computing variants for each of the defined functions. For
example, car and cdr have two variants each (for either of their typings), and the
list? predicate has three variants. As already pointed out, it would have been
impossible to faithfully model LISP S-Expressions in unsorted or many-sorted
first-order logic. But there is more behind the module’s deceptive simplicity:
Even if we had not specified the car and cdr selectors that push this data
type outside the pale of many-sorted first-order logic, it would still have been
impossible to specify predicates like list? or nlexp? as FVP functions in an
unsorted or many-sorted way. The reason for this impossibility is that in such
settings these predicates would have to recurse down the binary tree to check
whether the rightmost element is either nil or an atom; and this would have
pushed those predicate definitions out of the FVP fold. The moral of this story is
that order-sorted first-order logic silently and kindly absorbs into its syntax a lot
of reasoning that would otherwise require quite complex first-order reasoning,
in the form of deducing implications between unary predicates modeling the
non-existent subsorts.

Since the constructors of S-EXP do not satisfy any axioms and no equa-
tions apply to constructor terms, we are again under the conditions ensuring
decidable satisfiability. That is, we have a variant satisfiability procedure for
S-Expressions in a parametric way, in the same sense as for similar paramet-
ric variant satisfiability procedures for lists, compact lists, multisets, sets, and
hereditarily finite sets in [56]. What this means in practice is that if we instanti-
ate S-EXP{A :: TRIV} by choosing a sort of atoms in any FVP data type that
also satisfies the variant satisfiability conditions, then, any such instantiation

Symbolic Computation in Maude: Some Tapas 23

(after checking termination of the equations in the instantiation) is also FVP
and does also have decidable satisfiability for its QF formulas. For example, we
can instantiate the parameter sort Elt in TRIV to the Nat sort in PRESBURGER by
defining in Maude a view and then instantiating S-EXP{A :: TRIV} with this
view as follows:

view Nat from TRIV to PRESBURGER is

sort Elt to Nat .

endv

fmod NAT-SEXP is

protecting S-EXP{Nat} .

endfm

In this instantiated module—whose termination proof is trivial, since all its
equations are term-size decreasing—we can decide the validity of both parametric
theorems like: NeL = [(car NeL) . (cdr NeL)], which hold for any instance of the
module and could likewise have been defined directly for S-EXP{A :: TRIV}, and
that of theorems that only make sense for this instantiation, like the implication:

atom?(carNLP) = true atom?(cdrNLP) = true (car NLP)+ (cdr NLP) > (car NLP) �= false ∨ (cdr NLP) = 0

Let us prove both of these theorems by showing that their corresponding nega-
tions are unsatisfiable. In the first example, the only constructor variant of the
disequality NeL �= [(car NeL) . (cdr NeL)] is the clearly unsatisfiable disequal-
ity [SE . L] �= [SE . L]. q.e.d. In the second example we have to verify that the
conjunction

atom?(carNLP) = true atom?(cdrNLP) = true (car NLP) + (cdr NLP) > (car NLP) = false (cdr NLP) �= 0

is unsatisfiable. But the positive part of this conjunction has the single unifier
θ = {NLP �Ñ [N . 0]}; and then the canonical form of (cdr NLP)θ �= 0 is
the unsatisfiable disequality 0 �= 0. q.e.d.

Something interesting about this example is the seamless integration of the
two variant satisfiability decision procedures: the one for PRESBURGER and that
for S-EXP{A :: TRIV}. This is in contrast to the usual Nelson-Oppen (NO)
combination procedure [60] required to reason in a combination of theories. No
such NO-combination procedure is needed at all for variant satisfiability: we
just form the appropriate union of theories (in this case by instantiating the
S-EXP{A :: TRIV} with the Nat view), and that’s it!

6 Dessert: Narrowing-Based Symbolic Reachability
Analysis

By now we have had a fairly substantial sampling of tapas: we should not push
this too hard. Let me end on a light, yet interesting, note by explaining to you
what symbolic reachability analysis in Maude is about, and some cool things you

24 J. Meseguer

can do with it. It will be our dessert: a little divertimento. We have remained
all the time within Maude’s sublanguage of functional modules. But, of course,
Maude’s most unique capability is its declarative programming of concurrent
systems by means of rewrite theories in system modules of the form mod FOO is

(Σ, E ∪ B,R) endm, where the system’s local concurrent transitions are specified
by the rules R using the rl keyword, as opposed to the eq keyword used for equa-
tions. Such rules need not be terminating, and can be highly non-deterministic.
Maude’s rewrite command can simulate one possible execution sequence for
such rules in a fair fashion; but there can be many, many more possible execu-
tions. For many reasoning purposes, such as, for example, to check that a cryp-
tographic protocol is secure, one can perform reachability analysis in Maude to
explore all states reachable from a given one using Maude’s breadth first search
command.

However, this may not be powerful enough in some cases: for example, if
either the set of reachable states or that of initial states is infinite. In such cases
one can perform symbolic reachability analysis using narrowing with Maude’s
vu-narrow command. Thanks to our previous Maude tapas this command is
now quite easy to explain. Given a symbolic initial state specified by a term
u(x1, . . . , xn) describing a, typically infinite, set of initial state instances, what
this command does is to build a narrowing search graph rooted at u(x1, . . . , xn).
But there are three main differences with equational narrowing: (1) now
we narrow symbolic expressions, not with equations E, but with transition
rules in R; (2) for each narrowing step, instead of performing B-unification
as before, we now perform E∪B-unification with all the equations in the rewrite
theory; and (3) we check if we have reached a goal term v(y1, . . . , yn) using E∪B-
unification. There are just two restrictions: (i) to be practical, we want to remain
finitely branching, so we require the equations E ∪ B to be FVP to make
sure the number of E ∪ B-unifiers is finite; and (ii) we also assume that the
rules in R are topmost—i.e., that they rewrite the entire state—, which is easy
to achieve in practice by a theory transformation and ensures completeness of
the analysis. The command has the form:

vu-narrow [n] in FOO : u(x1,...,xn) =>* v(y1,...,ym) .

where n is the number of desired solutions, u(x1, . . . , xn) is the pattern for
initial states, and v(y1, . . . , yn) is the pattern describing the set of states that
we wish to reach—or to show that we cannot reach, if they are “bad” states.
The meaning of this query is then to seek an answer to the following question:

Is there an instance of the set of initial states symbolically specified by
u(x1, ..., xn) from which we can reach an instance of the set of target states
symbolically specified by v(y1, . . . , yn) by a sequence of transitions from R in
the FOO module? [u(x1, ..., xn) and v(y1, . . . , yn) can share some variables]

What Maude’s vu-narrow command provides is a complete method to get
answers for such a question: if an answer exists, we are guaranteed—except for
the usual memory and time limitations—to find it. The most common examples

Symbolic Computation in Maude: Some Tapas 25

of this method involve analyzing the reachability properties of some concurrent
system. For example, the Maude-NPA tool [26] uses this kind of narrowing-
based symbolic reachability analysis (with some additional optimizations), to
symbolically analyze security properties of cryptographic protocols. But I wish
to present a completely different kind of example, namely, a Logic Programming
(LP) interpreter, because it shows that rewriting logic and Maude have good
properties not only as a semantic framework to naturally specify and program
concurrent systems, but also as a logical framework [43] in which a logic’s infer-
ence rules can be naturally represented as rewrite rules. In this case, the inference
system in question is that of Horn Logic; and we get for free an LP interpreter
whose core is the following LP module importing the quoted identifiers module
QID with sort Qid:

fmod LP is protecting QID .

sorts U UList Query .

subsorts Qid < U < UList .

op true : -> UList . *** true as "nil"

op _,_ : UList UList -> UList [assoc id: true] .

op _[_] : Qid UList -> U . *** term constructor

op {_} : UList -> Query .

endfm

This tiny functional module is all we need to define an interpreter for Logic Pro-
gramming (LP) [without negation as failure]; i.e., for computing with Horn Logic
programs. Terms of sort U provide a universal language for atomic predicates.
For example, the binary atomic predicate s(s(0)) > s(0) will be here represented
as the term ’>[’s[’s[’0]],’s[’0]]. The sort Query is used for users of the LP
interpreter to enter queries. Such queries ask for a witness proving an existential
formula of the form:

(∃x1, . . . , xn) B1 ^ . . .^ Bk

which is here represented by a term {B1,...,Bk} of sort Query. Prolog’s depth
first search makes it incomplete. But this interpreter will be complete, i.e., if
an answer to a query exists, it will be found. Let me explain how we execute
a Horn Logic program, i.e., a collection of Horn clauses, either of the form A,
some atomic predicate, or implications of the form: A1 ^ . . . ^ An Ñ A,
with A1, . . . , An, A atomic predicates. If we think of true as the empty
conjunction, we can view all such Horn clauses as implications, since A is
equivalent to true Ñ A. In LP, and also in proof theory, the conjunction
symbol is often represented just by a comma: , and therefore a Horn
clause looks either like true Ñ A or like A1, . . . , An Ñ A. But in logic we
often take the goal we want to prove as our starting point and apply the inference
rules in reverse to search for a proof of the goal. Therefore, to compute with a
set of Horn clauses, i.e., with an LP program, we will use the clauses in reverse
as rewrite rules: A Ñ true and A Ñ A1, . . . , An. This representation would be
just fine for us to get an LP interpreter: we could make , associative-
commutative with identity true and perform symbolic reachability analysis

26 J. Meseguer

from our goal B1, . . . , Bk —which we want to existentially prove by finding a
witness using the reversed rewrite rules of type A Ñ true and A Ñ A1, . . . , An—
by trying to reach the term true, and thus a proof. This would work and would be
complete; but it would be quite inefficient, because the interpreter would waste
a lot of time performing redundant symbolic searches. We can achieve a much
more efficient interpreter by introducing two seemingly small optimizations: (1)
Make , just AU, instead of ACU. This is harmless, since all lefthand sides of
the reverse rules are single atoms. So, they can be applied anywhere, i.e., the C
axiom is unnecessary. (2) By using the operator { } in the above LP module, we
can further impose a left to right order in searching for proofs of each of our atom
goals one at a time. This will provide great efficiency. This suggests representing
a clause in reverse of the form A Ñ true as the “clause in context” rewrite rule
{A, L} Ñ {L}, taking advantage of the AU axioms, with L a variable of
sort ULIst. Likewise, we will represent a clause in reverse A Ñ A1, . . . , An as the
“clause in context” {A, L} Ñ {A1, . . . , An, L}. This is just what we will do. For
example, the following Horn clauses define the reverse [mirror image] of a binary
tree and a palindrome predicate on binary trees, where ^ is the binary
tree constructor and with the elements on tree leaves quoted identifiers; so
Q ranges over quoted identifiers:

– rev(Q,Q)
– rev(T1,T4), rev(T2,T3) Ñ rev((T1 ^ T2), (T3 ^ T4))
– rev(T,T) Ñ pal(T)

Using our “reversed clauses in context” transformation to compute with these
clauses in search for a proof of an existential query, we get the rewrite theory in
the following Maude system module, where the [narrowing] attribute instructs
Maude that the so-marked rules will be used in narrowing search:

mod TREE-REVERSE&PALINDROME is protecting LP .

var Q : Qid . vars T T’ T1 T2 T3 T4 : U . var L : UList .

rl {(’rev[Q,Q]),L} => {L} [narrowing] .

rl {(’rev[(’ˆ[T1,T2]),(’ˆ[T3,T4])]),L}

=> {(’rev[T1,T4]),(’rev[T2,T3]),L} [narrowing] .

rl {(’pal[T]),L} => {(’rev[T,T]),L} [narrowing] .

endm

Solving queries for this logic program is just narrowing with the program’s rules!
(in this case modulo AU). And, thanks to the completeness of narrowing, such
query solving is complete. For example:

Maude> vu-narrow [1] in TREE-REVERSE&PALINDROME :

{’rev[(’ˆ[(’ˆ[’a,’b]),(’ˆ[’c,’d])]),T]} =>* {true} .

Solution 1

state: {true}

accumulated substitution:

Symbolic Computation in Maude: Some Tapas 27

T --> ’ˆ[(’ˆ[’d,’c]),(’ˆ[’b,’a])]

Maude> vu-narrow [2] in TREE-REVERSE&PALINDROME :

{’rev[(’ˆ[(’ˆ[’a,’b]),T’]),T]} =>* {true} .

Solution 1

state: {true}

accumulated substitution:

T’ --> @1:Qid

T --> ’ˆ[@1:Qid,(’ˆ[’b,’a])]

variant unifier:

Solution 2

state: {true}

accumulated substitution:

T’ --> ’ˆ[@2:Qid,@1:Qid]

T --> ’ˆ[(’ˆ[@1:Qid,@2:Qid]),(’ˆ[’b,’a])]

Maude> vu-narrow [1] in TREE-REVERSE&PALINDROME :

{’pal[(’ˆ[(’ˆ[’a,’b]),(’ˆ[’c,’d])])]} =>* {true} .

No solution.

Maude> vu-narrow [1] in TREE-REVERSE&PALINDROME :

{’pal[(’ˆ[(’ˆ[’a,’b]),(’ˆ[’b,’a])])]} =>* {true} .

Solution 1

state: {true}

7 Further Reading

These tapas have been a way of introducing you, dear reader, in an informal,
high-bandwith way to some symbolic aspects of Maude that you might find
useful. As agreed, I have tried to kept technical details to a bare minimum: just
sufficient for an intelligent conversation with someone having a CS background to
be meaningful. Now is the time to explain to you how a few gaps we had to skirt
can be filled in. I focus on Maude in Sect. 7.1, and discuss broader mathematical
background readings in Sect. 7.2.

7.1 Further Reading on Maude

The most up-to-date Maude journal paper—also emphasizing symbolic aspects—
and covering other aspects such as Maude’s strategy language and Maude’s
approach to concurrent object-oriented programming and various Maude
external objects—that allow Maude programs to be executed in a distributed
manner and interact with external entities—is [20]. The Maude book [14] is
dated—since important new features were added later—but is still useful for

28 J. Meseguer

those parts it covers and its tutorial examples. For teaching formal methods
using Maude, Peter Ölvecky’s book [61] is an excellent textbook emphasiz-
ing distributed system applications. In particular, [20], [14] and [61] provide
more precise definitions of rewriting modulo B and a wealth of examples of
both functional and system modules, including parameterized ones such as the
S-EXP{A :: TRIV} one we already encountered, and the use of the reduce and
rewrite commands. For executability conditions and how to check them, for
both functional and system modules, see [22,24,32]. References [14] and [61]
also provide good explanations and examples to understand the use of Maude’s
breadth first search command, and how search supports a basic, yet very use-
ful, form of model checking verification. They also explain and illustrate well
the more sophisticated LTL temporal logic model checking also supported
directly by Maude.

Something important that did no come up in our conversation over tapas
is reflection. It did come up subliminally in theory transformations like
(Σ, E∪B) �Ñ (Σ=?, E=? ∪B), or in transforming a Horn theory into a Maude sys-
tem module. The point about reflection is that any such transformations can be
performed inside Maude, because Maude’s META-LEVEL module supports meta-
programming, i.e., writing programs that manipulate other programs. This is not
some kind of useful hack, but a piece of mathematics: the efficient exploitation
inside Maude of the fact that both rewriting logic and its underlying equational
logic are reflective [16], i.e., have universal theories that can faithfully repre-
sent any theories [including themselves] as data, as well as faithfully simulating
deduction in them. The reason why this may be of interest to you is because—
combined with the symbolic features I have explained—reflection makes it very
easy to build many formal tools, not just for Maude itself, but for many other log-
ics. Of course, in the Maude team we aggressively practice dogfooding, so all the
Maude formal verification tools have been built this way; but other researchers
use Maude in the same way for many other logics and languages. The Maude
book [14], and [20], are good sources to learn more about reflection in Maude.

To learn more about how to use unification, variants, and narrowing-
based reachability analysis in Maude, the best sources at present are the
journal paper [20], the conference paper [21], and the Maude 3.1 Manual [15]. I
discuss theoretical foundations for these and other topics in Sect. 7.2.

There are many other aspects of Maude and rewriting logic, and many other
applications that I could not discuss here. A somewhat dated but still useful sur-
vey of rewriting logic, including also references to many applications developed
in Maude, is the 2012 paper [54].

7.2 Further Background Reading

I focus here on answering the question: Where can I learn more about the mathe-
matical foundations of the topics we have discussed over tapas? This is different
from questions about Maude itself, which, hopefully, were answered in Sect. 7.1.

Symbolic Computation in Maude: Some Tapas 29

Logics. The three main logics involved are: (i) equational logic; (ii) its extension
to first-order logic; and (iii) rewriting logic. Both (ii) and (iii) are parametric on
the equational logic chosen. Since Maude functional modules specify algebraic
data types, the million-dollar question is: What is a good logic to specify algebraic
data types? This question is highly non-trivial, due to the presence of partial
functions in many data types. Joseph Goguen and I proposed order-sorted equa-
tional logic in [29], further developed in [53]. I later proposed the extension of
order-sorted equational logic to membership equational logic in [53], and devel-
oped its computational logic aspects and its rewriting techniques jointly with
Adel Bouhoula and Jean-Pierre Jouannaud in [9]. Maude’s functional modules
are based on membership equational logic; but many examples can be specified
as order-sorted theories. Any equational logic is just a fragment of a correspond-
ing first-order logic. For order-sorted logic this is explained in detail in, e.g., [69].
For simplicity of exposition, rewriting logic was first presented in [52] as having
unsorted equational logic as its sublogic. But from the beginning the intention
was to base it on order-sorted equational logic; and it was further extended, based
on membership equational logic, in [10]. A latest extension allowing quantifier-
free formulas in the conditions of conditional rules is presented in [57].

Rewriting Modulo B, and Rewriting in Rewrite Theories. I have not
touched upon conditional rewriting, which generalizes the unconditional case
and is supported by Maude. For the semantics of conditional rewriting modulo
B in convergent order-sorted equational theories, a quite comprehensive reference
is [41]. I have cheated a little by saying that convergent means Church-Rosser
and terminating: in the modulo B case the additional requirement of B-
coherence [37,55] is needed; but this is automatically enforced by the Maude
implementation. Furthermore, in the order-sorted case sort-decreasingness (see,
e.g., [41]), i.e., that the sorts of terms remain the same or go down by rewriting,
is also needed for convergence. The key theorem for equational rewriting is that
if (Σ, E ∪ B) is convergent, then we have the Church-Rosser Equivalence:

u =E∪B v ⇔ u!E,B =B v!E,B

A very general formulation of this equivalence for the conditional order-sorted
case can be found in [41]. As already mentioned, rewriting in conditional theories
in membership equational logics has been studied in [9].

For a rewrite theory, R = (Σ, E ∪ B,R), rewriting with transition rules R
should happen modulo E∪B. But this is of course very hard to implement,
since E∪B-equality may even be undecidable. Furthermore, both the equations
E and the rules R can be conditional. However, under the natural assumption
that (Σ, E ∪ B) is convergent, a simple requirement called coherence of R with
E modulo B [24,73] ensures that the unmanageable relation ÑR/(E∪B) can be
faithfully simulated by the much simpler relations ÑR,B and ÑE,B. This
is what the Maude implementation supports, requiring system modules to be
coherent.

30 J. Meseguer

Unification, Narrowing, Variants, and Variant Unification. Unification
is technical jargon for solving equations in an algebra. For algebras whose ele-
ments are numbers, this goes back to Classical Greece, where many of these
problems arose in conjunction with geometrical constructions, e.g., measuring
the diagonal of a unit square. It was advanced by the Arabs, who coined the
word “Algebra” for this business, and further developed by the Italians, Newton,
Galois, Gauss, the Emmy Noether school, and so on. Two fundamental prob-
lems about solving equations in numerical domains were settled in the 20th Cen-
tury: (i) the effective solvability of polynomial equations and inequalities in any
real-closed field, and in particular in the reals, thanks to the Tarski-Seidenberg
Theorem [67,72] —which actually decides the satisfiability of any first-order
formula in this language—, and (ii) the inexistence of a general algorithm to
solve polynomial equations in the integers—the so-called diophantine equations,
after Diophantus—, thanks to Matiyasevich’s negative answer to Hilbert’s 10th
Problem [44]. But with the rise of symbolic logic in the 20th Century, the need
naturally arose to solve equations in term algebras, i.e., in TΣ or TΣ(X) for
variables X: it amounts to the same if Σ has constants. This problem was
solved by Jacques Herbrand in his thesis (see [33], pg. 148). In Computer Science,
Herbrand’s algorithm was rediscovered independently by Alan Robinson, who
called it “unification,” as the main workhorse for resolution: his breakthrough
in automated theorem proving [65]. Since resolution was based on first-order
logic without equality, the issue of how to “build in” equational theories in res-
olution provers so as to avoid falling into the Turing tarpits was recognized as
a pressing one by Gordon Plotkin [64], who proceeded to give an A-unification
algorithm for this purpose in [64]. Independently, Makanin in Russia provided a
different A-unification algorithm in [42]. Likewise, Peterson and Stickel gave an
AC-unification algorithm in [63]. This raised the general E-unification problem,
that is, how to solve equations in the data type TΣ/E , or equivalently in TΣ/E(X),
for various E: see [5,6,36] for three surveys. The treatment of E-unification was
unsorted. But this is too restrictive for the reasons already mentioned above.
Therefore, the need for more general order-sorted E-unification algorithms arose
naturally and was answered in [59,66,71]. Additional advances were made in
[31] and—crucially for the efficiency of Maude’s implementation of order-sorted
B-unification—in [25].
Narrowing also emerged from efforts to make resolution theorem provers reason
efficiently about equality. Specifically, it was introduced by Slagle [70] as an
efficient kind of paramodulation, and was further elaborated by Lankford as a
component of a resolution-with-equality strategy assuming convergent equations
[39]. Hullot further advanced the narrowing ideas, proposed his basic narrowing
strategy, and explored under some restrictions the notion of narrowing modulo
axioms B for a convergent theory (Σ, E ∪ B) in [34]. A more systematic
generalization to this case was carried out by J.-P. Jouannaud, C. Kirchner and
H. Kirchner in [35], assuming a B-unification algorithm. The generalization to
narrowing with convergent order-sorted conditional equational theories modulo
B has been carried out in [11].

Symbolic Computation in Maude: Some Tapas 31

Both Fay [28] and Hullot [34] realized that narrowing could be used to com-
pute E-unifiers of the convergent equations E used as rules in the narrowing.
Furthermore, Hullot discussed in [34] how E ∪ B-unification algorithms could be
obtained via narrowing modulo B for (Σ, E∪B) convergent in some cases. Again,
a more systematic extension of narrowing-based E ∪ B-unification was carried
out by J.-P. Jouannaud, C. Kirchner and H. Kirchner in [35], and was later
extended to E ∪ B-unification for convergent order-sorted conditional equational
theories in [11]. However, narrowing-based E ∪ B-unification suffers from two
main drawbacks: (i) since the conditions for termination of narrowing are very
restrictive, what narrowing-based E ∪ B-unification generally provides is only a
semi-algorithm: if a E ∪ B-unifier exists, it will be found in a finite number of
steps—up to pragmatic time and space limitations; but if it does not exist, we
may never find out, making E ∪ B-unifiability undecidable in general by this
method; and (ii) since some axioms B can give rise to huge numbers of
B-unifiers, these algorithms can suffer serious combinatorial explosions. Here is
where variants, discussed next, can make a big difference.
Comon and Delaune proposed the notion of variant and studied its properties in
[18]. Folding variant narrowing and variant unification were defined and devel-
oped in [27]. Several alternative notions of variant, their relationships, and ways
of checking FVP are discussed in [12]. The extension of the properties and meth-
ods of variants modulo axioms B when B-unification can have an infinite set
of B-unifiers has been initiated in [49]. As already explained in Sect. 4, E ∪ B-
unification with the folding variant narrowing strategy has two key advantages:
(i) it terminates with a complete finite set of E ∪ B-unifiers iff (Σ,R ∪ B) is
FVP, and (ii) its search space and its efficiency are much better than standard
narrowing-based E ∪ B-unification. There are many applications of variants and
variant unification to, e.g., cryptographic protocol analysis, e.g., [13,18,26,46],
program termination [23], SMT solving, e.g., [56,68], partial evaluation, e.g., [3],
program transformation and symbolic model checking, e.g., [7,57], and theorem
proving, e.g., [50,69].

Variant Satisfiability. The foundations and many examples can be found in
[56]. Decidable QF satisfiability in TΣ/B whenever any A symbol f ∈ Σ is
also C, generalizes that of TΣ/AC in [17]. Variant satisfiability algorithms
are studied in [68]. An extension to specifications with predicates, plus variant
satisfiability of data types with constructors and selectors can be found in [30].
For variant satisfiability examples with B = A see [48]. For theorem proving
applications see [50,69].

Narrowing-Based Reachability Analysis. Narrowing was developed as an
automated deduction method for equational reasoning. The idea that narrowing
based E∪B-unification could be used to perform symbolic reachability analysis in
a rewrite theory R = (Σ, E ∪ B,R) by narrowing symbolic states with transition
rules R modulo E∪B was proposed in [51], with cryptographic protocol analysis as
an application in mind. In fact, the most impressive application of this technique

32 J. Meseguer

is the Maude-NPA tool for analysis of cryptographic protocols (see [26] for a
tutorial, and more recent references in DBLP). The extension of this technique
from reachability analysis to symbolic LTL model checking —with a Maude-
based tool supporting it—can be found in [7]. Symbolic reachability analysis
with very general conditional rules is studied in [57].

Acknowledgements. I thank the BOPL organizers for giving me the opportunity of
presenting these ideas as a BOPL joint invited speaker. I chose the talk’s topic having
in mind the interests of the various BOPL participants and, in spite of the pandemic,
found the online discussions very helpful and stimulating. The ideas I have presented
are based on joint work with various colleagues. The symbolic aspects of Maude are
part of a long and extremely active effort by the members of the Maude Team; they
owe much to Steven Eker’s high-performance implementation of its features. Folding
variant narrowing is joint work with Santiago Escobar and Ralf Sasse. Variant-based
satisfiability has been advanced in joint work with Stephen Skeirik and Raúl Gutiérrez.
The Maude-NPA has been developed in joint work with Catherine Meadows, Santiago
Escobar, and Ph.D. students at Illinois, Valencia, and Oslo. Maude’s Symbolic LTL
Model Checker is joint work with Kyungmin Bae and Santiago Escobar. Last but not
least, the work on generalization, homeomorphic embedding and variant-based partial
evaluation of Maude programs is joint research with Maŕıa Alpuente, Angel Cuenca-
Ortega, Santiago Escobar and Julia Sapiña at TU Valencia, and Demis Ballis at the
University of Udine. Given the long list, I hope I have not missed anybody, and apol-
ogize in advance if that were inadvertently the case. I warmly thank Maŕıa Alpuente,
Francisco Durán, Santiago Escobar, Maribel Fernádez, Salvador Lucas, Narciso Mart́ı-
Oliet, Rubén Rubio and Carolyn Talcott for their very helpful suggestions to improve
the manuscript. The research reported herein has been partially supported by NRL
under contract N00173-17-1-G002.

References

1. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Order-sorted home-
omorphic embedding modulo combinations of associativity and/or commutativity
axioms. Fundamenta Informaticae 177, 297–329 (2020)

2. Alpuente, M., Ballis, D., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: ACUOS 2:
a high-performance system for modular ACU generalization with subtyping and
inheritance. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS
(LNAI), vol. 11468, pp. 171–181. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-19570-0 11

3. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: A partial evaluation
framework for order-sorted equational programs modulo axioms. J. Log. Algebraic
Methods Program. 110, 100501 (2020)

4. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equa-
tional generalization algorithm. Inf. Comput. 235, 98–136 (2014)

5. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning.
Elsevier (1999)

6. Baader, F., Siekmann, J.H.: Unification theory. In: Handbook of Logic in Artificial
Intelligence and Logic Programming, vol. 2, pp. 41–126. Oxford University Press
(1994)

https://doi.org/10.1007/978-3-030-19570-0_11
https://doi.org/10.1007/978-3-030-19570-0_11

Symbolic Computation in Maude: Some Tapas 33

7. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-
state systems using narrowing. In: Rewriting Techniques and Applications (RTA
2013). LIPIcs, vol. 21, pp. 81–96. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2013)

8. Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the
finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) Fro-
CoS 2013. LNCS (LNAI), vol. 8152, pp. 327–342. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40885-4 23

9. Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theor. Comput. Sci. 236, 35–132 (2000)

10. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1–3), 386–414 (2006)

11. Cholewa, A., Escobar, S., Meseguer, J.: Constrained narrowing for conditional
equational theories modulo axioms. Sci. Comput. Program. 112, 24–57 (2015)

12. Cholewa, A., Meseguer, J., Escobar, S.: Variants of variants and the finite vari-
ant property. Technical report, CS Department University of Illinois at Urbana-
Champaign, February 2014. http://hdl.handle.net/2142/47117

13. Ciobaca., S.: Verification of composition of security protocols with applications to
electronic voting. Ph.D. thesis, ENS Cachan (2011)

14. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

15. Clavel, M., et al.: Maude Manual (Version 3.1), October 2020. http://maude.cs.
uiuc.edu

16. Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic,
many-sorted equational logic, horn logic with equality, and rewriting logic. Theor.
Comput. Sci. 373, 70–91 (2007)

17. Comon, H.: Unification et disunification: Théorie et applications. Ph.D. thesis,
Institute National Polytechnique de Grenoble, France (1988)

18. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3 22

19. CVC4: https://cvc4.github.io
20. Durán, F., et al.: Programming and symbolic computation in Maude. J. Log.

Algebr. Meth. Program. 110 (2020). https://doi.org/10.1016/j.jlamp.2019.100497
21. Durán, F., Eker, S., Escobar, S., Mart́ı-Oliet, N., Meseguer, J., Talcott, C.: Associa-

tive unification and symbolic reasoning modulo associativity in Maude. In: Rusu, V.
(ed.) WRLA 2018. LNCS, vol. 11152, pp. 98–114. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99840-4 6

22. Durán, F., Lucas, S., Meseguer, J.: MTT: the Maude termination tool (system
description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 313–319. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71070-7 27

23. Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational
theories. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol.
5749, pp. 246–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04222-5 15

24. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of condi-
tional order-sorted rewrite theories. J. Algebraic Log. Program. 81, 816–850 (2012)

https://doi.org/10.1007/978-3-642-40885-4_23
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu
https://doi.org/10.1007/978-3-540-32033-3_22
https://cvc4.github.io
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1007/978-3-319-99840-4_6
https://doi.org/10.1007/978-3-319-99840-4_6
https://doi.org/10.1007/978-3-540-71070-7_27
https://doi.org/10.1007/978-3-540-71070-7_27
https://doi.org/10.1007/978-3-642-04222-5_15
https://doi.org/10.1007/978-3-642-04222-5_15

34 J. Meseguer

25. Eker, S.: Fast sort computations for order-sorted matching and unification. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 299–314. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24933-4 15

26. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 1

27. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Algebraic Log. Program. 81, 898–928 (2012)

28. Fay, M.: First-order unification in an equational theory. In: Proceedings of the
Fourth Workshop on Automated Deduction, Austin, Texas, pp. 161–167 (1979)

29. Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci.
105, 217–273 (1992)

30. Gutiérrez, R., Meseguer, J.: Variant-based decidable satisfiability in initial algebras
with predicates. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS,
vol. 10855, pp. 306–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94460-9 18

31. Hendrix, J., Meseguer, J.: Order-sorted equational unification revisited. Electr.
Notes Theor. Comput. Sci. 290, 37–50 (2012)

32. Hendrix, J., Meseguer, J., Ohsaki, H.: A sufficient completeness checker for linear
order-sorted specifications modulo axioms. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 151–155. Springer, Heidelberg (2006).
https://doi.org/10.1007/11814771 14

33. Herbrand, J.: Logical Writings. Reidel (1971)
34. Hullot, J.-M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.)

CADE 1980. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980). https://doi.
org/10.1007/3-540-10009-1 25

35. Jouannaud, J.-P., Kirchner, C., Kirchner, H.: Incremental construction of unifi-
cation algorithms in equational theories. In: Diaz, J. (ed.) ICALP 1983. LNCS,
vol. 154, pp. 361–373. Springer, Heidelberg (1983). https://doi.org/10.1007/
BFb0036921

36. Jouannaud, J.P., Kirchner, C.: Solving equations in abstract algebras: a rule-based
survey of unification. In: Computational Logic - Essays in Honor of Alan Robinson,
pp. 257–321. MIT Press (1991)

37. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM J. Comput. 15, 1155–1194 (1986)

38. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

39. Lankford, D.S.: Canonical inference. Technical report ATP-32, Southwestn Uni-
versity (1975)

40. Levi, G., Sirovich, F.: Proving program properties, symbolic evaluation and logical
procedural semantics. In: Bečvář, J. (ed.) MFCS 1975. LNCS, vol. 32, pp. 294–301.
Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07389-2 211

41. Lucas, S., Meseguer, J.: Normal forms and normal theories in conditional rewriting.
J. Log. Algebr. Meth. Program. 85(1), 67–97 (2016)

42. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math.
USSR Sbornik 32(2), 129–198 (1977)

https://doi.org/10.1007/978-3-642-24933-4_15
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1007/978-3-319-94460-9_18
https://doi.org/10.1007/978-3-319-94460-9_18
https://doi.org/10.1007/11814771_14
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/BFb0036921
https://doi.org/10.1007/BFb0036921
https://doi.org/10.1007/3-540-07389-2_211

Symbolic Computation in Maude: Some Tapas 35

43. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework.
In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn,
pp. 1–87. Kluwer Academic Publishers (2002). first published as SRI Technical
report SRI-CSL-93-05, August 1993

44. Matiyasevich, Y.V.: Hilbert’s 10th Problem. MIT Press, Cambridge (1993)
45. McCarthy, J., Abrahams, P., Edwards, D., Hart, T., Levin, M.: LISP 1.5 Program-

mer’s Manual. MIT Press, Cambridge (1985)
46. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the

symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

47. Meseguer, J.: Order-sorted parameterization and induction. In: Palsberg, J. (ed.)
Semantics and Algebraic Specification. LNCS, vol. 5700, pp. 43–80. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-04164-8 4

48. Meseguer, J.: Variant satisfiability of parameterized strings. In: Escobar, S., Mart́ı-
Oliet, N. (eds.) WRLA 2020. LNCS, vol. 12328, pp. 96–113. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63595-4 6

49. Meseguer, J.: Variants in the infinitary unification wonderland. In: Escobar, S.,
Mart́ı-Oliet, N. (eds.) WRLA 2020. LNCS, vol. 12328, pp. 75–95. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-63595-4 5

50. Meseguer, J., Skeirik, S.: Inductive reasoning with equality predicates, contextual
rewriting and variant-based simplification. In: Escobar, S., Mart́ı-Oliet, N. (eds.)
WRLA 2020. LNCS, vol. 12328, pp. 114–135. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-63595-4 7

51. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to the verification of cryptographic protocols. J. Higher-Order Symbolic
Comput. 20(1–2), 123–160 (2007)

52. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

53. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4 26

54. Meseguer, J.: Twenty years of rewriting logic. J. Algebraic Log. Program. 81, 721–
781 (2012)

55. Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Theor.
Comput. Sci. 672, 1–35 (2017)

56. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program.
154, 3–41 (2018)

57. Meseguer, J.: Generalized rewrite theories, coherence completion and symbolic
methods. J. Log. Algebraic Methods Program. (2019)

58. Meseguer, J., Goguen, J.: Order-sorted algebra solves the constructor-selector, mul-
tiple representation and coercion problems. Inf. Comput. 103(1), 114–158 (1993)

59. Meseguer, J., Goguen, J., Smolka, G.: Order-sorted unification. J. Symbolic Com-
put. 8, 383–413 (1989)

60. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

61. Ölveczky, P.C.: Designing Reliable Distributed Systems. UTCS. Springer, London
(2017). https://doi.org/10.1007/978-1-4471-6687-0

62. Oppen, D.C.: Complexity, convexity and combinations of theories. Theor. Comput.
Sci. 12, 291–302 (1980)

https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-04164-8_4
https://doi.org/10.1007/978-3-030-63595-4_6
https://doi.org/10.1007/978-3-030-63595-4_5
https://doi.org/10.1007/978-3-030-63595-4_7
https://doi.org/10.1007/978-3-030-63595-4_7
https://doi.org/10.1007/3-540-64299-4_26
https://doi.org/10.1007/978-1-4471-6687-0

36 J. Meseguer

63. Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational
theories. J. Assoc. Comput. Mach. 28(2), 233–264 (1981)

64. Plotkin, G.: Building-in equational theories. Mach. Intell. 7, 73–90 (1972)
65. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.

Assoc. Comput. Mach. 12, 23–41 (1965)
66. Schmidt-Schauß, M. (ed.): Computational Aspects of an Order-Sorted Logic with

Term Declarations. LNCS, vol. 395. Springer, Heidelberg (1989). https://doi.org/
10.1007/BFb0024065

67. Seidenberg, A.: A new decision method for elementary algebra. Ann. Math. 60,
365–374 (1954)

68. Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. J. Log.
Algebr. Meth. Program. 96, 81–110 (2018)

69. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for
rewrite theories. Fundam. Inform. 173(4), 315–382 (2020)

70. Slagle, J.R.: Automated theorem-proving for theories with simplifiers commutativ-
ity, and associativity. J. ACM 21(4), 622–642 (1974)

71. Smolka, G., Nutt, W., Goguen, J., Meseguer, J.: Order-sorted equational com-
putation. In: Nivat, M., Aı̈t-Kaci, H. (eds.) Resolution of Equations in Algebraic
Structures, vol. 2, pp. 297–367. Academic Press (1989)

72. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press (1951). prepared with the assistance of J.C.C. McKinsey

73. Viry, P.: Equational rules for rewriting logic. Theor. Comput. Sci. 285, 487–517
(2002)

74. Yices: https://yices.csl.sri.com

https://doi.org/10.1007/BFb0024065
https://doi.org/10.1007/BFb0024065
https://yices.csl.sri.com

Runtime Complexity Analysis
of Logically Constrained Rewriting

Sarah Winkler1(B) and Georg Moser2

1 Free University of Bolzano, Bolzano, Italy
sarwinkler@unibz.it

2 University of Innsbruck, Innsbruck, Austria
georg.moser@uibk.ac.at

Abstract. Logically constrained rewrite systems (LCTRSs) are a ver-
satile and efficient rewriting formalism that can be used to model pro-
grams from various programming paradigms, as well as simplification
systems in compilers and SMT solvers. In this paper, we investigate
techniques to analyse the worst-case runtime complexity of LCTRSs. For
that, we exploit synergies between previously developed decomposition
techniques for standard term rewriting by Avanzini et al. in conjunc-
tion with alternating time and size bound approximations for integer
programs by Brockschmidt et al. and adapt these techniques suitably
to LCTRSs. Furthermore, we provide novel modularization techniques
to exploit loop bounds from recurrence equations which yield sublinear
bounds. We have implemented the method in TCT to test the viability of
our method.

1 Introduction

Rewriting with constraints over background theories is a highly versatile model
of computation and tool for analysis. While user-defined data types are modelled
by free function symbols, arbitrary decidable theories can be incorporated, such
as integer or bit-vector arithmetic, lists, or array theory. Constraints over these
theories can be effectively handled by SMT solvers. Different rewrite formalisms
capture this idea [11,19,21]. Here we use the recent notion of logically constrained
term rewrite systems (LCTRSs for short), due to Kop et al. [10,20,28,29].

LCTRSs can abstract programs in a variety of paradigms, comprising imper-
ative, functional, and logic languages. They also subsume integer transition sys-
tems (ITSs), which constitute a frequently used program abstraction [8,15,19]
but do—in contrast to LCTRSs—not support (non-tail) recursion. On the
other hand, LCTRSs can also model simplification routines for expressions,
which are crucial procedures in compilers or SMT solvers. For all of these
application areas, LCTRSs offer a uniform toolset to analyse termination (or
non-termination) [27,33], reachability [10], uniqueness [41], or program equiva-
lence [20].

c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 37–55, 2021.
https://doi.org/10.1007/978-3-030-68446-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-68446-4_2

38 S. Winkler and G. Moser

However, techniques for resource analysis of LCTRSs are so far lacking. This
is despite the fact that in their application domains (program analysis, simplifi-
cation systems), execution time is crucial. As a remedy, this paper investigates
methods to analyse (worst-case) innermost runtime complexity of logically con-
strained rewrite systems. To this end, we unify and generalise the complexity
framework for standard rewriting by Avanzini and Moser [4] with the approach
by Brockschmidt et al. to alternate time and size bound analysis for ITSs [8],
and moreover propose processors for modularisation and sublinear bounds.

Contributions. We present a novel resource analysis framework for logically con-
strained rewrite systems (Sect. 4) coached in the modular processor framework
of TCT [5]. Precisely,

1. we present the first fully-automated runtime complexity analysis of LTCRSs;
2. we unify the complexity framework for standard (innermost) rewriting by

Avanzini and Moser [4] and the alternating time and size bound approxima-
tions for ITSs by Brockschmidt et al. [8],

3. generalising this, we introduce a novel modularisation processor, the splitting
processor ;

4. we present a novel processor, dubbed recurrence processor to derive sublinear
bounds based on recurrences as described by the Master Theorem;

5. we illustrate the viability of our method by providing a prototype imple-
mentation as a dedicated module tct-lctrs in TCT, and evaluate it on ITS
benchmarks.

In the remainder of the section, we highlight potential application areas of
LCTRSs to emphasise their versatility. In the next section (Sect. 2) we give a
high-level account of our technical achievements, providing a step-by-step expla-
nation how the runtime complexity of a natural representation of mergesort can
be optimally analysed in our framework. In this section, we also discuss to what
extent our results can be applied to the below given examples. In Sect. 3 we
summarise the foundations of LCTRSs, while in Sect. 4 we detail the complex-
ity framework used. Processors carried over from the ITS setting are presented
in Sect. 5, and the novel processors are introduced in Sect. 6. Implementational
choices and experimental results are summarized in Sect. 7. Finally, in Sect. 8
we conclude. Some proofs were moved to an extended version [42].

Logically Constrained Rewrite Systems. We emphasise motivational examples
from three different domains, focusing on imperative and logic programs, as well
as compiler optimisations.

Example 1. The following recursive ITS R1, due to Albert et al. [1], corresponds
to an imperative mergesort implementation after computing loop summaries. It
is naturally coached into the LCTRS framework, with the theory of integers as
background theory.

Runtime Complexity Analysis of Logically Constrained Rewriting 39

(1) init(x, y, z) → m(x, y, z) (2) m3(x, y, z) → merge(y, z, z)

(3) m1(x, y, z) → m(y, y, z) (4) merge(x, y, z) → merge(x − 1, y, z) [x � 1 ∧ y � 1]

(5) m0(x, y, z) → split(x, y, z) (6) split(x, y, z) → split(x − 2, y, z) [x � 2]

(7) m2(x, y, z) → m(z, y, z) (8) merge(x, y, z) → merge(x, y − 1, z) [x � 1 ∧ y � 1]

(9) m(x, y, z) → 〈m0(x, u, v),m1(x, u, v),m2(x, u, v),m3(x, u, v)〉
[x � 2 ∧ u � 0 ∧ v � 0 ∧ x + 1 � 2u ∧ 2u � x ∧ x � 2v ∧ 2v + 1 � x]

Here a rule of the form � → r [c] means that an instance of � is replaced by the
respective instance of r provided that the instance of c is satisfied.

Similarly, (constraint) logic programs can be nicely suited to LCTRSs.

Example 2. Consider the following simple Prolog program from the benchmarks
collected by Mesnard and Neumerkl [31].

max length(Ls,M,Len) :- max1(Ls,0,M), len(Ls,Len).

len([H|T],L) :- len(T,LT), L is LT + 1. len([],0).

max1([H|T],N,M) :- H <= N, max1(T,N,M). max1([],M,M).

max1([H|T],N,M) :- H > N, max1(T,H,M).

Assuming an instantiated list Ls, max length(Ls,M,Len) is deterministic and
returns the maximal list entry and the length of the list. This function becomes
representable as the following LCTRS R2 over the theory of integers and lists:

max length(ls,m, l) → 〈max(ls, 0,m), len(ls, l)〉
len(xs, l) → len(t, l − 1) [xs ≈ h :: t] len([], 0) → 〈〉

max(xs, n,m) → max(t, n,m) [h � n ∧ xs ≈ h :: t] max([],m,m) → 〈〉
max(xs, n,m) → max(t, h,m) [h > n ∧ xs ≈ h :: t]

Here, :: denotes the cons operator and 〈·, ·〉, 〈〉 are additional constructor symbols
to collect the recursive calls of a rule. Conceptually LCTRSs appear as a good
fit to express constraint logic programs as well, making use of the fact that
constraints are natively supported.

In order to emphasise that LCTRSs are not confined to static program analysis,
we present a final example which is concerned with program optimisation.

Example 3. The Instcombine pass in the LLVM compilation suite performs
peephole optimisations to simplify expressions in the intermediate representa-
tion. The current optimisation set contains over 1000 simplification rules to e.g.
replace multiplications by shifts or perform bitwidth changes. About 500 of them
have recently been translated into the domain-specific language Alive [30], and
subsequently into LCTRSs [41], resulting in rules of the following shape:

add(x, x) → shift left(x,#x1)
add(add(xor(or(x, a), y),#x1), w) → sub(w, and(x, b)) [a ≈ ∼b]

add(xor(x, a), z) → sub(a + z, x) [isPowerOf2(a + #x1) ∧ . . .] .

40 S. Winkler and G. Moser

These rules are expressed over the background theory of bit-vectors. Naturally,
as a compiler pass this simplification suite is a performance-critical routine, hence
an automated complexity analysis is of great interest.

2 Step by Step to an Optimal Bound

Consider the rewrite system R1 from Example 1, and a rewrite sequence starting
with an instance of init(x0, y0, z0). Below we sketch the steps to obtain an upper
bound on the runtime complexity of R1, expressed in |x0|, |y0|, and |z0|, where
| · | denotes the absolute value.

An automated runtime complexity analysis of mergesort is notoriously diffi-
cult: For this example, CoFloCo [16,17] can only derive a quadratic bound, while
KoAT [8] (as well as AProVE [22]) even proposes an exponential bound. PUBS [1]
can produce an O(n · log(n)) bound, using a special level-counting feature, which
however negatively affects its overall success rate. Due to the work presented in
this paper, our complexity analyser TCT can automatically prove the optimal
O(n · log(n)) upper bound. This is obtained by the following recipe.

1. We first compute dependency tuples of all rules to focus the analysis on
recursive calls (see Definition 4). Then a dependency graph approximation
is computed to estimate computation paths, where the numbers refer to the
respective dependency tuples of rules in Example 1:

(1) (9)

(3)

(7)

(2)

(5) (6)

(4)

(8)

2. Next, we derive bounds on the size of variables in left hand sides of rules,
in terms of the sizes of the variables in the initial term init(x0, y0, z0). For
example, it is easy to check that for rule (9), |x|, |y|, and |z| are bounded by
|x0|, |y0|, and |z0|, respectively, and all variables in other rules are bounded
by |x0|. This is established by the size bounds processor (Lemma 3). Formally,
we adapt techniques developed for ITSs for that purpose [8].

3. We first derive time bounds for the SCCs {2, 4, 8} and {6} separately
(Lemma 2). Thus, using the size bounds from above and suitable interpre-
tations [4] (also called polynomial ranking functions [8]) for LCTRSs, one
can derive linear runtime bounds 2|x0| + 1 and |x0| for these subproblems,
respectively.

4. In order to analyse the SCC {3, 7, 9}, we first apply chaining to combine rule
(9) with (3) and (7), respectively (eliminating symbols m1 and m2).

5. With respect to the modified rule (9) and the derived subproblem bounds,
we exploit the loop processor (Lemma 5) to observe that its runtime can thus
be overestimated by the following recurrence equations.

f(|x|, |y|, |z|) = 2 · f(|x|/2, |x|/2, |x|/2) + 3|x| + 1 f(1, |y|, |z|) = 0 (1)

Runtime Complexity Analysis of Logically Constrained Rewriting 41

Solving the recurrences by the Master Theorem, implies an overall runtime
complexity of O(|x0| · log(|x0|)) for R1, as |x| in rule (9) is bound by |x0|.

Wrt. R2 from Example 2, we can fully automatically infer an (asymptotic)
optimal linear bound on the runtime complexity for the given instantiation. Here,
we take an instance of max length(xs, z, l) as initial term. As for comparison, note
that the corresponding logic program cannot be handled by a dedicated variant
of AProVE [23] geared towards runtime complexity analysis of logic programs.
Only termination can be shown by the most recent version of AProVE [22]. A
priori, our approach is restricted to logic programs with instantiation patterns
that ensure determinism and avoid failure, but in the conclusion we discuss how
to overcome this limitation.

Finally, Example 3 cannot yet be handled, as a successful analysis requires the
extension of the proposed framework to (innermost) derivational complexity (i.e.,
the setting of arbitrary starting terms that may contain nested defined symbols).
This is subject to future work. However, we conceive the work established in this
paper as a solid first step towards the automated analysis of such systems.

3 Logically Constrained Term Rewriting

We assume familiarity with term rewriting [6,37], but briefly recapitulate the
notion of logically constrained rewriting [20,28] that our approach is based on.
We consider an infinite, sorted set of variables V and a sorted signature F =
FT �FL such that T (F ,V) denotes the set of terms over this disjoint signature.
Symbols in FT are called term symbols, while symbols in FL are theory symbols.
A term in T (FL,V) is a theory term. For a non-variable term t = f(t1, . . . , tn), we
write root(t) to obtain the top-most symbol f . A position p is an integer sequence
used to identify subterms, and the subterm of t at position p is denoted t|p. We
write Pos(t) for the set of positions in a term t, and given a set of function
symbols F ′, PosF ′(t) are those positions p ∈ Pos(t) such that t|p is rooted by a
symbol in F ′. A substitution σ is a mapping from variables to terms with finite
domain, and tσ denotes the application of σ to a term t.

Theory terms T (FL,V) have a fixed semantics: we assume a mapping I that
assigns to every sort ι occurring in FL a carrier set I(ι). Moreover, we assume
that for every element a ∈ I(ι) there is exactly one constant symbol ca ∈ FL,
called a value. The set of all value symbols is denoted Val. For instance, if the
sort of integers occurs in FL then Val ⊆ FL contains a value ci for every i ∈ Z.

Moreover, we assume a fixed interpretation J that assigns to every theory
symbol f ∈ FL a function fJ of appropriate sort, and such that (ca)J = a for
value symbols ca, i.e., value symbols are interpreted as the represented element.
The interpretation J naturally extends to theory terms without variables by
setting [f(t1, . . . , tn)]J = fJ ([t1]J , . . . , [tn]J). In particular, we assume a sort
bool such that I(bool) = {�,⊥} with values Valbool = {true, false} such that
trueJ = �, and falseJ = ⊥. We also assume that FL contains equality symbols
≈ι for every theory sort ι, and a symbol ∧ interpreted as logical conjunction.

42 S. Winkler and G. Moser

Theory terms of sort bool are called constraints, and a constrained term is
a pair (t, ϕ) of a term t and a constraint ϕ. A substitution γ is a valuation if
its range is a subset of Val. A constraint ϕ is valid, denoted |= ϕ, if [ϕγ]J = �
for all valuations γ, and satisfiable if [ϕγ]J = � for some valuation γ. We write
ψ |= ϕ if all valuations that satisfy ψ also satisfy ϕ.

Logically Constrained Rewriting. A constrained rewrite rule is a triple � → r [ϕ]
where �, r ∈ T (F ,V), �
∈ V, ϕ is a constraint, and root(�) ∈ FT . If ϕ = true then
the constraint is omitted. For a rule ρ : � → r [ϕ] we use lhs(ρ) = � and rhs(ρ) = r
to denote its left- and right-hand sides, respectively. A set of constrained rewrite
rules is called a logically constrained term rewrite system (LCTRS for short). For
an LCTRS R, its defined symbols FD are all root symbols of left-hand sides,
that is, FD = {root(�) | � → r [ϕ] ∈ R}. In the remainder we assume that
LCTRSs are left-linear, that is, all variables occur at most once in the left-hand
side � of a rule � → r [ϕ].1 An LCTRS R is a transition system if all rules in R
are of the form f(�1, . . . , �n) → g(r1, . . . , rm) [ϕ] such that f, g ∈ FT , all �i ∈ V,
and all rj are in T (FL,V); if moreover the background theory associated with
FL is the theory of integers then R is an integer transition system (ITS).

The fixed rewrite system Rcalc is the (infinite) set of rules f(�1, . . . , �n) → u
such that f ∈ FL \Val, �i ∈ Val for all 1� i� n, and u ∈ Val is the value symbol
of [f(�1, . . . , �n)]J . A rewrite step using Rcalc is called a calculation step and
denoted →calc. A rule step s →σ

ρ t using a rule ρ : � → r [ϕ] and substitution
σ satisfies s = C[�σ], t = C[rσ], and σ respects ϕ; where a substitution σ is
said to respect a constraint ϕ if ϕσ is valid and σ(x) ∈ Val for all x ∈ Var(ϕ).
The substitution in the notation →σ

ρ is mostly omitted, and a rule step simply
denoted →ρ. For an LCTRS R, we denote the relation →calc ∪{→ρ}ρ∈R by →R.
The above rewrite step is innermost, denoted s

i→ρ t, if all proper subterms of
�σ are in normal form with respect to →R. Given binary relations R and S, we
write R/S for S∗ · R · S∗. For LCTRSs R and S we abbreviate i→R /

i→S by
i→R/S , and i→R / →calc by i→R/calc.

Example 4 (continued from Example 2). The LCTRS R2 indicated in Exam-
ple 2, expressing the predicate max length/3, makes use of the sorts int, list and
bool. Furthermore, FL consist of symbols :: and [] for lists, ·, +, −, �, and � as
well as values n for all n ∈ Z, with the usual interpretations on Z and lists of
integers. Then R admits the following rewrite steps:

len([1, 2], 2) → len([2], 2 − 1) →calc len([2], 1) → len([], 1 − 1) →calc len([], 0)

Note that in LCTRS rewriting, calculation steps like the subtractions in Exam-
ple 4 are explicit in the →calc relation, in contrast to ITSs or related for-
malisms [32], where simplification is implicit. Moreover, innermost rewriting is

1 Non-left-linear rules are rare in practice; and moreover repeated occurrences of a
variable x in � can be substituted by a fresh variable x′, adding x ≈ x′ to ϕ. Though
this implies that x can only be substituted by theory terms in rewrite sequences, for
innermost evaluation this is not a limitation.

Runtime Complexity Analysis of Logically Constrained Rewriting 43

a rather natural restriction for LCTRSs: By the definition of a rule step using
some rule ρ, variables in the constraint of ρ need to be substituted by values.
Hence non-innermost steps are only possible if nested redexes occur below uncon-
strained variables. For instance, in a term f(f(2)) only the inner f call constitutes
a redex for the rule f(x) → x [x > 0].

Algebras. We assume mappings | · |ι : I(ι) → N for every sort ι, playing the
role of norms to measure size. For instance, one might take the absolute values
for integers, the size function for arrays, and the unsigned integer value for bit-
vectors. The subscript ι in |t|ι is omitted if the sort of t is clear from the context.

We consider well-founded algebras A over the natural numbers and the
Booleans, with interpretation functions fA for all f ∈ FT ∪ FL, cf. [6,37]. By
tA we denote the interpretation of a term t based on A, and by [α]A(t) the
interpretation of t based on A and valuation α. In order to bound complexity,
we use algebras that incorporate the given complexity measures:

Definition 1. A measure interpretation is given by an algebra M with carrier
N, and measures | · |ι for all sorts ι. The interpretation tM of a term t is |t|ι
if t ∈ V has sort ι, and fM(tM1 , . . . , tMm) if t = f(t1, . . . , tm). In addition, we
demand that fM([t1]MJ , . . . , [tn]MJ) � [f(t1, . . . , tn)]MJ for all values t1, . . . , tn.

In the following we suit interpretations (aka ranking functions) to LCTRSs.
The ternary relation >M

[·] is defined as s >M
[ϕ] t if and only if [α]M(s) > [α]M(t)

is satisfied for all valuations α that respect ϕ. Similarly, s �M
[ϕ] t if and only if

[α]M(s) � [α]M(t) holds for all valuations α that respect ϕ.

Definition 2. We call an LCTRS R weakly compatible with a measure inter-
pretation M if � �M

[ϕ] r for all � → r [ϕ] ∈ R, and strictly compatible if R is
weakly compatible and in addition � >M

[ϕ] r for some � → r [ϕ] ∈ R.

Example 5. Consider the measure interpretation M such that mM
3 (x, y, z) = y,

mergeM(x, y, z) = x, x +M y = x +N y, x −M y = max(x −N y, 0), �M is �N,
and vM = max(v, 0) for all v ∈ Z. The LCTRS R′ consisting of the rules (2),
(4), and (8) from Example 1 is strictly compatible with M, since the rules (2)
and (8) are weakly decreasing, while (4) is strictly decreasing.

4 Complexity Framework

An LCTRS R is terminating if →R is well-founded. In applications like static
analysis, termination of a program is often not enough and more precise resource
guarantees are needed. In this section we propose suitable runtime complexity
notions for LCTRSs.

Following common notions in complexity analysis [4], the derivation height
of a term t wrt. a binary relation → is defined as follows: dh(t0,→) := sup {k |
∃ t1, . . . , tk. t0 → · · · → tk}. We assume that an LCTRS R is associated with
a unique initial state (t0, ϕ0) such that ϕ0 is a constraint and t0 = init(x) is

44 S. Winkler and G. Moser

the initial term, for a vector of input variables x = (x1, . . . , xn) and a function
symbol init that does not occur on any right-hand side. The intention is that we
consider only rewrite sequences starting at t0σ, such that σ is a valuation that
respects ϕ0. Sometimes s0 will be used as a shorthand for (t0, ϕ0).

For u, v ∈ N
k, let u �k v abbreviate

∧k
i=1 ui � vi. Given t = (t1, . . . , tk), |t|

denotes (|t1|, . . . , |tk|), and tσ denotes (t1σ, . . . , tkσ) for any substitution σ. For
a term t, we write Var(t) for a vector containing Var(t) in a fixed order.

Definition 3. For an LCTRS R and a constrained term (t, ϕ) such that x =
Var(t), the (innermost) runtime complexity rc

(t,ϕ)
R : Nn → N∪ {ω} is defined as

rc
(t,ϕ)
R (m) = sup {dh(tσ,

i→R/calc) | |xσ| �n m for some σ that respects ϕ}.

Thus, the runtime complexity of an LCTRS is the maximal number of innermost
rule steps in a rewrite sequence that starts with a size-bounded instance of
the initial state (t, ϕ); calculation steps are not counted. This is common in
cost analysis, it also corresponds to the runtime complexity of a program or
ITS [8], where the number of transitions are counted but not simplifications of
expressions.

Dependency pairs are commonly used in termination and complexity analysis
of rewrite systems. For termination of LCTRSs they were already used in earlier
work [27]. For complexity analysis, stronger notions were developed for standard
rewriting: dependency tuples (DTs) [34], weak [25], and grouped dependency
pairs [4]. Since we consider innermost rewriting, we can use an LCTRS variant
of dependency tuples. To that end, for every defined symbol f we consider a fresh
symbol f �, and for a term t = f(t1, . . . , tn) write t� to denote f �(t1, . . . , tn).

Definition 4. Consider a rule ρ : � → r [ϕ] such that PosFD (r) is sorted as
p1, . . . , pk with respect to a fixed order on positions. Then the dependency tuple
DT(ρ) of ρ is the constrained rule �# → 〈(r|p1)

#, . . . , (r|pk
)#〉k [ϕ]. For an

LCTRS R, DT(R) =
⋃

ρ∈R DT(ρ).

Here 〈. . . 〉k is a fresh tuple symbol for every arity k (but the subscript will
be dropped for simplicity).

Definition 5 (Dependency Graph). Let R be an LCTRS and D ⊆ DT(R).
The dependency graph (DG) is the directed graph with node set D and edges from
s# → 〈t#1 , . . . , t#n 〉 [ϕ] to u# → v [ψ] if there is some t#i such that t#i σ →∗

R u#τ ,
for some substitutions σ and τ and some i, 1 � i � n.

The DG is not computable in general, but approximation techniques are well-
known [5,22,27,34]. For instance, the graph in Sect. 2 constitutes a dependency
graph approximation for the LCTRS from Example 1. Following Noschiniski
et al. [34], we assume particular interpretation functions for the tuple operators
〈. . . 〉. To this end, let a DT-measure interpretation M be a measure interpreta-
tion that interprets 〈t1, . . . , tk〉M = t1 + · · · + tk, for all k � 0.

Let the set of bound expressions UB be inductively defined as follows: (i)
|x|ι ∈ UB for x ∈ V of sort ι, (ii) Z ⊆ UB and ω ∈ UB, (iii) if p, q ∈ UB then

Runtime Complexity Analysis of Logically Constrained Rewriting 45

p + q, pq, and max(p, q) are in UB, and (iv) if p ∈ UB and k ∈ N then kp, p/k,
and logk(p) are in UB. Given p, q ∈ UB, we write p � q if [α]N(p) � [α]N(q) for
all substitutions α : V → N. For a bound expression p ∈ UB and m ∈ N

n we also
write p(m) to denote the substituted bound expression p[mi/xi]1�i�n, assuming
x ∈ Vn are the variables in the initial term t0 = init(x).

A triple P = ((t, ϕ),D,R) of a constrained term (t, ϕ), a set of DTs D, and
an LCTRS R is called a (complexity) problem. Following Brockschmidt et al. [8],
we next define time and size bound approximations.

Definition 6. For a complexity problem ((t, ϕ),D,R) with x = Var(t), a func-
tion T : D → UB is a runtime approximation if, for all ρ ∈ D and m ∈ N

n,

T (ρ)(m) � sup {dh(tσ,
i→{ρ}/D∪R) | |xσ| �n m and σ respects ϕ}.

In words, a runtime approximation T (ρ) over-approximates how often a DT
ρ ∈ D can be used in a rewrite sequence starting from the initial state, expressed
in terms of the input variables. For instance, consider Example 1 and let (1#)
be the DT corresponding to rule (1). Then the function T such that T (1#) = 1
and T (ρ)(|x0|, |y0|, |z0|) = |x0|2 for all other DTs ρ ∈ D is a valid (though not
optimal) runtime approximation.

For a complexity problem ((t, ϕ),D,R), the set of entry variables EV is the
set of all tuples (ρ, y) such that ρ ∈ D and y ∈ Var(lhs(ρ)).

Definition 7. For a complexity problem ((t, ϕ),D,R) with x = Var(t), a func-
tion S : EV → UB is a size approximation if

S(ρ, y)(m) � sup {|yτ | | ∃σ, u. tσ
i→

∗
R∪D · i→

τ

ρ u, |xσ| �n m}

for (ρ, y) ∈ EV such that substitution σ respects ϕ, and m ∈ N
n.

A size approximation over-approximates how large a variable in the left-hand side
of a rule in D can get in a rewrite sequence from the initial state, again expressed
in terms of the input variables. A tuple (T, S) is a bound approximation for a
complexity problem P if T and S are runtime and size approximations for P .
We next define a complexity framework in the spirit of Avanzini and Moser [4].

Definition 8. Given a complexity problem P = (s0,D,R), a (complexity)
judgement is a statement � P : (T, S), for functions T : D → UB and S : EV →
UB. The judgement is valid if (T, S) is a bound approximation for P . A com-
plexity processor is an inference rule on complexity judgements of the following
form:

� P1 : (T1, S1), . . . ,� Pk : (Tk, Sk)
� P : (T, S)

Proc

and it is sound if � P : (T, S) is valid whenever all � Pi : (Ti, Si) are valid.

For a problem P = (s0,D,R) with initial state s0 = (init(x), ϕ), a DT � →
r [ψ] ∈ D is initial if root(�) = init#. The initial processor for P is given by

� P : (T, Sω)
Initial

46 S. Winkler and G. Moser

where T (ρ) = 1 if ρ is initial and T (ρ) = ω otherwise; and Sω(ρ, x) = ω for all
(ρ, x) ∈ EV. Since init# does not occur on any right-hand side by assumption,
the processor Initial is sound. For instance, the DT init#(x, y, z) → m#(x, y, z)
originating from rule (1) in Example 1 is initial. For a problem P = (s0,D,R)
and an expression C ∈ UB, we sometimes write � P : ((C)Σ, S) to express that
there is a runtime approximation T such that � P : (T, S) and C =

∑
ρ∈D T (ρ).

The next result states that valid judgements bound the runtime complexity
of LCTRSs. It can be proven in a similar way as [4, Theorem 6], using the
properties of dependency tuples for innermost rewriting.

Theorem 1. If an LCTRS R with initial state (t, ϕ) admits the valid judgement
� ((t#, ϕ),DT(R),R ∪ Rcalc) : (T, S) then rc

(t,ϕ)
R �

∑
ρ∈DT(R) T (ρ) holds.

5 Processors

This section presents processors that implement the complexity framework from
Sect. 4, in particular showing how the respective ITS techniques [8] carry over.

Interpretation Processors. Compatible interpretations are a standard tool in
resource analysis, cf. [4,8,34]. We first present a processor using a measure inter-
pretation that orients all rules and DTs (cf. [8, Theorem 3.6]). For p ∈ UB, let
[p] denote the bound expression obtained from p by replacing all coefficients in p
by their absolute values (such that the resulting expression is weakly monotone).

Lemma 1. Let P = ((t0, ϕ0),D,R) and M a DT-measure interpretation with
which R is weakly, and D is strictly compatible. Then the following processor is
sound, where T ′(ρ) = [(t0)M] for all ρ ∈ D>, and T ′(ρ) = T (ρ) otherwise:

� P : (T, S)
� P : (T ′, S)

Interpretation

For instance, for Example 1 one can take the interpretation M such that splitM =
0 and fM = 1 for all other f ∈ FT , and symbols in FL are interpreted as in
Example 5. R1 is strictly compatible since all rules are weakly and rule (5) is
strictly decreasing. This justifies a runtime approximation setting by T (5#) =
1 = init#(x)M.

Next, we adapt [8, Theorem 3.6] to our setting, by which runtime bounds
can be obtained using an interpretation that orients the given LCTRS partially.
For a dependency graph G and some D′ ⊆ D, let pre(D′) be the set of all edges
(ρ1, ρ2) in G, such that ρ1 ∈ D \ D′ and ρ2 ∈ D′. Moreover, for a DT ρ with
Var(lhs(ρ)) = (y1, . . . , yk), let Sρ denote (S(ρ, y1), . . . , S(ρ, yk)).

Lemma 2. Suppose P = (s0,D,R) is a complexity problem such that D′ ⊆ D
has no initial DTs, R is weakly, and D′ is strictly compatible with a DT-measure
interpretation M. Then the following processor is sound:

� P : (T, S)

� P : (λρ.

{∑
(γ,δ)∈pre(D′) T (γ) · [lhs(δ)M](Sδ) if ρ ∈ D′

>

T (ρ) otherwise

}

, S)
TimeBounds

Runtime Complexity Analysis of Logically Constrained Rewriting 47

where D′
> is the set of rules � → r [ϕ] in D′ such that � >M

[ϕ] r.

Next, we define a processor to compute size approximations.

Size Bounds. Size approximations were developed for ITSs and tend to be less
precise for LCTRSs due to nested terms. However, in many practical examples,
a sufficient approximation is feasible. Next, we thus adapt the relevant notions
to the LCTRS setting. First, the local size approximation overapproximates the
size of entry variables in terms of variable sizes in predecessor rules.

Definition 9. For δ, ρ ∈ D and (ρ, y) ∈ EV, let Sδ→ρ : V → UB be a local size
approximation if

Sδ→ρ(y)(m) � sup {|yτ | | ∃t, σ. �σ →σ
δ · →τ

ρ t and zσ �n m}

where � = lhs(δ), z = Var(�), and σ is a valuation.

The intention is that for an entry variable (ρ, y), such that y occurs in the
left-hand side of ρ, the expression Sδ→ρ(y) upper-bounds y in terms of the vari-
ables in δ, for the case where ρ is applied after δ. While such an expression
is not always computable, it can often be over-approximated. For instance, in
Example 1 a local size approximation S(9)→(2)(y) could be (|x| + 1)/2 or |x|:
the subterm m#

3 (x, u, v) on the right-hand side of (9) matches the left-hand side
of (2), instantiating the variable y by u, and the side condition of (9) ensures
x + 1 � 2u. We next define the entry variable graph to track the dependence of
entry variables on each other. For f ∈ UB, let Var(f) be the set of all variables
occurring in f .2

Definition 10. An entry variable graph GEV for (s0,D,R) with DG G has
node set EV(D), and there is an edge from (δ, z) to (ρ, y) labeled Sδ→ρ(y) if G
has an edge from δ to ρ and z ∈ Var(Sδ→ρ(y)).

We illustrate the concept on our running example.
Example 6. Consider again Example 1. We first apply chaining, a standard
technique in termination an complexity analysis [5,15], to compress the cycles
(9)− (3)− (9) and (9)− (7)− (9) into single-step cycles, such that (9) is replaced
by

m(x, y, z) → 〈m0(x, u, v),m(u, u, v),m(v, u, v),m3(x, u, v)〉 [ψ]

ψ = x � 2 ∧ u � 0 ∧ v � 0 ∧ x + 1 � 2u ∧ 2u � x ∧ x � 2v ∧ 2v + 1 � x.

Then we obtain the following entry variable graph:

1, x

1, y

1, z

9, x

9, y

9, z

2, x

2, y

2, z

5, x

5, y

5, z

6, x

6, y

6, z

4, x

4, y

4, z

8, x

8, y

8, z

2 For more precision one could restrict to active variables, as done in [8].

48 S. Winkler and G. Moser

where a triple arrow a b means that there are arrows from (a, x) to (b, x),
(a, y) to (b, y), and (a, z) to (b, z). For all (a, u) ∈ EV, all outgoing edges from
(a, u) can be labelled |u|, though more precise approximations are possible.

Next, we use the entry variable graph GEV to obtain size bound refinements,
following the approach of [8]. To that end, we define two processors Striv and
Sscc that refine bounds for trivial and non-trivial SCCs in GEV, respectively.
Here, an SCC is trivial if it consists of a single node without an edge to itself.

Definition 11. For size bounds S, we define Striv as follows: (i) Striv(ρ, y) =
|y| if ρ is initial; (ii)Striv(ρ, y) = max{α(Sδ) | (δ, z) →α (ρ, y) in GEV}, if (ρ, y)
is not in any non-trivial SCC of GEV; (iii) otherwise Striv(ρ, y) = S(ρ, y).

We distinguish three types of edges in GEV, by partitioning their labels into
the three sets E=, E+, and E×: for an edge labelled α, (i) α ∈ E= if α = aα ∈ N

or α = |x| for some x ∈ V; (ii) α ∈ E+ if |x|+aα � α for some x ∈ V and aα ∈ N;
(iii) α ∈ E× if c +

∑
x∈X ax|x| � α for c, ax ∈ N and X ⊆ V. For an SCC C in

GEV, let Cα denote the set of edge labels α of edges in C. For an entry variable
graph GEV, let pre(ρ, y) be the set of all direct predecessors of (ρ, y) in GEV.

Definition 12. Let (T, S) be a bound approximation and C a non-trivial SCC in
GEV. Then Sscc is defined as (i) if Cα ⊆ E= then Sscc(ρ, y) = max{α | α ∈ Cα},
(ii) if Cα ⊆ E+ then let αpre = max{S(ρ′, z) | (ρ′, z) ∈ pre(ρ, y) \ C} and

Sscc(ρ, y) = max({αpre} ∪ {aα | α ∈ Cα}) +
∑

ρ∈D
T (ρ) · max{aα | α ∈ C \ E=}

(iii) and Sscc(ρ, y) = S(ρ, y) otherwise, for all ρ ∈ C and (ρ, y) ∈ EV.

Both Striv and Sscc are similar to the bounds developed in [8], though we omitted
the case for E× for reasons of space. We obtain soundness by similar proofs.

Lemma 3. The following processors are sound:

� (s0,D,R) : (T, S)
� (s0,D,R) : (T, Striv)

� (s0,D,R) : (T, S)
� (s0,D,R) : (T, Sscc)

Size Bounds

6 Processors for Splitting and Loop Summary

In this section we present new processors to decompose a problem into subprob-
lems, as well as to analyse loops based on recurrence relations.

Splitting. We first consider a processor that allows to decompose a problem of
a certain shape into two subproblems. To that end, let a subgraph be forward
closed if it is closed under successors.

Definition 13. Consider a problem P = (s0,D,R) whose DG G exhibits sub-
graphs G0 and G1 with node sets D0 and D1, respectively, such that D = D0�D1,
all initial DTs of P are in D0, and G1 is forward closed. Then (D0,D1) is a
splitting for P .

Runtime Complexity Analysis of Logically Constrained Rewriting 49

A splitting thus decomposes a problem according to the scheme illustrated in
Fig. 1a. The idea is that we first analyse the subproblems P0 and P1 correspond-
ing to D0 and D1 separately, considering as initial states for P1 all possible entry
points γi. For DTs in D0 their time bounds in P0 constitute overall time bounds
since G1 is forward closed; on the other hand, for every ρ ∈ D1, we compute
time bounds via each entry point γi, and obtain an overall time bound by taking
the sum over all γi. To that end, given γi, the time bound for ρ in P1 is applied
to the size bound for γi, and multiplied by the time bound for the respective δi,
which upper-bounds the number of applications of δi followed by γi.

δ1

δ2

δm

γ1

γ2

γm

·
·
· ·

·
·

D0 D1
. . .

(a) splitting

δ

γ1

γ2

γm ·
·

·

D′. . .

1, . . . , p

(b) recurrence

Fig. 1. Problems of special shapes.

Lemma 4. If (s0,D,R) is a problem with splitting (D0,D1) such that pre(D1) =
{(δi, γi) | 1� i� m} and γi = (�i → ri [ϕi]), the following processor is sound:

� P : (T, S) � (s0,D0,R) : (T0, S0)
∧m

i=1 � ((�i, ϕi),D1,R) : (Ti, Si)

� P : (λρ.

{
T0(ρ) if ρ ∈ D0∑m

i=1 T0(δi) · Ti(ρ)(Sγi
) if ρ ∈ D1

}

, S)
Split

Several improvements are conceivable, for instance the conditions of the initial
states (�i, ϕi) could be strengthened using reachability analysis in the DG.

Summarising Self-loops. We next propose a technique for the analysis of
(sub)problems whose DG is of the shape shown in Fig. 1b. For vectors a, b, let
a >k b be a shorthand for the expression a �k b ∧ (

∨
j aj > bj).

Definition 14. Let P = ((f(x), ϕ),D,R) with DG G such that D can be written
as D = {δ} � D′, the graph G|D′ is forward-closed in G, and δ is of the form:

f(x) → 〈f(r1), . . . , f(rp), lhs(γ1), . . . , lhs(γm)〉 [ψ] (2)

for {γ1, . . . , γm} ⊆ D′, such that x, ri ∈ T (FL,V)k and ϕ∧ψ |= |x| >k |ri| for all
1� i� p. If there is moreover some b ∈ (N∪ {−∞})k such that ϕ∧ψ |= |x| �k b,
then P is cyclic with termination condition b.

Lemma 5. Let P = (s0,D,R) be a cyclic complexity problem with termination
condition b and a DT δ of the form ((2)), and let γi = (�i → ri [ϕi]), for all i,
1� i� m. Then the following processor is sound:

� P : (T, S)
∧m

i=1 � ((�i, ϕi),D′,R) : (Ti, Si)
� (s0,D,R) : (F (x)Σ, S)

Recurrence

50 S. Winkler and G. Moser

where F is a solution to a recurrence f(x) = f(r1)+ . . .+f(rp)+H(x), f(b) = 0
for some H(x) �

∑
ρ∈D′

∑m
i=1 Ti(ρ)(Sγi

).

This processor is key to analyse the main loop in our running example.

Example 7. Consider Example 1 with chaining as applied in Example 6. For the
subproblems P1 = (m#

0 (x, u, v), ψ),D,R) and P2 = (m#
3 (x, u, v), ψ),D,R) the

judgements � P1 : ((x + 1)Σ, S) and � P2 : (u + v + 1)Σ, S) are valid, so we can set
H(x, u, v) = 2|x|+1 � x+u+v+1 since u, v � x/2. Thus, we solve the recurrence
(1) given in Sect. 2. According to one of the cases of the Master Theorem, (1)
has a solution in O(|x| · log(|x|)) which is a complexity approximation according
to Lemma 5.

To simplify the presentation, we only considered cycles formed by a single
DT, as indicated in Fig. 1b. The result generalizes to longer cycles, but chaining
can often reduce these cases to the simpler situation discussed here.

7 Evaluation

To evaluate the viability of the presented framework, we prototyped our app-
roach in the complexity analyser TCT [5].

Implementation. We added a new module tct-lctrs to the TCT tool suite,
below we call the resulting tool TCT-LCTRS.3 It currently supports the theory
of integers, as well as some operations on lists. All processors described in this
paper are implemented, using the modular processor framework of TCT. They are
arranged in the following strategy, where the loop indicates exhaustive repetition:

dependency
tuples

simp size bounds time bounds simp chain split recurrence

We mention some implementation aspects that seem noteworthy.

– The simp processor combines some straightforward simplification processors:
unsatisfiable paths, unreachable rules, and unused arguments are eliminated,
and leaves in the DG obtain their time bound from their predecessors.

– Suitable algebras instantiating the interpretation and time bounds processors
(Lemmas 1 and 2) are searched for by means of an SMT encoding, as done
in the ITS module of TCTpreviously using well-known techniques [7,35].

– Before applying the recurrence processor, TCTfirst applies chaining to obtain
loops that involve only a single DT (see Appendix B for details).

– In the recurrence processor (Lemma 5),TCT first attempts to solve subprob-
lems corresponding to the functions h1, . . . , hm separately, obtaining bound
approximations (Ti, Si) for all i, 1 � i � m (see the notation of Lemma 5).
Then, it is checked whether a function H corresponding to one of the known
recursion patterns satisfies H(x) �

∑
i

∑
ρ∈D′ Ti(ρ) using an SMT call.

3 The code is available from https://github.com/bytekid/tct-lctrs.

https://github.com/bytekid/tct-lctrs

Runtime Complexity Analysis of Logically Constrained Rewriting 51

– The splitting processor (Lemma 4) leaves a lot of choice to the implementation
where to split. We currently use it to enable the loop processor, which requires
a very particular problem shape.

If a subroutine requires an SMT query, TCT interfaces Yices [14] and Z3 [12].

Experiments. We evaluated TCT-LCTRS on the ITS benchmarks considered by
Brockschmidt et al. [8], using a timeout of 60 s. Table 1 compares our implemen-
tation with KoAT [8], CoFloCo [16,17], the ITS version of TCT [5], and PUBS [1],
giving the number of problems for which a bound was derived at all, the number
of constant bounds, and the number of bounds that are at most linear, quadratic,
and cubic, respectively.

Table 1. Comparison of tools on ITS benchmarks.

TCT-LCTRS KoAT CoFloCo TCT-ITS PUBS

Solved problems 359 404 347 309 285

Constant 119 131 117 118 109

� O(n) 282 298 270 250 240

� O(n2) 345 376 336 300 270

� O(n3) 356 383 345 306 278

The new splitting and recurrence processors allow TCT-LCTRS to derive sub-
linear bounds. This is the case for all problems where PUBS derives a (precise)
logarithmic bound, such as the examples divByTwo and direct n log n. (KoAT
and CoFloCo do not support sublinear bounds, and hence output linear bounds
for these examples.) Moreover, we can precisely analyse subproblems produced
by a divide-and-conquer approach like divide and conquer, where TCT (as well
as KoAT) produces the tight linear bound, while CoFloCo fails and PUBS gives an
exponential bound. Detailed results, including a complete table and TCToutput,
are available on-line.4

We moreover tested TCTon the set of logic programs collected by Mesnard and
Neumerkl [31],5 restricted to deterministic programs. A list of solved problems
is available on-line as well.

8 Conclusion

This paper presented the first complexity framework for LCTRSs. We conclude
by relating to earlier work in the area, before indicating leads for future research.

4 See http://cl-informatik.uibk.ac.at/users/swinkler/lctrs complexity/.
5 See http://www.complang.tuwien.ac.at/cti/bench/.

http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/
http://www.complang.tuwien.ac.at/cti/bench/

52 S. Winkler and G. Moser

Related work. In the last decades there has been significant progress in the area
of fully automated resource analysis, showing that it can be both practicable and
scalable, see e.g. [1–3,18,24,26,32,36,39,40]. In the following, we indicate related
work that directly influenced our framework, or employed similar methods.

Our framework differs from earlier work by Avanzini and Moser [4] in three
important respects: first, constraints over arbitrary background theories are sup-
ported, second, complexity is not expressed in terms of the size of the initial term
but in terms of measure functions, and third, sublinear bounds can be derived.
While innermost rewriting is a rather natural restriction for LCTRSs, call by
need strategies could be considered in the future for LCTRSs, too.

LCTRSs generalise ITSs, the complexity analysis of which is subject to a
comprehensive line of research [8,34]. Our approach gracefully extends the alter-
nating time and size bound technique by Brockschmidt et al. [8], as the ITS case
is fully covered. In addition, we can obtain sublinear bounds, and support further
modularization. Moreover, LCTRSs offer native support for full recursion.

Sublinear bounds are beyond the scope of this earlier work, but can be
inferred by some other tools. Albert et al. [1] apply refinements to linear ranking
functions and support sufficient criteria for divide-and-conquer patterns. This
allows the tool PUBS to recognize logarithmic and O(n log(n)) bounds for some
problems. Chatterjee et al. [9] use synthesis ranking functions extended by log-
arithmic and exponential terms, making use of an insightful adaption of Farkas’
and Handelman’s lemmas. The approach is able to handle examples such as
mergesort. In contrast to our work this amounts to a whole-program analysis.
Further, extensibility to a constraint formalism like LCTRS is unclear. Wang
et al. [38] present an ML-like language with type annotations, also using the Mas-
ter Theorem to handle divide-and-conquer-like recurrences. To estimate lower
bounds for logic programs based on divide-and-conquer, Debray et al. [13] con-
sider non-deterministic recurrence relations and propose a technique to obtain a
closed-form bound for some cases.

Future work. We see exciting directions for future work both on a theoretical
and an application level. Various additional processors can be conceived for our
complexity framework, for instance forms of dependency pairs for non-innermost
rewriting [25,34], knowledge propagation and narrowing [34].

Simplification systems as, for instance, employed in compiler toolchains (cf.
Example 3) or SMT solvers constitute a highly relevant application domain,
since these routines operate in performance-critical contexts. In order to tackle
such systems, techniques for derivational complexity of LCTRSs need to be
developed.

On the application level, LCTRSs constitute a natural backend for com-
plexity analysis of constraint logic programs, since constraints can be natively
expressed. Our experiments with logic programs did not take backtracking into
account, but suitably adapting the transformational frameworks as established
by Giesl et al. [23] to LCTRSs, this is not a showstopper: There the authors pro-
vide an automated complexity and termination analysis of full Prolog programs.
In particular, the aforementioned restriction to deterministic programs can be

Runtime Complexity Analysis of Logically Constrained Rewriting 53

overcome. We thus plan to support CLP as a frontend of our analysis, possibly
taking into account labelling strategies that control the instantiation of query
terms. We furthermore plan to support C programs as a frontend. C programs
with integers, as considered in the Termination Competition6 can be expressed
as ITSs. LCTRSs offer more flexibility and can support also strings and floats,
as the respective theories are supported by SMT solvers. Just like for the case of
CLP, this requires the development of suitable complexity-reflecting transforma-
tions. More experiments are planned to evaluate our method on (constrained)
logic programs [31] and problems from the software competition.7

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic inference of upper
bounds for recurrence relations in cost analysis. In: Alpuente, M., Vidal, G. (eds.)
SAS 2008. LNCS, vol. 5079, pp. 221–237. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-69166-2 15

2. Albert, E., Genaim, S., Masud, A.N.: On the inference of resource usage upper
and lower bounds. ACM TOCL 14(3), 22 (2013). https://doi.org/10.1145/2499937.
2499943

3. Avanzini, M., Dal Lago, U., Moser, G.: Analysing the complexity of functional
programs: higher-order meets first-order. In: Proceedings of the 20th ICFP, pp.
152–164. ACM (2015). https://doi.org/10.1145/2784731.2784753

4. Avanzini, M., Moser, G.: A combination framework for complexity. Inf. Comput.
248, 22–55 (2016). https://doi.org/10.1016/j.ic.2015.12.007

5. Avanzini, M., Moser, G., Schaper, M.: TcT: Tyrolean complexity tool. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 407–423. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 24

6. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998). https://doi.org/10.1017/CBO9781139172752

7. Bagnara, R., Mesnard, F.: Eventual linear ranking functions. In: Proceedings of
the 15th PPDP, pp. 229–238 (2013). https://doi.org/10.1145/2505879.2505884

8. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Analyzing runtime
and size complexity of integer programs. ACM Trans. Program. Lang. Syst. 38(4),
131–1350 (2016). https://doi.org/10.1145/2866575

9. Chatterjee, K., Fu, H., Goharshady, A.K.: Non-polynomial worst-case analysis
of recursive programs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 41–63. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63390-9 3

10. Ciobâcă, Ş., Lucanu, D.: A coinductive approach to proving reachability proper-
ties in logically constrained term rewriting systems. In: Galmiche, D., Schulz, S.,
Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 295–311. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 20

11. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

6 http://termination-portal.org/.
7 https://sv-comp.sosy-lab.org/.

https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1145/2499937.2499943
https://doi.org/10.1145/2499937.2499943
https://doi.org/10.1145/2784731.2784753
https://doi.org/10.1016/j.ic.2015.12.007
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1145/2505879.2505884
https://doi.org/10.1145/2866575
https://doi.org/10.1007/978-3-319-63390-9_3
https://doi.org/10.1007/978-3-319-63390-9_3
https://doi.org/10.1007/978-3-319-94205-6_20
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
http://termination-portal.org/
https://sv-comp.sosy-lab.org/

54 S. Winkler and G. Moser

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

13. Debray, S.K., López-Garćıa, P., Hermenegildo, M.V., Lin, N.: Lower bound cost
estimation for logic programs. In: Proceedings of the 14th ILPS, pp. 291–305
(1997). https://doi.org/10.7551/mitpress/4283.003.0035

14. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

15. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: Proceedings of the 22nd RTA, Volume 10 of LIPIcs,
pp. 41–50 (2011). https://doi.org/10.4230/LIPIcs.RTA.2011.41

16. Flores-Montoya, A.: Upper and lower amortized cost bounds of programs expressed
as cost relations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 254–273. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 16

17. Flores-Montoya, A.: Cost analysis of programs based on the refinement of cost
relations. Ph.D. thesis, Universität Darmstadt (2017)

18. Frohn, F., Giesl, J.: Complexity analysis for Java with AProVE. In: Polikarpova,
N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 85–101. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66845-1 6

19. Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P., Falke, S.: Proving termination
of integer term rewriting. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp.
32–47. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02348-4 3

20. Fuhs, C., Kop, C., Nishida, N.: Verifying procedural programs via constrained
rewriting induction. ACM TOCL 18(2), 14:1–14:50 (2017). https://doi.org/10.
1145/3060143

21. Furuichi, Y., Nishida, N., Sakai, M., Kusakari, K., Sakabe, T.: Approach to proce-
dural program verification based on implicit induction of constrained term rewrit-
ing systems. IPSJ Trans. Inf. Syst. 1(2), 100–121 (2008). (in Japanese)

22. Giesl, J., et al.: Analyzing program termination and complexity automatically
with AProVE. J. Autom. Reasoning 58(1), 3–31 (2017). https://doi.org/10.1007/
s10817-016-9388-y

23. Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., Fuhs, C.: Symbolic eval-
uation graphs and term rewriting–a general methodology for analyzing logic pro-
grams. In: Proceedings of the 14th PPDP, pp. 1–12. ACM Press (2012). https://
doi.org/10.1007/978-3-642-38197-3 1

24. Gulwani, S.: SPEED: symbolic complexity bound analysis. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 51–62. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4 7

25. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency
pair method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 364–379. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71070-7 32

26. Hoffmann, J., Das, A., Weng, S.-C.: Towards automatic resource bound analysis
for OCaml. In: Proceedings of the 44th POPL, pp. 359–373. ACM (2017). https://
doi.org/10.1145/3009837

27. Kop, C.: Termination of LCTRSs. In: Proceedings of the 13th WST, pp. 59–63
(2013)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.7551/mitpress/4283.003.0035
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.4230/LIPIcs.RTA.2011.41
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-66845-1_6
https://doi.org/10.1007/978-3-642-02348-4_3
https://doi.org/10.1145/3060143
https://doi.org/10.1145/3060143
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-642-38197-3_1
https://doi.org/10.1007/978-3-642-38197-3_1
https://doi.org/10.1007/978-3-642-02658-4_7
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1145/3009837
https://doi.org/10.1145/3009837

Runtime Complexity Analysis of Logically Constrained Rewriting 55

28. Kop, C., Nishida, N.: Term rewriting with logical constraints. In: Fontaine, P.,
Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp.
343–358. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-
4 24

29. Kop, C., Nishida, N.: Constrained term rewriting tooL. In: Davis, M., Fehnker,
A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 549–557.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7 38

30. Lopes, N., Menendez, D., Nagarakatte, S., Regehr, J.: Practical verification of
peephole optimizations with Alive. Commun. ACM 61(2), 84–91 (2018). https://
doi.org/10.1145/3166064

31. Mesnard, F., Neumerkel, U.: Applying static analysis techniques for inferring termi-
nation conditions of logic programs. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126,
pp. 93–110. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-47764-0 6

32. Moser, G., Schaper, M.: From Jinja bytecode to term rewriting: a complexity
reflecting transformation. Inf. Comput. 261(Part), 116–143 (2018). https://doi.
org/10.1016/j.ic.2018.05.007

33. Nishida, N., Winkler, S.: Loop detection by logically constrained term rewriting.
In: Piskac, R., Rümmer, P. (eds.) VSTTE 2018. LNCS, vol. 11294, pp. 309–321.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03592-1 18

34. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of
term rewriting by dependency pairs. J. Autom. Reasoning 51(1), 27–56 (2013).
https://doi.org/10.1007/s10817-013-9277-6

35. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0 20

36. Serrano, A., López-Garćıa, P., Hermenegildo, M.: Resource usage analysis of logic
programs via abstract interpretation using sized types. TPLP 14(4–5), 739–754
(2014). https://doi.org/10.1017/S147106841400057X

37. TeReSe: Term rewriting systems. In: Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

38. Wang, P., Wang, D., Chlipala, A.: TiML: a functional language for practical com-
plexity analysis with invariants. Proc. ACM Program. Lang. 1(OOPSLA) (2017).
https://doi.org/10.1145/3133903

39. Wilhelm, R., et al.: The worst-case execution-time problem - overview of methods
and survey of tools. ACM Trans. Prog. Lang. Syst. 7(3) (2008). https://doi.org/
10.1145/1347375.1347389

40. Wilhelm, R., Grund, D.: Computation takes time, but how much? Commun. ACM
57(2), 94–103 (2014). https://doi.org/10.1145/2500886

41. Winkler, S., Middeldorp, A.: Completion for logically constrained rewriting. In Pro-
ceedings of the 3rd FSCD, Volume 108 of LIPIcs, pp. 30:1–30:18 (2018). https://
doi.org/10.4230/LIPIcs.FSCD.2018.30

42. Winkler, S., Moser, G.: Runtime complexity analysis of logically constrained
rewriting (extended version). http://cl-informatik.uibk.ac.at/users/swinkler/lctrs
complexity/paper.pdf

https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-662-48899-7_38
https://doi.org/10.1145/3166064
https://doi.org/10.1145/3166064
https://doi.org/10.1007/3-540-47764-0_6
https://doi.org/10.1016/j.ic.2018.05.007
https://doi.org/10.1016/j.ic.2018.05.007
https://doi.org/10.1007/978-3-030-03592-1_18
https://doi.org/10.1007/s10817-013-9277-6
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1017/S147106841400057X
https://doi.org/10.1145/3133903
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/2500886
https://doi.org/10.4230/LIPIcs.FSCD.2018.30
https://doi.org/10.4230/LIPIcs.FSCD.2018.30
http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/paper.pdf
http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/paper.pdf

Confluence and Commutation
for Nominal Rewriting Systems

with Atom-Variables

Kentaro Kikuchi1(B) and Takahito Aoto2

1 RIEC, Tohoku University, Sendai, Japan
kentaro.kikuchi@riec.tohoku.ac.jp

2 Faculty of Engineering, Niigata University, Niigata, Japan
aoto@ie.niigata-u.ac.jp

Abstract. Nominal rewriting was introduced as an extension of first-
order term rewriting by a binding mechanism based on the nominal
approach. Recently, a new format of nominal rewriting has been intro-
duced where rewrite rules are defined with atom-variables rather than
atoms. In this paper, we investigate the difference between the new for-
mat and the original nominal rewriting, and prove confluence and com-
mutation for some classes of rewriting systems whose rewrite rules have
no proper overlaps which are computed using nominal unification with
atom-variables. The properties we prove are expected to be used in a
form of program transformation that is realised as an equivalence trans-
formation of rewriting systems.

Keywords: Variable binding · Alpha-equivalence · Nominal
unification · Nominal rewriting · Atom-variable · Confluence ·
Commutation

1 Introduction

Confluence is a fundamental property of rewriting systems that guarantees
uniqueness of results of computation. Commutation is a generalisation of con-
fluence to a property of computation by two rewriting systems. These proper-
ties are important in applications of rewriting techniques; for instance, they are
essential to correctness of a form of program transformation, called equivalence
transformation of rewriting systems [3,10,25]. For first-order term rewriting sys-
tems, confluence and commutation have been well studied, and many criteria to
ensure them have been developed (e.g. [7,8,12,17,19,23,24]).

Nominal rewriting [4,5] was introduced as an extension of first-order term
rewriting by a binding mechanism based on the nominal approach [6,18], where
variables that are possibly bound are called atoms. A distinctive feature of nom-
inal rewriting is that α-conversion and capture-avoiding substitution are not
relegated to the meta-level—they are explicitly dealt with at the object-level.
Some basic confluence criteria such as Rosen’s criterion [19] (orthogonal systems
c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 56–73, 2021.
https://doi.org/10.1007/978-3-030-68446-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-68446-4_3

Confluence and Commutation for Nominal Rewriting Systems 57

are confluent), Knuth-Bendix’s criterion [12] (terminating systems with joinable
critical pairs are confluent) and Huet’s criterion [8] (left-linear systems with par-
allel closed critical pairs are confluent) have been discussed in the case of nominal
rewriting [2,4,11,21,22].

Recently, Kutz and Schmidt-Schauß [13] have introduced a somewhat differ-
ent format of nominal rewriting from the original one. In their systems, rewrite
rules are written using atom-variables for which atoms are substituted in each
rewrite step. The use of atom-variables appears to be problematic, because for
keeping binding structures correct, it is necessary to use permutations (or injec-
tions) on atoms instead of substitutions. Their systems, however, have a device
that makes substitutions for atom-variables injective so that this problem can
be avoided.

In the present paper, we treat nominal rewriting with atom-variables in the
style of [13], looking into how it differs from nominal rewriting in previous work.
We study confluence and commutation for some classes of nominal rewriting
systems including those which are difficult to represent by previous approaches.

The main differences between the format of [13] and those in the traditional
style are explained as follows:

– First, as mentioned above, rewrite rules are written with atom-variables
rather than atoms, and rewriting is performed through substituting atoms
for atom-variables where the substitution is not necessarily injective. This is
particularly effective when representing rewrite rules with some atoms that
are not bound (after being substituted for atom-variables). For example, in
traditional nominal rewriting, a �= b is always supposed in the rewrite rule
� f(a, b) → a, while in the format of [13], the same atom can be substituted
for A and B in the rewrite rule � f(A,B) → A. (Further examples showing
its usefulness can be found in Sect. 1 of [20].) If the substitution should be
injective, one can add appropriate freshness constraints on atom-variables in
the rewrite rule, which are used in matching process. (Freshness constraints
are also extended from those in the traditional style.) In this way, the defini-
tion of rewrite relation is given without involving equivariance (as in [4]) or
parametrised permutations (as in [21]), and so simpler than those in previous
work.

– However, there is a not small price to pay for the above advantages. Since
terms with atom-variables are not objects for rewriting to be analysed any
more, the language has split into one for rewrite rules and one for objects for
rewriting. In [13] and the present paper, the latter is the language of ground
nominal terms, i.e. nominal terms with neither (term-)variables nor atom-
variables, and those variables are used only for representing rewrite rules1.
Accordingly, the confluence properties treated in [13] and the present paper

1 In usual papers on rewriting systems with binders such as λ-calculus, meta-variables
are used to specify rewrite rules instead of (term-)variables and atom-variables used
here. The reason we include those variables in the language to describe rewrite rules
is that the set of rewrite rules should keep finite, which is essential when considering
some kind of unification procedure to compute overlaps, critical pairs, etc.

58 K. Kikuchi and T. Aoto

are restricted to those on ground nominal terms, and in this sense weaker
properties than those discussed in previous work.

Contributions of the Paper. The contributions of the present paper are sum-
marised as follows:

– We prove confluence on ground terms for orthogonal nominal rewriting sys-
tems with atom-variables. In Theorem 6.7 of [13], only local confluence is
stated for orthogonal systems, and no proof of confluence has been given.

– We prove the commutation property of mutually orthogonal nominal rewrit-
ing systems with atom-variables. The commutation property has never been
studied in previous work on nominal rewriting.

Although the properties we prove are restricted to those on ground terms,
they are enough for application to the form of program transformation mentioned
at the beginning of this section.

Organisation of the Paper. The paper is organised as follows. In Sect. 2, we
explain basic notions of nominal rewriting systems with atom-variables. In
Sect. 3, we study confluence and commutation for some classes of nominal rewrit-
ing systems with atom-variables. In Sect. 4, we discuss related work and conclude
with suggestions for further work.

2 Nominal Rewriting Systems with Atom-Variables

In this section, we introduce basic notions on nominal rewriting systems with
atom-variables [13]. Unlike the original nominal rewriting [4], the framework
of [13] uses two different languages: one is for objects for rewriting, called ground
nominal terms, and the other is for components of rewrite rules.

2.1 Preliminaries

First, we introduce some notations on nominal terms.
A nominal signature Σ is a set of function symbols ranged over by f, g,

We fix a countably infinite set X of variables ranged over by X,Y, . . . , a count-
ably infinite set A of atoms ranged over by a, b, . . . , and a countably infinite set
XA of atom-variables ranged over by A,B, We assume that Σ, X , A and
XA are pairwise disjoint. Unless otherwise stated, different meta-variables for
objects in Σ, X , A or XA denote different objects.

The domain dom(φ) of a mapping φ : D → E is the set D if D �= E and {d ∈
D | φ(d) �= d} if D = E. A mapping φ : D → E is finite if its domain dom(φ) is
a finite set. For finite mappings φ and ψ with dom(φ) ∩ dom(ψ) = ∅, we define
the mapping φ ∪ ψ with dom(φ ∪ ψ) = dom(φ) ∪ dom(ψ) by (φ ∪ ψ)(d) = φ(d)
if d ∈ dom(φ) and (φ ∪ ψ)(d) = ψ(d) if d ∈ dom(ψ).

Confluence and Commutation for Nominal Rewriting Systems 59

2.2 Ground Nominal Terms

In this subsection, we introduce the set of ground nominal terms, which we call
NLa following [13,20]. (NLa stands for Nominal Language with atoms.)

The set NLa of ground nominal terms, or simply ground terms, are generated
by the following grammar:

t, s ::= a | [a]t | f t | 〈t1, . . . , tn〉
Ground terms of the forms in the right-hand side are called, respectively,
atoms, abstractions, function applications and tuples. We assume that func-
tion applications bind more strongly than abstractions. We abbreviate f 〈 〉 as
f , referring to it as a constant. An abstraction [a]t is intended to represent
t with a bound. The set of free atoms occurring in t, denoted by FA(t), is
defined as follows: FA(a) = {a}; FA([a]t) = FA(t) \ {a}; FA(f t) = FA(t);
FA(〈t1, . . . , tn〉) =

⋃
i FA(ti).

Example 1. The nominal signature of the λ-calculus has two function symbols
lam and app. The ground nominal term app〈lam〈[a]lam〈[b]app〈b, a〉〉〉, b〉 repre-
sents the λ-term (λa.λb.ba)b in the usual notation. For this ground term t, we
have FA(t) = {b}. ��

A swapping is a pair of atoms, written (a b). Permutations π are bijec-
tions on A such that dom(π) is finite. Permutations are represented by lists of
swappings applied in the right-to-left order. For example, ((b c)(a b))(a) = c,
((b c)(a b))(b) = a, ((b c)(a b))(c) = b. The permutation action π·t, which
operates on terms extending a permutation on atoms, is defined as follows:
π·a = π(a); π·([a]t) = [π·a](π·t); π·(f t) = f π·t; π·〈t1, . . . , tn〉 = 〈π·t1, . . . , π·tn〉.

Positions are finite sequences of positive integers. The empty sequence is
denoted by ε. The set of positions in a ground term t, denoted by Pos(t), is
defined as follows: Pos(a) = {ε}; Pos([a]t) = Pos(f t) = {1p | p ∈ Pos(t)}∪{ε};
Pos(〈t1, . . . , tn〉) =

⋃
i{ip | p ∈ Pos(ti)} ∪ {ε}. The subterm of t at a position

p ∈ Pos(t) is written as t|p.
A context is a ground term in which a distinguished constant � occurs. The

ground term obtained from a context C by replacing each � at positions pi by
ground terms ti is written as C[t1, . . . , tn]p1,...,pn

or simply C[t1, . . . , tn].
A pair a#t of an atom a and a ground term t is called a freshness constraint.

The rules in Fig. 1 define the validity of freshness constraints. Note that the
defined �NLa

a#t coincides with a /∈ FA(t).
The rules in Fig. 2 define the relation �NLa t ≈α s. This is a congruence

relation [4] and coincides with usual α-equivalence (i.e. the relation reached by
renamings of bound atoms) [6]. The definition of �NLa

t ≈α s will be used in
some of the proofs afterwards.

The following properties are shown in [4,26].

Proposition 1. 1. �NLa a#t if and only if �NLa π·a#π·t.
2. �NLa

t ≈α s if and only if �NLa
π·t ≈α π·s.

3. If �NLa
a#t and �NLa

t ≈α s then �NLa
a#s.

60 K. Kikuchi and T. Aoto

�NLa a#b

�NLa a#[a]t

�NLa a#t

�NLa a#f t

�NLa a#t

�NLa a#[b]t

�NLa a#t1 · · · �NLa a#tn

�NLa a#〈t1, . . . , tn〉

Fig. 1. Rules for freshness constraints on NLa

�NLa a ≈α a

�NLa t ≈α s

�NLa f t ≈α f s

�NLa t1 ≈α s1 · · · �NLa tn ≈α sn

�NLa 〈t1, . . . , tn〉 ≈α 〈s1, . . . , sn〉
�NLa t ≈α s

�NLa [a]t ≈α [a]s
�NLa (a b)·t ≈α s �NLa b#t

�NLa [a]t ≈α [b]s

Fig. 2. Rules for α-equivalence on NLa

2.3 Nominal Term Expressions

Next, we introduce the set of term expressions used in rewrite rules, which we
call NLAS following [13,20]. (NLAS stands for Nominal Language with Atom-
variables and expreSsion variables.)

The set NLAS of nominal term expressions, or simply term expressions, are
generated by the following grammar:

e ::= v | π·X | [v]e | f e | 〈e1, . . . , en〉
π ::= ∅ | (v v′)·π
v ::= π·A

where π and v are non-terminals for permutation expressions and atom expres-
sions, respectively. A term expression of the form π·X is called a moderated
variable. Also, an expression of the form π·X or π·A is called a suspension.
We abbreviate ∅·X and ∅·A as X and A, respectively, if there is no ambigu-
ity. We write VarX (e) for the set of variables occurring in a term expression e,
and VarXA

(e), VarXA
(π) and VarXA

(v) for the sets of atom-variables occurring in
expressions e, π and v, respectively. For a term expression e, we define VarX ,XA

(e)
as VarX (e)∪VarXA

(e). A term expression e is linear if each variable X ∈ VarX (e)
occurs only once in e.

The set Pos(e) of positions in a term expression e is defined similarly to that
for a ground term (using atom expressions for atoms) with the additional clause
that Pos(π·X) = {ε}. The subexpression of e at a position p ∈ Pos(e) is written
as e|p. If p �= ε, then e|p is called a proper subexpression. A position p ∈ Pos(e)
is called a variable position if e|p is a moderated variable, and a non-variable
position otherwise.

A ground substitution is a finite mapping that assigns ground terms to vari-
ables and atoms to atom-variables. We use σ, δ for ground substitutions. We write

Confluence and Commutation for Nominal Rewriting Systems 61

σX and σXA
for ground substitutions obtained from σ by restricting the domain

to dom(σ) ∩ X and dom(σ) ∩ XA, respectively. When VarX ,XA
(e) ⊆ dom(σ), the

application of σ on e is written as eσ and called a ground instance of e. (Simi-
larly for expressions π and v.) The application of σ does not simply replace the
variables X and atom-variables A occurring in e by σ(X) and σ(A), but, when
replacing X and A of suspensions π·X and π·A, induce permutation actions
πσ·(σ(X)) and πσ·(σ(A)) viewing the list πσ as a permutation. For example,
(((B C)(A B))·A)σ = ((B C)(A B))σ·(σ(A)) = ((b c)(a b))(a) = c for the
ground substitution σ = [A := a,B := b, C := c]. Thus we have eσ ∈ NLa for
every ground instance eσ.

Lemma 1. For every permutation expression π and every atom expression v,
the following hold.

1. For every ground instances πσ and πδ, if ∀A ∈ VarXA
(π). σ(A) = δ(A) then

πσ = πδ (as lists of swappings).
2. For every ground instances vσ and vδ, if ∀A ∈ VarXA

(v). σ(A) = δ(A) then
vσ = vδ.

Proof. By simultaneous induction on the structures of π and v. ��
A pair v#e of an atom expression v and a term expression e is called a

freshness constraint expression. A finite set of freshness constraint expressions
is called a freshness context. For a freshness context ∇, we define VarX ,XA

(∇) =⋃
v#e∈∇(VarXA

(v) ∪ VarX ,XA
(e)) and ∇σ = {vσ#eσ | v#e ∈ ∇}.

Now we recall nominal unification problems with atom-variables [20].

Definition 1. Let Γ be a finite set of equations of the form e1 ≈ e2 where e1
and e2 are term expressions, and let ∇ be a freshness context. Then the pair
(Γ,∇) is called a variable-atom nominal unification problem (VANUP for short).

Definition 2 (Solution of a VANUP). A ground substitution σ is a solution
of a VANUP (Γ,∇) if �NLa

e1σ ≈α e2σ for every equation e1 ≈ e2 ∈ Γ and
�NLa

vσ#eσ for every freshness constraint expression v#e ∈ ∇. A VANUP
(Γ,∇) is solvable if there exists a solution of (Γ,∇).

Example 2. Consider the nominal signature for the λ-calculus in Example 1, and
let P be the VANUP ({lam〈[A]app〈X,A〉〉 ≈ lam〈[B]Y 〉}, {A#X}). Then, the
ground substitution [A := a,B := b,X := c, Y := app〈c, b〉] is a solution of P . ��

2.4 Nominal Rewriting Systems with Atom-Variables

Next we define nominal rewrite rules and nominal rewriting systems with atom-
variables.

Definition 3. A nominal rewrite rule with atom-variables, or simply rewrite
rule, is a triple of a freshness context ∇ and term expressions l, r ∈ NLAS such
that VarX ,XA

(∇)∪VarX ,XA
(r) ⊆ VarX ,XA

(l) and l is not a moderated variable. We
write ∇ � l → r for a rewrite rule, and identify rewrite rules modulo renaming
of variables and atom-variables. A rewrite rule ∇ � l → r is left-linear if l is
linear.

62 K. Kikuchi and T. Aoto

Definition 4 (Nominal rewriting system with atom-variables). A nom-
inal rewriting system with atom-variables (NRSAS for short) is a finite set of
rewrite rules. An NRSAS is left-linear if so are all its rewrite rules.

The following example of an NRSAS corresponds to Example 8 of [21] written
in the style of traditional nominal rewriting. Note that the freshness constraint
A#B is used to mean that distinct atoms should be substituted for the atom-
variables A and B.

Example 3. We extend the signature in Example 1 by a function symbol sub.
By sub〈[a]t, s〉, we represent an explicit substitution t〈a := s〉. Then, an NRSAS

to perform β-reduction is defined by the rule (Beta):

� app〈lam〈[A]X〉, Y 〉 → sub〈[A]X,Y 〉 (Beta)

together with an NRSAS Rsub to execute substitution:

� sub〈[A]app〈X,Y 〉, Z〉 → app〈sub〈[A]X,Z〉, sub〈[A]Y,Z〉〉 (subapp)
� sub〈[A]A,X〉 → X (subvar)

A#B � sub〈[A]B,X〉 → B (subvarε)
A#B,B#Y � sub〈[A]lam〈[B]X〉, Y 〉 → lam〈[B]sub〈[A]X,Y 〉〉 (sublam)

In a standard notation, the system Rsub is represented as follows:

� (XY)〈A := Z〉 → (X〈A := Z〉)(Y 〈A := Z〉) (subapp)
� A〈A := X〉 → X (subvar)

A#B � B〈A := X〉 → B (subvarε)
A#B,B#Y � (λB.X)〈A := Y 〉 → λB.(X〈A := Y 〉) (sublam)

��
In the sequel, �NLa

is extended to mean to hold for all members of the set
in the right-hand side.

Definition 5 (Rewrite relation). Let R = ∇ � l → r be a rewrite rule. For
ground terms s, t ∈ NLa, the rewrite relation is defined by

s →〈R,p,σ〉 t
def⇐⇒ �NLa ∇σ, s = C[s′]p, �NLa s′ ≈α lσ, t = C[rσ]p

We write s
p→R t if there exists σ such that s →〈R,p,σ〉 t. We write s →R t if

there exist p and σ such that s →〈R,p,σ〉 t. For an NRSAS R, we write s →R t if
there exists R ∈ R such that s →R t.

The following is an example of rewriting by the NRSAS in Example 3. It
corresponds to Example 10 of [21] using traditional nominal rewriting. We see
that a substitution for atom-variables and the additional freshness constraint
can provide a mechanism to avoid capture of a free atom (as far as rewriting on
ground terms is concerned).

Confluence and Commutation for Nominal Rewriting Systems 63

Example 4. Using the rule (Beta) in Example 3, we see that the ground term
representing (λa.λb.ba)b rewrites to (λb.ba)〈a := b〉, that is, we have

app〈lam〈[a]lam〈[b]app〈b, a〉〉〉, b〉 →〈Beta,ε,σ〉 sub〈[a]lam〈[b]app〈b, a〉〉, b〉

where σ is the ground substitution [A := a,X := lam〈[b]app〈b, a〉〉, Y := b]. The
resulting ground term rewrites further to a normal form lam〈[c]app〈c, b〉〉 in four
steps with rules of the system Rsub. Here we give a detail of the first step with
rule (sublam) to see how capture of a free atom is avoided.

Let s = sub〈[a]lam〈[b]app〈b, a〉〉, b〉. Since the rule has a freshness context ∇ =
{A#B,B#Y }, to apply (sublam) to s at the position p = ε, it is necessary to find
a ground substitution σ with �NLa ∇σ and �NLa s ≈α (sub〈[A]lam〈[B]X〉, Y 〉)σ.
Here one cannot take σ with σ(B) = b, which together with σ(Y) = b from the
condition for ≈α contradicts �NLa

∇σ. So we take, e.g. σ = [A := a,B := c,X :=
app〈c, a〉, Y := b] to satisfy the conditions, and get (lam〈[B]sub〈[A]X,Y 〉〉)σ =
lam〈[c]sub〈[a]app〈c, a〉, b〉〉 as the result of rewriting. ��
Remark 1. In previous papers on nominal rewriting except for the authors’, the
rewrite relation is often defined so that α-equivalent terms are allowed on the
result of rewriting, like t ≈α C[rσ]. However, such a definition makes arguments
by induction difficult, since from s →R t one can only say t ≈α C[rσ] for some
C and σ, where s is of the form C[s′] but t is not necessarily of the form C[t′].

The following lemma holds. We give a detailed proof of it in [9]. A closely
related property without referring to the position p has been observed in Propo-
sition 4.4 of [13], where no detailed proof of it is given.

Lemma 2. Let R = ∇ � l → r be a rewrite rule, and let s, t be ground terms.
If p ∈ Pos(s) and s

p→R t then π·s p→R π·t for every permutation π.

2.5 Overlaps and Orthogonality

The notion of overlap is defined using nominal unification with atom-variables.

Definition 6 (Overlap). Let Ri = ∇i � li → ri (i = 1, 2) be rewrite rules.
We assume without loss of generality that VarX ,XA

(l1) ∩ VarX ,XA
(l2) = ∅. If the

variable-atom nominal unification problem ({l1 ≈ l2|p},∇1 ∪ ∇2) is solvable for
some non-variable position p of l2, then we say that R1 overlaps on R2, and the
situation is called an overlap of R1 on R2. If R1 and R2 are identical modulo
renaming of variables and atom-variables, and p = ε, then the overlap is said to
be self-rooted. An overlap that is not self-rooted is said to be proper.

Example 5. Let R1 and R2 be the rules (Eta) A#X � lam〈[A]app〈X,A〉〉 → X
and (Beta) � app〈lam〈[B]Y 〉, Z〉 → sub〈[B]Y,Z〉, respectively. Then, R1 over-
laps on R2, since the VANUP ({lam〈[A]app〈X,A〉〉 ≈ app〈lam〈[B]Y 〉, Z〉|11(=
lam〈[B]Y 〉)}, {A#X}) is solvable as seen in Example 2. This overlap is
proper. ��

64 K. Kikuchi and T. Aoto

Example 6. There exists a self-rooted overlap of the rule (Beta) on its renamed
variant, since the VANUP ({app〈lam〈[A]X〉, Y 〉 ≈ app〈lam〈[B]Z〉,W 〉}, ∅) is
solvable by taking the ground substitution [A := a,B := b,X := a, Y := c, Z :=
b,W := c] as a solution. ��

In first-order term rewriting, self-rooted overlaps do not matter, and only
proper overlaps need to be analysed. However, in the case of nominal rewriting,
that is not enough as discussed in [21].

Using the above notion of overlap, we define the notions of orthogonality of
an NRSAS and mutual orthogonality of two NRSAS ’s.

Definition 7 (Orthogonality). An NRSAS R is orthogonal if it is left-linear
and for any rewrite rules R1, R2 ∈ R, there exists no proper overlap of R1 on
R2.

Definition 8 (Mutual orthogonality). NRSAS ’s R1 and R2 are mutually
orthogonal if they are left-linear and for any rewrite rules R1 ∈ R1 and R2 ∈ R2,
there exists no overlap of R1 on R2, and there exists no overlap of R2 on R1.

Unlike in first-order term rewriting, orthogonality is not enough to guarantee
a confluence property of an NRSAS as seen in the following example.

Example 7. Consider the NRSAS Ruc-η with the only rewrite rule (Uncond-eta)
� lam〈[A]app〈X,A〉〉 → X. This system Ruc-η is orthogonal. However, lam〈[a]
app〈a, a〉〉 →Uncond-eta a and lam〈[a]app〈a, a〉〉 →Uncond-eta b, where the latter holds
since �NLa

lam〈[a]app〈a, a〉〉 ≈α lam〈[b]app〈b, b〉〉 = (lam〈[A]app〈X,A〉〉)[A := b,
X := b]. ��

3 Confluence and Commutation for Left-Linear Nominal
Rewriting Systems with Atom-Variables

In this section, we study confluence and commutation properties of left-linear
NRSAS ’s. The properties are defined modulo the equivalence relation ≈α in terms
of abstract reduction systems [15]. To do so, we first introduce some notations.

Let
� be a binary relation. We write
�= for the reflexive closure and
�∗ for
the reflexive transitive closure. If
� is written using →, then the inverse
�−1 is
written using ←. In what follows, we write simply t ≈α s for �NLa t ≈α s. We
use ◦ for the composition of two binary relations.

Definition 9. Let R be an NRSAS .

1. Ground terms s and t are joinable modulo ≈α, denoted by s ↓≈α
t, iff

s (→∗
R ◦ ≈α ◦ ←∗

R) t.
2. →R is confluent modulo ≈α iff

for every ground terms s and t, if s (←∗
R ◦ →∗

R) t then s ↓≈α
t.

3. →R is Church-Rosser modulo ≈α iff
for every ground terms s and t, if s (←R ∪ →R ∪ ≈α)∗

t then s ↓≈α
t.

Confluence and Commutation for Nominal Rewriting Systems 65

4. →R is strongly compatible with ≈α iff
for every ground terms s and t, if s (≈α ◦ →R) t then s (→=

R ◦ ≈α) t.
5. Let R′ be another NRSAS . →R subcommutes with →R′ modulo ≈α iff for

every ground terms s and t, if s (←R ◦ →R′) t then s (→=
R′ ◦ ≈α ◦ ←=

R) t.
6. Let R′ be another NRSAS . →R commutes with →R′ modulo ≈α iff for every

ground terms s and t, if s (←∗
R ◦ →∗

R′) t then s (→∗
R′ ◦ ≈α ◦ ←∗

R) t.

It is known that Church-Rosser modulo an equivalence relation ∼ is a strong-
er property than confluence modulo ∼ [15]. In the rest of this section, we aim to
show Church-Rosser modulo ≈α for a class of left-linear NRSAS ’s, and commu-
tation modulo ≈α of two systems in a class of left-linear NRSAS ’s.

3.1 Uniformity and α-stability

To our aim mentioned above, we restrict NRSAS ’s by some conditions. First we
consider the uniformity condition [4]. Intuitively, uniformity means that if an
atom a is not free in s and s rewrites to t then a is not free in t. We give an
adaptation of the definition of [4] for our setting, which has not been considered
in [13].

Definition 10 (Uniformity). A rewrite rule ∇ � l → r is uniform if the
following holds: for every atom a and every ground substitution σ such that
VarX ,XA

(l) ⊆ dom(σ), if �NLa ∇σ and �NLa a#lσ then �NLa a#rσ. A rewriting
system is uniform if so are all its rewrite rules.

The following properties of uniform rewrite rules are important and will be
used in the sequel.

Proposition 2. Suppose s →R t for a uniform rewrite rule R. Then, for every
atom a, if �NLa

a#s then �NLa
a#t.

Proof. By induction on the structure of s (For details, see [9].) ��
Lemma 3. Let R be a uniform rewrite rule. If s′ ≈α s →〈R,p,σ〉 t, then there
exist σ′ and t′ such that s′ →〈R,p,σ′〉 t′ ≈α t.

Proof. By induction on the structure of s (For details, see [9].) ��
Next we introduce the notion of α-stability [21]. This notion can be seen as

a complement to orthogonality in proving Church-Rosser modulo ≈α.

Definition 11 (α-stability). A rewrite rule R = ∇ � l → r is α-stable if
�NLa

s ≈α s′, s →〈R,ε,σ〉 t and s′ →〈R,ε,σ′〉 t′ imply �NLa
t ≈α t′. An NRSAS R

is α-stable if so are all its rewrite rules.

66 K. Kikuchi and T. Aoto

3.2 Parallel Reduction

A key notion for proving confluence of left-linear rewriting systems is parallel
reduction. Here we define it inductively, using a particular kind of contexts.

Definition 12. The grammatical contexts, ranged over by G, are the contexts
defined by

G ::= a | [a]� | f � | 〈�1, . . . ,�n〉
Let R be an NRSAS . We define the relation −→� R inductively by the following
rules:

s1 −→� R t1 · · · sn −→� R tn
G[s1, . . . , sn] −→� R G[t1, . . . , tn]

(C) s
ε→R t R ∈ R
s −→� R t

(B)

where n (≥ 0) depends on the form of G. We write σ −→� R δ to denote ∀X ∈
dom(σX). Xσ −→� R Xδ and ∀A ∈ dom(σXA

). Aσ = Aδ.

Lemma 4. 1. s −→� R s.
2. If s −→� R t then C[s] −→� R C[t].
3. If s →〈R,p,σ〉 t and R ∈ R then s −→� R t.
4. If s −→� R t then s →∗

R t.

Proof. 1. By induction on the structure of s.
2. By induction on the context C.
3. By 2 and the rule (B).
4. By induction on the derivation of s −→� R t.

��
Lemma 5. If s −→� R t then π·s −→� R π·t.
Proof. By induction on the derivation of s−→� R t. If the last applied rule in the
derivation is (B), then we use Lemma 2. ��
Lemma 6. If σ −→� R δ then eσ −→� R eδ.

Proof. By induction on the structure of e. If e = π·X, then we use Lemma 5. ��
Lemma 7. Let R be a uniform NRSAS.

1. If �NLa
a#s and s −→� R t then �NLa

a#t.
2. If �NLa

∇σ and σ −→� R δ then �NLa
∇δ.

Proof. 1. By Proposition 2 and Lemma 4(4).
2. By 1 and Lemma 6, if �NLa

vσ#eσ then �NLa
vσ#eδ. Hence, from �NLa

∇σ,
we have �NLa ∇δ.

��
We define the notions in Definition 9 for −→� R as well. Then strong compat-

ibility of →R with ≈α can be extended to strong compatibility of −→� R with
≈α.

Confluence and Commutation for Nominal Rewriting Systems 67

Lemma 8 (Strong compatibility with ≈α). Let R be a uniform NRSAS.
If s′ ≈α s −→� R t then there exists t′ such that s′ −→� R t′ ≈α t.

Proof. By induction on the derivation of s−→� R t. If the last applied rule in the
derivation is (B), then the claim follows by Lemma 3. Among the other cases,
we treat the case where G = [a]�. Then the last part of the derivation has the
form

s1 −→� R t1
[a]s1 −→� R [a]t1

(C)

where [a]s1 = s and [a]t1 = t. Now we have two cases.

(a) s′ = [a]s′
1 and �NLa

[a]s′
1 ≈α [a]s1.

Then �NLa s′
1 ≈α s1, and so by the induction hypothesis, there exists t′1

such that s′
1 −→� R t′1 ≈α t1. Hence we have [a]s′

1 −→� R [a]t′1 ≈α [a]t1.
(b) s′ = [b]s′

1 and �NLa
[b]s′

1 ≈α [a]s1.
Then �NLa (b a)·s′

1 ≈α s1 and �NLa a#s′
1. So by the induction hypothe-

sis, there exists t′1 such that (b a)·s′
1 −→� R t′1 ≈α t1. By taking π = (a b)

in Lemma 5, we have s′
1 −→� R (a b)·t′1, and by Lemma 7, we have �NLa

a#(a b)·t′1. Hence, we obtain the following derivations, from which the claim
follows.

s′
1 −→� R (a b)·t′1

[b]s′
1 −→� R [b](a b)·t′1

(C) and
�NLa

t′1 ≈α t1 �NLa
a#(a b)·t′1

�NLa
[b](a b)·t′1 ≈α [a]t1

The cases where G �= [a]� are simpler. ��

3.3 Proofs of Commutation and Confluence

A key lemma to our theorems of commutation and confluence is Lemma 10. It
says that for two mutually orthogonal NRSAS ’s R1 and R2, if parallel reduction
of R1 takes place from a redex of R2 then all the reductions are below variable
positions of the left-hand side of the rule of R2. This property is used in the
proof of subcommutation lemma (Lemma 11).

First we show an auxiliary lemma to address the separated case of moderated
variables.

Lemma 9. Let R be a uniform NRSAS. If �NLa
s ≈α (π·X)σ and s−→� Rt then

there exists δ such that �NLa
t ≈α (π·X)δ, σ −→� R δ, and ∀Y ∈ dom(σX) \ {X}.

Y σ = Y δ.

Proof. From �NLa
s ≈α (π·X)σ = πσ·(Xσ), we have �NLa

(πσ)−1·s ≈α Xσ,
and from s −→� R t, we have (πσ)−1·s −→� R (πσ)−1·t by Lemma 5. Hence by
Lemma 8, there exists t′ such that Xσ −→� R t′ ≈α (πσ)−1·t. Now we define δ by
Xδ = t′ and Y δ = Y σ for Y ∈ dom(σX)\{X} (and Aδ = Aσ for A ∈ dom(σXA

)).
Then we have σ −→� R δ, and from Xδ = t′ ≈α (πσ)−1·t = (πδ)−1·t, we obtain
t ≈α πδ·(Xδ) = (π·X)δ. ��

68 K. Kikuchi and T. Aoto

Now we prove the announced lemma. Note that the linearity condition is
supposed for variables, but not for atom-variables. We therefore restrict induc-
tion to proper subexpressions of the left-hand side of the rule of R2, rather than
all linear expressions, so that the assignment by the ground substitution to each
atom-variable is fixed throughout the proof by induction. This is a different point
from the proof of Lemma 11 of [11] which uses induction on all linear terms.

Note also that there is not an atom but an atom expression (a suspension on
an atom-variable) at each place of binder in a rewrite rule. In the cases 2(a) and
2(b) of the following proof, the atom expression v is instantiated by the ground
substitution σ and the ground substitution δ to be constructed, and there we
use Lemma 1(2) to show the claim.

Lemma 10. Let R1 and R2 be mutually orthogonal uniform NRSAS’s, and let
∇ � l → r ∈ R2. Suppose that σ is a ground substitution with VarX ,XA

(l) ⊆
dom(σ) and �NLa

∇σ. Then, for every proper subexpression l′ of l, if �NLa

s ≈α l′σ and s −→� R1 t then there exists δ such that �NLa
t ≈α l′δ, σ −→� R1 δ,

and ∀X ∈ dom(σX) \ VarX (l′). Xσ = Xδ.

Proof. By induction on the structure of l′. The case where l′ is a moderated
variable π·X follows from Lemma 9. For the other cases, we first show that the
last rule used in the derivation of s −→� R1 t cannot be (B). Suppose otherwise.
Then by the definition of rewrite relation, we have �NLa ∇̂σ̂ and �NLa s ≈α l̂σ̂

for some ∇̂ � l̂ → r̂ ∈ R1 and σ̂, where we assume without loss of generality that
dom(σ̂)∩dom(σ) = ∅. However, then the VANUP ({l̂ ≈ l′}, ∇̂∪∇) has a solution
σ̂ ∪ σ, which means that ∇̂ � l̂ → r̂ overlaps on ∇ � l → r, contradicting the
mutual orthogonality of R1 and R2. Hence, the last rule used in the derivation
of s −→� R1 t must be (C). The rest of the proof is by case analysis according to
the form of l′. Here we consider the cases where l′ = 〈l′1, . . . , l′n〉 and l′ = [v]l′1.

1. l′ = 〈l′1, . . . , l′n〉. Then the last part of the derivation of s−→� R1 t has the form

s1 −→� R1 t1 . . . sn −→� R1 tn

〈s1, . . . , sn〉 −→� R1 〈t1, . . . , tn〉 (C)

and for each i ∈ {1, . . . , n}, �NLa
si ≈α l′iσ. By the induction hypothesis,

there exist δi’s such that �NLa
ti ≈α l′iδi, σ −→� R1 δi, and ∀X /∈ VarX (l′i).

Xσ = Xδi. Since l′ is linear, we can take δ such that if X ∈ VarX (l′i) then
Xδ = Xδi, and if X ∈ dom(σX) \ VarX (l′) then Xδ = Xσ (and Aδ = Aσ for
A ∈ dom(σXA

)). It is easy to check that this δ satisfies the required condition.
2. l′ = [v]l′1. Since �NLa s ≈α l′σ = ([v]l′1)σ = [vσ](l′1σ), we have two cases. Let

a = vσ.
(a) s = [a]s′. Then �NLa

s′ ≈α l′1σ, and the last part of the derivation of
s −→� R1 t has the form

s′ −→� R1 t′

[a]s′ −→� R1 [a]t′
(C)

Confluence and Commutation for Nominal Rewriting Systems 69

Then by the induction hypothesis, there exists δ such that �NLa t′ ≈α l′1δ,
σ −→� R1 δ, and ∀X /∈ VarX (l′1). Xσ = Xδ. From σ −→� R1 δ, we have
∀A ∈ dom(σXA

). Aσ = Aδ, and so vσ = vδ by Lemma 1(2). Thus, from
�NLa t′ ≈α l′1δ, we have �NLa [a]t′ ≈α [a](l′1δ) = [vσ](l′1δ) = [vδ](l′1δ) =
([v]l′1)δ. Hence, the claim follows.

(b) s = [b]s′. Then, �NLa
(b a)·s′ ≈α l′1σ, �NLa

a#s′ and the last part of the
derivation of s −→� R1 t has the form

s′ −→� R1 t′

[b]s′ −→� R1 [b]t′
(C)

From s′ −→� R1 t′, we have (b a)·s′ −→� R1 (b a)·t′ by Lemma 5. Since R1

is uniform, we also have �NLa
a#t′ by Lemma 7. Now, by the induc-

tion hypothesis for l′1, there exists δ such that �NLa
(b a)·t′ ≈α l′1δ,

σ −→� R1 δ, and ∀X /∈ VarX (l′1). Xσ = Xδ. From σ −→� R1 δ, we have
∀A ∈ dom(σXA

). Aσ = Aδ, and so vσ = vδ by Lemma 1(2). Thus, from
�NLa

(b a)·t′ ≈α l′1δ and �NLa
a#t′, we have �NLa

[b]t′ ≈α [a](l′1δ) =
[vσ](l′1δ) = [vδ](l′1δ) = ([v]l′1)δ. Hence, the claim follows.

��
Now we show subcommutation modulo ≈α of mutually orthogonal uniform

NRSAS ’s.

Lemma 11 (Subcommutation modulo ≈α). Let R and R′ be mutually
orthogonal uniform NRSAS’s. If s −→� R t and s −→� R′ t′ then there exist u and
u′ such that t −→� R′ u, t′ −→� R u′ and �NLa

u ≈α u′.

Proof. By induction on the structure of s. We distinguish cases according to
the last rules used in the derivations of s −→� R t and s −→� R t′.

1. Both rules are (B). This case contradicts the mutual orthogonality of R and
R′.

2. Both rules are (C). The claim follows from the induction hypothesis.
3. One is (C) and the other is (B). Suppose that s −→� R t is derived by (C) and

that s −→� R′ t′ is derived by (B). Then there exist R′ = ∇ � l → r ∈ R′

and σ such that s →〈R′,ε,σ〉 t′. By the definition of rewrite relation, we have
�NLa ∇σ, �NLa s ≈α lσ and t′ = rσ.
Here we only consider the case where s = f s1. Then the last part of the
derivation of s −→� R t has the form

s1 −→� R t1
f s1 −→� R f t1

(C)

Since �NLa
s ≈α lσ, we have �NLa

f s1 ≈α lσ. So l is of the form f l1 and
�NLa

s1 ≈α l1σ. Hence by Lemma 10 with l1 as l′ (s1 as s and t1 as t), there
exists δ such that �NLa t1 ≈α l1δ and σ −→� R δ. From the former, we have
�NLa

f t1 ≈α f l1δ = lδ. From the latter and �NLa
∇σ, we have �NLa

∇δ by
Lemma 7(2). Thus t = f t1 →〈R′,ε,δ〉 rδ, and so t −→� R′ rδ by the rule (B).
On the other hand, by Lemma 6, we have t′ = rσ −→� R rδ. Hence, we can
take u = u′ = rδ.

70 K. Kikuchi and T. Aoto

s ≈α lσ

t ≈α lδ t′ = rσ

rδ

�(C)

R

� (B)

R′

�

R′

�

R

��
Actually, the above lemma also holds with the stronger condition u = u′. It

does not necessarily hold in the case of an orthogonal uniform NRSAS R = R′

as we see in Lemma 12 below.
Since →R ⊆ −→� R ⊆ →∗

R by Lemma 4, we have the following theorem.

Theorem 1 (Commutation modulo ≈α). Let R and R′ be mutually orthog-
onal uniform NRSAS’s. If s →∗

R t and s →∗
R′ t′ then there exist u and u′ such

that t →∗
R′ u, t′ →∗

R u′ and �NLa
u ≈α u′.

This theorem is particularly useful for showing commutation modulo ≈α of
a left-linear uniform NRSAS like the system in Example 3 and a left-linear first-
order rewriting system that are mutually orthogonal.

Next we show Church-Rosser modulo ≈α for orthogonal NRSAS ’s. Observing
the proof of Lemma 10, we see that the claim also holds for any orthogonal
NRSAS R1 = R2 since l′ is a proper subexpression of l and there exists no
proper overlap in an orthogonal NRSAS .

Lemma 12. Let R be an orthogonal uniform NRSAS that is α-stable. Then, if
s −→� R t and s −→� R t′ then there exist u and u′ such that t −→� R u, t′ −→� R u′

and �NLa
u ≈α u′.

Proof. We proceed in a similar way to the proof of Lemma 11 except that in
the case where both rules are (B), they may be by the same rewrite rule. In that
case, we use the α-stability of R. ��
Theorem 2 (Church-Rosser modulo ≈α). Let R be an orthogonal uniform
NRSAS that is α-stable. Then, →R is Church-Rosser modulo ≈α.

Proof. By Lemma 8, −→� R is strongly compatible with ≈α, and by Lemma 12,
−→� R subcommutes with −→� R modulo ≈α. Hence by the results in [15] (see also
Corollary 2.6.5 of [16]), −→� R is Church-Rosser modulo ≈α. Since →R ⊆ −→� R
⊆ →∗

R by Lemma 4, it follows that →R is Church-Rosser modulo ≈α. ��
Example 8. The NRSAS Rsub in Example 3 is orthogonal, uniform and α-stable.
Hence by Theorem 2, we see that →Rsub

is Church-Rosser modulo ≈α. ��

Confluence and Commutation for Nominal Rewriting Systems 71

Example 9. Consider the NRSAS Rpnfcom with the following rewrite rules:

A#Y � and〈forall〈[A]X〉, Y 〉 → forall〈[A]and〈X,Y 〉〉 (∀1)
A#X � and〈X, forall〈[A]Y 〉〉 → forall〈[A]and〈X,Y 〉〉 (∀2)
A#B � forall〈[A]forall〈[B]X〉〉 → forall〈[B]forall〈[A]X〉〉 (COM∀)

Then Rpnfcom has proper overlaps, and hence it is not orthogonal. So we cannot
apply Theorem 2. However, it can be shown that →Rpnfcom

is Church-Rosser
modulo ≈α (cf. Example 34 of [22]). ��

4 Conclusion and Related Work

We have presented proofs of commutation modulo ≈α of mutually orthogo-
nal uniform NRSAS ’s and Church-Rosser modulo ≈α for orthogonal uniform
NRSAS ’s that are α-stable. In NRSAS ’s, the same atom can be substituted for
different atom-variables in a rewrite rule, so in this respect our results on Church-
Rosser modulo ≈α for orthogonal systems generalise previous work on orthogonal
systems in traditional nominal rewriting. The results in this paper are about the
rewrite relations on ground terms, but they are enough for application to correct-
ness of a form of program transformation. (Commutation of mutually orthogonal
systems is used, e.g. in the proof of Lemma 4.3(3) of [10].)

Currently, we are working on implementation of a confluence checking tool
that verifies sufficient conditions for confluence and commutation in this paper.
To verify non-existence of overlaps in NRSAS ’s, it should use some procedure for
deciding variable-atom nominal unification problems. Since our previous tool [1]
implements an equivariant unification procedure which uses atom-variables and
permutation-variables, it is expected to help us to implement such a procedure.

The difference between confluence on ground nominal terms like in this paper
and confluence in previous work on traditional nominal rewriting corresponds to
the difference between confluence of some concrete calculus and meta-confluence
of that calculus with meta-variables (see, e.g. [14]). The traditional nominal
rewriting system corresponding to Rpnfcom in Example 9 above is an example of
a system for which confluence on ground terms holds but confluence on general
terms does not (cf. Examples 12 and 34 of [22]).

As a rewriting mechanism with matching and overlaps without involving per-
mutations, closed rewriting has been considered [2,4]. However, closed rewriting
is incompatible with rewrite rules with free atoms like the rule (subvarε) in Exam-
ple 3. In fact, according to Lemma 5.3 of [2], no rewrite step is induced by such
rewrite rules.

Acknowledgements. We are grateful to the anonymous referees for valuable com-
ments. The first author thanks Makoto Hamana for useful discussions. This work
was partly supported by JSPS KAKENHI Grant Numbers JP17K00005, JP18K11158,
JP19K11891 and JP20H04164.

72 K. Kikuchi and T. Aoto

References

1. Aoto, T., Kikuchi, K.: Nominal confluence tool. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 173–182. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40229-1 12

2. Ayala-Rincón, M., Fernández, M., Gabbay, M.J., Rocha-Oliveira, A.C.: Checking
overlaps of nominal rewriting rules. Electron. Notes Theoret. Comput. Sci. 323,
39–56 (2016)

3. Chiba, Y., Aoto, T., Toyama, Y.: Program transformation by templates based on
term rewriting. In: Proceedings of the 7th PPDP, pp. 59–69. ACM (2005)

4. Fernández, M., Gabbay, M.J.: Nominal rewriting. Inf. Comput. 205, 917–965
(2007)

5. Fernández, M., Gabbay, M.J., Mackie, I.: Nominal rewriting systems. In: Proceed-
ings of the 6th PPDP, pp. 108–119. ACM (2004)

6. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects Comput. 13, 341–363 (2002)

7. Gramlich, B.: Confluence without termination via parallel critical pairs. In: Kirch-
ner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 211–225. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61064-2 39

8. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems. J. ACM 27(4), 797–821 (1980)

9. Kikuchi, K., Aoto, T.: Omitted proofs. https://www.riec.tohoku.ac.jp/∼kxe/cr-
nrsas/appendix.pdf

10. Kikuchi, K., Aoto, T., Sasano, I.: Inductive theorem proving in non-terminating
rewriting systems and its application to program transformation. In: Proceedings
of the 21st PPDP, pp. 13:1–13:14. ACM (2019)

11. Kikuchi, K., Aoto, T., Toyama, Y.: Parallel closure theorem for left-linear nominal
rewriting systems. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI),
vol. 10483, pp. 115–131. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66167-4 7

12. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon
Press (1970)

13. Kutz, Y., Schmidt-Schauß, M.: Rewriting with generalized nominal unification.
Math. Struct. Comput. Sci. 30, 710–735 (2020)

14. de Moura, F.L.C., Kesner, D., Ayala-Rincón, M.: Metaconfluence of calculi with
explicit substitutions at a distance. In: Proceedings of the 34th FSTTCS. LIPIcs,
vol. 29, pp. 391–402 (2014)

15. Ohlebusch, E.: Church-Rosser theorems for abstract reduction modulo an equiva-
lence relation. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 17–31. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0052358

16. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002).
https://doi.org/10.1007/978-1-4757-3661-8

17. Okui, S.: Simultaneous critical pairs and Church-Rosser property. In: Nipkow, T.
(ed.) RTA 1998. LNCS, vol. 1379, pp. 2–16. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0052357

18. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput.
186, 165–193 (2003)

19. Rosen, B.: Tree-manipulating systems and Church-Rosser theorems. J. ACM 20(1),
160–187 (1973)

https://doi.org/10.1007/978-3-319-40229-1_12
https://doi.org/10.1007/3-540-61064-2_39
https://www.riec.tohoku.ac.jp/~kxe/cr-nrsas/appendix.pdf
https://www.riec.tohoku.ac.jp/~kxe/cr-nrsas/appendix.pdf
https://doi.org/10.1007/978-3-319-66167-4_7
https://doi.org/10.1007/978-3-319-66167-4_7
https://doi.org/10.1007/BFb0052358
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/BFb0052357
https://doi.org/10.1007/BFb0052357

Confluence and Commutation for Nominal Rewriting Systems 73

20. Schmidt-Schauß, M., Sabel, D., Kutz, Y.D.K.: Nominal unification with atom-
variables. J. Symb. Comput. 90, 42–64 (2019)

21. Suzuki, T., Kikuchi, K., Aoto, T., Toyama, Y.: Confluence of orthogonal nominal
rewriting systems revisited. In: Proceedings of the 26th RTA. LIPIcs, vol. 36, pp.
301–317 (2015)

22. Suzuki, T., Kikuchi, K., Aoto, T., Toyama, Y.: Critical pair analysis in nominal
rewriting. In: Proceedings of the 7th SCSS. EPiC, vol. 39, pp. 156–168. EasyChair
(2016)

23. Toyama, Y.: On the Church-Rosser property of term rewriting systems. Technical
Report 17672, NTT ECL (1981). (in Japanese)

24. Toyama, Y.: Commutativity of term rewriting systems. In: Fuchi, K., Kott, L. (eds.)
Programming of Future Generation Computers II, pp. 393–407. North-Holland
(1988)

25. Toyama, Y.: How to prove equivalence of term rewriting systems without induction.
Theoret. Comput. Sci. 90(2), 369–390 (1991)

26. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoret. Comput. Sci.
323, 473–497 (2004)

Pattern Eliminating Transformations

Horatiu Cirstea, Pierre Lermusiaux, and Pierre-Etienne Moreau(B)

Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
{Horatiu.Cirstea,Pierre.Lermusiaux,Pierre-Etienne.Moreau}@loria.fr

Abstract. Program transformation is a common practice in computer
science, and its many applications can have a range of different objec-
tives. For example, a program written in an original high level language
could be either translated into machine code for execution purposes, or
towards a language suitable for formal verification. Such compilations
are split into several so-called passes which generally aim at eliminating
certain constructions of the original language to get a program in some
intermediate languages and finally generate the target code. Rewriting
is a widely established formalism to describe the mechanism and the
logic behind such transformations. In a typed context, the underlying
type system can be used to give syntactic guarantees on the shape of
the results obtained after each pass, but this approach could lead to an
accumulation of auxiliary types that should be considered. We propose
in this paper a less intrusive approach based on simply annotating the
function symbols with the (anti-)patterns the corresponding transforma-
tions are supposed to eliminate. We show how this approach allows one
to statically check that the rewrite system implementing the transforma-
tion is consistent with the annotations and thus, that it eliminates the
respective patterns.

Keywords: Rewriting · Pattern-matching · Pattern semantics

1 Introduction

Rewriting is a well established formalism widely used in both computer science
and mathematics. It has been used, for example, in semantics in order to describe
the meaning of programming languages [28], but also in automated reasoning
when describing, by inference rules, a logic, a theorem prover [22], or a constraint
solver [21]. Rewriting has turned out to be particularly well adapted to describe
program semantics [31] and program transformations [7,27]. There are several
languages and tools implementing the notions of pattern matching and rewriting
rules ranging from functional languages, featuring relatively simple patterns and
fixed rewriting strategies, to rule based languages like Maude [11], Stratego [34],
or Tom [5], providing equational matching and flexible strategies; they have been
all used as underlying languages for more or less sophisticated compilers.

This work is partially supported by the project ANR-16-CE25-0007 FORMEDICIS.

c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 74–92, 2021.
https://doi.org/10.1007/978-3-030-68446-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-68446-4_4

Pattern Eliminating Transformations 75

In the context of compilation, the complete transformation is usually per-
formed in multiple phases, also called passes, in order to eventually obtain a
program in a different target language. Most of these passes concern transforma-
tions between some intermediate languages and often aim at eliminating certain
constructions of the original language. These transformations could eliminate
just some symbols, like in desugaring passes for example, or more elaborate
constructions, like in code optimization passes.

The correction of the transformations could be guaranteed using runtime
assertions, but static guarantees are certainly preferable. When using typed lan-
guages, we can already rely on the typing system to provide such static guar-
antees: the type of the transformation function implicitly expresses its expected
result. The differences between the source and the target language generally con-
cern only a small number of symbols, making the definition of the latter quite
tedious. For example, in a desugaring pass, the target language would contain
the same symbols as the source one but the syntactic sugar symbols.

Formalisms such as the one introduced for NanoPass [23] have proposed a
method to eliminate a lot of the overhead induced by the definition of the inter-
mediate languages by specifying only the symbols eliminated from the source
language and generating automatically the corresponding intermediate language.

Consider, for instance, expressions build out of integers, strings and lists:

Expr = int(Int)
| str(String)
| lst(List)

List = nil
| cons(Expr, List)

If we want to define a transformation encoding integers by strings then, the
target language in NanoPass would be Expr−int, i.e. expressions build out of
strings and lists. Note that in this case the tool removes the symbol int from
Expr and replaces accordingly Expr with the new type in the type of cons.

This kind of approaches reach their limitations when the transformation of
the source language goes beyond the removal of some symbols. For example, if we
want to define a transformation which flattens the list expressions and ensures
thus that there is no nested list, the following target type should be considered:

Expr = lit(Literal)
| lst(List)

Literal = int(Int)
| str(String)

List = nil
| cons(Literal, List)

Functional approaches to transformation [30] can rely on fine grained type
systems, combining overloading, subtyping and polymorphism, through the use
of variants [14], to define the transformation and provide such guarantees. While
effective, this requires to design such adjusted types in a case by case basis.

We propose in this paper a formalism where function symbols are simply
annotated with the patterns that should be eliminated by the corresponding
transformation and a mechanism to statically verify that the rewriting system
implementing the function does eliminate these patterns. The method is mini-
mally intrusive: for the above example, we should just annotate the flattening

76 H. Cirstea et al.

function symbol with the pattern cons(lst(l1), l2) and the checker verifies that
the underlying rewriting system is consistent with the annotation, or exhibits
the problematic rule(s) and issue(s) if it is not. The method applies to con-
structor based term rewriting systems, which correspond to functional programs
defined by pattern matching, programs which are commonly used when defining
transformations. When the system is complete and terminating, which is usually
the case when defining a function, our method verifies that the corresponding
normal forms contain no subterms matched by the specified patterns.

First, we introduce the basic notions used in the paper. In Sect. 3 we define
the notion of pattern-free terms and their ground semantics, and we characterize
semantics preserving rewriting system. Section 4 describes a method for auto-
matically checking pattern-free properties and shows how this method can be
used to verify semantics preservation and consequently, the absence of specific
patterns from the result of the corresponding transformations. We finally present
some related work and conclude. The proofs are available in [9].

2 Preliminary Notions

We define in this section the basic notions and notations used in this paper;
more details can be found in [4,33].

A many-sorted signature Σ = (S,F), consists of a set of sorts S and a set of
symbols F . The set of symbols is partitioned into two disjoint sets F = D � C;
D is the set of defined symbols and C the set of constructors. A symbol f with
domain Dom (f) = s1 × · · · × sn ∈ S∗ and co-domain CoDom (f) = s ∈ S is
written f :s1 ×· · ·× sn �→ s; we may write fs to indicate explicitly the co-domain
and use Dom (f) [i] to denote the i-th sort, si, in the domain. We denote by
Cs, resp. Ds, the set of constructors, resp. defined symbols, with co-domain s.
Variables are also sorted and we write x:s or xs to indicate that variable x has
sort s. The set Xs denotes a set of variables of sort s and X =

⋃
s∈S Xs is the

set of sorted variables.
The set of terms of sort s ∈ S, denoted Ts(F ,X) is the smallest set containing

Xs and such that f(t1, . . . , tn) is in Ts(F ,X) whenever f :s1×· · ·×sn �→ s and ti ∈
Tsi

(F ,X), i ∈ [1, n]. We write t:s to indicate that the term t is of sort s, i.e. when
t ∈ Ts(F ,X). The set of sorted terms is defined as T (F ,X) =

⋃
s∈S Ts(F ,X).

The set of variables occurring in t ∈ T (F ,X) is denoted by Var (t). If Var (t) is
empty, t is called a ground term. Ts(F) denotes the set of all ground terms of
sort s and T (F) denotes the set of all ground terms. Terms in T (C) are called
values. A linear term is a term where every variable occurs at most once. The
linear terms in T (C,X) are called constructor patterns or simply patterns.

A position of a term t is a sequence of positive integers describing the path
from the root of t to the root of the subterm at that position. The empty sequence
representing the root position is denoted by ε. t|ω, resp. t(ω), denotes the subterm
of t, resp. the symbol of t, at position ω. t [s]ω denotes the term t with the subterm
at position ω replaced by s. Pos (t) denotes the set of positions of t.

We call substitution any mapping from X to T (F ,X) which is the identity
except over a finite set of variables called its domain. A substitution σ extends

Pattern Eliminating Transformations 77

as expected to an endomorphism σ′ of T (F ,X). To simplify the notations, we
do not make the distinction between σ and σ′. Sorted substitutions are such that
if x:s then σ(x) ∈ Ts(F ,X). Note that for any such sorted substitution σ, t:s iff
σ(t):s. In what follows we will only consider such sorted substitutions.

Given two terms t, u of some sort s, we say that t matches u (denoted t≺≺u)
if it exists a substitution σ such that u = σ(t). When t is linear, we can give an
inductive definition to the pattern matching relation:

x ≺≺ u x ∈ Xs

f(t1, . . . , tn) ≺≺ f(u1, . . . , un) iff ∧n
i=1 ti ≺≺ ui, for f ∈ F

In this paper we only consider matchings of the form p≺≺ v with p a constructor
pattern and v a value.

Starting from the observation that a pattern can be interpreted as the set of
its instances, the notion of ground semantics was introduced in [10] as the set of
all ground constructor instances of a pattern p ∈ Ts(C,X): �p� = {σ(p) | σ(p) ∈
Ts(C)}. It was shown in [10] that, given a pattern p and a value v, v ∈ �p� iff
p ≺≺ v. ⊥ denotes the pattern whose semantics is empty, i.e. matching no term.

A constructor rewrite rule (over Σ) is a pair of terms ϕ(l1, . . . , ln) � r ∈
Ts(F ,X) × Ts(F ,X) with s ∈ S, ϕ ∈ D, l1, . . . , ln ∈ T (C,X) and such that
ϕ(l1, . . . , ln) is linear and Var (r) ⊆ Var (l). A constructor based term rewriting
system (CBTRS) is a set of constructor rewrite rules R inducing a rewriting
relation over T (F), denoted by −→R and such that t −→R t′ iff there exist l �
r ∈ R, ω ∈ Pos (t) and a substitution σ such that t|ω = σ(l) and t′ = t [σ(r)]ω.
The reflexive and transitive closure of −→R is denoted by →−→R.

3 Pattern-Free Terms and Corresponding Semantics

We want to ensure that the normal form of a term, if it exists, does not contain
a specific constructor and more generally that no subterm of this normal form
matches a given pattern. The sort of the term provides some information on the
shape of the normal forms since the precise language of the values of a given
sort is implicitly given by the signature. But normal forms often satisfy stronger
constraints that also depend on the underlying CBTRS.

To guarantee these constraints we annotate all defined symbols with the
patterns that are supposed to be absent when reducing a term headed by the
respective symbol and we check that the CBTRS defining the corresponding
functions are consistent with these annotations.

We focus first on the notion of pattern-free term and on the corresponding
ground semantics, and explain in the next sections how one can check pattern-
freeness and verify the consistence of the symbol annotations with a CBTRS.

3.1 Pattern-Free Terms

We consider that every defined symbol f−p ∈ D is now annotated with a pattern
p ∈ T⊥(C,X) = T (C,X) ∪ {⊥} and we use this notation to define pattern-free

78 H. Cirstea et al.

terms. Intuitively, any value obtained by reducing a ground term of the form
f−p(t1, . . . , tn) contains no subterms matched by p. Given the example from
the introduction, we can consider two function symbols, flattenE−p : Expr �→
Expr and flattenL−p : List �→ List, with p = cons(lst(l1), l2), to indicate
that the normal forms of any term headed by one of these symbols contain
no nested lists. The annotation of the function symbol for the concatenation,
concat−⊥ : List × List �→ List, indicates that no particular shape is expected
for the reducts of the corresponding terms.

Definition 3.1 (Pattern-free terms). Given p, a constructor pattern or ⊥,

– a value v ∈ T (C) is p-free iff ∀ω ∈ Pos (v) , p ≺�≺ v|ω;
– a term u ∈ T (C,X) is p-free iff ∀σ such that σ(u) ∈ T (C), σ(u) is p-free;
– a term t ∈ T (F ,X) is p-free iff ∀ω ∈ Pos (t) such that t(ω) = f−q

s ∈ D, t [v]ω
is p-free for all q-free value v ∈ Ts(C).

A value is p-free if and only if p matches no subterm of the value. For terms
containing no defined symbols, verifying a pattern-free property comes to verify-
ing the property for all the ground instances of the term. Finally, a general term
is p-free if and only if replacing (all) the subterms headed by a defined symbol
f−q

s by any q-free value of the same sort s results in a p-free term. Intuitively, this
corresponds to considering an over-approximation of the set of potential normal
forms of an annotated term. While pattern-free properties can be checked for
any value by exploring all its subterms, this is not possible for a general term
since the property has to be verified by a potentially infinite number of values.
We present in Sect. 4 a decision procedure for this problem.

3.2 Generalized Ground Semantics

The notion of ground semantics presented in Sect. 2 and, in particular, the
approach proposed in [10] to compute differences (and thus intersections) of
such semantics, can be used to compare the shape of two constructor patterns
p, q (at the root position). More precisely, when �p� ∩ �q� = ∅ we have that
∀σ, σ(q) /∈ �p� and therefore, we can establish that ∀σ, p ≺�≺ σ(q). We can thus
compare the semantics of a given pattern p with the semantics of each of the
subterms of a constructor pattern t in order to check that t is p-free.

Example 3.1. Consider the signature Σ with S = {s1, s2, s3} and F = C = {c1 :
s2 × s1 �→ s1, c2 : s3 �→ s1, c3 : s1 �→ s2, c4 : s3 �→ s2, c5 : s3 �→ s3, c6 : �→ s3}.

We can compute �c1(c4(c6), ys1
)�∩ �c1(xs2

, c2(c6))� = �c1(c4(c6), c2(c6))� and
thus neither c1(c4(c6), ys1

) is c1(x, c2(c6))-free nor c1(xs2
, c2(c6)) is c1(c4(c6), y)-

free. Similarly, we can check that �c3(c2(zs3
))�∩�c4(zs3

)� = ∅ and that �c2(zs3
)�∩

�c4(zs3
)� = ∅ and, as a term of sort s3 can only contain constructors c5 and c6,

we can deduce that c3(c2(zs3
)) is c4(z)-free.

We want to establish a general method to verify pattern-free properties for
any term and we propose an approach which relies on the notion of ground
semantics extended in order to take into account all terms in T (F ,X):

Pattern Eliminating Transformations 79

Definition 3.2 (Generalized ground semantics). Given a term u ∈
T (C,X), and a term t ∈ T (F ,X),

– �u� = {σ(u) | ∀σ, σ(u) ∈ T (C)};
– �t� =

⋃
ω∈Pos(t),t(ω)=f−p

s ∈D
⋃

v∈Ts(C) p-free�t [v]ω�

Note that the ground semantics of a variable xs is the set of all possible
ground patterns of the corresponding sort: �xs� = Ts(C), and for non-variable
constructor patterns, since they are linear, we can use a recursive definition:
�c(p1, . . . , pn)� =

{
c(v1, . . . , vn) | (v1, . . . , vn) ∈ �p1� × · · · × �pn�} for all c ∈ C.

Moreover, by definition we have �f−p
s (t1, . . . , tn)� = {v ∈ Ts(C) | v p-free}.

The generalized ground semantics of a term rooted by a defined symbol repre-
sents an over-approximation of all the possible values obtained by reducing the
term with respect to a CBTRS preserving the pattern-free properties.

Pattern-freeness can be checked by exploring the semantics of the term:

Proposition 3.1. Let t ∈ T (F ,X), p ∈ T⊥(C,X), t is p-free iff ∀v ∈ �t�, v is
p-free.

For convenience, we consider also annotated variables whose semantics is that
of any term headed by a defined symbol with the same co-domain as the sort of
the variable:

�x−p
s � = {v ∈ Ts(C) | v p-free}

Thus, �f−p
s (t1, . . . , tn)� = �x−p

s � for all f−p
s ∈ Ds. Note that x−⊥

s has the same
semantics as xs, and we sometimes use xs to denote x−⊥

s . We denote by X a the
set of annotated variables.

Given a linear term t ∈ T (F ,X), we can systematically construct its symbolic
equivalent t̃ ∈ T (C,X a) by replacing all the subterms of t headed by a defined
symbol f−p

s by a fresh variable x−p
s of the corresponding sort and annotated by

the same pattern:

Proposition 3.2. ∀t ∈ T (F ,X), �t� = �t̃�.

Example 3.2. We consider the signature from Example 3.1 enriched with the
defined symbols D = {f−p1 : s1 �→ s1, g

−p2 : s2 �→ s2} with p1 = c1(c4(z), y)
and p2 = c4(z). The symbolic equivalent of the term r1 = c1(g−p2(x), f−p1(y))
is the term r̃1 = c1(x−p2

s2
, y−p1

s1
).

We can thus restrict in what follows to patterns using annotated variables
and we consider extended patterns built out of this kind of patterns:

p, q :=x | c(q1, . . . , qn) | p1 + p2 | p1 \ p2 | p1 × p2 | ⊥

with x ∈ X a
s , c : s1 × · · · × sn �→ s ∈ C, p, q, p1, p2 : s and qi : si, i ∈ [1, n].

Extended patterns can share variables but not below a constructor symbol. This
corresponds to the fact that p1 and p2, in p1 + p2 (resp. p1 \ p2, p1 × p2), repre-
sent independent alternatives w.r.t. matching and thus, that their variables are

80 H. Cirstea et al.

unrelated. For example, the patterns c3(c2(x))+c4(x) and c3(c2(x))+c4(y) both
represent all values rooted by c3 followed by c2, or rooted by c4.

The pattern matching relation can be extended to take into account disjunc-
tions, conjunctions and complements of patterns:

p1 + p2 ≺≺ v iff p1 ≺≺ v ∨ p2 ≺≺ v
p1 \ p2 ≺≺ v iff p1 ≺≺ v ∧ p2 ≺�≺ v

p1 × p2 ≺≺ v iff p1 ≺≺ v ∧ p2 ≺≺ v
⊥ ≺�≺ v

Intuitively, a pattern p1+p2 matches any term matched by one of its compo-
nents while a pattern p1×p2 matches any term matched by both its components.
The relative complement of p2 w.r.t. p1, p1 \ p2, matches all terms matched by
p1 except for those matched by p2. ⊥ matches no term. × has a higher priority
than \ which has a higher priority than +.

The notion of ground semantics extends to such patterns by considering the
above recursive definition for patterns headed by constructor symbols and

�p1 + p2� = �p1� ∪ �p2� �p1 \ p2� = �p1� \ �p2�
�p1 × p2� = �p1� ∩ �p2� �⊥� = ∅

We still have that given an extended pattern p and a value v, v ∈ �p� iff p≺≺v [10].
If an extended pattern contains no ⊥ it is called pure, and if it contains no ×

and no \ it is called additive. A term of T (C,X a), it is called symbolic. We call
regular patterns that contain only variables of the form x−⊥ and quasi-additive
patterns that contain no × and only contain \ with the pattern on the left being
a variable and the pattern on the right being a regular additive pattern.

We can remark that p1 and p2 in Example 3.2 are regular patterns, that
x−p1

s2
\ p2 is a quasi-additive pattern, and that r̃1 is a symbolic pattern (indeed,

the symbolic equivalent of any term is a symbolic pattern).

3.3 Semantics Preserving CBTRS

Generalized ground semantics rely on the symbol annotations and assume thus
a specific shape for the normal forms of reducible terms. This assumption should
be checked by verifying that the CBTRSs defining the annotated symbols are
consistent with these annotations, i.e. check that the semantics is preserved by
reduction.

Definition 3.3. A rewrite rule l � r is semantics preserving iff �r� ⊆ �l�. A
CBTRS is semantics preserving iff all its rewrite rules are.

Semantics preservation carries over to the induced rewriting relation:

Proposition 3.3. Given a semantics preserving CBTRS R we have

∀t, v ∈ T (F), if t →−→R v, then �v� ⊆ �t�.

As an immediate consequence we obtain the pattern-free preservation:

Pattern Eliminating Transformations 81

Corollary 3.1. Given a semantics preserving CBTRS R we have

∀t, v ∈ T (F), p ∈ T (C,X), if t is p-free and t →−→R v, then v is p-free.

Note that the rules of a CBTRS are of the form f−p(l1, . . . , ln) � r and thus,
as an immediate consequence of Definition 3.2, the semantics of the left-hand
side of the rewrite rule is the set of all p-free values. Therefore, according to
Proposition 3.1, such a rule is semantics preserving if and only if its right-hand
side r is p-free. We will see in the next section how pattern-freeness and thus,
semantics preservation, can be statically checked.

Example 3.3. We consider the signature from Example 3.2 and the CBTRS:

f−p1(c1(x, y)) � c1(g−p2(x), f−p1(y))
f−p1(c2(z)) � c2(z)

g−p2(c4(z)) � c3(c2(z))
g−p2(c3(y)) � c3(f−p1(y))

We have seen in Example 3.1 that c3(c2(x)) is p2-free and we can thus conclude
that the rule g(c4(z)) � c3(c2(z)) is semantics preserving. In order to verify in a
systematic way the corresponding pattern-free properties of all right-hand sides
and conclude that the CBTRS is semantics preserving, we introduce in the next
section a method to statically check pattern-freeness.

4 Deep Semantics for Pattern-Free Properties

The ground semantics was used in [10] as a means to represent a potentially
infinite number of instances of a term in a finite manner and can be employed
to check that a pattern matches (or not) a term by computing the intersection
between their semantics. For pattern-freeness, we should check not only that the
term is not matched by the pattern but also that none of its subterms is matched
by this pattern. We would thus need a notion of ground semantics closed by the
subterm relation.

We introduce next an extended notion of ground semantics satisfying the
above requirements, show how it can be expressed in terms of ground semantics,
and provide a method for checking the emptiness of the intersection of such
semantics and thus, assert pattern-free properties.

4.1 Deep Semantics

The notion of deep semantics is introduced to provide more comprehensive infor-
mation on the shape of the (sub)terms compared to the ground semantics which
describes essentially the shape of the term at the root position.

Definition 4.1 (Deep semantics). Let t be an extended pattern, its deep
semantics ⦃t⦄ is defined as follows:

⦃t⦄ = {u|ω | u ∈ �t�, ω ∈ Pos (u)}

82 H. Cirstea et al.

Note first that, similarly to the case of generalized ground semantics, it is
obvious that we can always exhibit a symbolic pattern equivalent in terms of
deep semantics to a given term, i.e. ∀t ∈ T (F ,X), ⦃t⦄ = ⦃t̃⦄; consequently, we
can focus on the computation of the deep semantics of extended patterns. Fol-
lowing this observation and as an immediate consequence of the definition we
have a necessary and sufficient condition with regards to pattern-free properties:

Proposition 4.1 (Pattern-free vs Deep Semantics). Let p ∈ T (C,X), t ∈
T (F ,X), t is p-free iff ⦃t̃⦄ ∩ �p� = ∅.

To check the emptiness of the above intersection we express the deep seman-
tics of a term as a union of ground semantics and then check for each of them
that the intersection with the semantics of the considered pattern is empty.

First, since the deep semantics is based on the generalized ground semantics,
we can easily establish a similar recursive definition for constructor patterns:

Proposition 4.2. For any constructor symbol c ∈ C and extended patterns
t1, . . . , tn, such that Dom (c) = s1 × · · · × sn and t1 : s1, . . . , tn : sn, we have:

– If ∀i ∈ [1, n], �ti� �= ∅, then ⦃c(t1, . . . , tn)⦄ = �c(t1, . . . , tn)� ∪
(n⋃

i=1

⦃ti⦄
)
;

– If ∃ i ∈ [1, n], �ti� = ∅, then ⦃c(t1, . . . , tn)⦄ = ∅.

If we apply the above equation for the non-empty case recursively we even-
tually have to compute the deep semantics of annotated variables. For this,
we use the algorithm introduced in Fig. 1: given an annotated variable x−p

s ,
getReachable(s, p, ∅,⊥) computes a set of pairs {(s′

1, p
′
1), . . . , (s

′
n, p′

n)} such that
⦃x−p

s ⦄ = �x−p
s′
1

\ p′
1� ∪ · · · ∪ �x−p

s′
n

\ p′
n�.

Intuitively, the algorithm uses the definition of the deep semantics of a vari-
able ⦃x−p

s ⦄ = {u|ω | u ∈ �x−p
s �, ω ∈ Pos (u)} and the observation that the ground

semantics of an annotated variable can be also defined as:

�x−p
s � =

⋃

c∈Cs

�c(x−p
s1

, . . . , x−p
si

) \ p� (1)

By distributing the complement pattern p on the subterms, the algorithm builds
a set Qc(p) of tuples q = (q1, . . . , qn) of patterns, with each qi being either ⊥ or
a subterm of p, such that

�c(x−p
s1

, . . . , x−p
sn

) \ p� =
⋃

q∈Qc(p)

�c(x−p
s1

\ q1, . . . , x
−p
sn

\ qn)� (2)

Pattern Eliminating Transformations 83

We have thus

⦃x−p
s ⦄ = {u|ω | u ∈ �x−p

s �, ω ∈ Pos (u)}
=

{

u|ω | u ∈
⋃

c∈Cs

⋃

q∈Qc(p)

�c(x−p
s1

\ q1, . . . , x
−p
sn

\ qn)�, ω ∈ Pos (u)
}

=
⋃

c∈Cs

⋃

q∈Qc(p)

{
u|ω | u ∈ �c(x−p

s1
\ q1, . . . , x

−p
sn

\ qn)�, ω ∈ Pos (u)
}

=
⋃

c∈Cs

⋃

q∈Qc(p)

⦃c(x−p
s1

\ q1, . . . , x
−p
sn

\ qn)⦄ (def. of deep semantics)

=
⋃

c∈Cs

⋃

q∈Q′
c(p)

�c(x−p
s1

\ q1, . . . , x
−p
sn

\ qn)� ∪
⋃

c∈Cs

⋃

q∈Q′
c(p)

n⋃

i=1

⦃x−p
si

\ qi⦄

= �x−p
s � ∪

⋃

c∈Cs

⋃

q∈Q′
c(p)

n⋃

i=1

⦃x−p
si

\ qi⦄

(3)

with Q′
c(p) ⊆ Qc(p) s.t. ∀q = (q1, . . . , qn) ∈ Q′

c(p), �x−p
si

\ qi� �= ∅, i ∈ [1, n].
Note that x−p

s is the same as x−p
s \ ⊥ and thus, in order to express the deep

semantics of annotated variables as a union of ground semantics the algorithm
computes a fixpoint for the equation

⦃x−p
s \ r⦄ = �x−p

s \ r� ∪
⋃

c∈Cs

⋃

q∈Q′
c(r+p)

n⋃

i=1

⦃x−p
si

\ qi⦄

Proposition 4.3 (Correctness). Given s ∈ S, p ∈ T⊥(C,X) and r : s a sum
of constructor patterns, getReachable(s, p, ∅, r) terminates and if we have R =
getReachable(s, p, ∅, r), then

⦃x−p
s \ r⦄ =

⋃

(s′,p′)∈R

�x−p
s′ \ p′�

Moreover, we have ⦃x−p
s \ r⦄ = ∅ iff R = ∅.

Example 4.1. We consider the symbolic patterns from Example 3.2 and express
their deep semantics as explained above. According to Proposition 4.2, we have
⦃r̃1⦄ = ⦃c1(x−p2

s2
, y−p1

s1
)⦄ = �c1(x−p2

s2
, y−p1

s1
)� ∪ ⦃x−p2

s2
⦄ ∪ ⦃y−p1

s1
⦄ and we should

expand ⦃x−p2
s2

⦄ and ⦃y−p1
s1

⦄.
To expand ⦃y−p1

s1
⦄ the sets Qc(p1) are computed for each c ∈ Cs1 =

{c1, c2}. First, following Eq. (1), �y−p1
s1

� = �c1(x−p1
s2

, y−p1
s1

) \ c1(c4(z−⊥
s3

), y−⊥
s1

)�∪
�c2(z−p1

s3
) \ c1(c4(z−⊥

s3
), y−⊥

s1
)� and we can easily see that the comple-

ment relation in terms of ground semantics corresponds to set differ-
ences of cartesian products: �c1(x−p1

s2
, y−p1

s1
) \ c1(c4(z−⊥

s3
), y−⊥

s1
)� = �c1(x−p1

s2
\

c4(z−⊥
s3

), y−p1
s1

)� ∪ �c1(x−p1
s2

, y−p1
s1

\ y−⊥
s1

)�. We get thus, �y−p1
s1

� = �c1(x−p1
s2

\
c4(z−⊥

s3
), y−p1

s1
)� ∪ �c1(x−p1

s2
, y−p1

s1
\ y−⊥

s1
)� ∪ �c2(z−p1

s3
)�. Hence, following Eq. (2),

Qc1(p1) = {(c4(z−⊥
s3

),⊥), (⊥, ys1
)} = {(p2,⊥), (⊥, ys1

)} and Qc2(p1) =
{(⊥)}. Moreover, �c1(x−p1

s2
\ p2, y

−p1
s1

)� and �c2(z−p1
s3

)� are not empty (since
c1(c3(c2(c6)), c2(c6)) and c2(c6) belong respectively to each of them) while
�c1(x−p1

s2
, y−p1

s1
\ y−⊥

s1
)� is clearly empty. Thus,

⦃y−p1
s1

⦄ = �y−p1
s1

� ∪ ⦃x−p1
s2

\ p2⦄ ∪ ⦃y−p1
s1

⦄ ∪ ⦃z−p1
s3

⦄.

84 H. Cirstea et al.

Fig. 1. Compute the deep semantics of quasi-additive patterns as a union of ground
semantics. The boolean reachable indicates if we can exhibit at least one p-free value
headed by one of the constructors of s. The set Qc corresponds to Qc(p) in Eq. 2
with p = r and is built by accumulation of the pattern complements from r for the
arguments of a pattern headed by c. Given a tuple q ∈ Qc, subRs is a list (built with
:) which stores the recursive results of getReachable over each element of q.

The getReachable algorithm continues the expansions until a fixpoint is
reached. More precisely, we get ⦃y−p1

s1
⦄ = �y−p1

s1
� ∪ �z−p1

s3
� ∪ �x−p1

s2
\ p2� and

⦃x−p2
s2

⦄ = �x−p2
s2

� ∪ �y−p2
s1

� ∪ �z−p2
s3

�, and therefore, the deep semantics of r̃1 =
c1(x−p2

s2
, y−p1

s1
) is the union of �c1(x−p2

s2
, y−p1

s1
)�, �y−p1

s1
�, �z−p1

s3
�, �x−p1

s2
\p2�, �x−p2

s2
�,

�y−p2
s1

� and �z−p2
s3

�.

Propositions 4.2 and 4.3 guarantee that the deep semantics of any symbolic
pattern and thus, of any term, can actually be expressed as the union of ground
semantics of quasi-additive patterns. We introduce in the next section a method
to automatically verify that the corresponding intersections with the semantics
of a given pattern p are empty and check thus that a term is p-free.

Pattern Eliminating Transformations 85

4.2 Establishing Pattern-Free Properties

Compared to the approach proposed in [10], we have to provide a method that
also takes into account the specific behaviour of annotated variables. On the
other hand, in order to establish pattern-free properties, we only need to check
that the intersection of the semantics of a symbolic pattern t with the semantics
of the given constructor pattern p is empty: thus, we want a TRS that reduces
a pattern of the form t × p to ⊥ if and only if its ground semantics is empty.

To this end, we introduce the TRS Rp presented in Fig. 2. The rules generally
correspond to their counterparts from set theory where constructor patterns
correspond to cartesian products and the other extended patterns to the obvious
corresponding set operations.

Fig. 2. Rp: reduce pattern of the form t × p; v, v1, . . . , vn, w, w1, . . . , wn range over
quasi-additive patterns, u, t range over pure regular additive patterns, t1, . . . , tn range
over pure symbolic patterns, p, q range over constructor patterns, x ranges over pattern
variables. α, β expand to all the symbols in C, δ expands to all symbols in Cn>0.

86 H. Cirstea et al.

The rules A1, A2, resp. E2, E3, describe the behaviour of the conjunction,
resp. the disjunction, w.r.t. ⊥. Rule E1 indicates that the semantics of a pattern
containing a subterm with an empty ground semantics is itself empty, while rule
S1 corresponds to the distributivity of conjunction over cartesian products. Sim-
ilarly, rules S2 and S3 express the distributivity of conjunction over disjunction.

The semantics of a variable of a given sort is the set of all ground constructor
patterns of the respective sort. Thus, the difference between the ground seman-
tics of any pattern and the ground semantics of a variable of the same sort is
the empty set (rule M1). The rules M2–M6 correspond to set operation laws for
complements. Rule M7 corresponds to the set difference of cartesian products;
the case when the head symbol is a constant c corresponds to the rule c\ c ⇒ ⊥.
Rule M8 corresponds to the special case where complemented sets are disjoint.

The rules T1 and T2 indicate that the intersection with the set of all terms
has no effect, rule T3 corresponds to distribution laws for the joint intersection,
while T4 corresponds to the disjointed case.

We have seen that the ground semantics of an annotated variable is obtained
by considering, for each constructor of the appropriate sort, the set of all terms
having this symbol at the root position complemented by the pattern in the
annotation and taking the union of all these sets. Rp uses this property in the
rule P1 to expand annotated variables allowing thus for the triggering of the
other rules for conjunction. Note that zi are fresh variables generated automat-
ically. The rules P2–P4 express the respective behaviour of conjunction over
complements (A ∩ (B \ C) = (A \ C) ∩ B = (A ∩ B) \ C).

Finally, we can observe that, thanks to the algorithm introduced in Fig. 1,
we can determine if ⦃x−p

s \ v⦄ = ∅. Moreover, by definition, ⦃t⦄ = ∅ if and only if
�t� = ∅. Therefore, the TRS is finalized by the rule P6 which eliminates (when
possible) annotated variables. In order to apply P6 exhaustively, Rp also needs
a rule to perform some \-factorization around variables, resulting in the rule P5.

Proposition 4.4 (Semantics preservation). For any extended patterns p, q,
if p →−→Rp

q then �p� = �q�.

We have seen that the algorithm in Fig. 1 always terminates and that it can
be used to decide the conditions in the TRS Rp (Proposition 4.3). Based on this,
we can prove the convergence of the TRS Rp. While we cannot provide a simple
description of the normal forms obtained by reduction of a general extended
pattern, Rp can be used to establish the emptiness of a given intersection:

Proposition 4.5. The rewriting system Rp is confluent and terminating. Given
a quasi-additive pattern t and a constructor pattern p, we have t × p →−→Rp

⊥ if
and only if �t × p� = ∅.

4.3 Establishing Semantics Preserving Properties

The approach proposed in the previous section allows the systematic verification
of pattern-free properties for any term in t ∈ T (F ,X) such that t̃ is linear. It

Pattern Eliminating Transformations 87

is easy to see that if we denote by L(t) the term obtain by replacing all the
variables in the term t by fresh ones then, �t� ⊆ �L(t)�. We can thus linearize, if
necessary, the right-hand sides of the rules of a CBTRS and subsequently check
that it is semantics preserving.

Example 4.2. We apply the approach to check that the CBTRS in Example 3.3
is semantics preserving. For this we need to prove that c1(g−p2(xs2

), f−p1(ys1
))

and c2(zs3
) are p1-free, and that c3(c2(zs3

)) and c3(f−p1(ys1
)) are p2-free.

In order to prove that r1 = c1(g−p2(xs2
), f−p1(ys1

)) is p1-free, we should
first compute the deep semantics of r̃1 = c1(x−p2

s2
, y−p1

s1
) and we have seen in

Example 4.1 how getReachable is used to compute this deep semantics as the
union of �c1(x−p2

s2
, y−p1

s1
)�, �y−p1

s1
�, �z−p1

s3
�, �x−p1

s2
\p2�, �x−p2

s2
�, �y−p2

s1
� and �z−p2

s3
�.

For all the terms in the union we compute their conjunction with p1 using Rp

which reduces them all to ⊥. Hence, by Proposition 4.1, r1 is p1-free.
Similarly, we can check that c2(zs3

) is p1-free, and c3(c2(zs3
)) and c3(f (ys1

))
are p2-free. Thus, the CBTRS is semantics preserving. It is easy to check that it is
also terminating and consequently, the normal form of any term f(t), t ∈ Ts1(F),
is p1-free and the normal form of any term g(u), u ∈ Ts2(F), is p2-free.

We can now come back to the initial flattening example presented in the
introduction. We consider a signature consisting of the sorts and constructors
already presented in the introduction to which we add the defined symbols D =
{flattenE−p : Expr �→ Expr, flattenL−p : List �→ List, concat−⊥ : List ×
List �→ List}. with p = cons(lst(l1), l2), to indicate that the corresponding
functions defined by the following CBTRS aim at eliminating this pattern:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

flattenE−p(str(s)) � str(s)
flattenE−p(lst(l)) � lst(flattenL−p(l))
flattenL−p(nil) � nil
flattenL−p(cons(str(s), l)) � cons(str(s), f lattenL−p(l))
flattenL−p(cons(lst(l1), l2)) � flattenL−p(concat−⊥(l1, l2))
concat−⊥(cons(e, l1), l2) � cons(e, concat−⊥(l1, l2))
concat−⊥(nil, l) � l

Thanks to the method introduced in the previous section we can check that
the right-hand sides of the first 5 rules are p-free and hence, as explained in
Sect. 3.3, that the CBTRS is semantics preserving. This CBTRS is clearly ter-
minating and complete and thus, we can guarantee that the normal forms of
terms headed by flattenE or flattenL are p-free values.

The method has been implemented in Haskell1. The implementation takes as
input a file defining the signature and the CBTRS to be checked and returns
the (potentially empty) set of non pattern-free preserving rules (i.e. rules that
do not satisfy the pattern-free requirements implied by the signature). For each

1 The source code can be downloaded from http://github.com/plermusiaux/
pfree check and the online version is available at http://htmlpreview.github.io/?
https://github.com/plermusiaux/pfree check/blob/webnix/out/index.html.

http://github.com/plermusiaux/pfree_check
http://github.com/plermusiaux/pfree_check
http://htmlpreview.github.io/?https://github.com/plermusiaux/pfree_check/blob/webnix/out/index.html
http://htmlpreview.github.io/?https://github.com/plermusiaux/pfree_check/blob/webnix/out/index.html

88 H. Cirstea et al.

such rule we provide a set of terms whose ground semantics is included in the
deep semantics of the right-hand side of the rule and that do not satisfy the
pattern-free property required by the left-hand side.

The complexity of the method for checking the pattern-freeness w.r.t. to a
given pattern p is exponential on the depth of p with a growth rate proportional
to the (maximum) arity of the symbols present in p. Benchmarks performed on
the implementation optimized to minimize repetitive computations showed that,
when considering terms and patterns of depth 5 with symbols of arity 6, checking
the pattern-freeness of a single term takes ∼ 200 ms, and checking the semantics
preservation of a CBTRS of 25 rules takes ∼3 s (on an Intel Core i5-8250U). In
practice, the size of the pattern annotations is generally lower that the ones we
experimented with and we consider that despite the exponential complexity the
concrete performances are reasonable for a static analysis technique.

5 Related Work

While the work presented in this paper introduces an original approach to express
and ensure a particular category of syntactical guarantees associated to program
transformation, a number of different approaches presenting methods to obtain
some guarantees for similar classes of functions exist in the literature.

Tree Automata Completion. Tree automata completion consists in tech-
niques used to compute an approximation of the set of terms reachable by a
rewriting relation [15]. Such techniques could, therefore, be applied to solve
similar problems to the one presented in this paper. The application of this app-
roach is nevertheless usually conditioned by the termination of both the TRS
and the set of equational approximations used [16,32]. Thus, while providing
sometimes a more precise characterization of the approximations of the normal
forms, these techniques are constrained, in terms of termination, by some syn-
tactical conditions. As we can see in the following table, when testing 5 of our
base case scenarios with two popular implementations, Timbuk3 [15] seems less
powerful than our approach, while Timbuk4 [19] can check more systems but
less efficiently:

pfree check Timbuk 3.2 Timbuk 4

flatten1 ✓ 21µs ✗ ∞ ✓ 685 ms

flatten2 ✗ 31µs ✗ ∞ ✓ 975 ms

flatten3 ✓ 36µs ✓ 1.6 ms ✓ 1, 4 s

negativeNF ✓ 395µs ✓ 3.2 ms ✓ 104 s

skolemization ✓ 45µs ✗ 1, 5 s ✓ 1, 6 s

Pattern Eliminating Transformations 89

For Timbuk3, the over-approximation strategies were to broad to check the
example presented in the previous section (flatten1). Nonetheless, it was able
to check the properties using exact normalization for a rewritten version of the
flattening TRS which avoided the nested function calls (flatten3) and for a TRS
computing negative normal forms (negativeNF). Timbuk4, recently proposed to
use a counter-example based abstraction refinement procedure to control the
over-approximation [19], could check all the examples including a version of the
flattening TRS which could not be verified with our current approach (flatten2).
On the other hand, the computational performance is considerably worse than
for our approach. Moreover, for Timbuk3 and Timbuk4, the target CBTRS has
to be extended with a function encoding the desired pattern-freeness property
in order to check it.

Recursion Schemes. Some formalisms propose to deal with higher order func-
tions through the use of higher order recursion schemes, a form of higher order
grammars that are used as generators of (possibly infinite) trees [24]. In such
approaches, the verification problems are solved by model checking the recursion
schemes generated from the given functional program. Higher order recursion
schemes have also been extended to include pattern matching [29] and provide
the basis for automatic abstraction refinement. These techniques address in a
clever way the control-flow analysis of functional programs while the formalism
proposed in our work is more focused on providing syntactic guarantees on the
shape of the tree obtained through a pass-like transformation. The use of the
annotation system also contributes to a more precise way to express and control
the considered over-approximation.

Tree Transducers. Besides term rewriting systems, another popular approach
for specifying transformations consists in the use of tree transducers [25]. Trans-
ducers have indeed been shown to have a number of appealing properties when
applied for strings, even infinite [2], and most notably can provide an interesting
approach for model checking certain classes of programs thanks to the decid-
ability of general verification problems [1]. Though the verification problems we
tackle here are significantly more strenuous for tree transducers, Kobayashi et
al. introduced in [25] a class of higher order tree transducers which can be mod-
eled by recursion schemes and thus, provided a sound and complete algorithm to
solve verification problems over that class. We claim that annotated CBTRSs are
easier to grasp when specifying pass-like transformations and are less intrusive
for expressing the pattern-free properties.

Refinement Types. Formalisms such as refinement types [12] can be seen
as an alternative approach for verifying the absence, or presence, of specific
patterns. In particular, notions such as constructor subtypes [6] could be used to
construct complex type systems whose type checking would provide guarantees
similar to the ones provided by our formalism. This would however result in the
construction of multiple type systems in order to type check each transformation
as was the case in the original inspiration of our work [23].

90 H. Cirstea et al.

6 Conclusion and Perspectives

We have proposed a method to statically analyse constructor term rewrite sys-
tems and verify the absence of patterns from the corresponding normal forms.
We can thus guarantee not only that some constructors are not present in the
normal forms but we can also be more specific and verify that more complex
constructs cannot be retrieved in the result of the reduction. Such an approach
avoids the burden of specifying a specific language to characterize the result of
each (intermediate) transformation, as the user is simply requested to indicate
the patterns that should be eliminated by the respective transformation.

Different termination analysis techniques [3,18,20] and corresponding tools
like AProVE [13,17] and TTT2 [26] can be used for checking the termination
of the rewriting systems before applying our method for checking pattern-free
properties. On the other hand, the approach applies also for CBTRS which are
not complete or not strongly normalising and still guarantees that all the inter-
mediate terms in the reduction are pattern-free; in particular, if the CBTRS
is weakly normalising the existing normal forms are pattern-free. It is worth
mentioning that the approach extends straightforwardly to sums of constructor
patterns of the form p = p1 + · · · + pn in the annotations to indicate simultane-
ously pi-freeness w.r.t. all the patterns in the sum.

We believe this formalism opens a lot of opportunities for further develop-
ments. In the current version, the verification relies on an over-approximation of
the set of reducts and thus, can lead to false negatives. For example, an alterna-
tive rule flattenL(cons(lst(l1), l2)) � concat(flattenL(l1), f lattenL(l2)) in our
flattening CBTRS would be reported as non pattern-preserving. In our experi-
ence, such false negatives arise when the annotations for some symbols are not
precise enough in specifying the expected behaviour (e.g. the annotations for
concat do not specify that the concatenation of two flatten lists is supposed to
be a flatten lists) and, although we conjecture this might indicate some issues
in the design of the CBTRS, we work on an alternative approach allowing for a
finer-grain analysis. While false negatives could also arise when the right-hand
side of a rule has to be linearized, the current implementation already uses an
aliasing technique to handle such cases; the technical details have been omitted
in the paper due to the space restrictions.

We also intend to extend and use the approach in the context of automatic
rewrite rule generation techniques, such as the one introduced in [8], in order to
automatize the generation of boilerplate code as in [23].

References

1. Alur, R., Cerný, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2011, pp. 599–610. ACM (2011). https://
doi.org/10.1145/1926385.1926454

2. Alur, R., Filiot, E., Trivedi, A.: Regular transformations of infinite strings. In:
IEEE Symposium on Logic in Computer Science, LICS 2012, pp. 65–74. IEEE
Computer Society (2012). https://doi.org/10.1109/LICS.2012.18

https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1109/LICS.2012.18

Pattern Eliminating Transformations 91

3. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. The-
oret. Comput. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-
3975(99)00207-8

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

5. Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: piggybacking
rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9 5

6. Barthe, G., Frade, M.J.: Constructor subtyping. In: Swierstra, S.D. (ed.) ESOP
1999. LNCS, vol. 1576, pp. 109–127. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-49099-X 8

7. Bellegarde, F.: Program transformation and rewriting. In: Book, R.V. (ed.) RTA
1991. LNCS, vol. 488, pp. 226–239. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-53904-2 99

8. Cirstea, H., Lenglet, S., Moreau, P.: A faithful encoding of programmable strategies
into term rewriting systems. In: International Conference on Rewriting Techniques
and Applications, RTA 2015. LIPIcs, vol. 36, pp. 74–88. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2015). https://doi.org/10.4230/LIPIcs.RTA.2015.74

9. Cirstea, H., Lermusiaux, P., Moreau, P.E.: Pattern eliminating transformations,
October 2020. https://hal.inria.fr/hal-02476012. Long version

10. Cirstea, H., Moreau, P.: Generic encodings of constructor rewriting systems. In:
International Symposium on Principles and Practice of Programming Languages,
PPDP 2019, pp. 8:1–8:12. ACM (2019). https://doi.org/10.1145/3354166.3354173

11. Clavel, M., et al.: The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003.
LNCS, vol. 2706, pp. 76–87. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-44881-0 7

12. Freeman, T.S., Pfenning, F.: Refinement types for ML. In: ACM SIGPLAN’91
Conference on Programming Language Design and Implementation (PLDI), pp.
268–277. ACM (1991). https://doi.org/10.1145/113445.113468

13. Fuhs, C., Giesl, J., Parting, M., Schneider-Kamp, P., Swiderski, S.: Proving termi-
nation by dependency pairs and inductive theorem proving. J. Autom. Reasoning
47(2), 133–160 (2011). https://doi.org/10.1007/s10817-010-9215-9

14. Garrigue, J.: Programming with polymorphic variants. In: ACM Workshop on ML
(1998)

15. Genet, T.: Towards static analysis of functional programs using tree automata
completion. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 147–161.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12904-4 8

16. Genet, T.: Termination criteria for tree automata completion. J. Log. Algebr. Meth-
ods Program. 85(1), 3–33 (2016). https://doi.org/10.1016/j.jlamp.2015.05.003

17. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006).
https://doi.org/10.1007/11814771 24

18. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/
10.1007/s10817-006-9057-7

19. Haudebourg, T., Genet, T., Jensen, T.P.: Regular language type inference with
term rewriting. ACM on Program. Lang. 4(ICFP), 112:1–112:29 (2020). https://
doi.org/10.1145/3408994

20. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Inf. Com-
put. 199(1–2), 172–199 (2005). https://doi.org/10.1016/j.ic.2004.10.004

https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1007/978-3-540-73449-9_5
https://doi.org/10.1007/3-540-49099-X_8
https://doi.org/10.1007/3-540-49099-X_8
https://doi.org/10.1007/3-540-53904-2_99
https://doi.org/10.1007/3-540-53904-2_99
https://doi.org/10.4230/LIPIcs.RTA.2015.74
https://hal.inria.fr/hal-02476012
https://doi.org/10.1145/3354166.3354173
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1145/113445.113468
https://doi.org/10.1007/s10817-010-9215-9
https://doi.org/10.1007/978-3-319-12904-4_8
https://doi.org/10.1016/j.jlamp.2015.05.003
https://doi.org/10.1007/11814771_24
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1145/3408994
https://doi.org/10.1145/3408994
https://doi.org/10.1016/j.ic.2004.10.004

92 H. Cirstea et al.

21. Jouannaud, J., Kirchner, C.: Solving equations in abstract algebras: a rule-based
survey of unification. In: Computational Logic - Essays in Honor of Alan Robinson,
pp. 257–321. The MIT Press (1991)

22. Jouannaud, J., Kirchner, H.: Completion of a set of rules modulo a set of equations.
SIAM J. Comput. 15(4), 1155–1194 (1986). https://doi.org/10.1137/0215084

23. Keep, A.W., Dybvig, R.K.: A nanopass framework for commercial compiler devel-
opment. In: ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2013. pp. 343–350. ACM (2013). https://doi.org/10.1145/2500365.
2500618

24. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 20099, pp. 416–428. ACM (2009). https://doi.org/
10.1145/1480881.1480933

25. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree transduc-
ers and recursion schemes for program verification. In: ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2010, pp. 495–508.
ACM (2010). https://doi.org/10.1145/1706299.1706355

26. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02348-4 21

27. Lacey, D., de Moor, O.: Imperative program transformation by rewriting. In: Wil-
helm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 52–68. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45306-7 5

28. Meseguer, J., Braga, C.: Modular rewriting semantics of programming languages.
In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol.
3116, pp. 364–378. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27815-3 29

29. Ong, C.L., Ramsay, S.J.: Verifying higher-order functional programs with pattern-
matching algebraic data types. In: ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2011, pp. 587–598. ACM (2011). https://
doi.org/10.1145/1926385.1926453

30. Pottier, F.: Visitors unchained. ACM Program. Lang. 1(ICFP), 28:1–28:28 (2017).
https://doi.org/10.1145/3110272

31. Rosu, G., Serbanuta, T.: An overview of the K semantic framework. J. Log. Algebr.
Program. 79(6), 397–434 (2010). https://doi.org/10.1016/j.jlap.2010.03.012

32. Takai, T.: A verification technique using term rewriting systems and abstract inter-
pretation. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 119–133.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25979-4 9

33. Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term Rewriting Systems. Cambridge
University Press, Cambridge (2003)

34. Visser, E.: Strategic pattern matching. In: Narendran, P., Rusinowitch, M. (eds.)
RTA 1999. LNCS, vol. 1631, pp. 30–44. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48685-2 3

https://doi.org/10.1137/0215084
https://doi.org/10.1145/2500365.2500618
https://doi.org/10.1145/2500365.2500618
https://doi.org/10.1145/1480881.1480933
https://doi.org/10.1145/1480881.1480933
https://doi.org/10.1145/1706299.1706355
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1007/3-540-45306-7_5
https://doi.org/10.1007/978-3-540-27815-3_29
https://doi.org/10.1007/978-3-540-27815-3_29
https://doi.org/10.1145/1926385.1926453
https://doi.org/10.1145/1926385.1926453
https://doi.org/10.1145/3110272
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1007/978-3-540-25979-4_9
https://doi.org/10.1007/3-540-48685-2_3
https://doi.org/10.1007/3-540-48685-2_3

Unification

Nominal Unification with Letrec
and Environment-Variables

Manfred Schmidt-Schauß(B) and Yunus Kutz

Goethe-University, Frankfurt, Germany
{schauss,kutz}@ki.cs.uni-frankfurt.de

Abstract. Unification algorithms of nominal expressions with letrec
and atom- and expression-variables are already described in the liter-
ature. However, only explicit environments could be treated in nom-
inal unification and the use of abstract environments was restricted
to nominal matching. This severely restricts the use of algorithms in
applications. The following two restrictions permit a step forward and
strongly improve the coverage of the application cases: expression- and
environment-variables are restricted to occur at most once in the input
equations. A terminating and complete nominal unification algorithm
is described that computes complete sets of constrained unifiers. Since
the set of ground instances of a complete set may be empty due to
constraints, we also provide a decision algorithm for inputs which do
not contain permutation-variables and show that then nominal unifi-
ability is NP-complete. For input without an occurrence-restriction
for expression-variables and w.r.t. garbage-free ground expressions, we
sketch an adapted unification algorithm that produces a complete set
of unifiers in NP time. For the decision problem we conjecture that it
is harder in this case. We believe that lifting the linearity restrictions
for environment-variables leads to a prohibitively high computational
complexity.

Keywords: Nominal unification · Letrec-expressions · Abstract
environments · Program transformations · Automated deduction

1 Introduction

The goal of this paper is to extend the expressive power of nominal unification to
allow automated reasoning in calculi with let-environments with multiple, and
commutative bindings, in particular recursive bindings, but also non-recursive
ones and ν-restrictions. Recursive bindings appear for example in functional
programming languages such as Haskell [6,12], F# [5] and OCaml [15], and
ν-restrictions for example in the pi-calculus [14,18].

Reasoning on program transformations, their correctness and their influence
on resource consumption can often be supported by considering overlaps of

The authors are supported by the Deutsche Forschungsgemeinschaft (DFG) under
grant SCHM 986/11-1.

c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 95–112, 2021.
https://doi.org/10.1007/978-3-030-68446-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_5&domain=pdf
http://orcid.org/0000-0001-8809-7385
http://orcid.org/0000-0002-5060-502X
https://doi.org/10.1007/978-3-030-68446-4_5

96 M. Schmidt-Schauß and Y. Kutz

transformation rules with rules of the operational semantics. In programming
languages with binders, first order unification is not powerful enough for this
task, and higher-order unification is undecidable or too complex. Nominal unifi-
cation provides a very good balance between expressiveness and computational
properties. Nominal techniques [16,17] support machine-oriented reasoning on
the syntactic level for higher-order languages and support alpha-equivalence. An
algorithm for (plain) nominal unification was first described in [28], which out-
puts unique most general unifiers (with constraints). The essential extension to
the expressiveness of first order terms are syntactic permutations of atoms (i.e.
variable names) and freshness constraints a#e that can restrict free occurrences
of names (a#e means that a does not occur free in e). Efficient algorithms for
nominal unification are given in [1,11], exhibiting a quadratic algorithm. Nominal
unification is also used in higher-order logic programming [2] and nominal tech-
niques in automated theorem provers like Nominal Isabelle [26,27]. αCheck [3]
was developed for property testing of systems which are specified using nominal
logic such as α-Prolog and maybe in a future version of Nominal Isabelle.

The extension of nominal unification to also allow atom-variables was tack-
led in [2] where an algorithm to produce a specific unifier was provided. This is
improved by developing an algorithm to compute unique most general unifiers
and showing that the decision problem is NP-complete [24]. A recent investiga-
tion of nominal rewriting and confluence checking of nominal rewriting where
atom-variables are permitted is [8] which is an extension of [10] which in turn
employs the unification algorithm developed in [24]. The particular case of α-
stable, orthogonal nominal rewrite rules is investigated and shown to have a
confluent rewrite relation. An extension of nominal unification to languages with
a recursive let but without atom-variables was worked out in [19], where it was
shown that the nominal unification and matching problems are NP-complete.
The nominal unification algorithm for letrec was extended to atom-variables
in [20,21]. Also, a nominal matching algorithm for letrec with environment-
variables, but without atom-variables is proposed in [20,21]. However, adapting
the matching algorithm with environment-variables to a unification algorithm
was left open as it appeared to require more powerful methods.

A motivating example for this paper is the reduction (and transforma-
tion) rule (llet) which is used in the operational semantics of the calculus
LR [25], and also in core languages of Haskell [7]. It reads: (llet): (letr env
in (letr env ′ in r)) → (letr env , env ′ in r), which has the restriction
that in the right hand side the environment env ′ must not capture free vari-
ables in env , and that the binding variables in env , env ′ must be distinct. This
can be encoded with the extended freshness constraints LV (env′)#env , and
LV (env′)#LV (env), where LV (.) means the set of binding names in the top-
level of a let-environment, and M1#M ′

2 abbreviates {e#M2 | e P M1}.
The overlap of the subexpression (letr env ′ in r) with the full left hand

side of the same rule is a step in a confluence check of a subset of the rules in
LR (see also Example 2). It is computed by applying a nominal unification algo-
rithm, i.e. solving the equation (letr E in S) .= letr E1 in (letr E2 in S′)

Nominal Unification with Letrec and Environment-Variables 97

with environment-variables E,E1, E2, and expression-variables S, S′ together
with the constraints LV (E2)#E1,LV (E2)#LV (E1). This illustrates that
environment-variables and extended freshness constraints are required. Note that
environment-variables occur only once in the equation. Naively solving this equa-
tion would lead to E �→ E1, S �→ (letr E2 in S′). Unfortunately, this is not
the most general unifier, since instances of the two expressions with conflicting
names are not covered. A general solution requires permutation variables P , such
that the solution includes for example the substitution E �→ P ·E1. We will show
in this paper, how permutation variables that are introduced by the unification
algorithm can be tamed by specifying their abstract mapping behavior.

The occurrences of expression- and environment-variables in our examples
are linear, which fits the input restrictions of our unification-algorithm. It can
also deal with non-linear occurrences of atom-variables as for example in an
expression (letr x = t, env in . . . x . . .). We will sketch a more complex algo-
rithm that also can deal with non-linear occurrences of expression-variables, but
non-linear occurrences of environment-variables cannot be handled.

The achievements in this paper are the formulation of a nominal unification
and of a decision algorithm for equations and constraints in a higher-order calcu-
lus with letrec and atom-, expression-, environment and permutation-variables,
where expression- and environment-variables occur linearly in the set of equa-
tions (Theorem 1). Theorem 2 on the decision algorithm holds if there are no
permutation-variables in the input.

This is a step forward in generalizing nominal unification algorithms to
declarative functional programming languages like Haskell. The results are also
applicable to (non-recursive) let with multiple commuting bindings and to ν-
bindings. The complexity of the decision problem (under the mentioned restric-
tions) is shown to be NP-complete (see Theorem 2 and Corollary 1).

We also investigate the extension where expression-variables may occur unre-
stricted, i.e. multiple times. This enforces to restructure the data structure to
so-called multi-equations in the unification algorithm, and to adapt in particular
the decomposition rules to the data structure. Also, we restrict the semantics to
the language of garbage-free ground expressions. A full description of this algo-
rithm would exceed the available space, but we provide a sketch. Fortunately,
the complexity of the unification algorithm as a device for producing solutions is
nondeterministic polynomial time. However, the decision algorithm could not be
adapted in a straightforward way. We are still working on it and conjecture that
the complexity of the decision problem for non-linear occurrences of expression-
variables and linear occurrences of environment-variables is in NEXPTIME.

The structure of this paper is to first introduce the problem and language
(Sect. 2). Section 3 contains a nominal unification algorithm for the extension and
Sect. 4 describes the decision algorithm for equations. Section 5 gives a sketchy
overview of the extension of the unification algorithm to nonlinear occurrences
of expression-variables. Section 6 concludes.

98 M. Schmidt-Schauß and Y. Kutz

2 Nominal Expressions

We first introduce some notation [24]. Let F be a set of function symbols f P F ,
s.t. each f has a fixed arity ar(f) ě 0. Let At be the set of atoms ranged over
by a, b, c. The ground language NLletr

a is defined by the grammar:

e ::= a | (f e1 . . . ear(f)) | λa.e | letr a1.e1, . . . , an.en in e

where λ is a binder for atoms, and (letr . . . in . . .) is the recursive let, where
ai are the (binding) atoms in the letrec-environment and where ai.ei is called
a binding. While we are only interested in expressions with environments where
the binding atoms are mutually distinct, we also allow other environments, e.g.
letr a.1, a.1 in 1. However, we will use the constraint system to mark them as
invalid. For example, in t = letr a.(g b a), b.(g a b) in (g a b) all occurrences of
a, b are bound. Also, the order of bindings in a letr-environment is irrelevant,
such that letr b.(g a b), a.(g b a) in (g a b) is the same expression as t.

The basic freshness constraint a#e is valid if a is not free in e. We write
M#e as an abbreviation of {a#e | a P M}. A set of (basic) constraints ∇ is
valid if all constraints in ∇ are valid. LV (Env) is the multiset of top let-binders
in a letrec-environment Env .

The reason for LV (Env) being a multiset, rather than a set, is that we need to
consider invalid environments and constraints, e.g. a#a and LV (env) = {a, a},
which may arise during unification and produce a failure.

As a reminder, the α-equivalence relation „ on NLletr
a is defined as the equiv-

alence closure of renamings of bound atoms. For a better algorithmic treatment
of α-equivalence, we will use a decomposition principle for letrec-expressions
modulo α, which is improved compared to the method used in [19], since it sup-
ports a systematic way of describing the mapping behavior between the bindings
with the help of a permutation-variable in the unification algorithm:

Lemma 1. Let e1 = (letr a1.s1, . . . , an.sn in r) and e2 = (letr b1.t1, . . . ,
bn.tn in r′) be NLletr

a -expressions, where ai are pairwise distinct, bi are pairwise
distinct, but {ai | 1 ď i ď n} X {bi | 1 ď i ď n} may be non-empty. Then e1 „
e2 is equivalent to the following conditions:

1. There is a permutation π on atoms, such that dom(π) Ď {a1, . . . , an} Y
{b1, . . . , bn}, and it extends the mapping {bi �→ aρ(i) | i = 1, . . . , n}, where ρ
is a permutation on the set {1, . . . , n}.

2. {a1, . . . , an}#(letr b1.t1, . . . , bn.tn in r′).
3. r „ π(r′) and sρ(i) „ π(ti) for i = 1, . . . ,m hold.

Note also that the permutation π is not necessarily unique, since for
(letr a.s1, b.s2 in s3) „ (letr c.s4, d.s5 in s6) there are two mapping pos-
sibilities: The permutation π may map {c �→ a, d �→ b} and it may in addi-
tion either map {a �→ c, b �→ d} or {a �→ d, b �→ c}. Or π may map
{c �→ b, d �→ a} with again two (irrelevant) possibilities for πb, πa. In the case

Nominal Unification with Letrec and Environment-Variables 99

(letr a.s1, b.s2 in s3) „ (letr b.s4, c.s5 in s6) with common binding atom b,
one possibility is that π maps {b �→ a, c �→ b}, and the mapping of a is not used,
but since π must be a bijection, it is {a �→ c}. Alpha-equality can be affirmed, if
s1 „ πs4, s2 „ πs5, s3 „ πs6. These examples show how a decomposition method
for exhibiting constraints for α-equality may act, which can be generalized to a
decomposition method as a part of a unification algorithm.

Lemma 1 leads to the following decomposition principle for all constructs
w.r.t. „, which is equivalent to the definition of α-equivalence on NLletr

a :

Lemma 2. α-equivalence „ in NLletr
a is characterized by the following rules:

a „ a

∀i : ei „ e′
i

(f e1 . . . ear(f)) „ (f e′
1 . . . e′

ar(f))
e „ e′

λa.e „ λa.e′
a#e′ ∧ e „ (a b)·e′

λa.e „ λb.e′

The three conditions of Lemma 1 hold.
letr a1.s1, . . . , an.sn in r „ letr b1.t1, . . . , bn.tn in r′

Definition 1 (Expression languages). Let S be a set of expression-variables
ranged over by S, T ; let A be the set of atom-variables ranged over by A,B; let
E be a set of variables standing for letrec-environments ranged over by E; and
let P be a set of permutation-variables ranged over by P . The grammar of the
nominal language NLletr

aASPE with atoms, atom-variables, expression-variables,
permutation-variables and environment-variables is:

e ::= W | π·S | (f e1 . . . ear(f)) | λW.e | letr env in e
π ::= ∅ | (W W ′) · π | P · π | P−1 · π
env ::= ∅ | π·env | (W.e; env) | (π·E; env)
W ::= π·a | π·A

where π is a permutation and ∅ denotes the identity.
One sublanguage is the ground language without variables NLletr

a . For the
algorithms we will use sublanguages NLletr

AS ,NLletr
ASE ,NLletr

ASPE, where only the
variable sorts mentioned in the index are used in the grammar, and where atoms
are not permitted.

Note that this definition permits nested permutation expressions. The expres-
sion ((π·A) (π′·A′)) is a swapping that illustrates the nesting. An expression of
the form π·X where X is some variable A,S,E is called suspension. An environ-
ment consists of binding-components W.e and environment-variable suspensions
π·E. Both are called environment-components. The inverse π−1 of a permutation
π = w1· . . . ·wn is the expression w−1

n · . . . ·w−1
1 where (W1 W2)−1 = (W1 W2),

and (π−1)−1 = π. We assume that a permutation π applied to an expres-
sion s is immediately applied as follows: π·(f e1 . . . en) → f (π·e1) . . . (π·en),
π·(λW.e) → λπ·W.π·e, π·(letr env in e) → letr π·env in π·e and
π·(W.e; env) → (π·W.π·e;π·env).

100 M. Schmidt-Schauß and Y. Kutz

Let O be a single or a set of syntactic objects. Then AtVar(O) are the atom-
variables contained in O, ExVar(O) the expression-variables contained in O and
Var(O) = AtVar(O) Y ExVar(O).

The ground language of each NLletr
ASPE Ă NLletr

aASPE is NLletr
a . Note that

this is a slight abuse of the notion of a ground language. A ground substi-
tution ρ replaces atom-variables with atoms, expression-variables with ground
expressions, permutation-variables with ground permutations, and environment-
variables with ground environments. After applying a ground substitution ρ, the
permutations are ground and can be applied, such that the result is in NLletr

a . In
fact every ground substitution ρ is an expression-structure homomorphism from
NLletr

ASPE into NLletr
a , and from NLletr

aASPE into NLletr
a . The language NLletr

aASPE

serves as an intermediate language during the interpretation of NLletr
ASPE expres-

sions in proofs.
Constraints are abstract conditions, formulated for NLletr

ASPE -expressions and
with semantics in NLletr

a . We will overload the notation, such that it can be used
in both languages and in the algorithms.

Definition 2 (Constraints in NLletr
ASPE)

A freshness constraint has the form A#e, where e is an NLletr
ASPE -expression.

General constraints extend this by:

– #{W1, . . . ,Wn} and #LV (env), where {W1, . . . ,Wn} is a multiset.
– LV (env)#e and LV (env)#E.
– dom(P) Ď LV (env1) Y LV (env2)
– P · LV (env2) = LV (env1)
– A = π·B, which is an abbreviation of A#λπ·B.A.

Let γ be a ground substitution. A constraint A#e is satisfied by γ if γ(A) does
not occur free in eγ. The constraint #{W1, . . . ,Wn} (for the multiset) is satisfied
by γ, if implies . The constraint LV (env)#e is satisfied by γ if
for all a P LV (env)γ, a#eγ holds. The constraint LV (env)#E is satisfied by γ
if for all a P LV (env)γ, a#(let E in λA.A)γ holds. Satisfiability of the other
constraints is clear from these explanations.

A solution of a set ∇ of (general) constraints is a ground substitution γ, s.t.
∇γ is ground, and all constraints in ∇γ hold in NLletr

a .

Example 1. As an example of the power of the language and of the constraint
system we discuss several reduction and transformation rules of the intended
applications. In particular we show which constraints are necessary to make the
rules correct for every application.

– letr E1 in letr E2 in S → letr E1, E2 in S (rearranging letrec-
environments). To avoid variable capture in the resulting expression, the
constraint LV (E2)#E1 is sufficient. Syntactic correct instances require also
#LV (E1, E2).

– letr A.(λB.S1), E1 in A → letr A.(λB.S1), E1 in (λB.S1) (a copy-rule for
abstractions, also called dereferencing). This requires #LV (A.(λB.S1), E1).

Nominal Unification with Letrec and Environment-Variables 101

– letr A.(letr E2 in S1), E1 in S2 → letr A.S1, E2, E1 in S2 (rear-
ranging letrec-environments). The required constraints are #LV (A.(let
E2 in S1), E1), #LV (E2), #LV (A.S1, E2, E1), LV (E2)#(letr A.S1,
E1 in S2).

– (letr E1, A.S,E2 in S) → (letr E1 in S) (a garbage collection rule), where
the constraints #LV (E1, A.S,E2) must hold for syntactic correctness, and
LV (A.S,E2)#(letr E1 in S) for semantic correctness.

Note that the extension of the algorithm in Sect. 5 assumes a ground language
of garbage collected expressions.

3 Nominal Unification with Environments

In this section we construct a unification algorithm for equations and con-
straints over NLletr

ASPE where the intended input is a set of NLletr
ASE-equations

with expression-variables and environment-variables only occurring linearly.
As data structure we use a set Γ of (symmetric) equations between expres-

sions, freshness constraints ∇, and a substitution θ.

Definition 3. A set of equations Γ over NLletr
aASPE is admissible, if every

environment-variable and expression-variable occurs at most once in Γ , i.e. occur
linearly in Γ .

Definition 4. Let Q = (Γ,∇) be a unification problem consisting of an admis-
sible set Γ of equations and freshness constraint ∇.

– A ground substitution ρ is a solution, if Qρ is ground, ∇ρ holds and for all
equations s

.= t in Γ , the relation sρ „ tρ holds.
– The pair (Δ,σ) is a nominal unifier if for all ground substitutions ρ s.t. Δρ

holds, then σ◦ρ is a solution of Q.
– A ground substitution ρ is an instance of the unifier (Δ,σ) of Q, if Δρ is

valid and there is some ground substitution γ such that for all x P Var(Q) of
type A,S, P : (x)σ◦γ „ xρ, and for all E P Var(Q): (E)σ◦γ is a permutation
of Eρ modulo „.

– A set U of unifiers of Q is complete, if every solution of Q is an instance of
some unifier in U .

The idea of the following decomposition of letrec-expressions is to relate
the syntactic components of the two environments by first guessing and then
decomposing without losing solutions. For example, letr E1,X1.S1 in S2

.=
letr Y1.S

′
1, Y2.S

′
2, E2 in S′

3 has several possibilities for potential solutions: one
example is that the instance of E1 has bindings in common with E2, and may
contain instances of Y1.S

′
1, Y2.S

′
2. In a non-deterministic guessing, it is appro-

priate to first guess, which binding components or environment-variable suspen-
sions of the left- and right-hand side have something in common. For example,
E1 R E2, E1 R Y1.S

′
1,X1.S1 R Y2.S

′
2 is a valid guess. The second part is to apply

Lemma 1 and also to specify the introduced permutation-variable.

102 M. Schmidt-Schauß and Y. Kutz

Definition 5. [Decomposing letrec.] Let (letr env1 in e1)
.= (letr env2 in e2)

be the equation to be decomposed, where env j for j = 1, 2 consists of a list of bind-
ings bj,i and environment-variables Ej,i. The decomposition is non-deterministic
and proceeds as follows:

First, guess a relation R consisting of a set of pairs (k1, k2) where kj is a
environment-component of env j for j = 1, 2, such that

1. Every binding b1,j is related to exactly one component of the right hand side.
2. Every binding b2,j is related to exactly one component of the left hand side.
3. Every suspension π·E is related to at least one component in the other

environment.

Let P be a fresh permutation-variable and let B1, . . . , Bl be the binding-
components of env1 and B′

1, . . . , B
′
l′ be the binding-components of env2.

The resulting equations are:

Γres = {Bi
.= P ·B′

j | if Bi andB′
j are related by R} Y {e1

.= P ·e2}

The resulting substitution θres is constructed as follows: Let π1,1·E1,1, . . . ,
π1,m′ ·E1,m′ be the environment-variable suspensions of env1 and π2,1·
E2,1, . . . , π2,m·E2,m of env2. First create fresh environment-variables Ei,j,k,h

which represent the intersection of Ei,j and Ek,h. There are substitution compo-
nents for every environment-variable of both environments, s.t. θres = θres,1 Y
θres,2. For the variables on the left hand side the substitution is:

θres,1 =
{

E1,j �→ π−1
1,j ·P ·(E1,j,2,1, . . . E1,j,2,m, B2,j)

∣∣∣∣B2,j are the bindings
related to E1,j , j ď m′

}

and for the variables of the right hand side:

θres,2 =
{

E2,j �→ π−1
2,j ·P−1·(E1,1,2,j , . . . E1,m′,2,j , B1,j)

∣∣∣∣B1,j are the bindings
related toE2,j , j ď m

}

The resulting constraints ∇res are:

∇res =

⎧⎨
⎩

dom(P) Ď LV (env1) Y LV (env2),
P ·(LV (env2)) = LV (env1),
LV (env1)#letr env2 in e2

⎫⎬
⎭

The rule removes the equation it decomposes and adds Γres, ∇res and θres.

Definition 6. The algorithm NomEnv1 is defined by the rules in Fig. 1 on
Γ,∇, θ for an admissible Γ . The intermediate and final Γ,∇, θ may contain
(generated and constrained) permutation-variables. The output is the final pair
(∇, θ) or a failure if Γ is not empty and no rule is applicable.

Nominal Unification with Letrec and Environment-Variables 103

Fig. 1. Rules of the unification algorithm NomEnv1

The set ∇ may contain constraints. Since binders in a letrec must be different,
∇ must also contain constraints which ensure for every environment env that
only valid instances are covered, i.e. #LV (env). For efficiency purposes it is
assumed that the abstract representation of permutations uses a sharing structure
for components (see e.g. [4]).

Note, that we permit permutation-variables in the input of NomEnv1, but that
the decision algorithm in the next section is only correct if the input does not
contain permutation-variables and the constraint set is restricted.

Example 2. We illustrate the execution of the algorithm NomEnv1 on an exam-
ple equation that occurs in unification problems related with a correctness proof
of transformations in an extended lambda calculus with letrec, i.e. in the Haskell
core-calculus LR [25].

The equation is letr E1 in letr E2 in S1
.= letr A.S2;E3 in S3. A naive

non-general solution would be: {E1 �→ A.S2;E3, S3 �→ letr E2 in S1} plus
constraints for syntactic validity of the represented instances, and for avoiding
capture of free variables.

Application of the algorithm NomEnv1D yields:

1. The substitution θ = {E1 �→ P · (A.S2, E13), E3 �→ P−1 · E13, S3 �→ letr P ·
E2 in P · S1}

2. Additional constraints ∇ restricting the permutation P , i.e.

∇ =

⎧⎨
⎩

dom(P) Ď LV (E1, E3, A),
P · LV (A,E3) = LV (E1),
LV (E1)#(letr A.S2;E3 in S3)

⎫⎬
⎭

104 M. Schmidt-Schauß and Y. Kutz

Based on this most-general unifier we can see what was missing from the
naive result above. It did not take possible renamings of binding variables into
account and therefore did not cover all possible solutions modulo α-equivalence
of the unification problem. The possible renamings are covered in the general
solution by the permutation-variable P .

Example 3. We give a further example of the use of nominal unification.
We overlap the left hand side, i.e., (letr E1 in letr E2 in S), of the
first transformation in Example 1 with a (renamed) subexpression of itself,
letr E2 in S

.= letr E′
1 in letr E′

2 in S′, which results in a solu-
tion: {E2 �→ P ·E′

1;S �→ P ·(letr E′
2 in S′). The common instance is

letr E1 in letr P ·E′
1 in letr P ·E′

2 in P ·S′. This reduces in two ways, using
the rule as reduction and transformation rule, to letr E1, P ·E′

1, P ·E′
2 in P ·S′.

However, we also have to add the constraint sets for the two sequences that
are mentioned Example 1. These are at least: LV (E2)#(letr E1 in S), and
LV (E′

2)#(letr E′
1 in S′). The arguments for showing confluence in the style of

Knuth Bendix require a deeper analysis and are left for future work.

Theorem 1. If Γ is admissible, then the nondeterministic algorithm NomEnv1
is terminating, sound and complete; i.e. for every solution the algorithm com-
putes a unifier consisting only of a substitution and a constraint. A single run
takes polynomial time (provided the implementation uses sharing). The collection
version of the algorithm will generate at most exponentially many unifiers.

However, the algorithm NomEnv1 does not automatically decide solvability,
since it is possible that all computed unifiers have an empty set of instances. We
also refrain from providing an algorithm, which decides solvability of the con-
straint system itself, because the many variable kinds (A,S,E and P -variables)
make reasoning on it very difficult. This is (partially) remedied in the next
section, where we construct a special (incomplete) variant NomEnv1D for
nominal unification, which decides unifiability, if the input does not contain
permutation-variables and the input constraints are further restricted. We will
show that the algorithm NomEnv1D will find a (small) solution, if there is any
solution, and instead of permutation-variables we use the ξ-construct (see below
in Definition 8) that replaces (generated) permutation-variables and keeps more
information on the mapping behavior of the permutations.

4 A Decision Algorithm

In this section we define a decision algorithm for admissible input without
permutation-variables and further restrictions on constraints, complementing
the algorithm NomEnv1. We want to keep the description simple and also as
close as possible to potential applications. Thus we describe the decision algo-
rithm for the simpler case that in letrec environments at most one environment-
variable occurs. The advantage is that this is the variant which is required in
most applications, and in addition the rule RemoveE (see Fig. 2) is deterministic.

Nominal Unification with Letrec and Environment-Variables 105

Fig. 2. Extra rules for NomEnv1D

The decidability result also holds in the general case where several environment-
variables occur in a single letrec-environment.

Definition 7. Let Γ be an admissible set of equations. We say Γ is a 1E-
problem, if in every letrec-environment in Γ , there is at most one environment-
variable.

A special kind of permutation-variable is introduced by the rule DecompLet.
These variables are so strongly restricted by constraints, that one can always
provide an explicit list of swappings instead.

Hence we introduce an extra notation to avoid explicit permutation-variables.
The benefit of this variant is that no new constraint concepts are required and
thus it is compatible with [24].

Definition 8. Let W1,W2, . . . ,Wk,W ′
1,W

′
2, . . . ,W

′
k be W -expressions accord-

ing to the grammar, where only instantiations are considered that satisfy the
constraints #{W1,W2, . . . ,Wk}, and #{W ′

1,W
′
2, . . . ,W

′
k}. Then we denote with

ξ((W1,W2, . . . ,Wk), (W ′
1,W

′
2, . . . ,W

′
k)) the permutation instances that obey the

following: W1 �→ W ′
1, . . . , Wk �→ W ′

k and the domain of ξ is contained in
{W1, . . . ,Wk,W ′

1, . . . ,W
′
k}. This does not completely define the permutation, but

the omitted parts will have no effect when used in our algorithms, when it is

106 M. Schmidt-Schauß and Y. Kutz

applied, due to further freshness constraints. The operations with ξ are the same
as for permutations, when applied on the expression level.

Note that there may be more than one permutation that could be
ξ((W1,W2, . . . ,Wk), (W ′

1,W
′
2, . . . ,W

′
k)) (see the remark after Lemma 1).

Lemma 3. A representation for one permutation that is ξ((W1,W2, . . . ,
Wk), (W ′

1,W
′
2, . . . ,W

′
k)) as a list of swappings is given by the following recur-

sion scheme: π0 = ∅; πi = ((πi−1 ◦ Wi) W ′
i) ◦ πi−1.

where π = πk is the resulting permutation.
More precisely, given ∇ Ě {#{W1, . . . ,Wn},#{W ′

1, . . . ,W
′
n}} – which has

to hold due to Definition 8 – every solution of ∇ requires πi mapping Wj �→ W ′
j

for all j ď i ď k.

Note that the plain size of this representation is exponential due to iter-
ated doubling of πi−1. If we use sharing for πi−1, then the representation is of
polynomial size.

Definition 9. The function AtPos(e) is the set of all atom-variable suspensions
(W -variables) in e.

Definition 10. The (non-deterministic) algorithm NomEnv1D is defined for
admissible 1E-problems Γ,∇, which do not contain permutation-variables and
the constraints ∇ do not contain P -variables. NomEnv1Duses the rules in
Fig. 1 on the input Γ0,∇0, with the exception of E7, and in addition the rules
RemoveE and DecompLet in Fig. 2. Let the result be Γ ′,∇′, θ′. The final test is
whether Γ ′ = ∅, and whether ∇′ under θ′ is satisfiable using the constraint-test
NomEnv1DCon below.
The answer is “yes”, if at least one run of the algorithm answers “yes, solvable”.

Note that the rules can be applied in any order. All rules are deterministic
with the exception of DecompLet, which requires a guess on the permutation of
the bindings in a letr-environment.

Note also that the substitution θ is intended to be an instantiation of the
input problem. The necessary instantiations of the current Γ,∇ are done by
the rules. However, it is necessary to assume a directed graph implementation
of expressions in order to exploit sharing, in particular in the representation of
permutations.

Definition 11. The final constraint-test NomEnv1DCon i.e., whether the
final constraint ∇′, θ′ is satisfiable operates on ∇′′ := ∇′θ′ and then uses the
following steps:

1. Let A0 be a set of atoms of cardinality |Γ0|, where Γ0 is the original input to
the algorithm.

2. Guess for all atom-variables their mapping to atoms in A0.
3. For all expression-variables and environment-variables, which still occur in

∇′′, set their set of free atoms to ∅.

Nominal Unification with Letrec and Environment-Variables 107

4. For all environment-variables E, which still occur in ∇′θ′, set the set LV (E)
to ∅.

5. Check the freshness constraints: This can be done in polynomial time. The
algorithm has to respect the sharing by directed graph implementation.

Note that NomEnv1D is not complete w.r.t. solutions, since by intention, its
rules do not cover all solutions. However, it is decision-complete, i.e. sufficient
for a decision algorithm, since the algorithm will find a (small) solution if there
is one at all.

Example 4. We illustrate NomEnv1D. Let Γ = {(let E in A
.= let E′ in B)}

and ∇ = {A#B}. The rule RemoveE is not permitted to instantiate E,E′ with
the empty environment, since there are 2 atom-position which must possibly
be bound. The algorithm then instantiates both environment variables with 2
bindings, i.e. θ = {E �→ {A1.S1, A2.S2}, E′ �→ {B1.T1, B2.T2}} with appropriate
constraints. Using ρ = id we get A

.= ξ ·B which we can move into the constraints
as A =# ξ · B and Si = ξ · Ti. The final satisfiability check yields true.

Proposition 1. The rule RemoveE is correct/decision-complete. I.e. if the algo-
rithm NomEnv1D is in the state (Γ,∇) and the output of RemoveE is (Γ ′,∇′),
then Γ ′,∇′ is solvable if and only if the input Γ,∇ is solvable.

Lemma 4. All rules of NomEnv1D are correct and decision-complete, where
only DecompLet is non-deterministic.

Theorem 2. Given an admissible nominal unification problem Γ,∇ without
permutation-variables such that Γ is 1E, and the input satisfies the conditions of
Definition 10. Then the Algorithm NomEnv1D is a decision algorithm, which
runs in NP time, assuming that sharing is used for expressions and permuta-
tions.

Proof. Proposition 1 and Lemma 4 show that the rules are correct and decision-
complete. If , then there is an applicable rule. Every application of a
rule makes Γ smaller, which can be seen by using the following measure: (i) The
number of symbols let, λ, E-variables, binding-dot; (ii) the number of equations
in Γ . This holds, since every rule strictly reduces this measure, and since the
occurrences of environment- and expression-variables are linear.

The algorithm can be performed in nondeterministic polynomial time, due to
this measure, and since sharing ensures polynomial size, and since the evaluation
of constraints can be done in polynomial time also for the sharing structure.

From the previous theorems and since a subproblem is already NP-hard [19]:

Corollary 1. Solvability of admissible nominal unification problem Γ,∇ without
permutation-variables and such that Γ is 1E and the input satisfies the conditions
of Definition 10 is NP-complete.

108 M. Schmidt-Schauß and Y. Kutz

Remark 1. If an application in a Knuth-Bendix-like completion algorithm needs
the information that there are no critical pairs, our decision algorithm has the
ability to tell us that there is no unifier at all for given term overlap positions.
However, if there are unifiers and there is a (possibly trivial) critical pair the
analysis of this pair – even checking if it is trivial – requires the extraction of
the relevant information from the computed general constraints. An algorithm
for further checking and analyzing the constraints is left to future work.

5 Nonlinear Occurrences of Expression-Variables

In this section we sketch the generalization NomEnvNS1E of our nominal uni-
fication algorithm NomEnv1 to input problems where expression-variables may
occur more than once (i.e., non-linear). In order to focus on simpler descriptions
and more practical cases, we use the E1-restriction that all letrec-environments
contain at most one environment-variable. An example is the right hand side of
the second rule in Example 1.

In addition, we will have a further restriction insofar as we use as semantics
only ground expressions that are garbage-free. With this restriction, our algo-
rithmic ideas can be adjusted to non-linear occurrences of expression-variables.
The restriction itself is minor with respect to an application to functional pro-
grams, since in the application domain garbage does not contribute to the proper
actions of programs.

We start by providing a definition of garbage-free expressions. A ground
expression e is garbage-free if in every subexpression (letr env in s) and for
every proper subenvironment env ′ of env the relation FV (letr env ′ in s) ⊃
FV (letr env in s) holds. Note that ⊃ refers to a proper superset.

A nice and useful unification-related property of expressions e in NLletr
ASPE

with garbage free ground language is that fixpoint equations of the form π·e .= e
can be expressed as a set of freshness constraints: {A#λπ·A.e | A occurs in π} as
in [20,24]. Information and results on extended alpha-equivalence and garbage-
free expressions is in [22], which shows that the graph-structure of letrec-
expressions is kept by alpha-equivalence. This implies the claimed representation.

The nominal unification algorithm NomEnvNS1E has as input a set of equa-
tions from NLletr

ASE where environment-variables occur only linearly. During the
algorithm NLletr

ASPE-expressions are used. The final result of a single run of the
(non-deterministic) algorithm NomEnvNS1E is a solution (i.e. substitution)
together with a set of constraint, over NLletr

ASPE .
The data structure for NomEnvNS1E are multi-equations [13] instead of

equations. We write a multi-equation that equates the expressions e1, . . . , en as set
{e1, . . . , en}. Of course, a set of equations is a special set of multi-equations. The
final result of a single run of the (non-deterministic) algorithm NomEnvNS1E is
a solution together with a set of constraint.

Nominal Unification with Letrec and Environment-Variables 109

Standard rules for handling multi-equations are:

1. As a standard prerequisite, all expressions must be in a so-called flat form:
Every deep subexpression e that is not a suspension of a unification vari-
able is lifted to the top of the equations, i.e., C[e] is replaced as C[S]
and an extra (multi-)equation S

.= e is added, where S is fresh. The
permitted elements of the multi-equations after the exhaustive flattening
operation are of the forms W | π·S | λW.π·S | (f π1·S1 . . . πn·Sn) |
(letr W1.π·S1, . . . ,Wn.π·Sn, πn+1·E1, . . . , πn+k·Ek in π·S).

2. Treat multi-equations as sets, i.e., remove duplicates.
3. Merge: if there are two multi-equations M1 = M ′

1 Y {π1·S} and M2 = M ′
2 Y

{π2·S} then replace them by M ′
1 Y {π1·S} Y π1·π−1

2 ·M ′
2.

4. Single: if a multi-equation consists of a single expression, then remove it.
5. Solution: A multi-equation that is of the form {S, e}, where S is not contained

in e or in other expressions in Γ and where e is not a suspension of S, can be
removed, and S �→ e moved to the substitution.

6. A multi-equation that is of the form {π·S, e1, e2, . . . , en} can be changed if
necessary into {S, π−1·e1, π−1·e2, . . . , π−1·en} by applying π−1.

7. Constraint: A multi-equation that contains two suspensions of atom-variables
π1·A1, π2·A2 can be made smaller by moving π1·A1

.= π2·A2 to the con-
straints, and removing one of the suspensions.

8. Multi-equations with two occurrences of expression-variable or atom-variable
suspensions can be made smaller: {π1·S1, π2·X} ·Y M for is changed
into {π1·S1} ·Y M , and the substitution S1 �→ π−1

1 π2·X is applied to M and
the rest of Γ .

We will restrict attention to a situation where multisets only contain expres-
sions of the following five forms, where every multiset can contain additional
π·S-expressions: (i) empty, (ii) atom suspension, (iii) application-expression, (iv)
lambda-expression, and (v) letrec-expression. The reason is that the following
can pairwise not be equated: atom suspension, application-expression, lambda-
expression, and letrec-expression. We need only decomposition rules for these
types of multi-equations.

• The decomposition rules are analogous to the rules for the equation-based
algorithm. The general principle to adapt the decomposition rules of the
algorithm NomEnv1E to NomEnvNS1E, i.e., to multiset, is as follows:

If e1
.= e2 is decomposed with a result, then the corresponding rule

R for multisets is:
{e1, e2} Y M is replaced by {e2} Y M and the result of R is added to
the corresponding component of the equations or to the constraints
and solution.

110 M. Schmidt-Schauß and Y. Kutz

Fixpoint Rules for handling multi-equations are:

Fixpoints. A multi-equation M that contains two expressions S and π·S, where
π is nontrivial is modified to M \ {π·S}, and the constraints {A#λπ·A.S |
A occurs in π} are added.

Fixpoint-Chains. If there is a chain S1
.= π2·S2

.= M1, Sn−1
.= πn·Sn

.=
Mn−1, . . . , Sn

.= π1·S1
.= Mn, then using the derivable equation S1

.=
(π2· . . . ·πn·π1)·S1, let π = (π2· . . . ·πn·π1); then the constraints {A#λπ·A.S |
A occurs in π} are added. Also, S1 is removed from the first multi-equation.

Non-unifiability. The following can pairwise not be equated: atom suspen-
sion, application-expression, lambda-expression, letrec-expression. There is also
a (standard) cycle check as generalized occurs-check.

Soundness and completeness are mainly derived from the arguments for the
algorithm NomEnv1E. The complexity estimation of the modified algorithm
starting with a flattened input is as follows: First we observe that the multi-
equation-algorithm does never duplicate or generate expressions in the equa-
tion set of one of the three forms: application-expression, lambda-expression,
and letrec-expression. Hence the number of occurrences of environment-variables
remains linear during the run of the algorithm.

1. The number of letrec-s, lambda-expressions and application-expressions does
not increase. These numbers are strictly decreased by decomposition rules.

2. Permutation components can grow exponentially large due to iterated dou-
bling. However, a sharing data structure and clever maintenance leads to a
polynomial size increase.

This sums up to a polynomial complexity for a single run, and to a nonde-
terministic polynomial algorithm for computing unifiers.

Claim: NomEnvNS1E is sound and complete and runs in NP time.
However, the adaptations of the decision algorithm are not obvious: The

reason is that the same expression-variable may occur multiple times and hence
there may be interferences.

We conjecture that the unification problem corresponding toNomEnvNS1E
is decidable and that there is an exponential upper bound on the maximal num-
ber of bindings that have to be generated in the rule adapted from RemoveE.

We also conjecture that the computational complexity of the more gen-
eral decision problem without restrictions on the number of occurrences of
environment-variables is strictly higher than for the case with linear occurrences
of environment-variables.

Example 5. We argue that the current rules and the methods of treatments of
decomposition of equations between letrec-expression in the unification algo-
rithm are insufficient if E-variables occur more than once: Let e1 = letr a1.a2,
a2.a3, a3.a4, a4.a5, a5.a1 in 0, and e2 = letr a2.a3, a3.a4, a4.a5, a5.a6, a6.a2 in 0.
Then e1 „ e2 and the permutation π with i �→ i − 1 on the indices can be used.
Then the equation letr a1.a2, E, a5.a1 in 0 .= letr E, a5.a6, a6.a2 in 0 has a

Nominal Unification with Letrec and Environment-Variables 111

solution: E �→ {a2.a3, a3.a4, a4.a5}. Analyzing this example, we see that there
are an infinite number of incomparable unifiers.

6 Conclusion and Future Work

Nominal unification of letrec-expressions is extended to also allow abstract envi-
ronments in letrec-environments, which are encoded as environment-variables.
An algorithm for computing a finite set of unifiers is described and proved cor-
rect, under linearity constraints for expression- and environment-variables, as
well as a decision algorithm if in addition there are no permutation-variables in
the input.

A nominal unification algorithm for nonlinear occurrences of expression-
variables is also sketched where the semantics are garbage-free ground expres-
sions. The approach and the algorithms have a high potential of improving auto-
mated tools for reasoning about program transformations in higher languages
with recursive let.

For the generalization to nonlinear occurrences of environment-variables, we
did not find a terminating nominal unification algorithm. We conjecture the
decision problem to be strictly harder in this case.

Our work provides also the base for an extension of the rewriting mechanisms
and confluence checks in [8–10] to further settings, where letrec-expressions,
environment-variables and expression-variables are allowed, and where also
context-variables as in [23] are permitted.

This would enable the study of the rules of functional (in particular call-by-
need) calculi and transformations, by checking the overlaps between them. In
fact, several of these rules and transformation have abstract variables for parts
of the environment, where usually the occurrences of the environment-variables
are linear, yielding a natural field of applications for the work of this paper.

References

1. Calvès, C., Fernández, M.: A polynomial nominal unification algorithm. Theoret.
Comput. Sci. 403(2–3), 285–306 (2008)

2. Cheney, J.: Nominal Logic Programming. Ph.D. thesis, Cornell University, Ithaca,
NY, August 2004

3. Cheney, J., Momigliano, A.: α-check: a mechanized metatheory model checker.
Theory Pract. Logic Program. 17(3), 311–352 (2017)

4. A. Gascón, G. Godoy, and M. Schmidt-Schauß. Unification and matching on com-
pressed terms. ACM Trans. Comput. Log. 12(4):26:1–26:37, 2011

5. Hansen, M.R., Rischel, H.: Functional Programming Using F#. Cambridge (2013)
6. Haskell: Haskell, an advanced, purely functional programming language (2019)
7. Jones, S.P., Santos, A.: Compilation by transformation in the Glasgow Haskell

Compiler. In: Hammond, K., Turner, D.N., Sansom, P.M. (eds.) Functional Pro-
gramming, pp. 184–204. Springer, London (1995). https://doi.org/10.1007/978-1-
4471-3573-9 13

https://doi.org/10.1007/978-1-4471-3573-9_13
https://doi.org/10.1007/978-1-4471-3573-9_13

112 M. Schmidt-Schauß and Y. Kutz

8. Kikuchi, K., Aoto., T.: Confluence and commutation for nominal rewriting systems
with atom-variables. In: LOPSTR 2020 (2020, to appear)

9. Kutz, Y., Schmidt-Schauß, M.: Rewriting with generalized nominal unification.
Frank report 63, Institut für Informatik. Fachbereich Informatik und Mathematik.
J. W. Goethe-Universität Frankfurt am Main (2019)

10. Kutz, Y., Schmidt-Schauß, M.: Rewriting with generalized nominal unification.
MSCS 30, 710–735 (2020.) Special issue 6 (Special Issue: Unification)

11. Levy, J., Villaret, M.: An efficient nominal unification algorithm. In: Lynch, C. (ed.)
Proceedings of 21st RTA, LIPIcs, vol. 6, pp. 209–226. Schloss Dagstuhl (2010)

12. Marlow, S. (ed.): Haskell 2010 - Language Report (2010)
13. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Trans. Pro-

gram. Lang. Syst. 4(2), 258–282 (1982)
14. Milner, R.: Communicating And Mobile Systems - The Pi-Calculus. Cambridge

University Press, Cambridge (1999)
15. Minsky, Y., Madhavapeddy, A., Hickey, J.: Real World OCaml. O’Reilly (2013)
16. Pitts, A.: Nominal techniques. ACM SIGLOG News 3(1):57–72 (2016)
17. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge

University Press, New YorkD (2013)
18. Sangiorgi, D., Walker, D.: on barbed equivalences in π-calculus. In: Larsen, K.G.,

Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 292–304. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-44685-0 20

19. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M.: Nominal unification of
higher order expressions with recursive let. In: Hermenegildo, M.V., Lopez-Garcia,
P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 328–344. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63139-4 19

20. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M., Kutz, Y.: Nominal unifi-
cation of higher order expressions with recursive let. Frank report 62, Institut für
Informatik. Fachbereich Informatik und Mathematik. J. W. Goethe-Universität
Frankfurt am Main (2019)

21. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M., Kutz., Y.: Nominal unifi-
cation of higher order expressions with recursive let (2019, in preparation)

22. Schmidt-Schauß, M., Rau, C., Sabel, D.: Algorithms for Extended Alpha-
Equivalence and Complexity. In: van Raamsdonk, F. (ed.) 24th RTA 2013, LIPIcs,
vol. 21, pp. 255–270. Schloss Dagstuhl (2013)

23. Schmidt-Schauß, M., Sabel, D.: Nominal unification with atom and context vari-
ables. In: Kirchner, H. (ed.) Proceedings of 3rd FSCD 2018, LIPIcs, vol. 108, pp.
28:1–28:20. Schloss Dagstuhl (2018)

24. Schmidt-Schauß, M., Sabel, D., Kutz, Y.: Nominal unification with atom-variables.
J. Symb. Comput. 90, 42–64 (2019)

25. Schmidt-Schauß, M., Schütz, M., Sabel, D.: Safety of Nöcker’s strictness analysis.
J. Funct. Program. 18(04), 503–551 (2008)

26. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reasoning 40(4), 327–
356 (2008)

27. Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in nominal
Isabelle. Log. Methods Comput. Sci. 8(2), 1–35 (2012)

28. Urban, C., Pitts, A., Gabbay, M.: Nominal unification. In: Baaz, M., Makowsky,
J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 513–527. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45220-1 41

https://doi.org/10.1007/3-540-44685-0_20
https://doi.org/10.1007/978-3-319-63139-4_19
https://doi.org/10.1007/978-3-540-45220-1_41

Terminating Non-disjoint Combined
Unification

Serdar Erbatur1 , Andrew M. Marshall2 , and Christophe Ringeissen3(B)

1 University of Texas at Dallas, Richardson, USA
2 University of Mary Washington, Fredericksburg, USA

3 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
Christophe.Ringeissen@loria.fr

Abstract. The equational unification problem, where the underlying
equational theory may be given as the union of component equational
theories, appears often in practice in many fields such as automated
reasoning, logic programming, declarative programming, and the formal
analysis of security protocols. In this paper, we investigate the unification
problem in the non-disjoint union of equational theories via the combina-
tion of hierarchical unification procedures. In this context, a unification
algorithm known for a base theory is extended with some additional
inference rules to take into account the rest of the theory. We present a
simple form of hierarchical unification procedure. The approach is par-
ticularly well-suited for any theory where a unification procedure can be
obtained in a syntactic way using transformation rules to process the
axioms of the theory. Hierarchical unification procedures are exempli-
fied with various theories used in protocol analysis. Next, we look at
modularity methods for combining theories already using a hierarchical
approach. In addition, we consider a new complexity measure that allows
us to obtain terminating (combined) hierarchical unification procedures.

1 Introduction

Unification is a critical tool in many fields such as automated reasoning, logic
programming, declarative programming, and the formal analysis of security pro-
tocols. For many of these applications we want to consider equational unifi-
cation, where the problem is defined modulo an equational theory E, such as
Associativity-Commutativity. For example, one approach to the analysis of secu-
rity protocols is based on deductive reasoning, as is done in the following tools
[5,6,18,25]. In this approach protocols are usually represented by clauses in first-
order logic with equality and equational theories are used to specify the capa-
bilities of an intruder [1]. To support this reasoning approach we need to use
E-unification procedures. Since equational unification is undecidable in general,
specialized techniques have been developed to solve the problem for particular
classes of equational theories, many of high practical interest. For instance, when
the equational theory E has the Finite Variant Property (FVP) [11,19], there

c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 113–130, 2021.
https://doi.org/10.1007/978-3-030-68446-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_6&domain=pdf
http://orcid.org/0000-0002-7574-195X
http://orcid.org/0000-0002-0522-8384
http://orcid.org/0000-0002-5937-6059
https://doi.org/10.1007/978-3-030-68446-4_6

114 S. Erbatur et al.

exists a reduction from E-unification to syntactic unification via the computa-
tion of finitely many variants of the unification problem. The class of equational
theories with the FVP has attracted a considerable interest since it contains
theories that are crucial in protocol analysis [7,8,12,19,26].

Another ubiquitous scenario is given by an equational theory E involved in
a union of theories F ∪ E. To solve this case, it is quite natural to proceed in
a modular way by reusing the unification algorithms available for F and for
E. There are terminating and complete combination procedures for signature-
disjoint unions of theories [3,29]. However, the non-disjoint case remains a chal-
lenging problem. One approach to the non-disjoint combination problem that has
been successful in some cases is the hierarchical approach [14]. In this approach,
F ∪E-unification can be considered as a conservative extension of E-unification.
Then, a new inference system related to F , say UF , can be combined with an
E-unification algorithm to obtain an F ∪ E unification algorithm. While this
hierarchical approach won’t work for every F ∪ E it can be a very useful tool
when applicable. However, up to now it could be complex to know if a combi-
nation F ∪ E could be solved via the hierarchical approach. For example, there
is no general method for obtaining the inference system UF , and the resulting
hierarchical unification procedure may not terminate.

In this paper, we consider “syntactic” theories F ∪ E where UF can be
defined as a system of mutation rules, and we present new terminating instances
of the hierarchical unification procedure. When an equational theory fulfills the
syntacticness property [22,28], there exists a rule-based unification procedure
in the same vein as the one known for syntactic unification, which is called
a mutation-based unification procedure. Unfortunately, being syntactic is not
a sufficient condition to ensure the termination of this mutation-based unifica-
tion procedure. However, terminating mutation-based unification procedures are
known for some particular theories such as one-side distributivity [24,30], dis-
tributive exponentiation theories [15], shallow theories [10] and theories closed
by paramodulation [23]. All the theories investigated here using the hierarchical
approach are both syntactic and finitary: each of them is actually a syntactic
theory for which a (finitary) unification algorithm is shown. On the one hand,
we study theories which are both collapse-free and finitary, that is, finitary the-
ories defined by axioms between non-variable terms. These theories are known
to be syntactic [22]. On the other hand, we also examine forward-closed theo-
ries that are known to be both syntactic and finitary, just like theories closed
by paramodulation [23]. The forward-closed theories we are interested in are
actually examples of theories having the Finite Variant Property.

The contributions of the paper consist of several improvements to the hier-
archical combination method [13,14] including: simplifying the method, clarify-
ing the theories for which the approach is applicable, and reducing some of the
restrictions. Furthermore, we develop several new results including general reduc-
tion procedures for certain types of theories, and modular termination results.
More specifically:

Terminating Non-disjoint Combined Unification 115

– We better define theories for which a hierarchical approach is applicable,
constructor-based theories, and simplify the hierarchical unification procedure
denoted here by HE(UF), where UF is an additional rule-based procedure to
be combined with an E-unification algorithm (Sect. 3).

– We define the requirements for the UF rule-based procedure, and develop new
general rule-based procedures for subterm collapse-free and forward-closed
theories (Sect. 3).

– Using the hierarchical approach, we develop new modularity results for the
unification problem in unions of constructor-sharing theories. We define a
new complexity measure to show terminating combinations of hierarchical
unification algorithms. This allows us to obtain new (combined) unification
algorithms for a wider variety of theories (Sect. 4).

– We show how the combination of hierarchical unification algorithms can be
applied to unions of constructor-sharing forward-closed theories (Sect. 4).

The rest of the paper is organized as follows. Section 2 provides the back-
ground material. Section 2.3 contains an introduction to forward-closed theories.
Section 3 introduces the notion of hierarchical unification and presents examples
of theories admitting a hierarchical unification algorithm. Section 4 focuses on
the combination of hierarchical unification algorithms. Finally, Sect. 5 contains
the conclusions and future work.

2 Preliminaries

We use the standard notation of equational unification [4] and term rewriting
systems [2]. Given a first-order signature Σ and a (countable) set of variables V ,
the set of Σ-terms over variables V is denoted by T (Σ,V). The set of variables
in a term t is denoted by Var(t). A term t is ground if Var(t) = ∅. A term is
linear if all its variables occur only once. For any position p in a term t (including
the root position ε), t(p) is the symbol at position p, t|p is the subterm of t at
position p, and t[u]p is the term t in which t|p is replaced by u. A substitution is
an endomorphism of T (Σ,V) with only finitely many variables not mapped to
themselves. A substitution is denoted by σ = {x1 �→ t1, . . . , xm �→ tm}, where
the domain of σ is Dom(σ) = {x1, . . . , xm}. Application of a substitution σ to t
is written tσ.

2.1 Equational Theories

Given a set E of Σ-axioms (i.e., pairs of Σ-terms, denoted by l = r), the equa-
tional theory =E is the congruence closure of E under the law of substitutivity
(by a slight abuse of terminology, E is often called an equational theory). Equiv-
alently, =E can be defined as the reflexive transitive closure ↔∗

E of an equational
step ↔E defined as follows: s ↔E t if there exist a position p of s, l = r (or r = l)
in E, and substitution σ such that s|p = lσ and t = s[rσ]p. An axiom l = r is
regular if Var(l) = Var(r). An axiom l = r is linear (resp., collapse-free) if l and

116 S. Erbatur et al.

r are linear (resp. non-variable terms). An equational theory is regular (resp.,
linear/collapse-free) if all its axioms are regular (resp., linear/collapse-free). A
theory E is subterm collapse-free if and only if for all terms t it is not the case
that t =E u where u is a strict subterm of t. A theory E is syntactic if it has
finite resolvent presentation S, defined as a finite set of axioms S such that each
equality t =E u has an equational proof t ↔∗

S u with at most one equational step
↔S applied at the root position. One can easily check that C = {x ∗ y = y ∗ x}
(Commutativity) and AC = {x∗(y∗z) = (x∗y)∗z, x∗y = y∗x} (Associativity-
Commutativity) are regular, collapse-free, and linear. Moreover, C and AC are
syntactic [22]. A Σ-equation is a pair of Σ-terms denoted by s =? t or simply
s = t when it is clear from the context that we do not refer to an axiom. A
flat Σ-equation is either an equation between variables or a non-variable flat Σ-
equation of the form x0 = f(x1, . . . , xn) where x0, x1, . . . , xn are variables and
f is a function symbol in Σ. An E-unification problem is a set of Σ-equations,
G = {s1 =? t1, . . . , sn =? tn}, or equivalently a conjunction of Σ-equations. The
set of variables in G is denoted by Var(G). A solution to G, called an E-unifier ,
is a substitution σ such that siσ =E tiσ for all 1 ≤ i ≤ n, written E |= Gσ. A
substitution σ is more general modulo E than θ on a set of variables V , denoted
as σ ≤V

E θ, if there is a substitution τ such that xστ =E xθ for all x ∈ V . A
Complete Set of E-Unifiers of G, denoted by CSUE (G), is a set of substitutions
such that each σ ∈ CSUE (G) is an E-unifier of G, and for each E-unifier θ of G,
there exists σ ∈ CSUE (G) such that σ ≤Var(G)

E θ. An E-unification algorithm
is an algorithm that computes a finite CSUE (G) for all E-unification problems
G. An inference rule G
 G′ for E-unification is sound if each E-unifier of G′

is an E-unifier of G; and complete if for each E-unifier σ of G, there exists an
E-unifier σ′ of G′ such that σ′ ≤Var(G)

E σ. An inference system for E-unification
is sound if all its inference rules are sound; and complete if for each E-unification
problem G on which an inference applies and each E-unifier σ of G, there exist
an E-unification problem G′ inferred from G and an E-unifier σ′ of G′ such
that σ′ ≤Var(G)

E σ. A set of equations G = {x1 =? t1, . . . , xn =? tn} is said
to be in tree solved form if each xi is a variable occurring once in G. Given an
idempotent substitution σ = {x1 �→ t1, . . . , xn �→ tn} (such that σσ = σ), σ̂
denotes the corresponding tree solved form. A set of equations is said to be in
dag solved form if they can be arranged as a list x1 =? t1, . . . , xn =? tn where
(a) each left-hand side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n: xi

does not occur in tj . A set of equations {x1 =? t1, . . . , xn =? tn} is a cycle if
for any i ∈ [1, n − 1], xi+1 ∈ Var(ti), x1 ∈ Var(tn), and there exists j ∈ [1, n]
such that tj is not a variable. Given two disjoint signatures Σ0 and Σ1 and
any i = 1, 0, Σi-terms (including the variables) and Σi-equations (including the
equations between variables) are called Σi-pure. A term t is called a Σi-rooted
term if its root symbol is in Σi. An alien subterm of a Σi-rooted term t is a
Σj-rooted subterm s (i �= j) such that all superterms of s are Σi-rooted. We
define general E-unification as the unification problem in the equational theory
obtained by extending E with arbitrary free function symbols.

Terminating Non-disjoint Combined Unification 117

Given a Σ0-theory E, a theory F ∪ E is a conservative extension of E if
=F∪E and =E coincide on Σ0-terms. When F ∪ E is a conservative extension
of E, E-unification is said to be complete for solving the Σ0-fragment of F ∪ E-
unification if for any Σ0-pure F ∪ E-unification problem G, any CSUE (G) is a
CSUF∪E (G). If F and E have disjoint signatures, E-unification is known to be
complete for solving the Σ0-fragment of F ∪ E-unification.

2.2 Equational Term Rewrite Systems

Given a signature Σ, an equational term rewrite system (TRS) (R,E) over Σ is
defined by a Σ-theory E and a finite set R of oriented Σ-axioms called rewrite
rules and of the form l → r such that l, r are Σ-terms, l is not a variable
and Var(r) ⊆ Var(l). A term s rewrites to a term t w.r.t (R,E), denoted by
s →R,E t, if there exist a position p of s, l → r ∈ R, and substitution σ such that
s|p =E lσ and t = s[rσ]p. The term s|p is called a redex. Given a TRS (R,E),
←→R∪E denotes the symmetric relation ←R,E ∪ →R,E ∪ =E . A TRS (R,E) is
Church-Rosser modulo E if ←→∗

R∪E is included in →∗
R,E ◦ =E ◦ ←∗

R,E . When
=E ◦ →R,E ◦ =E is terminating, the following properties are equivalent [20]:

1. (R,E) is Church-Rosser modulo E,
2. for any terms t, t′, t ←→∗

R∪E t′ if and only if t↓=E t′ ↓, where t↓ (resp., t′ ↓)
denotes any normal form of t (resp., t′) w.r.t (R,E).

A TRS (R,E) is E-convergent if =E ◦ →R,E ◦ =E is terminating and (R,E)
is Church-Rosser modulo E. Let Σ0 be the subsignature of Σ that consists of
function symbols occurring in the axioms of E. An E-convergent TRS (R,E) is
said to be E-constructed if Σ0 ∩ {l(ε) | l → r ∈ R} = ∅.

An E-convergent TRS (R,E) is said to be subterm E-convergent if for any
l → r ∈ R, r is either a strict subterm of l or a constant. When (R,E) is
clear from the context, a normal form w.r.t (R,E) is said to be normalized.
A substitution σ is normalized if, for every variable x in the domain of σ, xσ
is normalized. An instance lσ → rσ of a rule l → r ∈ R is a right-reduced
instance if σ|V ar(r) is normalized. A term t is an innermost redex if no subterm
of t is a redex. An E-convergent TRS (R,E) is IRR if every innermost redex is
R,E-reducible by a right-reduced instance of a rule in R. An E-convergent TRS
(R,E) is IR1 if every innermost redex is R,E-reducible to a normal form in one
step.

To simplify the notation, we often use tuples of terms, say ū = (u1, . . . , un),
v̄ = (v1, . . . , vn). Applying a substitution σ to ū is the tuple ūσ = (u1σ, . . . , unσ).
The tuples ū and v̄ are said to be E-equal, denoted by ū =E v̄, if u1 =E

v1, . . . , un =E vn. Similarly, ū →∗
R v̄ if u1 →∗

R v1, . . . , un →∗
R vn, ū is normalized

if u1, . . . , un are normalized, and ū =? v̄ is u1 =? v1 ∧ · · · ∧ un =? vn.

2.3 Forward Closure

In this section, we introduce the notion of finite forward closure, following the
definition given in [21]. Consider the rule:

118 S. Erbatur et al.

ForwardOverlap g → d[l′], l → r
 (g → d[r])σ

where g → d[l′], l → r ∈ R, l′ is not a variable and σ ∈ CSUE (l′ =? l).
For this inference rule, the notion of redundancy is defined with respect to an

ordering on terms. We assume the existence of a simplification ordering > such
that > is E-compatible, meaning that s′ =E s > t =E t′ implies s′ > t′, and
l > r for any l → r ∈ R. ForwardOverlap is said to be redundant in (R,E) if
for each g′ such that g′ =E gσ, g′ is R,E-reducible by a right-reduced instance
sμ → tμ of R and either sμ < gσ or (sμ =E gσ and tμ < d[l′]σ).

Let I be an inference system generating rewrite rules and whose inferences
are possibly redundant, like for instance I = {ForwardOverlap}. Given an
equational TRS (R,E), the saturation of (R,E) with respect to I is inductively
defined as follows:

– S0
I(R) = R,

– Sk+1
I (R) = Sk

I(R)∪{ρ} where the rule ρ is obtained by applying an inference
i in I using (Sk

I(R), E) as equational TRS and such that i is not redundant
in (Sk

I(R), E).

Let SI(R) =
⋃

k≥0 Sk
I(R). When SI(R) is finite, SI(R) is called a finite I-

saturation of (R,E). An equational TRS (R,E) is I-saturated if SI(R) = R.
An equational TRS has a finite forward closure if it has a finite I-saturation
for I = {ForwardOverlap}. An equational TRS is forward-closed if it is I-
saturated for I = {ForwardOverlap}.

Example 1. Any subterm E-convergent TRS has a finite forward closure. Sub-
term convergent TRSs are often used in the verification of security protocols [1],
e.g., {dec(enc(x, y), y) → x} and {fst(pair(x, y)) → x, snd(pair(x, y)) → y}.
The equational TRSs {dec(enc(x, k), k ∗ y) → x} and {rm(x ∗ k, k) → x} are
subterm E-convergent for E = AC(∗) = {x ∗ (y ∗ z) = (x ∗ y) ∗ z, x ∗ y = y ∗ x}.

Forward closure can be connected to the notion of Finite Variant Property
(FVP, for short) introduced in [11]. Given an E-convergent TRS (R,E), an
(R,E)-variant of a term t is a pair ((tθ) ↓, θ) where θ is a normalized substitu-
tion whose domain is included in Var(t). (R,E) has the FVP if for any term t
there exists a finite set V of (R,E)-variants of t such that any (R,E)-variant of
t is componentwise E-equal to an instance of some element in V . If (R,E) has
the FVP, then any R ∪ E-unification problem G reduces to E-unification prob-
lems via the computation of finitely many variants of G (viewed as a term with
additional symbols). This computation can be performed using folding variant
narrowing [12,19]. In [7], it was shown that for any TRS R, R has the FVP iff it
has a finite forward closure. A similar equivalence holds for E-constructed TRSs:

Lemma 1. Assume (R,E) is any E-constructed TRS and E is any regular and
collapse-free equational theory such that E-unification is finitary. Then, (R,E)
has a finite forward closure iff (R,E) has the FVP.

Terminating Non-disjoint Combined Unification 119

Proof. We rely on some results that have been shown in [21] for an inference
system I including ForwardOverlap plus an additional Parallel rule whose
premises are s → t, l → r ∈ R, v = u[l′] ∈ E such that l′ is a non-variable strict
subterm of u which is E-unifiable with l. The following statements are proved
in [21]:

– (R,E) is IR1 iff (R,E) is I-saturated.
– If (R,E) is IR1 and E-unification is finitary, then (R,E) has the FVP.
– If (R,E) has the FVP, then (R,E) has a finite I-saturation.

When (R,E) is E-constructed and E is a regular and collapse-free equational
theory, Parallel does not apply since a Σ0-rooted term l′ is not E-unifiable with
a Σ\Σ0-rooted term l. Thus, I-saturation reduces to forward closure, I-satured
means forward-closed, and the above statements can be reworded accordingly.
To conclude the proof, notice that if R′ is a finite forward closure of (R,E), then
(R′, E) is forward-closed and both (R′, E) and (R,E) have the FVP. ��

In this paper, (R,E) is assumed to be E-constructed and so the signature of
(R,E) necessarily includes a non-empty set of function symbols that do not occur
in the axioms of E. Thus, this means that we actually need general E-unification,
i.e., E-unification with free function symbols, instead of E-unification. Fortu-
nately, when E is regular and collapse-free, E-unification is finitary if and only
if general E-unification is finitary. This equivalence is a consequence of a classi-
cal disjoint combination method for regular and collapse-free theories [31] that
allows us to build a general E-unification algorithm as a combination of the
syntactic unification algorithm and an E-unification algorithm.

From now on, the equational theory E is always assumed to be regular and
collapse-free when (R,E) is E-constructed.

3 Hierarchical Unification

Consider now a union of theories R ∪ E where E is regular and collapse-free
and (R,E) is assumed to be E-constructed. Thanks to this assumption, R and
E are “sufficiently separated” and thus we can envision the problem of building
an R ∪ E-unification algorithm as a combination of two unification procedures:
a mutation-based unification procedure processing some R ∪ E-equalities, and
an E-unification algorithm. The approach we will use for this problem is the
hierarchical approach. Informally, the approach works as follows:

– The set of equations is processed to separate the terms over the shared sig-
nature, Σ0, from terms over the non-shared one, Σ\Σ0.

– The mutation-based procedure is then used to simplify the Σ\Σ0-equations.
– The remaining equations over the shared signature Σ0 are solved using the

E-unification algorithm.
– The process can repeat. If the process terminates in a solved form then the

problem is solvable and a unifier is produced.

120 S. Erbatur et al.

A hierarchical unification procedure is parameterized by an E-unification algo-
rithm and a mutation-based reduction procedure U . It applies some additional
rules given in Fig. 1: Coalesce, Split, Flatten, and VA are used to separate
the terms, U is used to simplify the Σ\Σ0-equations, and finally, Solve calls the
E-unification algorithm.

Fig. 1. HE rules

Definition 1 (Hierarchical unification procedure). Assume a Σ0-theory
E for which an E-unification algorithm is known, a Σ-theory F ∪ E for which
E-unification is complete for solving the Σ0-fragment of F ∪ E-unification, and
an inference system U such that: U transforms only non-variable flat Σ\Σ0-
equations; U is sound and complete for F ∪ E-unification; and U is parameterized
by some finite set S of F ∪E-equalities for which the soundness of each inference

U follows from at most one equality in S. Under these assumptions, HE(U) is
the inference system defined as the repeated application of some inference from
HE (cf. Fig. 1) or U , using the following order of priority: Coalesce, Split,
Flatten, VA, U , Solve. An F ∪ E-unification problem is separate, also called
in separate form, if it is a normal form w.r.t HE\{Solve}. HE(U) is said to be
a hierarchical unification procedure if the normal forms w.r.t HE(U) are either
the separate dag solved forms or problems that are not F ∪ E-unifiable.

Note that U is not just a set of inference rules but also a strategy for applying
those rules, for instance to avoid non-termination [15]. From now on, an inference
system HE(U) always denotes a hierarchical unification procedure.

Proposition 1. Let (R,E) be any E-constructed TRS such that an inference
system U following Definition 1 is known for the equational theory R ∪ E, in
addition to an existing E-unification algorithm. Then E, R ∪ E and U satisfy
the assumptions of Definition 1, and a hierarchical unification procedure HE(U)

Terminating Non-disjoint Combined Unification 121

provides a sound and complete R∪E-unification procedure, and in particular an
R ∪ E-unification algorithm when HE(U) is also terminating.

Proof. If (R,E) is E-constructed, then E-unification is complete for solving the
Σ0-fragment of R ∪ E-unification, and so all the assumptions are satisfied to
define HE(U). By construction, HE(U) is sound and complete. Since the R∪E-
unifiable normal forms w.r.t HE(U) are assumed to be the separate dag solved
forms, collecting all the separate dag solved forms reached by HE(U) suffices to
get a complete set of R ∪ E-unifiers. ��

3.1 Subterm Collapse-Free Theories

Hierarchical unification algorithms are known for particular subterm collapse-
free theories of particular interest for protocol analysis.

Proposition 2 [15,30]. Let E be the empty Σ0-theory where Σ0 only consists
of a binary function symbol ∗, RD = {h(x ∗ y) → h(x) ∗ h(y)} and RD1 =
{f(x ∗ y, z) → f(x, z) ∗ f(y, z)}. The equational TRSs (RD, E) and (RD1, E) are
E-constructed. Moreover, RD ∪ E (resp., RD1 ∪ E) is a subterm collapse-free
theory admitting a unification algorithm of the form HE(UD) (resp., HE(UD1)).

Proof. Subterm collapse-freeness follows from the fact that both theories are
non-size-reducing. The inference system UD1 can be derived following the app-
roach developed in [15] and based on the one initiated in [30] for one-side dis-
tributivity. The same approach can be applied for RD to get UD. ��
Proposition 3 [15]. Let AC = AC(�), RE = {exp(exp(x, y), z) → exp(x, y �
z), exp(x∗y, z) → exp(x, z)∗exp(y, z)} and RF = {enc(enc(x, y), z) → enc(x, y�
z)}. The equational TRSs (RE , AC) and (RF , AC) are AC-constructed. More-
over, EAC = RE ∪AC (resp., FAC = RF ∪AC) is a subterm collapse-free theory
admitting a unification algorithm of the form HAC(UE) (resp., HAC(UF)).

Proof. In [15] it is shown that both EAC and FAC are subterm collapse-free
theories. Also in [15] a mutation-based inference system, say UE (resp., UF),
is developed for EAC (resp., FAC): it reduces the Σ\Σ0-equations into solved
forms after which a solving step applies AC-unification on Σ0-equations. It is
shown in [15] that the solving step needs only be applied once. Hence, the EAC-
unification algorithm (resp., FAC-unification algorithm) given in [15] provides a
unification algorithm of the form HAC(UE) (resp., HAC(UF)). ��

3.2 Forward-Closed E-Constructed TRSs

For any forward-closed E-constructed TRS (R,E) such that E is regular and
collapse-free, an R∪E-unification algorithm of the form HE(U) can be obtained
by defining some inference system U , based on the Basic Syntactic Mutation
approach initiated for the class of theories closed by paramodulation [23], and
already applied in [13] to a particular class of forward-closed equational TRSs.

122 S. Erbatur et al.

Let BSM R be the inference system given in Fig. 2. One can notice that
each inference rule in BSM R generates some boxed terms. This particular anno-
tation of terms, detailed in [13,23], allows us to control the rules application,
disregarding needless inferences on boxed terms, in such a way that BSM R is
terminating.

Fig. 2. BSMR rules

An R∪E-unification algorithm combining BSM R and an E-unification algo-
rithm has been developed in [13] for the case of any forward-closed convergent
TRS R such that the left-hand sides of R are linear and contain no symbols of E.
In this paper, we extend [13] to any forward-closed E-constructed TRS (R,E),
without any further restriction on R.

The soundness and completeness of BSM R is shown by the following lemma.

Lemma 2. Let (R,E) be any forward-closed E-constructed TRS over the sig-
nature Σ. For each equality u =R∪E v such that u is Σ\Σ0-rooted and v is
normalized, one of the following is true:

1. u = f(ū), v = f(v̄) and ū =R∪E v̄.
2. u = f(ū), there exist f(s̄) → t ∈ R and a normalized substitution σ such that

ū =R∪E s̄σ, v =E tσ and s̄σ, tσ are normalized.

Proof. Let us analyze the possible rewrite proofs →∗
R,E of u =R∪E v.

First, if there is no step at the root position, then we get u = f(ū) →∗
R,E

f(ū′) =E v where ū →∗
R,E ū′ and ū′ are normalized. Since f is a free symbol for

E, we have that v = f(v̄) and ū′ =E v̄. Hence, ū =R∪E v̄ since ū =R∪E ū′.
Second, if there is one step at the root position, then we have

u = f(ū) →∗
R,E f(ū′) = f(s̄)σ →R,E,ε tσ =E v

where f(s̄) → t ∈ R, ū →∗
R,E ū′, ū′ are normalized, ū′ =E s̄σ, and so σ, s̄σ are

normalized. Since tσ =E v and v is normalized, tσ is also normalized. ��
A unification procedure of the form HE(BSM R) corresponds to the BSC

unification procedure given in [13] except that Solve is applied in BSC before
BSM R rules. However, the termination proof stated for BSC in [13] also holds
when Solve is applied after the BSM R rules.

Terminating Non-disjoint Combined Unification 123

Lemma 3. Assume E is any regular and collapse-free theory such that an E-
unification algorithm is known. Let (R,E) be a forward-closed E-constructed
TRS and BSM R the inference system given in Fig. 2. Then HE(BSM R) is an
R ∪ E-unification algorithm.

Example 2. Consider R = {h(x) → a × x}, R′ = {f(x, y) → a′(y) × x} and
E = {x×(y∗z) = (x×y)∗(x×z)}. The theory E corresponds to left-distributivity
and an E-unification algorithm is given in [30]. Since (R,E) and (R′, E) are
forward-closed and E-constructed, HE(BSM R) and HE(BSM R′) are unification
algorithms for R∪E and R′∪E, respectively. Notice that h(x∗y) =R∪E h(x)∗h(y)
and f(x ∗ y, z) =R′∪E f(x, z) ∗ f(y, z).

Example 3. Consider R = {π1(x.y) → x, π2(x.y) → y, dec(enc(x, y), y) → x}
and E = {enc(x.y, z) = enc(x, z).enc(y, z)}. An E-unification algorithm can
be obtained following the approach developed in [15,30] and can be used in
a hierarchical unification procedure of the form HE(BSM R). Since (R,E) is
forward-closed and E-constructed, HE(BSM R) is an R∪E-unification algorithm.

4 Combined Hierarchical Unification

We are now interested in combining hierarchical unification algorithms known for
E-constructed TRSs. Given two E-constructed TRSs, say (R1, E) and (R2, E),
the problem is to study the possible construction of a (combined) hierarchical
unification algorithm for (R1∪R2, E) using the two hierarchical unification algo-
rithms known for (R1, E) and (R2, E). We investigate this combination problem
for the two classes of E-constructed TRSs introduced in Sect. 3. First, we con-
sider a class of E-constructed TRSs (R,E) such that R ∪E is subterm collapse-
free. Second, we study the class of forward-closed E-constructed TRSs (R,E)
such that E is regular and collapse-free.

4.1 Combining Subterm Collapse-Free Theories

Let us first consider a technical lemma which is useful to get a hierarchical
unification procedure.

Lemma 4. Let (R1, E) and (R2, E) be two E-constructed TRSs over the sig-
natures Σ1 and Σ2, respectively, such that Σ1 ∩ Σ2 = Σ0 for the signature Σ0

of E, and for i = 1, 2, Ri ∪ E admits a sound and complete unification pro-
cedure of the form HE(Ui). Assume that R1 ∪ R2 ∪ E is subterm collapse-free,
and for any Σ1\Σ0-rooted term t1 and any Σ2\Σ0-rooted term t2, t1 cannot be
equal to t2 modulo R1 ∪ R2 ∪ E. Then, HE(U1 ∪ U2) is a sound and complete
R1 ∪ R2 ∪ E-unification procedure.

Proof. According to the assumptions, U1 ∪ U2 is sound and complete for R1 ∪
R2∪E-unification and any normal form w.r.t HE(U1∪U2) is R1∪R2∪E-unifiable
iff it is in dag solved form. So, Proposition 1 applies. ��

124 S. Erbatur et al.

We study below a possible way to satisfy the assumptions of Lemma 4.

Definition 2 (Layer-preservingness). Let (R,E) be an E-constructed TRS
over the signature Σ, for which Σ0 denotes the signature of E. A Σ-term t is
said to be E-capped if there exist a constant-free Σ0-term u and a substitution σ
such that t = uσ, Dom(σ) = V ar(u) and Ran(σ) is a set of Σ\Σ0-rooted terms.
The TRS (R,E) is said to be layer-preserving if R ∪ E is subterm collapse-free
and any normal form of any Σ\Σ0-rooted term is E-capped.

Remark 1. An easy way to get layer-preservingness of (R,E) is to assume that
R ∪ E is subterm collapse-free and the right hand-sides of rules in R are Σ\Σ0-
rooted. In that case the term u in Definition 2 is simply a variable. Layer-
preservingness generalizes this assumption used in [14].

The property of being E-constructed and layer-preserving is modular.

Lemma 5. Assume E is a subterm collapse-free Σ0-theory, for i = 1, 2, (Ri, E)
is an E-constructed layer-preserving TRS over the signature Σi, and Σ1 ∩ Σ2 =
Σ0. If =E ◦ →R1∪R2 ◦ =E is terminating, then (R1∪R2, E) is an E-constructed
layer-preserving TRS, and for any Σ1\Σ0-rooted term t1 and any Σ2\Σ0-rooted
term t2, t1 cannot be equal to t2 modulo R1 ∪ R2 ∪ E.

Proof. To show that (R1 ∪ R2, E) is layer-preserving, we have to prove that
R1 ∪R2 ∪E remains subterm collapse-free. The modularity of subterm collapse-
freeness has been shown in [14] when the right-hand sides of Ri are Σi\Σ0-rooted,
for i = 1, 2. Actually, a similar proof by contradiction can be performed in the
case (Ri, E) is layer-preserving, for i = 1, 2. Let us consider the height of layers
of a term t, inductively defined as follows:

– ht(t) = 0 if t is a variable,
– ht(t) = 1 if t is a non-variable pure term,
– ht(t) = 1 + max{ht(u) | u is an alien subterm of t} if t is not pure.

Assume there exists a term t and a non-empty position p such that
t =R1∪E2∪E t|p. If the path from ε to p contains only symbols from one theory, say
Ri ∪ E, this would lead to a contradiction with the subterm collapse-freeness of
Ri ∪ E. Consider now that the path from ε to p contains both a Σ1\Σ0-symbol
and a Σ2\Σ0-symbol. Let u = t|p and let t′ and u′ be the respective normal
forms of t and u w.r.t (R1 ∪ R2, E). Since t′ =E u′ and E is necessarily regular
collapse-free, we have that t′ and u′ have the same height of layers. By the layer-
preserving assumption, t and t′ have the same height of layers, as well as u and
u′. Thus t and u have the same height of layers, which leads to a contradiction
due to the considered path from ε to p.

Assume there exist some Σ1\Σ0-rooted term t1 and some Σ2\Σ0-rooted term
t2 such that t1 =R1∪R2∪E t2. Then, t′1 =E t′2 where t′1 and t′2 are the respective
normal forms of t1 and t2 w.r.t (R1 ∪ R2, E). The layer-preserving assumption
implies that t′i must still contain a symbol in Σi\Σ0 for i = 1, 2. Since E is
necessarily regular and collapse-free, it is thus impossible to have t′1 =E t′2. ��

Terminating Non-disjoint Combined Unification 125

Remark 2. To satisfy the condition =E ◦ →R1∪R2 ◦ =E is terminating, it suffices
to exhibit an E-compatible reduction ordering > such that l > r for any l →
r ∈ R1 ∪ R2. In that case, > is defined on terms built over Σ1 ∪ Σ2.

By Lemma 5, the two assumptions of Lemma 4 can be satisfied, and this leads
to a hierarchical unification procedure for the combined TRS. In the following,
we consider a notion of decreasingness in order to study the termination of this
unification procedure.

Definition 3 (Decreasingness). Consider a complexity measure defined as a
mapping C from separate forms to natural numbers. An HE(U) inference system
is said to be C-decreasing if for any separate form G ∪ G0 we have that (1) for
any G′ such that G ∪ G0
U G′ ∪ G0, the separate form of G′ ∪ G0 does not
increase C; (2) for any G′

0 such that G ∪ G0
Solve G ∪ G′
0, then either the

separate form of G ∪ G′
0 is in normal form w.r.t HE(U), or it decreases C.

Consequently, HE(U) is terminating if there exists some C such that HE(U)
is C-decreasing.

Theorem 1. Assume E is a subterm collapse-free theory such that an E-unifica-
tion algorithm is known, and C is a complexity measure defined on separate
forms. Let (R1, E) and (R2, E) be two E-constructed TRSs sharing only symbols
in E such that, for i = 1, 2, (Ri, E) is layer-preserving, and Ri ∪ E admits a
C-decreasing unification algorithm of the form HE(Ui). If =E ◦ →R1∪R2 ◦ =E is
terminating, then (R1 ∪ R2, E) is an E-constructed TRS such that (R1 ∪ R2, E)
is layer-preserving, and R1∪R2 ∪E admits a C-decreasing unification algorithm
of the form HE(U1 ∪ U2).

Proof. (R1∪R2, E) is layer-preserving by Lemma 5. In addition, a Σ1\Σ0-rooted
term cannot be equal to a Σ2\Σ0-rooted term modulo R1 ∪ R2 ∪ E. Applying
Lemma 4, HE(U1 ∪ U2) provides a sound and complete R1 ∪ R2 ∪ E-unification
procedure. Moreover, HE(U1 ∪ U2) is C-decreasing and so it is terminating. ��
Example 4. Consider the theories EAC and FAC introduced in Proposition 3 and
the corresponding hierarchical unification algorithms HAC(UE) and HAC(UF)
where the mutation rules defining UE and UF can be found in [15]. Let SV C be
the complexity measure defined as follows: given an R ∪ E-unification problem
in separate form G ∪ G0, SV C(G ∪ G0) is the number of equivalence classes of
variables shared by G and G0 that are variables abstracting Σ\Σ0-rooted terms.

Let us now check that the unification algorithms HAC(UE) and HAC(UF)
are both SV C-decreasing. On the one hand, it is routine to verify that any
(mutation) rule in UE (resp., UF) does not lead, via a further possible application
of VA, to new shared variables which are abstracting Σ\Σ0-rooted terms. Hence,
the rules in UE (resp., UF) cannot increase SV C. On the other hand, Solve
leads to either a normal form w.r.t HAC(UE) (resp., HAC(UF)), or it generates
some equality x =? y between variables x and y for which there are Σ\Σ0-
equations x =? s and y =? t in G. In the last case, the respective equivalence
classes of x and y are merged into a single one by applying Solve and so,

126 S. Erbatur et al.

Solve strictly decreases SV C. By Theorem 1, we get that EAC ∪ FAC admits
a SV C-decreasing unification algorithm of the form HAC(UE ∪ UF). Notice this
means that we can use the termination strategy used in the individual HAC(UE)
and HAC(UF) algorithms to obtain a termination strategy for the hierarchical
combined algorithm, HAC(UE ∪ UF). We suspect that this complexity measure,
SV C, could be useful for proving termination in other theories.

To conclude this section, let us mention the problem of combining two copies
of the same E-constructed layer-preserving TRS, provided that only the symbols
in E are possibly shared. In that very particular case, layer-preservingness is
sufficient and there is no need to find a decreasing complexity measure.

Theorem 2. Consider (R,E) is an E-constructed layer-preserving TRS over
the signature Σ such that R ∪ E admits a unification algorithm of the form
HE(U). Let (R′, E) be a copy of (R,E) obtained by renaming the Σ\Σ0-symbols.
Then, (R ∪ R′, E) is an E-constructed layer-preserving TRS such that R ∪ R′∪E
admits a unification algorithm of the form HE(U ∪ U ′), where U ′ is obtained
from U by applying the same renaming as the one defining (R′, E).

Proof. Consider the morphism ι replacing each symbol f ′ ∈ Σ′\Σ0 by the cor-
responding function symbol f ∈ Σ\Σ0. For any terms s,t, s =E ◦ →R∪R′ ◦ =E t
implies ι(s) =E ◦ →R ◦ =E ι(t). Thus, =E ◦ →R ◦ =E is terminating implies
=E ◦ →R∪R′ ◦ =E is terminating. By Lemmas 5 and 4, (R ∪ R′, E) is an
E-constructed layer-preserving TRS and HE(U ∪ U ′) is a sound and complete
R∪R′ ∪E-unification procedure. For each inference P
HE(U∪U ′) Q, there exists
an inference ι(P)
HE(U) ι(Q). Thus, the termination w.r.t HE(U) implies the
termination w.r.t HE(U ∪ U ′). ��
Example 5. Consider the two E-constructed layer-preserving TRSs (RD, E) and
(RD1, E) defined in Proposition 2, and their copies R′

D = {h′(x ∗ y) → h′(x) ∗
h′(y)} and R′

D1 = {f ′(x ∗ y, z) → f ′(x, z) ∗ f ′(y, z)}. The theories RD ∪ E
and RD1 ∪ E admit unification algorithms of the form HE(UD) and HE(UD1),
respectively. By Theorem 2, RD ∪ R′

D ∪ E and RD1 ∪ R′
D1 ∪ E admit unification

algorithms of the form HE(UD ∪ U ′
D) and HE(UD1 ∪ U ′

D1), respectively.

4.2 Combining Forward-Closed E-Constructed TRSs

The union of two forward-closed E-constructed TRSs remains a forward-closed E
constructed TRS. Thus, a hierarchical unification algorithm can be constructed
in a modular way in unions of forward-closed E-constructed TRSs.

Theorem 3. Assume E is a regular and collapse-free theory such that an E-
unification algorithm is known. Let (R1, E) and (R2, E) be two forward-closed
E-constructed TRSs sharing only symbols in E. Then R1 ∪ R2 ∪ E admits a
unification algorithm of the form HE(BSM R1 ∪ BSM R2).

Proof. (R1∪R2, E) is a forward-closed E-constructed TRS, and so by Lemma 3,
R1 ∪ R2 ∪ E admits a unification algorithm of the form HE(BSM R1∪R2), which
coincides with HE(BSM R1 ∪ BSM R2). ��

Terminating Non-disjoint Combined Unification 127

In the following, we investigate the case where E already admits a hierarchi-
cal unification algorithm of the form HE′(U ′) for a subtheory E′ of E, like in
Example 3 where E has a hierarchical unification algorithm of the form HE′(U ′)
for E′ = ∅. In that case, we can consider the following compositionality lemma:

Lemma 6. Let (R,E) be an E-constructed TRS such that R ∪ E admits a uni-
fication algorithm of the form HE(U), and E admits a unification algorithm of
the form HE′(U ′), where E′ is a subtheory of E. Then R ∪ E also admits a
unification algorithm of the form HE′(U ∪ U ′).

Proof. Consider Σ′ = Σ0 and E is a Σ′-theory of the form E = F ′ ∪E′. Assume
R ∪ E (resp., F ′ ∪ E′) has a unification algorithm of the form HE(U) (resp.,
HE′(U ′)), where U (resp., U ′) is sound, complete, and parameterized by some
finite set S (resp., S′) of R ∪ E-equalities (resp., F ′ ∪ E′-equalities) such that
the soundness of each inference
U (resp.,
U ′) follows from at most one equality
in S (resp., S′).

Since E-unification is complete for solving the Σ′-fragment of R ∪E-unifica-
tion, U ′ is also sound and complete for R ∪ F ′ ∪ E′. Hence, the inference system
U ∪ U ′ is sound and complete. Moreover, S ∪ S′ is a finite set of R ∪ F ′ ∪ E′-
equalities such that the soundness of each inference
U∪U ′ follows from at most
one equality in S ∪ S′.

Since E-unification is complete for solving the Σ′-fragment of R ∪E-unifica-
tion and E′-unification is complete for solving the Σ′

0-fragment of E-unification,
we have that E′ is also complete for solving the Σ′

0-fragment of R ∪ F ′ ∪ E′-
unification.

Consequently, E′, R ∪ F ′ ∪ E′ and U ∪ U ′ satisfy all the assumptions of
Definition 1, and so HE′(U ∪U ′) is well-defined. Since HE′(U ∪U ′) corresponds
to an “unfolding” of HE(U), it is terminating, sound and complete, just like
HE(U). Thus, HE′(U ∪ U ′) is a unification algorithm for R ∪ E = R∪F ′ ∪E′. ��
Example 6. (Example 3 continued) R ∪ E admits a unification algorithm of the
form H∅(BSM R ∪ U ′) where H∅(U ′) is a hierarchical E-unification algorithm.

Example 7. Let us consider a theory used in practice to model a
group messaging protocol [9]. For this protocol, the theory modeling the
intruder can be defined [27] as a combination RENC ∪ K where K =
{keyexch(x, pk(x′), y, pk(y′)) = keyexch(x′, pk(x), y′, pk(y))} and (RENC ,K) is
the forward-closed K-constructed TRS where

RENC =

⎧
⎪⎪⎨

⎪⎪⎩

adec(aenc(m, pk(sk)), sk) → m
getmsg(sign(m, sk)) → m

checksign(sign(m, sk),m, pk(sk)) → ok
sdec(senc(m, k), k) → m

⎫
⎪⎪⎬

⎪⎪⎭

K is a theory closed by paramodulation and so K-unification is finitary [23].
By Lemma 3, RENC ∪ K has a hierarchical unification algorithm of the form
HK(BSM RENC

). The mutation-based unification algorithm known for theories

128 S. Erbatur et al.

closed by paramodulation [23] can be reworded as a hierarchical unification algo-
rithm, of the form H∅(UK) for K. By Lemma 6, H∅(BSM RENC

∪ UK) is another
RENC ∪ K-unification algorithm.

Applying Lemma 6, we can easily obtain a hierarchical unification algorithm
for a forward-closed E-constructed TRS combined with a regular and collapse-
free E-constructed TRS.

Lemma 7. Assume E is a regular and collapse-free theory such that an E-
unification algorithm is known. Let (R1, E) and (R2, E) be two E-constructed
TRSs sharing only symbols in E such that (R1, E) is forward-closed, and R2 ∪E
is a regular and collapse-free theory E2 admitting a unification algorithm of
the form HE(U2). Then (R1, E2) is a forward-closed E2-constructed TRS and
R1 ∪ E2 admits a unification algorithm of the form HE(BSM R1 ∪ U2).

Proof. (R1, E2) is forward-closed because (R1, E) is forward-closed and the equa-
tional theory =E coincides with =E2 on Σ1-terms. By Lemma 3, R1∪E2 admits a
unification algorithm of the form HE2(BSM R1). According to Lemma 6, R1∪E2

also admits a unification algorithm of the form HE(BSM R1 ∪ U2). ��
Example 8. Let (R,AC(�)) be a forward-closed AC(�)-constructed TRS such
that � is the only function symbol shared by R ∪AC(�) and EAC (resp., FAC).
By Lemma 7, R ∪ EAC (resp., R ∪ FAC) admits a unification algorithm of
the form HAC(BSM R ∪ UE) (resp., HAC(BSM R ∪ UF)). According to Exam-
ple 4, EAC ∪ FAC admits a unification algorithm of the form HAC(UE ∪ UF).
Then, by Lemma 7, R ∪ EAC ∪ FAC admits a unification algorithm of the form
HAC(BSM R ∪ UE ∪ UF).

5 Conclusion

We have introduced a hierarchical unification framework as a generic tool to
construct unification procedures for (combined) equational theories defined by
E-constructed TRSs. We have presented new combination results for the simplest
case of subterm collapse-free theories, and a natural follow-up would be to study
the case of regular and collapse-free theories. A challenging future work is to
investigate the general case of arbitrary theories.

Hierarchical unification allows us to handle syntactic theories R ∪ E while
the E-unification algorithm can be arbitrary. According to this observation, we
plan to study a weakening of syntacticness, in order to allow theories R∪E that
are just syntactic modulo E.

We have also begun the implementation of the above hierarchical combina-
tion procedure. To begin with, we are using E = AC as the background theory.
However, we will explore expanding this to additional equational theories. In
the short term, we plan to experiment the use of our variant-free hierarchical
unification procedures (e.g., the ones introduced in Examples 3 and 7) as an
alternative to variant-based unification procedures in modern protocol verifica-
tion tools [6,18,25]. In the long term, we want to promote the use of non-disjoint

Terminating Non-disjoint Combined Unification 129

combination procedures [16] and mutation-based procedures [17] in protocol ver-
ification tools, targeting unification problems as well as some decision problems
related to the knowledge of an intruder, such as intruder deduction (a reachabil-
ity problem) and indistinguishability (an equivalence problem) [1,8]. The goal is
to improve automation of verification methods when theories share for instance
AC symbols.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theoret. Comput. Sci. 367(1–2), 2–32 (2006)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
New York (1998)

3. Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories:
combining decision procedures. J. Symbol. Comput. 21(2), 211–243 (1996)

4. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, pp. 445–532. Elsevier and MIT Press (2001)

5. Basin, D., Mödersheim, S., Viganò, L.: An on-the-fly model-checker for security
protocol analysis. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 253–270. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39650-5 15

6. Blanchet, B.: Modeling and verifying security protocols with the Applied Pi cal-
culus and ProVerif. Found. Trends Priv. Secur. 1(1–2), 1–135 (2016)

7. Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the
finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) Fro-
CoS 2013. LNCS (LNAI), vol. 8152, pp. 327–342. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40885-4 23

8. Ciobâcă, S., Delaune, S., Kremer, S.: Computing knowledge in security protocols
under convergent equational theories. J. Autom. Reasoning 48(2), 219–262 (2012)

9. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: asynchronous group messaging with strong security guarantees.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, 15–19 October 2018, pp. 1802–1819. ACM (2018)

10. Comon, H., Haberstrau, M., Jouannaud, J.-P.: Syntacticness, cycle-syntacticness,
and shallow theories. Inf. Comput. 111(1), 154–191 (1994)

11. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3 22

12. Durán, F., Eker, S., Escobar, S., Mart́ı-Oliet, N., Meseguer, J., Talcott, C.: Built-
in variant generation and unification, and their applications in Maude 2.7. In:
Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 183–192.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1 13

13. Eeralla, A.K., Erbatur, S., Marshall, A.M., Ringeissen, C.: Rule-based unification
in combined theories and the finite variant property. In: Mart́ın-Vide, C., Okhotin,
A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp. 356–367. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-13435-8 26

https://doi.org/10.1007/978-3-540-39650-5_15
https://doi.org/10.1007/978-3-540-39650-5_15
https://doi.org/10.1007/978-3-642-40885-4_23
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/978-3-319-40229-1_13
https://doi.org/10.1007/978-3-030-13435-8_26

130 S. Erbatur et al.

14. Erbatur, S., Kapur, D., Marshall, A.M., Narendran, P., Ringeissen, C.: Hierarchical
combination. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp.
249–266. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-
2 17

15. Erbatur, S., Marshall, A.M., Kapur, D., Narendran, P.: Unification over distribu-
tive exponentiation (sub)theories. J. Automata Lang. Comb. (JALC) 16(2–4), 109–
140 (2011)

16. Erbatur, S., Marshall, A.M., Ringeissen, C.: Notions of knowledge in combinations
of theories sharing constructors. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI),
vol. 10395, pp. 60–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63046-5 5

17. Erbatur, S., Marshall, A.M., Ringeissen, C.: Computing knowledge in equational
extensions of subterm convergent theories. Math. Struct. Comput. Sci. 30(6), 683–
709 (2020)

18. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 1

19. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Log. Algebr. Program. 81(7–8), 898–928 (2012)

20. Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM J. Comput. 15(4), 1155–1194 (1986)

21. Kim, D., Lynch, C., Narendran, P.: Reviving basic narrowing modulo. In: Herzig,
A., Popescu, A. (eds.) FroCoS 2019. LNCS (LNAI), vol. 11715, pp. 313–329.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29007-8 18

22. Kirchner, C., Klay, F.: Syntactic theories and unification. In: Logic in Computer
Science. LICS 1990, Proceedings, Fifth Annual IEEE Symposium on Logic in Com-
puter Science, pp. 270–277, June 1990

23. Lynch, C., Morawska, B.: Basic syntactic mutation. In: Voronkov, A. (ed.) CADE
2002. LNCS (LNAI), vol. 2392, pp. 471–485. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45620-1 37

24. Marshall, A.M., Meadows, C. Narendran, P.: On unification modulo one-sided
distributivity: Algorithms, variants and asymmetry. Log. Methods Comput. Sci.
11(2) (2015). https://doi.org/10.2168/LMCS-11(2:11)2015

25. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

26. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program.
154, 3–41 (2018)

27. Nguyen, K.: Formal verification of a messaging protocol, work done under the
supervision of Vincent Cheval and Véronique Cortier

28. Nipkow, T.: Proof transformations for equational theories. In: Logic in Computer
Science. LICS 1990, Proceedings, Fifth Annual IEEE Symposium on Logic in Com-
puter Science, pp. 278–288, June 1990

29. Schmidt-Schauß, M.: Unification in a combination of arbitrary disjoint equational
theories. J. Symbol. Comput. 8, 51–99 (1989)

30. Tidén, E., Arnborg, S.: Unification problems with one-sided distributivity. J. Sym-
bol. Comput. 3(1/2), 183–202 (1987)

31. Yelick, K.A.: Unification in combinations of collapse-free regular theories. J. Sym-
bol. Comput. 3(1–2), 153–181 (1987)

https://doi.org/10.1007/978-3-642-38574-2_17
https://doi.org/10.1007/978-3-642-38574-2_17
https://doi.org/10.1007/978-3-319-63046-5_5
https://doi.org/10.1007/978-3-319-63046-5_5
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1007/978-3-030-29007-8_18
https://doi.org/10.1007/3-540-45620-1_37
https://doi.org/10.1007/3-540-45620-1_37
https://doi.org/10.2168/LMCS-11(2:11)2015
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

Types

slepice: Towards a Verified
Implementation of Type Theory

in Type Theory

Frantǐsek Farka(B)

IMDEA Software Institute, Madrid, Spain
frantisek.farka@imdea.org

Abstract. Dependent types have proven a useful technique for develop-
ment of verified software. Despite the existence of many systems based in
dependent type theory, mostly interactive theorem provers but also pro-
gramming languages, there is no system that would itself be implemented
using dependent types. Recently, a new approach to type inference and
term synthesis for type theory with dependent types emerged that sepa-
rates the process into an analysis phase that is carried out in type theory,
and a search phase that is carried out in a logic programming engine.

We describe an architecture of type inference and term synthesis
engine for a language with dependent types that is based on the new
approach and that is feasible to implement using a dependently typed
language. We demonstrate the architecture by describing slepice, its
particular implementation.

Keywords: Dependent types · Type inference · Horn clause logic ·
Term synthesis · Proof-relevant resolution

1 Introduction

Dependent type theory has gained its place as foundations for construction of
software verification tools in the form of interactive theorem provers and, more
recently, in a form of programming languages with dependent types. Yet, current
systems that are based in dependent type theory are not themselves implemented
using such technology; to give an example, Coq [4] is implemented in OCaml,
Agda [15] and Idris [5] in Haskell. At the same time, the need for formally verified
tools has been advocated, e.g. by the CompCert project [14]. Such a tool allows to
guarantee that there are no compilation-introduced bugs, which is only desirable
given that processing languages with dependent types is a complex task.

A canonical example of type theory with dependent types is LF [13]. LF
possesses decidable type checking, the metatheory is well-understood, and is
strong enough to serve as a basis for a programming language [16]. Urban
et al. [21] developed a formalisation of the metatheory of LF that provides an
implementation of type checking via code generation. However, even this detailed

c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 133–150, 2021.
https://doi.org/10.1007/978-3-030-68446-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_7&domain=pdf
http://orcid.org/0000-0001-8177-1322
https://doi.org/10.1007/978-3-030-68446-4_7

134 F. Farka

development is carried out in Isabelle/HOL rather than in a constructive type
theory and, as a consequence, the authors study only quasi-decidability of the
typing judgement.

For any implementation that is to be of a practical use type checking alone is
not sufficient. The amount of type annotations and the number of proof obliga-
tions becomes unmanageable very quickly. Some amount of automation is neces-
sary, namely type inference to reconstruct omitted type annotations, and term
synthesis to infer omitted proofs. In what follows we use refinement to refer to
type inference and term synthesis at once. A detailed account of issues connected
with type inference in LF (as implemented in Beluga system [17]) was given by
Pientka [16]. Providing such an implementation in constructive type theory is
non-trivial since the problem is in general undecidable [7]. Similar issues arise
with term synthesis, that accounts for proof automation.

Further, languages that are used in practice are based in stronger type theory
than LF. Abel et al. [1] recently formalised a proof of decidability of equality in
type theory in Agda. The type theory they consider is an idealised version of
Agda itself and the proof can, in principle, be used to extract an implementa-
tion of an algorithm for deciding equality in Agda. However, their formalisation
depends on inductive-recursive definitions to specify logic-relation that is nec-
essary to proceed by induction and to show that the required assumptions are
structurally smaller when proving the main result. Such approach is far from
vanilla type theory.

A common objection against the need of having a verified implementation
of the refinement engine builds upon Appel’s approach [3] to proof-carrying
code—only a kernel that handles type checking is verified while any refinement
is handled by a non-verified code. Final type checking by the verified kernel
ensures that refinement provides well-formed code. While the approach keeps
implementation of such a tool tractable it also has several drawbacks. Among
other things, it leads to duplication of code as some functionality is implemented
twice, first time in the kernel and second time in the non-verified code. These
issues were discussed in a greater detail by Guidi et al. [12]. But more impor-
tantly, this leads to a practice when such compiler is the de facto specification of
the language—there is no formal specification of the language and even if there
were the refinement is not verified to adhere to it. Only the kernel is.

Recently, Farka et al. [9] proposed a new, two-stage approach to refinement.
In this approach, a refinement problem consist of a signature S and a term M
with metavariables that stand for omitted types and terms (proof obligations).
The signature S is translated to a logic program P using refinement calculus
and the term M to a goal G while synthesising a type A of M . Then, proof-
relevant resolution is employed and the goal G is resolved by the program P while
computing an answer substitution θ and a proof term e. The answer substitution
θ provides solution to the refinement problem, that is as a refined term θM and
its type θA. The computed proof term e is interpreted as a derivation D = (e, ·)derθA

of well-formedness judgement S; · � θM : θA, that is well-formedness of the
solution to the refinement problem. Verification of well-formedness of the refined

Slepice: Towards a Verified Implementation of Type Theory in Type Theory 135

S

M

P

G

e, θ

θM : θA

D
S;·�θM :θA

S � P

Thm. 2

S; ·;M � (G | A)

Thm. 1

proof-relevant

resolution

θ(−)
Def. 9

(−, ·)der−
Def. 10

Fig. 1. Refinement by proof-relevant resolution

term then proceeds by straightforward induction on the derivation of the well-
formedness judgement. A schematic diagram is listed in Fig. 1. In this paper, we
describe an architecture of a refinement engine that is based on the approach,
and its particular implementation slepice.

First, a refinement problem is parsed resulting in a pair of inductive objects,
abstract syntax representations of a signature and a term. Then, a translation
of the signature and the term into a logic program and a goal is formulated as
a decidability of the refinement calculus; the calculus is decidable in the sense
that either a program and a goal can be constructed or the term is ill-typed. The
proof is constructive and proceeds by induction on the structure of the abstract
syntax representation of the term. The proof is used to either obtain a program
and a goal, if these exists, or to reject ill-typed terms.

The reason that the translation can proceed by simple induction is that all
parts that either require a complicated argument, like decidability of equality, or
that are in general undecidable, like terms to be substituted for metavariables,
are postponed in a form of goals. A resolution engine is used to resolve the goal
with the generated program. Guidi et al. [12] investigate a similar approach with
λ-Prolog that is solely based in resolution and argue that resolution is suitable
to provide an implementation of type checker and elaborator that is compara-
ble to the state-of-art tools. However, their approach does not give a verified
implementation. Unlike Guidi et al., we employ proof-relevant resolution. Proof-
relevant resolution provides a proof-term that captures a successful resolution of
the generated goal. We state a property that the refined term that is obtained
from an interpretation of the proof term is well-formed. The proof proceeds by
induction on well-formedness derivation that is obtained from the proof-term as
well. Proof of the property constitutes a procedure that obtains the refined term.

Finally, formal specification of LF and the refinement calculus gives a basis
for the implementation. Data definitions as well as definitions of well-formedness
judgements in the type theory are obtained from the formal specification. One
can see the refinement as a rudimentary form of elaboration. The refinement
calculus then constitutes a formal semantics of the surface language. Further,
the generated logic program has in fact two parts; there is a fixed part that is
the same for each generated logic program and that constitutes inference rules
of the type theory, and there is the part that is given by a particular signature.
The static part is directly obtained from the specification as well.

136 F. Farka

In this paper, we give an account of a system that implements a proof of
concept of a refinement engine using the architecture we just described. The
implementation can be found online1. We use existing tools to instantiate dif-
ferent parts of the described architecture to obtain a verified implementation
of type theory in type theory. Namely, we use the Ott tool [18] to specify the
grammar, the typing judgement, and the refinement calculus. Ott is also used
to generate a parser of the source language from the grammar. We use Coq to
formally state decidability of the refinement calculus and the interpretation. We
use ELPI [8] to mimic proof-relevant resolution. We discuss a particular way
to do this and why it is possible in Sect. 5. Finally, we need to admit that our
implementation falls somewhat short of the ideal architecture that is fully hosted
by a dependently typed language. The Coq theorem prover does not execute the
code directly but uses extraction to OCaml. The definitions and parser gener-
ated by Ott are not generated as Coq code but as OCaml code. The ELPI code
is interfaced via OCaml as well. To our defence, the amount of handwritten
OCaml code necessary is fairly small and deals exclusively with interfacing of
the components and interaction with the user.

Contributions. The contributions of this paper are twofold; we

– describe an architecture for an elaboration and type inference engine of a
dependently typed language that allows self-hosting, and

– we report on an implementation that uses such architecture and hence man-
ifests feasibility of the approach.

2 Specification

In this section, we describe LF [13] that is extended with term- and type-level
metavariables, the well-typed fragment of the extended language, and the target
logic. The strong point of our approach is that the description is carried out as
a formal specification and that definitions in a theorem prover (Coq in our case)
and in executable code (OCaml in our case) are generated from the specifica-
tion. This approach forces a correspondence between formal specification of the
language and the implementation. We use Ott tool to formalise the specifica-
tion. Note that, beside any theorem prover or executable code, a human-readable
description is obtained from the formal specification as well2.

We present the extended language of LF using de Bruijn indices representa-
tion of variables. We use natural numbers for de Bruijn indices in I, we use iden-
tifier ι for individual elements of I and we denote successor by σ(−). We assume
countably infinite disjoint sets C of term constants, and B of type constants. We
denote elements of C by c, c′, etc., and elements of B by α, β, etc.. We assume
disjoint countable sets of term-level metavariables ?V and type-level metavari-
ables ?B. For technical reasons, we also assume a countable set of metavariables
?T linearly ordered by ≺.
1 http://github.com/frantisekfarka/slepice.
2 cf. the generated documentation doc/slepice.pdf in the implementation.

http://github.com/frantisekfarka/slepice

Slepice: Towards a Verified Implementation of Type Theory in Type Theory 137

metavar

I, i ::= {{com de Bruijn indices }}

grammar

eTy , eA , eB :: ’eTy_’ ::=

{{ com extended types }}

| tcon :: :: tcon

| Pi eTy1 . eTy2 :: :: pi_intro

| eTy ete :: :: pi_elim

| (eTy) :: S :: paren

| lvar :: :: mvar

| tvar :: :: tvar

ete , eM , eN :: ’ete_’ ::=

{{ com extended terms }}

| con :: :: con

| ix :: :: ix

| \ eTy . ete :: :: pi_intro

| ete1 ete2 :: :: pi_elim

| (ete) :: S :: paren

| lvar :: :: mvar

| tvar :: :: tvar

Definition I : Set := nat.

Inductive eTy : Set :=

(*r extended types *)

| ety_tcon (a:tcon)

| ety_pi_intro (eA:eTy) (eB:eTy)

| ety_pi_elim (eA:eTy) (eM:ete)

| ety_mvar (mA:lvar)

| ety_tvar (mT:tvar)

with ete : Set :=

(*r extended terms *)

| ete_con (c:con)

| ete_i (i:I)

| ete_pi_intro (eA:eTy) (eM:ete)

| ete_pi_elim (eM:ete) (eN:ete)

| ete_mvar (mA:lvar)

| ete_tvar (mT:tvar)

Fig. 2. Ott formalisation (on the left) of terms and types and the extracted Coq defi-
nition (on the right)

Definition 1 (Extended LF). The syntax of extended terms, extended
types, and extended kinds as well as extended signatures and extended con-
texts is:

T � A,B ::= B | Tt | ΠT.T | ?B | ?T extended types
t � M,N ::= C | I | λT .t | tt | ?V | ?T extended terms

K � L ::= type | ΠT.K extended kinds
Sgn � S ::= · | Sgn, C : T | Sgn,B : K extended signatures
Ctx � Γ ::= · | Ctx, T extended contexts

The extended terms include function abstraction λA.M and application MN .
The extended types include Π-type elimination AM and formation ΠA.B. We
do not include type-level abstraction as it can be safely erased from LF without
compromising the expressive power of the calculus [11]. We use parenthesis in
the rest of the paper in the usual way. An excerpt of Ott source that formalises
extended types and terms as well the generated Coq code is listed in Fig. 2.
Note that the formalisation specifies syntax sugar for parenthesis that is not
reflected in the Coq definition. In the actual implementation, there are also
some decorations that allows us to extract parser and pretty printer. We omit
the decorations here for the sake of readability.

138 F. Farka

We also give syntactic objects of LF proper as a fragment of the extended
language. The formalisation is carried out as a subgrammar of the extended
language. The actual representation in the generated theorem prover code is by
predicates over extended objects.

Definition 2 (LF). The syntax of terms, types, and kinds as well as signa-
tures and contexts is:

T � A,B ::= B | Tt | ΠT.T types
t � M,N ::= C | I | λT .t | tt terms

K � L ::= type | ΠT.K kinds
Sgn � S ::= · | Sgn, C : T | Sgn,B : K signatures
Ctx � Γ ::= · | Ctx, T contexts

De Bruijn indices are manipulated by shifting ; shifting takes a term, type, or
kind and an index ι and increments all indices greater than ι by one.

Definition 3. Term and type shifting, denoted by (−)↑ι is defined as follows:

c↑ι ≡ c

ι↑0 ≡ σι

0↑σι ≡ 0

(σι)↑σι′ ≡ σ(ι↑ι′
)

(λA.M)↑ι ≡ λ(A↑ι).(M ↑σι)
(MN)↑ι ≡ (M ↑ι)(N ↑ι)

α↑ι ≡ α

(λA.B)↑ι ≡ λ(A↑ι).(B ↑σι)
(AM)↑ι ≡ (A↑ι)(M ↑ι)

type↑ι ≡ type

(λA.L)↑ι ≡ λ(A↑ι).(L↑σι)

Substitution is defined recursively on the structure of objects using index shift-
ing. A substitution of a term M for an arbitrary index ι increases the index
when traversing under a binder.

Definition 4. Term, type, and kind substitution, denoted by −[N/ι] is defined
as follows:

c[N/ι] ≡ c

ι[N/ι′] ≡
{

N ι = ι′

ι otherwise

(λA.M)[N/ι] ≡ λ(A[N/ι]).(M [N ↑0 /σι])

(M1M2)[N/ι] ≡ (M1[N/ι])(M2[N/ι])

α[N/ι] ≡ α

(λA.B)[N/ι] ≡ λ(A[N/ι]).(B[N ↑0 /σι])

(AM)[N/ι] ≡ (A[N/ι])(M [N/ι])

type[N/ι] ≡ type

(λA.L)[N/ι] ≡ λ(A[N/ι]).(L[N ↑0 /σι])

Slepice: Towards a Verified Implementation of Type Theory in Type Theory 139

S;Γ � A : L

S � Γ α : L ∈ S
T-conS;Γ � α : L

S;Γ � A : type S;Γ , A � B : type
T-Π-introS;Γ � ΠA.B : type

S;Γ � A : ΠB1.L S;Γ � M : B2 S;Γ � B1 = B2 : type
T-Π-elimS;Γ � AM : L[M]

S;Γ � M : A

S � Γ c : A ∈ S
conS;Γ � c : A

S � Γ , A
zeroS;Γ , A � 0 : A↑

S;Γ � ι : A
succS;Γ , B � σι : A↑

S;Γ � A : type S;Γ , A � M : B
Π-introS;Γ � λA.M : ΠA.B

S;Γ � M : ΠA1.B S;Γ � N : A2 S;Γ � A1 = A2 : type
Π-elimS;Γ � MN : B[N]

Fig. 3. Well-formedness of terms and types

Since shifting with greater index than 0 and substitution for other indices than 0
is not necessary in the inference rules we introduce the following abbreviations:

A↑def
= A↑0 M ↑def

= M ↑0 A[N]
def
= A[N/0] M [N]

def
= M [N/0]

Well-formed objects of the internal language are given by means of several
judgements; � S for well-formed signatures, S � Γ for well-formed contexts,
S;Γ � L : type for well-formed kinds, S;Γ � A : L for well-formed types of
a kind, S;Γ � M : A for well-formed terms of a type, S;Γ � A = B : L for
conversion of types, and S;Γ � M = N : A for conversion of terms. In Fig. 3
we define judgements for well formed types and terms. We omit definitions of
the remaining judgements as these can be found in the documentation generated
from the formal specification.

3 Refinement Calculus

In this section, we set up the refinement calculus. The refinement calculus for-
malises the semantics of type inference and term synthesis in the extended lan-
guage. It can be seen as a rudimentary form of elaboration of a surface language
into a core language. In our case the surface language is the extended language
that allows to omit some type annotations and proof obligations (i.e. terms)
by introducing metavariables instead. The internal language is the language in
Definition 2 that does not contain any metavariables.

140 F. Farka

The refinement calculus relates objects of the extended language and goals
in proof-relevant Horn-clause logic. At the same time, it relates signatures of the
language and logic programs. First, we give a syntax of the target logic:

Definition 5. The syntax of Atomic formulae, Horn clauses, programs, proof
terms, and goals is:

Pc � c ::= κtype | κC | κB | κC↑ | κB↑ | · · · proof term constants

Pt � e ::= c | e e proof terms

At � ::= � | eqK(K, K, Ctx) | eqT (T , T , K, Ctx)

| eqt(t, t, T , Ctx) | type(T , K, Ctx)

| term(t, T , Ctx) | T ↑I ≡ T | T [t/I] ≡ T atomic formulae

HC � ::= At ← At ∧ . . . ∧ At Horn clauses

P � P ::= · | P, P c : HC programs

G � G ::= G ∧ G | At | ?V : At goals

Proof term constants are distinct names used to identify Horn clauses in pro-
grams. Proof terms are applicative terms freely generated from proof term con-
stants. Atoms consist of the trivially satisfied atom � and atoms that correspond
to judgements of the internal language. The judgements in the definition are,
in order: equality of kinds, types, and terms and well-formedness of types and
terms (recall the discussion of judgements of the internal language on page 6),
and relational representation of shifting and substitution. Note that giving atoms
in terms of kinds, types, terms and contexts of the internal language is an abuse
of notation as these should properly speaking be syntactic reflections of the sur-
face language. We well allow ourselves this imprecision to simplify the notation.
Horn clauses, programs and goals are straightforward, we only note that an atom
in a goal can be bound to a term-level metavariable. In principle, we could allow
binding also to type-level or technical metavariables. However, in this paper we
use resolved proof terms to reconstruct only terms of the internal language hence
a binding of term-level metavariable suffices.

The presentation we give here is an extension of the original presentation [9].
We handle freshness of variables explicitly. Albeit our solution is simple it suffices
for the purposes of our implementation. In a more realistic implementation one
would employ a variant of freshness logic (e.g. abstract nominal syntax [22]).

We separate logic variables. There are logic variables that correspond to
term- and type-level metavariables in ?V and ?B respectively and there are logic
variables that correspond to technical metavariables ?T that are introduced as
fresh in a derivation of the refinement judgement. From now on, we do not make
the distinction between metavariables and the corresponding logic variables and
refer to these logic variables as to metavariables in the context of the target
logic. We identify metavariables in ?T with natural numbers in N and we make
use of the linear order on natural numbers. Assumptions in the inference rules
are linearly ordered. For the fresh variable we take the least metavariable that

Slepice: Towards a Verified Implementation of Type Theory in Type Theory 141

S;Γ ;A ?T �?′
T
(G | L)

a : L ∈ S
r-tconS;Γ ; a ?T �?T (� | L)

?′
T
#?′′

T
?T

r-T-metaS;Γ ; ?A ?′
T

�?′′
T
(type(?A, ?T , Γ) | ?T)

S;Γ ;A ?′
T

�?′′
T
(GA | L1) S;Γ , A;B ?′′

T
�?′′′

T
(GB | L2)

r-Π-introS;Γ ;ΠA.B ?′
T

�?′′′
T

(GA ∧ GB ∧ eqK(L1, type, Γ) ∧ eqK(L2, type, Γ) | type)

S;Γ ;A ?′
T

�?′′
T
(GA | L) S;Γ ;M ?′′

T
�?′′′

T
(GM | B) ?′

T
#?′′

T
?T1 , ?T2

r-Π-elimS;Γ ;AM ?′
T

�?′′
T
(GA ∧ GM ∧ eqK(L, ΠB.?T1 , Γ) ∧ (?T1 [M] ≡ ?T2) | ?T2)

Fig. 4. Refinement of types

S;Γ ;M ?T �?′
T
(G | A)

c : A ∈ S
r-conS;Γ ; c ?T �?T (� | A)

?′
T
#?′′

T
?T

r-t-metaS;Γ ; ?a ?′
T

�?′′
T
(?a : term(?a′ , ?T , Γ) | ?T)

?′
T
#?′′

T
?T

r-zeroS;Γ , A; 0 ?′
T

�?′′
T
(A↑ ≡ ?T | ?T)

S;Γ ; ι ?′
T

�?′′
T
(G | A) ?′′

T
#?′′′

T
?T

r-succS;Γ , B;σι ?′
T

�?′′′
T

(G ∧ (A↑ ≡ ?T) | ?T)

S;Γ ;A ?′
T

�?′′
T
(GA | L) S;Γ , A;M ?′′

T
�?′′′

T
(GM | B)

r-λ-introS;Γ ;λA.M ?′
T

�?′′′
T

(GA ∧ GM ∧ eqK(L, type, Γ) | ΠA.B)

S;Γ ;M ?T �?′
T
(GM | A) S;Γ ;N ?′

T
�?′′

T
(GN | A2) ?′′

T
#?′′′

T
?T1 , ?T2

r-λ-elimS;Γ ;MN ?T �?′′′
T

(GM ∧ GN ∧ eqT (A, ΠA2.?T1 , type, Γ) ∧ (?T1 [N] ≡ ?T2) | ?T2)

Fig. 5. Refinement of terms

is greater than all technical variables on the left. Formally, we state a freshness
judgement, ?′

T
#?′′

T
?T . The intended meaning of the judgement is that, given a

technical variable ?′
T , a technical variable ?T is fresh and a variable ?′′

T is the
new bound.

Definition 6. Let ?T , ?′
T , and ?′′

T be technical variables. The freshness judge-
ment ?′

T
#?′′

T
?T is defined as follows:

ι#σιι

We introduce an abbreviation ?′
T
#?′′′

T
?T1 , ?T2

def
= ?′

T
#?′′

T
?T1 ∧ ?′′

T
#?′′′

T
?T2 for

repeated freshness judgements.
Finally, we give a specification of the refinement judgement. This judge-

ment formalises semantics of type inference in the extended grammar. There are
mutually defined judgements S;Γ ;A ?T

�?′
T

(G | L) for refinement of types, and
S;Γ ;M ?T

�?′
T

(G | A) for refinement of terms. The arguments on the left hand

142 F. Farka

S ?T �?′
T

P

· ?T �?T Pe

S ?T �?′
T

P ?′
T
#?′′

T
?Γ , ?ι, ?ι′ , ?ι′′

S, a : L ?T �?′′
T

P , κa : type(a, L, ?Γ) ← , κa↑ : (a↑?ι ≡ a) ← , κa[−] : (a[?ι′/?ι′′] ≡ a) ←

S ?T �?′
T

P ?′
T
#?′′

T
?Γ , ?ι, ?ι′ , ?ι′′

S, c : A ?′
T

�?′′
T

P , κc : term(c, A, ?Γ) ← , κc↑ : (c↑?ι ≡ c) ← , κc[−] : (c[?ι′/?ι′′] ≡ c) ←

Fig. 6. Refinement of signatures

side of the dash, that is a signature S, an extended context Γ , an extended type
A or an extended term M , and a technical variable ?T , are seen as inputs. The
arguments on the right hand side, that is a technical variable ?′

T , a goal G, and
an extended kind L or an extended type A are seen as outputs. The judgements
are defined in Figs. 4 and 5. We use A1 ↑ ≡ A2 and A1[N] ≡ A2 to abbreviate
atoms A1 ↑0 ≡ A2 and A1[N/0] ≡ A2 respectively and similarly for terms in
allusion to abbreviations we introduced for shifting and substitution.

We show decidability of the term and type refinement judgements in the next
section and this also justifies our identification of arguments of the judgement
as inputs and outputs. A goal that is produced by refinement translation is
solved by a logic program. The program is obtained from a signature. We define
judgement S ?T

�?′
T

P . A signature S and a technical variable ?T are seen as
inputs and the technical variable ?′

T and a program P are seen as outputs. The
judgement is defined in Fig. 6. The empty signature is refined into the initial
program Pe that captures static inference rules in in Fig. 3. The remaining two
rules then extend program with an instance of the inference rules tcon and
con respectively and instantiate shifting and substitution with type and term
constants.

We use the formal specification of refinement judgements in Figs. 4, 5, and 6
to obtain definitions in Coq that are used for stating the decidability results. We
illustrate the extracted definitions on an excerpt of Coq code in Fig. 7. The data
definitions in executable OCaml code are extracted directly from the specifica-
tion (as opposed to the whole executable code, including the data definitions,
being extracted from Coq). The reason is we extract a parser of the input lan-
guage from the specification as well. Coq definitions are then explicitly mapped
to extracted OCaml definitions in Coq code extraction.

4 Decidability of Refinement

In this section we prove decidability of the refinement judgements that relate
extended types and terms to goals and signatures to programs. The proofs are

Slepice: Towards a Verified Implementation of Type Theory in Type Theory 143

(* defns Jrefin *)

Inductive r_goaltype

: esgn -> ectx -> eTy -> tvar -> goal -> eK -> tvar -> Prop :=

(* defn goaltype *)

| r_g_Ty_tcon : forall (Sgn:esgn) (eG:ectx) (a:tcon) (t:tvar) (L:eK),

(boundTCon a L Sgn) ->

r_goaltype Sgn eG (ety_tcon a) t (goal_at at_true) L t

...

with r_goalterm :

esgn -> ectx -> ete -> tvar -> goal -> eTy -> tvar -> Prop :=

(* defn goalterm *)

| r_g_te_con : forall (Sgn:esgn) (eG:ectx) (c:con) (t:tvar) (A:eTy),

is_Ty_of_eTy A ->

(boundCon c A Sgn) ->

r_goalterm Sgn eG (ete_con c) t (goal_at ttat_true) A t

...

Fig. 7. Coq - Extracted definition of refinement

formalised in Coq theorem prover and serve, after code extraction, as functions
that perform the core generation of goals and programs.

The first intermediate result we need to prove in our formalisation is that
equality of syntactic objects of the extended language is decidable. The decid-
ability here is to be read in constructive sense, that is either we can produce a
derivation of the appropriate equality or such derivation leads to contradiction.

Proposition 1

1. Let A, B be extended types. Then either A = B or A 	= B.
2. Let M , N be extended terms. Then either M = N or M 	= N .
3. Let L, L′ be extended kinds. Then either L = L′ or L 	= L′.

Proof. Parts 1 and 2 proceed by mutual induction on the type and the term.
Part 3 proceeds by induction using part 1.

In order to provide the reader with intuition how are such proposition encoded
in Coq, we list statements 1 and 2 of the above proposition. Note that since
extended terms and extended types are defined mutually, the statement in Coq
is also given mutually in order to allow for structural induction.

Lemma eq_eTy_dec : forall A B : eTy, {A = B} + {A <> B}
with eq_ete_dec : forall M N : ete, {M = N} + {M <> N}.

We also need to show that whether a type of a certain kind or a term constant
of a certain type is bound in a signature is decidable.

144 F. Farka

Lemma 1

– Let S be a signature, and c a term constant. Then either there is a type A
such that c : A ∈ S or, for all A, c : A ∈ S is impossible.

– Let S be a signature, and α a type constant. Then either there is an extended
kind L such that α : L ∈ S or, for all L, α : L ∈ S is impossible.

Proof. By induction on signature using decidability of equality of terms and
types (Proposition 1).

Now we could state the main theorem that the refinement judgement for
terms and types is decidable. However, there is a caveat. The refinement judge-
ments for terms and for types are mutually defined and hence the extracted Coq
definitions are mutually defined as well as we demonstrate in Fig. 7. A proof by
naive induction fails as Coq cannot establish that recursive calls are structurally
smaller. We devise mutually recursive inductive types that we call structure of
extended types and extended terms and a mapping from extended types and
extended terms to the respective structure.

Definition 7. The syntax of structure of extended types and structure of
extended terms is:

ST � sA ::= · | ΠST .ST | ST St structure of extended types
St � sM ::= · | ΠST .St | StSt structure of extended terms

Definition 8. We define mappings (−)s : T → ST and (−)s : t → St by

(α)s = ·
(ΠA.B)s = Π(A)s.(B)s

(AM)s = (A)s(M)s

(?A)s = ·
(?T)s = ·

(c)s = ·
(ΠA.M)s = Π(A)s.(M)s

(MN)s = (M)s(N)s

(?M)s = ·
(?T)s = ·

Note that by an abuse of notation we do not distinguish between the names of the
mapping from types and the mapping from terms. The more general statement
of decidability of refinement is stated using the structure.

Theorem 1 (Decidability of refinement)

– Let sM be a structure, S a signature, Γ an extended context, and M an
extended term. If (M)s = sM then either there is a goal G and an extended
type A such that S;Γ ;M � (G | A) or, for any goal G and any type A,
S;Γ ;M � (G | A) is impossible.

– Let sA be a structure, S a signature, Γ an extended context, and A an extended
type. If (A)s = sA then either there is a goal G and a kind L such that
S;Γ ;A � (G | L) or, for any goal G and any kind L, S;Γ ;A � (Γ | L) is
impossible.

Slepice: Towards a Verified Implementation of Type Theory in Type Theory 145

Proof. By mutual induction on structure of the term sM and structure of the
type sA using Proposition 1 and Lemma 1.

The intended statement of the refinement theorem for terms and types then
follows as a corollary.

Corollary 1 (Goal construction)

– Let S be a signature, Γ an extended context, and M an extended term. Either
there is a goal G and an extended type A such that S;Γ ;M � (G | A) or, for
any goal G and any type A, S;Γ ;M � (G | A) is impossible.

– Let S be a signature, Γ an extended context, and A an extended type. Either
there is a goal G and an extended kind L such that S;Γ ;A � (G | L) or, for
any goal G and any kind L, S;Γ ;A � (G | L) is impossible.

Also, we state a decidability result for refinement of signatures that allows us to
obtain programs that resolve goals generated from extended types and terms.

Theorem 2 (Refinement of signatures). Let S be a signature. Either there
is a program P such that S � P or, for any P , S � P is impossible.

Proof. By induction on signature S.

Formalisation of proofs of the above theorems provides a procedures that take
terms and types and generate goals and that take signature and generate pro-
gram. OCaml signatures of the extracted code that correspond to the above
theorems are listed in Fig. 8. Signatures Sgn are extracted as the type sgn,
extended contexts Ctx as ectx. Structure of extended types ST is extracted as
sTy, extended types T as eTy, similarly for terms and kinds. Type level metavari-
ables ?B and term level metavariables ?V are extracted as lvar and technical
metavariables as tvar, goals G and programs P as goal and prog respectively.

(** val goalterm_dec_str :

ste -> sgn -> ectx -> ete -> lvar -> (goal*(eTy*tvar)) sumor **)

(** val goaltype_dec_str :

sTy -> sgn -> ectx -> eTy -> lvar -> (goal*(eK*tvar)) sumor **)

(** val goalterm_dec :

sgn -> ectx -> ete -> lvar -> (goal*(eTy*tvar)) sumor **)

(** val goaltype_dec :

sTy -> sgn -> ectx -> eTy -> lvar -> (goal*(eK*tvar)) sumor **)

(** val progsig_dec : sgn -> lvar -> (prog*tvar) sumor **)

Fig. 8. Extracted OCaml translation

146 F. Farka

5 Proof-Relevant Resolution

In this section we describe our realisation of proof-relevant resolution and inter-
pretation of answer substitutions and computed proof terms. As a resolution
engine in our implementation we resort to ELPI [8]. Although ELPI is not proof-
relevant resolution engine, it is sufficient for our purposes. In this work we are
not interested in finer details of the resolution mechanism (cf. [9,10]) and we
can obtain sound results by a simple syntactic transformation. In this paper, we
omit details of the transformation and focus on interpretation of the computed
assignment to type and term level metavariables and on interpretation of com-
puted proof terms. In the following, we assume that the proof relevant resolution
for a generated goal G and a program P either computes an answer substitution
θ and, for each atomic subgoal, a proof-term e or fails.

First, we extend application of computed substitution to extended types and
extended terms in the usual way.

Definition 9. We define application of a substitution θ by

θ(α) = α

θ(ΠA.B) = Πθ(A).θ(B)
θ(AM) = θ(A)θ(M)

θ(?A) = θ(?A)
θ(?T) = ?T

θ(c) = c

θ(ι) = ι

θ(λA.M) = λθ(A).θ(M)
θ(MN) = θ(M)θ(N)
θ(?M) = θ(?M)
θ(?T) = ?T

By Definition 5 of syntax of the target logic proof terms are computed for atomic
(sub-)goals. We define an interpretation of proof terms that construct a deriva-
tion of a well-formedness judgement from such a proof term. We use S;Γ � I to
jointly refer to the judgements of LF in the usual way.

Definition 10. Let S be a signature, and Γ a context such that S � Γ and let
S;Γ � I be a judgement, and e a proof term. The interpretation of the proof
term (e, Γ)derI is defined as follows:

(κα, Γ)
der
α:L =

S � Γ α : L ∈ S
T-conS;Γ � α : L

(κT-Π-intro e1 e2, Γ)
der
ΠA.B:type =

(e1, Γ)derA:type (e2, Γ , A)derB:type
T-Π-introS;Γ � ΠA.B : type

(κT-Π-elim e1 e2 e3, Γ)
der
AM:L[M] =

(e1, Γ)derA:ΠB1:L (e2, Γ)derM:B2
(e3, Γ)derB1=B2:type

S;Γ � AM : L[M]

(κc, Γ)
der
c:A =

S � Γ c : A ∈ S
conS;Γ � c : A

(κ0, Γ)
der
0:A↑ =

S � Γ
zeroS;Γ � 0 : A↑

Slepice: Towards a Verified Implementation of Type Theory in Type Theory 147

(κσ e, Γ)
der
σι:A↑ =

(e, Γ)derι:A
succS;Γ � σι : A↑

(κΠ-intro e1 e2, Γ)
der
λA.M:ΠA.B =

(e1, Γ)derA:type (e2, Γ , A)derM:B
Π-introS;Γ � λA.M : ΠA.B

(κΠ-elim e1 e2 e3, Γ)
der
AM:B[M] =

(e1, Γ)derA:ΠB1:L (e2, Γ)derM:B2
(e3, Γ)derB1=B2:type

S;Γ � MN : B[N]

The definition is easiest to understand as a definition of function (−,−)der− that
constructs a derivation by pattern matching on its first argument, a proof term.
The cases are discriminated by the head symbol of the proof term—each cor-
responding to one inference rule of the internal language—and there is a sub-
derivation to be computed, the function calls itself recursively on the appropriate
subterms of the proof term.

The above definition lists only cases of proof-terms with head symbols that
correspond to inference rules in Fig. 3. We omit the remaining cases for well-
formedness of contexts and equality judgements for the sake of brevity and since
we do not list these rules in the paper. These omitted cases are straightforward
and are properly handled in the formalisation.

In Lemma 1, we have already proven that whether a type constant is bound
in a signature as a particular kind, that is whether α : L ∈ S is decidable. We
extend this result to decidability of all judgements involved in Definition 10.
Hence we can verify whether proof-relevant resolution produces well-formed
types and terms by manifesting a derivation of the well-formedness judgement.

Theorem 3

– Let e be a proof term, S a signature, Γ a context, M , N terms, and A a type.
Then either (e)derM=N :A is well-formed or (e)derM=N :A is impossible.

– Let e be a proof term, S a signature, Γ a context, A, B types, and L a kind.
Then either (e)derA=B:L is well-formed or (e)derA=B:L is impossible.

Proof. – By induction on e using part 2.
– By induction on e using part 1.

Theorem 4. Let e be a proof term, θ a substitution of metavariables, S a sig-
nature, M an extended term, and A an extended type.

Then either (e)derθM :θA is well-formed or (e)derθM :θA is impossible.

Proof. By induction using Lemma 1 and Theorem 3.

This theorem concludes our exposition of the interpretation of proof terms
that are computed by proof-relevant resolution. When the formalised proof is
extracted into OCaml it provides a procedure for verification of solution com-
puted by proof-relevant resolution and hence manifests soundness of the system.

148 F. Farka

6 Related Work

Type inference and term synthesis as discussed in this paper is mechanically
obtained from a specification of a type system in the form of typing judgements.
Such approach does not exist in the literature yet. However, the importance of
such treatment of type inference and term synthesis can be clearly argued based
on the work currently being carried out for languages such as Coq and Agda. The
main relevant project is MetaCoq [2,19]. The project aims to provide certified
metaprogramming facilities for Coq.

Building on MetaCoq, Sozeau et al. [20] provide a verified implementation
of type checker. They as well need to carry out certain amount of type inference.
However, the amount is limited by the fact that they work only with a kernel of
Coq (in our terms, with the internal language), i.e. a limited internal language
that has already been elaborated, and by the fact that they assume that the
metatheory is sound and hence the language is strongly normalising (and, as a
result, typechecking is decidable).

In Agda, there is work being currently done on type-save metaprogramming,
albeit it is in less mature state than in Coq. Cockx [6] has introduced type-safe
rewriting rules, a type of reflection that is restricted to equality. Due to the
restriction, there is no need for type inference and term synthesis. We conjecture
that for full-scale metaprogramming it will be necessary as is the case with Coq.

7 Conclusion

Our formalisation of type inference and term synthesis for LF is carried out
in Ott, which is used to generate the OCaml code, a parser of the input and
Coq definition. We utilise type inference and term synthesis by translation to
proof-relevant resolution and formally prove decidability of the translation, give
interpretations to the computed proof terms and show their soundness.

Although our implementation is not fully carried out in a dependently typed
language, that is Coq in our case, the amount of handwritten OCaml code that
is necessary is very small. Such code is necessary only for interfacing different
components of the system. The portion of hand-written OCaml code is very
small and we believe this makes our approach superior to current implementa-
tions of dependently typed languages. We believe that the architecture we just
introduced can serve as viable basis both for obtaining reference implementa-
tions from formal specifications of a programming languages and, with properly
optimised resolution phase, as a basis for a type inference engine.

Acknowledgements. The author is grateful to the anonymous reviewers and to
Nikita Zyuzin for their comments.

The author acknowledges support from the Spanish MICINN project BOSCO
(PGC2018-102210-B-I00) and the European Research Council project Mathador
(ERC2016-COG-724464).

Slepice: Towards a Verified Implementation of Type Theory in Type Theory 149

References

1. Abel, A., Öhman, J., Vezzosi, A.: Decidability of conversion for type theory in type
theory. PACMPL 2(POPL), 23:1–23:29 (2018). https://doi.org/10.1145/3158111

2. Anand, A., Boulier, S., Cohen, C., Sozeau, M., Tabareau, N.: Towards certified
meta-programming with typed template-coq. In: Avigad, J., Mahboubi, A. (eds.)
ITP 2018. LNCS, vol. 10895, pp. 20–39. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94821-8 2

3. Appel, A.W., Michael, N.G., Stump, A., Virga, R.: A trustworthy proof checker.
J. Autom. Reas. 31(3–4), 231–260 (2003). https://doi.org/10.1023/B:JARS.
0000021013.61329.58

4. Bertot, Y., Castéran, P.: Interactive theorem proving and program development -
coq’art: the calculus of inductive constructions. In: Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

5. Brady, E.: Idris, a general-purpose dependently typed programming language:
design and implementation. J. Funct. Program. 23(5), 552–593 (2013). https://
doi.org/10.1017/S095679681300018X

6. Cockx, J.: type theory unchained: extending agda with user-defined rewrite rules.
In: Bezem, M., Mahboubi, A. (eds.) 25th International Conference on Types for
Proofs and Programs, TYPES 2019, Oslo, Norway, 11–14 June 2019, LIPIcs 175,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 2:1–2:27 (2019). https://
doi.org/10.4230/LIPIcs.TYPES.2019.2

7. Dowek, G.: The undecidability of typability in the Lambda-Pi-calculus. In: Bezem,
M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 139–145. Springer,
Heidelberg (1993). https://doi.org/10.1007/BFb0037103

8. Dunchev, C., Guidi, F., Sacerdoti Coen, C., Tassi, E.: ELPI: fast, embeddable,
λprolog interpreter. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.)
LPAR 2015. LNCS, vol. 9450, pp. 460–468. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48899-7 32

9. Farka, F., Komendantskaya, E., Hammond, K.: Proof-relevant horn clauses for
dependent type inference and term synthesis. Theory Pract. Log. Program. 18(3–
4), 484–501 (2018). https://doi.org/10.1017/S1471068418000212

10. Fu, P., Komendantskaya, E.: Operational semantics of resolution and productivity
in Horn clause logic. Formal Aspects Comput. 29(3), 453–474 (2016). https://doi.
org/10.1007/s00165-016-0403-1

11. Geuvers, H., Barendsen, E.: Some logical and syntactical observations concerning
the first-order dependent type system lambda-P. Math. Struct. Comput. Sci. 9(4),
335–359 (1999)

12. Guidi, F., Coen, C.S., Tassi, E.: Implementing type theory in higher order con-
straint logic programming. Math. Struct. Comput. Sci. 29(8), 1125–1150 (2019).
https://doi.org/10.1017/S0960129518000427

13. Harper, R., Pfenning, F.: On equivalence and canonical forms in the LF type the-
ory. ACM T. Comp. Log. 6(1), 61–101 (2005). https://doi.org/10.1145/1042038.
1042041

14. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.: Com-
pCert - a formally verified optimizing compiler. In: ERTS 2016: Embedded Real
Time Software and Systems, 8th European Congress, SEE, Toulouse, France
(2016). https://hal.inria.fr/hal-01238879

https://doi.org/10.1145/3158111
https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1023/B:JARS.0000021013.61329.58
https://doi.org/10.1023/B:JARS.0000021013.61329.58
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.4230/LIPIcs.TYPES.2019.2
https://doi.org/10.4230/LIPIcs.TYPES.2019.2
https://doi.org/10.1007/BFb0037103
https://doi.org/10.1007/978-3-662-48899-7_32
https://doi.org/10.1007/978-3-662-48899-7_32
https://doi.org/10.1017/S1471068418000212
https://doi.org/10.1007/s00165-016-0403-1
https://doi.org/10.1007/s00165-016-0403-1
https://doi.org/10.1017/S0960129518000427
https://doi.org/10.1145/1042038.1042041
https://doi.org/10.1145/1042038.1042041
https://hal.inria.fr/hal-01238879

150 F. Farka

15. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis (2007)

16. Pientka, B.: An insider’s look at LF type reconstruction: everything you (n)ever
wanted to know. J. Funct. Program. 23(1), 1–37 (2013). https://doi.org/10.1017/
S0956796812000408

17. Pientka, B., Dunfield, J.: Beluga: a framework for programming and reasoning with
deductive systems (system description). In: Proceedings of IJCAR 2010, pp. 15–21
(2010). https://doi.org/10.1007/978-3-642-14203-1 2

18. Sewell, P., et al.: Ott: effective tool support for the working semanticist. In: Hinze,
R., Ramsey, N. (eds.) Proceedings of the 12th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2007, Freiburg, Germany, 1–3 October
2007, pp. 1–12. ACM (2007). https://doi.org/10.1145/1291151.1291155

19. Sozeau, M., et al.: The MetaCoq project. J. Autom. Reason. 64(5), 947–999
(2020). https://doi.org/10.1007/s10817-019-09540-0

20. Sozeau, M., Boulier, S., Forster, Y., Tabareau, N., Winterhalter, T.: Coq Coq cor-
rect! verification of type checking and erasure for Coq in Coq. PACMPL 4(POPL),
8:1–8:28 (2020). https://doi.org/10.1145/3371076

21. Urban, C., Cheney, J., Berghofer, S.: Mechanizing the metatheory of LF. ACM
Trans. Comput. Log. 12(2), 15:1–15:42 (2011). https://doi.org/10.1145/1877714.
1877721

22. Urban, C.U., Pitts, A.M., Gabbay, M.: Nominal unification. Theor. Comput. Sci.
323(1–3), 473–497 (2004). https://doi.org/10.1016/j.tcs.2004.06.016

https://doi.org/10.1017/S0956796812000408
https://doi.org/10.1017/S0956796812000408
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1145/1291151.1291155
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1145/3371076
https://doi.org/10.1145/1877714.1877721
https://doi.org/10.1145/1877714.1877721
https://doi.org/10.1016/j.tcs.2004.06.016

Resourceful Program Synthesis from
Graded Linear Types

Jack Hughes(B) and Dominic Orchard

School of Computing, University of Kent, Canterbury, UK
{joh6,d.a.orchard}@kent.ac.uk

Abstract. Linear types provide a way to constrain programs by speci-
fying that some values must be used exactly once. Recent work on graded
modal types augments and refines this notion, enabling fine-grained,
quantitative specification of data use in programs. The information pro-
vided by graded modal types appears to be useful for type-directed pro-
gram synthesis, where these additional constraints can be used to prune
the search space of candidate programs. We explore one of the major
implementation challenges of a synthesis algorithm in this setting: how
does the synthesis algorithm efficiently ensure that resource constraints
are satisfied throughout program generation? We provide two solutions to
this resource management problem, adapting Hodas and Miller’s input-
output model of linear context management to a graded modal linear
type theory. We evaluate the performance of both approaches via their
implementation as a program synthesis tool for the programming lan-
guage Granule, which provides linear and graded modal typing.

1 Introduction

Type-directed program synthesis is a long-studied technique rooted in automated
theorem proving [29]. A type-directed synthesis algorithm can be constructed as
an inversion of type checking, starting from a type and inductively synthesising
well-typed subterms, pruning the search space via typing. Via the Curry-Howard
correspondence [21], we can view this as proof search in a corresponding logic,
where the goal type is a proposition and the synthesised program is its proof.
Recent work has extended type-directed synthesis to refinement types [34], cost
specifications [27], differential privacy [35], and example-guided synthesis [12,33].

Automated proof search techniques have been previously adapted to linear
logics, accounting for resource-sensitive reasoning [7–9,20,31]. By removing the
structural rules of contraction and weakening, linear logic allows propositions to
be treated as resources that must be used exactly once [17]. Non-linear proposi-
tions are captured via the ‘exponential’ modality !. Linearity introduces a new
dimension to proof search and program synthesis: how do we inductively gener-
ate terms whilst pruning the search space of those which violate linearity? For
example, consider the following inductive synthesis rule, mirroring Gentzen’s
sequent calculus [15], which synthesises a term of type A ⊗ B :

c© The Author(s) 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 151–170, 2021.
https://doi.org/10.1007/978-3-030-68446-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_8&domain=pdf
http://orcid.org/0000-0003-3174-4689
http://orcid.org/0000-0002-7058-7842
https://doi.org/10.1007/978-3-030-68446-4_8

152 J. Hughes and D. Orchard

Γ1 � A ⇒ t1 Γ2 � B ⇒ t2
Γ1, Γ2 � A ⊗ B ⇒ 〈t1, t2〉

Pair

Reading the rule bottom up: from a context of assumptions Γ1, Γ2 we can synthe-
sise the pair 〈t1, t2〉 from the product type A⊗B provided that we can inductively
synthesise the subterms of the pair, using Γ1 for the left side and Γ2 for the right.

But how do we partition a context of free variables Γ into Γ1 and Γ2 such
that Γ1 contains only those variables needed by t1 and Γ2 only those for t2? A
näıve approach is to try every possible partition of Γ . However, this becomes
unmanageable as the number of possible partitions is 2|Γ |, i.e., exponential in
the number of assumptions. This issue has been explored in automated theorem
proving for linear logic, and is termed the resource management problem [7].

To address this, Hodas and Miller described an input-output context manage-
ment scheme for linear logic programming [20], further developed by Cervesato
et al. [7]. In this approach, synthesis rules take the form Γ � A ⇒ t ; Δ with an
input context Γ and an output context Δ which contains all the hypotheses of
Γ that were not used in the proof t of A (akin to the notion of left over typing
for linear type systems [2,36]). This output context is then used as the input
context to subsequent subgoals. In the case of A ⊗ B , synthesis has the form:

Γ � A ⇒ t1; Δ1 Δ1 � B ⇒ t2; Δ2

Γ � A ⊗ B ⇒ 〈t1, t2〉; Δ2

Pair LeftOver

The non-determinism of how to divide Γ is resolved by using the entire context
as the input for the synthesis of the first subterm t1 from type A. If this succeeds,
the context Δ1 is returned containing the resources not needed to construct t1.
These remaining resources provide the input context to synthesise t2 from B ,
which in turn returns an output context Δ2 containing the resources not used
by the pair 〈t1, t2〉. We extend this approach, which we term subtractive resource
management, to graded modal types and present its dual: additive resource man-
agement. In the additive approach, the output context describes what resources
were used to synthesise a term, rather than what may still be used.

Graded modal types comprise an indexed family of modal operators whose
indices have structure capturing program properties [32]. In the context of lin-
ear logic, graded modalities generalise the indexed modality of Bounded Linear
Logic [18] !rA where r ∈ N captures the upper bound r on the number of times A
is used. Generalising such indices to an arbitrary (pre-ordered) semiring yields a
type system which can be instantiated to track various properties via the graded
modality, a technique which is increasingly popular [4,13,14,16,24,25,32,36].

Our primary contribution is the extension of the input-output model of
resource management for linear program synthesis to graded modal types. Our
input and output contexts contain both linear and graded assumptions. Graded
assumptions are annotated with a grade: an element of a pre-ordered semiring
describing the variable’s use. For example, grades drawn from N yield a system

Resourceful Program Synthesis from Graded Linear Types 153

akin to BLL which counts the number of times a variable is used, where a graded
assumption x : [A]2 means x can be used twice. An example instantiation of our
subtractive pair introduction rule is then as follows:

Γ, x : [A]2 � A ⇒ x ; Γ, x : [A]1 Γ, x : [A]1 � A ⇒ x ; Γ, x : [A]0
Γ, x : [A]2 � A ⊗ A ⇒ 〈x , x 〉; Γ, x : [A]0

The initial input context contains graded assumption x : [A]2. The first premise
synthesises the term x , returning an output context which contains the assump-
tion x with grade 1, indicating that x has been used once and can be used one
more time. The next premise synthesises the second part of the pair as x using
its remaining use. In the final output context, x is graded by 0, preventing it
from being used to synthesise subsequent terms.

We adapt the input-output model of linear logic synthesis to subtractive and
additive approaches in the presence of graded modal types, pruning the search
space via the quantitative constraints of grades. We develop a type-directed
synthesis tool for Granule, a functional language which combines indexed, linear,
and graded modal types [32]. Granule supports various graded modalities, and its
type checker leverages the Z3 SMT solver to discharge constraints on grades [30].
As type-based synthesis follows the structure of types, it is necessary to solve
equations on grades during synthesis, for which we make use of Granule’s SMT
integration. Such calls to an external prover are costly, and thus efficiency of
resource management is a key concern.

Section 2 introduces our core type theory (a subset of Granule’s type sys-
tem) based on the linear λ-calculus extended with graded modal types, pairs,
and sums. Section 3 describes the two core synthesis calculi (subtractive and
additive) as augmented inversions of the typing rules, as well as a variant of
additive synthesis. Section 4 describes the implementation1 and gives a quanti-
tative comparison of the synthesis techniques on a suite of benchmark programs.
The main finding is that the additive approach is often more efficient than the
subtractive, presenting a departure from the literature on linear logic theorem
proving which is typically subtractive.

Throughout, we will mostly use types-and-programs terminology rather than
propositions-and-proofs. Through the Curry-Howard correspondence, one can
switch smoothly to viewing our approach as proof search in logic.

2 Graded Linear λ-calculus

Our focus is a linear λ-calculus akin to a simply-typed linear functional language
with graded modalities, resembling the core languages of Gaboardi et al. [14] and
Brunel et al. [4], and a simply-typed subset of Granule [32].

1 https://github.com/granule-project/granule/releases/tag/v0.8.0.0.

https://github.com/granule-project/granule/releases/tag/v0.8.0.0

154 J. Hughes and D. Orchard

Types comprise linear functions, multiplicative conjunction (product types
⊗ and unit 1), additive disjunction (sum types ⊕), and a graded modality �r:

A,B ::= A � B | A ⊗ B | A ⊕ B | 1 | �rA (types)

where �rA is an indexed family of type operators where r ranges over the ele-
ments of some pre-ordered semiring (R, ∗, 1,+, 0,
) parameterising the calculus
(where ∗ and + are monotonic with respect to the pre-order
).
The syntax of terms provides the elimination and introduction forms:

t ::= x | λx .t | t1 t2 | [t] | let [x] = t1 in t2 | 〈t1, t2〉 | let 〈x1, x2〉 = t1 in t2
| () | let () = t1 in t2 | inl t | inr t | case t1 of inl x1 → t2| inr x2 → t3 (terms)

We use the syntax () for the inhabitant of multiplicative unit 1. Pattern matching
via a let is used to eliminate products and unit types; for sum types, case is
used to distinguish the constructors. The construct [t] introduces a graded modal
type �rA by ‘promoting’ a term t to the graded modality, and let [x] = t1 in t2
eliminates a graded modal value t1, binding a graded variable x in scope of t2.

Typing judgments are of the form Γ � t : A, where Γ ranges over contexts:

Γ ::= ∅ | Γ, x : A | Γ, x : [A]r (contexts)

Thus, a context may be empty ∅, extended with a linear assumption x : A or
extended with a graded assumption x : [A]r . For linear assumptions, structural
rules of weakening and contraction are disallowed. Graded assumptions may be
used non-linearly according to the constraints given by their grade, the semiring
element r. Throughout, comma denotes disjoint context concatenation.

Various operations on contexts are used to capture non-linear data flow via
grading. Firstly, context addition provides an analogue to contraction, combin-
ing contexts that have come from typing multiple subterms in a rule. Context
addition, written Γ1+Γ2, is undefined if Γ1 and Γ2 overlap in their linear assump-
tions. Otherwise graded assumptions appearing in both contexts are combined
via the semiring + of their grades.

Definition 1 (Context addition). For all Γ1, Γ2 context addition is defined
as follows by ordered cases matching inductively on the structure of Γ2:

Γ1 + Γ2 =

⎧
⎨

⎩

Γ1 Γ2 = ∅
((Γ ′

1, Γ
′′
1) + Γ ′

2), x : [A](r+s) Γ2 = Γ ′
2, x : [A]s ∧ Γ1 = Γ ′

1, x : [A]r , Γ ′′
1

(Γ1 + Γ ′
2), x : A Γ2 = Γ ′

2, x : A ∧ x : A /∈ Γ1

In the typing of case expressions, the least-upper bound of the two contexts used
to type each branch is used, defined:

Resourceful Program Synthesis from Graded Linear Types 155

Definition 2 (Partial least-upper bounds of contexts). For all Γ1, Γ2:

Γ1 � Γ2 =

⎧
⎪⎪⎨

⎪⎪⎩

∅ Γ1 = ∅ ∧ Γ2 = ∅
(∅ � Γ ′

2), x : [A]0�s Γ1 = ∅ ∧ Γ2 = Γ ′
2, x : [A]s

(Γ ′
1 � (Γ ′

2, Γ
′′
2)), x : A Γ1 = Γ ′

1, x : A ∧ Γ2 = Γ ′
2, x : A, Γ ′′

2

(Γ ′
1 � (Γ ′

2, Γ
′′
2)), x : [A]r�s Γ1 = Γ ′

1, x : [A]r ∧ Γ2 = Γ ′
2, x : [A]s , Γ ′′

2

where r�s is the least-upper bound of grades r and s if it exists, derived from
.

As an example of the partiality of �, if one branch of a case uses a linear variable,
then the other branch must also use it to maintain linearity overall, otherwise
the upper-bound of the two contexts for these branches is not defined.

x : A � x : A
Var

Γ, x : A � t : B
Γ � λx .t : A � B

Abs
Γ1 � t1 : A � B Γ2 � t2 : A

Γ1 + Γ2 � t1 t2 : B
App

Γ � t : A
Γ, [Δ]0 � t : A

Weak
Γ, x : A � t : B

Γ, x : [A]1 � t : B
Der

[Γ] � t : A
r ∗ [Γ] � [t] : �rA

Pr

Γ1 � t1 : �rA Γ2, x : [A]r � t2 : B
Γ1 + Γ2 � let [x] = t1 in t2 : B

Let� ∅ � () : 1
1

Γ1 � t1 : 1 Γ2 � t2 : A
Γ1 + Γ2 � let () = t1 in t2 : A

Let1

Γ1 � t1 : A Γ2 � t2 : B
Γ1 + Γ2 � 〈t1, t2〉 : A ⊗ B

Pair
Γ1 � t1 : A ⊗ B Γ2, x1 : A, x2 : B � t2 : C

Γ1 + Γ2 � let 〈x1, x2〉 = t1 in t2 : C
LetPair

Γ, x : [A]r , Γ ′ � t : B r � s

Γ, x : [A]s , Γ ′ � t : B
Approx

Γ � t : A
Γ � inl t : A ⊕ B

Inl
Γ � t : B

Γ � inr t : A ⊕ B
Inr

Γ1 � t1 : A ⊕ B Γ2, x1 : A � t2 : C Γ3, x2 : B � t3 : C
Γ1 + (Γ2
 Γ3) � case t1 of inl x1 → t2| inr x2 → t3 : C

Case

Fig. 1. Typing rules of the graded linear λ-calculus

Figure 1 defines the typing rules. Linear variables are typed in a singleton
context (Var). Abstraction (Abs) and application (App) follow the rules of the
linear λ-calculus. Rules for multiplicative products (pairs) and additive coprod-
ucts (sums) are routine, where pair introduction (Pair) adds the contexts used
to type the pair’s constituent subterms. Pair elimination (LetPair) binds a
pair’s components to two linear variables in the scope of the body t2. The Inl
and Inr rules handle the typing of constructors for the sum type A⊕B . Elimina-
tion of sums (Case) takes the least upper bound (defined above) of the contexts
used to type the two branches of the case.

The Weak rule captures weakening of assumptions graded by 0 (where [Δ]0
denotes a context containing only graded assumptions graded by 0). Dereliction
(Der), allows a linear assumption to be converted to a graded assumption with
grade 1. Grade approximation is captured by the Approx rule, which allows a

156 J. Hughes and D. Orchard

grade r to be converted to another grade s, providing that r is approximated by s,
where the relation
 is the pre-order provided with the semiring. Introduction
and elimination of the graded modality is provided by the Pr and Let rules
respectively. The Pr rule propagates the grade r to the assumptions through
scalar multiplication of Γ by r where every assumption in Γ must already be
graded (written [Γ] in the rule), defined:

Definition 3 (Scalar context multiplication)

r ∗ ∅ = ∅ r ∗ (Γ, x : [A]s) = (r ∗ Γ), x : [A](r∗s)

The Let rule eliminates a graded modal value �rA into a graded assumption
x : [A]r with a matching grade in the scope of the let body.

We now give three examples of different graded modalities.

Example 1. The natural number semiring with discrete ordering (N, ∗, 1,+, 0,≡)
provides a graded modality that counts exactly how many times non-linear values
are used. As a simple example, the S combinator is typed and defined:

s : (A � (B � C)) � (A � B) � (�2A � C)
s = λx .λy .λz ′. let [z] = z ′ in (x z) (y z)

The graded modal value z′ captures the ‘capability’ for a value of type A to
be used twice. This capability is made available by eliminating � (via let) to
the variable z, which is graded z : [A]2 in the scope of the body.

Example 2. Exact usage analysis is less useful when control-flow is involved, e.g.,
eliminating sum types where each control-flow branch uses variables differently.
The above N-semiring can be imbued with a notion of approximation via less-
than-equal ordering, providing upper bounds. A more expressive semiring is that
of natural number intervals [32], given by pairs N×N written [r ...s] here for the
lower-bound r ∈ N and upper-bound usage s ∈ N with 0 = [0...0] and 1 = [1...1],
addition and multiplication defined pointwise, and ordering [r ...s]
 [r ′...s ′] =
r ′ ≤ r∧s ≤ s ′. Then a coproduct elimination function can be written and typed:

⊕e : �[0...1](A � C) � �[0...1](B � C) � (A ⊕ B) � C
⊕e = λx ′.λy ′.λz .let [x] = x ′ in let [y] = y ′ in (case z of inl u → x u| inr v → y v)

Linear logic’s exponential !A is given by �[0...∞]A with intervals over N ∪ {∞}
where ∞ is absorbing for all operations, except multiplying by 0.

Example 3. Graded modalities can capture a form of information-flow security,
tracking the flow of labelled data through a program [32], with a lattice-based
semiring on R = {Unused
 Hi
 Lo} where 0 = Unused, 1 = Hi, + = � and
if r = Unused or s = Unused then r ∗ s = Unused otherwise r ∗ s = �. This

Resourceful Program Synthesis from Graded Linear Types 157

allows the following well-typed program, eliminating a pair of Lo and Hi security
values, picking the left one to pass to a continuation expecting a Lo input:

noLeak : (�LoA ⊗ �HiA) � (�Lo(A ⊗ 1) � B) � B
noLeak = λz .λu.let 〈x ′, y ′〉 = z in let [x] = x ′ in let [y] = y ′ in u [〈x , ()〉]

Metatheory. The admissibility of substitution is a key result that holds for this
language [32], which is leveraged in soundness of the synthesis calculi.

Lemma 1. (Admissibility of substitution). Let Δ � t ′ : A, then:

– (Linear) If Γ, x : A, Γ ′ � t : B then Γ + Δ + Γ ′ � [t ′/x]t : B
– (Graded) If Γ, x : [A]r , Γ ′ � t : B then Γ + (r ∗ Δ) + Γ ′ � [t ′/x]t : B

3 The Synthesis Calculi

We present two synthesis calculi with subtractive and additive resource manage-
ment schemes, extending an input-output approach to graded modal types. The
structure of the synthesis calculi mirrors a cut-free sequent calculus, with left
and right rules for each type constructor. Right rules synthesise an introduction
form for the goal type. Left rules eliminate (deconstruct) assumptions so that
they may be used inductively to synthesise subterms.

3.1 Subtractive Resource Management

Our subtractive approach follows the philosophy of earlier work on linear logic
proof search [7,20], structuring synthesis rules around an input context of the
available resources and an output context of the remaining resources that can
be used to synthesise subsequent subterms. Synthesis rules are read bottom-up,
with judgments Γ � A ⇒− t ; Δ meaning from the goal type A we can synthesise
a term t using assumptions in Γ , with output context Δ. We describe the rules
in turn to aid understanding. The appendix [22] collects the rules for reference.

Variable terms can be synthesised from linear or graded assumptions by rules:

Γ, x : A � A ⇒− x ; Γ
LinVar− ∃s. r � s + 1

Γ, x : [A]r � A ⇒− x ; Γ, x : [A]s
GrVar−

On the left, a variable x may be synthesised for the goal A if a linear assumption
x : A is present in the input context. The input context without x is then
returned as the output context, since x has been used. On the right, we can
synthesise a variable x for A we have a graded assumption of x matching the
type. However, the grading r must permit x to be used once here. Therefore, the
premise states that there exists some grade s such that grade r approximates
s+1. The grade s represents the use of x in the rest of the synthesised term, and

158 J. Hughes and D. Orchard

thus x : [A]s is in the output context. For the natural numbers semiring, this
constraint is satisfied by s = r − 1 whenever r �= 0, e.g., if r = 3 then s = 2. For
intervals, the role of approximation is more apparent: if r = [0...3] then this rule
is satisfied by s = [0...2] where s+1 = [0...2]+[1...1] = [1...3]
 [0...3]. Thus, this
premise constraint avoids the need for an additive inverse. In the implementation,
the constraint is discharged via an SMT solver, where an unsatisfiable result
terminates this branch of synthesis.

In typing, λ-abstraction binds linear variables to introduce linear functions.
Synthesis from a linear function type therefore mirrors typing:

Γ, x : A � B ⇒− t ; Δ x �∈ |Δ|
Γ � A � B ⇒− λx .t ; Δ

R�−

Thus, λx.t can be synthesised given that t can be synthesised from B in the
context of Γ extended with a fresh linear assumption x : A. To ensure that x is
used linearly by t we must therefore check that it is not present in Δ.

The left-rule for linear function types then synthesises applications (as
in [20]):

Γ, x2 : B � C ⇒− t1; Δ1 x2 �∈ |Δ1| Δ1 � A ⇒− t2; Δ2

Γ, x1 : A � B � C ⇒− [(x1 t2)/x2]t1; Δ2

L�−

The rule synthesises a term for type C in a context that contains an assumption
x1 : A � B . The first premise synthesises a term t1 for C under the context
extended with a fresh linear assumption x2 : B , i.e., assuming the result of x1.
This produces an output context Δ1 that must not contain x2, i.e., x2 is used by
t1. The remaining assumptions Δ1 provide the input context to synthesise t2 of
type A: the argument to the function x1. In the conclusion, the application x1 t2
is substituted for x2 inside t1, and Δ2 is the output context.

Note that this rule synthesises the application of a function given by a linear
assumption. What if we have a graded assumption of function type? Rather than
duplicating every left rule for both linear and graded assumptions, we mirror the
dereliction typing rule (converting a linear assumption to graded) as:

Γ, x : [A]s , y : A � B ⇒− t ; Δ, x : [A]s′ y �∈ |Δ| ∃s. r � s + 1
Γ, x : [A]r � B ⇒− [x/y]t ; Δ, x : [A]s′

der−

Dereliction captures the ability to reuse a graded assumption being considered in
a left rule. A fresh linear assumption y is generated that represents the graded
assumption’s use in a left rule, and must be used linearly in the subsequent
synthesis of t . The output context of this premise then contains x graded by s′,
which reflects how x was used in the synthesis of t , i.e. if x was not used then
s′ = s. The premise ∃s. r � s + 1 constrains the number of times dereliction can
be applied so that it does not exceed x’s original grade r.

Resourceful Program Synthesis from Graded Linear Types 159

For a graded modal goal type �rA, we synthesise a promotion [t] if we can
synthesise the ‘unpromoted’ t from A:

Γ � A ⇒− t ; Δ

Γ � �rA ⇒− [t]; Γ − r ∗ (Γ − Δ)
R�−

Recall that typing of a promotion [t] scales all the graded assumptions used
to type t by r. Therefore, to compute the output context we must “subtract”
r-times the use of the variables in t . However, in the subtractive model Δ tells
us what is left, rather than what is used. Thus we first compute the context
subtraction of Γ and Δ yielding the variables usage information about t :

Definition 4 (Context subtraction). For all Γ1, Γ2 where Γ2 ⊆ Γ1:

Γ1 − Γ2 =

⎧
⎪⎪⎨

⎪⎪⎩

Γ1 Γ2 = ∅
(Γ ′

1, Γ
′′
1) − Γ ′

2 Γ2 = Γ ′
2, x : A ∧ Γ1 = Γ ′

1, x : A, Γ ′′
1

((Γ ′
1, Γ

′′
1) − Γ ′

2), x : [A]q Γ2 = Γ ′
2, x : [A]s ∧ Γ1 = Γ ′

1, x : [A]r , Γ ′′
1

∧ ∃q . r � q + s ∧ ∀q′.r � q′ + s =⇒ q � q′

As in graded variable synthesis, context subtraction existentially quantifies a
variable q to express the relationship between grades on the right being “sub-
tracted” from those on the left. The last conjunct states q is the greatest element
(wrt. to the pre-order) satisfying this constraint, i.e., for all other q′ ∈ R sat-
isfying the subtraction constraint then q � q ′ e.g., if r = [2...3] and s = [0...1]
then q = [2...2] instead of, say, [0...1]. This maximality condition is important
for soundness (that synthesised programs are well-typed).

Thus for R�−, Γ − Δ is multiplied by the goal type grade r to obtain how
these variables are used in t after promotion. This is then subtracted from the
original input context Γ giving an output context containing the left-over vari-
ables and grades. Context multiplication requires that Γ−Δ contains only graded
variables, preventing the incorrect use of linear variables from Γ in t .

Synthesis of graded modality elimination, is handled by the L�− left rule:

Γ, x2 : [A]r � B ⇒− t ; Δ, x2 : [A]s 0
 s
Γ, x1 : �rA � B ⇒− let [x2] = x1 in t ; Δ

L�−

Given an input context comprising Γ and a linear assumption x1 of graded modal
type, we can synthesise an unboxing of x1 if we can synthesise a term t under
Γ extended with a graded assumption x2 : [A]r . This returns an output context
that must contain x2 graded by s with the constraint that s must approximate
0. This enforces that x2 has been used as much as required by the grade r.

160 J. Hughes and D. Orchard

The right and left rules for products, units, and sums, are then fairly straight-
forward following the subtractive resource model:

The L⊕− rule synthesises the left and right branches of a case statement that
may use resources differently. The output context therefore takes the greatest
lower bound (�) of Δ1 and Δ2. We elide definition of context � as it has the
same shape as � for contexts (Definition 2), just replacing � with � on grades.

As an example of �, consider the semiring of intervals over natural numbers
and two judgements that could be used as premises for the (L⊕−) rule:

Γ, y : [A′][0...5], x2 : A � C ⇒− t1; y : [A′][2...5]

Γ, y : [A′][0...5], x3 : B � C ⇒− t2; y : [A′][3...4]

where t1 uses y such that there are 2–5 uses remaining and t2 uses y such that
there are 3–4 uses left. To synthesise case x1 of inl x2 → t1| inr x3 → t2 the
output context must be pessimistic about what resources are left, thus we take
the greatest-lower bound yielding the interval [2 . . . 4] here: we know y can be
used at least twice and at most 4 times in the rest of the synthesised program.

This completes subtractive synthesis. We conclude with a key result, that
synthesised terms are well-typed at the type from which they were synthesised:

Lemma 2. (Subtractive synthesis soundness). For all Γ and A then:

Γ � A ⇒− t ; Δ =⇒ Γ − Δ � t : A

i.e. t has type A under context Γ −Δ, that contains just those linear and graded
variables with grades reflecting their use in t. The appendix [22] provides the
proof.

Resourceful Program Synthesis from Graded Linear Types 161

3.2 Additive Resource Management

We now propose a dual additive resource management approach. Additive syn-
thesis also uses the input-output context approach, but where output contexts
describe exactly which assumptions were used to synthesise a term, rather than
which assumptions are still available. Additive synthesis rules are read bottom-
up, with Γ � A ⇒+ t ; Δ meaning that from the type A we synthesise a term t
using exactly the assumptions Δ that originate from the input context Γ .

We unpack the rules, starting with variables:

Γ, x : A � A ⇒+ x ; x : A
LinVar+

Γ, x : [A]r � A ⇒+ x ; x : [A]1
GrVar+

For a linear assumption, the output context contains just the variable that was
synthesised. For a graded assumption x : [A]r , the output context contains the
assumption graded by 1. To synthesise a variable from a graded assumption, we
must check that the use is compatible with the grade. The subtractive approach
handled this rule (GrVar−) by a constraint ∃s. r � s + 1. Here however, the
point at which we check that a graded assumption has been used according to
the grade takes place in the L�+ rule, where graded assumptions are bound:

Γ, x2 : [A]r � B ⇒+ t ; Δ if x2 : [A]s ∈ Δ then s
 r else 0
 r
Γ, x1 : �rA � B ⇒+ let [x2] = x1 in t ; (Δ\x2), x1 : �rA

L�+

Here, t is synthesised under a fresh graded assumption x2 : [A]r . This produces
an output context containing x2 with some grade s that describes how x2 is
used in t . An additional premise requires that the original grade r approximates
either s if x2 appears in Δ or 0 if it does not, ensuring that x2 has been used
correctly. For the N-semiring with equality as the ordering, this would ensure
that a variable has been used exactly the number of times specified by the grade.

Right and left rules for � have a similar shape to the subtractive calculus:

Synthesising an abstraction (R�+) requires that x : A is in the output context
of the premise, ensuring that linearity is preserved. Likewise for application
(L�+), the output context of the first premise must contain the linearly bound
x2 : B and the final output context must contain the assumption being used in
the application x1 : A � B . This output context computes the context addition
(Definition 1) of both output contexts of the premises Δ1 + Δ2. If Δ1 describes
how assumptions were used in t1 and Δ2 respectively for t2, then the addition of
these two contexts describes the usage of assumptions for the entire subprogram.

162 J. Hughes and D. Orchard

Recall, context addition ensures that a linear assumption may not appear in both
Δ1 and Δ2, preventing us from synthesising terms that violate linearity.

As in the subtractive calculus, we avoid duplicating left rules to match graded
assumptions by giving a synthesising version of dereliction:

Γ, x : [A]s , y : A � B ⇒+ t ; Δ, y : A
Γ, x : [A]s � B ⇒+ [x/y]t ; Δ + x : [A]1

der+

The fresh linear assumption y : A must appear in the output context of the
premise, ensuring it is used. The final context therefore adds to Δ an assumption
of x graded by 1, accounting for this use of x (temporarily renamed to y).

Synthesis of a promotion is considerably simpler in the additive approach.
In subtractive resource management it was necessary to calculate how resources
were used in the synthesis of t before then applying the scalar context multipli-
cation by the grade r and subtracting this from the original input Γ . In additive
resource management, however, we can simply apply the multiplication directly
to the output context Δ to obtain how our assumptions are used in [t]:

Γ � A ⇒+ t ; Δ

Γ � �rA ⇒+ [t]; r ∗ Δ
R�+

As in the subtractive approach, the right and left rules for products, units, and
sums follow fairly straightforwardly from the resource scheme:

Rule (L⊕+) takes the least-upper bound of the premise’s output contexts (Def-
inition 2).

Lemma 3. (Additive synthesis soundness). For all Γ and A:

Γ � A ⇒+ t ; Δ =⇒ Δ � t : A

The appendix [22] provides the proof.

Resourceful Program Synthesis from Graded Linear Types 163

Additive Pruning. As seen above, the additive approach delays checking
whether a variable is used according to its linearity/grade until it is bound.
We hypothesise that this can lead additive synthesis to explore many ultimately
ill-typed (or ill-resourced) paths for too long. Subsequently, we define a “prun-
ing” variant of any additive rules with multiple sequenced premises. For (R⊗+)
this is:

Instead of passing Γ to both premises, Γ is the input only for the first premise.
This premise outputs context Δ1 that is subtracted from Γ to give the input
context of the second premise. This provides an opportunity to terminate the cur-
rent branch of synthesis early if Γ −Δ1 does not contain the necessary resources
to attempt the second premise. The (L�+) rule is similarly adjusted.

Lemma 4. (Additive pruning synthesis soundness). For all Γ and A:

Γ � A ⇒+ t ; Δ =⇒ Δ � t : A

The appendix [22] provides the proof.

3.3 Focusing

The two calculi provide a foundation for a synthesis algorithm. However, in their
current forms, both synthesis calculi are highly non-deterministic: for each rule
there are multiple rules which may be applied to synthesise the premise(s).

We apply the idea of focusing [3] to derive two focusing calculi which are
equivalent to the former in expressivity, but with a reduced degree of non-
determinism in the rules that may be applied. Focusing is a proof search tech-
nique based on the idea that some rules are invertible, i.e. whenever the premises
of a rule are derivable, the conclusion is also derivable. Rules with this property
can be applied eagerly in the synthesis of a term. When we arrive at a goal whose
applicable rules are not invertible, we focus on either the goal type or a particular
assumption by applying a chain of non-invertible rules until we reach a goal to
which invertible rules can be applied. The appendix [22] gives focusing versions
of the two calculi, which form the basis of our implementation. The proofs for
the soundness of these focusing calculi can also be found in the appendix.

4 Evaluation

Prior to evaluation, we made the following hypotheses about the relative perfor-
mance of the additive versus subtractive approaches:

1. Additive synthesis should make fewer calls to the solver, with lower complex-
ity theorems (fewer quantifiers). Dually, subtractive synthesis makes more
calls to the solver with higher complexity theorems (more quantifiers);

164 J. Hughes and D. Orchard

2. For complex problems, additive synthesis will explore more paths as it cannot
tell whether a variable is not well-resourced until closing a binder; additive
pruning and subtractive will explore fewer paths as they can fail sooner.

3. A corollary of the above two: simple examples will likely be faster in additive
mode, but more complex examples will be faster in subtractive mode.

Methodology. We implemented our approach as a synthesis tool for Granule,
integrated with its core tool. Granule features ML-style polymorphism (rank-0
quantification) but we do not address polymorphism here. Instead, programs are
synthesised from type schemes treating universal type variables as logical atoms.
We discuss additional details of the implementation at the end of this section.

To evaluate our synthesis tool we developed a suite of benchmarks comprising
Granule type schemes for a variety of operations using linear and graded modal
types. We divide our benchmarks into several classes of problem:

– Hilbert: the Hilbert-style axioms of intuitionistic logic (including SKI com-
binators), with appropriate N and N-interval grades where needed (see, e.g.,
S combinator in Example 1 or coproduct elimination in Example 2).

– Comp: various translations of function composition into linear logic: mul-
tiplicative, call-by-value and call-by-name using ! [17], I/O using ! [28], and
coKleisli composition over N and arbitrary semirings: e.g. ∀r, s ∈ R:

comp-coKR : �r (�sA � B) � (�rB � C) � �r∗sA � C

– Dist: distributive laws of various graded modalities over functions, sums, and
products [23], e.g., ∀r ∈ N, or ∀r ∈ R in any semiring, or r = [0...∞]:

pull⊕ : (�rA⊕�rB) � �r (A⊕B) push� : �r (A � B) � �rA � �rB

– Vec: map operations on vectors of fixed size encoded as products, e.g.:

vmap5 : �5(A � B) � ((((A⊗A)⊗A)⊗A)⊗A) � ((((B⊗B)⊗B)⊗B)⊗B)

– Misc: includes Example 3 (information-flow security) and functions which
must share or split resources between graded modalities, e.g.:

share : �4A � �6A � �2(((((A ⊗ A) ⊗ A) ⊗ A) ⊗ A) � B) � (B ⊗ B)

The appendix [22] lists the type schemes for these synthesis problems (32
in total). We found that Z3 is highly variable in its solving time, so timing
measurements are computed as the mean of 20 trials. We used Z3 version 4.8.8
on a Linux laptop with an Intel i7-8665u @ 4.8 Ghz and 16 Gb of RAM.

Resourceful Program Synthesis from Graded Linear Types 165

Table 1. Results. μT in ms to 2 d.p. with standard sample error in brackets

Results and Analysis. For each synthesis problem, we recorded whether syn-
thesis was successful or not (denoted � or ×), the mean total synthesis time
(μT), the mean total time spent by the SMT solver (μsmt), and the number
of calls made to the SMT solver (N). Table 1 summarises the results with the
fastest case for each benchmark highlighted. For all benchmarks that used the
SMT solver, the solver accounted for 91.73%–99.98% of synthesis time, so we
report only the mean total synthesis time μT . We set a timeout of 120 s.

Additive vs. Subtractive. As expected, the additive approach generally synthe-
sises programs faster than the subtractive. Our first hypothesis (that the additive
approach in general makes fewer calls to the SMT solver) holds for almost all
benchmarks, with the subtractive approach often far exceeding the number made
by the additive. This is explained by the difference in graded variable synthe-
sis between approaches. In the additive, a constant grade 1 is given for graded

166 J. Hughes and D. Orchard

assumptions in the output context, whereas in the subtractive, a fresh grade
variable is created with a constraint on its usage which is checked immediately.
As the total synthesis time is almost entirely spent in the SMT solver (more than
90%), solving constraints is by far the most costly part of synthesis leading to
the additive approach synthesising most examples in a shorter amount of time.

Graded variable synthesis in the subtractive case also results in several exam-
ples failing to synthesise. In some cases, e.g., the first three comp benchmarks,
the subtractive approach times-out as synthesis diverges with constraints grow-
ing in size due to the maximality condition and absorbing behaviour of [0...∞]
interval. In the case of coK-R and coK-N, the generated constraints have the
form ∀r.∃s.r � s+1 which is not valid ∀r ∈ N (e.g., when r = 0), which suggests
that the subtractive approach does not work well for polymorphic grades. As
further work, we are considering an alternate rule for synthesising promotion
with constraints of the form ∃s.s = s′ ∗r, i.e., a multiplicative inverse constraint.

In more complex examples we see evidence to support our second hypothesis.
The share problem requires a lot of graded variable synthesis which is problem-
atic for the additive approach, for the reasons described in the second hypothesis.
In contrast, the subtractive approach performs better, with μT = 190.07 ms as
opposed to additive’s 268.95 ms. However, additive pruning outperforms both.

Additive Pruning. The pruning variant of additive synthesis (where subtraction
takes place in the premises of multiplicative rules) had mixed results compared
to the default. In simpler examples, the overhead of pruning (requiring SMT
solving) outweighs the benefits obtained from reducing the space. However, in
more complex examples which involve synthesising many graded variables (e.g.
share), pruning is especially powerful, performing better than the subtractive
approach. However, additive pruning failed to synthesis two examples which are
polymorphic in their grade (⊗-N) and in the semiring/graded-modality (⊗-R).

Overall, the additive approach outperforms the subtractive and is successful
at synthesising more examples, including ones polymorphic in grades and even
the semiring itself. Given that the literature on linear logic theorem proving
is typically subtractive, this is an interesting result. Going forward, a mixed
approach between additive and additive pruning may be possible, selecting the
algorithm, or even the rules, depending on the class of problem. Exploring this,
and further optimisations and improvements, is further work.

Additional Implementation Details. Constraints on resource usage are han-
dled via Granule’s existing symbolic engine, which compiles constraints on grades
(for various semirings) to the SMT-lib format for Z3 [30]. We use the LogicT
monad for backtracking search [26] and the Scrap Your Reprinter library for
splicing synthesised code into syntactic “holes”, preserving the rest of the pro-
gram text [10]. The implementation of the rule for additive dereliction (der+)
requires some care. A näıve implementation of this rule would allow the con-
struction of an infinite chain of dereliction applications, by repeatedly applying
the rule to the same graded assumption, as the correct usage of the assumption’s

Resourceful Program Synthesis from Graded Linear Types 167

grade is only verified after it has been used to synthesise a sub-term. Our solution
is to simply disallow immediate consecutive applications of the dereliction rule
in additive synthesis, requiring that another rule be applied between multiple
applications of the dereliction rule to any assumption. If no other rules can be
applied, then the branch of synthesis is terminated.

5 Discussion

Further Related Work. Before Hodas and Miller [20], the problem of resource
non-determinism was first identified by Harland and Pym [19]. Their solution
delays splitting of contexts at a multiplicative connective. They later explored the
implementation details of this approach, proposing a solution where proof search
is formulated in terms of constraints on propositions. The logic programming
language Lygon [1] implements this approach.

Our approach to synthesis implements a backward style of proof search: start-
ing from the goal, recursively search for solutions to subgoals. In contrast to this,
forward reasoning approaches attempt to reach the goal by building subgoals
from previously proved subgoals until the overall goal is proved. Pfenning and
Chaudhuri consider forward approaches to proof search in linear logic using the
inverse method [11] where the issue of resource non-determinism that is typical
to backward approaches is absent [8,9].

Non-idempotent intersection types systems have a similar core structure
resembling the linear λ-calculus with quantitative aspects akin to grading [6]. It
therefore seems likely that the approaches of this paper could be applied in this
setting and used, for example, as way to enhance or even improve existing work
on the inhabitation problem for non-idempotent intersection types [5]: a synthe-
sised term gives a proof of inhabitation. This is left as further work, including
formalising the connection between non-idempotent intersections and grading.

Next Steps and Conclusions. Our synthesis algorithms are now part of the
Granule toolchain with IDE support, allowing programmers to insert a “hole” in
a term and, after executing a keyboard shortcut, Granule tries to synthesise the
type of the hole, pretty-printing generated code and inserting it at the cursor.

There are various extensions which we are actively pursuing, including syn-
thesis for arbitrary user-defined indexed data types (GADTs), polymorphism,
and synthesis of recursive functions. We plan to study various optimisations to
the approaches considered here, as well as reducing the overhead of starting the
SMT solver each time by instead running an “online” SMT solving procedure.
We also plan to evaluate the approach on the extended linear logical benchmarks
of Olarte et al. [31]. Although our goal is to create a practical program synthesis
tool for common programming tasks rather than a general purpose proof search
tool, the approach here also has applications to automated theorem proving.

168 J. Hughes and D. Orchard

Acknowledgements. Thanks to Benjamin Moon, Harley Eades III, participants at
LOPSTR 2020, and the anonymous reviewers for their helpful comments. This work is
supported by an EPSRC Doctoral Training Award and EPSRC grant EP/T013516/1
(Verifying Resource-like Data Use in Programs via Types).

References

1. Logic programming with linear logic. http://www.cs.rmit.edu.au/lygon/, Accessed
19 June 2020

2. Allais, G.: Typing with leftovers-a mechanization of intuitionistic multiplicative-
additive linear logic. In: 23rd International Conference on Types for Proofs
and Programs (TYPES 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2018)

3. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2(3), 297–347 (1992). https://doi.org/10.1093/logcom/2.3.297

4. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A core quantitative coeffect
calculus. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 351–370. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 19

5. Bucciarelli, A., Kesner, D., Rocca, S.R.D.: Inhabitation for non-idempotent inter-
section types. Log. Methods Comput. Sci. 14(3) (2018). https://doi.org/10.23638/
LMCS-14(3:7)2018

6. Bucciarelli, A., Kesner, D., Ventura, D.: Non-idempotent intersection types for the
lambda-calculus. Log. J. IGPL 25(4), 431–464 (2017). https://doi.org/10.1093/
jigpal/jzx018

7. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear
logic proof search. Theor. Comput. Sci. 232(1), 133–163 (2000). https://doi.org/
10.1016/S0304-3975(99)00173-5

8. Chaudhuri, K., Pfenning, F.: A focusing inverse method theorem prover for first-
order linear logic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632,
pp. 69–83. Springer, Heidelberg (2005). https://doi.org/10.1007/11532231 6

9. Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Ong,
L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 200–215. Springer, Heidelberg (2005).
https://doi.org/10.1007/11538363 15

10. Clarke, H., Liepelt, V.B., Orchard, D.: Scrap your Reprinter (2017). unpublished
manuscript

11. Degtyarev, A., Voronkov, A.: Chapter 4 - the inverse method. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, North-Holland, Amster-
dam, pp. 179–272 (2001). https://doi.org/10.1016/B978-044450813-3/50006-0

12. Frankle, J., Osera, P.M., Walker, D., Zdancewic, S.: Example-directed synthesis: a
type-theoretic interpretation. ACM SIGPLAN Not. 51(1), 802–815 (2016)

13. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent
types for differential privacy. SIGPLAN Not. 48(1), 357–370 (2013). https://doi.
org/10.1145/2480359.2429113

14. Gaboardi, M., Katsumata, S., Orchard, D.A., Breuvart, F., Uustalu, T.: Combin-
ing effects and coeffects via grading. In: Garrigue, J., Keller, G., Sumii, E. (eds.)
Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, 18–22 September 2016, pp. 476–489. ACM
(2016). https://doi.org/10.1145/2951913.2951939

15. Gentzen, G.: Untersuchungen über das logische schließen. ii. Mathematische
Zeitschrift 39, 405–431 (1935)

http://www.cs.rmit.edu.au/lygon/
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.23638/LMCS-14
https://doi.org/10.23638/LMCS-14
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1016/S0304-3975(99)00173-5
https://doi.org/10.1016/S0304-3975(99)00173-5
https://doi.org/10.1007/11532231_6
https://doi.org/10.1007/11538363_15
https://doi.org/10.1016/B978-044450813-3/50006-0
https://doi.org/10.1145/2480359.2429113
https://doi.org/10.1145/2480359.2429113
https://doi.org/10.1145/2951913.2951939

Resourceful Program Synthesis from Graded Linear Types 169

16. Ghica, D.R., Smith, A.I.: Bounded linear types in a resource semiring. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 331–350. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54833-8 18

17. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

18. Girard, J.Y., Scedrov, A., Scott, P.J.: Bounded linear logic: a modular approach
to polynomial-time computability. Theor. Comput. Sci. 97(1), 1–66 (1992)

19. Harland, J., Pym, D.J.: Resource-distribution via boolean constraints. CoRR
cs.LO/0012018 (2000). https://arxiv.org/abs/cs/0012018

20. Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic.
Inf. Comput. 110(2), 327–365 (1994). https://doi.org/10.1006/inco.1994.1036

21. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hind-
ley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism. Academic Press (1980)

22. Hughes, J., Orchard, D.: Resourceful program synthesis from graded linear types
(Appendix) (2020). https://doi.org/10.5281/zenodo.4314644

23. Hughes, J., Vollmer, M., Orchard, D.: Deriving distributive laws for graded linear
types (2020), unpublished manuscript

24. Katsumata, S.: Parametric effect monads and semantics of effect systems. In:
Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
20–21 January 2014, pp. 633–646. ACM (2014). https://doi.org/10.1145/2535838.
2535846

25. Katsumata, S.: A double category theoretic analysis of graded linear exponential
comonads. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp.
110–127. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 6

26. Kiselyov, O., Shan, C.c., Friedman, D.P., Sabry, A.: Backtracking, interleaving,
and terminating monad transformers: (functional pearl). SIGPLAN Not. 40(9),
192–203 (2005). https://doi.org/10.1145/1090189.1086390

27. Knoth, T., Wang, D., Polikarpova, N., Hoffmann, J.: Resource-Guided Program
Synthesis. CoRR abs/1904.07415 (2019). http://arxiv.org/abs/1904.07415

28. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and clas-
sical logics. Theor. Comput. Sci. 410(46), 4747–4768 (2009)

29. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM Trans.
Program. Lang. Syst. (TOPLAS) 2(1), 90–121 (1980)

30. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

31. Olarte, C., de Paiva, V., Pimentel, E., Reis, G.: The ILLTP library for intuitionistic
linear logic. In: Ehrhard, T., Fernández, M., de Paiva, V., de Falco, L.T. (eds.) Pro-
ceedings Joint International Workshop on Linearity & Trends in Linear Logic and
Applications, Linearity-TLLA@FLoC 2018, Oxford, UK, 7–8 July 2018. EPTCS,
vol. 292, pp. 118–132 (2018). https://doi.org/10.4204/EPTCS.292.7

32. Orchard, D., Liepelt, V., Eades III, H.E.: Quantitative program reasoning with
graded modal types. PACMPL 3(ICFP), 110:1–110:30 (2019). https://doi.org/10.
1145/3341714

33. Osera, P.M., Zdancewic, S.: Type-and-example-directed program synthesis. SIG-
PLAN Not. 50(6), 619–630 (2015). https://doi.org/10.1145/2813885.2738007

34. Polikarpova, N., Solar-Lezama, A.: Program synthesis from Polymorphic Refine-
ment Types. CoRR abs/1510.08419 (2015). http://arxiv.org/abs/1510.08419

https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://arxiv.org/abs/cs/0012018
https://doi.org/10.1006/inco.1994.1036
https://doi.org/10.5281/zenodo.4314644
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1007/978-3-319-89366-2_6
https://doi.org/10.1145/1090189.1086390
http://arxiv.org/abs/1904.07415
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4204/EPTCS.292.7
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.1145/2813885.2738007
http://arxiv.org/abs/1510.08419

170 J. Hughes and D. Orchard

35. Smith, C., Albarghouthi, A.: Synthesizing differentially private programs. Proc.
ACM Program. Lang. 3(ICFP) (2019). https://doi.org/10.1145/3341698

36. Zalakain, U., Dardha, O.: Pi with leftovers: a mechanisation in Agda. arXiv
preprint arXiv:2005.05902 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3341698
http://arxiv.org/abs/2005.05902
http://creativecommons.org/licenses/by/4.0/

Verification

Reasoning in the Theory of Heap:
Satisfiability and Interpolation

Zafer Esen and Philipp Rümmer(B)

Uppsala University, Uppsala, Sweden
philipp.ruemmer@it.uu.se

Abstract. In recent work, we have proposed an SMT-LIB theory of
heap tailored to Horn-clause verification. The theory makes it possi-
ble to lift verification approaches for heap-allocated data-structures to
a language-independent level, and this way factor out the treatment of
heap in verification tools. This paper gives an overview of the theory,
and presents ongoing research on decision and interpolation procedures.

1 Introduction

Tools for formal program verification are often engineered making use of var-
ious existing libraries and frameworks; for instance, compiler front-ends, con-
straint and SMT solvers, and more recently solvers for Constrained Horn Clauses
(CHCs). This way, the effort required to construct verification systems can be
reduced significantly, a wider range of languages or applications can be covered,
and the quality and performance of the resulting tool is improved. In this paper,
we consider the use of Constrained Horn Clauses, which represent an interme-
diate verification language tailored to the analysis of safety properties, and can
be solved by CHC solvers such as Spacer [20] or Eldarica [16]; for an overview
see [3,28]. These solvers in turn utilise theorem provers or SMT solvers such as
Z3 [23] or Princess [27] to reason about the constraints in CHCs.

A challenging feature of languages, in this context, are heap-allocated data-
structures. Such data-structures are today either represented explicitly using
the theory of arrays (e.g., [11,19]), or are transformed away with the help of
invariants or refinement types (e.g., [4,17,22,26]). In [12], we motivate the alter-
native approach of introducing heap as a native theory supported by solvers,
which turns CHCs into a standardised interchange format for programs with
heap data-structures. Figure 1 shows the resulting verification flow: verification
tools would take programs, for instance in C or Java, as input, and encode them
in a uniform way as CHCs modulo the theory of heap. The encoding keeps heap
operations like read, write, or allocation essentially intact, and it is up to CHC
and SMT solvers to process those operations further. CHC solvers could, e.g.,
choose to encode heap as an array, or apply an invariant-based encoding.

In this paper, we present first steps of the development of native decision and
interpolation procedures for the theory of heap, covering two main reasoning
tasks needed to implement CHC solvers [3,29]. The described procedures are
c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 173–191, 2021.
https://doi.org/10.1007/978-3-030-68446-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-68446-4_9

174 Z. Esen and P. Rümmer

C Programs Java Programs · · ·

CHCs modulo Heap
(+ Integers, Bit-vectors, etc.)

Native SAT/Interpolation
Procedures for Heap

Encoding of Heap
as Arrays

Encoding of Heap
using Invariants [17]

Fig. 1. Program verification using the theory of heap.

intended as a starting point and are currently largely unoptimised. We expect
that many optimisations from array solvers (e.g., [7,9,14,30]) can be adapted.

1.1 Encoding Programs Using the Theory of Heap

In Listing 1.1, a C program is given in order to show the intuition behind the
encoding, and provide an overview of the theory. The program has a single
function insertNode that allocates and initialises a list Node (as defined in
line 1), and appends it to the passed list pointed to by p.

One way to encode this program is using CHCs, and to consider the heap
as a single shared mutable data-structure. A theory of heap provides Heap and
Addr sorts, so Heap and Addr terms can be used in the CHCs just like any
other term. A diagram illustrating the effect of the CHCs is given in Fig. 2.
As an example, the statement at line 4 of Listing 1.1 can be encoded using the
topmost constraint on the right-hand side of the diagram, which allocates a Node
with uninitialised fields. A CHC can then be constructed using the invariants
I1 and I2 that encode program state and the constraint C1 that encodes the
transition as I1(...) ∧ C1 → I2(...), where the dots “. . .” represent the program
variables in scope along with the heap term.

A complete CHC encoding of the program from Listing 1.1 is given in List-
ing 1.2. Lines 1–9 show the heap declaration in SMT-LIB format, where:

– Heap and Addr are the names of the declared heap and address sorts,
– Object at line 4 is the name of the selected object sort,
– Node and Object at line 6 are the declared data-types (ADTs),
– O Empty is the default Object term that is returned on invalid reads.

Specifying a single object sort makes it possible to have a unified sort on
the heap, and the flexibility of algebraic data-types (ADTs) simplifies encoding
many programming language types. In this case Object has two constructors:
(i) O Node creates an Object with a Node field, (ii) O Empty creates an Object
with no fields that is used as the default Object . The object sort is said to be

Reasoning in the Theory of Heap: Satisfiability and Interpolation 175

Listing 1.1. A C function that adds a new node to the head of a linked list.

1 s t r u c t Node { i n t data ; s t r u c t Node∗ next ; } ;
2
3 void insertNode (i n t d , s t r u c t Node∗ p) {
4 s t r u c t Node∗ n = malloc (s i z e o f (s t r u c t Node)) ;
5 n−>data = d ; n−>next = p−>next ; p−>next = n ;
6 }

Listing 1.2. Complete encoding of the program from Listing 1.1. The heap declaration
is given in SMT-LIB notation, while the clauses and the assertions are given in Prolog
notation. “:-” corresponds to a left implication arrow (i.e., “←”), and it is assumed
that all variables occurring in the clauses are universally quantified with the correct
sort (i.e., ∀h : Heap. ∀p : Addr).

1 (declare-heap

2 Heap ; declared Heap sort

3 Addr ; declared Address sort

4 Object ; chosen Object sort

5 O_Empty ; the default Object

6 ((Node 0) (Object 0)) ; ADTs

7 (((Node (data Int) (next Addr))) ; Class constructors

8 ((O_Node (getNode Node)) ; Object sort constructors

9 (O_Empty))))

10 ; invariant declarations

11 (declare-fun I1 (Heap Int Addr) Bool) ; <h,d,p >

12 (declare-fun I2 (Heap Int Addr Addr) Bool) ; <h,d,p,n >

13 (declare-fun I3 (Heap Int Addr Addr) Bool) ; <h,d,p,n >

14 (declare-fun I4 (Heap Int Addr Addr Addr) Bool) ; <h,d,p,n,t >

15 (declare-fun I5 (Heap Int Addr Addr) Bool) ; <h,d,p,n >

16 (declare-fun I6 (Heap Int Addr) Bool) ; <h,d,p >

17
18 ; Clauses (given in Prolog notation for readability)

19 I1(h,d,p) :- h = _nonDet, is_O_Node(read(h,p)).

20 I2(h',d,p,n) :- I1(h,d,p),

21 h' = newHeap(alloc(h, O_Node(_nonDet))),

22 n = newAddr(alloc(h, O_Node(_nonDet))).

23 I3(h',d,p,n) :- I2(h,d,p,n), h'= write(h,n,

24 O_Node(Node(d,next(getNode(read(h,n)))))).

25 I4(h,d,p,n,t) :- I3(h,d,p,n), t = next(getNode(read(h,p))).

26 I5(h',d,p,n) :- I4(h,d,p,n,t), h'= write(h,n,

27 O_Node(Node(data(getNode(read(h,n))),t))).

28 I6(h',d, p) :- I5(h,d,p,n), h'= write(h,p,

29 O_Node(Node(data(getNode(read(h,p))),n))).

30 ; Assertions

31 false :- I2(h,d,p,n), !is_O_Node(read(h,n)).

32 false :- I3(h,d,p,n), !is_O_Node(read(h,p)).

33 false :- I4(h,d,p,n,t), !is_O_Node(read(h,n)).

34 false :- I5(h,d,p,n), !is_O_Node(read(h,p)).

176 Z. Esen and P. Rümmer

Fig. 2. The boxes on the left-hand side correspond to invariants encoding the state
of a program at a certain point. E.g., I1 is the entry point of insertNode, where the
only relevant variables in scope are the arguments of the function, and the heap. The
constraints on the right-hand side correspond to executing program statements. Black
arrows visualise the execution of the program. h is the Heap term representing the
heap. A h′ term in the constraints is equal to the h term of the next invariant. An
underscore represents a term that can have any value (of the correct sort within the
context). t is a fresh Addr variable. A blue arrow visualises where a pointer is pointing
to, and a red-dashed line symbolises an Object . (Color figure online)

selected, because it could also be declared outside the heap declaration and only
specified here. This is not possible in this example as Node has a field with sort
Addr (line 7), and Addr only becomes available with the heap declaration.

Lines 11–16 declare the invariants which are used in the CHCs. The rest of
the encoding shows the CHCs in Prolog notation as explained in Fig. 2. The
CHC in line 19 corresponds to program entry. The body of the clause at line 19
encodes the assumption that the contents of the heap are unknown at entry, but
that there is a pre-condition specifying that p points to a valid location storing
a Node object.

The assertions at lines 31–34 check the validity and type safety of heap
accesses. These make use of testers that come with ADTs. For instance, the
assertions at lines 32 and 34 would fail if it is not asserted at line 19 that p is
pointing to a valid location containing a Node.

2 Preliminaries

2.1 The Theory of Heap

Signature. Functions and predicates of the theory are given in Table 1.

nullAddr returns an Addr which is unallocated (or invalid) in all heaps.
emptyHeap returns the Heap that is unallocated everywhere.

Reasoning in the Theory of Heap: Satisfiability and Interpolation 177

Table 1. Functions and predicates of the theory of heap.

nullAddr : () → Addr
emptyHeap : () → Heap

allocate : Heap × Object → Heap × Addr (AllocationResultHeap)
valid : Heap × Addr → Boolean
read : Heap × Addr → Object
write : Heap × Addr × Object → Heap

Table 2. Interpretation of sorts, functions, and predicates in the theory of heap. The
symbol ++ denotes concatenation of two sequences.

I(Heap) = I(Object)∗

I(Addr) =

I(nullAddr) = 0
I(emptyHeap) = ε

I(read)(h, a) =

{
h[a − 1] if 0 < a ≤ |h|,
defObj otherwise.

I(write)(h, a, o) =

{
h[a − 1 �→ o] if 0 < a ≤ |h|,
h otherwise.

I(allocate)(h, o) = 〈h ++ [o], |h| + 1〉
I(valid)(h, a) = 0 < a ≤ |h|

allocate takes a Heap and an Object , and returns an AllocationResultHeap.
AllocationResultHeap is an ADT representing the pair 〈Heap,Addr〉. The
returned Heap contains the passed Object at the returned Addr .

valid is the predicate checking if the passed Addr is allocated in the passed
Heap. If it is allocated then we say that an access is valid ; it is invalid
otherwise.

read returns the Object at the passed Addr of the passed Heap on a valid access.
If the access is invalid, then the specified default Object is returned instead
(line 5 in Listing 1.2).

write, if the access is valid, returns a heap where the passed Addr of the passed
Heap is updated with the passed Object , with all other locations unchanged.
If the access is invalid, the passed heap is returned without any changes.

Semantics. A many-sorted signature can be defined as the triple L =
〈S,Σf , Σp〉 where S is a set of sorts, Σf is a set of function symbols and Σp

is a set of relation symbols. A structure is a pair 〈D, I〉 where D is the domain
(consisting of disjoint subsets for each sort in S), and I is an interpretation func-
tion that associates each f ∈ Σf and p ∈ Σp to some n-ary function or relation.
Arguments of both f and p and the values of f are specified using the sorts in S.

178 Z. Esen and P. Rümmer

The heap is interpreted as an ordered sequence of zero or more heap objects.
The sort Object can in principle be any selected sort, but will in most cases be an
ADT, and be interpreted as the set of constructor terms of the ADT. Addresses
(Addr) are interpreted as natural numbers. h[k] denotes the (k + 1)–th heap
object, where k ∈ N. Formal definitions are given in Table 2.

2.2 An Interpolating Sequent Calculus for First-Order Logic
Modulo Integers

We formulate our decision procedure for heap formulas on top of a simple logic
of Presburger arithmetic constraints combined with uninterpreted predicates,
introduced in [27] and extended in [5,6] to support Craig interpolation. Since the
logic does not support functions, the heap operators (and also ADTs) have to be
encoded using relations, with explicit rules for functional consistency; this setting
closely models the situation in SMT solvers, where uninterpreted functions are
handled by a theory solver implementing congruence closure.

Let x range over an infinite set X of variables, p over a set P of uninterpreted
predicates with fixed arity, and α over the set Z of integers. The syntax of terms
and formulae is defined by the following grammar:

φ ::= t = 0 || t ≤ 0 || p(t, . . . , t) || φ ∧ φ ||φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ

t ::= α ||x ||αt + · · · + αt

The symbol t denotes terms of linear arithmetic. Substitution of a term t for a
variable x in φ is denoted by [x/t]φ; we assume that variable capture is avoided
by renaming bound variables as necessary. For simplicity, we sometimes write
s = t as a shorthand of s − t = 0, and the inequality s ≤ t for s − t ≤ 0.
The abbreviation true (false) stands for the equality 0 = 0 (1 = 0), and the
formula φ → ψ abbreviates ¬φ∨ψ. Semantic notions such as structures, models,
satisfiability, and validity are defined as is common (e.g., [13]), but we assume
that evaluation always happens over the universe Z of integers.

A Sequent Calculus for the Base Logic. For checking whether a formula
in the base logic is satisfiable or valid, we work with a simplified version of the
calculus presented in [27], a part of which is shown in Table 3. If Γ , Δ are sets of
formulae, then Γ � Δ is a sequent. A sequent is valid if the formula

∧
Γ → ∨

Δ
is valid. Proofs are trees growing upward, in which each node is labelled with
a sequent, and each non-leaf node is related to the node(s) directly above it
through an application of a calculus rule. A proof is closed if it is finite and all
leaves are justified by an instance of a rule without premises. Soundness of the
calculus implies that the root of a closed proof is a valid sequent.

In addition to propositional and quantifier rules in Table 3, the calculus in
[27] also includes rules for equations and inequalities in Presburger arithmetic;
the details of those rules are not relevant for this paper.

Reasoning in the Theory of Heap: Satisfiability and Interpolation 179

Table 3. A selection of the basic calculus rules for propositional and first-order logic.
In the rules ∃-left and ∀-right, x′ is a variable that does not occur in the conclusion.

Γ, φ � Δ Γ, ψ � Δ

Γ, φ ∨ ψ � Δ
∨-left Γ � φ, Δ Γ � ψ, Δ

Γ � φ ∧ ψ, Δ
∧-right

Γ, φ, ψ � Δ

Γ, φ ∧ ψ � Δ
∧-left Γ � φ, ψ, Δ

Γ � φ ∨ ψ, Δ
∨-right

Γ � φ, Δ

Γ, ¬φ � Δ
¬-left Γ, φ � Δ

Γ � ¬φ, Δ
¬-right

∗
Γ, φ � φ, Δ

close

Γ, [x/t]φ, ∀x.φ � Δ

Γ, ∀x.φ � Δ
∀-left Γ, [x/x′]φ � Δ

Γ, ∃x.φ � Δ
∃-left

Γ � [x/t]φ, ∃x.φ, Δ

Γ � ∃x.φ, Δ
∃-right Γ � [x/x′]φ, Δ

Γ � ∀x.φ, Δ
∀-right

Craig Interpolation in the Base Logic. Given formulas A and B such
that A ∧ B is unsatisfiable, Craig interpolation can determine a formula I such
that the implications A ⇒ I and B ⇒ ¬I hold, and non-logical symbols in I
occur in both A and B [10]. An interpolating version of our sequent calculus
has been presented in [5,6], and is summarised in Table 4. To keep track of
the partitions A,B, the calculus operates on labelled formulas
φ�L (with L for
“left”) to indicate that φ is derived from A, and similarly formulas
φ�R for φ
derived from B. If Γ , Δ are finite sets of L/R-labelled formulas, and I is an
unlabelled formula, then Γ � Δ � I is an interpolating sequent.

Semantics of interpolating sequents is defined using the projections ΓL =def

{φ |
φ�L ∈ Γ} and ΓR =def {φ |
φ�R ∈ Γ}, which extract the L/R-parts
of a set Γ of labelled formulae. A sequent Γ � Δ � I is valid if (i) the
sequent ΓL � I,ΔL is valid, (ii) the sequent ΓR, I � ΔR is valid, and (iii) the
variables and uninterpreted predicates in I occur in both ΓL ∪ΔL and ΓR ∪ΔR.
As a special case, note that the sequent
A�L,
B�R � ∅ � I is valid iff I is
an interpolant of A ∧ B. Soundness of the calculus guarantees that the root of a
closed interpolating proof is a valid interpolating sequent.

To solve an interpolation problem A ∧ B, a prover typically first constructs
a proof of A,B � ∅ using the ordinary calculus from Table 3. Once a closed
proof has been found, it can be lifted to an interpolating proof: this is done by
replacing the root formulas A,B with
A�L,
B�R, respectively, and recursively
assigning labels to all other formulas as defined by the rules from Table 4. Then,
starting from the leaves, intermediate interpolants are computed and propagated
back to the root, leading to an interpolating sequent
A�L,
B�R � ∅ � I.

180 Z. Esen and P. Rümmer

Table 4. A selection of interpolating rules for propositional and first-order logic.
Parameter D stands for either L or R. The quantifier ∃Lt denotes existential quan-
tification over all free variables occurring in t but not in ΓR ∪ ΔR. In ∃-leftD and
∀-rightD, x′ is a fresh variable that does not occur in the conclusion.

Γ,
φ�L � Δ � I Γ,
ψ�L � Δ � J

Γ,
φ ∨ ψ�L � Δ � I ∨ J
∨-leftL

Γ,
φ�R � Δ � I Γ,
ψ�R � Δ � J

Γ,
φ ∨ ψ�R � Δ � I ∧ J
∨-leftR

Γ,
φ�D,
ψ�D � Δ � I

Γ,
φ ∧ ψ�D � Δ � I
∧-leftD

Γ �
φ�D, Δ � I

Γ,
¬φ�D � Δ � I
¬-leftD

∗
Γ,
φ�L �
φ�R, Δ � φ

closeLR
∗

Γ,
φ�R �
φ�R, Δ � true
closeRR

Γ,
[x/t]φ�R,
∀x.φ�R � Δ � I

Γ,
∀x.φ�R � Δ � ∃Lt I
∀-leftR

Γ,
[x/x′]φ�D � Δ � I

Γ,
∃x.φ�D � Δ � I
∃-leftD

2.3 Reduction for the Theory of Algebraic Data-Types

The heap theory uses ADTs to represent the objects stored on a heap, which
means that a decision procedure for heap formulas also has to handle ADTs.
For this purpose, in principle any existing algorithm for ADT formulas can be
used, e.g., [2,18,25,31]. In this paper, we make use of the reduction approach for
ADT formulas defined in [15], which translates a quantifier-free ADT formula to
an equisatisfiable formula in the combined theory of equality and uninterpreted
functions (EUF) and linear integers (LIA). An EUF+LIA formula can be trans-
lated further to a formula in the base logic from the previous section, and this
way also Craig interpolants can be computed for ADT formulas.

The details of [15] are not important for the present paper, and we only
assume that a function adtReduction is available that maps quantifier-free ADT
formulas to equisatisfiable formulas in the base language.

3 A Decision Procedure for the Theory of Heap

We now define our calculus and decision procedure for quantifier-free heap for-
mulas. Similarly to the approach chosen in [1,15], the procedure consists of two
components: a set of rewriting rules for translating heap formulas to a core lan-
guage (Sect. 3.2, Table 5), and a set of sequent calculus rules for handling the
core language (Sect. 3.3, Table 6).

3.1 The Core Language for Heap Formulas

Our core language for heap constraints is defined on top of first-order logic
modulo integers, as introduced in Sect. 2.2. Like in [1,15], in the core language

Reasoning in the Theory of Heap: Satisfiability and Interpolation 181

Table 5. Rewriting rules for translation of flat heap formulas to the core language.
The rules only apply in positive positions. In the rules, a is an address variable, h, h′

are heap variables, and o, o′ are heap object variables.

Table 6. Sequent calculus rules for heap formulas in the core language. The rules are
only applicable if the equation in the first premise follows from equations between heap
variables in Γ ; i.e., the compared terms are in the same equivalence class constructed
by congruence closure. The dots “. . .” stand for the matched literals in the conclusion.

182 Z. Esen and P. Rümmer

only integer terms are used, and the sorts Heap and Addr are both replaced with
Int ; in case of Addr , the range of values is restricted to non-negative numbers by
adding inequalities for all address variables in a formula. The object sort Object ,
and all other ADT sorts, are mapped to integers as in [15].

Our core language provides four predicates specific for heap constraints:
heapSize(h, n) expresses that heap h contains n allocated locations; predicate
allocHeap(h, o, h′) expresses that allocating a fresh address in heap h, and stor-
ing object o at this address, yields the new heap h′; read(h, a, o) expresses that
reading from address a in heap h yields object o; and write(h, a, o, h′) expresses
that storing object o at address a in heap h yields the new heap h′.

The intended semantics of the four predicates essentially follows the heap
semantics in Sect. 2.1, which in particular means that reading from unallocated
addresses yields some default value defObj , and that writing to unallocated
addresses does not change a heap. The null address is, following the standard
convention, represented by 0, and the address allocated by allocHeap(h, a, o, h′)
is the next free address in h, and coincides with the size of the heap h′.

In addition to the four heap predicates, the core language also provides the
predicates necessary to represent ADTs; the details of this reduction are given
in [15], and our calculus is essentially agnostic of the object representation.

3.2 Translation to the Core Language

For sake of presentation, we make several simplifying assumptions when defining
the translation of (quantifier-free) heap formulas φ to the core language. (i) We
assume that φ has been brought into a flat form upfront. A formula φ is flat if
function symbols (in particular the functions in Table 1) only occur in equations
of the form g(x1, . . . , xn) = x0 (where x0, . . . , xn do not contain functions),
and only in positive positions (under an even number of negations). We further
assume that (ii) φ is in negation normal form, and that (iii) allocate only occurs in
the form allocate(. . .). 1 or allocate(. . .). 2, i.e., the result of allocation is directly
projected to the new heap or the allocated address. Finally, we assume that
(iv) the object domain Object is infinite, so that the mapping to Int defined
in [15] does not introduce any side conditions. The assumptions (i)–(iii) can be
established by rewriting the considered heap formula. Flatness can be established
at the cost of introducing a linear number of additional variables.

Given a formula φ satisfying those assumptions, and containing variables
x1, . . . , xl with sorts σ1, . . . , σl, the translation to a formula φ̃ in the core language
is then defined as follows:

φ̃ =def adtReduction

(

heapRewr(φ) ∧
l∧

i=1

Inσi
(xi)

)

(1)

In this definition, heapRewr is the function defined by the rewriting rules in
Table 5, adtReduction is the ADT reduction defined in [15], and Inσ(x) are
domain constraints defined as Inσ(x) = x ≥ 0, if x has sort Addr , and Inσ(x) =
true otherwise. Note that, as a slight abuse of notation, the formulas φ and φ̃

Reasoning in the Theory of Heap: Satisfiability and Interpolation 183

contain the same variables x1, . . . , xl, we only interpret the variables in φ̃ as
integer variables.

Example 1. Consider the following formula φ = A ∧ B, which is unsatisfiable in
the theory of heap storing integers as heap objects:

valid(h, a) ∧ write(h, a, 42) = h′
︸ ︷︷ ︸

A

∧ read(h′, a) = 43
︸ ︷︷ ︸

B

The formula contains a write that stores 42 at a valid address of h, so that read
from the same address of the updated heap h′ must return 42. If the rewriting
rules are applied to φ using the definition from (1), we obtain the following
formula φ̃ in the core language; adtReduction has no effect as there are no ADT
functions nor predicates:

a ≥ 0 ∧ ∃x.(heapSize(h, x) ∧ 0 < a ∧ a ≤ x) ∧
(

write(h, a, 42, h′) ∧ ∃x.(heapSize(h, x) ∧ heapSize(h′, x) ∧
(0 ≥ a ∨ a > x ∨ (0 < a ∧ a ≤ x ∧ read(h′, a, 42))))

)

∧
(
read(h′, a, 43) ∧ ∃x.(heapSize(h′, x) ∧ ((0 < a ∧ a ≤ x) ∨ defObj = 43)))

)
(2)

3.3 The Sequent Calculus for the Core Language

Table 6 shows the additional calculus rules (beyond the rules discussed in
Sect. 2.2) needed to reason about heap formulas in the core language: two rules
establishing functional consistency of the relations heapSize and read , two rules
capturing the read-over-write (row) axiom of heaps, and two rules capturing the
read-over-allocation (roa) axiom. All of the rules have a first premise that asserts
the equality of multiple heap terms; such equalities are handled explicitly since
the calculus never rewrites predicate literals.

Functional consistency is not needed for the relations write and allocHeap,
since the read-over-write and read-over-allocation rules are sufficient to reason
about the heaps produced by those relations. We do not need rules encoding
extensionality of heap either, since the only way to observe heap (dis-)equality
is through negated equations h �= h′, which are already transformed away by the
last rewriting rule in Table 5.

The row↓ and row↑ rules can be used to move a read literal over a write lit-
eral, provided that the address a′ that is read from is different from the address a
written to. The second premise of the rules represents the case that a �= a′, and
introduces a new read literal; the third premise represents the a = a′ case. Inter-
estingly, it is not necessary to check whether the addresses a, a′ are valid in the
considered heaps, since writing to an invalid address does not mutate a heap.

The rules roa↓ and roa↑ describe the same transformation for the combi-
nation of a read with an allocHeap literal.

Example 2. We continue Example 1, and show how to construct a proof tree for
(2). For sake of presentation, we first simplify (2) by introducing Skolem symbols

184 Z. Esen and P. Rümmer

for the quantified variables, and contextual simplification, leading to:

heapSize(h, n) ∧ heapSize(h′, n) ∧ 0 < a ∧ a ≤ n ∧
write(h, a, 42, h′) ∧ read(h′, a, 42) ∧

}
A′

read(h′, a, 43) ∧ heapSize(h′, n′) ∧ ((0 < a ∧ a ≤ n′) ∨ defObj = 43)
}

B′

We can then prove unsatisfiability of A′ ∧ B′ by constructing a proof starting
with the sequent A′, B′ � ∅. The main step in the proof is the application of
the rule read-fc for functional consistency of read :

∗
. . . � h′ = h′

∗
. . . � a = a

∗
a = a, 42 = 43 �

read(h′, a, 42), read(h′, a, 43), . . . � read-fc

A′, B′ � ∅ ∧-left∗
(3)

3.4 Properties of the Calculus

The following theorem observes soundness and completeness of our calculus,
when applied to a formula that has been rewritten to the core language. In
addition, we can observe that systematic application of the rules terminates (in
the sense that no new formulas can be added anymore) because the rules in
Table 6 do not introduce new terms, and do not remove atoms, and therefore
only finitely many atoms will be generated. This implies that the calculus even
represents a decision procedure.

Theorem 1. Suppose φ is a heap formula satisfying the assumptions in
Sect. 3.2, and φ̃ is the corresponding formula in the core language. Then φ is
unsatisfiable if and only if a closed proof of the sequent φ̃ � ∅ exists.

Proof. “⇐” This is the soundness direction. For a proof by contradiction, assume
that φ is satisfiable, i.e., there is a variable assignment β satisfying φ in the
structure defined in Sect. 2.1. There are then bijections bobj : I(Object) → Z

and bhp : I(Heap) → Z, and we can construct a solution (〈Z, Ĩ〉, β̃) of φ̃:

Ĩ(heapSize) = {(n, |b−1
hp (n)|) | n ∈ Z}

Ĩ(allocHeap) = {(n,m, bhp(b−1
hp (n) ++ [b−1

obj(m)])) | n,m ∈ Z}
Ĩ(read) = {(n, a, bobj(b−1

hp (n)[a − 1])) | n ∈ Z and a ∈ {1, . . . , |b−1
hp (n)|}} ∪

{(n, a, bobj(defObj)) | n ∈ Z and a �∈ {1, . . . , |b−1
hp (n)|}}

Ĩ(write) =
{

(n, a, o, bhp(b−1
hp (n)[a − 1 �→ b−1

obj(o)]))
| n, o ∈ Z and a ∈ {1, . . . , |b−1

hp (n)|}
}

∪

{(n, a, o, n) | n, o ∈ Z and a �∈ {1, . . . , |b−1
hp (n)|}}

β̃(x) = bobj(β(x)) if x : Object

β̃(x) = bhp(β(x)) if x : Heap

β̃(x) = β(x) if x : Addr

Reasoning in the Theory of Heap: Satisfiability and Interpolation 185

The translation of other variables and relations is as defined in [15].
By checking the cases in Table 5, we can see that (〈Z, Ĩ〉, β̃) is indeed a

solution of φ̃, and that the sequent φ̃ � is therefore counter-satisfiable. It can
also be checked that the rules preserve this counter-model: whenever (〈Z, Ĩ〉, β̃) is
a counter-model of the conclusion of a rule application, it will also be a counter-
model of at least one of the premises. This means that no closed proof can exist.

“⇒” This is the completeness direction. Suppose φ is a formula so that no
closed proof exists for the sequent φ̃ � ∅; we show that φ is satisfiable. For this,
assume that P is a proof-attempt for φ̃ � ∅ with a branch that cannot be closed;
that Γ � Δ is the last sequent on that branch; and that the rules from Table 6
(and the rest of the calculus) have been applied exhaustively on the branch.
Since systematic application of the rules terminates, only finitely many atoms
with the predicates P = {heapSize, read ,write, allocHeap} can be generated.

We extract a solution of φ from Γ � Δ. First consider the sub-sequent Γ ′ � Δ
of Γ � Δ that is obtained by removing the P -atoms from Γ ; since the calculus
from Sect. 2.2 has been applied exhaustively, a counter-model (〈Z, I ′〉, β′) of
Γ ′ � Δ exists.

Heap variables h can only occur in equations h = h′ or as arguments of P -
atoms in Γ . Define an equivalence relation h � h′ as the reflexive and transitive
closure of equations between heap variables in Γ . We write [h] for the class of
variable h, and R([h]) = {(valβ′(a), valβ′(o)) | read(h′, a, o) ∈ Γ, h′ � h} for
the reads in Γ from [h]. Since the rule read-fc has been applied exhaustively,
R([h]) will contain at most one value valβ′(o) for each address valβ′(a), i.e., the
data read is consistent.

Whenever R([h]) �= ∅, then Γ also contains an atom heapSize(h′, t) for some
h′ � h, since the rules in Table 5 are designed in such a way that every read
is accompanied by heapSize, and heapSize-atoms also exist for the pre- and the
post-heap of every write and allocHeap. The rule heap-size-fc ensures that the
elements of [h] are assigned consistent sizes, so that we can set

S([h]) =

{
valβ′(t) if heapSize(h′, t) ∈ Γ for some h′ � h

0 otherwise .

As shown in [15], from the counter-model (〈Z, I ′〉, β′) it is possible to recon-
struct ADT terms, and we can define a bijection bobj : I(Object) → Z (where I
is the interpretation defined in Sect. 2.1) such that whenever the Object-ADT-
term t is extracted for valβ′(o), for some variable o of sort Object in φ, then
bobj(t) = valβ′(o). We can then define H([h]) = [t1, . . . , tS([h])] as the heap rep-
resented by [h], with

ti =

{
b−1
obj(v) if there is (i, v) ∈ R([h])

defObj otherwise.

186 Z. Esen and P. Rümmer

The solution of φ is the variable assignment β, defined by

β(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H([x]) if x : Heap
b−1
obj(valβ′(x)) if x : Object

β′(x) if x : Addr
β(x) (as in [15] for other ADT variables) .

To see that β indeed satisfies φ, translate β to a structure (〈Z, Ĩ〉, β̃) as in “⇐”.
Because the rules row↓,row↑,roa↓,roa↑ have been applied exhaustively, this
structure is a counter-model of Γ � Δ. By checking the rules of the calculus
individually, we can further see that whenever (〈Z, Ĩ〉, β̃) is a counter-model
of one of the premises of a rule application, it is also a counter-model of the
conclusion, and therefore a model of φ̃. Lastly, analysing the rules in Table 5,
we can see that then also β has to satisfy φ. ��

4 Craig Interpolation in the Theory of Heap

It is well-known that the (standard) quantifier-free theory of arrays does not
admit Craig interpolation: in some cases all interpolants for an unsatisfiable,
quantifier-free conjunction A∧B will need quantifiers [21]. The same observation
applies to the theory of heap. For software verification, however, even imperfect
interpolation procedures are useful, and the interesting question arises how the
interpolating calculus from Sect. 2.2 can be generalised to heap formulas.

For interpolation, the conjuncts of an interpolation problem A ∧ B can be
translated to the core language independently, i.e., an interpolant Ĩ of the rewrit-
ten conjunction Ã∧B̃ is computed. Since Ĩ will be an interpolant in the core lan-
guage as well, it has to be mapped back to a normal heap formula I by replacing
the relations from Sect. 3.1 with the original heap functions (Sect. 2.1). Whether
this is possible in all cases is a question that require more research.

For interpolation in the core language, interpolating versions of the heap
rules (Table 6) are needed. We follow the approach used in [1,5] (which in
turn resembles the use of theory lemmas in SMT in general), which we sum-
marise in this section. When translating a proof to an interpolating proof, we
replace applications of the heap rules with instantiation of an equivalent the-
ory axiom QAx . Suppose a non-interpolating proof contains a rule application

....
Γ, Γ ′, Γ1 � Δ1, Δ

′, Δ · · ·
....

Γ, Γ ′, Γn � Δn, Δ′, Δ
Γ, Γ ′ � Δ′, Δ

R
....

in which Γ ′,Δ′ are the formulas assumed by the rule application, Γ,Δ are side
formulas not required or affected by the application, and Γ1,Δ1, . . . , Γn,Δn are
newly introduced formulas in the individual branches.

The (unquantified) theory axiom Ax corresponding to the rule application
expresses that the conjunction of the premises has to imply the conclusion;

Reasoning in the Theory of Heap: Satisfiability and Interpolation 187

the quantified theory axiom QAx =def ∀S.Ax in addition contains universal
quantifiers for all variables S occurring in Ax .

Ax =def

n∧

i=1

(∧
Γi →

∨
Δi

) → (∧
Γ ′ →

∨
Δ′)

Ax and QAx are specific to the application of R: the axioms for two distinct
applications of R will in general be different formulas. QAx is defined in such a
way that the effect of R can be simulated by introducing QAx in the antecedent,
instantiating it with the right terms, and applying propositional rules.

This construction leads to a proof using only the standard rules from
Sect. 2.2, which can be interpolated as discussed earlier. Since QAx is a valid
formula not containing any free variables, it can be introduced in a proof at any
point, and labelled
QAx�L or
QAx�R on demand.

An immediate consequence of this approach is the possibility of quantifiers
occurring in interpolants. This is because the interpolating rules ∀-leftL/R

(Table 4) have to introduce quantifiers ∀Rt/∃Lt for local symbols in the sub-
stituted term t; whether such quantifiers actually occur in the final interpolant
depends on the applied heap rules, and on the order of rule application. How-
ever, as we have observed in the beginning of the section, quantifiers in heap
interpolants are in general unavoidable.

Example 3. We continue Example 2, and show how to extract an interpolant for
the conjunction A ∧ B. Since A′ and B′ in Example 2 are simplified versions
of the conjuncts Ã and B̃ in the core language, respectively, interpolation can
start from A′, B′. The rule application read-fc can be encoded as the following
theory axioms:

Ax = (h′ = h′ ∧ a = a ∧ 42 �= 43) → ¬(read(h′, a, 42) ∧ read(h′, a, 43))
≡ ¬read(h′, a, 42) ∨ ¬read(h′, a, 43)

QAx ≡ ∀h, a. (¬read(h, a, 42) ∨ ¬read(h, a, 43))

Replacing the application of read-fc with the axiom, and adding formula labels,
we obtain the following interpolating proof of the conjunction A′ ∧ B′:

∗

read(h′, a, 42)�L �
read(h′, a, 42)�R � J̃

closeLR

read(h′, a, 42)�L,
¬read(h′, a, 42)�R � � J̃
¬-leftR ...

read(h′, a, 42)�L,
read(h′, a, 43)�R,

¬read(h′, a, 42) ∨ ¬read(h′, a, 43)�R � � J̃ ∧ true

∨-leftR

read(h′, a, 42)�L,
read(h′, a, 43)�R,
QAx�R, . . . � � Ĩ
∀-leftR × 2

A′�L,
B′�R � ∅ � Ĩ
∧-left∗

The interpolant extracted from this proof is Ĩ ≡ read(h′, a, 42), and stems
from the application of the rule closeLR in the left sub-proof. In the right

188 Z. Esen and P. Rümmer

sub-proof (not shown here), only R-labelled formulas are needed, and the sub-
interpolant generated by the rule closeRR is true. The interpolant Ĩ in the core
language can be translated back to the heap formula I = (read(h′, a) = 42).
Note that this formula is a correct interpolant even though it does not explicitly
state that a is a valid address in h′.

The proof could also be rewritten to use the L-labelled axiom
QAx�L instead
of
QAx�R. As a result, the label of several formulas and rule applications would
then change from R to L, and the final interpolant becomes read(h′, a) �= 43.

5 Related Work

Since the theory of heap is quite close to the theory of arrays, we discuss some
existing work on array decision and interpolation procedures.

There is a large body of research on array decision procedures for SMT, going
back to the 1980s. Stump et al. present a decision procedure for the extensional
theory of arrays, including several extensions [30]. Our rules for heap have sim-
ilarities with this procedure. De Moura et al. define a decision procedure for
combinatory array logic [24]. Hoenicke et al. present an algorithm for the theory
of arrays where lemmas are created lazily based on weak equivalences [9]. Brum-
mayer et al. present a decision procedure for the extensional theory of arrays
that introduces lemmas lazily, guided by congruence closure [7].

Interpolation procedures for arrays have been presented in a number of recent
publications, in particular tackling the problem of defining array theories that
admit quantifier-free interpolation. Bruttomesso et al. observe that adding a
diff function to the theory of arrays establishes quantifier-free interpolation,
and present an interpolation procedure [8]. Totla et al. present an interpolation
procedure for arrays based on complete instantiation [32]. An interpolation pro-
cedure based on weak equivalences, extending [9], is given in [14], again ensuring
quantifier-free interpolants by adding a diff function.

6 Conclusions and Outlook

This paper presents the first decision procedure for the theory of heap, and shows
soundness and completeness of the calculus underlying the decision procedure.
As an extension of the decision procedure, a procedure to generate interpolants
using the standard rules from Sect. 2.2 is presented. The procedures are intended
as a starting point, and at this point largely unoptimised: in particular, the
decision procedure will likely suffer from too unrestricted applicability of the
calculus rules, and no attempts are made to minimise the number of quantifiers
that might occur in computed interpolants. To address those shortcomings, we
believe that many of the approaches surveyed in the previous section, developed
for the theory of arrays, could be adapted to the theory of heap. This is left as
future work.

Reasoning in the Theory of Heap: Satisfiability and Interpolation 189

An orthogonal line of research concerns simplification techniques for CHCs
modulo the theory of heap. Such techniques can for instance use Abstract Inter-
pretation to derive the validity of heap addresses, or the type of objects at specific
addresses. CHCs could also be simplified by eliminating repeated reads from the
same address, across multiple clauses, or by adding arguments to predicates in
order to partially expand heap arguments. Experience with CHC indicates that
such preprocessing can have dramatic effect on the performance of solvers.

Acknowledgements. This work was supported by the Swedish Research Council
(VR) under grant 2018-04727, and by the Swedish Foundation for Strategic Research
(SSF) under the project WebSec (Ref. RIT17-0011).

References

1. Backeman, P., Rümmer, P., Zeljic, A.: Bit-vector interpolation and quantifier elim-
ination by lazy reduction. In: Bjørner, N., Gurfinkel, A. (eds.) 2018 Formal Meth-
ods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, 30 October–2
November 2018, pp. 1–10. IEEE (2018). https://doi.org/10.23919/FMCAD.2018.
8603023

2. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory
of inductive data types. JSAT 3(1–2), 21–46 (2007)

3. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

4. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 105–
125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-9 8

5. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: Beyond quantifier-free inter-
polation in extensions of Presburger arithmetic. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 88–102. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-18275-4 8

6. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An interpolating sequent cal-
culus for quantifier-free Presburger arithmetic. J. Autom. Reasoning 47, 341–367
(2011)

7. Brummayer, R., Biere, A.: Lemmas on demand for the extensional theory of arrays.
J. Satisfiability Boolean Model. Comput. 6(1–3), 165–201 (2009). https://doi.org/
10.3233/sat190067

8. Bruttomesso, R., Ghilardi, S., Ranise, S.: Quantifier-free interpolation of a theory
of arrays. Log. Methods Comput. Sci. 8(2) (2012). https://doi.org/10.2168/LMCS-
8(2:4)2012

9. Christ, J., Hoenicke, J.: Weakly equivalent arrays. In: Rümmer, P., Wintersteiger,
C.M. (eds.) Proceedings of the 12th International Workshop on Satisfiability Mod-
ulo Theories, SMT 2014, affiliated with the 26th International Conference on Com-
puter Aided Verification (CAV 2014), the 7th International Joint Conference on
Automated Reasoning (IJCAR 2014), and the 17th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2014), Vienna, Austria, 17–
18 July 2014. CEUR Workshop Proceedings, vol. 1163, pp. 39–49. CEUR-WS.org
(2014). http://ceur-ws.org/Vol-1163/paper-06.pdf

https://doi.org/10.23919/FMCAD.2018.8603023
https://doi.org/10.23919/FMCAD.2018.8603023
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.1007/978-3-642-18275-4_8
https://doi.org/10.1007/978-3-642-18275-4_8
https://doi.org/10.3233/sat190067
https://doi.org/10.3233/sat190067
https://doi.org/10.2168/LMCS-8(2:4)2012
https://doi.org/10.2168/LMCS-8(2:4)2012
http://ceur-ws.org/Vol-1163/paper-06.pdf

190 Z. Esen and P. Rümmer

10. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.
Symbolic Log. 22(3), 250–268 (1957)

11. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Program verification
using constraint handling rules and array constraint generalizations. Fundam.
Inform. 150(1), 73–117 (2017). https://doi.org/10.3233/FI-2017-1461

12. Esen, Z., Rümmer, P.: Towards an SMT-LIB theory of heap. In: Fribourg, L.,
Heizmann, M. (eds.) Proceedings 8th International Workshop on Verification and
Program Transformation and 7th Workshop on Horn Clauses for Verification and
Synthesis, VPT/HCVS@ETAPS 2020 2020, and 7th Workshop on Horn Clauses
for Verification and SynthesisDublin, Ireland, 25–26th April 2020. EPTCS, vol.
320 (2020)

13. Fitting, M.C.: First-Order Logic and Automated Theorem Proving. TCS, 2nd edn.
Springer, New York (1996). https://doi.org/10.1007/978-1-4612-2360-3

14. Hoenicke, J., Schindler, T.: Efficient interpolation for the theory of arrays. In:
Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol.
10900, pp. 549–565. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94205-6 36

15. Hojjat, H., Rümmer, P.: Deciding and interpolating algebraic data types by reduc-
tion. In: Jebelean, T., Negru, V., Petcu, D., Zaharie, D., Ida, T., Watt, S.M. (eds.)
19th International Symposium on Symbolic and Numeric Algorithms for Scien-
tific Computing, SYNASC 2017, Timisoara, Romania, 21–24 September 2017, pp.
145–152. IEEE Computer Society (2017). https://doi.org/10.1109/SYNASC.2017.
00033

16. Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: Bjørner, N., Gurfinkel,
A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin,
TX, USA, 30 October–2 November 2018, pp. 1–7. IEEE (2018). https://doi.org/
10.23919/FMCAD.2018.8603013

17. Kahsai, T., Kersten, R., Rümmer, P., Schäf, M.: Quantified heap invariants for
object-oriented programs. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Maun, Botswana, 7–12 May 2017. EPiC Series in Computing, vol. 46, pp. 368–384.
EasyChair (2017) https://easychair.org/publications/paper/Pmh

18. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In: SIG-
SOFT 2006/FSE-14, pp. 105–116. ACM, New York (2006)

19. Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compositional ver-
ification of procedural programs using Horn clauses over integers and arrays. In:
Kaivola, R., Wahl, T. (eds.) Formal Methods in Computer-Aided Design, FMCAD
2015, Austin, Texas, USA, 27–30 September 2015, pp. 89–96. IEEE (2015)

20. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in
SMT-based unbounded software model checking. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 846–862. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39799-8 59

21. McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24730-2 2

22. Monniaux, D., Gonnord, L.: Cell morphing: from array programs to array-free horn
clauses. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 361–382. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7 18

23. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.3233/FI-2017-1461
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1007/978-3-319-94205-6_36
https://doi.org/10.1007/978-3-319-94205-6_36
https://doi.org/10.1109/SYNASC.2017.00033
https://doi.org/10.1109/SYNASC.2017.00033
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.23919/FMCAD.2018.8603013
https://easychair.org/publications/paper/Pmh
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-540-24730-2_2
https://doi.org/10.1007/978-3-662-53413-7_18
https://doi.org/10.1007/978-3-540-78800-3_24

Reasoning in the Theory of Heap: Satisfiability and Interpolation 191

24. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In:
Proceedings of 9th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2009, Austin, Texas, USA, 15–18 November 2009, pp.
45–52. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351142

25. Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes in SMT
solvers. J. Autom. Reasoning 58(3), 341–362 (2017). https://doi.org/10.1007/
s10817-016-9372-6

26. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta, R., Amaras-
inghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008 Conference on Pro-
gramming Language Design and Implementation, Tucson, AZ, USA, 7–13 June
2008, pp. 159–169. ACM (2008). https://doi.org/10.1145/1375581.1375602

27. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1 20

28. Rümmer, P.: Competition report: CHC-COMP-20. In: Fribourg, L., Heizmann,
M. (eds.) Proceedings 8th International Workshop on Verification and Program
Transformation and 7th Workshop on Horn Clauses for Verification and Synthesis,
VPT/HCVS@ETAPS 2020 2020, and 7th Workshop on Horn Clauses for Verifi-
cation and SynthesisDublin, Ireland, 25–26th April 2020. EPTCS, vol. 320, pp.
197–219 (2020). https://doi.org/10.4204/EPTCS.320.15

29. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 24

30. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an
extensional theory of arrays. In: 16th Annual IEEE Symposium on Logic in Com-
puter Science, Boston, Massachusetts, USA, 16–19 June 2001, Proceedings, pp.
29–37. IEEE Computer Society (2001). https://doi.org/10.1109/LICS.2001.932480

31. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with
abstractions. In: SIGPLAN Not., vol. 45, no. 1, pp. 199–210 (2010)

32. Totla, N., Wies, T.: Complete instantiation-based interpolation. J. Autom. Rea-
soning 57(1), 37–65 (2016). https://doi.org/10.1007/s10817-016-9371-7

https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/s10817-016-9372-6
https://doi.org/10.1007/s10817-016-9372-6
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.4204/EPTCS.320.15
https://doi.org/10.1007/978-3-642-39799-8_24
https://doi.org/10.1109/LICS.2001.932480
https://doi.org/10.1007/s10817-016-9371-7

Algorithm Selection for Dynamic
Symbolic Execution: A Preliminary Study

Roberto Amadini1(B), Graeme Gange3, Peter Schachte2, Harald Søndergaard2,
and Peter J. Stuckey3

1 University of Bologna, Bologna, Italy
roberto.amadini@unibo.it

2 University of Melbourne, Parkville, VIC, Australia
3 Monash University, Clayton, VIC, Australia

Abstract. Given a portfolio of algorithms, the goal of Algorithm Selec-
tion (AS) is to select the best algorithm(s) for a new, unseen problem
instance. Dynamic Symbolic Execution (DSE) brings together concrete
and symbolic execution to maximise the program coverage. DSE uses a
constraint solver to solve the path conditions and generate new inputs
to explore. In this paper we join these lines of research by introducing
a model that combines DSE and AS approaches. The proposed AS/DSE
model is a generic and flexible framework enabling the DSE engine to
solve the path conditions it collects with a portfolio of different solvers,
by exploiting and extending the well-known AS techniques that have been
developed over the last decade. In this way, one can increase the cover-
age and sometimes even outperform the aggregate coverage achievable
by running simultaneously all the solvers of the portfolio.

Keywords: Software verification · Dynamic symbolic execution ·
Algorithm selection · Constraint solving · Portfolio solving

1 Introduction

The Algorithm selection (AS) problem was formalised by Rice in 1976 [27]. In
a nutshell, given a set of algorithms A and a problem instance i,the aggregate
coverage. AS aims to select the best algorithm in A to solve i according to
a given performance metric m [33]. AS approaches are also known as portfo-
lio approaches, where “solver” is used as a synonym of algorithm, “portfolio”
indicates a subset of solvers of A, and the solver selection is performed on a
per-instance basis.

Algorithm selection typically uses machine learning techniques (e.g., decision
trees or k-nearest neighbours) and it is not limited to the choice of a single
solver: a portfolio approach can first select a number of different solvers, and
then schedule their (sequential or parallel) execution [20].

The solver selection is typically performed by extracting a number of features
from each problem. Features are numerical attributes characterizing a given
problem instance (e.g., the number of variables or constraints).
c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 192–209, 2021.
https://doi.org/10.1007/978-3-030-68446-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-68446-4_10

Algorithm Selection for Dynamic Symbolic Execution: A Preliminary Study 193

Over the last years a large number of effective AS approaches have been pro-
posed in different fields, including SAT solving [24,36], constraint programming
(CP) [3,12], answer-set programming (ASP) [11], and planning [35].

Dynamic symbolic execution (DSE) [9,22] also known as concolic execu-
tion/testing, or directed automated random testing (DART) is a software veri-
fication technique combining the concrete (or dynamic) execution of a program
together with its symbolic execution [17]. DSE first collects all the constraints
involving symbolic variables (the so called path conditions) encountered during
the dynamic execution at each conditional statement. Then, a constraint solver
(or theorem prover) is used to generate alternative execution paths by systemat-
ically negating the path conditions. This process is repeated until all the feasible
paths are covered, or a resource limit (e.g., a time limit or a maximum number
of iterations) is reached.

A possible bottleneck of DSE is the solver used for solving path conditions.
Indeed, despite the significant progress made by constraint solvers over the last
years, it is still hard for a single, arbitrarily efficient solver to properly encode
and solve the great variety of path conditions arising from the DSE of different
programs. This is partly due to the complexity of precisely encoding the seman-
tics of modern programming languages. Unfortunately, depending on the shape
of the input program, failing to solve even just one path condition could result
in a significant loss in terms of code coverage.

In this work we propose the AS/DSE framework, a generic model that aims to
get the best of the AS and DSE worlds. The goal is to mitigate the issues of single-
solver DSE approaches with a portfolio of different solvers. This can be beneficial
in terms of robustness (if a solver fails on a path condition, the overall DSE is
not compromised), runtime minimisation and code coverage maximisation.

To our knowledge, the few approaches proposed so far [26] merely run in
parallel different DSE engines—each of them running a different solver of the
portfolio. Here we take a step forward by proposing a model that can be arbi-
trarily instantiated depending on the available solvers, the input language, the
program to analyse, the execution environment, and so on. In particular, we show
that a AS/DSE model may even outperform the aggregate coverage achievable
by running independently all the solvers of the portfolio.

As a proof-of-concept, we implemented and evaluated two basic portfolio
approaches on top of Aratha [1], a tool for JavaScript DSE enabling the use of
both SMT and CP solvers for solving path conditions. Preliminary results are
encouraging and show the potential of combining AS with DSE. For each analysed
program the coverage achieved by portfolio approaches is never worse than the
one achievable with a single solver and, in particular, one of the approaches is
able to outperform the coverage reachable by running simultaneously all the
solvers of the portfolio.

Paper structure. In Sect. 2 we give the basic notions about AS and DSE.
In Sect. 3 we describe the AS/DSE model, while in Sect. 4 we show the results
of the preliminary investigation we performed. In Sect. 5 we report the related
literature before concluding in Sect. 6.

194 R. Amadini et al.

2 Preliminaries

We start with some background notions related to algorithm selection and
dynamic symbolic execution.

2.1 Algorithm Selection

The main ingredients of an AS scenario are: (i) the algorithms to be selected,
(ii) the problem instances on which algorithms are applied, (iii) the performance
metric used to evaluate an algorithm on a given problem. More formally, an AS
scenario is a triple (I,A,m) where I is a set of instances, A is a set (or portfolio)
of algorithms (or solvers) with |A| > 1, and m : I × A → R is a performance
metric that w.l.o.g. we can assume to be minimized.

An algorithm selector (or portfolio selector) aims to return the best algo-
rithm, according to the performance metric, for a given instance. Formally, given
an AS scenario (I,A,m), a selector ξ is a total mapping ξ : I → A. The AS
problem consists in finding a selector ξ minimizing

∑

i∈I
m(i, ξ(i)).

Note that m is a partial function, i.e., we do not know a priori the value
of m(i, A) for each possible i ∈ I, A ∈ A (otherwise the AS problem would
be trivial). This means that an AS selector has to estimate m(i, A) when it is
unknown, and predict the best algorithm(s) for i. For each scenario we can define
the virtual best solver (VBS) baseline, i.e., an “oracle selector” always choosing
the algorithm VBS (i) such that m(i,VBS (i)) is minimal for each i ∈ I. Hence,
m(i,VBS (i)) ≤ m(i, ξ(i)) for each selector ξ and i ∈ I, A ∈ A.

The above schema can be however extended by enabling the scheduling of
k > 1 algorithms [(A1, t1) . . . , (Ak, tk)] for a given problem i, where tj is the
time slot assigned to each Aj for j = 1, . . . , k. Note that, because the instances
of I might be too hard to solve, often a timeout T is used: m(i, A) ≤ T for
each i ∈ I, A ∈ A. So, if A1, . . . , Ak are scheduled for time t1, . . . , tk then∑k

j=1 tj = T .
An advantage of scheduling k solvers is that algorithm Aj can use the infor-

mation computed by Aj′ , with j′ < j, to improve its performance. For example,
consider an optimization problem i where the best objective value v found by
solver Aj′ can be exploited by another solver Aj to narrow its search space (i.e.,
Aj solves a modified problem iv where value v is “injected” to i [6]). It is impor-
tant to note that such a collaborative approach may allow a portfolio solver to
outperform the VBS, i.e., it might be m(iv, Aj) < m(i,VBS (i)).

Finally, note that AS scenarios usually characterize each instance i ∈ I with
a corresponding feature vector F(i) ∈ R

n, and the selection of the best algo-
rithm A for i is actually performed according to F(i). For example, if i is a
constraint satisfaction problem then F(i) may include the number of variables
or constraints of i. If i is an optimization problem, we may also want to capture
numeric information about the objective function of i (e.g., its lower and upper
bounds).

Algorithm Selection for Dynamic Symbolic Execution: A Preliminary Study 195

There is an extensive literature about selecting the presumably best set of
features for a given instance. In particular, the process of refining a feature vector
F(i) ∈ R

n by deriving a smaller vector F ′(i) ∈ R
m with m ≤ n is known as

feature selection. The purpose of feature selection is to simplify the prediction
model, reducing the training and feature extraction costs, and improving the
prediction accuracy.

2.2 Dynamic Symbolic Execution

DSE is a combination of concrete and symbolic execution.
Symbolic execution is a whole-program analysis technique that has its roots in

the 1970s [17]. The idea is that, during execution, some variables take on symbolic
values, maintained as expressions involving unknown input values. A symbolic
interpreter explores the possible program paths that concrete executions could
take, by reasoning about the conditions under which execution will branch this
way or that. More precisely, a symbolic state (σ, Γ) is maintained, consisting of
a mapping σ that associates variables with expressions, and a path constraint Γ .
The latter is a conjunction of primitive constraints involving symbolic names for
inputs. It effectively determines the set of input values that would take concrete
execution along the current execution path; that is, a path is feasible if and only
if the corresponding constraints are satisfiable.

The test for satisfiability, and the generation of a witness (a solution) in
the affirmative case, is delegated to a constraint solver (or theorem prover).
The symbolic state evolves according to simple rules: (1) an assignment x = e
updates the symbolic state (σ, Γ) to (σ[x �→ σ(e)], Γ), and (2) for a conditional
if (e) s1 else s2, two path constraints are generated, namely Γ ∧ σ(e) and
Γ ∧ ¬σ(e); if Γ ∧ σ(e) is satisfiable, s1 is symbolically executed under the new
path constraint, and similarly for Γ ∧ ¬σ(e) and s2.

Two significant limitations of symbolic execution are: (i) the whole program
—including libraries—is often not available to the interpreter; (ii) the underly-
ing constraint solver is often not expressive and efficient enough to handle the
generated path conditions.

DSE combines symbolic execution with concrete execution, by performing
the symbolic execution along with concrete execution of the given program. The
motivation for this is to sidestep the two limitations mentioned above. Hav-
ing the concrete runtime state allows the tool to replace symbolic variables by
concrete values when faced by external function calls, and also to simplify dif-
ficult constraints. This enables progress of the symbolic execution, albeit at the
sacrifice of completeness.

So DSE needs to be seeded with concrete values for symbolic variables. It can
then perform a sequence of well-chosen concrete/symbolic executions (aimed
at maximizing code coverage), by taking a recently generated path constraint,
negating one of its conjuncts, asking a constraint solver whether the result is
satisfiable, and, if so, to provide a model, which can serve as a new seed.

Consider, for example, the snippet of pseudo-code in Fig. 1. Suppose the
initial input is x ← 0. The concrete execution of f(x) will print ’bar’, and

196 R. Amadini et al.

1: function f(x)
2: if x < 0 then
3: print(’foo’)
4: else if x ≥ 5 then
5: print(’fee’)
6: else
7: print(’bar’)

Fig. 1. Pseudo-code example. The set of inputs {x ← −1, x ← 0, x ← 5} covers all the
lines of function f .

the DSE engine will track the corresponding path conditions: ¬(x < 0) and
¬(x ≥ 5). After that, one path condition will be negated, let us say ¬(x ≥ 5),
and a constraint solver will solve ¬(x < 0) ∧ x ≥ 5. A computed solution (say,
x = 5) will be the input of the next concrete execution, that will print ’fee’. This
process is repeated until all the feasible paths are covered, or a pre-set resource
limit (usually a time limit or a maximum number of iterations) is reached.

DSE can mitigate the aforementioned symbolic execution issues by: (i)
directly invoking unavailable functions (a complete symbolic interpreter is not
required); (ii) ignoring or approximating unsupported constraints. This implies
that, in general, DSE cannot guarantee full coverage. In most applications, such
as test data generation, this is acceptable, provided a “good enough” coverage
is achieved in a reasonable time.

3 The AS/DSE Model

The purpose of this section is to map out the considerable space for algorithm
selection in DSE. We list an array of opportunities for “selection” that may
provide avenues to better DSE tools. Presently there is very limited support for
this, as existing tools tend to be tightly coupled with specific solvers. In Sect. 4
we report on whatever experiments we have been able to run, based on existing
technology.

The AS/DSE model is depicted in Fig. 2. The upper dashed box refers to
the “classical” DSE framework. The first step is to annotate the input program
P with n > 0 symbolic variables x1, . . . , xn of interest, i.e., with meta-variables
using symbolic values to represent input values. This can be performed manually
or automatically (e.g., by means of taint analysis [29]). The result is a symbolic
program P

′ containing both symbolic and “concrete” (i.e., non-symbolic) vari-
ables.

Given initial concrete values v0 = (v0,1, . . . , v0,n) we first execute P
′[v0], i.e.,

the program P
′ where value v0,i is assigned to variable xi for i = 1, 2, . . . , n.

Concurrently, a symbolic engine collects the path conditions Γ0 = (C1, . . . , Cm)
encountered during the concrete execution as explained in Sect. 2. At this stage,
for generating the next input, the last path condition Ck not already negated is
flipped (notice that the choice of Ck can be generalised to the j-th path condition

Algorithm Selection for Dynamic Symbolic Execution: A Preliminary Study 197

Input
Program

Symbolic
Program

Initial InputAnnotation Concrete Execution

New
InputConstraint SolvingPath

Conditions

DYNAMIC SYMBOLIC EXECUTION

Solver(s) Selection

Solver(s) Execution

Solution(s) Selection

Selected
solver(s)

New
solution(s)

ALGORITHM
SELECTION

Fig. 2. The AS/DSE model.

not already negated, with j ∈ {1, . . . , k}). If all the conditions have been already
negated, the DSE terminates.

Let Γ ′
0 = (C1, . . . , Ck−1,¬Ck). In the single-solver DSE a solver S is now used

to solve
∧

C∈Γ ′
0
C. If S returns a solution v1 = (v1,1, . . . , v1,n) then we execute

P
′[v1] to get new path conditions Γ1; otherwise, we repeat the procedure by

negating the last condition of Γ0 not already negated until either we find a
solution v1 or all the conditions are negated. By iterating this process until the
DSE terminates (or a given threshold is reached, e.g., a timeout or a maximum
number of DSE iterations) we get a set of inputs {v1,v2, . . . } that ideally covers
all the execution paths of P.

The AS/DSE model extends the single-solver model by using a portfolio of
solvers S = {S1, . . . , Sp}. In Fig. 2, the lower dashed box shows how AS is plugged
into the DSE framework. To solve a given tuple of path conditions Γ with S, we
define three different (yet interoperable) phases: (i) the solver selection phase,
(ii) the solver execution phase, (iii) the solution selection phase.

3.1 Solver Selection

The first stage is selecting the solver(s) from the portfolio S. We are not aware
of portfolio approaches for DSE that actually perform a discriminating solver
selection, that is, selection on a per-instance basis. The only alternative is to run
all the solvers of S (possibly in parallel). This is straightforward and might work
if S is small but it is impractical if S contains (many) more solvers than available
cores (e.g., the literature presents portfolios with more than 20 solvers). Note
that we can get different solvers by tuning the parameters of the same solver.
Moreover, the synchronisation issues due to the simultaneous execution of too
many solvers may significantly slow down the performance, especially when the
running solvers have to share information.

Given the growing number of solvers based on different technologies (e.g.,
SAT/SMT, CP, MIP solvers), it makes sense to have an heterogeneous portfolio

198 R. Amadini et al.

together with a proper solver selection heuristic Hsel returning a non-empty
subset S ′ ⊆ S of the supposed best solver(s) of the portfolio for solving Γ . Note
that the computational cost of solver selection is expected to be negligible.

The best portfolio approaches typically perform the solver prediction by
extracting a set of features from the problem to solve, i.e., by computing a set of
numerical attributes characterising that problem. Once features are computed,
machine learning techniques can be used to determine the candidate solvers.
Clearly, this process needs a proper feature extractor (e.g., [2]) and, in case of
supervised learning, a dataset of known instances for which we know the perfor-
mance of all the solvers of S. In this case, cross-validation techniques are often
used to split the dataset into a training set (used to build a prediction model)
and a test set (to validate that prediction model).

In our model, feature extraction can happen at different levels depending on
when the solver selection is actually performed. We distinguish between three
levels of solver selection: static, dynamic and hybrid.

Static Solver Selection is an “offline” AS procedure where the solvers are
selected eagerly according to the input program P, or the symbolic program P

′,
regardless of the path conditions generated while analyzing P.

The advantages of this approach are its simplicity and efficiency: there is
no need to modify the internals of the DSE engine, and the solver selection is
performed only once per program: we do not need to collect the path conditions
to build a training set. Static solver selection is suitable, e.g., when the size of
the portfolio S is much bigger than the number of available cores c: in this case
one can select c solvers from S and run all of them in parallel.

The features extracted for static solver selection depends on the input pro-
gram P and/or the symbolic program P

′ (depending of whether we want to take
into account also the symbolic variables of P′). These features can be language-
independent (e.g., the number of loops or symbolic variables) or bound to a
specific language (e.g., the number of property accesses for JavaScript objects).

Note that, apart from the “syntactic” features extracted from the source
code of the program, we can also have probing features derived from its actual
execution. For example, we could execute P

′[v], where v is a tuple of concrete
values, and run the solvers for a short time on the corresponding path conditions
to track their behaviour.

Unfortunately, a purely static solver selection lacks flexibility and is unable to
exploit marginal contributions of different solvers. It risks excluding good solvers
from S only on the basis of the shape of P. However, a solver that behaves poorly
on average might well be turn out to be highly effective for smaller classes of
specific problems, on which other solvers struggle.

Dynamic Solver Selection refers to the “online” selection of solvers accord-
ing to the path conditions to be solved. While the static solver selection occurs
just once for each program, dynamic solver selection is performed for each col-

Algorithm Selection for Dynamic Symbolic Execution: A Preliminary Study 199

lected path condition. Because of its high frequency, it is essential that dynamic
selection has a low computational cost.

The features extracted from each path condition Γ are, e.g., statistics over the
number and the type of the variables and constraints of Γ . One can also compute
probing features by running one or more solvers of S on Γ . For example, one
can retrieve the number of failures or the depth of the search tree after running
a solver S ∈ S for a short time (e.g., 2 s).

Dynamic solver selection delivers flexibility and is, potentially, far more effec-
tive than static selection. What is less straightforward here is how to extract the
features and train the model. The feature extraction has to be integrated into
the DSE engine, while for static solver selection it can be performed “externally”
without any modification to the DSE engine. Moreover, the training set can be
very big because for each program a large number of (often similar) path con-
ditions can be collected: we need some criteria to select “good representatives”
among all the path conditions.

Hybrid Solver Selection combines, as the name suggests, static and dynamic
selection. We can use static selection as a pre-processing step where, especially
when we have a high number of solvers, we can reduce the original portfolio S
into a smaller portfolio S ′. One may also use static selection to decide a proper
parameter configuration for solvers that have a high number of parameters to
be tuned. Then, dynamic selection is used on S ′ to select the presumably best
solver(s) SΓ ⊆ S′ for each collected path conditions Γ . At this stage one can
also reuse some of the features extracted in the static selection phase.

Finally, note that one can apply AS not only to select the best solver(s),
but also to decide the best encoding for a given Γ . For example, assume S =
Ssat ∪ Ssmt ∪ Scp where Ssat are SAT solvers, Ssmt are SMT solvers, and Scp

are CP solvers. Instead of directly selecting the best solver(s) in S for Γ , one
might think to first choose the best encoding for Γ , i.e., whether it is better to
convert Γ into a SAT, a SMT or a CP problem. This actually means performing
AS to first choose S ′ ∈ {Ssat,Ssmt,Scp} and then choose solver(s) S′′ ⊆ S ′. An
example of this hierarchical approach is provided by Hurley et al. [12] who use it
to decide whether or not to encode a given CP problem to SAT before deciding
the best solver for that problem.

3.2 Solver Execution

Let S ′ = {S1, . . . , Sk} be the selected solver(s) returned by Hsel . Because we
typically solve hard combinatorial problems (where a solver either solves a prob-
lem in a short time or it cannot solve it in a reasonable time) it is often desirable
to select k > 1 solvers. In this case we have to use a proper solver execution
heuristic Hexe to schedule the execution of each solver of S ′. The Hexe heuristic
decides the running mode of the selected solvers, e.g.:

– how to run the solvers of S ′ (sequentially, concurrently or both)
– how much time is allocated to each solver (typically a solving timeout is set)

200 R. Amadini et al.

1: if x ≥ 10 then
2: Stmt1
3: if C(x) then
4: Stmt2

Fig. 3. Example of program where C is unsupported.

– the execution order of each solver
– if and how to exchange information between them (e.g., nogoods or SMT

queries)
– the configuration of their parameters
– when to stop all the solvers of S ′.

Let us focus on the last point, which may appear counter-intuitive. Indeed,
it might look more reasonable to just stop as soon as a solver finds a solution.
However, waiting until a number 1 < j ≤ k of solvers terminate can also be
beneficial. In this case we sacrifice the runtime minimisation to possibly have
j > 1 distinct solutions for Γ . Clearly, Hexe can also force the same solver to
produce more than one solution.

Having different solutions v1, . . . ,vj for the same path condition can be
advantageous in terms of code coverage maximisation because often solvers
are forced to over-approximate the path conditions, owing to unsupported con-
straints or unknown program functions. Considering v1, . . . ,vj is somehow an
“educated fuzzing” where we try distinct yet related inputs potentially leading
to different program paths. In other terms, we might try to offset the “incom-
pleteness” of solvers with the diversity of their solutions.

3.3 Solution Selection

Let us suppose that the solver execution phase returns j > 1 distinct solutions
v1, . . . ,vj . In this case, we use a solution selection heuristic Hsol to decide which
vi will be the input of the next DSE iteration. This phase is important because
it enables us to rank v1, . . . ,vj according to a given criteria.

For example, we may give low priority to solutions containing “default” values
(e.g., 0 or the empty string) or rank solutions according to their type (note that,
especially for weakly-typed languages such as JavaScript or Python, we may not
have any information about the actual type of a symbolic variable).

As mentioned, it might be that the conjuncts in Γ get relaxed, resulting
in new path conditions Γ ′, because the available solvers are not expressive or
efficient enough to cope with the constraints of Γ . In this case, a solution of Γ ′ is
not necessarily a solution of Γ , so having different solutions for Γ ′ may increase
the probability of finding a solution for Γ too (or for other path conditions).

For instance, consider the pseudo-code in Fig. 3 where we assume that x is
a symbolic variable and the condition C is not supported by any solver (e.g., it
can be an unknown third-party function or a difficult mathematical function).
If we start the DSE with x ← 0, then we collect path condition ¬(x ≥ 10),

Algorithm Selection for Dynamic Symbolic Execution: A Preliminary Study 201

we flip it and we solve x ≥ 10. Let us suppose that we stop as soon as a solver
returns a solution, say x = 10. If C(10) evaluates to false, then the next collected
path conditions are x ≥ 10 and ¬C(x). Once flipped ¬C(x), solvers should solve
x ≥ 10 ∧ C(x) but they cannot because they do not support C. A possible way
to mitigate this issue is to generate different solutions for x ≥ 10 and try them
to see if we can increase the code coverage (e.g., it might be that C(11) evaluates
to true).

Another nice aspect is that we can use the solutions as nogoods: if at a given
DSE iteration we get solution v = (v1, . . . , vn), then we can add the constraint
x1 �= v1 ∨ · · · ∨ xn �= vn to the path conditions of all future DSE iterations in
order to narrow the search and avoid exploring already visited paths. As we shall
see in Sect. 4, this approach can improve the code coverage in practice.

3.4 Aggregate Coverage

The well-known benefits of AS are the average runtime minimisation and the
maximization of the number of problems solved. However, in the context of DSE
we have a further advantage. Let COV S(P) be the set of statements (or lines) in P

covered using the portfolio S. Then, significantly, the coverage COV {S1,...,Sp}(P)
can be greater than the sum of its parts, that is, we may well have:

COV {S1,...,Sp}(P) ⊃ COV S1(P) ∪ · · · ∪ COV Sp
(P).

Note that
⋃

S∈S COV S(P) is exactly the coverage achievable by running p
independent DSE analysis, each of which with a different solver S ∈ S. In the
following, we will refer to

⋃
S∈S COV S(P) as the aggregate coverage for portfolio

S on program P.
Consider the example in Fig. 4a where x is a symbolic variable and both

conditions C1(x) and C2(x) are feasible. Let us suppose that S1 can solve
C1(x) but cannot solve C2(x), while S2 can solve C2(x) but not C1(x); in
this case with S = {S1, S2} we are able to cover both the statements Stmt1
and Stmt2, while with either S1 or S2 we can only cover either Stmt1 or
Stmt2 respectively. For this example, a static approach running S1 and S2

independently is enough to reach the maximum coverage. Even if COV S(P) ⊃
COV S1(P),COV S2(P), we cannot, in this case, improve on the aggregate cover-
age: COV S(P) = COV S1(P) ∪ COV S2(P) in the best case scenario.

It is important to understand the difference between aggregate coverage and
the virtual best solver (VBS) of the portfolio. By definition, the VBS selects
the best algorithm according to a given performance metric for every problem
instance. For static solver selection we define the performance metric as: “max-
imize the coverage for a given program, breaking ties with minimum runtime”.
So, for the example discussed above (Fig. 4a), the VBS is either S1 or S2 depend-
ing on which one is faster in solving C1 or C2 respectively. However, there is no
case where the VBS is able to cover both the statements Stmt1 and Stmt2. In
general, for static solver selection the coverage of the VBS is always less than,
or equal to, the aggregate coverage. Conversely, as seen in the example above,

202 R. Amadini et al.

a static scheduling (or a parallel execution) of solvers can yield better coverage
than the VBS.

1: if C1(x) then
2: Stmt1
3: if C2(x) then
4: Stmt2

(a) Non-nested ’if’ statements.

1: if C1(x) then
2: Stmt1
3: if C2(x) then
4: Stmt2

(b) Nested ’if’ statements.

Fig. 4. If statements.

Figure 4b shows a trickier example where we also assume that C1(x) ∧ C2(x)
can be solved by S2 but not by S1. As above, S1 can only cover Stmt1 while S2

cannot solve C1(x) and thus will not cover neither Stmt1 nor Stmt2. However,
unlike the case of Fig. 4a, independently running two different DSE engines using
S1 and S2 respectively yields an insufficient coverage because none of them is
able to reach line 4 and thus Stmt2 will not be covered.

Because COV S1(P) = {Stmt1} and COV S2(P) = ∅, the aggregate coverage
of S will only cover Stmt1. However, this does not mean that Stmt2 cannot be
covered using the solvers of S. Indeed, with a proper dynamic solver selection, we
would be able to reach first Stmt1 (thanks to S1, solving C1(x)) and then Stmt2
(thanks to S2, solving C1(x)∧C2(x)), thus outperforming the aggregate coverage.
Clearly this approach is only possible with an integrated AS/DSE implementation
able to select the solvers on a path condition basis.

Following the standard definition, the VBS for dynamic solver selection is the
solver that solves a given path condition in the shortest time. In this case, the
coverage achieved with the VBS will never be worse than the aggregate coverage.

4 A Preliminary Evaluation

We have experimented with a portfolio approach to DSE, to the extent that
existing DSE tools allow this. We have based experiments on Aratha [1], a tool
for the DSE of JavaScript, because uniquely, Aratha can use both SMT solvers
(viz. Z3 [25] and CVC4 [19]) and CP solvers (viz. G-Strings [5]). With this,
we have implemented two static approaches, to explore whether portfolio solving
turns out to improve on single-solver DSE in practice, and if so, by how much.

The first approach, which we call Aratha+, runs the DSE with G-Strings
first, then with Z3 and finally with CVC4 (except that, if execution with a solver
reaches 100% coverage, we do not run any subsequent solvers). Aratha+ does
not perform algorithm selection itself, but uses S = {G-Strings,Z3,CVC4}
to perform three individual dynamic symbolic executions (one for each solver)
and then collate the results. In practice, Aratha+ will actually compute the
aggregate coverage for portfolio S.

Algorithm Selection for Dynamic Symbolic Execution: A Preliminary Study 203

The second approach, which we call Aratha++, is a variant of Aratha+

where the inputs found by a solver (i.e., the solutions of each path condition)
are passed to the next solver to avoid the regeneration of the same inputs. As
Aratha+, Aratha++ does not perform algorithm selection in the strict sense
because it uses all the available solvers. Aratha++ is a collaborative approach
where at each DSE iteration i with associated path conditions Γi, the execution
heuristics Hexe is this: “solve Γi ∪ Δ”, where Δ is a set of nogoods of the form
x1 �= v1 ∨ · · · ∨ xn �= vn for each input v = (v1, . . . , vn) computed so far. In
practice, Aratha++ tries to outperform the aggregate coverage by relying on
the diversity of the generated inputs.

We compared Aratha+ and Aratha++ against the single-solver versions
of Aratha using G-Strings, Z3, and CVC4. We evaluated them on the
same benchmark of 197 already annotated JavaScript programs, coming from
the ExpoSE [21] test suite, used in [1]. As in [1], we set: a solving time-
out of Tpc = 10 s for each path condition, a maximum number of N = 1024
DSE iterations for each program, and an overall DSE timeout of Ttot = 300 s
(because sometimes reaching N iterations can take too long). For Aratha+

and Aratha++ we set a timeout of Ttot/3 = 100 s for the execution of each
individual solver of the portfolio. We ran all the experiments on an Ubuntu
15.10 machine with 16 GB of RAM and 2.60 GHz Intel R© i7 CPU. We computed
the coverage with the Istanbul tool [14].

Table 1. Evaluation results. Coverage is given in percentages, time in seconds.

Solver LINE STMT TIME TOUT

VBS stmt 85.60 82.91 2.33 0

Z3 74.74 72.10 4.96 2

CVC4 79.44 76.56 4.27 2

G-Strings 81.54 78.74 6.93 0

Aratha+ 85.73 83.04 10.51 0

Aratha++ 85.93 83.24 10.13 0

Table 1 shows the results in terms of coverage and solving time: LINE is the
average line coverage and STMT the average statement coverage (in percentage),
TIME the average DSE time (in seconds) and TOUT the number of times the
DSE reached timeout Ttot . To provide a baseline, we have added the performance
of the “static” virtual best solver VBS stmt, i.e., the fictitious selectors always
choosing the solver achieving the maximum statement coverage for any given
program. We do not include the VBS maximizing the line coverage because its
performance is basically the same of VBS stmt.

As can be seen, the DSEs using a portfolio of solvers is advantageous, both
in terms of line and statement coverage. In fact, coverage achieved by Aratha+

and Aratha++ is slightly better than coverage achieved by VBS stmt. As dis-

204 R. Amadini et al.

cussed in Sect. 3.4, this can happen in the absence of a “dominant” solver that
can solve all the path conditions of the program.

As could be expected, the average DSE time comes out better for the single-
solver approaches and VBS stmt, because of the static, sequential approach used
by Aratha+ and Aratha++. A proper parallel implementation and/or Hsel

heuristic would likely reduce this gap. Note, however, that TIME is not the most
critical metric here. At least for the purpose of test data generation, the aim is to
find the right balance among three competing objectives: maximizing coverage
while minimizing test suite size, all in the shortest possible time.

The interesting thing in Table 1 is that Aratha++ is greater than the sum of
its parts, because it can slightly improve the coverage computed by Aratha+.
We can see why by looking at the cross-comparisons of Table 2.

Table 2. Coverage cross-comparisons.

Solver Z3 CVC4 G-Strings Aratha+ Aratha++

Z3 0 19 19 0 0

CVC4 47 0 16 0 0

G-Strings 65 31 0 0 0

Aratha+ 67 43 29 0 0

Aratha++ 68 44 30 1 0

Table 2 reports the number of times the solver on that row achieves a better
statement coverage than the solver on that column (again, we do not report the
table for line coverage, which is essentially the same) for each program of the
benchmarks. Here we do not include VBS stmt as it makes little sense to make
cross-comparisons between real and fictitious solvers.

No single-solver approach improves on Aratha+ or Aratha++ (this holds
for line coverage too), even if the timeout of Aratha+ and Aratha++ is one
third of their timeout. This confirms that the coverage of Aratha+ is the aggre-
gate coverage for S = {G-Strings,Z3,CVC4}. Note that this might be no
longer true if the best coverage COV S(P) for a program P was computed by a
solver S in more than Ttot/3 s, because each solver of the portfolio is run for at
most Ttot/3 s.

Aratha+ and Aratha++ are able to outperform the coverage achievable
with the best single solver of S for a given program (i.e., the one reaching the
maximum coverage) for 4 and 5 programs respectively thanks to the combi-
nation of different solvers (as discussed in Sect. 3.4). Interestingly, in one case
Aratha++ also outperforms the coverage of Aratha+. This happens because
Z3 exploits the inputs computed by G-Strings and generates a new input that
allows Aratha++ to achieve the full coverage.

A snippet of that program is shown in Fig. 5, where x is its only symbolic
variable. The DSE with G-Strings generates inputs {’’, [null], ’hello’},

Algorithm Selection for Dynamic Symbolic Execution: A Preliminary Study 205

the one with Z3 produces {false, {’length’:39}, ’hello’} while the one
with CVC4 computes {’’, {’length’:true}, ’hello’}. None of these will
cause line 4 to be reached, because x.replace(’h...o’, ’’) === ’’ only suc-
ceeds when x is equal to ’h...o’.1 Aratha expects the function replace to be
applied to strings only, and so an invocation x.replace(’h...o’, ’’) causes
Aratha to abort DSE for the current execution trace for objects such as [null],
{’length’:true}, nor {’length’:39}. Using Aratha+ does not bring any
benefit because the input it yields is just the union of the inputs produced by
G-Strings, CVC4, and Z3.

If we instead use Aratha++, then Z3 can take advantage of the inputs
computed by G-Strings and use the “nogoods” x �= ’’, x �= [null], and x �=
’hello’ each time it solves a new path condition. This enables Z3 to produce
new inputs ’\u0000’ and ’h...o’. The latter in particular allows Aratha++

to reach line 4. This witnesses that generating multiple solutions and exchanging
information between solvers is an aspect that deserves to be deepened.

1 // x is a symbolic variable

2 if (x.length > 0 && x !== ’hello’

3 && x.replace(’h...o’, ’’) === ’’) {

4 // Do something ...

5 }

Fig. 5. Snippet JavaScript program where Aratha++ outperforms Aratha+.

5 Related Work

Algorithm selection started to attract the attention of the SAT community about
a decade ago. SATzilla [36,37] was one of the first SAT portfolio solvers. Its first
version [37] used a ridge regression method to predict the performance of a SAT
solver, while a subsequent version [36] improved the previous one with a weighted
random forest approach provided with a cost-sensitive loss function for punishing
mis-classifications in direct proportion to their performance impact. Another
well-known AS approach for SAT problems is 3S [15] which first executes a
static schedule of solvers computed offline and then, at run time, selects via k-
Nearest Neighbour a solver to be executed for the remaining time. CSHC [24] is a
clustering-based approach that combines 3S’s static scheduling with an algorithm
selector based on cost sensitive hierarchical clustering. SATzilla, 3S, and CHSC
won several gold medals in different editions of the SAT competition.

1 In JavaScript, z.replace(x,y) returns a new string where x is replaced by y in z.
Note that x may be a regular expression, but for simplicity Aratha only considers
string values for x. In this case, the first occurrence of x in y is replaced.

206 R. Amadini et al.

AS was successfully applied in other fields such as constraint programming [3,
12], answer-set programming [11], and planning [35]. For more comprehensive
surveys on AS, we refer the reader to [4,13,16,18,33].

The ideas behind dynamic symbolic execution go back to Godefroid, Klar-
lund and Sen’s DART project [9]. Since then, advances in solver technology
saw DSE tools improve rapidly, in some cases finding large-scale use. For exam-
ple, Microsoft’s SAGE [10] DSE tool reportedly detected up to one third of all
bugs discovered during the development of Windows 7—bugs that were missed
by other testing methods. Other popular DSE tools nowadays are for example
[7,8,23,30,32,34].

DSE seems particularly suitable for dynamic languages such as JavaScript.
The first DSE application to JavaScript programs was the Kudzu project [28].
More recently, ExpoSE [21] was proposed to reason about JavaScript string
matching via (extended) regular expressions, although in a limited fashion.
Aratha [1] is the first JavaScript DSE tool capable of solving path conditions
with different constraint solvers. It was built on top of Jalangi 2 [31], a framework
for implementing dynamic analyses for JavaScript.

The only previous work we are aware of, combining both AS and DSE is
that of Palikareva and Cadar [26], where different solvers are run in parallel,
without any actual solver selection or information exchange between solvers.
Note that this approach can never outperform the virtual best solver: its best
possible implementation would only improve the DSE time of the Aratha+ and
Aratha++ approaches defined in Sect. 4, but it will never achieve the coverage
of Aratha++.

6 Conclusions

We have explored the scope and use of Algorithm Selection (AS) in Dynamic
Symbolic Execution (DSE), proposing a generic AS/DSE framework. The frame-
work is independent of the target language to analyse, as well as of the underlying
solvers. The idea is to improve the DSE engine by using a portfolio of different
solvers. The work is constrained by the fact that current DSE tools have not
been built with portfolio solving in mind, but we have been able to conduct pre-
liminary experiments in the context of JavaScript DSE. The results encourage
further research in this direction, and we hope to spur sufficient interest to open
a bridge between the AS, the DSE, and the constraint solving communities.

There are numerous directions in which this work should be extended. It
would be interesting to extend the pool of solvers, benchmarks, and target lan-
guages. It would also be worthwhile exploring the use of other (including more
sophisticated) coverage metrics.

A main goal is to develop an integrated DSE tool that is able to select a
number of solvers from an arbitrarily large portfolio, and to run them in a con-
current and cooperative way (i.e., by enabling the information exchange between
solvers). A useful step in this direction would be the definition of a constraint
language able to encode the path conditions of a given programming language
regardless of the target solver(s) used to solve the path conditions.

Algorithm Selection for Dynamic Symbolic Execution: A Preliminary Study 207

References

1. Amadini, R., Andrlon, M., Gange, G., Schachte, P., Søndergaard, H., Stuckey,
P.J.: Constraint programming for dynamic symbolic execution of javascript. In:
Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 1–19.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9 1

2. Amadini, R., Gabbrielli, M., Mauro, J.: An enhanced features extractor for a port-
folio of constraint solvers. In: Proceedings 29th Annual ACM Symposium Applied
Computing, pp. 1357–1359. ACM (2014)

3. Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY: a lazy portfolio approach for
constraint solving. Theory Pract. Logic Program. 14(4–5), 509–524 (2014)

4. Amadini, R., Gabbrielli, M., Mauro, J.: Why CP portfolio solvers are
(under)utilized? issues and challenges. In: Falaschi, M. (ed.) LOPSTR 2015. LNCS,
vol. 9527, pp. 349–364. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27436-2 21

5. Amadini, R., Gange, G., Stuckey, P.J.: Sweep-based propagation for string con-
straint solving. In: Proceedings of 32nd AAAI Conference Artificial Intelligence,
pp. 6557–6564. AAAI (2018)

6. Amadini, R., Stuckey, P.J.: Sequential time splitting and bounds communication
for a portfolio of optimization solvers. In: O’Sullivan, B. (ed.) CP 2014. LNCS,
vol. 8656, pp. 108–124. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10428-7 11

7. Artzi, S., et al.: Finding bugs in web applications using dynamic test generation
and explicit-state model checking. IEEE Trans. Softw. Eng. 36(4), 474–494 (2010)

8. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: Proceedings of 8th USENIX
Conference Operating Systems Design and Implementation, OSDI, vol. 8, pp. 209–
224 (2008)

9. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of ACM SIGPLAN Conference Programming Language Design
and Implementation (PLDI 2005), pp. 213–223. ACM (2005)

10. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Commun. ACM 55(3), 40–44 (2012)

11. Hoos, H., Lindauer, M.T., Schaub, T.: Claspfolio 2: advances in algorithm selection
for answer set programming. TPLP 14(4–5), 569–585 (2014)

12. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: a hierarchical port-
folio of solvers and transformations. In: Simonis, H. (ed.) CPAIOR 2014. LNCS,
vol. 8451, pp. 301–317. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07046-9 22

13. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
methods and evaluation. Artif. Intell. 206, 79–111 (2014)

14. Istanbul Team: Istanbul website (2020). https://istanbul.js.org
15. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-

rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-
7 35

16. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

17. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

https://doi.org/10.1007/978-3-030-19212-9_1
https://doi.org/10.1007/978-3-319-27436-2_21
https://doi.org/10.1007/978-3-319-27436-2_21
https://doi.org/10.1007/978-3-319-10428-7_11
https://doi.org/10.1007/978-3-319-10428-7_11
https://doi.org/10.1007/978-3-319-07046-9_22
https://doi.org/10.1007/978-3-319-07046-9_22
https://istanbul.js.org
https://doi.org/10.1007/978-3-642-23786-7_35
https://doi.org/10.1007/978-3-642-23786-7_35

208 R. Amadini et al.

18. Kotthoff, L.: Algorithm selection for combinatorial search problems: A survey. AI
Mag. 35(3), 48–60 (2014)

19. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 43

20. Lindauer, M., Bergdoll, R.-D., Hutter, F.: An empirical study of per-instance algo-
rithm scheduling. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016.
LNCS, vol. 10079, pp. 253–259. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50349-3 20

21. Loring, B., Mitchell, D., Kinder, J.: ExpoSE: practical symbolic execution of stan-
dalone JavaScript. In: Proceedings of 24th ACM SIGSOFT International SPIN
Symposium Model Checking of Software, pp. 196–199. ACM (2017)

22. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proceedings of 29th Interna-
tional Conference Software Engineering (ICSE 2007), pp. 416–426. IEEE (2007)

23. Majumdar, R., Xu, R.-G.: Reducing test inputs using information partitions. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 555–569. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 41

24. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios
based on cost-sensitive hierarchical clustering. In: Proceedings of 23rd International
Joint Conference Artificial Intelligence. IJCAI/AAAI (2013)

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

26. Palikareva, H., Cadar, C.: Multi-solver support in symbolic execution. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 53–68. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 3

27. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
28. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic

execution framework for JavaScript. In: Proceedings of 2010 IEEE Symposium
Security and Privacy, pp. 513–528. IEEE Computer Society (2010)

29. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: Proceedings of 31st IEEE Symposium on Security and Privacy, pp.
317–331 (2010)

30. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 38

31. Sen, K., Kalasapur, S., Brutch, T.G., Gibbs, S.: Jalangi: a selective record-replay
and dynamic analysis framework for JavaScript. In: Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium Foundations
of Software Engineering, pp. 488–498 (2013)

32. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C.
In: Proceedings of 10th European Software Engineering Conference, pp. 263–272.
ACM (2005)

33. Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Comput. Surv. 41(1), 1–25 (2008)

34. Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9 10

https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-50349-3_20
https://doi.org/10.1007/978-3-319-50349-3_20
https://doi.org/10.1007/978-3-642-02658-4_41
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1007/11817963_38
https://doi.org/10.1007/978-3-540-79124-9_10

Algorithm Selection for Dynamic Symbolic Execution: A Preliminary Study 209

35. Valenzano, R.A., Nakhost, H., Müller, M., Schaeffer, J., Sturtevant, N.R.: Arvand-
Herd: parallel planning with a portfolio. In: European Conference Artificial Intel-
ligence, Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 786–791.
IOS Press (2012)

36. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver
contributions to portfolio-based algorithm selectors. In: Cimatti, A., Sebastiani,
R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 228–241. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31612-8 18

37. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

https://doi.org/10.1007/978-3-642-31612-8_18

Translation of Interactive Datalog
Programs for Microcontrollers to Finite

State Machines

Mario Wenzel(B) and Stefan Brass

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, 06099 Halle (Saale), Germany

{mario.wenzel,brass}@informatik.uni-halle.de

Abstract. “Smart” devices have become ubiquitous in modern house-
holds and industry. Especially in home-automation, robotics, and sensing
tasks, rule-based approaches seem ideal to describe the behavior of the
interactive systems. But managing input data and state is hard. With
little choice of programming language, most code targeted at microcon-
trollers is written in imperative C or assembler.

Microlog is a deductive database language with a strong logic founda-
tion based on Datalog extended with a representation of time and calls
to external functions that may be used to control sensors and actors.

In this paper we describe a method to precalculate sets of Datalog
facts that may be derivable for a point in time. Values that will be
known only at runtime are represented as parameters of those “states”.
During “state transition”, a small number of conditions on parameters
and input values must be checked. By representing a possibly quite large
number of facts as a single state number and a few parameter values,
memory and computing time are saved. If no parameters are needed, the
result of this compilation is basically a finite state machine.

Keywords: Deductive database · Datalog · Microcontroller ·
Arduino · Compiler

1 Introduction

With the introduction of cheap programmable microcontrollers, powerful repro-
grammable “smart” devices have found their way into our homes and offices.
“Smart everything” is not an understatement as we find smart vacuum cleaners,
smart light-bulbs, smart coffee machines, smart radios and TVs, smart ovens
and microwaves, smart sex-toys, smart toothbrushes, smart washing machines
and the like. Alternative open source firmwares are available for quite a few of
the mentioned device types. With expanded lifespan and utility from what the
vendor originally intended to sell, the aftermarket for flashable devices flourishes.
So do the open source communities around those devices.

c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 210–227, 2021.
https://doi.org/10.1007/978-3-030-68446-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-68446-4_11

Translation of Interactive Datalog Programs for Microcontrollers 211

Naturally those cheap programmable devices find their way into hobbyists’
workshops as well as school and university courses and curricula [1,12]. How-
ever, the programming languages and paradigms that are supported by micro-
controller systems such as the Arduino are limited.

We believe that declarative programming can be an interesting option even
for such small devices. Declarative languages have many advantages:

– Declarative programs are usually shorter than an equivalent program in a
procedural language. This enhances the productivity of the programmers.

– There can be no problems with uninitialized variables or memory leaks.
– The language has a mathematically precise semantics based on logic, which

makes programs easier to verify and programming arguably easier to teach.

Our declarative language Microlog is a language that allows us to model both
program state and side-effects in a declarative manner [14]. Based on the Datalog
variant Dedalus [2], Microlog has strong foundations in logic. Dedalus captures a
notion of state, similar to the Statelog language [10], but is embedded in Datalog.
Our model of side-effects is similar to action atoms and external atoms from
Answer Set Programming [5,7] with deterministic semantics. Rules are usually
quite small, have a simple structure, and a well-defined and explicit interface to
the rest of the program. This allows us to reason deductively about program and
world states. Our goal is to declaratively program microcontrollers and give static
safety guarantees for data-driven interactive programs on microcontrollers. The
safe use of our limited resources is quite important. The GPIO pins, for example,
should only be used in a consistent and deterministic manner. We should be able
to guarantee that the microcontroller never runs out of memory.

In this paper, we present a novel compilation technique for Microlog-pro-
grams. It precomputes possible “states”, which are sets of Datalog-facts that are
true at a point in time. This does not work for all Microlog-programs, because
one can write programs for which the number of facts keeps growing over time.
However, if we cannot prove that the number of facts for a time point is bounded,
the program is anyway problematic, especially for small microcontroller systems.
If the approach is applicable for a program, the result is often similar to a finite
state machine where the IO is done during state transitions.

Our approach mainly targets AVR-based microcontrollers, like the Arduino,
with an 8-bit CPU such as the ATmega168:

– There is only 1 KB of SRAM available that is used for both heap and stack
data. This means we are limited in operational memory for storing database
facts and in algorithm design with regards to function call depth.

– 16 KB of Flash memory can be used to store the program. This might seem
a lot in comparison, but this is also used to store additional libraries for
peripheral access that are wanted by the user.

– It has an operational speed of 20 MHz, which is a lot compared to the amount
of data we have to operate on.

212 M. Wenzel and S. Brass

These limitations, along with the difficulty of dynamic memory management,
preclude complex approaches where a possible runtime must model non-deter-
ministic choice or have backtracking semantics. From a Microlog program we
generate simple C-code and we generically interface with the rest of the system
by calling external C-functions (e. g., from libraries).

This approach works for other embedded systems and processors as well. To
test the utility of our language we also build programs for LEGO EV3 robots.
EV3 units have a “proper” ARM CPU and run Linux. With 64 MB of SRAM,
resource management is less of a concern there, and more complex approaches
for modelling and planning are also available.[13]

In Sect. 2 we will recapitulate syntax and semantics of the Microlog lan-
guage. In contrast to our earlier paper [14], we have simplified the IO: All calls
of external procedures are now done in the head. In Sect. 3, we do the transition
from the standard minimal model to the computation by states. Sect. 4 explains
the precomputation of states at compile time, which is the main technical con-
tribution of this paper. Ideas for generating more compact code are discussed in
Sect. 5, termination in Sect. 6, and negation very briefly in Sect. 7.

2 Language, State Management, Example Application

Our query language is modeled after the Dedalus0 language [2]. Dedalus0 and
our language “Microlog” are based on Datalog. A Datalog program is a finite
set of rules of the form A ← B1 ∧ · · · ∧ Bn, where the head literal A and
the body literals Bi are atomic formulas p(t1, . . . , tm) with a predicate p and
terms t1, . . . , tm. Terms are constants or variables. We also allow arithmetic
comparisons in the rule body (i. e., =, �=, <, ≤, >, ≥). Furthermore, we need
the successor predicate for natural numbers succ, but this is only allowed as
last literal in so-called “inductive rules” (see below). Let IB be the standard
interpretation for the built-in predicates (comparisons and succ), e.g., IB[[succ]] =
{(i, i + 1) | i ∈ lN0}.

Rules must be range-restricted, i.e., all variables that appear anywhere in the
rule must appear also in a body literal with a predicate that is not a comparison
(the use of succ is specially restricted, see below). This ensures that all variables
are bound to a value when the rule is applied.

In order to explicitly model time, Microlog programs have the syntactic
restriction that every predicate must have a first argument from the domain
of the natural numbers which we refer to as the timestamp. Some fact p(. . .) is
true in timestamp n iff p(n, . . .) is in the minimal model of our program. We
refer to the selection of all facts with a certain timestamp as a state.

All body literals in a rule body must have as their timestamp the same
special variable T , as rules may only rely on facts from a single timestamp (the
variable T always refers to “now”). The rule head either shares the same T as its
timestamp (as in Dedalus, this is called a deductive rule) or it has the timestamp
T ′ and the literal succ(T , T ′) is the last literal of the rule body (as in Dedalus,
this is called an inductive rule).

Translation of Interactive Datalog Programs for Microcontrollers 213

Deductive rules allow for normal Datalog deduction steps and inductive rules
govern how data from facts of one timestamp is reproduced into facts of the
following timestamp.

Rules without body are only allowed as initial facts if their timestamp is 0.
Syntactically, no other configurations of the timestamp arguments are allowed.
The special variables T and T ′ are not allowed to be used elsewhere in any other
part of a rule or bound to other variables, neither is the succ-predicate.

This model can be used to update relations in a stateful fashion. If a fact is not
transported from one timestamp to the next, we have a notion of deletion. The
notion of state captured by the timestamp is similar to the Statelog language [10].
The facts with some timestamp n can be seen as “happening earlier” than the
facts with timestamp m with n < m. This is useful to model interactions with
the environment. The minimal model for such a logic program may extend into
infinity. The evaluating program does not terminate and as an interactive system
we do not want it to.

Of course, a Datalog program for a Microcontroller must interface with the
libraries for querying input devices and performing actions on output devices.
One approach would be to have a fixed set of built-in predicates, but there are
quite a lot of library functions and new libraries are being developed, e.g., for
new types of input and output devices, or controller boards. A few examples of
interface functions are shown in Fig. 1.

#define HIGH 0x1

#define LOW 0x0

void digitalWrite(uint8_t pin, uint8_t val);

int digitalRead(uint8_t pin);

Fig. 1. Extract from Arduino.h header file

Our modelling of side-effects in logic programs can be likened to HEX pro-
grams with action atoms [7]. The observation of the actions is similar to an
external source of computation [5]. External sources of computation in logic
programs have been modeled as functional oracles which, in our case, describe
the environment during a particular run of a Microlog program.

For each function f that can be called,1 there is a special predicate call f
with a reserved prefix “call ”. The predicate has arguments of the function to be
called, arguments for the return values, and of course the standard time argu-
ment. E.g., derived facts from the predicate call digitalWrite(T ′,Pin,Val) lead to
the corresponding calls of the interface function digitalWrite in the following
state T ′. The set-semantics ensures that duplicate calls are eliminated, i.e., even

1 We actually allow users to define a whole statement block as a special predicate.
This allows combining interface functions that always need to be called together,
defining multiple return arguments, or just doing arithmetic. To avoid confusion, we
only refer to function calls from here on out.

214 M. Wenzel and S. Brass

if there are different ways to deduce the fact, only one call is done. The sequence
of calls within the same timestamp is undefined. If a specific sequence is required,
the calls must be spread out over multiple timestamps.

For each interface function f there is a second predicate ret f that contains
all parameters of the call and a parameter for the return value. For instance, for
the function digitalRead, there are two predicates:

– call digitalRead(T ′,Pin, ?), and
– ret digitalRead(T ,Pin,Val).

For the output positions that are not assigned a value in the “call ” predicate
but are in the “ret ” we use the special marker ? to achieve a consistent argument
list. One could view this as an existentially quantified anonymous variable with
the promise that in the corresponding ret -predicate, there will be some return
value.

A call is only ever done in the next state, so that the result value is also
only available in the next state. This ensures, e.g., that the occurrence of a call
cannot depend on its own result.

Since calls of interface functions usually have side effects and cannot be taken
back, it is important to clearly define which calls are actually done. In contrast,
the evaluation sequence of literals in a rule body can be chosen by the optimizer.
Therefore the special call f predicate can be used only in rule heads. Correspond-
ingly, the ret f predicate can only be used in the rule body and is defined by the
derived call f-facts and the environment.

A form of condition-action rules can be seen (amongst other systems for event
theory) in Event Calculus [11] and Logic Production Systems [9] with the main
difference that Microlog does not allow for negation or disjunction in the rule
heads. Also, all actions that are are possible are taken, not just a single one. This
removes backtracking and nondeterministic choice from our system. We claim
that the embedding into Datalog is powerful enough (e. g., to implement some
decision procedure for action prioritization, or planning procedures) and allows
us to readily apply well-researched methods and techniques.

We add some syntactic sugar to make it easier to work with the syntactic
restrictions. From the rule structure and syntactic restrictions it should be clear
when we refer to the sugared version of Microlog:

Translation of Interactive Datalog Programs for Microcontrollers 215

Unsugared Version Sugared Version

Deductive Rules: the time argument is left out in the rule head and every subgoal.
p(T , X) ← q(T , X, Y) ∧ p(T , Y). p(X) ← q(X,Y) ∧ p(Y).

Inductive Rules: the suffix “@next” is added to the rule head and the time argument
is left out in the rule head and every subgoal and we leave out the succ predicate.
p(T ′, X) ← q(T , X, Y) ∧ p(T , Y) ∧ succ(T , T ′). p(X)@next ← q(X,Y) ∧ p(Y).

Initial Facts: replacing the time argument 0, the suffix “@0” is added.
p(0, 5). p(5)@0.

Static Facts: We leave the body empty. time is a reserved predicate defined by time(0)
and time(T ′) ← time(T) ∧ succ(T , T ′). These two rules are added to every program.
They ensure that time will be true for all states.

p(T , 5) ← time(T). p(5).

IO: We replace the call -prefix, which can only appear in rule heads, with #.
As the ret -prefix can only appear in rule bodies, we replace that with # as well.

call f(T ′, X, ?) ← p(T , X) ∧ succ(T , T ′). #f(X, ?)@next ← p(X).
p(T , X) ← ret f(T , 5, X). p(X) ← #f(5, X).

Finally, we need also constants from the interface definition. If our Data-
log program contains e.g. #HIGH, this corresponds to the constant HIGH in the
generated C-code.

With the fixpoint semantics of Datalog and external function calls, we can
describe reactive data-driven programs with more complex behavior than, for
example, typical home automation rules.

Example 1. We can easily describe a system where the heating not only shuts off
in a room with an open window (a common use case for home automation), but
also in all (other) rooms connected via open doors (see Fig. 2). The function calls
are from a fictitious library that wraps communication to the sensors and actors,
#open is a C constant from that library. It is usually the case that control to
hardware is provided by some library2 and the call semantics provide a generic
way to interface with them. The static rules of hasWindow and adjacent are the
configuration of our program to our specific example home with two connected
rooms where the second room has window (also used in Sect. 4). A user, if this
program was provided to them, would only need to add those facts to configure
it for their home.

3 Computing a Sequence of States

After replacing the abbreviations, a Microlog-program is a set PM of Datalog-
rules (and facts). However, for the deduction, not only these rules are used, but
also input facts from the external environment that contain the return values
of function calls. Let E be the set of all such facts for the ret f-predicates. The
semantics of the Microlog program PM is the mapping from input facts E to the
minimal model Imin of P := PM ∪ E , i.e., the set of all derivable facts. We can

2 At the time of writing, PlatformIO.org hosts over 7.000 libraries for embedded
devices. More than half are available for Arduino.

216 M. Wenzel and S. Brass

% static example configuration

hasWindow(2).

adjacent(1, 2).

% gathering world state

#readWindow(R, ?)@next :- hasWindow(R).

#readDoor(A, B, ?)@next :- adjacent(A, B).

% deduce model using transitive closure

windowOpen(R) :- #readWindow(R, #open).

doorOpen(A, B) :- #readDoor(A, B, #open).

connected(A, B) :- doorOpen(A, B).

connected(B, A) :- doorOpen(A, B).

connected(A, C) :- connected(A, B), connected(B, C), A != C.

% effects

#heatingOff(R)@next :- windowOpen(R).

#heatingOff(O)@next :- windowOpen(R), connected(R, O).

Fig. 2. Heating control program in Microlog (actual concrete syntax)

use the standard TP operator for deriving facts that are immediate consequences
of the rules and already known facts:

TP (I) := {Aθ |A ← B1 ∧ · · · ∧ Bm ∈ P,
θ is a ground substitution for this rule such that
for all i = 1, . . . , m : Biθ ∈ I or
Bi has a built-in predicate and IB |= Biθ}.

The least fixed point of this operator, lfp(TP), is the minimal Herbrand model
of P . It can be obtained by iterating the operator, i.e., one starts with I0 := ∅,
and then has a series of Herbrand interpretations (sets of facts) Ii+1 := TP (Ii).
The “limit” of this construction yields Imin = lfp(TP) =

⋃∞
i=0 Ii.

We are actually not interested in arbitrary sets E , but only sets satisfying the
causality requirement that the ret f-facts in E correspond to derived call f-facts:

Definition 1 (Causal Set of Input Facts). Let a Microlog-Program PM be
given. A set E of facts is causal (for PM) iff

– it contains only facts with return predicates (ret f), and
– for each fact ret f(i, c1, . . . , cn) ∈ E there is call f(i, c′

1, . . . , c
′
n) ∈ lfp(TPM ∪E)

with the same timestamp i and such that for each j, 1 ≤ j ≤ n, c′
j = cj or

c′
j = ? (the special marker for return arguments),

– and, vice versa, for each fact call f(i, c′
1, . . . , c

′
n) ∈ lfp(TPM ∪E) there is exactly

one fact ret f(i, c1, . . . , cn) ∈ E that is matching in the above sense.

It might be a philosophical problem that the input facts seem to be there
before the computation starts that can produce the calls that cause them. But
in this way, the formal definition is simpler and in the spirit of standard Datalog.
By considering only sets E that satisfy the causality property, we eliminate the

Translation of Interactive Datalog Programs for Microcontrollers 217

unreasonable cases. Because calls are derived in Microlog always for the next
point in time, it is not possible that a call depends on its own return value.

However, we will also give the definitions for a computation in the sequence of
timestamps, which is a more realistic model of what should happen in practice.
Fortunately, both views lead to the same model.

We want to compute a sequence S0,S1, . . . of sets of facts, where Si contains
facts derived at time i. Because the time information is contained in the position i
of the set Si in the sequence, we can get rid of the time argument in the facts.
This is quite similar to getting back from the full Datalog version of a Microlog
program to a version that uses the syntactic sugar for hiding the time argument.
However, the result is now pure Datalog with special predicates. Since at time i,
also facts for the next state are derived, we need the following special predicates:

– For all normal predicates p, we introduce a new predicate next p, and
– for the call f predicates, we introduce a predicate ncall f (calls are always

derived for the next state).

Now for literals A, we write Ā for a version without time argument. More
precisely, if A is p(t0, t1, . . . , tn), Ā is

– ncall f(t1, . . . , tn) if p is of the form call f,
– next p(t1, . . . , tn) if p is a normal predicate and t0 is the special variable T ′

for the successor timestamp,
– p(t1, . . . , tn) otherwise.

This removal of the time argument can also be applied to a set of rules R. Let

R̄ := {Ā ← B̄1 ∧ · · · ∧ B̄n−1 | A ← B1 ∧ · · · ∧ Bn ∈ R
and Bn is succ(T , T ′) or time(T) } ∪

{Ā ← B̄1 ∧ · · · ∧ B̄n | A ← B1 ∧ · · · ∧ Bn ∈ R
and Bn is neither succ(T , T ′) nor time(T) }.

We also need the converse operation, i.e., adding a time argument, for the
obtained facts. Let p(c1, . . . , cn)[i] be:

– call f(i + 1, c1, . . . , cn) if p is of the form ncall f,
– q(i + 1, c1, . . . , cn) if p is of the form next q,
– p(i, c1, . . . , cn) otherwise.

This definition is extended to sets of facts: F [i] := {F [i] | F ∈ F}.
Since we need to apply the rules piecewise we need to partition the pro-

gram PM into

– Pinit , all facts with time argument 0,
– Palways , consisting of the rules and static facts, which are applicable for any

point in time: Palways := PM − Pinit .

Now we can compute the facts in the minimal model in the chronological
order, timestamp by timestamp. We do so by using the predicates without time
argument, i.e., P̄init and P̄always .

218 M. Wenzel and S. Brass

– N0 := P̄init

The set Ni contains seed facts for the next state i. Since at time 0, there is
no previous state, the initial facts take the role of the seed facts here.

– E0 := ∅
At time 0, there are no calls, and therefore no external input facts.

– Si := lfp(TP̄always∪Ni∪Ei
)

The “state i”, i.e., the facts for time i are obtained iteratively by applying
the rules in P̄always to the seed facts Ni, the static facts (also part of P̄always)
and the input facts Ei until a fixpoint is reached. The derived facts include
also calls and next p-facts that refer to the next state.

– Ni := {p(c1, . . . , cn) | next p(c1, . . . , cn) ∈ Si−1}.
This extracts and transforms the seed facts for next point in time i, i ≥ 1.

– Ci := {call p(c1, . . . , cn) | ncall p(c1, . . . , cn) ∈ Si−1}.
These are the call facts for next point in time i, i ≥ 1. One can see these calls
as “output” of some kind of state machine (not yet a finite state machine).

– Ei := {ret f(c1, . . . , cn) | ret f(i, c1, . . . , cn) ∈ E}.
These are the input facts from E for time i ≥ 1 (with the time argument
removed). They are given by the external environment, but note that causality
requires that each fact in Ei is the result of a call in Ci. Since the calls were
computed in the previous state, we can actually execute them to compute Ei.

Theorem 1. This iterative computation by timepoints yields exactly the mini-
mal model of the given program if we add the time argument: Imin =

⋃∞
i=0 Si[i].

Theorem 2. If PM is finite and E is causal, each state Si, i ∈ lN0, is finite.

This ensures that we can effectively compute each state. Please remember
that succ can only be used for switching to the next point in time. It cannot be
used for computations within a state.

4 Precomputation of States

Our goal is to precompute the possible states, i.e., sets of derivable facts for a
timestamp. Of course, such a precomputation is not always possible, because
for some programs the set of facts at a point in time can possibly grow without
limits over time. However, for the given small hardware, such programs would
be problematic anyway (see also Sect. 6).

Of course, there are a number of values that are only known at runtime (input
values). We use special variables to model them:

Definition 2 (Parameter Variable). Let V1,V2, . . . be a sequence of pair-
wise distinct variables that do not occur in the given Datalog program (they are
reserved). We call these variables “parameter variables”.

The parameter variables correspond to memory locations that are used for
storing return values of the function calls (unknown at “compile time”).

Translation of Interactive Datalog Programs for Microcontrollers 219

Definition 3 (Parameterized Fact). A parameterized fact is a formula of
the form p(t1, . . . , tm) where each ti, 1 ≤ i ≤ m, is a constant or a parameter
variable.

Definition 4 (Parameterized State). A parameterized state is a finite set of
parameterized facts.

Parameters have a global meaning in the state: If two parameterized facts in
a state both contain V1, they will have the same value. This is a difference to
normal variables in rules, which have only local scope (limited to a rule).

The initial state is S0 as in Sect. 3. It does not contain parameters because
it does not depend on input.

Definition 5 (Initial State). The initial state is S0 = lfp(TP̄always∪P̄init
).

For instance, the example (see Fig. 2) contains the following rule (after elim-
ination of syntactic sugar and the removal of the time argument as in Sect. 3):

ncall readWindow(R, ?) ← hasWindow(R).

This rule can be applied with the static configuration fact hasWindow(2). All
rules depending on input are not yet applicable in the initial state. Therefore,
the complete initial state S0 in the example is:

hasWindow(2).
adjacent(1, 2).

ncall readWindow(2, ?).
ncall readDoor(1, 2, ?).

Now let any parameterized state be given (for instance, the initial one). Our
goal is to compute the possible successor states. The given state contains a
number of (parameterized) ncall f-facts. For each such ncall f-fact, there will be
a ret f-fact in the next (with a “fresh” parameter variable instead of the return
value indicator “?”). In the example, we have two facts corresponding to the
returns of the called functions:

ret readWindow(2,V1). Generated Code: V1 = readWindow(1);
ret readDoor(1, 2,V2). V2 = readDoor(1, 2);

If parameter variables appear as arguments in derived ncall f-facts, we need to
check at runtime whether the facts are unifiable, to prevent duplicate calls.

In the example, there are no next p-facts. In general, the computation of the
next state starts with the following facts:

Definition 6 (Seed Facts). Let S be a parameterized state, and let

– next pi(ti,1, . . . , ti,ki
) for i = 1, . . . ,m be all (parameterized) next p-facts in

S, and
– ncall fi(ui,1, . . . , ui,li) for i = 1, . . . , n be all (parameterized) ncall f-facts in S

(in some fixed order).

Then the seed facts seed(S) for the next state are:

220 M. Wenzel and S. Brass

– pi(ti,1, . . . , ti,ki
) for i = 1, . . . ,m, and

– ret fi(ûi,1, . . . , ûi,li) for i = 1, . . . , n, where ûi,j is ui,j, unless ui,j is ?, in
which case ûi,j is the first currently unused parameter variable (not occurring
in any next p or ncall f facts in S, and not substituted already for ? in a
previous ncall f fact in S or an argument to the left in the same fact).

With these “seed” facts (and the static facts), we want to apply again the
rules to compute the next state. Now the problem is that for some rules, the
values of the parameters do matter. E.g., consider the rule:

windowOpen(R) ← ret readWindow(R, #open).

So the question is whether the parameter V1 is equal to the constant #open or
not. Now, when we want to apply the rule, we do a unification between the
rule body and existing parameterized facts. In the example, this will bind the
parameter V1 to the constant #open. Since at compile time, we do not know the
value of V1, the result will be a “conditional fact”:

windowOpen(2) ← V1 = #open.

“Conditional facts” were used by Brass and Dix for characterizing and computing
negation semantics [3]. There, the conditions were delayed negative literals.

Definition 7 (Conditional Fact). A conditional fact is a formula of the form
p(t1, . . . , tm) ← ϕ where each ti, i = 1, . . . , m, is a constant or a parameter
variable, and ϕ is a consistent conjunction of atomic formulas u γ u′ with γ ∈
{=, �=, <,≤,≥, >} and u and u′ are parameters or constants.

For the unification, we would need only conditions of the form V = c and
V = V′. However, we permit comparisons as built-in predicates in the rules, and
if body literals with such predicates cannot be evaluated at compile time, they
also become part of the condition.

Note that “consistent” means here that there is a variable assignment for the
parameters such that the formula is true in the standard interpretation of the
built-in predicates IB with these values of the variables. E.g., V1 = 5 ∧ V1 < 3
is inconsistent. In the same way, ϕ1 and ϕ2 are called equivalent, if they have
identical truth values in IB for all variable assignments (ground substitutions).

Conditional facts with inconsistent conditions would not be useful. The
consistency of conjunctions of the above form can be easily checked [4,8]. If
one wants additional built-in predicates, one might need a more powerful con-
straint solver. However, forbidding inconsistent conditions is only an optimiza-
tion: Without this, states might be obtained that are actually not reachable.

Definition 8 (Rule Application to Conditional Facts). Let

A ← B1 ∧ · · · ∧ Bm ∧ C1 ∧ · · · ∧ Cn

be a rule, where the Bi, i = 1, . . . ,m, are normal literals, and the Ci, i = 1, . . . , n,
are literals with a built-in predicate. Let B′

i ← ϕi, i = 1, . . . , m, be conditional
facts and θ be a most general unifier for (B1, . . . , Bm) and (B′

1, . . . , B
′
m) that

does not map parameters to variables of the rule (since the direction of variable-
to-variable bindings is arbitrary, this is always possible). Let

Translation of Interactive Datalog Programs for Microcontrollers 221

Φ := {ϕi | i = 1, . . . ,m} ∪ {Ciθ | i = 1, . . . , n} ∪
{V = Vθ | V is a parameter variable occuring in some B′

i, 1 ≤ i ≤ m}.

If Φ is consistent, then the rule application yields Aθ ← ϕ, where ϕ is equivalent
to a conjunction of all formulas in Φ. Else, the rule application is not possible.

We permit any formula equivalent to Φ, because we want to eliminate dupli-
cate conditions, as well as trivial conditions such as V = V (when θ is the identity
mapping for V), and of course conditions not containing parameter variables (can
happen for Ciθ—because of the required consistency, this must be true in the
standard interpretation of the built-in predicates). The implementation is free to
add or remove implied conditions. This might help to find duplicates. Actually,
we want to eliminate not only duplicates, but conditional facts that are “weaker”
than another conditional fact:

Definition 9 (Subsumed Conditional Fact). A conditional fact A1 ← ϕ1

is subsumed by a conditional fact A2 ← ϕ2 iff for every ground substitution θ
(for the parameters that occur in at least one of them) whenever IB |= ϕ1θ, also
A1θ = A2θ and IB |= ϕ2θ hold.

Two conditional facts are called equivalent iff they subsume each other.

In other words: p(t1, . . . , tn) ← ϕ1 is subsumed by p(u1, . . . , un) ← ϕ2 iff ϕ1

implies ϕ2 ∧ (t1 = u1) ∧ · · · ∧ (tn = un).
Obviously, subsumed conditional facts can be deleted in the fixpoint iteration,

because the subsuming conditional fact is more general (in the case of equivalent
facts, all except one can be deleted). An example for a quite complex case is:
p(V1) ← V1 ≤ V2 ∧ V1 ≥ V2 is subsumed by p(V2). The first conditional fact is
only applicable if V1 = V2, and then it produces the same fact as the second.

One possible algorithm is to “normalize” derived conditional facts in the
following way. First, expand the condition in the rule body by all easily derived
consequences, especially equations. Now, if the condition contains Vi = c with a
constant c, eliminate Vi from the head and other conditions by replacing it there
by c (note that Vi = c must be kept in the condition, because the conditional
fact is applicable only under this condition). In the same way, if the condition
contains Vi = Vj with i < j, replace Vj everywhere else by Vi. Finally, order the
remaining non-trivial conditions in some standard order. Then delete conditional
facts with the same head and a superset of the conditions in the body.

Definition 10 (Successor State). We write ŤP for the immediate consequence
operator for conditional facts (possibly with elimination of subsumed conditional
facts). Let a parameterized state S be given. The conditional successor state is
S ′ := lfp(Ťseed(S)∪P̄always

).
From the conditional successor state, we get one successor state for each

consistent valuation ν of the atomic formulas appearing in the conditions. A
valuation is consistent if the conjunction of the atomic formulas it assigns true
and the conjunction of the negations of the formulas it assigns false is consistent.
Then S ′|ν := {A | A ← ϕ ∈ S ′, ν |= ϕ} is the successor state for ν.

222 M. Wenzel and S. Brass

In the example, the conditional successor state is:

ret readWindow(2,V1).
ret readDoor(1, 2,V2).
hasWindow(2).
adjacent(1, 2).
ncall readWindow(2, ?).
ncall readDoor(1, 2, ?).

windowOpen(2) ← V1 = #open.
doorOpen(1, 2) ← V2 = #open.
connected(1, 2) ← V2 = #open.
connected(2, 1) ← V2 = #open.
ncall heatingOff(2) ← V1 = #open.
ncall heatingOff(1) ← V1 = #open ∧ V2 = #open.

Thus, depending on the values of V1 and V2, there are four possible states
(leaving out the unconditional part, i.e., the left side above).

V1 = #open V1 �= #open

V2 = #open V2 �= #open V2 = #open V2 �= #open

windowOpen(2) × × − −
doorOpen(1, 2) × − × −
connected(1, 2) × − × −
connected(2, 1) × − × −
ncall heatingOff(2) × × − −
ncall heatingOff(1) × − − −

S1 S2 S3 S4

However, two states differ in their outside behavior only if they have differ-
ent ncall f or next p-facts. These facts determine the calls that are done (the
“output” of the machine), and the information moved into the next state (the
state transition). Other facts are only needed during the computation. Thus, we
can merge two states S and S ′ if seed(S) = seed(S ′). In the example, S3 and S4

have the same behavior as S0. We do not have to compute their successor states.
In contrast, S1 and S2 behave differently, because of the calls to heatingOff.

However, since ret heatingOff does not appear in the rule bodies, this actually
does not influence the successor states. So in this simple example, we are already
done and have only three states: S0, S1, and S2.

The function calls in these states are (with parameter variables for the result):

S0 S1 S2

readWindow(2,V1) readWindow(2,V1) readWindow(2,V1)
readDoor(1, 2,V2) readDoor(1, 2,V2) readDoor(1, 2,V2)

heatingOff(2) heatingOff(2)
heatingOff(1)

In the example, the transition function is independent of the current state:

V1 = #open V1 �= #open

V2 = #open V2 �= #open

S1 S2 S0

Note that if V1 (the sensor of the window) is not #open, the value of V2 (the
sensor at the door) does not matter. If we look at the full set of conditional facts,
it does influence the connected-facts, but these are important for the observable

Translation of Interactive Datalog Programs for Microcontrollers 223

1 2

1 2

1 2

1 2

S0

S1

S2
RheatingOff(R) ∈ S

ret readWindow(2, #open) E∈� next

ret readWindow(2, #open) ∈ Enext

ret readDoor(1, 2, #open) ∈ Enext

ret readWindow(2, #open) ∈ Enext

ret readDoor(1, 2, #open) E∈� next

Fig. 3. The finite state machine for the example

outside behavior only if the window is open. The resulting finite state machine
is shown in Fig. 3 (gray box means heatingOff in that room).

In general, states can be computed as shown in Fig. 4. The choice of the
condition ϕi for the case analysis is important for the size of the generated code.
E.g., if in the example, one would first choose V2 = #open, one would have to
duplicate the case analysis for V1. As a heuristics, we propose to minimize in
each step the number of split conditions, i.e., remaining conditions in conditional
facts that appear in both cases.

5 Generating Compact Code for Small Microcontrollers

The resulting code shown at the bottom of Fig. 4 is quite naive: While it imple-
ments a finite state machine, and has no problems with the small RAM, one will
soon reach the limit of the flash memory for the program.

In the example, the state transition is actually independent of the “from”
state. Obviously, we should not duplicate the quite large code block for the case
analysis to compute the next state. In general, if the seed facts of two states
differ only in facts that do not match any body literal, they do not influence the
state transition. This is typical for function calls without a return value.

Another possibility to save machine instructions is to compile the same func-
tion call only once, and not once per state. For instance, in the example, the
calls to the sensor functions happen in each state. So far, the algorithm has used
simple sequential numbers to identify the states. However, one could use a bit
in the state ID to specify whether some set of function calls must be done.

In effect, one can replace the switch over the sequential state numbers by
(1) a sequence of if-statements that check bits in the current state ID and do
some set of function calls, and (2) a much smaller switch or else if-chain
guided by a part of the state ID that selects the code block for state transition
(representing each distinct such block only once). Basically, a state is a set of
facts. State IDs can be used as an efficient encoding of relevant subsets of facts.

224 M. Wenzel and S. Brass

(1) Algorithm compile_to_extended_fsm:

(2) STATES = {seed(S0)};
(3) DONE = ∅;
(4) print_start();

(5) while(STATES − DONE �= ∅) {

(6) choose S ∈ STATES − DONE;

(7) DONE = DONE ∪ {S};
(8) print_case(S);
(9) print_calls(S);

(10) S ′ := lfp(ŤS∪P̄always
);

(11) gen(S ′, ∅);
(12) print_break();

(13) }

(14) print_end();

(15)

(16) Procedure gen(S ′, Φ):

(17) Sposs := {A | A ← ϕ ∈ S ′ and Φ ∪ {ϕ} is consistent};
(18) Strue := {A | A ← ϕ ∈ S ′ and Φ � ϕ};
(19) if(Strue = Sposs) {

(20) STATES = STATES ∪ {seed(Strue)};
(21) print_trans(seed(Strue));
(22) } else {

(23) Choose A ← ϕ1 ∧· · ·∧ ϕn ∈ S ′ and i ∈ {1, . . . , n} such that

(24) (1) A S∈� true,

(25) (2) Φ ∪ {ϕ1, . . . , ϕn} is consistent, and

(26) (3) Φ �� ϕi;

(27) print_if(ϕi);

(28) gen(S ′, Φ ∪ {ϕi});
(29) print_else();

(30) gen(S ′, Φ ∪ {¬ϕi});
(31) print_fi();

(32) }

/* print_start: */

int state = 0;

#include "param_decls.h"

/* int V1; int V2; */

while(true) {

switch(state) {

/* print_case: */

case 0:

/* print_calls: */

V1 = readWindow(2);

V2 = readDoor(1, 2);

/* print_if: */

if(V1 == open) {

/* print_if: */

if(V2 == open) {

/* print_trans: */

state = 1;

/* print_else: */

}

else {

/* print_trans: */

state = 2;

/* print_fi: */

}

/* print_else: */

}

else {

/* print_trans: */

state = 0;

/* print_fi: */

}

/* print_break: */

break;

Fig. 4. Computation of states with simple code generation result

Translation of Interactive Datalog Programs for Microcontrollers 225

6 Termination

Of course, there is the question of termination. If no input values are copied
to the next state, i.e., no next p-fact and no ncall f-fact contains a parameter
variable, termination is guaranteed, and we get a classic finite state machine as
in the example: First, the number of calls is bounded, because they can contain
only constants explicitly occurring in the program. Thus, also the number of
parameter variables is bounded (for new parameter variables, the one with the
smallest index is chosen that is not currently used). Finally, the number of facts in
a state is bounded because there is only a fixed set of predicates and arguments.

However, the method works more generally for some input programs that lead
to states with parameters (then the result is not really a finite state machine).
While there are simple syntactic criteria to ensure that no input values are
moved to the next state, we do not have this yet for the more general case. So
one cannot know beforehand whether state generation will terminate. A simple
solution is to set a limit for the number of states, or a limit for the number of
parameter variables in a state, and stop if that limit is exceeded.

In future work, we will consider additional mechanisms to improve termina-
tion. For instance, we do not actually need parameter variables with types that
permit only two values (e.g., open and closed), but do a case analysis instead.
Functional dependencies for derived predicates [6] can be used to prove that only
one of several parameter variables will be moved to the next state.

7 Negation

It is possible to allow also time-stratified negation as in [2] (i.e., negation is
stratified when only deductive rules are considered). For the standard Datalog
semantics, we would then use the well-founded model instead of the minimal
model. For the conditional facts, we would delay also negative body literals as
in [3], which can later be evaluated by positive and negative reduction as the
other conditions are eliminated by the case analysis.

8 Conclusion

Our Datalog-based language Microlog can be used to manage state and state
transitions through IO in a declarative fashion. By compilation into C-Code, we
generate sources that are compatible with a vast amount of libraries available
in the Arduino ecosystem. However, the approach is not limited to the Arduino
microcontroller system.

Some programs can be translated to finite state machines where the state
transitions of our logic program are precalculated, as we can deduce all possible
behaviors throughout a program run independent of the concrete environment.
This is particularly important because we then have a limit for the required
memory. In systems with e.g., 1 KB RAM, it is obvious that the correctness of
a program depends also on its ability to run with these very limited resources.

226 M. Wenzel and S. Brass

The result is a Finite State Machine when the behaviors depend only on values
from the environment that do not lie arbitrarily long in the past.

The presented approach for compilation can also handle the more general
case, where behaviors do depend on values from environment states long past,
but only on a bounded number of those. Then the generated states have data
values as parameters. Not all Microlog-programs can be translated in this way.
In some cases states are being generated with more and more parameters. But
when microcontrollers are embedded in some hardware application, one would
expect that the program is provably correct, and does never stop with an “out of
memory” error. Often the hardware does not even permit to communicate such
a message.

Our compiler already supports program transformation for some classes of
Microlog programs, as well as the naive evaluation, and we have developed exam-
ple programs for Arduino and the LEGO EV3 robotics platform showing the
viability of our approach. The compiler and example programs are available at
https://dbs.informatik.uni-halle.de/microlog/.

References

1. Agatolio, F., Moro, M.: A workshop to promote Arduino-based robots as wide
spectrum learning support tools. In: Merdan, M., Lepuschitz, W., Koppensteiner,
G., Balogh, R. (eds.) Robotics in Education. AISC, vol. 457, pp. 113–125. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-42975-5 11

2. Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.:
Dedalus: Datalog in Time and Space. In: de Moor, O., Gottlob, G., Furche, T.,
Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 262–281. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24206-9 16

3. Brass, S., Dix, J.: A general approach to bottom-up computation of disjunctive
semantics. In: Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1994.
Lecture Notes in Computer Science, vol. 927, pp. 127–155. Springer, Heidelberg
(1995). https://doi.org/10.1007/BFb0030663

4. Brass, S., Goldberg, C.: Proving the safety of SQL queries. In: Cai, K.Y., Ohnishi,
A., Lau, M. (eds.) Proceedings of the 5th International Conference on Quality
Software (QSIC 2005), pp. 197–204. IEEE Computer Society (2005)

5. Calimeri, F., Ianni, G.: External sources of computation for answer set solvers.
In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS
(LNAI), vol. 3662, pp. 105–118. Springer, Heidelberg (2005). https://doi.org/10.
1007/11546207 9

6. Engels, C., Behrend, A., Brass, S.: A rule-based approach to analyzing database
schema objects with datalog. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR
2017. LNCS, vol. 10855, pp. 20–36. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94460-9 2

7. Fink, M., Germano, S., Ianni, G., Redl, C., Schüller, P.: ActHEX: implementing
HEX programs with action atoms. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013.
LNCS (LNAI), vol. 8148, pp. 317–322. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40564-8 31

8. Guo, S., Sun, W., Weiss, M.A.: Solving satisfiability and implication problems in
database systems. ACM Trans. Database Syst. 21, 270–293 (1996)

https://dbs.informatik.uni-halle.de/microlog/
https://doi.org/10.1007/978-3-319-42975-5_11
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1007/BFb0030663
https://doi.org/10.1007/11546207_9
https://doi.org/10.1007/11546207_9
https://doi.org/10.1007/978-3-319-94460-9_2
https://doi.org/10.1007/978-3-319-94460-9_2
https://doi.org/10.1007/978-3-642-40564-8_31
https://doi.org/10.1007/978-3-642-40564-8_31

Translation of Interactive Datalog Programs for Microcontrollers 227

9. Kowalski, R., Sadri, F.: Reactive computing as model generation. New Gener.
Comput. 33(1), 33–67 (2015). https://doi.org/10.1007/s00354-015-0103-z

10. Lausen, G., Ludäscher, B., May, W.: On active deductive databases: the statelog
approach. In: Freitag, B., Decker, H., Kifer, M., Voronkov, A. (eds.) Transactions
and Change in Logic Databases, pp. 69–106. Springer, Berlin Heidelberg, Berlin,
Heidelberg (1998)

11. Mueller, E.T.: Commonsense Reasoning: An Event Calculus Based Approach, 2nd
edn. Morgan Kaufmann Publishers Inc., San Francisco (2014)

12. Russell, I., Rosiene, C.P., Gold, A.: A CS course for non-majors based on the
Arduino platform. In: Proceedings of the 51st ACM Technical Symposium on
Computer Science Education. SIGCSE 2020, p. 1309. Association for Computing
Machinery, New York (2020). https://doi.org/10.1145/3328778.3372595

13. Schwarz, S., Wenzel, M.: ev3dev-prolog - prolog API for LEGO EV3. In: Draude,
C., Lange, M., Sick, B. (eds.) INFORMATIK 2019: 50 Jahre Gesellschaft für Infor-
matik - Informatik für Gesellschaft (Workshop-Beiträge), 23–26 September 2019,
Kassel, Deutschland. LNI, vol. P-295, pp. 385–398. GI (2019). https://doi.org/10.
18420/inf2019 ws41

14. Wenzel, M., Brass, S.: Declarative programming for microcontrollers - datalog
on Arduino. In: Hofstedt, P., Abreu, S., John, U., Kuchen, H., Seipel, D. (eds.)
INAP/WLP/WFLP -2019. LNCS (LNAI), vol. 12057, pp. 119–138. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-46714-2 9

https://doi.org/10.1007/s00354-015-0103-z
https://doi.org/10.1145/3328778.3372595
https://doi.org/10.18420/inf2019_ws41
https://doi.org/10.18420/inf2019_ws41
https://doi.org/10.1007/978-3-030-46714-2_9

Model Checking and Probabilistic
Programming

Generating Functions for Probabilistic
Programs

Lutz Klinkenberg1(B) , Kevin Batz1 , Benjamin Lucien Kaminski1,2 ,
Joost-Pieter Katoen1 , Joshua Moerman1 , and Tobias Winkler1

1 RWTH Aachen University, 52062 Aachen, Germany
{lutz.klinkenberg,kevin.batz,katoen,joshua,

tobias.winkler}@cs.rwth-aachen.de
2 University College London, London, UK

b.kaminski@ucl.ac.uk

Abstract. This paper investigates the usage of generating functions
(GFs) encoding measures over the program variables for reasoning about
discrete probabilistic programs. To that end, we define a denotational
GF-transformer semantics for probabilistic while-programs, and show
that it instantiates Kozen’s seminal distribution transformer semantics.
We then study the effective usage of GFs for program analysis. We show
that finitely expressible GFs enable checking super-invariants by means
of computer algebra tools, and that they can be used to determine ter-
mination probabilities. The paper concludes by characterizing a class
of—possibly infinite-state—programs whose semantics is a rational GF
encoding a discrete phase-type distribution.

Keywords: Probabilistic programs · Quantitative verification ·
Semantics · Formal power series

1 Introduction

Probabilistic programs are sequential programs for which coin flipping is a first-
class citizen. They are used e.g. to represent randomized algorithms, probabilistic
graphical models such as Bayesian networks, cognitive models, or security pro-
tocols. Although probabilistic programs are typically rather small, their analysis
is intricate. For instance, approximating expected values of program variables at
program termination is as hard as the universal halting problem [22]. Determin-
ing higher moments such as variances is even harder. Deductive program verifica-
tion techniques based on a quantitative version of weakest preconditions [20,25]
enable to reason about the outcomes of probabilistic programs, such as what is
the probability that a program variable equals a certain value. Dedicated anal-
ysis techniques have been developed to e.g., determine tail bounds [5], decide
almost-sure termination [7,26], or to compare programs [1].

This research was funded by the ERC AdG project FRAPPANT (787914) and the
DFG RTG 2236 UnRAVeL.

c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 231–248, 2021.
https://doi.org/10.1007/978-3-030-68446-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_12&domain=pdf
http://orcid.org/0000-0002-3812-0572
http://orcid.org/0000-0001-8705-2564
http://orcid.org/0000-0001-5185-2324
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0001-9819-8374
http://orcid.org/0000-0003-1084-6408
https://doi.org/10.1007/978-3-030-68446-4_12

232 L. Klinkenberg et al.

This paper aims at exploiting the well-tried potential of probability generating
functions (PGFs) [19] for analyzing probabilistic programs. In our setting, PGFs
are power series representations encoding discrete probability mass functions of
joint distributions over program variables. PGF representations — in particular
if finite—enable a simple extraction of important information from the encoded
distributions such as expected values, higher moments, termination probabilities
or stochastic independence of program variables.

To enable the usage of PGFs for program analysis, we define a denota-
tional semantics of a simple probabilistic while-language akin to probabilistic
GCL [25]. Our semantics is defined in a forward manner: given an input distri-
bution over program variables as a PGF, it yields a PGF representing the result-
ing subdistribution. The “missing” probability mass represents the probability
of non-termination. More accurately, our denotational semantics transforms for-
mal power series (FPS). Those form a richer class than PGFs, which allows for
overapproximations of probability distributions. The meaning of while-loops are
given as least fixed points of FPS transformers. It is shown that our semantics
is in fact an instantiation of Kozen’s seminal distribution-transformer seman-
tics [23].

The semantics provides a sound basis for program analysis using PGFs. Using
Park’s Lemma, we obtain a simple technique to prove whether a given FPS over-
approximates a program’s semantics i.e., whether an FPS is a so-called super-
invariant. Such upper bounds can be quite useful: for almost-surely terminating
programs, such bounds can provide exact program semantics, whereas, if the
mass of an overapproximation is strictly less than one, the program is provably
non-almost-surely terminating. This result is illustrated on a non-trivial random
walk and on examples illustrating that checking whether an FPS is a super-
invariant can be automated using computer algebra tools.

In addition, we characterize a class of—possibly infinite-state—programs
whose PGF semantics is a rational function. These homogeneous bounded pro-
grams (HB programs) are characterized by loops in which each unbounded vari-
able has no effect on the loop guard and is in each loop iteration incremented
by a quantity independent of its own value. Operationally speaking, HB pro-
grams can be considered as finite-state Markov chains with rewards that can
grow unboundedly large. It is shown that the rational PGF of any program
that is equivalent to an almost-surely terminating HB program represents a
multi-variate discrete phase-type distribution [29]. We illustrate this result by
obtaining a closed-form characterization for the well-studied infinite-state duel-
ing cowboys example [25,32].

Related Work. This paper presents a denotational semantics of probabilistic pro-
grams using PGFs and shows how the PGF representation can be exploited for pro-
gram analysis. Our PGF semantics is defined in a forward manner: starting from
an initial distribution on inputs, it determines the exact probability distribution
over the program variables on termination. This fits within the realm of Kozen’s
denotational semantics [23]. Di Pierro and Wiklicky [10] provided a forward, deno-
tational semantics of a similar programming language using infinite-dimensional

Generating Functions for Probabilistic Programs 233

Hilbert spaces to provide a basis for program analysis by means of probabilistic
abstract interpretation. Other semantics include backward denotational seman-
tics using weakest preconditions [25] and operational semantics, e.g., using Markov
chains [13].

Whereas advanced simulation techniques are the primary analysis technique
for modern probabilistic programming languages, our approach using PGFs is
exact. Our PGF approach is a forward approach and yields full probability dis-
tributions for a given program input. This is similar in spirit as in EfProb [8],
a calculus based on a categorical semantics to reason about loop-free programs
with discrete, continuous and quantum probability. Wp-reasoning [25] is an alter-
native analysis technique to prove properties of probabilistic programs. It deter-
mines the weakest pre-expectation function—the quantitative analogue of pre-
conditions in classical program verification—in a backward manner for a given
post-expectation, the property to be proven. Related program analysis tech-
niques include the usage of couplings to prove program equivalence [1], abstract
interpretation [9] and Hoare logics [15].

To the best of our knowledge, PGFs have recent scant attention in the anal-
ysis of probabilistic programs. A notable exception is [4] in which generating
functions of finite Markov chains are obtained by Padé approximation. Com-
puter algebra systems have been used to transform probabilistic programs [6],
and more recently in the automated generation of moment-based loop invari-
ants [2].

Organization of this Paper. After recapping FPSs and PGFs in Sects. 2–3, we
define our FPS transformer semantics in Sect. 4, discuss some elementary prop-
erties and show it instantiates Kozen’s distribution transformer semantics [23].
Section 5 presents our approach for verifying upper bounds to loop invariants
and illustrates this by various non-trivial examples. In addition, it characterizes
programs that are representable as finite-state Markov chains equipped with
rewards and presents the relation to discrete phase-type distributions. Section 6
concludes the paper. The full paper can be found on ArXiv.1

2 Formal Power Series

Our goal is to make the potential of probability generating functions available
to the formal verification of probabilistic programs. The programs we consider
will, without loss of generality, operate on a fixed set of k program variables.
The valuations of those variables range over N. A program state σ is hence a
vector in N

k. We denote the state (0, . . . , 0) by 0.
A prerequisite for understanding probability generating functions are (multi-

variate) formal power series—a special way of representing a potentially infinite
k-dimensional array. For k=1, this amounts to representing a sequence.

1 https://arxiv.org/abs/2007.06327.

https://arxiv.org/abs/2007.06327

234 L. Klinkenberg et al.

Definition 1 (Formal Power Series). Let X = X1, . . . , Xk be a fixed
sequence of k distinct formal indeterminates. For a state σ = (σ1, . . . , σk) ∈ N

k,
let Xσ abbreviate the formal multiplication Xσ1

1 · · ·Xσk

k . The latter object is called
a monomial and we denote the set of all monomials over X by Mon (X). A (mul-
tivariate) formal power series (FPS) is a formal sum

F =
∑

σ∈Nk

[σ]F · Xσ , where [·]F : N
k → R

∞
≥0 ,

where R
∞
≥0 denotes the extended positive real line. We denote the set of all FPSs

by FPS. Let F,G ∈ FPS. If [σ]F < ∞ for all σ ∈ N
k, we denote this fact by

F � ∞. The addition F + G and scaling r · F by a scalar r ∈ R
∞
≥0 is defined

coefficient-wise by

F + G =
∑

σ∈Nk

(
[σ]F + [σ]G

) · Xσ and r · F =
∑

σ∈Nk

r · [σ]F · Xσ .

For states σ = (σ1, . . . , σk) and τ = (τ1, . . . , τk), we define σ + τ = (σ1 +
τ1, . . . , σk + τk). The multiplication F · G is given as their Cauchy product (or
discrete convolution)

F · G =
∑

σ,τ∈Nk

[σ]F · [τ]G · Xσ+τ .

Drawing coefficients from the extended reals enables us to define a complete
lattice on FPSs in Sect. 4. Our analyses in Sect. 5 will, however, only consider
FPSs with F � ∞.

3 Generating Functions

A generating function is a device somewhat similar to a bag. Instead of
carrying many little objects detachedly, which could be embarrassing, we
put them all in a bag, and then we have only one object to carry, the bag.

— George Pólya [31]

Formal power series pose merely a particular way of encoding an infinite k-
dimensional array as yet another infinitary object, but we still carry all objects
forming the array (the coefficients of the FPS) detachedly and there seems to
be no advantage in this particular encoding. It even seems more bulky. We will
now, however, see that this bulky encoding can be turned into a one-object bag
carrying all our objects: the generating function.

Definition 2 (Generating Functions). The generating function of a formal
power series F =

∑
σ∈Nk [σ]F · Xσ ∈ FPS with F � ∞ is the partial function

f : [0, 1]k ��� R≥0, (x1, . . . , xk) �→
∑

σ=(σ1,...,σk)∈N
k

[σ]F · xσ1
1 · · · xσk

k .

Generating Functions for Probabilistic Programs 235

In other words: in order to turn an FPS into its generating function, we merely
treat every formal indeterminate Xi as an “actual” indeterminate xi, and the
formal multiplications and the formal sum also as “actual” ones. The generating
function f of F is uniquely determined by F as we require all coefficients of
F to be non-negative, and so the ordering of the summands is irrelevant: For
a given point x ∈ [0, 1]k, the sum defining f(x) either converges absolutely to
some positive real or diverges absolutely to ∞. In the latter case, f is undefined
at x and hence f may indeed be partial.

Since generating functions stem from formal power series, they are infinitely
often differentiable at 0 = (0, . . . , 0). Because of that, we can recover F from f
as the (multivariate) Taylor expansion of f at 0.

Definition 3 (Multivariate Derivatives and Taylor Expansions). For
σ = (σ1, . . . , σk) ∈ N

k, we write f (σ) for the function f differentiated σ1 times
in x1, σ2 times in x2, and so on. If f is infinitely often differentiable at 0, then
the Taylor expansion of f at 0 is given by

∑

σ∈Nk

f (σ) (0)
σ1! · · · σk!

· xσ1
1 · · · xσk

k .

If we replace every indeterminate xi by the formal indeterminate Xi in the
Taylor expansion of generating function f of F , then we obtain the formal power
series F . It is in precisely that sense, that f generates F .

Example 1 (Formal Power Series and Generating Functions). Consider the infi-
nite (1-dimensional) sequence 1/2, 1/4, 1/8, 1/16, Its (univariate) FPS—the
entity carrying all coefficients detachedly—is given as

1
2

+
1
4
X +

1
8
X2 +

1
16

X3 +
1
32

X4 +
1
64

X5 +
1

128
X6 +

1
256

X7 + (†)

On the other hand, its generating function—the bag—is given concisely by

1
2 − x

. (�)

Figuratively speaking, (†) is itself the infinite sequence an := 1
2n , whereas (�) is

a bag with the label “infinite sequence an := 1
2n ”. The fact that (†) generates

(�), follows from the Taylor expansion of 1
2−x at 0 being 1

2 + 1
4x + 1

8x2 + �
The potential of generating functions is that manipulations to the functions—

i.e. to the concise representations—are in a one-to-one correspondence to the
associated manipulations to FPSs [12]. For instance, if f(x) is the generating
function of F encoding the sequence a1, a2, a3, . . ., then the function f(x) · x is
the generating function of F · X which encodes the sequence 0, a1, a2, a3, . . .

As another example for correspondence between operations on FPSs and
generating functions, if f(x) and g(x) are the generating functions of F and G,
respectively, then f(x) + g(x) is the generating function of F + G.

236 L. Klinkenberg et al.

Example 2 (Manipulating Generating Functions). Revisiting Example 1, if we
multiply 1

2−x by x, we change the label on our bag from “infinite sequence
an := 1

2n ” to “a 0 followed by an infinite sequence an+1 := 1
2n ” and—just by

changing the label—the bag will now contain what it says on its label. Indeed,
the Taylor expansion of x

2−x at 0 is 0 + 1
2x + 1

4x2 + 1
8x3 + 1

16x4 + . . . encoding
the sequence 0, 1/2, 1/4, 1/8, 1/16, . . . �
Due to the close correspondence of FPSs and generating functions [12], we use
both concepts interchangeably, as is common in most mathematical literature.
We mostly use FPSs for definitions and semantics, and generating functions in
calculations and examples.

Probability Generating Functions. We now use formal power series to rep-
resent probability distributions.

Definition 4 (Probability Subdistribution). A probability subdistribution
(or simply subdistribution) over N

k is a function

μ : N
k → [0, 1], such that |μ| =

∑

σ∈Nk

μ(σ) ≤ 1 .

We call |μ| the mass of μ. We say that μ is a (full) distribution if |μ| = 1,
and a proper subdistribution if |μ| < 1. The set of all subdistributions on N

k is
denoted by D≤(Nk) and the set of all full distributions by D(Nk).

We need subdistributions for capturing non-termination. The “missing” prob-
ability mass 1 − |μ| precisely models the probability of non-termination.

The generating function of a (sub-)distribution is called a probability gen-
erating function. Many properties of a distribution μ can be read off from its
generating function Gμ in a simple way. We demonstrate how to extract a few
common properties in the following example.

Example 3 (Geometric Distribution PGF). Recall Example 1. The presented for-
mal power series encodes a geometric distribution μgeo with parameter 1/2 of a
single variable X. The fact that μgeo is a proper probability distribution, for
instance, can easily be verified computing Ggeo(1) = 1

2−1 = 1. The expected
value of X is given by G′

geo(1) = 1
(2−1)2 = 1. �

Extracting Common Properties. Important information about probability
distributions is, for instance, the first and higher moments. In general, the kth

factorial moment of variable Xi can be extracted from a PGF by computing
∂kG
∂Xk

i

(1, . . . , 1).2 This includes the mass |G| as the 0th moment. The marginal dis-
tribution of variable Xi can simply be extracted from G by G(1, . . . , Xi, . . . , 1).
We also note that PGFs can treat stochastic independence. For instance, for a
bivariate PGF H we can check for stochastic independence of the variables X
and Y by checking whether H(X,Y) = H(X, 1) · H(1, Y).

2 In general, one must take the limit Xi → 1 from below.

Generating Functions for Probabilistic Programs 237

4 FPS Semantics for pGCL

In this section, we give denotational semantics to probabilistic programs in terms
of FPS transformers and establish some elementary properties useful for program
analysis. We begin by endowing FPSs and PGFs with an order structure:

Definition 5 (Order on FPS). For all F,G ∈ FPS, let

F 	 G iff ∀σ ∈ N
k : [σ]G ≤ [σ]F .

Lemma 1 (Completeness of 	 on FPS). (FPS,) is a complete latttice.

4.1 FPS Transformer Semantics

Recall that we assume programs to range over exactly k variables with valuations
in N

k. Our program syntax is similar to Kozen [23] and McIver & Morgan [25].

Definition 6 (Syntax of pGCL [23,25]). A program P in probabilistic Guarded
Command Language (pGCL) adheres to the grammar

P ::= skip
∣∣ xi := E

∣∣ P ;P
∣∣ {P} [p] {P}

∣∣ if(B) {P} else {P} ∣∣ while (B) {P} ,

where xi ∈ {x1, . . . , xk} is a program variable, E is an arithmetic expression over
program variables, p ∈ [0, 1] is a probability, and B is a predicate (called guard)
over program variables.

The FPS semantics of pGCL will be defined in a forward denotational style,
where the program variables x1, . . . , xk correspond to the formal indeterminates
X1, . . . , Xk of FPSs.

For handling assignments, if-conditionals and while-loops, we need some
auxiliary functions on FPSs: For an arithmetic expression E over program vari-
ables, we denote by evalσ(E) the evaluation of E in program state σ. For a
predicate B ⊆ N

k and FPS F , we define the restriction of F to B by

〈F 〉B :=
∑

σ∈B

[σ]F · Xσ ,

i.e. 〈F 〉B is the FPS obtained from F by setting all coefficients [σ]F where σ �∈ B
to 0. Using these prerequisites, our FPS transformer semantics is given as follows:

Definition 7 (FPS Semantics of pGCL). The semantics [[P]] : FPS → FPS of
a loop-free pGCL program P is given according to the upper part of Table 1.

The unfolding operator ΦB,P for the loop while (B) {P} is defined by

ΦB,P : (FPS → FPS) → (FPS → FPS), ψ �→ λF . 〈F 〉¬B + ψ
(
[[P]]

(〈F 〉B

))
.

The partial order (FPS,) extends to a partial order
(
FPS → FPS, �)

on FPS
transformers by a point-wise lifting of 	. The least element of this partial order is
the transformer 0 = λF . 0 mapping any FPS F to the zero series. The semantics
of while (B) {P} is then given by the least fixed point (with respect to �) of its
unfolding operator, i.e. [[while (B) {P}]] = lfp ΦB,P .

238 L. Klinkenberg et al.

Table 1. FPS transformer semantics of pGCL programs.

P [[P]](F)

skip F

xi := E
∑

σ∈Nk μσXσ1
1 · · · Xevalσ(E)

i · · · Xσk
k

{P1} [p] {P2} p · [[P1]](F) + (1 − p) · [[P2]](F)

if (B) {P1} else {P2} [[P1]]
(〈F 〉B

)
+ [[P2]]

(〈F 〉¬B

)

P1� P2 [[P2]]
(
[[P1]](F)

)

while(B){P} (
lfp ΦB,P

)
(F) , for

ΦB,P (ψ) = λF . 〈F 〉¬B + ψ
(
[[P]]

(〈F 〉B

))

Example 4. Consider the program P = {x := 0} [1/2] {x := 1}� c := c + 1 and
the input PGF G = 1, which denotes a point mass on state σ = 0. Using the
annotation style shown in the right margin, denoting that [[P ′]] (G) = G′, we
calculate [[P]] (G) as follows:

�� G

P ′

�� G′

�� 1
{x := 0} [1/2] {x := 1}�

��
1
2 + X

2

c := c + 1
��

C
2 + CX

2

As for the semantics of c := c + 1, see Table 2. �
Before we study how our FPS transformers behave on PGFs in particular, we
now first argue that our FPS semantics is well-defined. While evident for loop-
free programs, we appeal to the Kleene Fixed Point Theorem for loops [24],
which requires ω-continuous functions.

Theorem 1 (ω-continuity of pGCLSemantics). The semantic functional [[·]]
is ω-continuous, i.e. for all programs P ∈ pGCL and all increasing ω-chains
F1 	 F2 	 . . . in FPS,

[[P]]
(

sup
n∈N

Fn

)
= sup

n∈N

[[P]] (Fn) .

Generating Functions for Probabilistic Programs 239

Theorem 2 (Well-definedness of FPS Semantics). The semantics func-
tional [[·]] is well-defined, i.e. the semantics of any loop while (B) {P} exists
uniquely and can be written as

[[while (B) {P}]] = lfp ΦB,P = sup
n∈N

Φn
B,P (0) .

Table 2. Common assignments and their effects on the input PGF F (X, Y).

P [[P]](F)

x := x + k Xk · F (X, Y)

x := k · x F (Xk, Y)

x := x + y F (X, XY)

4.2 Healthiness Conditions of FPS Transformers

In this section we show basic, yet important, properties which follow from [23].
For instance, for any input FPS F , the semantics of a program cannot yield as
output an FPS with a mass larger than |F |, i.e. programs cannot create mass.

Theorem 3 (Mass Conservation). For every P ∈ pGCL and F ∈ FPS, we
have

∣∣[[P]](F)
∣∣ ≤ |F |.

A program P is called mass conserving if |[[P]](F)| = |F | for all F ∈ FPS. Mass
conservation has important implications for FPS transformers acting on PGFs:
given as input a PGF, the semantics of a program yields a PGF.

Corollary 1 (PGF Transformers). For every P ∈ pGCL and G ∈ PGF, we
have [[P]] (G) ∈ PGF.

Restricted to PGF, our semantics hence acts as a subdistribution transformer.
Output masses may be smaller than input masses. The probability of non-
termination of the programs is captured by the “missing” probability mass.

As observed in [23], semantics of probabilistic programs are fully defined by
their effects on point masses, thus rendering probabilistic program semantics
linear. In our setting, this generalizes to linearity of our FPS transformers.

Definition 8 (Linearity). Let F,G ∈ FPS and r ∈ R
∞
≥0 be a scalar. The func-

tion ψ : FPS → FPS is called a linear transformer (or simply linear), if

ψ(r · F + G) = r · ψ(F) + ψ(G) .

Theorem 4 (Linearity of pGCL Semantics). For every program P and
guard B, the functions 〈 · 〉B and [[P]] are linear. Moreover, the unfolding operator
ΦB,P maps linear transformers onto linear transformers.

As a final remark, we can unroll while loops:

Lemma 2 (Loop Unrolling). For any FPS F ,

[[while (B) {P}]] (F) = 〈F 〉¬B + [[while (B) {P}]]
(
[[P]]

(〈F 〉B

))
.

240 L. Klinkenberg et al.

4.3 Embedding into Kozen’s Semantics Framework

Kozen [23] defines a generic way of giving distribution transformer semantics
based on an abstract measurable space (Xn,M (n)). Our FPS semantics instanti-
ates his generic semantics. The state space we consider is Nk, so that (Nk,P(Nk))
is our measurable space.3 A measure on that space is a countably-additive func-
tion μ : P(Nk) → [0,∞] with μ(∅) = 0. We denote the set of all measures on our
space by M. Although, we represent measures by FPSs, the two notions are in
bijective correspondence τ : FPS → M, given by

τ(F) = λS.
∑

σ∈S

[σ]F .

This map preserves the linear structure and the order 	.
Kozen’s syntax [23] is slightly different from pGCL. We compensate for this by

a translation function T, which maps pGCL programs to Kozen’s. The following
theorem shows that our semantics agrees with Kozen’s semantics.4

Theorem 5. The FPS semantics of pGCL is an instance of Kozen’s semantics,
i.e. for all pGCL programs P , we have

τ ◦ [[P]] = T(P) ◦ τ .

Equivalently, the following diagram commutes:

FPS M

FPS M

[[P]]

τ

T(P)

τ

For more details about the connection between FPSs and measures, as well as
more information about the actual translation, see Appendix A.3.

5 Analysis of Probabilistic Programs

Our PGF semantics enables the representation of the effect of a pGCL program on
a given PGF. As a next step, we investigate to what extent a program analysis
can exploit such PGF representations. To that end, we consider the overap-
proximation with loop invariants (Sect. 5.1) and provide examples showing that
checking whether an FPS transformer overapproximates a loop can be checked
with computer algebra tools. In addition, we determine a subclass of pGCL pro-
grams whose effect on an arbitrary input state is ensured to be a rational PGF
encoding a phase-type distribution (Sect. 5.2).
3 We note that we want each point σ to be measurable, which enforces a discrete

measurable space.
4 Note that Kozen regards a program P itself as a function P : M → M.

Generating Functions for Probabilistic Programs 241

5.1 Invariant-Style Overapproximation of Loops

In this section, we seek to overapproximate loop semantics, i.e. for a given loop
W = while (B) {P}, we want to find a (preferably simple) FPS transformer ψ,
such that [[W]] � ψ, meaning that for any input G, we have [[W]] (G) 	 ψ(G)
(cf. Definition 7). Notably, even if G is a PGF, we do not require ψ(G) to be
one. Instead, ψ(G) can have a mass larger than one. This is fine, because it still
overapproximates the actual semantics coefficient-wise. Such overapproximations
immediately carry over to reading off expected values (cf. Sect. 3), for instance

∂
∂X [[W]] (G) (1) ≤ ∂

∂X ψ(G)(1) .

We use invariant-style reasoning for verifying that a given ψ overapproximates
the semantics of [[W]]. For that, we introduce the notion of a superinvariant
and employ Park’s Lemma [30]—well-known in fixed point theory—to obtain a
conceptually simple proof rule for verifying overapproximations of while loops.

Theorem 6 (Superinvariants and Loop Overapproximations). Let ΦB,P

be the unfolding operator of while(B){P} (cf. Def. 7) and ψ : FPS → FPS. Then

ΦB,P (ψ) � ψ implies [[while (B) {P}]] � ψ .

We call a ψ satisfying ΦB,P (ψ) � ψ a superinvariant. We are interested in linear
superinvariants, as our semantics is also linear (cf. Theorem 4). Furthermore,
linearity allows to define ψ solely in terms of its effect on monomials, which
makes reasoning considerably simpler:

Corollary 2. Given f : Mon (X) → FPS, let the linear extension f̂ of f be

f̂ : FPS → FPS, F �→
∑

σ∈Nk

[σ]F f(Xσ) .

Let ΦB,P be the unfolding operator of while (B) {P}. Then

∀σ ∈ N
k : ΦB,P (f̂)(Xσ) � f̂(Xσ) implies [[while (B) {P}]] � f̂ .

We call an f satisfying the premise of the above corollary a superinvariant-
let. Notice that superinvariantlets and their extensions agree on monomials, i.e.
f(Xσ) = f̂(Xσ). Let us examine a few examples for superinvariantlet-reasoning.

Example 5 (Verifying Precise Semantics). In Program 1.1, in each iteration, a
fair coin flip determines the value of x. Subsequently, c is incremented by 1.
Consider the following superinvariantlet:

f(XiCj) = Cj ·
{

C
2−C , if i = 1;
Xi, if i �= 1.

242 L. Klinkenberg et al.

while (x = 1){
{x := 0} [1/2] {x := 1}�

c := c + 1

}
Program 1.1. Geometric distribution generator.

To verify that f is indeed a superinvariantlet, we have to show that

ΦB,P (f̂)(XiCj) =
〈
XiCj

〉
x�=1

+ f̂
(
[[P]]

(〈
XiCj

〉
x=1

))

!� f̂
(
XiCj

)
.

For i �= 1, we get

ΦB,P (f̂)(XiCj) =
〈
XiCj

〉
x�=1

+ f̂([[P]] (0))

= XiCj = f(XiCj) = f̂(XiCj) .

For i = 1, we get

ΦB,P (f̂)(X1Cj) = f̂
(
1
2X0Cj+1 + 1

2X1Cj+1
)

= 1
2f

(
X0Cj+1

)
+ 1

2f
(
X1Cj+1

)
(by linearity of f̂)

= Cj+1

2−C = f
(
X1Cj

)
= f̂

(
X1Cj

)
. (by definition of f)

Hence, Corollary 2 yields [[W]](X) � f (X) = C
2−C .

For this example, we can state even more. As the program is almost surely
terminating, and

∣∣f(XiCj)
∣∣ = 1 for all (i, j) ∈ N

2, we conclude that f̂ is exactly
the semantics of W , i.e. f̂ = [[W]]. �

while (x > 0){
{x := x + 1} [1/2] {x := x - 1}�

c := c + 1

}
Program 1.2. Left-bounded 1-dimensional random walk.

Example 6 (Verifying Proper Overapproximations). Program 1.2 models a one
dimensional, left-bounded random walk. Given an input (i, j) ∈ N

2, this program
can only terminate in an even (if i is even) or odd (if i is odd) number of steps.
This insight can be encoded into the following superinvariantlet:

f(X0Cj) = Cj and

f(Xi+1Cj) = Cj ·
{

C
1−C2 , if i is odd;

1
1−C2 , if i is even.

Generating Functions for Probabilistic Programs 243

It is straightforward to verify that f is a proper superinvariantlet (proper because
C

1−C2 = C +C3 +C5 + . . . is not a PGF) and hence f properly overapproximates
the loop semantics. Another superinvariantlet for Program 1.2 is given by

h(XiCj) = Cj ·
⎧
⎨

⎩

(
1−√

1−C2

C

)i

, if i ≥ 1;

1, if i = 0.

Given that the program terminates almost-surely [16] and that h is a superin-
variantlet yielding only PGFs, it follows that the extension of h is exactly the
semantics of Program 1.2. An alternative derivation of this formula for the case
h(X) can be found, e.g., in [17].

For both f and h, we were able to prove that they are indeed superinvari-
antlets semi-automatically, using the computer algebra library SymPy [27]. The
code is included in Appendix B (Program 1.5). �

while (x > 0){
{x := x - 1} [1/x] {x := x + 1}

}
Program 1.3. A non-almost-surely terminating loop.

Example 7 (Proving Non-almost-sure Termination). In Program 1.3, the branch-
ing probability of the choice statement depends on the value of a program vari-
able. This notation is just syntactic sugar, as this behavior can be mimicked by
loop constructs together with coin flips [3, pp. 115f].

To prove that Program 1.3 does not terminate almost-surely, we consider the
following superinvariantlet:

f(Xi) = 1 − 1
e

·
i−2∑

n=0

1
n!

, where e = 2.71828 . . . is Euler’s number.

Again, the superinvariantlet property was verified semi-automatically, by this we
mean that we have constructed functions f and Φ by hand and Mathematica [18]
confirmed that Φ(f) − f = 0. Now, consider for instance f(X3) = 1 − 1

e ·(
1
0! + 1

1!

)
= 1 − 2

e < 1. This proves, that the program terminates on X3 with
a probability strictly smaller than 1, witnessing that the program is not almost
surely terminating. Note that in general this technique cannot be used for proving
almost-sure termination. �

5.2 Rational PGFs

In several of the examples from the previous sections, we considered PGFs which
were rational functions, that is, fractions of two polynomials. Since those are a

244 L. Klinkenberg et al.

particularly simple class of PGFs, it is natural to ask which programs have
rational semantics. In this section, we present a semantic characterization of a
class of while-loops whose output distribution is a (multivariate) discrete phase-
type distribution [28,29]. This implies that the resulting PGF of such programs
is an effectively computable rational function for any given input state. Let us
illustrate this by an example.

while (x < 1 and t < 2){
if (t = 0){

{x := 1} [a] {t := 1}� c := c + 1

} else {
{x := 1} [b] {t := 0}� d := d + 1

}
}

Program 1.4. Dueling cowboys.

Example 8 (Dueling Cowboys). Program 1.4 models two dueling cowboys [25].
The hit chance of the first cowboy is a and the hit chance of the second cowboy
is b, where a, b ∈ [0, 1].5 The cowboys shoot at each other in turns, as indicated
by the variable t, until one of them gets hit (x is set to 1). The variable c counts
the number of shots of the first cowboy and d those of the second cowboy.

We observe that Program 1.4 is somewhat independent of the value of c. More
specifically, placing the additional statement c := c + 1 either immediately
before or after the loop yields two equivalent programs. In our notation, this is
expressed as [[W]](C · H) = C · [[W]](H) for all PGFs H. By symmetry, the same
applies to variable d. Unfolding the loop once on input 1, yields

[[W]](1) = (1 − a)C · [[W]](T) + aCX .

A similar equation for [[W]](T) involving [[W]](1) on its right-hand side holds.
This way we obtain a system of two linear equations, although the program
itself is infinite-state. The linear equation system has a unique solution [[W]](1)
in the field of rational functions over the variables C,D, T , and X which is the
PGF

G :=
aCX + (1 − a)bCDTX

1 − (1 − b)(1 − a)CD
.

From G we can easily read off the following: The probability that the first cowboy
wins (x = 1 and t = 0) equals a

1−(1−a)(1−b) , and the expected total number of
shots of the first cowboy is ∂

∂C G(1) = 1
a+b−ab . Notice that this quantity equals

∞ if a and b are both zero, i.e. if both cowboys have zero hit chance.
If we write GV for the PGF obtained by substituting all but the variables in

V with 1, then we moreover see that GC · GD �= GC,D. This means that C and
D (as random variables) are stochastically dependent. �
5 These are not program variables.

Generating Functions for Probabilistic Programs 245

The distribution encoded in the PGF [[W]](1) is a discrete phase-type distri-
bution. Such distributions are defined as follows: A Markov reward chain is a
Markov chain where each state is augmented with a reward vector in N

k. By def-
inition, a (discrete) distribution on N

k is of phase-type iff it is the distribution of
the total accumulated reward vector until absorption in a Markov reward chain
with a single absorbing state and a finite number of transient states. In fact,
Program 1.4 can be described as a Markov reward chain with two states (X0T 0

and X0T 1) and 2-dimensional reward vectors corresponding to the “counters”
(c, d): the reward in state X0T 0 is (1, 0) and (0, 1) in the other state.

Each pGCL program describes a Markov reward chain [13]. It is not clear which
(non-trivial) syntactical restrictions to impose to guarantee for such chains to be
finite. In the remainder of this section, we give a characterization of while-loops
that are equivalent to finite Markov reward chains. The idea of our criterion is
that each variable has to fall into one of the following two categories:

Definition 9 (Homogeneous and Bounded Variables). Let P ∈ pGCL be
a program, B be a guard and xi be a program variable. Then:

– xi is called homogeneous for P if [[P]](Xi ·G) = Xi · [[P]](G) for all G ∈ PGF.
– xi is called bounded by B if the set {σi | σ ∈ B} is finite.

Intuitively, homogeneity of xi means that it does not matter whether one incre-
ments the variable before or after the execution of P . Thus, a homogeneous
variable behaves like an increment-only counter even if this may not be explicit
in the syntax. In Example 8, the variables c and d in Program 1.4 are homoge-
neous (for both the loop-body and the loop itself). Moreover, x and t are clearly
bounded by the loop guard. We can now state our characterization.

Definition 10 (HB Loops). A loop while (B) {P} is called homogeneous-
bounded (HB) if for all program states σ ∈ B, the PGF [[P]](Xσ) is a polynomial
and for all program variables x it either holds that

– x is homogeneous for P and the guard B is independent of x, or that
– x is bounded by the guard B.

In an HB loop, all the possible valuations of the bounded variables satisfying B
span the finite transient state space of a Markov reward chain in which the
dimension of the reward vectors equals the number of homogeneous variables.
The additional condition that [[P]](Xσ) is a polynomial ensures that there is only
a finite amount of terminal (absorbing) states. Thus, we have the following:

Proposition 1. Let W be a while-loop. Then [[W]](Xσ) is the (rational) PGF
of a multivariate discrete phase-type distribution if and only if W is equivalent
to an HB loop that almost-surely terminates on input σ.

To conclude, we remark that there are various simple syntactic conditions for
HB loops: For example, if P is loop-free, then [[P]](Xσ) is always a polynomial.
Similarly, if x only appears in assignments of the form x := x + k, k ≥ 0,

246 L. Klinkenberg et al.

then x is homogeneous. Such updates of variables are e.g. essential in constant
probability programs [11]. The crucial point is that such conditions are only
sufficient but not necessary. Our semantic conditions thus capture the essence of
phase-type distribution semantics more adequately while still being reasonably
simple (albeit—being non-trivial semantic properties—undecidable in general).

6 Conclusion

We have presented a denotational distribution transformer semantics for prob-
abilistic while-programs where the denotations are generating functions (GFs).
The main benefit of using GFs lies in representing the entire probability distri-
bution for a given input. Moreover, we have provided a simple invariant-style
technique to prove that a given GF overapproximates the program’s semantics
and identified a class of (possibly infinite-state) programs whose semantics is a
rational GF encoding a discrete phase-type distribution. Directions for future
work include the (semi-)automated synthesis of invariants and the development
of notions on how precise overapproximations by invariants actually are. On
that end, a rule for verifying underapproximations (e.g. à la [14], which provides
inductive rules for underapproximating expected values) would be a major step
in that direction.

Another direction for future work is to support Z-valued program variables.
For expected values, work on verifying signed random variables exists [21]—for
PGFs, the situation is less clear. An obvious choice would be to employ formal
Laurent series, but those only allow for finitely many negative indices, thus
eluding distributions with both infinite positive and infinite negative support.

Acknowledgements. The authors thank the reviewers for their constructive and
helpful comments and Marcel Hark for fruitful discussions.

References

1. Barthe, G., Grégoire, B., Hsu, J., Strub, P.: Coupling proofs are probabilistic prod-
uct programs. In: POPL, pp. 161–174. ACM (2017)

2. Bartocci, E., Kovács, L., Stankovič, M.: Automatic generation of moment-based
invariants for prob-solvable loops. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.)
ATVA 2019. LNCS, vol. 11781, pp. 255–276. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31784-3 15

3. Batz, K., Kaminski, B.L., Katoen, J., Matheja, C., Noll, T.: Quantitative separa-
tion logic: a logic for reasoning about probabilistic pointer programs. In: PACMPL
3 (POPL), pp. 34:1–34:29 (2019)

4. Boreale, M.: Analysis of probabilistic systems via generating functions and Padé
approximation. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 82–94. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47666-6 7

https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-662-47666-6_7

Generating Functions for Probabilistic Programs 247

5. Bouissou, O., Goubault, E., Putot, S., Chakarov, A., Sankaranarayanan, S.: Uncer-
tainty propagation using probabilistic affine forms and concentration of mea-
sure inequalities. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 225–243. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49674-9 13

6. Carette, J., Shan, C.-C.: Simplifying probabilistic programs using computer alge-
bra. In: Gavanelli, M., Reppy, J. (eds.) PADL 2016. LNCS, vol. 9585, pp. 135–152.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28228-2 9

7. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
ACM Trans. Program. Lang. Syst. 40(2), 7:1–7:45 (2018)

8. Cho, K., Jacobs, B.: The EfProb library for probabilistic calculations. In: CALCO.
LIPIcs, vol. 72, pp. 25:1–25:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2017)

9. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.)
ESOP 2012. LNCS, vol. 7211, pp. 169–193. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28869-2 9

10. Di Pierro, A., Wiklicky, H.: Semantics of probabilistic programs: a weak limit
approach. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 241–256. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-03542-0 18

11. Giesl, J., Giesl, P., Hark, M.: Computing expected runtimes for constant proba-
bility programs. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp.
269–286. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6 16

12. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics: A Foundation for
Computer Science. Addison-Wesley, Boston (1994)

13. Gretz, F., Katoen, J., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

14. Hark, M., Kaminski, B.L., Giesl, J., Katoen, J.: Aiming low is harder: induction
for lower bounds in probabilistic program verification. Proc. ACM Program. Lang.
4(POPL), 37:1–37:28 (2020)

15. den Hartog, J., de Vink, E.P.: Verifying probabilistic programs using a Hoare like
logic. Int. J. Found. Comput. Sci. 13(3), 315–340 (2002)

16. Hurd, J.: A formal approach to probabilistic termination. In: Carreño, V.A.,
Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 230–245.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45685-6 16

17. Icard, T.: Calibrating generative models: the probabilistic Chomsky-
Schützenberger hierarchy. J. Math. Psychol. 95, 102308 (2020). https://www.sci
encedirect.com/journal/journal-of-mathematical-psychology/vol/95/suppl/C

18. Inc., W.R.: Mathematica, Version 12.0, champaign, IL (2019). https://www.
wolfram.com/mathematica

19. Johnson, N., Kotz, S., Kemp, A.: Univariate Discrete Distributions. Wiley, Hobo-
ken (1993)

20. Kaminski, B.L.: Advanced weakest precondition calculi for probabilistic programs.
Ph.D. thesis, RWTH Aachen University, Germany (2019)

21. Kaminski, B.L., Katoen, J.: A weakest pre-expectation semantics for mixed-sign
expectations. In: ACM/IEEE Symposium on Logic in Computer Science. LICS,
pp. 1–12. IEEE Computer Society (2017)

22. Kaminski, B.L., Katoen, J.-P., Matheja, C.: On the hardness of analyzing prob-
abilistic programs. Acta Informatica 56(3), 255–285 (2018). https://doi.org/10.
1007/s00236-018-0321-1

https://doi.org/10.1007/978-3-662-49674-9_13
https://doi.org/10.1007/978-3-662-49674-9_13
https://doi.org/10.1007/978-3-319-28228-2_9
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-319-03542-0_18
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1007/3-540-45685-6_16
https://www.sciencedirect.com/journal/journal-of-mathematical-psychology/vol/95/suppl/C
https://www.sciencedirect.com/journal/journal-of-mathematical-psychology/vol/95/suppl/C
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://doi.org/10.1007/s00236-018-0321-1
https://doi.org/10.1007/s00236-018-0321-1

248 L. Klinkenberg et al.

23. Kozen, D.: Semantics of probabilistic programs. In: FOCS, pp. 101–114. IEEE
Computer Society (1979)

24. Lassez, J.L., Nguyen, V.L., Sonenberg, L.: Fixed point theorems and semantics: a
folk tale. Inf. Process. Lett. 14(3), 112–116 (1982)

25. McIver, A., Morgan, C.: Abstraction, refinement and proof for probabilistic sys-
tems. Monogr. Comput. Sci. Springer (2005). https://doi.org/10.1007/b138392

26. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.: A new proof rule for almost-
sure termination. In: PACMPL 2(POPL), pp. 33:1–33:28 (2018)

27. Meurer, A., et al.: SymPy: symbolic computing in python. PeerJ Comput. Sci. 3,
e103 (2017). https://doi.org/10.7717/peerj-cs.103

28. Navarro, A.C.: Order statistics and multivariate discrete phase-type distributions.
Ph.D. thesis, DTU Lyngby (2018)

29. Neuts, M.F.: Matrix-geometric solutions to stochastic models. In: Steckhan, H.,
Bühler, W., Jäger, K.E., Schneeweiß, C., Schwarze, J. (eds.) DGOR, pp. 425–425.
Springer, Heidelberg (1984). https://doi.org/10.1007/978-3-642-69546-9 91

30. Park, D.: Fixpoint induction and proofs of program properties. Mach. Intell. 5,
59–78 (1969)

31. Pólya, G.: Mathematics and Plausible Reasoning: Induction and Analogy in Math-
ematics. Princeton University Press, Princeton (1954)

32. Wiklicky, H.: On dynamical probabilities, or: how to learn to shoot straight. In:
Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016. LNCS, vol. 9686,
pp. 262–277. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39519-
7 16

https://doi.org/10.1007/b138392
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/978-3-642-69546-9_91
https://doi.org/10.1007/978-3-319-39519-7_16
https://doi.org/10.1007/978-3-319-39519-7_16

Verification of Multiplayer Stochastic
Games via Abstract Dependency Graphs

Søren Enevoldsen, Mathias Claus Jensen, Kim Guldstrand Larsen,
Anders Mariegaard(B), and Jǐŕı Srba

Department of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300,
9220 Aalborg East, Denmark

{senevoldsen,mcje,kgl,am,srba}@cs.aau.dk

Abstract. We design and implement an efficient model checking algo-
rithm for alternating-time temporal logic (ATL) on turn-based multi-
player stochastic games with weighted transitions. This logic allows us
to query about the existence of multiplayer strategies that aim to maxi-
mize the probability of game runs satisfying resource-bounded next and
until logical operators, while requiring that the accumulated weight along
the successful runs does not exceed a given upper bound. Our method
relies on a recently introduced formalism of abstract dependency graphs
(ADG) and we provide an efficient reduction of our model checking prob-
lem to finding the minimum fixed-point assignment on an ADG over the
domain of unit intervals extended with certain-zero optimization. As the
fixed-point computation on ADGs is performed in an on-the-fly man-
ner without the need of a priori generating the whole graph, we achieve
a performance that is comparable with state-of-the-art model checker
PRISM-games for finding the exact solutions and sometimes an order
of magnitude faster for queries that ask about approximate probability
bounds. We document this on a series of scalable experiments from the
PRISM-games benchmark that we annotate with weight information.

1 Introduction

Advances in model checking over the last decades allow us to verify larger sys-
tems using less resources. More recently, addition of quantitative aspects to
model checking techniques became an important research topic. In order to
model real-world applications, modelling formalisms must reflect both probabilis-
tic choices [5] that model the uncertainties in system behaviour and at the same
time be able to reason about quantitative aspects such as cost [22]. Moreover,
in order to take into account the unpredictable environment, we need to ver-
ify that the desirable properties hold for all possible environmental behaviours.
These aspects are usually modelled as games—in our case multiplayer games [39]
where the players form coalitions in order to enforce a given property.

In order to reason about the probabilistic, cost and game aspects, we
study the model of turn-based multiplayer stochastic games [40] where tran-
sitions contain multidimensional cost (weight) vectors, representing different
c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 249–268, 2021.
https://doi.org/10.1007/978-3-030-68446-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-68446-4_13

250 S. Enevoldsen et al.

cost quantities. Multidimensional verification is necessary in applications where
the system must respect bounds on several dependent quantities simultaneously
(see e.g. [12,26,27]), such as consumption of energy and the discrete progres-
sion of time. We assume that any play of a game eventually accumulates some
weight, which is natural for many models that include quantities such as time
and energy, as executing an infinite number of actions without progressing time
or consuming energy, is in many cases unrealistic. Our model can be seen as
a weight extension of PRISM-games [32], where we consider properties formu-
lated in an extension of alternating-time temporal logic (ATL) [1] that contains
operators that specify existence of strategies for player coalitions ensuring cost-
and probability bounded next or until properties. Hence we can ask questions
like ”is the probability that player 1 and 3 can form a coalition such that they
enforce that a certain state is reachable within a total cost of c1 time units and
c2 units of energy, greater than 0.8”?. We can thus reason about strategies that
enforce strict bounds on multiple accumulating quantities simultaneously. This
has many practical applications for systems that e.g. have to complete a number
of tasks within a given time-limit, but must at the same time also stay within
an energy budget, no matter how the environment behaves.

Our verification approach is based on a novel reduction to the problem of
finding fixed points on abstract dependency graphs (ADG) [23,25], a recently
introduced formalism that extends classical dependency graphs by Liu and
Smolka [35]. Dependency graphs allow us to assign Boolean values to nodes in the
graph, whereas ADGs assign to nodes values from a more abstract domain. In our
case, we use the domain of the unit interval, representing probabilities, extended
with a special value called “certain-zero” [20] that allows for an early termina-
tion of the on-the-fly computation of the fixed point on the ADG. We formally
prove the correctness of our encoding and provide an efficient implementation
that allows us to take as input the models described in PRISM-games and per-
form model checking in an on-the-fly manner. On three different PRISM-games
case studies (annotated with the cost information), we demonstrate that our
implementation is performance-wise comparable to the state-of-the-art model
checker PRISM-games on queries that include exact probability bounds. How-
ever, once we lower the probability threshold from the exact probability bound,
our on-the-fly algorithm demonstrates the potential of significantly outperform-
ing PRISM-games.

Related Work. Since the introduction of stochastic games in the seminal work
by Shapley [39], a number of variations and extensions of the classical formalism
have been studied by the verification community. From a theoretical perspective,
Condon [18,19] studies the complexity and algorithms for (simple) stochastic
two-player games where the objective is to determine the winning probability
for a given player. More recently, [4,10] consider controller synthesis for turn-
based stochastic two-player games with PCTL winning objectives. Compared to
our work, these papers consider controller synthesis instead of model-checking,
and do not consider quantitative games and offer no implementation.

Verification of Multiplayer Stochastic Games 251

For quantitative verification of turn-based stochastic multiplayer games, [13]
presents the logic rPATL (Probabilistic Alternating-Time Temporal Logic with
Rewards) that naturally extends the logic Probabilistic Alternating-Time Tem-
poral Logic [16] (PATL) with reward-operators. PATL is itself a probabilistic
extension of ATL. A similar logic is introduced in [36], interpreted on concurrent
games. The logic rPATL allows one to state that a coalition of players has a strat-
egy such that either the probability of an event happening or an expected reward
measure, is within a given threshold. Verifying rPATL properties on stochas-
tic multiplayer games has been implemented in PRISM-games [32]. PRISM-
games supports analysis of various types of games, verification of multi-objective
properties [14] and has been applied to several case-studies (see e.g. [13,15]).
Compared to our approach, PRISM-games does not directly support multidi-
mensional reward-bounded properties and the current implementation offers no
on-the-fly verification techniques that we demonstrate can yield a considerable
speedup. Recently, a number of papers [6,28,38] have improved value iteration,
the underlying technique of PRISM-GAMES, to deal with inaccuracies in the
computed results stemming from certain termination criteria based on lower
bound approximations. The approach has been applied to simple stochastic
games [3,31] but has yet to be incorporated into PRISM-GAMES. Although
our approach also computes lower bounds, we prove that we always terminate
and compute the exact answer, relying on the fact that any formula is weight-
constrained and any path of any game eventually accumulates weight. Another
approach to computing measures on probabilistic models with multi-dimensional
rewards and non-determinism (MDPs) is presented in [27]. A performance com-
parison is left for the future work.

Lastly, our work is a continuation of the work done in [30], where a special-
purpose algorithm is developed for PCTL model-checking on models with multi-
dimensional weights.We lift the approach to games by showing how to formally
treat the game features in ADGs and we consider a new set of domain values
that treat the probabilities symbolically while the weights are encoded explic-
itly; our novel encoding outperforms the pure symbolic implementation provided
in [30] by an order of magnitude. Finally, our approach is more generic as it
relies on the notion of ADGs and variations of the logic and/or the model can
often be dealt with by minor modifications of the ADG construction, without
the need of changing the underlying fixed-point algorithm. A related abstract
approach is presented in [7,8], for solving systems of fixed-point equations over
(continuous) lattices via a game-theoretic approach. An example application is
(lattice-valued) μ-calculus model-checking [8] that deals with systems of fixed-
point equations over infinite lattices (e.g. the reals), which in turn can be applied
to model-checking probabilistic CTL or probabilistic μ-calculi.

2 Turn-Based Stochastic Games

Before introducing turn-based stochastic games, we present some preliminaries.
For any set X, Xn is the set of all n-dimensional vectors with elements from

252 S. Enevoldsen et al.

m1

{a}
m3

{b}

m2{a}
α

3, 1
2

5, 1
2

β

3, 9
10

3, 1
10

α, 1, 1

β, 1, 1

α, 1, 1

(a) Turn-based stochastic game

m1

{a}
m3

{b}

m2{a} 3, 1
2

5, 1
21, 1

1, 1

(b) Markov reward model

Fig. 1. Two simple models

X and xn denotes the n-dimensional vector where x ∈ X is at all coordinates.
Thus, Nn is the set of all n-dimensional vectors of natural numbers and 0n is the
0-vector. We assume a fixed dimensionality n > 0 and any vector is written in
boldface e.g. x = (x1, . . . , xn) and y = (y1, . . . , yn) are vectors. For any such two
vectors, we let x ≥ y if and only if xi ≥ yi for all 1 ≤ i ≤ n. For any countable
non-empty set X, we let D(X) = {μ : X → [0, 1] | ∑

x∈X μ(x) = 1} denote the
set of probability distribution on X. For any distribution μ ∈ D(X), the support
of μ is defined as support(μ) = {x ∈ X | μ(x) > 0}. By Dfin(X) ⊆ D(X) we
denote the set of all distributions on X with finite support. For any two sets
X and Y we denote by f : X ⇀ Y that f is a partial function from domain
dom(f) = X to range ran(f) = Y . For a set X, let X∗ be the set of all finite
strings over X and for any string w = a1a2a3 · · · an ∈ X∗, let |w| = n denote
the length of w and for all 1 ≤ i ≤ |w|, let w[i] = ai be the i’th symbol of w.
The empty string is denoted by ε.

2.1 Definition of Stochastic Games

We now present turn-based stochastic multiplayer games [39], where the states
are partitioned into a number of sets, each set owned by a player of the game.
The game begins in a state owned by one of the players and proceeds in turns,
by letting the owner of the current state play one of the available actions after
which the game then transitions to the next state by a probabilistic choice. Each
such transition has an associated cost vector, that can naturally be interpreted
as the cost of the transition. Hence, given a strategy for each player in the game,
any non-determinism is resolved and the induced model is what is known as a
Markov reward model with impulse rewards [2,17]. It is a folklore result that
deterministic strategies are sufficient (see e.g. [37]). We assume a fixed finite set
of atomic propositions AP.

Definition 1. A Markov reward model (MRM) is a tuple M = (M,→, �) where
M is a finite set of states, → : M → Dfin(Nn ×M) is the transition function and
� : M → 2AP is the labelling function.

For any state m ∈ M , the probability of transitioning to another state m′ with
cost w is given by →(m)(w,m′). A w-successor of a state m is any state m′

Verification of Multiplayer Stochastic Games 253

such that →(m)(w,m′) > 0. A path is an infinite sequence of transitions π =
(m1,w1,m2), (m2,w2,m3) · · · where si+1 is a wi-successor of si for all i ≥ 1.
We let Paths(m) denote the set of all paths starting in m and for any path π ∈
Paths(m) we let π[i] denote the i’th state of π and by πn denote the finite prefix
of π ending in state π[n]. We let W(π)(j) =

∑j−1
i=1 wi denote the accumulated

cost up until the state π[j]. Finally, we let Paths(M) be the set of all paths of
M . An example of an MRM can be seen in Fig. 1b.

In order to measure events of any MRM M = (M,→, �), we introduce
the classical cylinder set construction from [5, Chapter 10]. For any finite
sequence w = (m1,w1,m2), (m2,w2,m3) · · · (mn−1,wn−1,mn), the cylinder set
of w, C(w) is the set of all paths having w as a prefix, i.e., C(w) = {π ∈
Paths(M) | πn = w} and the measure associated to the cylinder of w is given by
PM (C(w)) =

∏n−1
i=1 →(mi)(wi,mi+1). We can now define the probability space

(Mω, Σ,PM) where Σ is the smallest σ-algebra that contains the cylinder sets
of all finite alternating sequences of states and costs.

We now lift MRMs to stochastic games. Let Act be a fixed finite set of actions.

Definition 2. A turn-based stochastic multiplayer game is a structure G =
(Π,M, {Mi}i∈Π ,→, �) where Π is a finite set of players, M is a finite set of
state, {Mi}i∈Π is a partition of M such that for any i ∈ Π, Mi is a finite set of
states controlled by player i, → : M ×Act ⇀ Dfin(Nn × M) is the finite (partial)
transition function and � : S → 2AP is a labelling function.

For any state m ∈ M we let Act(m) = {α ∈ Act | (m,α) ∈ dom(→)}
denote the set of enabled actions in state m and assume any game to be
non-blocking by requiring all states to have at least one enabled action, i.e
Act(m) �= ∅. An α-successor of a state m is any state m′ such that the proba-
bility of transitioning from m by playing the α action is strictly positive for
some cost vector w ∈ N

n, i.e. →(m,α)(w,m′) > 0. We let succ(m)α be
the set of all α-successors of m. A path is an infinite sequence of transitions
π = (m1, α1,w1,m2), (m2, α2,w2,m3), · · · where mi+1 is an αi-successor of
mi with cost vector wi for all i ≥ 1. For any action α ∈ Act(m) we let
k = min{w | →(m,α)(w,m′) > 0} be the smallest possible transition cost
when playing action α in m and say that α is k′-enabled in m whenever k′ ≥ k
with Actk′(m) ⊆ Act(m) being the set of all k′-enabled actions in m. Thus, the
set Actk′(m) contains the actions available to the player owning state m, if only
transitions with a cost at most k′ are permitted. We extend the path notation
introduced for MRMs by letting Paths∗i be the set of all finite paths that end in
a state owned by player i ∈ Π and for any such finite path π ∈ Paths∗i , the last
state is given by last(π).

Remark 1. Notice that if |Π| = 1, the resulting model is a Markov decision
process (MDP) [37] with impulse rewards and if furthermore |Act| = 1, the
model is an MRM. Hence, turn-based stochastic multiplayer games subsume
both MDPs and MRMs.

254 S. Enevoldsen et al.

In the rest of the paper, we restrict the class of games, by assuming that the
accumulated cost of any loop of any game is of strictly positive magnitude.
Formally, for any state m ∈ M , it is the case that for all paths π ∈ Paths(m)
such that π[j] = m for some j ∈ N (a loop), we have that W(π)(j) �= 0n.

Example 1. Figure 1a depicts a simple turn-based stochastic game G with two
players Π = { , }. The states depicted as circles, m1 and m3 belong to player

while the state m3 belongs to player . The transition function is depicted by
edges labelled by a given enabled action, followed by the cost of the transition and
probabilities to successor states. The labelling of each state is given next to the
state. In case the probability distribution assigns probability 1 to a single state,
there is no branching and we simply label the edge with the action, probability
1 and the associated weight.

Starting from the state m1, player is in control and may choose either of
the actions β and α. For β, there is a small probability, 1

10 , of transitioning to
state m3 whereas for action α, the game transitions to m2 with probability 1

2 .
In m2, player may choose to let the game stay in state m2 by the self-loop,
or decide to transition to m3.

If the two players are considered opponents and the goal of player is to
maximize the probability of reaching a state labelled b (m3) within a given bound
on the accumulated cost of reaching b, the only safe option is to always choose
the action β in state m1 as player can force the game to stay in state m2 if it
is ever reached. On the other hand, if the two players work together, player
always plays the action β in m2 to ensure that state m3 is reached.

2.2 Strategies

As indicated by Example 1, any game unfolds by applying concrete strategies for
each player, specifying which action to play in a given state. We now formally
define strategies by first fixing a game G = (Π,M, {Mi}i∈Π ,→, �). Given a
player, i ∈ Π, a (history-dependent deterministic) strategy for player i in G is
a function σ : Paths∗i → Act, that associates an action with each finite path
ending in a state owned by player i. Thus, a strategy prescribes which action
a player should play in a given state, given the full history of the game. For a
strategy to be sound, only actions enabled in the given state must be played.
Formally, a strategy σ for player i is sound if for any finite path π ∈ Paths∗i with
last(π) = mi ∈ Mi, it holds that σ(π) ∈ Act(mi). We let Si denote the set of all
sound strategies for player i in G.

Remark 2. If σ(π1) = σ(π2) for all π1, π2 ∈ Paths∗i with last(π1) = last(π2), we
say that σ is a memoryless strategy for player i, as the action prescribed depends
only on the last state of the game.

Strategies naturally extend to sets of players by considering what is commonly
known as a coalition of players. A coalition strategy for any coalition C ⊆ Π in
G, is a set of sound strategies, {σi}i∈C , such that σi ∈ Si for all i ∈ C. We let
SC denote the set of all coalition strategies for the coalition C, use σC to range

Verification of Multiplayer Stochastic Games 255

over elements of SC and let C = Π \ C be the coalition containing the players
in the complement of C. Given a state m ∈ M , coalition strategies σC and σC ,
a unique MRM is induced from G by resolving the non-deterministic choices as
prescribed by σC and σC . We let P

σC ,σC

G denote the probability measure on the
induced MRM.

Example 2. Consider again the game from Fig. 1a and the memoryless strategies
σα and σβ , respectively defined for any π ∈ Paths∗ and π ∈ Paths∗ as σα(π) =
α and σβ (π) = β. The induced MRM is the one depicted in Fig. 1b.

3 Probabilistic Weighted ATL

As a specification language, we employ an extension of Alternating-time Tempo-
ral Logic (ATL [1]) to reason about whether or not a given coalition of players
can together enforce the game to enjoy a given property, regardless of the strat-
egy of the remaining players of the game. Hence, a witness of satisfaction is
a coalition-strategy. Our logic is syntactically similar to probabilistic resource-
bounded ATL proposed by Nguyen and Rakib [36], but interpreted on turn-based
games instead of concurrent games. It is also similar to rPATL [13] employed
by PRISM-games, except that we do no support expected reward measures but
we allow instead for multi-cost bounded path formulae. We restrict negation to
atomic propositions and therefore include conjunction and disjunction explicitly.

Definition 3 (Syntax). The set of PWATL formulae is given by the
grammar:

φ :: = a | ¬a | φ ∧ φ | φ ∨ φ | 〈〈C〉〉�λ[ψ] (State Formulae)
ψ :: = X≤k φ | φ U≤k φ (Path Formulae)

where a ∈ AP, C ⊆ Π, λ ∈ [0, 1], k ∈ N
n and � = {>,≥}.

The set of PWATL state-formulae is denoted by LATL. A formula 〈〈C〉〉�λ[ψ] ∈
LATL is satisfied by a state m ∈ M of a game G = (Π,M, {Mi}i∈Π ,→, �), if there
exists a coalition strategy σC for the players in C ⊆ Π such that, no matter which
coalition strategy σC is assigned to the remaining players in C, measuring paths
that satisfy ψ in the MRM induces from G by σC and σC , yields a probability p
such that p � λ.

256 S. Enevoldsen et al.

Definition 4 (Semantics). For a game G = (Π,M, {Mi}i∈Π ,→, �), state
m ∈ M , and path π ∈ Paths, PWATL satisfiability is defined inductively:

G,m |= a iff a ∈ �(m)
G,m |= ¬a iff a /∈ �(m)
G,m |= φ1 ∧ φ2 iff G,m |= φ1 and G,m |= φ2

G,m |= φ1 ∨ φ2 iff G,m |= φ1 or G,m |= φ2

G,m |= 〈〈C〉〉�λ[ψ] iff ∃σC ∈ SC .∀σC ∈ SC .

P
σC ,σC

G ({π ∈ Paths(m) | G, π |= ψ}) � λ

G, π |= φ1U≤kφ2 iff ∃j ∈ N.G, π[j] |= φ2,W(π)(j) ≤ k

and G, π[i] |= φ1 for all i < j

G, π |= X≤kφ iff G, π[2] |= φ and W(π)(1) ≤ k

Example 3. Consider once again the game in Fig. 1a and the formula
φ = 〈〈C〉〉> 1

2
[aU≤8b] with C = { , } By the memoryless strategies from

Example 2,

P
σC ,∅
G ({π ∈ Paths(m1) | G, π |= aU≤8b}) =

1
2

where σC = {σα, σβ}. This is easily verified by inspecting the induced MRM in
Fig. 1b. Hence, the two memoryless strategies do not prove G,m1 |= φ.

To construct a strategy for G,m1 |= φ, we modify the player strategy.
Instead of always playing action α, the action will depend on the accumulated
cost of the game history: for any finite path π ∈ Paths∗ of length at least j,

σ∗(π) =

{
β if W(π)(j) ≤ 4
α otherwise

.

4 Model Checking Through Dependency Graphs

In this section we demonstrate how the PWATL model-checking problem for
turn-based stochastic multiplayer games can be reduced to computing fixed
points on so-called abstract dependency graphs [25]. For a model-checking prob-
lem G,m |= φ, the corresponding abstract dependency graph represents the
decomposition of the problem into sub-problems (dependencies) given by the
inductive definition of PWATL semantics.

4.1 Abstract Dependency Graphs

An abstract dependency graph [25] is a (directed) graph consisting of a collection
of vertices V , together with a function that to each v ∈ V assigns a set of
vertices being the dependencies of v and a function for computing the value of
v, given the value of all its dependencies. The vertex values are drawn from a
triple D = (D,�,⊥) where (D,�) is a partial order, ⊥ ∈ D the least element

Verification of Multiplayer Stochastic Games 257

of D and � must satisfy the ascending chain condition: for any infinite chain
d1 � d2 � d3 . . . of elements di ∈ D, there exists an integer k such that dk = dk+j

for all j > 0. This kind of ordering is referred to in [25] as a Noetherian ordering
relation with least element (NOR). For any NOR we assume the elements are
finitely representable, meaning that elements can be represented by finite strings.

For the computation of the value of each vertex we consider the application
of monotone functions to the values of all its dependencies. Formally, for any
n ∈ N, F(D, n) on a NOR (D,�,⊥) is the set of all monotone functions f :
Dn → D of arity n, where f is monotone if di � d′

i for all i, 1 ≤ i ≤ n,
implies f(d1, . . . , dn) � f(d′

1, . . . , d
′
n) for any d1, . . . , dn, d′

1, . . . d
′
n ∈ D, and we

let F(D) =
⋃

n≥0 F(D, n) be the collection of all such functions. We assume
all functions f ∈ F(D, n) for any n ∈ N to be effectively computable, meaning
that for any f ∈ F(D, n) and d1, . . . , dn ∈ D, there exists an algorithm that
terminates and computes the finite representation of f(d1, . . . , dn) ∈ D.

We are now ready to define abstract dependency graphs.

Definition 5 (Abstract Dependency Graph [25]). An abstract dependency
graph (ADG) is a tuple G = (V,E,D, E) where

– V is a finite set of vertices,
– E : V → V ∗ is an edge function from vertices to sequences of vertices such

that E(v)[i] �= E(v)[j] for every v ∈ V and every 1 ≤ i < j ≤ |E(v)|, i.e. the
co-domain of E contains only strings over V where no symbol appears more
than once,

– D is NOR with finitely representable elements, and
– E is a labelling function E : V → F(D) such that E(v) ∈ F(D, |E(v)|) for each

v ∈ V , i.e. each edge E(v) is labelled by an effectively computable monotone
function f of arity that corresponds to the length of E(v).

In the following, we assume a fixed ADG G = (V,E,D, E). For each vertex
v ∈ V , E(v) is a string containing all the vertices that represent dependencies
of v and E(v) is the function computing the value of v given the values of all
the dependencies of v in E(v). An assignment is then a function A : V → D,
mapping each vertex to an element of the NOR D = (D,�,⊥). We let A denote
the set of all assignments and lift the ordering from D to assignments: for any
two assignments A1, A2 ∈ A, A1 � A2 iff ∀v ∈ V.A1(v) � A2(v). It follows
that (A,�) is a NOR, with minimum element A⊥ defined for any v ∈ V as
A⊥(v) = ⊥. We define the minimum fixed-point assignment Amin for G as the
minimum fixed point of the function F : A → A, defined for any v ∈ V as
F (A)(v) = E(v)(A(v1), A(v2), . . . , A(vk)) where E(v) = v1v2 · · · vk. As each E(v)
is monotone, it follows that F is a monotone function. In [25] it is proven,
by applying standard reasoning for fixed points of monotonic functions [41],
that Amin exists and is computable by repeated application of F on A⊥. We
end this section by presenting the result of [25]. For any A ∈ Ak let F i(A) be
the i’th repeated application of F on A, defined for i = 0 as F i(A) = A and
F i(A) = F (F i−1(A)) for i > 0.

Theorem 1 [25]. There exists j ∈ N such that F k(A⊥) = Amin for all k ≥ j.

258 S. Enevoldsen et al.

4.2 The Reduction

We fix a game G = (Π,M, {Mi}i∈Π ,→, �) for the remainder of this section and
present the encoding of the problem G,m |= φ for some state m ∈ M and
PWATL formula φ ∈ LATL by reduction to computing the minimal fixed point
of a suitable abstract dependency graph G = (V,E,D, E). In general, vertices
of the graph are pairs (m,φ) where m is a state of G and φ ∈ LATL is a state-
formula. These are referred to as concrete vertices. As our approach is symbolic,
we introduce another type of vertex. For this, we let L?

ATL = {〈〈C〉〉�?[φ1U≤kφ2] |
k ∈ N

n, φ1, φ2 ∈ LATL} ∪ {〈〈C〉〉�?[X≤kφ] | k ∈ N
n, φ ∈ LATL} be the set of all

symbolic state-formulae. The symbolic vertices are then on the form (m,φ?),
where φ? ∈ L?

ATL. We proceed by defining the domain D.

m1, φ
8v1

m1, φ
8
?

v2

m1, bv8

m1, av5Σαm1, φ
3
?

v11 ··
·

Σβ m1, φ
5
?

v12··
·

∅
m2, φ

5
?

v3 m3, φ
5
?

v4m2, bv9 m3, b

v7

∅

m2, av6

∅

Σα

m2, φ
4
?

v13

··
·

Σβ m3, av10

m3, φ
4
?

v14

Σα

· ·
·

1
2
, >

5, 1
2

3, 1
2

3, 9
10

3, 1
10

1, 1
1, 1 1, 1

(a) ADG encoding of G, m1 |= φ for G from Figure 1a and φ = 〈〈 , 〉〉> 1
2
[aU≤8b]

v1 v2 v3 v4 v5 · · · v7 v8 · · · v10 Amin(v11···12) Amin(v13···14)

A′ 0 0 0 0 0 0 1
10

1
F (A′) 0 9

100
1 1 1 ˜0 1

10
1

F 2(A′) 0 11
20

1 1 1 ˜0 1
10

1
F 3(A′) 1 11

20
1 1 1 ˜0 1

10
1

(b) Fixed point computation of ADG in Figure 2a

Fig. 2. Abstract dependency graph encoding example

0

10̃

Fig. 3. Ordering �

The domain D. During the fixed point computation, the
value of any node is, in general, a number that represents
a lower bound on the probability of satisfaction. However,
as we employ the certain-zero optimization of [20], we use
also a special value 0̃, indicating that the value is 0 and can
never change. Hence, 0 is a lower bound whereas 0̃ is an
upper bound on the probability of satisfaction. We define the ordering depicted
in Fig. 3, where the dotted line represents all numbers between 0 and 1, and
where 0 � 0̃ and p1 � p2 if p1 ≤ p2 and p1, p2 ∈ [0, 1]. Hence, the certain
zero value 0̃ and the strictly positive probabilities in (0, 1] are incomparable.
Thus, the domain is given by D = ([0, 1] ∪ {0̃},�, 0). For any concrete vertices

Verification of Multiplayer Stochastic Games 259

(m,φ), the value assigned is either 0, 1 or 0̃. If the value becomes 1, m satisfies
φ, thus whenever the root is assigned 1, the algorithm can safely terminate.
However, if the value is 0, the current belief is that m does not satisfy φ and the
algorithm cannot terminate as the value is a lower bound that may change. Once
the value becomes 0̃, it is certain that m does not satisfy φ and the algorithm
can terminate. For symbolic vertices (m, 〈〈C〉〉�?ψ), assigning a probability p to
the vertex indicates the existance of a strategy for the coalition C, such that
measuring paths from m satisfying ψ, yields a probability at least p, no matter
the strategy for the remaining players in C. Hence, G,m |= 〈〈C〉〉�pψ.

Anticipating the definition of the vertex labelling function, we define the
operations min,max,+ and · on elements from the domain D. If the operands
are regular probabilities in [0, 1], the operations are defined in the natural way.
Otherwise, for the certain zero value 0̃ and for any probability p ∈ [0, 1] we let
min{0̃, p} = 0̃, max{0̃, p} = p, 0̃ + p = p and 0̃ · p = 0̃. Hence, 0̃ behaves like
0 when used in operations with regular probabilities. If both operands are 0̃ we
let min{0̃, 0̃} = 0̃, max{0̃, 0̃} = 0̃, 0̃ + 0̃ = 0̃ and 0̃ · 0̃ = 0̃.

Graph Construction. We define the set of vertices V and for each v ∈ V ,
the edge function E(v) and labelling function E(v). The root of the graph is
(m,φ) ∈ V and the rest of the graph is constructed by induction on φ.

For any vertex on the form v = (m∗, φ∗), where φ∗ ∈ LATL, the following
rules define the edge function E(v) and labelling function E(v).

[φ∗ = a]: The formula has no dependencies and can be verified directly by
inspecting the labelling of the state. Hence, E(v) = ε and if a ∈ �(m∗) then
E(v) = 1, otherwise E(v) = 0̃.

[φ∗ = ¬a]: We let E(v) = ε, E(v) = 1 if a /∈ �(m∗) and E(v) = 0̃ otherwise.
[φ∗ = φ1 ∨ φ2]: We let the vertices (m∗, φ1), (m∗, φ2) ∈ V be the dependencies

of v, hence E(v) = (m∗, φ1)(m∗, φ2). As each successor receives a Boolean
value, disjunction is naturally defined as the maximum of the values of the
two successor vertices and we let E(v)(p1, p2) = max{p1, p2}.

[φ∗ = φ1∧φ2]: Similar to disjunction we let (m∗, φ1), (m∗, φ2) ∈ V be the depen-
dencies of v, i.e, E(v) = (m∗, φ1)(m∗, φ2) and E(v)(p1, p2) = min{p1, p2}.

[φ∗ = 〈〈C〉〉�λ(φ1U≤kφ2)]: The only dependency of v is the symbolic vertex
v′ = (m∗, 〈〈C〉〉�?[φ1U≤kφ2]) ∈ V , i.e. E(v) = v′. As the value of v′ is the
probability p of satisfying the inner path formula, the value of v is 1 if and
only if p � λ:

E(v)(p) =

⎧
⎪⎨

⎪⎩

1 if p � λ

0̃ if p = 0̃ ∧ (λ > 0 ∨ � =>)
0 otherwise

[φ∗ = 〈〈C〉〉�λ(X≤kφ)]: We let the symbolic vertex v′ = (m∗, 〈〈C〉〉�?(X≤kφ)) ∈ V
be the dependency of v, i.e. E(v) = v′. The labelling of v is given by:

E(v)(p) =

⎧
⎪⎨

⎪⎩

1 if p � λ

0̃ if p = 0̃ ∧ (λ > 0 ∨ � =>)
0 otherwise

260 S. Enevoldsen et al.

For any vertex v = (m∗, φ?) with φ? ∈ L?
ATL, the edge function E(v) and labelling

function E(v) are given by the following rules:

[φ? = 〈〈C〉〉�?(φ1U≤kφ2)]: To satisfy the inner path formula φ1U≤kφ2 for any
path starting in m∗, either φ2 must be satisfied by m∗ or φ1 must be satisfied
by m∗. Hence, we let v1 = (m∗, φ1), v2 = (m∗, φ2) with v1, v2 ∈ V be the two
immediate dependencies of v. In case φ2 is not satisfied by m∗ but φ1 is, the
satisfaction of the inner path formula is due to the successors of m∗. Hence,
any successor of m∗ is also a dependency, if the cost of transitioning to the
successor is within the formula bound k. We let Actk(m∗) = {α1, . . . , αn} be
the k-enabled actions in m∗ and for any αk ∈ Actk(m∗) let succ(m∗)αk

=
{mαk

1 , . . . , mαk
jαk

} be the set of all αk-successors of m∗ where, for all 1 ≤ i ≤
jαk

, wαk
i ≤ k is the cost and pαk

i is the probability of transitioning to mαk
i ,

respectively.
For each mαk

i we let vαk
i = (mαk

i , 〈〈C〉〉�?(φ1U≤k−w
αk
i

φ2)) ∈ V be a depen-
dency of m∗. Hence, the edge function of v is given as

E(v) = v1v2v
α1
1 · · · vα1

jα1
· · · vαn

1 · · · vαn
jαn

.

For defining the labelling E(v)(q1, q2, qα1
1 , . . . , qα1

jα1
, . . . , qαn

1 , . . . , qαn
jαn

), we let

qαk

Σ =
∑jαk

i=1 pαk
i · qαk

i be the weighted sum of successor values for any action
αk ∈ Actk(m∗). The exact labelling function of m∗ depends on whether m∗
is owned by a player in the coalition or not.
If m∗ ∈ Mi for some player i ∈ C we let

E(v)(q1, q2, qα1
1 , . . . , qα1

jα1
, . . . , qαn

1 , . . . , qαn
jαn

) =

max {q2,min{q1, q
α1
Σ }, . . . ,min{q1, q

αn

Σ }} .

Otherwise, if m∗ /∈ Mi for all players i ∈ C we let

E(v)(q1, q2, qα1
1 , . . . , qα1

jα1
, . . . , qαn

1 , . . . , qαn
jαn

) =

max {q2,min {q1, q
α1
Σ , . . . , qαn

Σ }} .

[φ? = 〈〈C〉〉�?(X≤kφ)]: Let Actk(m∗) = {α1, . . . , αn} be the set of k-enabled
actions in m∗ and for any αk ∈ Actk(m∗) let succ(m∗)αk

= {mαk
1 , . . . , mαk

jαk
}

be the set of all αk-successors of m∗ where, for all 1 ≤ i ≤ jαk
, wαk

i ≤ k is
the cost and pαk

i is the probability of transitioning to mαk
i , respectively.

For each mαk
i we let vαk

i = (mαk
i , φ) ∈ V be a dependency of m∗. Hence, the

edge function of v is given as E(v) = vα1
1 · · · vα1

jα1
· · · vαn

1 · · · vαn
jαn

. For defining

the labelling E(v)(qα1
1 , . . . , qα1

jα1
, . . . , qαn

1 , . . . , qαn
jαn

), we let qγ
Σ =

∑jαk
i=1 pαk

i ·qαk
i

be the weighted sum of successor values for any action αk ∈ Actk(m∗). The
exact labelling function of m∗ depends on whether m∗ is owned by a player
in the coalition or not.
If m∗ ∈ Mi for some player i ∈ C we let

E(v)(qα1
1 , . . . , qα1

jα1
, . . . , qαn

1 , . . . , qαn
jαn

) = max{qα1
Σ , . . . , qαn

Σ } .

Verification of Multiplayer Stochastic Games 261

Otherwise, if m∗ /∈ Mi for all players i ∈ C we let

E(v)(qα1
1 , . . . , qα1

jα1
, . . . , qαn

1 , . . . , qαn
jαn

) = min{qα1
Σ , . . . , qαn

Σ } .

Monotonicity of the constructed labelling function E follows from the fact that
the functions max, min, sum and product are monotonic functions. By applying
the above definitions repeatedly from the root (m,φ), we obtain an abstract
dependency graph encoding of the problem G,m |= φ.

Example 4. Consider again the stochastic game depicted in Fig. 1a. For any
k ∈ N we let φk = 〈〈 , 〉〉> 1

2
[aU≤kb] and φk

? = 〈〈 , 〉〉>?[aU≤kb]. We now
encode the model-checking problem G,m1 |= φ8 into an abstract dependency
graph G = (V,E,D, E). A part of the resulting graph is visualised in Fig. 2a.
Edges connecting the vertices correspond to the specific monotone functions
given by our encoding. The greyed out shapes are not vertices but part of the
monotonic function for a symbolic node, responsible for computing a weighted
sum of successor values, qγ

Σ , as prescribed by the encoding. We let E(vi) = ε

for 5 ≤ i ≤ 10, E(vi) = 0̃ for 8 ≤ i ≤ 10 and E(vi) = 1 for 5 ≤ i ≤ 7. This
is visualised by vertices having either no outgoing edge or an edge pointing to
the empty set. In general, separate unlabelled edges encode a maximum, while a
minimum is computed over each unlabelled edge. For vertex v2, the edge function
is given by E(v2) = v3v4v5v8v11v12 and the function computed at v2 is thus

E(v2)(q3, q4, q5, q8, q11, q12) = max
{

q8,min{q5, q
α
Σ},min{q5, q

β
Σ}

}

where qα
Σ = 1

2 · q11 + 1
2 · q3 and qβ

Σ = 1
10 · q4 + 9

10 · q12. The dashed edge encodes

E(v1)(q2) =

⎧
⎪⎨

⎪⎩

1 if q2 > 1
2

0̃ if q2 = 0̃
0 otherwise

.

Theorem 2 (Correctness). Let G = (Π,M, {Mi}i∈Π ,→, �) be a game, m ∈
M a state and φ ∈ LATL a property. For the abstract dependency graph rooted by
(m,φ) it holds that G,m |= φ iff Amin((m,φ)) = 1.

As our domain D does not satisfy the ascending chain condition, we cannot
reuse the termination argument from [25]. We instead prove the termination by
relying on our assumption that all loops are of strictly positive magnitude.

Theorem 3 (Termination). There is k ∈ N s.t. F j(A⊥) = Amin for all j ≥ k.

Example 5. Consider the abstract dependency graph in Fig. 2a. For vertices
v11, . . . , v14, the minimal fixed point assignment is given by Amin(v11) =
Amin(v12) = 1

10 and Amin(v13) = Amin(v14) = 1. Assuming that these assign-
ments have been pre-computed, we now repeatedly apply the fixed point operator
to compute the minimal fixed point assignment to the remaining vertices. Hence,

262 S. Enevoldsen et al.

we start from an assignment A′ such that A′(vi) = Amin(vi) for 11 ≤ i ≤ 14 and
A′(vi) = A⊥(vi) otherwise. The result can be seen in Fig. 2b After 3 iterations,
the fixed point has been computed with a value of 1 assigned to v1, hence by
Theorem 2 we can conclude G,m1 |= 〈〈 , 〉〉> 1

2
[aU≤8b].

5 Implementation and Experimental Evaluation

We evaluate our implementation on three different PRISM-games case studies.
In robot coordination [34] problem two robots must reach a goal by traversing
a square grid without crashing into each other; a 3-dimensional weight encodes
the energy consumption of both robots and the time elapsed. In collective deci-
sion making for sensor networks [13] 4 sensors must agree on 3 preferable sites;
a 2-dimensional weight encodes total energy consumption and time elapsed. In

experiment prism above prism
above exact prism

exact below10 prism
below10 below20 prism

below20

R-1-20-5 5.96 3.10 1.92 2.27 2.63 2.21 2.69 2.18 2.73
R-1-20-6 9.54 5.73 1.66 4.39 2.17 4.44 2.15 4.38 2.18
R-1-30-5 14.74 10.50 1.40 10.32 1.43 7.69 1.92 7.87 1.87
R-1-30-6 45.99 25.93 1.77 23.23 1.98 20.71 2.22 20.59 2.23
R-2-20-5 6.38 4.00 1.59 2.84 2.25 2.86 2.23 2.88 2.22
R-2-20-6 9.08 7.67 1.18 5.78 1.57 5.94 1.53 5.87 1.55
R-2-30-5 12.76 11.55 1.10 11.55 1.10 8.75 1.46 9.11 1.40
R-2-30-6 38.11 32.02 1.19 25.56 1.49 25.61 1.49 25.44 1.50
Average 17.82 12.56 1.48 10.74 1.83 9.78 1.96 9.79 1.96

S-1-10 1.03 0.17 6.11 0.11 9.06 0.12 8.54 0.10 10.34
S-1-20 3.32 2.14 1.55 2.07 1.60 0.95 3.48 0.91 3.64
S-2-10 1.00 0.19 5.21 0.10 9.66 0.11 9.15 0.11 9.27
S-2-20 3.74 2.47 1.51 2.37 1.57 1.03 3.62 1.08 3.45
S-3-10 0.98 0.18 5.55 0.11 8.70 0.11 9.19 0.10 9.57
S-3-20 3.95 2.59 1.52 2.30 1.72 1.29 3.05 1.07 3.69
S-4-10 1.22 0.20 6.11 0.10 11.73 0.12 10.16 0.11 11.23
S-4-20 4.84 2.49 1.94 2.47 1.96 2.31 2.10 1.11 4.36
Average 2.51 1.30 3.69 1.20 5.75 0.76 6.16 0.57 6.94

T-29-1697 50.30 55.54 0.91 56.27 0.89 55.75 0.90 53.73 0.94
T-18-1115 73.83 60.40 1.22 64.39 1.15 59.37 1.24 61.59 1.20
T-28-1803 34.43 40.21 0.86 38.53 0.89 36.94 0.93 34.84 0.99
T-29-1871 38.18 45.06 0.85 45.55 0.84 41.84 0.91 39.69 0.96
T-27-1907 38.32 20.17 1.90 17.44 2.20 17.33 2.21 17.89 2.14
T-20-1209 30.21 23.60 1.28 23.81 1.27 22.36 1.35 20.49 1.47
T-23-1565 37.27 28.34 1.32 30.49 1.22 26.96 1.38 26.96 1.38
T-16-828 20.92 27.90 0.75 26.92 0.78 26.33 0.79 25.16 0.83
Average 40.43 37.65 1.14 37.93 1.16 35.86 1.21 35.04 1.24

Fig. 4. R-A-B-C is a 2-robot model with A collaborating robots, cost-bound of B on a
grid of size C with queries of the type 〈〈r1, . . . , rA〉〉�λ(¬crash U≤(B,B,B) goal1). S-X-Y
is a sensor model with 4 sensors with X collaborating sensors with a cost-bound of
Y and the query 〈〈s1, . . . , sX〉〉�λ(true U≤(Y,Y) decision made). T-Q-R is task graph
problem and checks whether all tasks can be completed within at most Q time using
R energy by the query 〈〈sched〉〉�λ(true U≤(Q,R) tasks complete).

Verification of Multiplayer Stochastic Games 263

task-graph-scheduling [9,33], a set of tasks must be scheduled on two proces-
sors; a 3-dimensional weight encodes energy consumption for each processor and
time elapsed. We also compare with a Python implementation for PCTL model-
checking from [30] on the PRISM case study synchronous leader election [29].

A package to reproduce our results can be found at http://people.cs.aau.
dk/∼am/LOPSTR2020/. Our open-source implementation is written in C++
without platform specific code. To obviate the need to create our own parser
for PRISM models, we modify the export functionality in PRISM-games to con-
struct an explicit transition system that becomes an input to implementation.
Furthermore, as PRISM-games do not directly support verification of multidi-
mensional cost-bounded properties, we cannot rely on built-in reward structures
and instead introduce variables to capture the accumulated cost. For each model-
checking question, we bound the variables by a precision derived from the prop-
erty, effectively creating a bounded unfolding of the original model, sufficient for
verifying the query in question. As the model is bounded by the query precision,
it is sufficient to verify in PRISM-games the corresponding unbounded query to
solve the original model-checking problem.

experiment tool above python
adg exact python

adg below10 python
adg below20 python

adg

L-4-4-10
python 0.45

11.25
0.48

12.00
0.42

10.50
0.36

12.00
adg 0.04 0.04 0.04 0.03

L-5-4-12 python 3.67
14.12

2.97
11.88

3.14
12.56

2.71
16.94

adg 0.26 0.25 0.25 0.16
L-4-6-10 python 3.8

15.83
3.64

15.83
3.16

21.07
3.24

21.60
adg 0.24 0.23 0.15 0.15

L-6-4-14 python 36.99
25.69

38.32
27.57

35.99
25.89

28.29
31.79

adg 1.44 1.39 1.39 0.89
L-5-6-12 python 88.52

42.56
91.2

45.37
86.31

63.93
85.57

62.92
adg 2.08 2.01 1.35 1.36

Average python 26.69
21.89

27.32
22.53

25.80
26.79

24.03
29.05

adg 0.81 0.78 0.64 0.52

Fig. 5. L-N-K-W is a leader election model with N processes, K choices and queries
of the form P�λ(true U≤(W,2W,3W) elected). Additionally, python denotes the imple-
mentation from [30] and adg denotes our implementation.

5.1 Results

Experiments are run on a Ubuntu 14.04 cluster with AMD Opteron 6376 proces-
sors. Each experiment has a maximum time-out of two hours and 14GB of virtual
memory. Figure 4 displays the experimental data for the PRISM-games compar-
ison. The verified formulae are of the form 〈〈C〉〉�λ(ψ) and specified in the caption
of the table—the weight dimension being 3 for the robot experiment and 2 for
the remaining two. The column labelled with ‘prism’ shows the time (in seconds)
it took PRISM-games to verify a query (as PRISM-games computes the exact

http://people.cs.aau.dk/~am/LOPSTR2020/
http://people.cs.aau.dk/~am/LOPSTR2020/

264 S. Enevoldsen et al.

solution, the times do not vary for the different variants of the formula). The
columns for ‘above’ (λ = p + 0.000001), ‘exact’ (λ = p), ‘below10’ (λ = p − p

10)
and ‘below20’ (λ = p − p

5) describe the different instantiations of λ used in the
queries, where p is the exact probability computed by PRISM-games. Hence, it
is always the case that a formula is satisfied for ‘exact’, ‘below10’, ‘below20’ and
never for ‘above’. The remaining columns, e.g. prism

above , show the speedup-ratio. As
both tools rely on the explicit engine of PRISM-games for model construction,
we report only the time spent on verification, as the model construction time is
identical for both tools.

The experiments show that for formulae that query the exact or slightly above
probability, our on-the-fly approach achieves verification times comparable or
better than those of PRISM-games. Our approach takes slightly more time to
derive that a formula does not hold, which is expected for an on-the-fly method.
Our running times in general improve as we allow for more slack in the λ bound.
The robot experiment achieves on average about twice as fast verification for
the ‘below10’ and ‘below20’ queries. In the sensor experiment, the certain-zero
approach in combination with on-the-fly verification achieves for the ‘below20’ on
average seven times faster verification, sometimes showing an order of magnitude
improvement. Regarding the memory consumption, our method uses on average
3.4 times less memory on the robot experiment, 11.0 times less memory on the
sensor experiment and 1.5 times less memory on task graphs.

The efficiency of our approach comes from i) early termination including the
certain-zero optimization and ii) the local (on-the-fly) construction and explo-
ration of the ADG. In contrast to PRISM-GAMES, we do not calculate the
entire fixed point but only what is necessary to answer the model-checking ques-
tion. Experiments show that we are on average 30%, 50%, and 15% (resp.) times
faster for the robot, sensor, and task graph cases (resp.) when terminating early
as opposed to computing the entire fixed point.

Figure 5 displays the experimental data for the comparison with the Python
PCTL model checker from [30], for the synchronous leader election case-study
where the weight dimension is 3. Each row in Fig. 5 describes a leader election
instance, run using both the Python implementation (python) and our C++
implementation (adg). The columns labelled python

adg show the speedup relative
to the previous column (i.e. the column to left). The C++ implementation is
an order of magnitude faster than the Python implementation and tends toward
two orders of magnitude as the size of the model increases.

6 Conclusion

We presented an on-the-fly technique for answering whether a turn-based
stochastic multiplayer game with weighted transitions satisfies a given
alternating-time temporal logic formula with upper-bounds on the accumulated
weight in the temporal operators and lower-bounds on the probabilities that
a certain path formula is satisfied. Our approach reduces the problem to the
computation of minimum fixed point on a recently introduced notion of abstract

Verification of Multiplayer Stochastic Games 265

dependency graphs, using a novel reduction relying on a special abstract domain
that includes the certain-zero optimization. We formally prove the correctness of
our reduction and provide an efficient C++ implementation. On a series of exper-
iments, we compare the performance of our approach with PRISM-games and
show in several instances the advantage of using on-the-fly algorithm compared
to the traditional value-iteration method. Our current implementation does not
explicitly output winning strategies, however, this information can be recov-
ered from the fixed point computed on the constructed ADG. Other interesting
applications of the framework include verifying logics involving both minimal
and maximal fixed points, such as the modal μ-calculus [24], efficient analysis
of various process algebra such as CCS with quantities (generalizing [21]) and
symbolic analysis of timed systems (see e.g. [11]).

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270

2. Andova, S., Hermanns, H., Katoen, J.: Discrete-time rewards model-checked. In:
Formal Modeling and Analysis of Timed Systems: First International Workshop,
FORMATS 2003, 6–7 September 2003, Marseille, France. Revised Papers, pp. 88–
104 (2003). https://doi.org/10.1007/978-3-540-40903-8 8

3. Ashok, P., Chatterjee, K., Kret́ınský, J., Weininger, M., Winkler, T.: Approxi-
mating values of generalized-reachability stochastic games. In: LICS 2020: 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, 8–11 July 2020,
Saarbrücken, Germany, pp. 102–115 (2020). https://doi.org/10.1145/3373718.
3394761

4. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis for
probabilistic systems (Extended Abstract). In: Levy, J.-J., Mayr, E.W., Mitchell,
J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 493–506. Springer, Boston, MA (2004).
https://doi.org/10.1007/1-4020-8141-3 38

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
6. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-

ability of your model checker: interval iteration for Markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 8

7. Baldan, P., König, B., Mika-Michalski, C., Padoan, T.: Fixpoint games on contin-
uous lattices. Proc. ACM Program. Lang. 3(POPL), 26:1–26:29 (2019). https://
doi.org/10.1145/3290339

8. Baldan, P., König, B., Padoan, T., Mika-Michalski, C.: Fixpoint games on contin-
uous lattices. CoRR abs/1810.11404 (2018). http://arxiv.org/abs/1810.11404

9. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of real-
time systems using priced timed automata. Commun. ACM 54(9), 78–87 (2011).
https://doi.org/10.1145/1995376.1995396

10. Brázdil, T., Brozek, V., Forejt, V., Kucera, A.: Stochastic games with branching-
time winning objectives. In: 21th IEEE Symposium on Logic in Computer Science
(LICS 2006), Proceedings, 12–15 August 2006, Seattle, WA, USA, pp. 349–358
(2006). https://doi.org/10.1109/LICS.2006.48

https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/978-3-540-40903-8_8
https://doi.org/10.1145/3373718.3394761
https://doi.org/10.1145/3373718.3394761
https://doi.org/10.1007/1-4020-8141-3_38
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1145/3290339
https://doi.org/10.1145/3290339
http://arxiv.org/abs/1810.11404
https://doi.org/10.1145/1995376.1995396
https://doi.org/10.1109/LICS.2006.48

266 S. Enevoldsen et al.

11. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: CONCUR 2005 - Concurrency Theory,
16th International Conference, CONCUR 2005, Proceedings, 23–26 August 2005,
San Francisco, CA, USA, pp. 66–80 (2005). https://doi.org/10.1007/11539452 9

12. Chatterjee, K., Randour, M., Raskin, J.: Strategy synthesis for multi-dimensional
quantitative objectives. Acta Informatica 51(3-4), 129–163 (2014). https://doi.
org/10.1007/s00236-013-0182-6

13. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic ver-
ification of competitive stochastic systems. Formal Meth. Syst. Des. 43(1), 61–92
(2013). https://doi.org/10.1007/s10703-013-0183-7

14. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 266–277. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40313-2 25

15. Chen, T., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: Synthesis for multi-
objective stochastic games: an application to autonomous urban driving. In: Joshi,
K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol.
8054, pp. 322–337. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40196-1 28

16. Chen, T., Lu, J.: Probabilistic alternating-time temporal logic and model checking
algorithm. In: Fourth International Conference on Fuzzy Systems and Knowledge
Discovery, FSKD 2007, Proceedings, 24–27 August 2007, Haikou, Hainan, China,
vol. 2, pp. 35–39 (2007). https://doi.org/10.1109/FSKD.2007.458

17. Cloth, L., Katoen, J., Khattri, M., Pulungan, R.: Model checking Markov reward
models with impulse rewards. In: 2005 International Conference on Dependable
Systems and Networks (DSN 2005), 28 June - 1 July 2005, Yokohama, Japan,
Proceedings, pp. 722–731 (2005). https://doi.org/10.1109/DSN.2005.64

18. Condon, A.: On algorithms for simple stochastic games. In: Advances In Compu-
tational Complexity Theory, Proceedings of a DIMACS Workshop, 3–7 December
1990, New Jersey, USA, pp. 51–71 (1990). https://doi.org/10.1090/dimacs/013/04

19. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224
(1992). https://doi.org/10.1016/0890-5401(92)90048-K

20. Dalsgaard, A.E., et al.: A distributed fixed-point algorithm for extended depen-
dency graphs. Fundam. Inform. 161(4), 351–381 (2018). https://doi.org/10.3233/
FI-2018-1707

21. Dalsgaard, A.E., Enevoldsen, S., Larsen, K.G., Srba, J.: Distributed computation
of fixed points on dependency graphs. In: Fränzle, M., Kapur, D., Zhan, N. (eds.)
SETTA 2016. LNCS, vol. 9984, pp. 197–212. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47677-3 13

22. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer
(2009). https://doi.org/10.1007/978-3-642-01492-5

23. Enevoldsen, S., Larsen, K.G., Mariegaard, A., Srba, J.: Dependency graphs with
applications to verification. International Journal on Software Tools for Technology
Transfer (STTT) pp. 1–22 (2020). https://doi.org/10.1007/s10009-020-00578-9

24. Enevoldsen, S., Larsen, K.G., Srba, J.: Extended abstract dependency graphs,
manuscript Under Submission

25. Enevoldsen, S., Guldstrand Larsen, K., Srba, J.: Abstract dependency graphs and
their application to model checking. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 316–333. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 18

https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/s00236-013-0182-6
https://doi.org/10.1007/s00236-013-0182-6
https://doi.org/10.1007/s10703-013-0183-7
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1109/FSKD.2007.458
https://doi.org/10.1109/DSN.2005.64
https://doi.org/10.1090/dimacs/013/04
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.3233/FI-2018-1707
https://doi.org/10.3233/FI-2018-1707
https://doi.org/10.1007/978-3-319-47677-3_13
https://doi.org/10.1007/978-3-319-47677-3_13
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/s10009-020-00578-9
https://doi.org/10.1007/978-3-030-17462-0_18
https://doi.org/10.1007/978-3-030-17462-0_18

Verification of Multiplayer Stochastic Games 267

26. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted
automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp.
95–115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23283-1 9

27. Hartmanns, A., Junges, S., Katoen, J., Quatmann, T.: Multi-cost bounded reacha-
bility in MDP. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems - 24th International Conference, TACAS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Proceedings,
14–20 April 2018, Thessaloniki, Greece, Part II, pp. 320–339 (2018). https://doi.
org/10.1007/978-3-319-89963-3 19

28. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Computer Aided
Verification - 32nd International Conference, CAV 2020, Proceedings, Part II, 21–
24 July 2020, Los Angeles, CA, USA, pp. 488–511 (2020). https://doi.org/10.1007/
978-3-030-53291-8 26

29. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Comput.
88(1), 60–87 (1990). https://doi.org/10.1016/0890-5401(90)90004-2

30. Jensen, M.C., Mariegaard, A., Larsen, K.G.: Symbolic model checking of weighted
PCTL using dependency graphs. In: NASA Formal Methods - 11th International
Symposium, NFM 2019, Proceedings, 7–9 May 2019, Houston, TX, USA, pp. 298–
315 (2019). https://doi.org/10.1007/978-3-030-20652-9 20

31. Kelmendi, E., Krämer, J., Křet́ınský, J., Weininger, M.: Value iteration for simple
stochastic games: stopping criterion and learning algorithm. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 623–642. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 36

32. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: stochas-
tic game verification with concurrency, equilibria and time. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 475–487. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8 25

33. Kwiatkowska, M., Norman, G., Parker, D.: Verification and control of turn-based
probabilistic real-time games. In: Alvim, M.S., Chatzikokolakis, K., Olarte, C.,
Valencia, F. (eds.) The Art of Modelling Computational Systems: A Journey from
Logic and Concurrency to Security and Privacy. LNCS, vol. 11760, pp. 379–396.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31175-9 22

34. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Equilibria-based probabilis-
tic model checking for concurrent stochastic games. In: Formal Methods - The Next
30 Years - Third World Congress, FM 2019, Proceedings, 7–11 October 2019, Porto,
Portugal, pp. 298–315 (2019). https://doi.org/10.1007/978-3-030-30942-8 19

35. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points
(extended abstract). In: Automata, Languages and Programming, 25th Interna-
tional Colloquium, ICALP 1998, Proceedings, 13–17 July 1998, Aalborg, Denmark,
pp. 53–66 (1998). https://doi.org/10.1007/BFb0055040

36. Nguyen, H.N., Rakib, A.: A probabilistic logic for resource-bounded multi-agent
systems. In: Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, 10–16 August 2019, Macao, China, pp. 521–527
(2019). https://doi.org/10.24963/ijcai.2019/74

37. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994). https://doi.
org/10.1002/9780470316887

38. Quatmann, T., Katoen, J.: Sound value iteration. In: Computer Aided Verification
- 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Proceedings, Part I, 14–17 July 2018, Oxford, UK, pp.
643–661 (2018). https://doi.org/10.1007/978-3-319-96145-3 37

https://doi.org/10.1007/978-3-642-23283-1_9
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1016/0890-5401(90)90004-2
https://doi.org/10.1007/978-3-030-20652-9_20
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-030-53291-8_25
https://doi.org/10.1007/978-3-030-31175-9_22
https://doi.org/10.1007/978-3-030-30942-8_19
https://doi.org/10.1007/BFb0055040
https://doi.org/10.24963/ijcai.2019/74
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-96145-3_37

268 S. Enevoldsen et al.

39. Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. 39(10), 1095–1100 (1953).
https://doi.org/10.1073/pnas.39.10.1095

40. Svorenová, M., Kwiatkowska, M.: Quantitative verification and strategy synthesis
for stochastic games. Eur. J. Control 30, 15–30 (2016). https://doi.org/10.1016/j.
ejcon.2016.04.009

41. Tarski, A., et al.: A lattice-theoretical fixpoint theorem and its applications. Pac.
J. Math. 5(2), 285–309 (1955). https://doi.org/10.2140/pjm.1955.5.285

https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1016/j.ejcon.2016.04.009
https://doi.org/10.1016/j.ejcon.2016.04.009
https://doi.org/10.2140/pjm.1955.5.285

Program Analysis and Testing

Testing Your (Static Analysis) Truths

Ignacio Casso1(B) , José F. Morales1 , P. López-García1,3 ,
and Manuel V. Hermenegildo1,2

1 IMDEA Software Institute, Madrid, Spain
2 ETSI Informática, Universidad Politécnica de Madrid (UPM), Madrid, Spain

3 Spanish Council for Scientific Research (CSIC), Madrid, Spain
{ignacio.decasso,josef.morales,pedro.lopez,manuel.hermenegildo}@imdea.org

Abstract. Static analysis is nowadays an essential component of many
software development toolsets. Despite some notorious successes in the
validation of compilers, comparatively little work exists on the systematic
validation of static analyzers, whose correctness and reliability is critical
if they are to be inserted in production environments. Contributing fac-
tors may be the intrinsic difficulty of formally verifying code that is quite
complex and of finding suitable oracles for testing it. In this paper, we
propose a simple, automatic method for testing abstract interpretation-
based static analyzers. Broadly, it consists in checking, over a suite of
benchmarks, that the properties inferred statically are satisfied dynami-
cally. The main advantage of our approach is its simplicity, which stems
directly from framing it within the Ciao assertion-based validation frame-
work, and its blended static/dynamic assertion checking approach. We
show that in this setting, the analysis can be tested with little effort
by combining the following components already present in the frame-
work: the static analyzer, the assertion run-time checking mechanism,
the random test case generator, and the unit-test framework . Together
they compose a tool that can effectively discover and locate errors in the
different components of the analysis framework. We apply our approach
to test some of CiaoPP’s analysis domains over a wide range of programs,
successfully finding non-trivial, previously undetected bugs, with a low
degree of effort.

Keywords: Static analysis · Run-time checks · Random testing ·
Assertions · Abstract interpretation · Program analysis · (Constraint)
logic programming

1 Introduction and Motivation

Static analysis tools are nowadays a crucial component of the development envi-
ronments for many programming languages. They are widely used in different

Partially funded by MICINN PID2019-108528RB-C21 ProCode and the Madrid
P2018/TCS-4339 BLOQUES-CM program.
c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 271–292, 2021.
https://doi.org/10.1007/978-3-030-68446-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_14&domain=pdf
http://orcid.org/0000-0001-9196-7951
http://orcid.org/0000-0001-6098-3895
http://orcid.org/0000-0002-1092-2071
http://orcid.org/0000-0002-7583-323X
https://doi.org/10.1007/978-3-030-68446-4_14

272 I. Casso et al.

steps of the software development cycle, such as code optimization and verifi-
cation, and they are the subject of significant research interest and practical
application. Unfortunately, modern analyzers are often very large and complex
software artifacts, and this makes them prone to bugs. This is a limitation to
their applicability in real-life production compilers and development environ-
ments, where they are typically used in critical tasks like verification or code
optimization, that need to rely strongly on the soundness of the analysis results.

However, the validation of static analyzers is a challenging problem, which is
not well covered in the literature or by existing tools. Well-established method-
ologies or even guidelines to this end do not really exist. This is due to the
fact that direct application of formal methods is not always straightforward
with code that is so complex and large, even without considering the problem
of having precise specifications to check against—a clear instance of the clas-
sic problem of who checks the checker. In current practice, extensive testing is
the most extended and realistic option, but it poses some significant challenges
too. Testing separate components of the analyzer misses integration testing, and
designing proper oracles for testing the complete tool is really challenging.

Our objective in this paper is to develop a simple, automatic method for
testing abstract interpretation-based static analyzers. Although the approach
is general, we develop it for concreteness in the context of the Ciao [21] logic
programming-based, multiparadigm language. The Ciao programming environ-
ment includes an abstract interpretation-based static analyzer, CiaoPP, which
faces this very problem. As other “classic” analyzers, this analyzer has evolved
for a long time, incorporating a large number of abstract domains, features, and
techniques, adding up to over 1/2 million lines of Ciao code. These components
have in turn reached over the years different levels of maturity. While the essen-
tial parts, such as the fixpoint algorithms and the classic abstract domains, have
been used routinely for a long time now and it is unusual to find bugs, other
parts are less developed and yet others are prototypes or even proofs of concept.
A recent, shallow effort of applying a new testing tool to some parts of the Ciao
analyzers as a case study [10] revealed subtle bugs, not only in the less-developed
parts of the system, but also in corner cases of the parts that are considered more
mature, such as, e.g., in the handling of rarely-used built-ins.

Another feature of Ciao that will be instrumental to our approach is the
use of a unified assertion language and framework across its different com-
ponents [22,23], which together implement its unique blend of static and
dynamic assertion checking. These components include: 1) the PLAI static ana-
lyzer [19,25,40], which expresses the inferred information as Ciao assertions
interspersed within the original program; 2) the assertion runtime-checking
framework [45,46], which instruments the code to ensure that any assertions
remaining after static verification are not violated at run time; 3) the (ran-
dom) test case generation framework [10], which generates random test cases
satisfying the properties present in an assertion preconditions; 4) the unit-test
framework [36], which executes those test cases.

Testing Your (Static Analysis) Truths 273

In this paper, we propose an algorithm that combines these four basic com-
ponents in a novel way that allows testing the static analyzer almost for free.
Intuitively, it consists in checking, over a suite of benchmarks, that the properties
inferred statically are satisfied dynamically. The overall testing process, for each
benchmark, can be summarized as follows: first the code is analyzed and the
analysis results are expressed by the analyzer as assertions interspersed within
the original code. Then these assertions are switched into run-time checks, that
will ensure that violations of those assertions are reported at run time. Finally,
random test cases are generated and executed to exercise those run-time checks.
If any assertion violation is reported, since these assertions (the analyzer out-
put) must cover all possible concrete executions, it means that the assertion
was incorrectly inferred by the analyzer and thus that an error in the analyzer
has been found. This process can be easily automated, and if it is repeated for
an extensive and varied enough suite of benchmarks, it can be used to effec-
tively validate (even if not fully verify) the analyzer or to discover new bugs.
Furthermore, the implementation, when framed within the Ciao assertion-based
validation framework, is very simple, since, as we will show, only a basic code
transformation and a simple driver need to be implemented to obtain a very
useful, working system.

The idea of checking at run time the properties or assertions inferred by the
analysis for different program points is not new. For example, [49] successfully
applied this technique for checking a range of different aliasing analyses. How-
ever, these approaches require the development of tailored instrumentation or
monitoring, and require significant effort in their design and implementation.
We argue that the testing approach is made more applicable, general, and scal-
able by the use of a unified assertion-based framework for static analysis and
dynamic debugging, as the one of Ciao. As mentioned before, framing things in
such a framework, the approach can be implemented with the already existing
components in the system, in a very simple way, so much so that our initial
prototype was, in fact, barely 50 lines of code long. We argue also that our app-
roach is particularly useful in a mixed production and research setting like that
of CiaoPP, in which there is a mature and domain-parametric abstract interpre-
tation framework used routinely, but new, experimental abstract domains and
overall improvements are in constant development. Those domains can easily be
tested relying only on the existing abstract-interpretation framework, runtime-
checking framework, and unified assertion language, provided only that the asser-
tion language is extended to include the properties relevant for the domains.

The rest of the paper is structured as follows. Section 2 gives background
knowledge needed to describe the main ideas and contributions of this paper.
In particular, we recall some relevant aspects of the CiaoPP unified assertion
framework. Then, Sect. 3 gives an overview of our approach illustrating it with
an example. Section 4 presents our concrete algorithm to combine the different
elements of the framework for the task of testing the static analyzer. In Sect. 5
we show some examples and applications of our approach. In Sect. 6 we apply
the idea to testing the analysis results for a wide range of CiaoPP’s abstract
domains and properties. Finally, Section 7 discusses related work and Sect. 8
summarizes our conclusions and plans for future work.

274 I. Casso et al.

2 Preliminaries

In this section we review in some more detail those aspects of the Ciao model that
are relevant to our approach, including the assertion language and the blended
static and dynamic assertion checking framework built around it. A more detailed
presentation can be found in [4,21,22,24,36,42] and their references.

The Assertion Language. Ciao assertions are linguistic constructs, which allow
expressing properties of programs. There are two types of assertions in Ciao
that are relevant herein: predicate assertions and program-point assertions. The
first ones are declarations that provide partial specifications of a predicate. They
have the following syntax: :- [Status] pred Head : [Calls] => [Success]
+ [Comp], indicating that if a call to the goal Head satisfies precondition Calls, it
must satisfy post-condition Success on success and global computational prop-
erties Comp. Program-point assertions are reserved literals that appear in clause
bodies and describe the constraint store at the corresponding program point.
Their syntax is [Status](State). Examples of both types of assertions are pro-
vided in the code fragment below:

�

1 :- check pred append(X,Y,Z) : (list(X),list(Y)) => list(Z) + is_det.
2 :- check pred append(X,Y,Z) : (var(X),var(Y),list(Z)) => (list(X),list(Y)) +

non_det.
3
4 append([],X,X).
5 append([X|Xs],Ys,[X|Zs]) :-
6 append(Xs,Ys,Zs),
7 check((list(Xs),list(Ys),list(Zs))).

� �

Assertion fields Calls, Success, Comp and State, are conjunctions of prop-
erties. Such properties are predicates, typically written in the source language
(user-defined or in libraries), and thus runnable, so that they can be used as
run-time checks, and which, for our purposes, are typically native to CiaoPP,
i.e., abstracted and inferred by some domain in CiaoPP. This includes a wide
range of properties, from types, modes and variable sharing, to determinism,
(non)failure and resource consumption. We refer the reader to [21,24,41] and
their references for a full description of the Ciao assertion language.

Assertions are used everywhere in Ciao, from documentation and foreign
interface definitions to static analysis and dynamic debugging. Depending on
their origin and intended use, they have a different status, the Status field in the
syntax described above. Assertion statuses relevant herein include true, which
is used for assertions that are output from the analysis (and thus must be safe
approximations), or the default status check, which indicates that the validity
of the assertion is unknown and it must be checked, statically or dynamically.
We will return to this crucial issue below.

Figure 1 depicts the overall architecture of the Ciao unified assertion frame-
work. Hexagons represent tools, and arrows indicate the communication paths
among them. The input to the process is the user program, optionally including
a set of assertions; this set al.ways includes any assertion present for predicates
exported by any libraries used (left part of Fig. 1).

Testing Your (Static Analysis) Truths 275

Fig. 1. The Ciao assertion framework (CiaoPP’s verification/testing architecture).

Static Analysis. One use of Ciao assertions is as an interface to the static ana-
lyzer. As mentioned above, assertions can be used to indicate what we want the
analyzer to check (the default check status), or to guide the analysis by feeding
it information that it might be unable to infer by itself (trust status). The latter
includes as a special case providing information on the entry points to the mod-
ule being analyzed (i.e., on the calls to the predicates exported by the module
–entry status). But more importantly for this paper, assertions are one of the
possible output formats in which the analysis results are produced by the static
analyzer (assertions with true status). If this type of output is chosen, a new
source file for the analyzed program will be created, exactly as the original but
with true program-point assertions interspersed between every two consecutive
literals of each clause, and with one or more true predicate assertions for each
predicate.

The technical and theoretical details of how this is achieved are omitted
for space constraints. For our purposes it is sufficient to say that the CiaoPP
analyzer is abstract interpretation-based, and its design consists of a common
abstract-interpretation framework (the fixpoint algorithm(s)) parameterized by
different, “pluggable” abstract domains. Depending on the domain or combina-
tion of domains selected for the analysis, different properties will be inferred and
will appear in the emitted true assertions.

Run-time Checking. Static analysis can be used for compile-time checking of
assertions (the Static Comparator & Simplifier, in Fig. 1) but the inherent
imprecision of the analysis can lead to some assertions, specially those with user-
defined properties that are not native to abstract domains, to not be proved or
disproved statically (although perhaps they are simplified). In those cases, the
remaining unproved (parts of) assertions are written into the output program
with check status and then this output program can optionally be instrumented
with run-time checks. These dynamic checks will encode the meaning of the check
assertions, ensuring that an error is reported at run-time if any of these remain-
ing assertions is violated (the dynamic part of the model). Note that the fact

276 I. Casso et al.

that properties are written in the source language and runnable is essential in
this process, and allows checking new user-defined and native properties without
having to extend the run-time checking framework. This results in a very rich set
of properties being checkable in Ciao, including types, modes, variable sharing,
failure, exceptions, determinism, choice-points, resources, and more, blending
smoothly static and dynamic techniques.

Unit Tests, Test Case Generation, and Assertion-Based Testing. Test inputs
can be provided by the user, by means of test assertions (unit tests), and used
to test the test assertion itself as well as, through the runtime-checking mecha-
nism, also any other assertion in any predicate called by the test case, that was
not eliminated in the static checking. The unit-testing framework in principle
requires the user to manually write individual test cases for each assertion to
be tested. However, the Ciao model also includes mechanisms for generating
test cases automatically from the assertion preconditions, using the correspond-
ing property predicates as generators. This has been extended recently [10] to
a random test case generation framework, which automatically generates, using
the same technique, random test cases that satisfy assertion preconditions. We
refer to the combination of this test generation mechanism with the run-time
checking of the intervening assertions as assertion-based testing, that is, gener-
ating and running relevant test cases which exercise the run-time checks of the
assertions in a program, thus testing if those assertions are correct. This yields
similar results to property-based testing [11] but in a more integrated way within
the overall model. Such automatic generation is supported for native proper-
ties, regular types, and user-defined properties as long as they are restricted to
pure Prolog with arithmetic or mode and sharing constraints. In particular, it is
always supported for the native properties used by the different analyses in the
assertions that they output.

3 Overview of the Approach

After introducing the relevant elements of the Ciao assertion model, we can now
sketch the main idea of our approach with a motivating example. Assume we
have this simple Prolog program, where the entry assertion indicates that the
predicate is always called with its second argument instantiated to a list and the
third a free variable:

�

1 :- entry prepend(X,Xs,Ys) : (list(Xs), var(Ys)).
2
3 prepend(X,Xs,Ys) :-
4 Ys=[X|Rest],
5 Rest=Xs.

� �

Assume that we analyze it with a simple modes abstract domain that assigns
to each variable in an abstract substitution one the following abstract values: g
(variable is ground), v (variable is free), ng (variable is not ground), nv (variables
is not free), ngv (variable is not ground nor free), or any (nothing can be said

Testing Your (Static Analysis) Truths 277

about the variable). Assume also that the analysis is incorrect because it does
not consider sharing (aliasing) between variables, so when updating the abstract
substitution after the Rest=Xs literal, the abstract value for Ys is not modified
at all. The result of the analysis will be represented, as explained in the previous
section, as a new source file with interspersed assertions, as shown in Fig. 2
(lines 3–5, 8, 10, and 12). Note that the correct result, if the analysis considered
aliasing, would be that there is no groundness information for Ys at the end
of the clause (line 12), since there is none for X or Xs at the beginning either.
Ys could only be inferred to be nonvar, but instead is incorrectly inferred to
be nonground too (line 10). Normally unknown/1 properties would not actually
appear in the analysis output, but are included for clarity.

Fig. 2. An incorrect simple mode analysis.

What we would like at this point, is to be able to check dynamically the
validity of the true assertions from the analyzer. Thanks to the different aspects
of the Ciao model presented previously, the only thing needed in order to achieve
this is to (1) turn the status of the true assertions produced by the analyzer into
check, as shown in Fig. 3. This would normally not make any sense since these
true assertions have been proved by the analyzer. But that is exactly what we
want to check, i.e., whether the information inferred is incorrect. To do this,
(2) we run the transformed program (Fig. 3) again through CiaoPP (Fig. 1) but
without performing any analysis. In that case the check literals (stemming from
the true literals of the previous run) will not be simplified in the comparator
(since there is no abstract information to compare against) and instead will
be converted directly to run-time tests. I.e., the check(Goal) literals will be
expanded and compiled to code that, every time that this program point is
reached, in every execution, will check dynamically if the property (or properties)
within the check literal (i.e., those in Goal) succeed, and an error message will
be emitted if they do not. The only missing step to complete the automation
of the approach is to (3) use the random test case generator to generate a
set of test cases for prepend/3, and run those test cases. The framework will
ensure that instances of the goal prepend(X,Xs,Ys) are generated where Xs is
a list and Ys is a free variable, but otherwise X and the elements of Xs will
be instantiated to random terms. In this example, as soon as a test case is

278 I. Casso et al.

Fig. 3. The instrumented program.

generated where both X and all elements in Xs are ground, the program will
report a runtime-checking error in the check in line 12, letting us know that the
third program-point assertion, and thus the analysis, is incorrect.1

The same procedure can be followed to debug different analyses with dif-
ferent benchmarks. If the execution of any test case reports a runtime-checking
error for one assertion, it will mean that the assertion was not correct and the
analyzer computed an incorrect over-approximation of the semantics of the pro-
gram. Alternatively, if this experiment, which can be automated easily, is run for
an extensive suite of benchmarks without errors, we can gain more confidence
that our analysis implementation is correct, even if perhaps imprecise (although
of course we cannot have actual correctness in general by testing).

4 The Algorithm

In this section we present in more detail the actual algorithm for combining the
components of the framework used in order to test the static analyzer.

4.1 Basic Reasoning Behind the Approach

We start by establishing more concretely the basic reasoning behind the approach
in terms of abstract interpretation and safe upper and lower approximations. The
mathematical notation in this subsection is purely for readability, as a proper
formalization is outside the scope of the paper, and in any case arguably not
really necessary, thanks to the simplicity of the approach.

1 In the discussion above we have assumed for simplicity that the original program
did not already contain check assertions. In that case these need to be treated
separately and there are several options, including simply ignoring them for the
process or actually turning them into trusts, so that we switch roles and trust
the user-provided properties while checking the analyzer-inferred ones. This very
interesting issue of when and whether to use the user-provided assertions to be
checked during analysis, and its relation to run-time checking is discussed in depth
in [18].

Testing Your (Static Analysis) Truths 279

An abstract interpretation-based static analysis computes an over-
approximation S+

P of the collecting semantics SP of a program P . Such col-
lecting semantics can be broadly defined as a control flow graph for the program
decorated at each node with the set of all possible states that could occur at
run-time at that program point. Different approximations of this semantics will
have smaller or larger sets of possible states at each program point. Let us denote
by S′

P ⊂P S′′
P the relation that establishes that an approximation of SP , S′′

P ,
is an over-approximation of another, S′

P . The analysis will be correct if indeed
SP ⊂P S+

P .
Since SP is undecidable, this relation cannot be checked in general. However,

if we had a good enough under-approximation S−
P of SP , it can be tested as

S−
P ⊂P S+

P . If it does not hold and S−
P �⊂P S+

P , then it would imply that
SP �⊂P S+

P , and thus, the results of the analysis would be incorrect, i.e., the
computed S+

P would not actually be an over-approximation of SP .
An under-approximation of the collecting semantics of P is easy to compute:

it suffices with running the program with a subset I− of the set I of all possible
initial states. We denote the resulting under-approximation SI−

P , and note that
SP = SI

P , which would be computable if I is finite and P always terminates.
That is the method that we propose for testing the analysis: selecting a large
and varied enough I−, computing SI−

P and checking that SI−
P ⊂P S+

P .
A direct implementation of this idea is challenging. It would require tai-

lored instrumentation and monitoring to build and deal with a partially con-
structed collecting semantic under-approximation as a programming structure,
which then would need to be compared to the one the analysis handles. How-
ever, as we have seen the process can be greatly simplified by reusing some of
the components already in the system, following these observations:

– We can work with one initial state i at a time, following this reasoning:
SI−
P ⊂P S+

P ⇐⇒ ∀i ∈ I−, S
{i}
P ⊂P S+

P .
– We can use the random test case generation framework for selecting each

initial state i.
– Instead of checking S

{i}
P ⊂P S+

P , we can instrument the code with run-time
checks to ensure the execution from initial state i does not contradict the
analysis at any point. That is, that the state of the program at any program
point is contained in the over-approximation of the set of possible states that
the analysis inferred and output as Ciao assertions.

4.2 The Algorithm

We now show the concrete algorithm for implementing our proposal, i.e., the
driver that combines and inter-operates the different components of the frame-
work to achieve the desired results. The essence of the algorithm (Algorithm 1)
is the following: non-deterministically choose a program P and a domain D from
a collection of benchmarks and domains, and execute the AnaTest(P,D) pro-
cedure until an error is found or a limit is reached. Unless the testing part is
ensured to explore the complete execution space, it could in principle be useful to

280 I. Casso et al.

Algorithm 1. Analysis Testing Algorithm (for program P and domain D)
1: procedure AnaTest(P,D)
2: result ← None
3: Pan ← analyze and annotate P with domain D (incl. program-point assertions).
4: Pcheck ← Pan where true assertion status is replaced by check
5: Prtcheck ← instrument Pcheck with run-time checks
6: repeat
7: Choose an exported predicate p and generate a test case input
8: if p(input) in Pcheck produces runtime errors then
9: result ← Error(input)

10: else if maximum number of test executions is reached then
11: result ← Timeout
12: until result �= None return result

revisit the same (P,D) pair more than once. When the algorithm detects a faulty
program-point assertion for some input (Error(input)), it means that the con-
crete execution reaches a state not captured by the (over-approximation of the)
analysis. In such case it is possible to reconstruct (or store together with the
test output) additional information to diagnose the problem. E.g., comparing
the concrete execution trace (which is logged during testing) with the analy-
sis graph (recoverable from Pan, the program annotated with analysis results),
domain operations (inspecting the analysis graph), and transfer functions (from
predicates that are native to each domain).

4.3 Other Details and Observations

We now discuss some details and observations on the algorithm that may have
been left out or oversimplified in the algorithm sketch:

Analysis Crashes. An implicit assumption throughout our discussion so far is
that the analysis always terminates without errors, but the results computed may
be unsound. Of course, it is also possible that a bug in the analysis produces
a crash, or even leads to non-termination. It is also possible that the analysis
output is malformed (e.g., there are missing assertions in Pan). Those errors are
of course also checked and reported by our tool. Non-termination is handled with
timeouts and possible warnings (both for analyses and concrete executions).

Benchmark Selection. No prior requirement is imposed on the origin or char-
acteristics of the benchmark suite. It could consist of automatically generated
programs, an existing benchmark suite, or just real-life code. Each may have
its own advantages and disadvantages (e.g., automatically generated code may
test more convoluted or corner cases, but real-life code may find the bugs that
actually occur in programs), but in principle, our approach is agnostic in this
regard.

Testing Your (Static Analysis) Truths 281

Entry Points. There is no restriction regarding the number of entry points or
inputs to a program to be analyzed for. It is common in tools related to ours to
use as benchmarks programs with a single entry point with no inputs (e.g., just a
single void main() function as entry point for C). Our benchmarks are typically
Ciao modules, and their entry points to analysis and testing are their exported
predicates. In Ciao programs signatures and types (as well as entry assertions)
are optional. Admissible inputs (i.e., the initial set of possible states for analysis
or test case generation) can be specified by writing assertions for the exported
predicates, by means of entry assertions, or skipped altogether. Note also that
if our benchmarks had the restriction mentioned above (in our case, exporting
only a main/0 predicate), then test case generation would not be needed for our
algorithm.

Test Case Generation. In the absence of entry assertions, the test case generation
framework [10] has already some mechanisms to generate relevant test cases,
instead of random, nonsensical inputs which would exercise few run-time checks
before failing. However, these generators have limitations, and the assertion-
based testing framework is in fact best used with assertions that have descriptive-
enough call patterns, or with custom user-defined generators in their absence.
To tackle this problem, our tool makes also use of test assertions when available
in the benchmarks, using also the test cases specified in the benchmarks besides
those randomly generated. This can help, e.g., when using a benchmark that
works with files and has paths as input, for which relevant test cases would not
likely be found with random generation. Note however that the tool would still
work without any entry or test assertions; it would just become less effective.

Error Diagnosis and Debugging. It is important to note that although error
diagnosis and debugging is primarily left for the user to manually perform, our
tool facilitates the task in some aspects. Firstly, the assertion-based testing tool
supports shrinking of failed test cases, so we can expect reasonably small variable
substitutions in the errors reported. Note however that benchmark reduction,
e.g., by delta debugging [51], is currently not supported. Secondly, as sketched
in Algorithm 1, the error location and trace reported by the runtime-checks
instrumentation provide an approximated idea of the point where the analysis
went wrong, if not of the reason why. For example, if the runtime-check error
points to a program-point assertion right after a call to a builtin, then we typically
know that the analysis erred in the builtin handler.

Multivariance and Path-Sensitivity. As presented, our approach might miss some
analysis errors even when the right test cases are used, since we have apparently
disregarded multi-variance and path-sensitivity. In fact in CiaoPP the informa-
tion inferred is fully multi-variant, and separate path information is kept to each
variant. However, in order to produce an output that is easy for the programmer
to inspect, i.e., that is close to the source program, when outputting the analysis
results CiaoPP by default combines the different versions of each predicate (and
the associated information) into a single code version and a single combined

282 I. Casso et al.

assertion for each program point and predicate. If this default output is used
when implementing our approach, it is indeed entirely possible that the analysis
errs at a program point in one path but the algorithm never detects it: this
can happen if, for example, in another path leading to the same program point
(such that the two paths and their corresponding analysis results are collapsed
–lubbed– together at the same program point) the analysis infers a too general
value (higher in the domain lattice) at that program point and thus, the error
is not detected. However, this potential problem is easily addressed by simply
changing the corresponding flag in CiaoPP so that the different versions are not
collapsed and are instead materialized into different predicate instances. This is
done in CiaoPP by selecting the versions transformation prior to emitting the
output. In this case multiple versions may be generated for a given predicate, if
there are separate paths to it with different abstract information, and the cor-
responding analysis information will be annotated separately for each abstract
path through the program in the program text of the different versions, avoiding
the problem mentioned above.

5 Applications and Examples

In this section we discuss interesting use cases and applications of our approach.
As observed before, our testing technique can be seen as a sanity or coherence
check, and thus it can be targeted to test different components of the system
depending on which ones are assumed to be trusted. Some examples follow. A
few of them have actually been implemented and we report on them in the
following section. We hope to implement the others in our future work.

Debugging Abstract Domains. The first application of our approach, which has
been illustrated in the examples, is to test the abstract domains. In general
the Ciao abstract interpretation engine (the fixpoint algorithms and all the sur-
rounding infrastructure of the system, into which the domains are “plugged-in”)
includes the components of the analyzer we trust most, since they have been
used and refined for more than 30 years. Thus, it makes sense to take this as the
trusted base and try to find errors in the domains. This situation is realistic and
frequent, since CiaoPP is at the same time a production and a research tool, and
new domains are constantly being developed. In order to test a new domain with
the algorithm proposed, two components need to be present. The first one is a
translation interface from the abstract values in the domain to Ciao properties,
which is needed to express the analysis results as assertions. But note that this
is actually already a requirement for any abstract domain that intends to make
full use of the framework, so it is normally implemented anyway in all domains.
The other component is to have builtin checks for those properties to be used by
the run-time checking framework, if those properties are declared native and not
written in the source language and thus already runnable and checkable. This
is also a standard requirement on domains to be able to make full use of the
framework, so they are typically also implemented with the domain. In particu-
lar, all current Ciao abstract domains include the functionalities mentioned, and

Testing Your (Static Analysis) Truths 283

can be tested as is with the proposed approach. We show the results for some of
them in the case study described in Sect. 6.

Debugging Trust Assertions and Custom Transfer Functions. One feature of
CiaoPP’s analyses is that they can be guided by the user, which can feed the
analyzer with information that can be assumed to be true at points where oth-
erwise the analysis would lose precision. We have already introduced in Sec. 2
one of these mechanisms, trust assertions, but there are others. One is custom
abstract transfer functions, similar to those that need to be implemented for
abstracting each builtin within each domain, but that the user can provide for
any predicate. A particular instance of this mechanism is when the user spec-
ifies that one predicate is indistinguishable from or should behave like another
with respect to a domain: the equiv declaration. Our approach can be used to
test these mechanisms too. Both to test that they are applied correctly by the
analyzer, if the user-provided information is trusted to be correct, and to test
that the user-provided information is correct, if what is trusted is that the infor-
mation is applied correctly. The latter is in particular very useful, since even
a completely sound analyzer can produce unsound results if it assumes some
property to be true when it is actually not, and thus there will always be the
need to test such properties.

Testing the Abstract Interpretation Engine. Another idea that comes to mind is
whether we can test the abstract interpretation engine (the fixpoint algorithms
and all the surrounding infrastructure of the framework) instead of the domains,
by using domains that are simple enough to be used as a trusted base. While the
classic algorithms are quite stable, new fixpoints are also added to the system
(e.g., recently a modular and incremental fixpoint) which can of course bring
new bugs. A first abstract domain that could be useful for this purpose is the
concrete domain itself (which is actually implemented in CiaoPP as the pd –
partial deduction– domain). If we give the analysis a singleton set of initial states
as entry point, the analyzer should behave as an interpreter for the program
starting from that initial state, provided the program terminates. The assertions
resulting from this “analysis” will use the =/2 property and be essentially a
program which is adorned at each program point with the concrete states(s) that
the analyzer infers will be occurring at run time, expressed as conjunctions of
substitutions using =/2. Then, when running this program, the run-time checks
would check that the variables are indeed instantiated to the concrete values
inferred. Non-deterministic programs could be equally handled with member/2
(∈) instead of =/2 (=). A second domain that could be useful in this context
is the pdb domain, which can be used to perform reachability analysis. The
properties appearing in the assertions resulting from this analysis would just
be possibly_reachable/0 (�) and not_reachable/0 (⊥), which indicates if a
program point is definitely unreachable at run-time.2 The run-time checks would

2 Note that this, combined with non-failure analysis [5,15], can also infer
definitely_reachable/0, but that is a more complex domain.

284 I. Casso et al.

just report an error any time a check for the property not_reachable/0 (⊥) is
invoked at run time. This test would then detect if the analyzer incorrectly marks
reachable parts of the program as unreachable.

Testing the Overall Consistency of the Framework. So far we have focused on
applications in testing analysis soundness. But doing so has the implicit assump-
tion that there are clear semantics and specifications for the analyzer to follow,
and that is not always the case. Sometimes the semantics is underspecified, and
then a discrepancy between what the analysis infers and what the program exe-
cutes is not so much an error but a disparity in the interpretation of such an
under-specification. In those cases our tool helps ensure that at least the anal-
ysis and run-time semantics are consistent. A relevant example can be found in
the case of the abstraction of built-ins within abstract domain implementations.
For some of them the specification is not complete (sometimes even the ISO-
Prolog standard) and again our tool can at least check for inconsistencies in the
interpretations made by the analyses and the run-time system.

In this same line, the tool has helped us find inconsistencies between the
understanding of Ciao properties in the analysis and in the runtime-checks
framework. With many properties this cannot happen (e.g., with pure predi-
cates) because both the analysis and the run-time checking derive the semantics
from the actual code defining the property. But for more complex properties
the implementations may be different, perhaps developed by different people,
with different interpretations of the property semantics. An actual example is
the property cardinality/3, which provides upper and lower bounds to the
number of solutions that a predicate might produce. It is a property that has
not seen a lot of use (determinacy and/or non-failure are the ones used most
frequently), and our experimental evaluation exposed that for cardinality/3
the analysis was considering only different solutions while the runtime-checks
framework counted also repeated ones.

Integration Testing of the Analyzer and Third Parties. Finally, even if every piece
of the analyzer is validated separately, our tool can still help in testing how all
its parts integrate together to form a functional and sound analyzer, and, even
more interestingly, it can also test the correctness of the different integrations
with external or third party solvers used by the analyzer (e.g., the PPL library).

6 A More Detailed Case Study

As a case study, in order to validate our approach and confirm its effectiveness,
we have studied further the Debugging Abstract Domains application of Sect. 5,
by applying our prototype more systematically to some of the analyses in CiaoPP.

Setup. The analyses tested all use the standard configuration of the abstract
interpretation framework (i.e., the PLAI fixpoint, multi-variance on calls, etc.)
but differ in the abstract domains used for the analysis. The complete list of

Testing Your (Static Analysis) Truths 285

abstract domains tested can be seen in the first column of Table 1. The second
column indicates the different properties which the domains reason about, such
as variable aliasing, variable modes, variable types, (non)failure, or determinism.
The domains range in maturity, from stable domains like shfr and eterms, to
mere prototypes like etermsvar. The third column of the figure indicates this level
of maturity with three different values: mature, intermediate, experimental. For
more details about the domains we refer to the citations in the fourth column.

Table 1. Domains used for the evaluation of the approach.

Abstract domain Properties abstracted Maturity level References

shfr Aliasing, modes Mature [39]
def Aliasing, modes Intermediate [20]
gr Aliasing, modes Intermediate [6]
eterms Types Mature [48]
etermsvar Types Experimental [48]
nf Failure Mature [5,15]
det Determinism Mature [33,34]

The experiment has been run over some selected benchmarks with increasing
levels of complexity and language features. We have started with simple, existing
CiaoPP benchmarks used for, e.g., demos, statistics and integration testing, for
which in principle the analyses tested should be correct. Then we have continued
with a large database of anonymized solutions for Prolog assignments in under-
graduate courses, which on one hand are not expected to use necessarily the
most sophisticated features of the language (although there are always excep-
tions), but on the other hand are known to exhibit a high degree of creativity
in combining language elements in unusual and unpredictable ways, including
many that do not make sense at all. The intuition is that these combinations
may exercise corner cases of the analyses in a similar (but hopefully somewhat
more focused way) than random program generation. Finally, we have applied
the experiment to some selected modules of the Ciao code base using more
advanced features. Additionally, we have cherry-picked some benchmarks which
were expected to reveal some known bugs, either still unfixed or explicitly rein-
troduced in the system for this experiment, and some using deliberately features
not supported by a particular analysis such as, e.g., attributed variables. Some
of the benchmarks have been modified by adding entry assertions to guide test
case generation, and existing test cases from unit tests (i.e., test assertions) have
been used in modules where using random test cases is ineffective or just plain
dangerous (e.g., predicates that have files as input). The experiments were run
with Ciao/CiaoPP version 1.19-221.

286 I. Casso et al.

Results. While we are planning on performing a larger set of experiments, 3

the results so far are promising and have allowed us to draw some interesting
conclusions and observations. A good number of bugs and inconsistencies were
indeed found using the technique, many of them known but also some new
ones. First, our experiment was successful in finding known bugs in previous
versions of the analyses, that have now been fixed, and also in revealing known
limitations of different analyses for some language features. For example, the
fact that some of the aliasing domains do not support rational terms was easily
detected, and also that many domains do not support attributed variables. Some
new, but still not unexpected bugs were found in one of the most experimental
domains (etermsvar). Furthermore, also a few new bugs were found even in
mature domains. These are typically related to the handling of rarely-used built-
ins, which explains why they have gone unnoticed, but they are still bugs and
have been (or are being) fixed. In addition, while the testing process was aimed
at the domains, it also uncovered some bugs in related components of the Ciao
assertion framework and their integration, which have been fixed too. We thus
conclude that our approach is indeed effective in revealing and discovering bugs
and inconsistencies in the domains and also in the overall framework.

Another overall conclusion from the experiment is that benchmark selection
is very important when focusing our approach on testing specific domains. No
bugs were found for the most mature domains using standard benchmarks and
the undergraduate Prolog assignments. The subtle bugs mentioned before in
less-used built-ins were found instead when using benchmarks extracted from
Ciao’s code base, i.e., in complex, system code. On the other hand, a good
number of errors were found in the experimental domain with even the simpler
benchmarks. In fact, in this case, the many errors triggered obfuscated sometimes
the real (possibly multiple) origin of the problems, but this is to be expected
in immature code: consider for example that just the ISO-standard contains a
very large set of built-ins and the implementation of an experimental domain
typically does not support all of them.

Finally, it is important to point out that we also found out that there are
some bugs that are unlikely to be found with benchmarks like the ones used
in the tests, because they are bugs that will probably never occur in realistic
programs. One example is the simple bug found in [10] for the handler of the
builtin =/2 in the sharing-freeness domain. The code did not consider that the
two arguments could be the same variable, and thus the analysis failed for any
program with the literal X=X. Since that literal always succeeds and is redundant
in every program, it will likely not appear in any reasonable benchmark and
this error would not be detected by our tool. To find bugs of this kind with our
approach, randomly generated benchmarks would be needed.

3 We are working on including the technique as part of the Ciao continuous integration
infrastructure, and plan to report on a larger number of CiaoPP analyses over a wider
range of programs.

Testing Your (Static Analysis) Truths 287

7 Related Work

The need for validating program analyzers was discussed by [8], and the topic
has motivated interesting research over the past years. On the formal verifica-
tion side, there have been some pen-and-paper proofs, such as that of the Astree
analyzer [12], some automatic and interactive proofs, such as [16,44], and some
verification efforts, which include [2,26,31]. Testing efforts for program analyz-
ers include e.g., static analyzers [13,28,49,52], symbolic execution engines [27],
refactoring engines [14], compilers [29,30,32,43,47,50], SMT solvers [3], among
others. Most of these testing approaches use programs in the target language as
test cases and and apply testing techniques like fuzzing (e.g., [3,27,50]) or differ-
ential testing [35], (e.g., [3,27–29,50]). In [7] and [38] abstract domain properties
are tested, the latter using QuickCheck [11]. Among the different approaches
mentioned, the closest to ours are those that cross-check dynamically observed
and statically inferred properties [1,13,49,52].

In [49] the actual pointer aliasing in concrete executions is cross-checked
with the pointer aliasing inferred by an aliasing analyzer. Compared to us, they
require significant tailored instrumentation which cannot be reused for testing
other analyses. However, their approach is agnostic to the (C) aliasing analyzer.

Another cross-check is done in [52] for C model checkers and the reachability
property, but they obtain the assertions dynamically, and check them statically,
complementarily to our approach. Unlike us, they again need tailored instru-
mentation that cannot be reused to test other analyses, and their benchmarks
must be deterministic and with no input, the latter limiting the power of the
approach as a testing tool. However, their approach is agnostic to the (C) model
checker.

In [13] a wide range of static analysis tests are performed over randomly
generated programs. Among others, they check dynamically, at the end of the
program, one assertion inferred statically, and they perform the sanity check of
ensuring that the analyzer behaves as an interpreter when run from a singleton
set of initial states.

8 Conclusions and Future Work

We have proposed a simple, automatic method for testing abstract
interpretation-based static analyzers based on checking that the properties
inferred statically are satisfied dynamically. We have leveraged the Ciao unified
assertion language and framework, and have constructed a prototype implemen-
tation of our method with little effort by combining components already present
in the framework: the static analyzer, the runtime-checker, the random test-case
generator, and the unit-tester. We just wrote a very reduced amount of glue
code that pilots the combination and interplay of the intervening components.
We have applied our prototype to a good number of the abstract interpretation-
based analyses in CiaoPP, which represent different levels of code maturity. The
results are encouraging and show that our tool can effectively discover and locate,

288 I. Casso et al.

not only old errors in previous versions (that are obviously less interesting since
they were fixed in newer versions), but also new, interesting and unexpected,
non-trivial, previously undetected bugs.

Our technique can also be applied to testing the correctness of the analyzers
for many other types of properties that were not discussed for brevity, such as the
computational properties inferred by CiaoPP. These include, e.g., determinacy,
non-failure, upper and lower bounds on costs and complexity, or accumulated
costs and profiling, and the required run-time checking support exists for many
of them (see, e.g., [37]). Of course some properties cannot be checked fully (e.g.,
termination, beyond just checking for timeouts). There are also many other inter-
esting sanity checks enabled by Ciao’s integrated and unified assertion language
and framework which we have left as future work, such as testing the asser-
tion simplifier, which simplifies programs discarding (parts of) check assertions
that have been proven statically. This could be done by analyzing a benchmark
without assertions, simplifying the assertions output, and checking that there
are no assertions left. We also plan to use the test case generation framework
to do differential testing of several program optimizations and transformations
over a suite of benchmarks, by just checking that they produce the same outputs
for the same randomly generated inputs. A recent paper [9] suggested defining
and using distances in abstract domains and between abstract semantics (i.e.,
between abstract AND-OR trees inferred by the analyzer). We plan to imple-
ment an instrumentation that uses such distances to test analysis precision and
measure coverage within our approach: if the distance between the dynamic
under-approximation and the static over-approximation of the program seman-
tics is small, it means that the analysis was precise and the random inputs had
good coverage; otherwise, either the analysis was imprecise, or the test case gen-
eration had poor coverage. We plan to investigate heuristics to distinguish both
cases. Another interesting avenue for future research is to combine our approach
with more directed testing techniques, such as, e.g., concolic testing [17].

References

1. Andreasen, E.S., Møller, A., Nielsen, B.B.: Systematic approaches for increasing
soundness and precision of static analyzers. In: Proceedings of the 6th ACM SIG-
PLAN International Workshop on State of the Art in Program Analysis, SOAP
2017, pp. 31–36. Association for Computing Machinery, New York (2017). https://
doi.org/10.1145/3088515.3088521

2. Blazy, S., Laporte, V., Maroneze, A., Pichardie, D.: Formal verification of a C value
analysis based on abstract interpretation. In: Logozzo, F., Fähndrich, M. (eds.) SAS
2013. LNCS, vol. 7935, pp. 324–344. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38856-9_18

3. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Proceed-
ings of the 7th International Workshop on Satisfiability Modulo Theories, SMT
2009, pp. 1–5. Association for Computing Machinery, New York (2009). https://
doi.org/10.1145/1670412.1670413

https://doi.org/10.1145/3088515.3088521
https://doi.org/10.1145/3088515.3088521
https://doi.org/10.1007/978-3-642-38856-9_18
https://doi.org/10.1007/978-3-642-38856-9_18
https://doi.org/10.1145/1670412.1670413
https://doi.org/10.1145/1670412.1670413

Testing Your (Static Analysis) Truths 289

4. Bueno, F., et al.: On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In: Proceedings of the 3rd International
Workshop on Automated Debugging-AADEBUG 1997, pp. 155–170. University
of Linköping Press, Linköping, Sweden, May 1997. ftp://cliplab.org/pub/papers/
aadebug_discipldeliv.ps.gz

5. Bueno, F., López-García, P., Hermenegildo, M.: Multivariant non-failure analy-
sis via standard abstract interpretation. In: Kameyama, Y., Stuckey, P.J. (eds.)
FLOPS 2004. LNCS, vol. 2998, pp. 100–116. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24754-8_9

6. Bueno, F., Lopez-Garcia, P., Puebla, G., Hermenegildo, M.V.: A Tutorial on
Program Development and Optimization using the Ciao Preprocessor. Techni-
cal report. CLIP2/06, Technical University of Madrid (UPM), Facultad de Infor-
mática, 28660 Boadilla del Monte, Madrid, Spain, January 2006

7. Bugariu, A., Wüstholz, V., Christakis, M., Müller, P.: Automatically testing imple-
mentations of numerical abstract domains. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, pp. 768–
778. Association for Computing Machinery, New York, NY, USA (2018). https://
doi.org/10.1145/3238147.3240464

8. Cadar, C., Donaldson, A.: Analysing the program analyser. In: International Con-
ference on Software Engineering, Visions of 2025 and Beyond Track (ICSE V2025),
pp. 765–768 (5 2016)

9. Casso, I., Morales, J.F., López-García, P., Giacobazzi, R., Hermenegildo, M.V.:
Computing abstract distances in logic programs. In: Gabbrielli, M. (ed.) LOPSTR
2019. LNCS, vol. 12042, pp. 57–72. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45260-5_4

10. Casso, I., Morales, J.F., López-García, P., Hermenegildo, M.V.: An integrated app-
roach to assertion-based random testing in prolog. In: Gabbrielli, M. (ed.) LOPSTR
2019. LNCS, vol. 12042, pp. 159–176. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45260-5_10

11. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Fifth ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2000, pp. 268–279. ACM (2000)

12. Cousot, P., et al.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS,
vol. 3444, pp. 21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31987-0_3

13. Cuoq, P., et al.: Testing static analyzers with randomly generated programs.
In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 120–125.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3_12

14. Daniel, B., Dig, D., Garcia, K., Marinov, D.: Automated testing of refactoring
engines. In: Proceedings of the 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC-FSE 2007, pp. 185–194. Association for Computing
Machinery, New York (2007). https://doi.org/10.1145/1287624.1287651

15. Debray, S., Lopez-Garcia, P., Hermenegildo, M.V.: Non-failure analysis for logic
programs. In: 1997 International Conference on Logic Programming, pp. 48–62.
MIT Press, Cambridge, June 1997

16. Dubois, C.: Proving ML type soundness within Coq. In: Aagaard, M., Harrison, J.
(eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 126–144. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44659-1_9

ftp://cliplab.org/pub/papers/aadebug_discipldeliv.ps.gz
ftp://cliplab.org/pub/papers/aadebug_discipldeliv.ps.gz
https://doi.org/10.1007/978-3-540-24754-8_9
https://doi.org/10.1007/978-3-540-24754-8_9
https://doi.org/10.1145/3238147.3240464
https://doi.org/10.1145/3238147.3240464
https://doi.org/10.1007/978-3-030-45260-5_4
https://doi.org/10.1007/978-3-030-45260-5_4
https://doi.org/10.1007/978-3-030-45260-5_10
https://doi.org/10.1007/978-3-030-45260-5_10
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-642-28891-3_12
https://doi.org/10.1145/1287624.1287651
https://doi.org/10.1007/3-540-44659-1_9

290 I. Casso et al.

17. Fortz, S., Mesnard, F., Payet, E., Perrouin, G., Vanhoof, W., Vidal, G.: An SMT-
based concolic testing tool for logic programs. In: Nakano, K., Sagonas, K. (eds.)
FLOPS 2020. LNCS, vol. 12073, pp. 215–219. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-59025-3_13

18. Garcia-Contreras, I., Morales, J.F., Hermenegildo, M.V.: Multivariant assertion-
based guidance in abstract interpretation. In: Mesnard, F., Stuckey, P.J. (eds.)
LOPSTR 2018. LNCS, vol. 11408, pp. 184–201. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-13838-7_11

19. Garcia-Contreras, I., Morales, J.F., Hermenegildo, M.V.: Incremental analysis of
logic programs with assertions and open predicates. In: Gabbrielli, M. (ed.) LOP-
STR 2019. LNCS, vol. 12042, pp. 36–56. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45260-5_3

20. García de la Banda, M., Hermenegildo, M.V., Bruynooghe, M., Dumortier, V.,
Simoens, W.: Global analysis of constraint logic programs. ACM Trans. Program.
Lang. Syst. 18(5), 564615 (1996)

21. Hermenegildo, M.V., et al.: An overview of ciao and its design philosophy.
Theory Pract. Logic Program. 12(12), 219–252 (2012). https://doi.org/10.1017/
S1471068411000457. http://arxiv.org/abs/1102.5497

22. Hermenegildo, M.V., Puebla, G., Bueno, F.: Using global analysis, partial speci-
fications, and an extensible assertion language for program validation and debug-
ging. In: Apt, K.R., Marek, V., Truszczynski, M., Warren, D.S. (eds.) The Logic
Programming Paradigm: a 25-Year Perspective, pp. 161–192. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-3-642-60085-2_7

23. Hermenegildo, M.V., Puebla, G., Bueno, F., López-García, P.: Program develop-
ment using abstract interpretation (and the ciao system preprocessor). In: Cousot,
R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 127–152. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-44898-5_8

24. Hermenegildo, M.V., Puebla, G., Bueno, F., Lopez-Garcia, P.: Integrated pro-
gram debugging, verification, and optimization using abstract interpretation (and
the ciao system preprocessor). Scie. Comput. Program. 58(1–2), 115–140 (2005).
https://doi.org/10.1016/j.scico.2005.02.006

25. Hermenegildo, M.V., Puebla, G., Marriott, K., Stuckey, P.: Incremental analysis
of constraint logic programs. ACM Trans. Program. Lang. Syst. 22(2), 187–223
(2000)

26. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified
c static analyzer. SIGPLAN Not. 50(1), 247–259 (2015). https://doi.org/10.1145/
2775051.2676966

27. Kapus, T., Cadar, C.: Automatic testing of symbolic execution engines via program
generation and differential testing. In: IEEE/ACM International Conference on
Automated Software Engineering (ASE 2017), pp. 590–600, 11 November 2017

28. Klinger, C., Christakis, M., Wüstholz, V.: Differentially testing soundness and
precision of program analyzers. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. p. 239–250. ISSTA
2019, Association for Computing Machinery, New York, NY, USA (2019). DOI:
10.1145/3293882.3330553, https://doi.org/10.1145/3293882.3330553

29. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2014, pp. 216–226. Association for Computing
Machinery, New York (2014). https://doi.org/10.1145/2594291.2594334

https://doi.org/10.1007/978-3-030-59025-3_13
https://doi.org/10.1007/978-3-030-59025-3_13
https://doi.org/10.1007/978-3-030-13838-7_11
https://doi.org/10.1007/978-3-030-13838-7_11
https://doi.org/10.1007/978-3-030-45260-5_3
https://doi.org/10.1007/978-3-030-45260-5_3
https://doi.org/10.1017/S1471068411000457
https://doi.org/10.1017/S1471068411000457
https://doi.org/10.1007/978-3-642-60085-2_7
https://doi.org/10.1007/3-540-44898-5_8
https://doi.org/10.1016/j.scico.2005.02.006
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1145/3293882.3330553
https://doi.org/10.1145/2594291.2594334

Testing Your (Static Analysis) Truths 291

30. Le, V., Sun, C., Su, Z.: Finding deep compiler bugs via guided stochastic pro-
gram mutation. In: Proceedings of the 2015 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications, pp.
386–399. OOPSLA 2015, Association for Computing Machinery, New York (2015).
https://doi.org/10.1145/2814270.2814319

31. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

32. Lidbury, C., Lascu, A., Chong, N., Donaldson, A.F.: Many-core compiler fuzzing.
In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2015, pp. 65–76. Association for Computing
Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2737924.2737986

33. López-García, P., Bueno, F., Hermenegildo, M.: Determinacy analysis for logic
programs using mode and type information. In: Etalle, S. (ed.) LOPSTR 2004.
LNCS, vol. 3573, pp. 19–35. Springer, Heidelberg (2005). https://doi.org/10.1007/
11506676_2

34. Lopez-Garcia, P., Bueno, F., Hermenegildo, M.V.: Automatic inference of deter-
minacy and mutual exclusion for logic programs using mode and type analyses.
New Gener. Comput. 28(2), 117–206 (2010). https://doi.org/10.1007/s00354-008-
0085-1

35. McKeeman, W.M.: Differential testing for software. Digit. Tech. J. 10, 100–107
(1998)

36. Mera, E., Lopez-García, P., Hermenegildo, M.: Integrating software testing and
run-time checking in an assertion verification framework. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 281–295. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02846-5_25

37. Mera, E., Trigo, T., Lopez-García, P., Hermenegildo, M.: Profiling for run-time
checking of computational properties and performance debugging in logic pro-
grams. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp.
38–53. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18378-2_6

38. Midtgaard, J., Møller, A.: QuickChecking static analysis properties. Softw. Test.,
Verif. Reliab.27(6) (2017). https://doi.org/10.1002/stvr.1640

39. Muthukumar, K., Hermenegildo, M.: Combined determination of sharing and free-
ness of program variables through abstract interpretation. In: International Con-
ference on Logic Programming (ICLP 1991), pp. 49–63. MIT Press, June 1991

40. Muthukumar, K., Hermenegildo, M.: Compile-time derivation of variable depen-
dency using abstract interpretation. J. Logic Program. 13(2/3), 315–347 (1992)

41. Puebla, G., Bueno, F., Hermenegildo, M.: An assertion language for constraint logic
programs. In: Deransart, P., Hermenegildo, M.V., Małuszynski, J. (eds.) Analysis
and Visualization Tools for Constraint Programming. LNCS, vol. 1870, pp. 23–61.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722311_2

42. Puebla, G., Bueno, F., Hermenegildo, M.: Combined static and dynamic assertion-
based debugging of constraint logic programs. In: Bossi, A. (ed.) LOPSTR 1999.
LNCS, vol. 1817, pp. 273–292. Springer, Heidelberg (2000). https://doi.org/10.
1007/10720327_16

43. Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X.: Test-case reduc-
tion for C compiler bugs. In: Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 335–346. PLDI ’12,
Association for Computing Machinery, New York (2012). https://doi.org/10.1145/
2254064.2254104

https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1007/11506676_2
https://doi.org/10.1007/11506676_2
https://doi.org/10.1007/s00354-008-0085-1
https://doi.org/10.1007/s00354-008-0085-1
https://doi.org/10.1007/978-3-642-02846-5_25
https://doi.org/10.1007/978-3-642-18378-2_6
https://doi.org/10.1002/stvr.1640
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/10720327_16
https://doi.org/10.1007/10720327_16
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104

292 I. Casso et al.

44. Shao, Z., Saha, B., Trifonov, V., Papaspyrou, N.: A type system for certified
binaries. SIGPLAN Not. 37(1), 217–232 (2002). https://doi.org/10.1145/565816.
503293

45. Stulova, N., Morales, J.F., Hermenegildo, M.V.: Practical run-time checking via
unobtrusive property caching, theory and practice of logic programming. In: 31st
Internationl Conference on Logic Programming (ICLP 2015) Special Issue 15(04–
05), pp. 726–741, September 2015. https://doi.org/10.1017/S1471068415000344,
http://arxiv.org/abs/1507.05986

46. Stulova, N., Morales, J.F., Hermenegildo, M.V.: Reducing the overhead of asser-
tion run-time checks via static analysis. In: 18th International ACM SIGPLAN
Symposium on Principles and Practice of Declarative Programming (PPDP 2016),
pp. 90–103. ACM Press, September 2016

47. Sun, C., Le, V., Su, Z.: Finding compiler bugs via live code mutation. In: Proceed-
ings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016, pp. 849–
863. Association for Computing Machinery, New York, NY, USA (2016). https://
doi.org/10.1145/2983990.2984038

48. Vaucheret, C., Bueno, F.: More precise yet efficient type inference for logic pro-
grams. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp.
102–116. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45789-5_10

49. Wu, J., Hu, G., Tang, Y., Yang, J.: Effective dynamic detection of alias analysis
errors. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pp. 279–289. Association for Computing Machinery,
New York (2013). https://doi.org/10.1145/2491411.2491439

50. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011, pp. 283–294. Association
for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/
1993498.1993532

51. Zeller, A.: Yesterday, my program worked. Today, it does not. Why? SIGSOFT
Softw. Eng. Notes 24(6), 253–267 (1999). https://doi.org/10.1145/318774.318946

52. Zhang, C., Su, T., Yan, Y., Zhang, F., Pu, G., Su, Z.: Finding and understanding
bugs in software model checkers. In: Proceedings of the 13th Joint Meeting of
the 18th European Software Engineering Conference and the 27th Symposium on
the Foundations of Software Engineering, pp. 763–773 (2019). https://doi.org/10.
1145/3338906.3338932

https://doi.org/10.1145/565816.503293
https://doi.org/10.1145/565816.503293
https://doi.org/10.1017/S1471068415000344
http://arxiv.org/abs/1507.05986
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1007/3-540-45789-5_10
https://doi.org/10.1145/2491411.2491439
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/318774.318946
https://doi.org/10.1145/3338906.3338932
https://doi.org/10.1145/3338906.3338932

Slicing Unconditional Jumps with
Unnecessary Control Dependencies

Carlos Galindo , Sergio Pérez(B) , and Josep Silva

VRAIN, Universitat Politècnica de València, Camı́ de Vera s/n, 46022 València, Spain
{cargaji,serperu,jsilva}@dsic.upv.es

Abstract. Program slicing is an analysis technique that has a wide
range of applications, ranging from compilers to clone detection soft-
ware, and that has been applied to practically all programming lan-
guages. Most program slicing techniques are based on a widely extended
program representation, the System Dependence Graph (SDG). How-
ever, in the presence of unconditional jumps, there exist some situations
where most SDG-based slicing techniques are not as accurate as possible,
including more code than strictly necessary. In this paper, we identify
one of these scenarios, pointing out the cause of the inaccuracy, and
describing the initial solution to the problem proposed in the literature,
together with an extension, which solves the problem completely. These
solutions modify both the SDG generation and the slicing algorithm.
Additionally, we propose an alternative solution, that solves the prob-
lem by modifying only the SDG generation, leaving the slicing algorithm
untouched.

Keywords: Program analysis · Program slicing · Unconditional jumps

1 Introduction

Program slicing [18,20] is a technique for program analysis and transformation
whose main objective is to extract from a program the set of statements that
affect a given set of variables in a specific statement, the so-called slicing crite-
rion. The programs obtained with program slicing are called slices, and they are
used in many areas such as debugging [1], program specialization [2], software
maintenance [7], code obfuscation [13], etc.

There exist several algorithms and data structures to represent programs
that can be used to compute slices, but the most efficient and broadly used data
structure is the system dependence graph (SDG), introduced by Horwitz et al.
[9]. It is computed from the program’s source code, and once built, a slicing
criterion is chosen and mapped to the graph, that is then traversed with the
algorithm proposed in [9] to compute the corresponding slice.

The SDG is the result of assembling a set of graphs that represent information
about a program. Figure 1 depicts how the SDG is built using the control-flow

c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 293–308, 2021.
https://doi.org/10.1007/978-3-030-68446-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_15&domain=pdf
http://orcid.org/0000-0002-3569-6218
http://orcid.org/0000-0002-4384-7004
http://orcid.org/0000-0001-5096-0008
https://doi.org/10.1007/978-3-030-68446-4_15

294 C. Galindo et al.

graph (CFG) as the starting graph. First, using the CFG of each function def-
inition in the code, two different graphs are built: (i) the control dependence
graph (CDG) [6] and (ii) the data dependence graph (DDG) [6,19]. The union
of both graphs results in the program dependence graph (PDG) [6,14], which
represents all data and control dependencies inside a concrete function. Finally,
PDG’s function calls, definitions and their parameters are linked with interpro-
cedural arcs, generating the final SDG. The SDG can be traversed from a slicing
criterion to produce a slice in linear time with the algorithm proposed in [9].

Fig. 1. Sequence of graphs generated to build the SDG.

As all the aforementioned graphs conforming the SDG represent different
relationships of the program, an improvement in the accuracy of these graphs
results in a direct impact on the accuracy of the SDG. Throughout the years,
the SDG has been augmented with different dependencies, and several tech-
niques have been defined to properly represent complex situations: interpro-
cedural alternatives to compute executable slices [4], extensions of the CFG
to represent interprocedural control dependencies [17], object-oriented language
representations and slicing [12], or program slicing in concurrent environments
[5,10] are some examples of the evolution of the SDG.

For the purpose of this paper, we are interested in the evolution of the uncon-
ditional control flow treatment for program slicing. In this specific area, the ini-
tial proposal was the one introduced by Ball and Horwitz [3]. In their work, the
authors considered a simplified language with scalar variables and constants,
assignment statements, jump statements (goto, break, halt, etc.), conditional
statements (if-then, if-then-else), and loops (while and repeat). Despite
the simplicity of the given programming language, the ideas proposed can be
applied to any kind of unconditional jumps present in other programming lan-
guages. In this paper, we provide examples using the break statement in the
Java programming language, even though the problem presented and its solu-
tion can be applied to any statement that represents an unconditional jump.
The following example illustrates the problem identified by Ball and Horwitz
after their proposal.

Example 1 (Unconditional jump subsumption [3]). Consider the Java method
shown below on the left-hand side:

Slicing Unconditional Jumps with Unnecessary Control Dependencies 295

1 public void f() {
2 while (X) {
3 if (Y) {
4 if (Z) {
5 A;
6 break;
7 }
8 B;
9 break;

10 }
11 C;
12 }
13 D;
14 }

1 public void f() {
2 while (X) {
3 if (Y) {
4 if (Z) {
5

6 break;
7 }
8

9 break;
10 }
11 C;
12 }
13

14 }

1 public void f() {
2 while (X) {
3 if (Y) {
4

5

6

7

8

9 break;
10 }
11 C;
12 }
13

14 }

Original program SDG slice Minimal slice

This method contains a while statement, from which the execution may
exit naturally or through any of the break statements. To represent the rest
of statements and conditional expressions, uppercase letters are used; and, for
simplicity, we can assume that there are no data dependencies between them.

Now consider statement C as the slicing criterion: each input that produces a
computation in the original program that reaches C must produce a computation
in the slice that also reaches C. Note that C is only executed when X is true and
Y is false.

The code in the centre displays the computed slice by Ball and Horwitz’s app-
roach; the code on the right-hand side is the minimal slice. As can be observed,
the break in line 6 and its surrounding if statement (if (Z)) have been unnec-
essarily included in the slice, since the evaluation of Z does not influence the
execution of a break after being the Y statement evaluated to true. Their inclu-
sion would not be specially problematic, if it were not for the condition of the if
statement (Z), which may include extra data dependencies that are unnecessary
in the slice and that may lead to include other unnecessary statements, making
the slice even more imprecise.

The rest of the paper is structured as follows: Section 2 illustrates the ratio-
nale behind the problem shown in Example 1, detailing how dependencies are
generated, identifying when the problem shows up, and describing the solution
proposed by Kumar and Horwitz in [11], where the authors introduced changes
in two steps of the process shown in Fig. 1. Section 3 proposes an alternative
solution that is simpler and does not need to change the slicing algorithm, low-
ering the time complexity while preserving completeness at all times. Section 4
explains the problem in presence of switch statements and how to represent
them to solve the problem. Section 5 outlines our implementation of the proposed
solution. Finally, Sect. 6 concludes the article outlining the main contributions.

2 Unconditional Jumps and the PPDG

To keep the paper self-contained, we start with the definition of control flow
graph.

296 C. Galindo et al.

Definition 1 (Control-flow graph). Given a program P , the control flow
graph of P is a graph (N,A) where N is a set of nodes that contains one node
for each statement in the program, and A are arcs that represent the execution
flow between the nodes:

Statement node. Any statement that is not a conditional jump. These nodes
have one outgoing edge pointing to the next statement of the program.

Predicate node. Any conditional jump statement, such as if, while, etc. These
nodes have two outgoing edges labelled true and false, leading to the state-
ments that would be executed regarding the condition evaluation.

The CFG of the Original program in Example 1 is shown in Fig. 2 (left),
where we can ignore the dashed arcs for now, since they are not part of the CFG.
In this graph, all nodes with just one outgoing arc represent statements, while
all nodes with two outgoing arcs labeled with T or F represent predicates. In the
graph, unconditional jumps, such as break are represented with a node whose
outgoing arc leads to the statement that will be executed after the jump. Other
representations of unconditional jumps, such as representing them with a single
arc connecting the previous statement with the jumps’ target are inadequate for
program slicing, as we require a mapping from each statement in the source code
to a node in each graph.

Fig. 2. ACFG (left) and CDG (right) of the code in Example 1.

The control flow graph is the basis to calculate control dependencies in a
program and, thus, the control dependence graph.

Definition 2 (Control dependence). Let G be a CFG. Let X and Y be nodes
in G. A node Y post-dominates a node X in G if every directed path from X to

Slicing Unconditional Jumps with Unnecessary Control Dependencies 297

the End node passes through Y . Node Y is control dependent on node X if and
only if Y post-dominates one but not all of X’s CFG successors.

Definition 3 (Control dependence graph). Given a program P and its
associated CFG GCFG = (N,A), the control dependence graph (CDG) of P
is a graph GCDG = (N,A′) where (x, y) ∈ A′ if and only if node y ∈ N is
control-dependent on node x ∈ N .

Unconditional jump statements distort the usual understanding of control
dependence, and they invalidate the standard representation of control depen-
dencies in the CDG. Example 2 shows that the standard definition of control
dependence is insufficient in presence of unconditional jumps.

Example 2 (Control dependencies induced by unconditional jumps). Consider the
following code on the left-hand side and the slicing criterion x in the last line.

1 x = 0;
2 while (true) {
3 x++;
4 if (x>10)
5 break;
6 }
7 print(x);

1 x = 0;
2 while (true) {
3 x++;
4 if (x>10)
5

6 }
7 print(x);

Original program Wrong slice

The slice of this code is the whole code (everything is needed to reach the
slicing criterion). Nevertheless, according to Definition 2, the break statement
in line 5 does not control any other statement, that is, no statement depends on
the break statement. Therefore, the (wrong) slice computed with the standard
definition of control dependence would be the code on the right. This is an infinite
loop that never reaches the slicing criterion. Clearly, the execution of print(x) is
in some way controlled by the execution of break and, thus, unconditional jumps
induce some kind of control dependencies that are not captured in Definition 2.

To deal with this problem (i.e. unconditional control flow statements), Ball
and Horwitz [3] proposed a modification of the CFG in presence of unconditional
control flow statements, which result in a CDG with augmented dependencies.
This approach is the most popular one and the one used in most of the subsequent
literature [11,15,16]. The main modification applied to the CFG consists in the
introduction of a third category of nodes in the definition of the CFG:

Pseudo-predicates. Unconditional jumps (i.e. break, goto, return1, etc.) are
treated like predicates, where the outgoing edge labelled false is marked
as non-executable—because there is no possible execution where such edge
would be possible, according to the definition of the CFG [8]. For uncondi-
tional jumps, the true edge leads to the statement at the jump destination,
and the false edge to the statement that would be executed if the jump was
skipped.

1 The target of the jump in a return statement is the End or Exit node of the
procedure it’s in, from which control will be handed back to the previous procedure
in the call stack.

298 C. Galindo et al.

The graph obtained from adding the false arcs to the pseudo-predicate nodes
of a CFG is called the Augmented CFG (ACFG). As a consequence of the appear-
ance of pseudo-predicate nodes, in an ACFG every statement between an uncon-
ditional jump and its destination is control-dependent on it (see Definition 2),
as can be seen in Example 3.

Example 3 (Control dependencies generated by unconditional jumps). Consider
again the ACFG in Fig. 2 (left), which represents the code in Example 1. Here,
solid arrows represent edges that come out from statements, predicates, and
true pseudo-predicate branches; and dashed arrows represent the non-executable
(false) branches of pseudo-predicates. When we transform this ACFG to a CDG,
we obtain the CDG in Fig. 2 (right), where the slice with respect to variable C
is represented with grey nodes.

Even though Ball and Horwitz solved the exposed problem with the defini-
tion of the ACFG, there was still a problem they were not able to solve. This
problem is represented in the code of Example 1. It appears when there are two
different unconditional jumps with the same jump destination. Due to the false
pseudo-predicate arcs in the ACFG, all the statements between the first uncon-
ditional jump and the second one become directly control-dependent on the first
jump, including the second one. Similarly, all the statements located between the
second jump and the destination statement become directly control-dependent
on the second jump. As a result of the transitive dependence, when any state-
ment between the second jump and the destination statement is required, the
inclusion of both unconditional jump statements in the slice is unavoidable. The
inclusion of the first jump statement will increase the size of the slice with all
its dependencies, leading to an imprecise slice. The solution proposed in [3] is
complete, but not as accurate as it was expected to be.

Ball and Horwitz were aware of the aforementioned problem and, some years
later, Kumar and Horwitz proposed a solution in [11]. Their solution was based
on two main modifications:

1. A new definition of control dependence in the presence of pseudo-
predicates. “Node Y is control-dependent on node X if and only if Y post-
dominates, in the CFG, one but not all of X’s ACFG successors”. The result-
ing graph was called the pseudo-predicate PDG (PPDG).

2. A new slicing algorithm. The new algorithm established some restrictions
in the slicing traversal. “To compute the slice from node S, include S itself and
all of its data and control-dependence predecessors in the slice. Then follow
backwards all data-dependence edges, and all control-dependence edges whose
targets are not pseudo-predicates; add each node reached during this traversal
to the slice.”

By the introduction of these novelties, the accuracy of the slice was improved,
since it is not possible to add in the slice two pseudo-predicate nodes that jump
to the same destination unless one of them is the slicing criterion itself. This
approach solved the problem of Example 1, proposed in [3].

Slicing Unconditional Jumps with Unnecessary Control Dependencies 299

3 Alternative Solution: Unnecessary Control
Dependencies

In this section, we propose an alternative solution to the unconditional jump
problem shown in the previous section. The key idea of our approach is to identify
which edges of the CDG are responsible for the inaccurate slices and define a
method to avoid building them in the graph generation process.

To properly reason about the accuracy of our approach, we provide a formal
definition of slicing criterion and slice.

Definition 4 (Slicing criterion). Let P be a program. A slicing criterion C
of P is a tuple 〈s, v〉 where s is a statement in P and v is a set of variables that
are used or defined in s.

Definition 5 (CDG slice). Given a CDG G = (N,A) and a slicing criterion
〈s, v〉, where n ∈ N represents s in G, a CDG slice of n is a subgraph G′ =
(N ′, A′) such that:

1. N ′ ⊆ N .
2. ∀n′ ∈ N ′, n is control dependent on n′ and n′ is needed to execute n the same

number of times as in G (the original program).
3. A′ = {(x, y) ∈ A | x, y ∈ N ′}.

The standard slicing algorithm, denoted slice(G ,C), collects all nodes that
are reachable from the node in G associated with the slicing criterion C traversing
backwards the CDG arcs.

We have identified a general situation in which some control dependencies
should be omitted. If those control dependencies are removed from the CDG,
then the standard slicing algorithm is still complete and precision is kept the
same or improved. Consider a CDG G with two unconditional jump statements
x and y that jump to the same destination, with an arc (x, y) in G. There exists
a CDG G′ with the same set of nodes and a set of arcs obtained by deleting
all the control arcs in G with y as target, that produces more accurate program
slices.

Theorem 1. Let G = (N,A) be a CDG. Let x ∈ N be any unconditional jump
statement. Let y ∈ N be an unconditional jump statement without any variable
use or definition that jumps to the same destination as x. Let G′ = (N,A′) where
A′ = (A \ {(w, y) | w ∈ N}). For all slicing criteria C, slice(G ′,C) is a CDG
slice.

Proof. We prove the theorem by means of a generic code that captures all possi-
ble scenarios that can happen under the conditions of the theorem. We consider
two unconditional jump statements, x as the first jump statement and y as the
second one. First, x and y cannot be sequential statements because in that case
y would be dead code. This forces us to enclose x inside a conditional structure.
As y does not define or use any variable, we add the statement s1 and place an

300 C. Galindo et al.

external conditional structure to also prevent it to be dead code. This generic
code is depicted in Fig. 3 (left). Any statement or groups of them added to this
code before or after x or y would produce a similar topology that would not
affect the proof. The reason is that any statement represented by a set of nodes
has only one successor in the CFG and can never be the source of a control
dependence (see Section 2.3 in [3]).

We graphically illustrate this proof by means of Figs. 3 and 4. Figure 3
represents the ACFG (centre) of the aforementioned code with the ACFG extra
arcs represented with dashed arrows, and its associated CDG (right). Figure 4
represents the same CDG removing two control dependence arcs (dashed arcs).
The figure represents two program slices with respect to two different slicing
criteria: x (left) and s1 (right).

Fig. 3. Piece of code (left), its ACFG (centre) and its associated CDG (right).

We distinguish two possible scenarios according to the slice computed by
slice(G ′,n):

(i) y �∈ slice(G ′,n) (Fig. 4, left). In this case, node y is not needed to execute n
and, thus, the removal of the arcs that end in y do not affect the computation
of slice(G ′,n) because they are never traversed. Therefore, all nodes needed
to execute n belong to the slice (condition 2. in Definition 5) and also all
arcs induced by them are kept in the slice (condition 3. in Definition 5).
Hence, slice(G ′,n) is a CDG slice.

(ii) y ∈ slice(G ′,n) (Fig. 4, right). First, according to Definition 4, node y can-
not be selected as slicing criterion, as it does not define or use any variables
of the program according to the theorem conditions imposed on y. Then,
because no data dependence exists on y, the only possibility to include y in
slice(G ′,n) is because some statement between y and the jump destination

Slicing Unconditional Jumps with Unnecessary Control Dependencies 301

Fig. 4. CDG of our approach and CDG slices w.r.t. x (left) and s1 (right).

of y is included in the slice (s1 in our graph in Fig. 4 (right)). Because of
that, there is an execution path where y affects the execution of this state-
ment. In the case that cond1 was a loop, y would be control dependent
on cond1 itself, including cond1 in slice(G ′,n) but, in this case, we would
obtain the same result because s1 is also control dependent on cond1 and
thus, included in slice(G ′,n).
We have two possible scenarios to execute n (see the ACFG in Fig. 3
(centre)):
– s1 is executed. Then, cond1 is false and cond2, x, and y are not executed

(they can be excluded from slice(G ′,n)).
– Either x or y are executed. As the result of executing x and y is function-

ally the same (the program execution continues at the destination of y),
there is no difference between taking one path of cond2 or another. There-
fore, cond2, x and y can be replaced by y without modifying the behaviour
of the program; making the control dependency arcs from cond2 and x to
y unnecessary.

In the three cases, the removal of the arcs that end in y ensure that the
three conditions in Definition 5 hold. Thus, slice(G ′,n) is a CDG slice.

�

Theorem 1 proves that slices produced with this solutions are complete, as
their result is a CDG slice. Additionally, due to the fact that the same nodes,
but fewer arcs exist, all slices produced from G′ will be equal or smaller than
those generated from the original CDG G, thus guaranteeing that our solution
is, at least, as correct as the previous solution. Finally, a CDG with fewer arcs
means that the input size for the slicing algorithm is smaller, therefore lowering
the time required to slice the graph once generated.

302 C. Galindo et al.

Algorithm 1. CDG Generation Algorithm
Input: An ACFG G = (N,A).
Output: A CDG G′ = (N ′, Ac).
1: Ac = genControlArcs(G)
2: for all (ns, ne) ∈ Ac do
3: if (ns, ne ∈ un jumps ∧ jumpDest(ns) == jumpDest(ne)) then
4: Ac = Ac \ (x, ne) ∀ x ∈ N
5: end if
6: end for
7: N ′ = N \ {End}
8: G′ = (N ′, Ac)

Algorithm 1 formalizes the new CDG generation process, which removes the
unnecessary arcs. To perform that task, the algorithm uses an ACFG as the
starting point. The algorithm uses the following functions and sets:

– genControlArcs\1. It inputs an ACFG and outputs all control arcs that can
be obtained according to Definition 2.

– unjumps . This is a set with all nodes that represent an unconditional jump.
– jumpDest\1. This function inputs a CDG node n that represents an uncon-

ditional jump statement and outputs the destination of the jump.

Algorithm 1 first generates all control dependencies in the ACFG. Then,
each control dependency n → n′ is inspected to determine whether both n and
n′ are unconditional jumps with the same destination. If this is the case, then
all control arcs that target node n′ are removed. This forms the set A′. Finally,
N ′ is calculated by removing the End node from N and the CDG G′ = (N ′, A′)
is obtained.

With this generation process, the CDG produced is more accurate than the
one produced by Ball and Horwitz. For instance, the CDG associated to the
Original program in Example 1 is shown in Fig. 5. The CDG slice associated to
the slicing criterion C is shown in grey, and it corresponds to the Minimal slice in
Example 1. As can be seen, nodes break and if(Z) are no longer part of the slice.
The structure of this graph represents now a more realistic control dependence,
where unconditional jumps to common destinations are not dependent on each
other.

It is worth remarking the main difference between the solution presented
in [11] and our approach: the amount of steps of the slicing process that are
modified. Both approaches introduce a modification in the CDG generation pro-
cess. While the amount of arcs generated by Kumar and Horwitz may be lower
or greater than the amount of arcs generated in the initial proposal by Ball
and Horwtiz [3], the amount of arcs generated in our approach is always equal
or lower than in the initial proposal. In addition, the approach by Kumar and
Horwitz needs to change the standard SDG-traversal algorithm, introducing an
overhead when calculating slices. On the contrary, in our approach the SDG-
traversal algorithm remains untouched, keeping the slicing process as a graph

Slicing Unconditional Jumps with Unnecessary Control Dependencies 303

Fig. 5. CDG obtained by applying Algorithm 1 to the code in Example 1.

reachability problem and ensuring the slicing cost proposed by Ottenstein and
Ottenstein in [14].

4 The Representation of switch Statements

Another frequent structure where this problem appears is the switch statement.
It is considered good practice to terminate each case with an unconditional
jump, such as return or break. This creates an environment where there are
multiple unconditional jumps with the same target, a perfect example of the
situation where our technique applies.

In comparison with Kumar and Horwitz’s approach, ours behaves in the same
way, with one caveat: it includes the appropriate case statements, while theirs
ignores them.

switch statements can be represented in many ways. Regarding its control-
flow representation for program slicing, the following patterns are applied (where
s is the switch statement):

– The selector or argument of s (e.g. switch (a)) is connected to each case
statement. Additionally, if s has no default case, it is connected to the first
instruction after s. Otherwise, it is connected to the first instruction after s
via a non-executable arc.

– Each case c is connected to the first instruction that will be executed if
the selector matches it, which is typically the first instruction in its body.2

Furthermore, c is connected via a non-executable arc to the default case, if
present, or otherwise to the first instruction after s.

2 Multiple languages allow chaining case statements.

304 C. Galindo et al.

– Statements within a case are represented as they would be in any other part
of the program. The only caveat is: let s be the last statement of a case
(c) statement’s body, and s′ the first statement in the following case (c′)
statement’s body; if s does not jump, the following instruction would not be
c′, but s′. As an example; in the sequence of statements a = 10; case 1;
b = 1;, the first will only be connected to the third, and not to the case
statement. Thus, any unconditional jump at the end of a case, which is
a common construct, will have a non-executable arc connected to the first
instruction of the following case statement.

All these rules follow two maxims: (1) executable control-flow arcs connect
instructions that may be executed sequentially and (2) non-executable control-
flow arcs connect i to j, where i is any instruction and j is the instruction that
would be executed in the case that i was a no-operation (a blank instruction
that affects nor control, neither data). Regarding the control dependence graph,
each part of the switch statement has sensible control dependencies:

– The selector is the source of data dependencies towards all instructions in its
body, and this is the desired outcome: the selector is included if any case is;
or in other words, the selector affects the execution of each case.

– Each case is the source of data dependencies towards the instructions in its
body, and towards the default case (if present). The effect a case has on
its body is clear, but the one on the default case may not be, though it is
present. Consider a switch with n case statements and a default case. If
any were removed, the default case would be affected, as the executions that
previously passed through the deleted statement will now traverse the default
case. Thus, the presence of each case statement affects the number of times
the default case is run.

– Statements within a case c are control dependent on c, and possibly on
unconditional jumps in previous case statements.

Example 4. Comparison of our technique against Kumar and Horwitz’s in a
simple switch statement.

Consider the code displayed in Fig. 6, where a simple switch statement is
declared. On the right-hand side, its slice with respect to S3 (line 11). Only one
of the break statements is necessary, as they perform an equivalent effect on the
slicing criterion.

Figure 7 shows the augmented control-flow graph of this simple procedure,
with non-executable arcs shown with dashed edges. Figure 8 shows the resulting
SDG built using our technique, and the slice obtained matches the one in Fig. 6.
Finally, Fig. 9 shows the result of applying Kumar and Horwitz’s technique.
Note how their approach, though it generates more arcs, traverses fewer of them,
leading them to the same result as ours.

Slicing Unconditional Jumps with Unnecessary Control Dependencies 305

1 public class Switch {
2 void f() {
3 switch (cond) {
4 case e1:
5 S1;
6 break;
7 case e2:
8 S2;
9 break;

10 case e3:
11 S3;
12 break;
13 }
14 }
15 }

1 public class Switch {
2 void f() {
3 switch (cond) {
4
5
6
7
8
9 break;

10 case e3:
11 S3;
12 break;
13 }
14 }
15 }

Fig. 6. A program with a simple switch statement and its slice with respect to S3.

ENTER void f()

switch (cond)

Exit

case e1

case e2

case e3

S1;

break;

S2;

break;

S3;

break;

Fig. 7. The CFG obtained with our technique (common to both Kumar and Horwitz’s
and our technique).

306 C. Galindo et al.

Fig. 8. The SDG and slice (gray nodes) w.r.t. to S3, obtained by applying our
technique.

Fig. 9. The SDG and slice (gray nodes) w.r.t. to S3, obtained by applying Kumar and
Horwitz’s technique.

Slicing Unconditional Jumps with Unnecessary Control Dependencies 307

5 Implementation

Both our approach and Kumar and Horwitz’s have been implemented in an
open-source Java slicer, available at the URL https://github.com/mistupv/
JavaSDGSlicer. In the branch TAPAS-2020, one can generate graphs using our
approach with the flag “-t TSDG”, and using Kumar and Horwitz’s with “PSDG”.

The specific implementation can be seen in the following classes for our app-
roach:

TapasPDG. Extends the implementation of the Augmented PDG (a PDG
based on the ACFG), applying Algorithm 1 after generating the control
dependency arcs.

TapasSDG. Extends the implementation of the Augmented SDG (a SDG based
on the APDG), by basing it instead on the aforementioned TapasPDG.

CFGBuilder, ACFGBuilder. They implement the creation of the control-
flow graph, specifically regarding the handling of the switch statement. The
specific change can be seen in commit 3c771a29.

As for Kumar and Horwitz’s approach, it is implemented in the following classes:

PPDG. Extends the implementation of the APDG, replacing the generation of
control dependencies with their own.

PSDG. Extends the ASDG to use PPDGs instead of APDGs, and uses a com-
patible slicing algorithm instead of the classic one.

PseudoPredicateSlicingAlgorithm. Extends the classic slicing algorithm,
with the additional restriction added in this approach.

6 Conclusions

Ball and Horwitz proposed the first program slicing technique with a specific
treatment for unconditional jumps. Even though their technique produces com-
plete slices in all cases, they were aware that accuracy could be improved, and
they proposed a challenging example (analogous to Example 1) where the com-
puted slice was bigger than needed. Some years later, Kumar and Horwitz
solved this accuracy problem changing the definition of control dependencies
and redefining the standard slicing algorithm.

In this paper, we propose an alternative approach that solves the problem
performing fewer changes to the standard approach. Our approach only needs to
change the CDG produced, and all the other phases of program slicing (including
SDG traversal) remain unchanged. We have theoretically proven the correctness
of our approach.

Acknowledgements. This work has been partially supported by the EU (FEDER)
and the Spanish MCI/AEI under grants TIN2016-76843-C4-1-R and PID2019-
104735RB-C41, by the Generalitat Valenciana under grant Prometeo/2019/098 (Deep-
Trust), and by TAILOR, a project funded by EU Horizon 2020 research and innovation
programme under GA No 952215.

https://github.com/mistupv/JavaSDGSlicer
https://github.com/mistupv/JavaSDGSlicer

308 C. Galindo et al.

References

1. Sun, C.A., Ran, Y., Zheng, C., Liu, H., Towey, D., Zhang, X.: Fault localisation
for WS-BPEL programs based on predicate switching and program slicing. J. Syst.
Softw. 135, 191–204 (2018)

2. Aung, M., Horwitz, S., Joiner, R., Reps, T.: Specialization slicing. ACM Trans.
Program. Lang. Syst. 36(2), 5:1–5:67 (2014)

3. Ball, T., Horwitz, S.: Slicing programs with arbitrary control-flow. In: Fritzson,
P.A. (ed.) AADEBUG 1993. LNCS, vol. 749, pp. 206–222. Springer, Heidelberg
(1993). https://doi.org/10.1007/BFb0019410

4. Binkley, D.: Precise executable interprocedural slices. ACM Lett. Program. Lang.
Syst. 2(1–4), 31–45 (1993)

5. Chen, Z., Xu, B.: Slicing concurrent java programs. SIGPLAN Not. 36(4), 41–47
(2001)

6. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

7. Hajnal, A., Forgács, I.: A demand-driven approach to slicing legacy COBOL sys-
tems. J. Softw. Maint. 24(1), 67–82 (2012)

8. Horwitz, S., Reps, T., Binkley, D.:: Interprocedural slicing using dependence
graphs. In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation, PLDI 1988, pp. 35–46. ACM, New York
(1988)

9. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
ACM Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

10. Krinke, J.: Static slicing of threaded programs. SIGPLAN Not. 33(7), 35–42 (1998)
11. Kumar, S., Horwitz, S.: Better slicing of programs with jumps and switches.

In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 96–112.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45923-5 7

12. Larsen, L., Harrold, M.J.: Slicing object-oriented software. In: Proceedings of the
18th International Conference on Software Engineering, ICSE 1996, pp. 495–505.
IEEE Computer Society, Washington (1996)

13. Majumdar, A., Drape, S.J., Thomborson, C.D.: Slicing obfuscations: design, cor-
rectness, and evaluation. In: Proceedings of the 2007 ACM Workshop on Digital
Rights Management, DRM 2007, pp. 70–81. ACM, New York (2007)

14. Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software
development environment. SIGSOFT Softw. Eng. Notes 9(3), 177–184 (1984)

15. Reps, T., Horwitz, S., Sagiv, M., Rosay, G.: Speeding up slicing. SIGSOFT Softw.
Eng. Notes 19(5), 11–20 (1994)

16. Reps, T., Rosay, G.: Precise interprocedural chopping. In: Proceedings of the 3rd
ACM SIGSOFT Symposium on Foundations of Software Engineering, pp. 41–52.
Association for Computing Machinery, New York (1995)

17. Sinha, S., Harrold, M.J., Rothermel, G.: System-dependence-graph-based slicing of
programs with arbitrary interprocedural control flow. In: Proceedings of the 1999
International Conference on Software Engineering (IEEE Cat. No. 99CB37002),
pp. 432–441. IEEE, May 1999

18. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3(3), 121–189
(1995)

19. Towle, R.A.: Control and data dependence for program transformations. Ph.D.
thesis, USA (1976). AAI7624191

20. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering (ICSE 1981), pp. 439–449. IEEE Press, Piscataway (1981)

https://doi.org/10.1007/BFb0019410
https://doi.org/10.1007/3-540-45923-5_7

Logics

A Formal Model for a Linear Time
Correctness Condition of Proof Nets

of Multiplicative Linear Logic

Satoshi Matsuoka(B)

National Institute of Advanced Industrial Science and Technology (AIST),
1-1-1 Umezono, Tsukuba, Ibaraki 305-8561, Japan

matsuoka@ni.aist.go.jp

https://staff.aist.go.jp/s-matsuoka

Abstract. In a previous paper, we have reported a new linear time cor-
rectness condition for proof nets of Multiplicative Linear Logic without
units, where we gave a description of the algorithm in an informal way.
In this paper, we give a formal model for the algorithm. Our formal
model is based on a finite state transition system with queues as well
as union-find trees as data structures. The model has been obtained by
trial and error based on a concrete implementation of the algorithm. In
addition, the algorithm has a subtle mechanism in order to avoid dead-
lock. We give an invariant property of the state transition system and it
guarantees the deadlock-freedom.

1 Introduction

More than three decades ago, J.Y. Girard introduced the notion of proof nets
of unit free Multiplicative Linear Logic (for short, MLL)[5]. It is a parallel syn-
tax for MLL proofs, removing redundancy of sequent calculus proofs. In [5], he
introduced MLL proof structures, which are graphs whose nodes are labeled by
MLL formulas and then defined MLL proof nets as sequentializable MLL proof
structures. Moreover he introduced a topological property called the long trip
condition for MLL proof structures and showed that an MLL proof structure
is an MLL proof net if and only if it satisfies the long trip condition. Such a
characterization is called a correctness condition for MLL proof nets. Since then
many other correctness conditions have been given for MLL and its variants or
extensions by many researchers.

In [11], the author gives a new linear time correctness condition algorithm
for MLL. This means that using the algorithm, we can check whether or not
an MLL proof structure is an MLL proof net in linear time. The description of
the algorithm in [11] is given in an informal way. Such an informal description is
important because an algorithm supposed to be important should be understood
by humans. In addition, an algorithm supposed to be important also should be
understood by a machine and proved that it is correct easily: If an algorithm

c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 311–328, 2021.
https://doi.org/10.1007/978-3-030-68446-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_16&domain=pdf
http://orcid.org/0000-0003-2126-2926
https://doi.org/10.1007/978-3-030-68446-4_16

312 S. Matsuoka

turned out to be difficult to implement, then its interest would be limited to
theoretical one.

In this paper, we give a formal model for the algorithm. The formal model,
which is based on the implementation [12] of the algorithm, has been obtained
by trial and error. Our model is presented as a finite state transition system.
A notable point of the model is that a deadlock prevention mechanism in the
algorithm is incorporated in order to guarantee the correctness of the algorithm
and the deadlock-freedom is formalized as an invariant in the transition system.

Our implementation of the algorithm in [12] corresponding to the formal
model is much faster than a naive quadratic algorithm, especially for bigger proof
structures. It is an efficient implementation for a rewriting system and effectively
exploits union-find data structures. Although so far several researchers have used
union-find data structures in order to derive efficient algorithms in the context
of logic-oriented computer science [6,8,13,15], union-find data structures have
not been used for concrete implementations in the community in many cases. We
believe that there are other places in this research area that can exploit union-
find data structures effectively because they provide a method that implements
various equivalence relations. One instance is given in [10]. We hope that our
work is helpful for promoting the use of union-find data structures.

Our correctness condition has an application to “proof search as problem
solving” paradigm potentially. In this paradigm a given computational problem
is specified by a logical formula and in order to find a solution for the problem,
search for a proof of the formula is tried. A found proof is then a solution to the
problem. It is well-known that many computational problems can be specified
by Linear Logic formulas in a direct way. In particular provability of MLL is
NP-complete [7] and many NP-complete problems can be specified using MLL
formulas [9]. Our efficient correctness condition may be a key component in a
proof search engine for MLL in the following scenario: Construct an MLL proof
structure (that is a candidate of a legitimate proof) of a given MLL formula,
and then check whether it is an MLL proof net (that is a legitimate proof) using
our linear time correctness condition.

2 Multiplicative Linear Logic, Proof Structures and
Proof Nets

2.1 Multiplicative Linear Logic

We introduce the system of Multiplicative Linear Logic (for short MLL).
We define MLL formulas, which are denoted by F,G,H, . . ., by the following
grammar:

F ::=p | p⊥ | F ⊗ G | F�G

A Formal Model for a Linear Time Correctness Condition of Proof Nets 313

The negation of F , which is denoted by F⊥ is defined as follows:

(p)⊥ = p⊥

(p⊥)⊥ = p

(F ⊗ G)⊥ = G⊥
�F⊥

(F�G)⊥ = G⊥ ⊗ F⊥

The formula p is called an atomic formula. In this paper, we only consider the
logical system with only one atomic formula: We can reduce the correctness
condition with many atomic formulas to this simplified case by forgetting the
information. We denote multisets of MLL formulas by Λ,Λ1, Λ2, An MLL
sequent is a multiset of MLL formulas Λ. We write an MLL sequent Λ as � Λ.
The inference rules of MLL are as follows:

ID � p⊥, p

⊗ � Λ1, F � Λ2, G� Λ1, Λ2, F ⊗ G
�

� Λ,F,G
� Λ,F�G

We note that we restrict the ID-axiom to that with only atomic formula p and
its negation p⊥. We omit the cut rule that has the form

Cut
� Λ1, F � Λ2, F

⊥

� Λ1, Λ2

because it can be identified with the ⊗-rule for our purpose.

2.2 MLL Proof Nets

Next we introduce MLL proof nets. Figure 1 shows the MLL links we use. Each
MLL link has a few MLL formulas. Such an MLL formula is a conclusion or a
premise of the MLL link, which is specified as follows:

1. In an ID-link, each of p and p⊥ is called a conclusion of the link.
2. In a ⊗-link, each of F and G is called a premise of the link and F ⊗ G is

called a conclusion of the link.
3. In a �-link, each of F and G is called a premise of the link and F�G is called

a conclusion of the link.

In the definition above F is called left premise and G right premise. An MLL
proof structure Θ is a set of MLL links that satisfies the following conditions:

Fig. 1. MLL Links

314 S. Matsuoka

1. For each link L in Θ, each conclusion of L is a premise of at most one link
other than L in Θ.

2. For each link L in Θ, each premise of L must be a conclusion of exactly one
link other than L in Θ.

A formula occurrence F in an MLL proof structure Θ is a conclusion of Θ if F
is not a premise of any link in Θ.

An MLL proof net is an MLL proof structure that is constructed by the rules
in Figure 2. Note that each rule in Figure 2 has the corresponding inference rule
in the MLL sequent calculus. All MLL proof structures are not necessarily an
MLL proof net.

Fig. 2. Definition of MLL proof nets

3 The Rewriting System over deNM-Trees

In this section we introduce our rewriting system. Then we give our correctness
condition based on the system.

3.1 deNM-Trees

First we define deNM-trees, which are inspired from de Naurois and Mogbil’s
correctness condition [14]. In the following we fix an MLL proof structure Θ.

A Formal Model for a Linear Time Correctness Condition of Proof Nets 315

Definition 1 (deNM-trees). A deNM-tree is a finite tree consisting of labeled
nodes and �-nodes:

– A labeled node is labeled by a switch-label set S that is a subset of Sfull =
{lL1 , rL1 , . . . , lL�

, rL�
}, where each Lj (1 ≤ j ≤ �) is a �-link. The degree t of

a labeled node is at most the number of nodes of the deNM-tree. See Figure 3.
– A �-node is a labeled by a �-link L. The degree of a �-node is 1 or 2. See

Figure 3. As shown symbolically, we distinguish the port above of a �-node
from the port below.

Fig. 3. Labeled and �-nodes

Next we give a translation from Θ to a deNM-tree. The translation is slightly
different from that given in [11]: it is suitable for a mechanical implementation.
For that purpose, we have to make some preparations. We note that each formula
occurrence in Θ is (1) a literal p or p⊥, (2) a ⊗-formula A⊗B, or (3) a �-formula
A�B. We identify a �-formula with the �-node generated from it. Moreover,
for each �-link L, two labeled nodes nl

L and nr
L are generated, corresponding to

left and right premises respectively. In addition if such a premise is a conclusion
of an ID-link or the conclusion of a ⊗-link, then the labeled node associated
with the conclusion is also generated other than nl

L or nr
L. When we say that

a labeled node is associated with a literal or a ⊗-formula, we mean that it is a
labeled node with the latter type. Moreover when a formula is a ⊗-formula or a
literal, we conveniently identify the formula with the associated labeled node.

Let m be the total number of the ⊗-formulas and the literals, and � be that
of the �-formulas in Θ. If T (Θ) is well-defined, then the number of labeled nodes
is m + 2� and that of �-nodes is � in T (Θ). Each labeled node n in T (Θ) has
the following the associated data:

1. a queue Qn
labeled that includes the labeled nodes connecting to n,

2. a queue Qn
up that includes the �-nodes connecting to n from the port above,

3. a queue Qn
down that includes the �-nodes connecting to n from the port below,

and
4. the switch-label set Labn on n that is a subset of the switch-labels Sfull =

{l1, r1, . . . , l�, r�}.

316 S. Matsuoka

Each �-node p in T (Θ) has the following associated data:

1. a labeled node upp, which initially corresponds to the left premise of p,
2. a labeled node rightp, which initially corresponds to the right premise of p,

and
3. the labeled node downp connecting to p from the port below if p is not a

conclusion in Θ. Otherwise, downp is undefined.

We define a queue Below(n) of labeled nodes for each labeled node n: If n is
nl

L or nr
L where L is a �-link or n is a conclusion of Θ, then Below(n) = empty.

Otherwise, n must be a literal or a ⊗-formula:

Below(n) =

⎧
⎨

⎩

A ⊗ B (if n is a premise of a ⊗ -link with conclusion A ⊗ B)
nl

L (if n is a left premise of a �-link L)
nr

L (if n is a right premise of a �-link L)

According to the type of each link L in Θ, the associated data for the labeled
nodes and the �-nodes for T (Θ) are defined as follows:

1. In the case where L is an ID-link, let c0 = p and c1 = p⊥ be the conclusion
formulas of L. For each i ∈ {0, 1},
(a) Qci

labeled = ci+1mod 2 Below(ci).
(b) Qci

up, Qci

down, and Labn are empty.
2. In the case where L is a ⊗-link, let c = A ⊗ B be the conclusion and p0 = A

and p1 = B be the left premise and the right premise respectively.
(a) Qc

labeled = Above(c) Below(c), where

Above(c) =

⎧
⎪⎪⎨

⎪⎪⎩

empty (if both p0 and p1 are �-formulas)
pi (if pi is a ⊗ -formula or a literal and

pi+1mod2 is a �-formula)
p0, p1 (if both p0 and p1 are a ⊗ -formula or a literal)

(b) Qc
up and Labc is empty.

3. In the case where L is a �-link, let c = A�B be the conclusion and p0 = A
and p1 = B be the left premise and the right premise respectively. Then
we have the following labeled nodes n0 = nl

L and n1 = nr
L for L. For each

i ∈ {0, 1}
(a) Qni

labeled = pi if pi is not a �-formula. Otherwise, Qni

labeled is empty.
(b) If i = 0 then Qni

up = c. Otherwise, i must be 1. Then Qni
up is empty.

(c) Qni

down = pi if pi is a �-formula. Otherwise Qni

down is empty.
(d) If i = 0 then Labn0 = {lL}. Otherwise, i must be 1. Then Labn1 = {rL}.
Moreover we have a �-node p for the �-link L.

A Formal Model for a Linear Time Correctness Condition of Proof Nets 317

(a) upp is n0 = nl
L

(b) rightp is n1 = nr
L

Then we define the undirected graph G∀left(Θ) as follows:

1. The set of nodes consists of the m + 2� labeled nodes and the � �-nodes as
described above.

2. As to the incidence relation, each labeled node n connects to each labeled
node in Qn

labeled. Each �-node in Qn
up connects to n from the port above and

each �-node in Qn
down connects to n from the port below.

3. Each labeled node n has the switch-label set Labn on n.
4. Each �-node p for L has the label L on p.

If G∀left(Θ) is a tree, then the deNM-tree T (Θ) is G∀left(Θ). Otherwise it is
undefined. If T (Θ) is defined, then we can easily see that T (Θ) is a deNM-tree.

As an example, let us consider the MLL proof net Θ1 shown in Fig. 4, where
the symbol � means a �-link occurrence. Then Θ1 is translated to the deNM-tree
T (Θ1) shown in Fig. 5.

Fig. 4. An MLL proof net Θ1

3.2 The Rewriting System over deNM-Trees

Next we introduce our rewriting system over deNM-trees. In the rewriting system
we must specify exactly one node in a deNM-tree that is about to be rewritten,
which we call the active node in the deNM-tree. The active node must be a
labeled node. Our rewriting system has only three rewrite rules.

– The rewrite rule of Fig. 6 is called �-elimination: If the active node n is
connected to a �-node pL labeled by L through the port above and the
switch-label set S of n contains switch-labels lL and rL, then pL is eliminated.

318 S. Matsuoka

Fig. 5. The deNM-tree T (Θ1) obtained from Θ1

Fig. 6. �-elimination rule

– The rewrite rule of Fig. 7 is called union: If the active node is connected to
a labeled node, then these two nodes are merged. The switch-label set of the
resulting node is the union of them of the merged two nodes.

Fig. 7. Union rule

– The rewrite rule called local jump of Fig. 8 does not change any nodes: It
just changes which labeled node is active. Note that in this rewrite rule, the
precondition is that the active node is connected to a �-node pL through the
port below and the postcondition is that the active node is the labeled node
whose switch-label set contains rL.

A Formal Model for a Linear Time Correctness Condition of Proof Nets 319

Fig. 8. Local jump rule

We denote the rewriting system consisting of these three rewrite rules above
by R.

Definition 2. Algorithm A is defined as follows:

Input: an MLL proof structure Θ
Output: yes or no.

1. If the deNM-tree T (Θ) is not defined, then the output is no.
Otherwise go to 2.

2. A labeled node n in T (Θ) is selected arbitrarily.
3. Rewriting is started with T (Θ) and the active node n using three rewrite

rules above.
4. If the local jump rule is applied to a �-link to which

the local jump rule has been applied already, then the output is no.
5. When any of three rewrite rules cannot be applied to the current

deNM-tree T ′, if T ′ consists of exactly one node labeled by
Sfull with degree 0, then the output is yes.
Otherwise, the output is no.

Theorem 1 [11].

1. Algorithm A always terminates.
2. Let Θ be an MLL proof structure. Then Θ is an MLL proof net if and only if

Algorithm A with input Θ outputs yes.

Proof. (Sketch)

1. Algorithm A cannot be applied the local jump rule to a �-link more than
once. Both of the other two rules reduce the number of nodes in a deNM-tree.

2. – Only-if-part: Since Algorithm A terminates, we can suppose that Θ is an
MLL proof net and Algorithm A with input Θ outputs no. If the deNM-
tree T (Θ) is not well-defined in Step 1, then it means contradiction to the
characterization theorem in [3]. Moreover application of the local jump
rule to a �-link twice in Step 4 also means contradiction to the charac-
terization theorem in [3]. So Algorithm A reaches Step 5. In this case the
deNM-tree at the termination is not one node tree. But it contradicts the
characterization theorem in [14].

320 S. Matsuoka

– If-part: We suppose that Algorithm A with input Θ outputs yes. It means
that Algorithm A terminates with one node deNM-tree. Then the char-
acterization theorem in [14] implies that Θ is an MLL proof net. ��

For example, the deNM-tree T (Θ1) in Fig. 5, which is obtained from the MLL
proof net Θ1 in Fig. 4, can be reduced to one node deNM-tree by Algorithm A no
matter which labeled node is chosen as active initially. On the other hand, while
the MLL proof structure Θ2 in Fig. 9 is not an MLL proof net, its translation
deNM-tree T (Θ2) in Fig. 10 can not be reduced to one node deNM-tree no
matter which labeled node is chosen as active initially.

Fig. 9. An MLL proof structure, but not an MLL proof net Θ2

Fig. 10. The deNM-tree T (Θ2) obtained from Θ2

A Formal Model for a Linear Time Correctness Condition of Proof Nets 321

4 Linear Time Correctness Condition: A Formal
Approach

Although our rewriting system R is surprisingly simple, it cannot establish linear
time termination: Nodes in a deNM-tree T may have degrees depending on the
number of nodes of T and then it may take linear time for each rewrite step in
the case of a naive implementation. As a result, it may take quadratic total time
for termination. Such an example can be seen in [11].

In order to establish linear time termination based on our rewriting sys-
tem, we must restrict a way of application of rewrite rules using more sophisti-
cated data structures. In [11] we gave such data structures and the linear time
algorithm based on them in an informal way. In this section we give a formal
specification of our algorithm. The formal specification is extracted from the
implementation in [12], which performed tests on dozens of instances success-
fully. In particular, we have compared decision results of the new implementation
with them of a naive implementation of the correctness condition by de Naurois
and Mogbil [14]. As a result, we found that except for MLL proof nets to which
the old implementation was not able to give an answer within a reasonable time,
both implementations give the same decision results for all MLL proof structures
that we provided. Moreover, the new linear time implementation is remarkably
faster than the old quadratic time one.

4.1 Union-Find Data Structures

In this section we give a brief overview of union-find data structures. For a more
detailed treatment, the reader can consult [2].

A union-find data structure S represents a partition of a finite set {1, . . . , k}
but not statically: After operations defined below have been executed over S, the
resulting partition can be different from the initial partition. An element S in
S has the representative element of the subset of {1, . . . , k} to which S belongs.
Initially each element S in S represents a singleton set {S}. The union-find data
structure S has two kinds of operations:

1. union(S, S′): When S and S′ represents disjoint subsets {u1, . . . , ukS
} and

{v1, . . . , vkS′ } of {1, . . . , k} respectively, after the operation union(S, S′) is
executed, either S or S′ becomes the representative element of the union
{u1, . . . , ukS

, v1, . . . , vkS′ } (both S and S′ become elements of the union).
2. find(S): It is an element of {1, . . . , k} that is also the representative of a subset

of {1, . . . , k} to which S belongs.

Note that after the execution of an operation union(S1, S2), the element returned
by find(S) may be a different element from an previously returned element by
find(S).

Let π be a finite execution sequence of operations of a union-find data struc-
ture S. Without any assumptions, the execution of π is beyond linear time. But
if the base set {1, . . . , k} of S has an additional structure as a finite tree T and

322 S. Matsuoka

each union operation in π respects the structure, that is, each subset S in π is a
subtree of T , then the time complexity of π is O(|π|) in amortized cost [4]. This
means that each operation in π can be regarded as a constant time operation.
Our formal model exploits this fact: Each transition step can be executed in
constant time since each union-find data structure in the formal model satisfies
the above condition. That is the reason why our correctness condition is linear.

4.2 Data Specification

We suppose T (Θ) has k labeled nodes and � �-nodes. Our refined rewriting
system will consist of rewrite rules that manipulate tuples having the form

〈〈Slabeled,Sup,Sright,S∪up,S∪right,Selim〉,
〈a,N, n, P, Selim,numlabeled,num�〉〉,

where

– Slabeled is a union-find data structure representing a partition of the set
{1, . . . , k}. It maintains the information of indices of united labeled nodes.

– each of Sup, Sright, S∪up, and S∪right is a union-find data structure represent-
ing a partition of the set {1, . . . , �}.

• Sup and S∪up maintain indices of �-links that has been applied to �-
elimination regardless of its success.

• Sright and S∪right maintain indices of right premises of �-links that has
been applied to �-elimination regardless of its success.

– the component Selim is a union-find data structure representing a partition
of the set

{−1, 1, . . . , �}.

It maintains the information of indices of �-links eliminated.
– the component a points to the current active labeled node index i. This means

that a is an element of Slabeled.
– each labeled node i (1 ≤ i ≤ k) is represented by the following 8-tuple:

Ni = 〈Qi
labeled, Q

i
down, Q

i
up, S

i
up, Q

i
right, S

i
right, S

i
∪up, S

i
∪right〉

where
• Qi

labeled is a queue data structure and includes a subset of {1, . . . , k}.
• Qi

down, Qi
up, and Qi

right are a queue data structure and include a subset
of {1, . . . , �}.

• Si
up, Si

right, Si
∪up, and Si

∪right are an element of Sup, Sright, S∪up, and
S∪right respectively or undefined.

– Initially
Si
up = Si

right = Si
∪up = Si

∪right = undefined,

where when S is undefined, it is identified with ∅ in the union operation.
In addition we have defined the initial values of Qi

labeled, Q
i
down, Q

i
up already

A Formal Model for a Linear Time Correctness Condition of Proof Nets 323

in Subsect. 3.1. The initial value of Qi
right is j if Labi = {rj} (1 ≤ j ≤ �)

Otherwise, it is empty. Then we have the properties
⋃

1≤i≤k

Qi
labeled = {1, . . . , k}

⋃

1≤i≤k

Qi
down =

⋃

1≤i≤k

Qi
up =

⋃

1≤i≤k

Qi
right = {1, . . . , �}.

– For each i (1 ≤ i ≤ k), ni is an element of Slabeled. Informally, ni is the
representative element of the subset of {1, . . . , k} to which i belongs. Initially
ni is i.

– Initially Selim = −1
– Initially

numlabeled = k − 1, num� = �

– Each �-node pj (1 ≤ j ≤ �) has a triple

Pj = 〈upj , rightj ,downj〉
where upj , rightj , downj are an element of S∪ and we have defined the initial
values of upj , rightj ,downj already in Subsect. 3.1.

4.3 Operational Semantics

We suppose that the component a points to

Ni = 〈Qi
labeled, Q

i
down, Q

i
up, S

i
up, Q

i
right, S

i
right, S

i
∪up, S

i
∪right〉 .

This means that find(a) = i. Then when given a state

〈a,N, n, P, Selim,numlabeled,num�〉
we specify the next state. In the following definition, we only describe the com-
ponents to be changed by applying the next(−) operator to them. We do not
describe the other components that are not changed.

1. Union rule is applied in the case where Qi
labeled = i0Q

′
labeled:

(a) The case where i = find(i0):

next(Qi
labeled) = Q′

labeled

This case simply discards the index i0, ignoring the redundant informa-
tion.

(b) The case where i �= find(i0): Let i′ be find(i0). Then,

next(a) = next(ni) = next(ni′) = find(union(ni, ni′))
next(Nnext(a)) =

〈union(Si, Si′
), Q′

labeled ++Qi′
labeled,

Qi
down ++Qi′

down,

Qi
up ++Qi′

up,union(Si
up, S

i′
up),

Qi
right ++Qi′

right,union(Si
right, S

i′
right),

union(Si
∪up, S

i′
∪up),union(Si

∪right, S
i′
∪right)〉

next(numlabeled) = numlabeled − 1,

324 S. Matsuoka

where ++ is the concatenation operation for queues. The labeled node
with index i is united to that with index i′.

2. Local jump rule is applied in the case where Qi
labeled = ∅ and Qi

down =
jQ′

down:
(a) The case where j ∈ Selim:

next(Qi
down) = Q′

down

This case simply discards the index j. The �-link with index j had been
already eliminated.

(b) The case where j �∈ Selim:

next(Qi
down) = Q′

down

i′ = find(rightj)
next(a) = i′

next(Si′
∪up) = union(Si

∪up, S
i′
∪up)

next(Si′
∪right) = union(Si

∪right, S
i′
∪right).

The active node has become the labeled node with index find(rightj).
3. �-elimination rule 1 is applied in the case where Qi

labeled = ∅, Qi
down = ∅,

and Qi
up = jQ′

up:
(a) The case where find(j) = find(Si

right):

next(Qi
up) = Q′

up

next(Qi
labeled) =

{
Qi

labeleddownj (if downj �= undefined)
Qi

labeled (otherwise)
next(num�) = num� − 1
next(Selim) = union(j, Selim)

The �-link with index j is eliminated successfully.
(b) The case where find(j) �= find(Si

right) and find(j) = find(Si
∪right):

next(Qi
up) = Q′

up

next(Si
up) = union(j, Si

up)

next(Q
find(rightj)

right) = Q
find(rightj)

right j

The �-link with index j cannot be eliminated at this moment. But in
order to eliminate it later, j is put in another queue Qi′

right for some
i′ (1 ≤ i′ ≤ k).

(c) The case where find(j) �= find(Si
right) and find(j) �= find(Si

∪right):

next(Qi
up) = Q′

up

next(Si
up) = union(j, Si

up)
next(Si

up) = union(j, Si
∪up)

The �-link with index j cannot be eliminated at this moment. The next
trial to eliminate the �-link will be done with j in Qi′

right for some i′ (1 ≤
i′ ≤ k) in �-elimination rule 2 below.

A Formal Model for a Linear Time Correctness Condition of Proof Nets 325

4. �-elimination rule 2 is applied in the case where Qi
labeled = ∅, Qi

down = ∅,
Qi

up = ∅, and Qi
right = jQ′

right (this case is completely symmetrical to the
immediately above case):
(a) The case where find(j) = find(Si

up):

next(Qi
right) = Q′

right

next(Qi
labeled) =

{
Qi

labeleddownj (if downj �= undefined)
Qi

labeled (otherwise)
next(num�) = num� − 1
next(Selim) = union(j, Selim)

The �-link with index j is eliminated successfully.
(b) The case where find(j) �= find(Si

up) and find(j) = find(Si
∪up):

next(Qi
right) = Q′

right

next(Si
right) = union(j, Si

right)

next(Q
find(upj)
up) = Q

find(upj)
up j

The �-link with index j cannot be eliminated at this moment. But in
order to eliminate it later, j is put in another queue Qi′

up for some i′ (1 ≤
i′ ≤ k).

(c) The case where find(j) �= find(Si
up) and find(j) �= find(Si

∪up):

next(Qi
right) = Q′

right

next(Si
right) = union(j, Si

right)
next(Si

right) = union(j, Si
∪right)

The �-link with index j cannot be eliminated at this moment. The next
trial to eliminate the �-link will be done with j in Qi′

up for some i′ (1 ≤
i′ ≤ k) in �-elimination rule 1 above.

5. Otherwise, i.e., the case where Qi
labeled = ∅, Qi

down = ∅, Qi
up = ∅, and Qi

right =
∅: It terminates. If numlabeled = 0 and num� = 0 then the output is yes.
Otherwise, the output is no.

Remark 1. – In order to establish the correctness of the algorithm, we need the
case 3.(b): without the case, the algorithm would lead to a deadlock state
and it would judge that correct proof nets are not. Figs. 4 and 5 shows such
an example: Θ is correct but it would not be able to eliminate �1.

– Similarly, we need the case 4. (b): without the case, the algorithm would lead
to a deadlock state and it would judge that correct proof nets are not. Figs. 11
and 12 shows such an example: Θ3 is correct but it also would not be able to
eliminate �1.

326 S. Matsuoka

Fig. 11. An MLL proof net Θ3

Fig. 12. The deNM-tree T (Θ3) obtained from Θ3

Theorem 2. [11]. Let Θ be an MLL proof structure such that the deNM-tree
T (Θ) is well-defined. We suppose that the initial state for T (Θ) is

〈a,N, p, P, Selim, k, �〉
Then

1. The rewriting system described above terminates in linear time.
2. Θ is an MLL proof net if and only if it terminates in

〈a′, N ′, p′, P ′, S′
elim, 0, 0〉

for some a′, N ′, p′, P ′, S′
elim.

A Formal Model for a Linear Time Correctness Condition of Proof Nets 327

Proof. (Sketch)

1. The termination is by the first part of Theorem 1 and Remark 1 since our
formal model implements a specific strategy of the rewriting system R. The
linear time termination is by the reason described in Subsection 4.1.

2. The proof is given by the second part of Theorem 1, Remark 1, and the
following remark. ��

Remark 2. In the proof of the only-if part of the second part, the following
invariant, which claims deadlock-freedom, is essential: In each state of a transi-
tion process, for each j (1 ≤ j ≤ �), if the �-link with index j is not eliminated
at this moment, then for some i (1 ≤ i ≤ k), Qi

up or Qi
right includes j.

5 Concluding Remarks

In this paper we have established a formal model of our linear time correctness
algorithm for MLL proof nets based on a rewriting system over trees called
deNM-trees, where in order to guarantee the correctness of the algorithm, we
have introduced a deadlock prevention mechanism. Moreover we showed that
the deadlock-freedom property can be formalized as an invariant of the formal
model.

In the introduction section, we mentioned a potential application of our cor-
rectness condition to proof search. In order to realize it in a practical way, we
have to incorporate an efficient backtracking mechanism to the proof search
engine. But a naive approach would lead to an messy and inefficient implemen-
tation. Semi-persistent data structures [1] may give an elegant solution to this
obstacle, although it is not clear at this moment.

References

1. Conchon, Sylvain, Filliâtre, Jean-Christophe: Semi-persistent data structures. In:
Drossopoulou, Sophia (ed.) ESOP 2008. LNCS, vol. 4960, pp. 322–336. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78739-6 25

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. The MIT Press, Cambridge (2009)

3. Danos, V., Regnier, R.: The structure of multiplicatives. Arch. Math. Logic 28,
181–203 (1989). https://doi.org/10.1007/BF01622878

4. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985). https://doi.org/10.1016/
0022-0000(85)90014-5

5. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

6. Guerrini, S.: A linear algorithm for MLL proof net correctness and sequentializa-
tion. Theoret. Comput. Sci. 412(20), 1958–1978 (2011). https://doi.org/10.1016/
j.tcs.2010.12.021, girard’s Festschrift

7. Kanovich, M.I.: Horn programming in linear logic is NP-complete. In: Proceedings
of the Seventh Annual IEEE Symposium on Logic in Computer Science, pp. 200–
210 (1992). https://doi.org/10.1109/LICS.1992.185533

https://doi.org/10.1007/978-3-540-78739-6_25
https://doi.org/10.1007/BF01622878
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/j.tcs.2010.12.021
https://doi.org/10.1016/j.tcs.2010.12.021
https://doi.org/10.1109/LICS.1992.185533

328 S. Matsuoka

8. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Trans. Pro-
gram. Lang. Syst. 4(2), 258–282 (1982). https://doi.org/10.1145/357162.357169

9. Matsuoka, Satoshi: Direct encodings of NP-complete problems into horn sequents
of multiplicative linear logic. In: Gallagher, John P., Sulzmann, Martin (eds.)
FLOPS 2018. LNCS, vol. 10818, pp. 17–32. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-90686-7 2

10. Matsuoka, S.: A linear time algorithm for automatic generation of multiplica-
tive planar proof nets (2019). https://akihisayamada.github.io/tpp2019/. The 15th
Theorem Proving and Provers meeting (TPP 2019)

11. Matsuoka, S.: A new linear time correctness condition for multiplicative linear
logic. CoRR abs/1902.09693 (2019). http://arxiv.org/abs/1902.09693

12. Matsuoka, S.: Proof Net Calculator. https://staff.aist.go.jp/s-matsuoka/
PNCalculator/index.html (2019)

13. Murawski, A.M., Ong, C.H.L.: Fast verification of MLL proof nets via IMLL.
ACM Trans. Comput. Logic 7, 473–498 (2006). https://doi.org/10.1145/1149114.
1149116

14. de Naurois, P.J., Mogbil, V.: Correctness of linear logic proof structures is NL-
complete. Theoret. Comput. Sci. 412, 1941–1957 (2011). https://doi.org/10.1016/
j.tcs.2010.12.020

15. Paterson, M.S., Wegman, M.N.: Linear unification. In: Proceedings of the Eighth
Annual ACM Symposium on Theory of Computing, pp. 181–186. STOC 1976.
Association for Computing Machinery, New York (1976). https://doi.org/10.1145/
800113.803646

https://doi.org/10.1145/357162.357169
https://doi.org/10.1007/978-3-319-90686-7_2
https://doi.org/10.1007/978-3-319-90686-7_2
https://akihisayamada.github.io/tpp2019/
http://arxiv.org/abs/1902.09693
https://staff.aist.go.jp/s-matsuoka/PNCalculator/index.html
https://staff.aist.go.jp/s-matsuoka/PNCalculator/index.html
https://doi.org/10.1145/1149114.1149116
https://doi.org/10.1145/1149114.1149116
https://doi.org/10.1016/j.tcs.2010.12.020
https://doi.org/10.1016/j.tcs.2010.12.020
https://doi.org/10.1145/800113.803646
https://doi.org/10.1145/800113.803646

Synthesis of Modality Definitions and a Theorem
Prover for Epistemic Intuitionistic Logic

Paul Tarau(B)

Department of Computer Science and Engineering, University of North Texas, Denton, USA
paul.tarau@unt.edu

Abstract. We propose a mechanism for automating discovery of definitions,
that, when added to a logic system for which we have a theorem prover, extends it
to support an embedding of a new logic system into it. As a result, the synthesized
definitions, when added to the prover, implement a prover for the new logic.

As an instance of the proposed mechanism, we derive a Prolog theorem prover
for an interesting but unconventional epistemic Logic by starting from the sequent
calculus G4IP that we extend with operator definitions to obtain an embedding
in intuitionistic propositional logic (IPC). With help of a candidate definition for-
mula generator, we discover epistemic operators for which axioms and theorems
of Artemov and Protopopescu’s Intuitionistic Epistemic Logic (IEL) hold and
formulas expected to be non-theorems fail.

We compare the embedding of IEL in IPC with a similarly discovered suc-
cessful embedding of Dosen’s double negation modality, judged inadequate as an
epistemic operator. Finally, we discuss the failure of the necessitation rule for an
otherwise successful S4 embedding and share our thoughts about the intuitions
explaining these differences between epistemic and alethic modalities in the con-
text of the Brouwer-Heyting-Kolmogorov semantics of intuitionistic reasoning
and knowledge acquisition.

Keywords: Automatic synthesis of logic systems · Deriving new theorem
provers via program synthesis · Epistemic intuitionistic logic · Propositional
intuitionistic logic · Prolog-based theorem provers · Embedding of modal logics
into intuitionistic logic

1 Introduction

Deriving new logic systems and discovering relationships between them not only
requires a knowledge-intensive understanding of the intricate connections between their
axioms and inference rules but it is also a time-intensive trial and error process for the
human logician. This is especially the case for logic systems that depart from the usual
expectations coming from the prevalent use of classical logic in today’s computational
tools and methodologies, as well as from our familiarity with more commonly used
forms of modal logic (e.g., alethic, temporal).

This motivates our effort to explore ways to automate this process, resulting not
only in discovering some salient relationships between new and well-established logic

c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 329–344, 2021.
https://doi.org/10.1007/978-3-030-68446-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-68446-4_17

330 P. Tarau

systems, but also in software artifacts (e.g., automated theorem provers) facilitating
reasoning in these less explored new logics.

Epistemic Logic systems have been derived often in parallel and sometime as
afterthoughts of alethic Modal Logic systems, in which modalities are defined by
axioms and additional inference rules extending classical logic.

In the context of Answer Set Programming (ASP) epistemic logics hosted in this
framework like e.g., [1–3] show that intermediate logics1 (e.g., equilibrium logic, [4])
can be extended with definitions of epistemic operators. Steps2, further below classical
logic or ASP, are taken in recent work [5], based on the Brouwer-Heyting-Kolmogorov
(BHK) view of intuitionistic logic that takes into account the constructive nature of
knowledge, modeling more accurately the connection between proof systems and the
related mental processes. Along these lines, our inquiry into epistemic logic will focus
on knowledge vs. truth seen as intuitionistic provability. Like in the case of embedding
epistemic operators into ASP systems, but with automation in mind, we will design a
synthesis mechanism for epistemic operators via embedding in IPC. For this purpose
we will generate candidate formulas that verify axioms, theorems and rules and fail on
expected non-theorems. For this purpose, we will use a lightweight IPC theorem prover
and we will also show that this view generalizes to a mechanism for discovering, when
possible, a simple embedding of a given logic into IPC and derivation of a theorem
prover for it.

Our starting point is Artemov and Protopopescu’s Intuitionistic Epistemic Logic
(IEL) [5] that will provide the axioms, theorems and non-theorems stating the require-
ments that must hold for the definitions extending IPC. The discovery mechanism will
also bring up Dosen’s interpretation of double negation [6] as a potential epistemic
operator and we will look into applying the same discovery mechanisms to find an
embedding of modal logic S4 in IPC, with special focus on the impact of the necessi-
tation rule, which requires that all theorems of the logic are necessarily true.

To summarize, the novel contributions of the paper are:

1. a general program synthesis technique for discovering an embedding of a logic sys-
tem into another

2. finding an actual embedding of IEL in IPC
3. synthesizing a theorem prover for IEL, for which no theorem prover exists

The Rest of the Paper Is Organized as Follows. Section 2 overviews Artemov and
Protopopescu’s Intuitionistic Epistemic Logic (IEL). Section 3 overviews the G4IP
sequent calculus prover for Intuitionistic Propositional Logic (IPC). Section 4 describes
the generator for candidate formulas extending IPC with modal operator definitions.
Section 5 explains the discovering of the definitions that ensure the embedding of IEL
into IPC and the embedding of Dosen’s double negation as a modality operator. It also
discusses the intuitions behind the embedding of IEL, including the epistemic equiva-
lent of the necessity rule, in IPC and the adequacy of this embedding as a constructive

1 Logics stronger than intuitionistic but weaker than classical.
2 Actually infinitely many, as there’s an infinite lattice of intermediate logics between classical
and intuitionistic logic.

Synthesis of Modality Definitions and a Theorem Prover 331

mechanism for reasoning about knowledge. Section 6 studies the case of the S4 modal
logic and the failure of the necessity rule, indicating the difficulty of embedding it in
IPC by contrast to IEL. Section 7 overviews some related work and section 8 concludes
the paper.

The paper is written as a literate SWI-Prolog program with its extracted code at
https://raw.githubusercontent.com/ptarau/TypesAndProofs/master/ieltp.pro.

2 Overview of Artemov and Protopopescu’s IEL logic

In [5] a system for Intuitionistic Epistemic Logic is introduced that

“maintains the original Brouwer-Heyting-Kolmogorov semantics for intuition-
ism and is consistent with the well-known approach that intuitionistic knowledge
be regarded as the result of verification”.

Instead of the classic, alethic-modalities inspired K operator for which

KA → A

Artemov and Protopopescu argue that co-reflection expresses better the idea of con-
structivity of truth

A → KA

They also argue that this applies to both belief and knowledge i.e., that

“The verification-based approach allows that justifications more general than
proof can be adequate for belief and knowledge”.

On the other hand, they consider intuitionistic reflection acceptable, expressing the
fact that “known propositions cannot be false”:

KA → ¬¬A
Thus, they position intuitionistic knowledge of A between A and ¬¬A and given

that (via Glivenko’s transformation [7]) applying double negation to a formula embeds
classical propositional calculus into IPC, they express this view as:

IntuitionisticTruth ⇒ IntuitionisticKnowledge ⇒ ClassicalTruth.

They axiomatize the system IEL as follows.

1. Axioms of propositional intuitionistic logic;
2. K(A → B) → (KA → KB); (distribution)
3. A → KA. (co-reflection)
4. KA → ¬¬A (intuitionistic reflection)

Rule Modus Ponens.
They also argue that a weaker logic of belief (IEL−) is expressed by considering only
axioms 1,2,3.

https://raw.githubusercontent.com/ptarau/TypesAndProofs/master/ieltp.pro

332 P. Tarau

3 The G4ip Prover for IPC

We will describe next our lightweight propositional intuitionistic theorem prover, that
will be used to discover an embedding of IEL into IPC.

3.1 The LJT/G4ip Calculus, (Restricted Here to the Implicational Fragment)

Motivated by problems related to loop avoidance in implementing Gentzen’s LJ calcu-
lus, Roy Dyckhoff [8] introduces the following rules for the G4ip calculus3.

LJT1 : A,Γ � A

LJT2 :
A,Γ � B

Γ � A → B

LJT3 :
B,A,Γ � G

A → B,A,Γ � G

LJT4 :
D → B,Γ � C → D B,Γ � G

(C → D) → B,Γ � G

Note that LJT4 ensures termination as formulas in the sequent become smaller in a mul-
tiset The rules work with the context Γ being either a multiset or a set, and the calculus
is sound and complete for IPC.

For supporting negation, one also needs to add LJT5 that deals with the special term
f alse. Then negation of A is defined as A → f alse.

LJT5 : f alse,Γ � G

Rules for conjunction, disjunction and bi-conditional (not shown here) are also part
of the calculus.

As it is not unusual with logic formalisms, the same calculus had been discovered
independently in the 1950’s by Vorob’ev and in the 80’s–90’s by Hudelmaier [9,10].

3 Originally called the LJT calculus in [8]. Restricted here to its key implicational fragment.

Synthesis of Modality Definitions and a Theorem Prover 333

3.2 A Lightweight Theorem Prover for Intuitionistic Propositional Logic

Starting from the sequent calculus for the intuitionistic propositional logic in G4ip [8],
to which we have also added rules for the “<->” relation, we obtain the following
lightweight IPC prover.

:- op(525, fy, ~).

:- op(550, xfy, &). % right associative

:- op(575, xfy, v). % right associative

:- op(600, xfx, <->). % non associative

prove_in_ipc(T):- prove_in_ipc(T,[]).

The predicate prove in ipc starts with an empty list of assumptions Vs corre-
sponding to the context Γ in Dyckhoff’s sequent calculus [8]. Its rules generate and
reduce assumptions in this context.

prove_in_ipc(A,Vs):-memberchk(A,Vs),!.

prove_in_ipc(_,Vs):-memberchk(false,Vs),!.

prove_in_ipc(A<->B,Vs):-!,prove_in_ipc(B,[A|Vs]),prove_in_ipc(A,[B|Vs]).

prove_in_ipc((A->B),Vs):-!,prove_in_ipc(B,[A|Vs]).

prove_in_ipc(A & B,Vs):-!,prove_in_ipc(A,Vs),prove_in_ipc(B,Vs).

prove_in_ipc(G,Vs1):- % atomic or disj or false

select(Red,Vs1,Vs2), % nondeterministic selection of reducible terms

prove_in_ipc_reduce(Red,G,Vs2,Vs3),

!,

prove_in_ipc(G,Vs3). % further reductions, recursively

prove_in_ipc(A v B, Vs):-(prove_in_ipc(A,Vs);prove_in_ipc(B,Vs)),!.

Reductions in prove in ipc reduce are performed by case analysis on different oper-
ators, among which the most important one is the reduction of the implication “->”, as it
ensures termination without requiring loop checking - the main novelty of the calculus
described in [8].

prove_in_ipc_reduce((A->B),_,Vs1,Vs2):-!,prove_in_ipc_imp(A,B,Vs1,Vs2).

prove_in_ipc_reduce((A & B),_,Vs,[A,B|Vs]):-!.

prove_in_ipc_reduce((A<->B),_,Vs,[(A->B),(B->A)|Vs]):-!.

prove_in_ipc_reduce((A v B),G,Vs,[B|Vs]):-prove_in_ipc(G,[A|Vs]).

The predicate prove in ipc imp, besides reducing implication, rewrites the other
operators in terms of it, thus benefiting from the loop-free multi-set rewriting termi-
nation argument described in [8].

prove_in_ipc_imp((C->D),B,Vs,[B|Vs]):-!,prove_in_ipc((C->D),[(D->B)|Vs]).

prove_in_ipc_imp((C & D),B,Vs,[(C->(D->B))|Vs]):-!.

prove_in_ipc_imp((C v D),B,Vs,[(C->B),(D->B)|Vs]):-!.

prove_in_ipc_imp((C<->D),B,Vs,[((C->D)->((D->C)->B))|Vs]):-!.

prove_in_ipc_imp(A,B,Vs,[B|Vs]):-memberchk(A,Vs).

Note that, with the exception of the !/0 and memberchk/2 built-ins, used only as
performance enhancers, the code is actually a set of Horn-clauses as select/3 is a
library predicate with a pure Horn clause definition.

334 P. Tarau

We validate the prover by testing it on the implicational subset, derived via the
Curry-Howard isomorphism [11], then against Roy Dyckhoff’s Prolog implementa-
tion4, working on formulas up to size 12. Finally we run it on human-made tests5,
on which we get no errors, solving correctly 161 problems, with a 60 s timeout, com-
pared with the 175 problems solved by Roy Dyckhoff’s more refined, heuristics-based
400 lines prover, with the same timeout6. We refer to [11] for the derivation steps of
variants of this prover working on the implicational and nested Horn clause fragments
of IPC. While more sophisticated tableau-based provers are available for IPC among
which we mention the excellent Prolog-based fCube [12], our prover’s compact size
and adequate performance will suffice7 for the tasks ahead.

4 The Definition Formula Generator

We start with a candidate formula generator that we will constrain further to be used for
generating candidate definitions of our modal operators.

4.1 Generating Operator Trees

We generate all formulas of a given size by decreasing the available size parameter at
each step when nodes are added to a tree representation of a formula. Prolog’s DCG
mechanism is used to collect the leaves of the tree.

genOperatorTree(N,Ops,Tree,Leaves):-

genOperatorTree(Ops,Tree,N,0,Leaves,[]).

genOperatorTree(_,V,N,N)-->[V].

genOperatorTree(Ops,OpAB,SN1,N3)-->

{ SN1>0,N1 is SN1-1,

member(Op,Ops),make_oper2(Op,A,B,OpAB)

},

genOperatorTree(Ops,A,N1,N2),

genOperatorTree(Ops,B,N2,N3).

make_oper2(Op,A,B,OpAB):-functor(OpAB,Op,2),arg(1,OpAB,A),arg(2,OpAB,B).

4.2 Synthesizing the Definitions of Modal Operators

As we design a generic definition discovery mechanism, we will denote our modal
operators as follows, generically.

4 https://github.com/ptarau/TypesAndProofs/blob/master/third party/dyckhoff orig.pro.
5 At http://iltp.de.
6 https://github.com/ptarau/TypesAndProofs/blob/master/tester.pro.
7 In fact, our prover is faster than both fCube and Dyckhoff’s prover on the set of formulas of
small size on which our definition induction algorithm will run.

https://github.com/ptarau/TypesAndProofs/blob/master/third_party/dyckhoff_orig.pro
http://iltp.de
https://github.com/ptarau/TypesAndProofs/blob/master/tester.pro

Synthesis of Modality Definitions and a Theorem Prover 335

– “#” for “�”=necessary and “K”=known
– “*” for “♦”=possible and “M”=knowable

After the operator definitions

:- op(500, fy, #).

:- op(500, fy, *).

we specify our generator as covering the usual binary operators and we constrain it to
have at least one of the leaves of its generated trees to be a variable. Besides the false
constant used in the definition of negation, we introduce also a new constant symbol “?”
assumed not to occur in the language. Its role will be left unspecified until the possible
synthesized definitions will be filtered. We will constrain candidate definitions to ensure
that axioms and selected theorems hold and selected non-theorems fail.

genDef(M,Def):-genDef(M,[(->),(&),(v)],[false,?],Def).

genDef(M,Ops,Cs,(#(X):-T)):-

between(0,M,N),

genOperatorTree(N,Ops,T,Vs),

pick_leaves(Vs,[X|Cs]),

term_variables(Vs,[X]).

Iteration over integers N between 0 and M is provided by the built-in between/3. Vari-
ables are extracted from a term using the built-in term variables. Next, leaves of the
generated trees will be picked from a given set.

pick_leaves([],_).

pick_leaves([V|Vs],Ls):-member(V,Ls),pick_leaves(Vs,Ls).

We first expand our operator definitions for the “~” negation and “*” modal operator
while keeping atomic variables and the special constant false untouched.

expand_defs(_,false,R) :-!,R=false.

expand_defs(_,A,R) :-atomic(A),!,R= A.

expand_defs(D,~(A),(B->false)) :-!,expand_defs(D,A,B).

expand_defs(D,*(A),R):-!,expand_defs(D,~ (# (~(A))),R).

The special case for expanding a candidate operator definition D requires a fresh variable
for each instance, ensured by Prolog’s built-in copy term.

expand_defs(D,#(X),R) :-!,copy_term(D,(#(X):-T)),expand_defs(D,T,R).

Other operators are traversed generically by using Prolog’s “=..” built-in and by recurs-
ing with expand def list on their arguments.

expand_defs(D,A,B) :-

A=..[F|Xs],

expand_def_list(D,Xs,Ys),

B=..[F|Ys].

expand_def_list(_,[],[]).

expand_def_list(D,[X|Xs],[Y|Ys]) :-

expand_defs(D,X,Y),

expand_def_list(D,Xs,Ys).

336 P. Tarau

The predicate prove with def refines our G4ip prover by first expanding the defini-
tions extending IPC with a given candidate modality.

prove_with_def(Def,T0) :-expand_defs(Def,T0,T1),prove_in_ipc(T1,[]).

The definition synthesizer will filter the candidate definitions provided by genDef such
that the predicate prove with def succeeds on all theorems and fails on all non-
theorems, provided as names of the facts of arity 1 containing them. It iterates over
theorems and non-theorems using the built-in forall. The negation-as-failure built-in
\+ is used to preempt success on non-theorems.

def_synth(M,D):-def_synth(M,iel_th,iel_nth,D).

def_synth(M,Th,NTh,D):-

genDef(M,D),

forall(call(Th,T),prove_with_def(D,T)),

forall(call(NTh,NT), \+prove_with_def(D,NT)).

Note that the generator first builds smaller formulas and then larger ones up the specified
maximum size.

Example 1. Candidate definitions up to size 2

?- forall(genDef(2,Def),println(Def)).

#A :- A

#A :- A -> A

#A :- A -> false

#A :- A -> ?

#A :- false -> A

#A :- ? -> A

#A :- A & A

#A :- A & false

#A :- A & ?

...

#A :- (A -> ?) -> A

...

#A :- (? v A) v ?

#A :- (? v false) v A

#A :- (? v ?) v A

5 Discovering the Embedding of IEL and Dosen’s Double
Negation Modality in IPC

We specify a given logic (e.g., IEL or S4) by stating theorems on which the prover
extended with the synthetic definition should succeed and non-theorems on which it
should fail.

5.1 The Discovery Mechanism for IEL

We start with the axioms of Artemov and Protopopescu’s IEL system:

Synthesis of Modality Definitions and a Theorem Prover 337

iel_th(a -> # a).

iel_th(# (a->b)->(# a-> # b)).

iel_th(# a -> ~ ~ a).

Note that the axioms would be enough to specify the logic, but we also add some the-
orems when intuitively relevant and/or mentioned in [5], as an empirical check of their
consistency with the axioms. Our Prolog code, running in less than a second, is not
slowed down by this in any significant way.

iel_th(# (a & b) <-> (# a & # b)).

iel_th(~ # false).

iel_th(~ (# a & ~ a)).

iel_th(~a -> ~ # a).

iel_th(~ ~ (# a -> a)).

iel_th(# a & # (a->b) -> # b).

iel_th(* (a & b) <-> (* a & * b)).

iel_th(# a -> * a).

iel_th(# a v # b -> # (a v b)).

iel_th(# p <-> # # p).

iel_th(* a <-> * * a).

iel_th(a -> *a).

Again, following [5], we add our non-theorems. They act as a filtering mechanism
rejecting candidate definitions that would contradict the system’s intended semantics.

iel_nth(# a -> a).

iel_nth(# (a v b) -> # a v # b).

iel_nth(# a).

iel_nth(~ (# a)).

iel_nth(# false).

iel_nth(# a).

iel_nth(~ (# a)).

iel_nth(* false).

The necessitation rule in a modal logic requires that if T is a theorem than #T is also a
theorem. This expresses the fact that the theorems of the logic are necessarily true, or
in an epistemic context, that if T is an (intuitionistically proven) theorem, then the agent
knows T. Thus, we define (implicit) facts via a Prolog rule that states that the (generic)
necessity operator “#” applied to proven theorems or axioms generates new theorems.

iel_nec_th(T):-iel_th(T).

iel_nec_th(# T):-iel_th(T).

Finally, we obtain the discovery algorithm for IEL formula definitions and for IEL
extended with the necessitation rule.

iel_discover:-

backtrack_over((def_synth(2,iel_th,iel_nth,D),println(D))).

iel_nec_discover:-

backtrack_over((def_synth(2,iel_nec_th,iel_nth,D),println(D))).

338 P. Tarau

backtrack_over(Goal):-call(Goal),fail;true.

println(T):-numbervars(T,0,_),writeln(T).

Note the use of backtrack over/1 to backtrack over all answers to a given goal. We
run iel discover, ready to see the surviving definition candidates.

Example 2. Definition discovery without the necessitation rule.

?- iel_discover.

#A:-(A->false)->A

#A:-(A->false)->false

#A:-(A-> ?)->A

true.

Example 3. Definition discovery with the necessitation rule.

?- iel_nec_discover.

#A:-(A->false)->A

#A:-(A->false)->false

#A:-(A-> ?)->A

true.

Unsurprisingly, the results are the same, as a consequence of axiom A -> #A. This
final list of candidates will need to be evaluated based on their relevance to the intended
semantics of IEL.

Clearly, the formula #A:-(A->false)->A is not interesting as it would define
knowing something as a contradiction that implies itself.

This brings us to the second definition formula candidate.

5.2 Eliminating Dosen’s Double Negation Modality

In [2] double negation in IPC is interpreted as a “�” modality. This corresponds our
second synthetic definition, #A :- (A->false)->false, that is equivalent in IPC to
#A :- ~~A. It is argued in [5] that it does not make sense as an epistemic modality,
mostly because it would entail that all classical theorems are known intuitionistically.

We eliminate it by requiring the collapsing of “*” into “#” to be a non-theorem:

iel_nth(* a <-> # a).

In fact, while known (#) implies knowable (~#~ = *), it is reasonable to think, as in
most modal logics, that the inverse implication does not hold.

After that, we have:

Example 4. The double negation modality is eliminated, as it collapses # and *.

?- iel_discover.

#A:-(A -> ?)->A

true.

?- iel_nec_discover.

#A:-(A -> ?)->A

true.

Synthesis of Modality Definitions and a Theorem Prover 339

5.3 Knowledge as Awareness?

This leaves us with the #A :- (A -> ?) -> A.
Among the consequences of the fact that intuitionistic provability strictly implies

classical, is that there’s plenty of room left between p and ~~p, where both # and * find
their place, given that the following implication chain holds.

p -> #p -> *p -> ~~p

Let us now find an (arguably) intuitive meaning for the “?” constant in the definition.
The interpretation of knowledge as awareness about truth goes back to [13]. Our final
definition of intuitionistic epistemic modality as “#A :- (A -> ?) -> A” suggests
interpreting “?” as awareness of an agent entailed by (a proof of) A. With this in mind,
one obtains an embedding of IEL in IPC via the extension

KA ≡ (A → eureka) → A

where eureka is a new symbol not occurring in the language8.
In line with the Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionis-

tic proof, we may say that an agent knows A if and only if A is validated by a proof of A
that induces awareness of the agent about it.

Thus knowledge of an agent, in this sense, collects facts that are proven construc-
tively in a way that is “understood” by the agent. The consequence

KA → ¬¬A
would then simply say that intuitionistic truths, that the agent is aware of, are also
classically valid.

5.4 The Theorem Prover for IEL

Thus, we can define our newly synthesized prover for IEL as follows.

iel_prove(P):-prove_with_def((#A :- (A -> eureka) -> A),P).

Interestingly, if one allows eureka to occur in the formulas of the language given as
input to the prover, then it becomes (the unique) value for which we have equivalence
between being known and having a proof.

?- iel_prove(#eureka <-> eureka).

true .

Similarly, it would also follow that

?- iel_prove(*eureka <-> ~ ~ eureka).

true.

Thus, one would need to forbid accepting it as part of the prover’s language to closely
follow the intended semantics of IEL.
8 Not totally accidentally named, given the way Archimedes expressed his sudden awareness
about the volume of water displaced by his immersed body.

340 P. Tarau

5.5 Discussion

The most significant consequence of the successful embedding of IEL into IPC via the
epistemic modality definition #A :- (A -> eureka) -> A) is that we have actually
derived a theorem prover for IEL. The theorem prover is implemented by the predicate
iel prove/1 by extending a theorem prover for IPC with the induced definition.

As the IPC fragment with two variables, implication and negation has exactly 518
equivalence classes of formulas [14,15], one would expect the construction deriving
“*” from “#” to reach a fixpoint. We can use our prover to find out when that happens.

?- iel_prove(#p <-> ~ # (~p)).

false.

iel_prove(*p <-> ~(*(~p))).

true.

Thus the fixpoint of the construction is “*”, that we have interpreted as meaning that a
proposition is knowable. Therefore, the equivalence reads reasonably as “something is
knowable if and only if its negation is not knowable”. Note also that

?- iel_prove(~(*(~p)) -> #p).

false.

fails, by contrast to the equivalence �p ≡ ¬♦¬p usual in classical modal logics.

6 Discovering an Embedding of S4 Without the Necessitation Rule

The fact that both IPC and S4 are known to be PSPACE-complete [16] means that
polynomial-time translations exist between them.

In fact, Gödel’s translation from IPC to S4 (by prefixing each subformula with the
� operator) shows that the embedding of IPC into S4 can be achieved quite easily, by
using purely syntactic means. However, the (very) few papers attempting the inverse
translation [17,18] rely on methods often involving intricate semantic constructions.

We will use our definition generator to identify the problem that precludes a simple
embedding of S4 into IPC.

We start with the axioms of S4.

s4_th(# a -> a).

s4_th(# (a->b) -> (# a -> # b)).

s4_th(# a -> # # a).

We add a few theorems.

s4_th(* * a <-> * a).

s4_th(a -> * a).

s4_th(# a -> * a).

s4_th(# a v # b -> # (a v b)).

s4_th(# (a v b) -> # a v # b).

We add some non-theorems that ensure additional filtering.

Synthesis of Modality Definitions and a Theorem Prover 341

s4_nth(# a).

s4_nth(~ (# a)).

s4_nth(# false).

s4_nth(* false).

s4_nth(* a -> # * a). % true only in S5

s4_nth(a -> # a).

s4_nth(* a -> a).

s4_nth(# a <-> ?).

s4_nth(* a <-> ?).

Like in the case of IEL we define implicit facts stating that the necessitation rule holds.

s4_nec_th(T):-s4_th(T).

s4_nec_th(# T):-s4_th(T).

Finally we implement the definition discovery predicates and run them.

s4_discover:-

backtrack_over((def_synth(2,s4_th,s4_nth,D),println(D))).

s4_nec_discover:-

backtrack_over((def_synth(2,s4_nec_th,s4_nth,D),println(D))).

Example 5. The necessitation rule eliminates all simple embeddings of S4 into IPC,
while a lot of definition formulas pass without it.

?- s4_discover.

#A :- A & ?

#A :- ? & A

#A :- A & (A-> ?)

#A :- A & (? -> false)

...

true.

?- s4_nec_discover.

true.

Among the definitions succeeding without passing the necessity rule test, one might
want to pick #A :- ? & A as an approximation of the S4 “�” operator. In this case “?”
would simply state that “the IPC prover is sound and complete”. Still, given the failure
of the necessitation rule, the resulting logic is missing a key aspect of the intended
meaning of S4-provability.

7 Related Work

Program synthesis techniques have been around in logic programming with the advent
of Inductive Logic Programming [19], but the idea of learning Prolog programs from
positive and negative examples goes back to [20]. Our definition synthesizer fits in this
paradigm, with focus on the use of a theorem prover of a decidable logic (IPC) filtering
formulas provided by a definition generator through theorems as positive examples and

342 P. Tarau

non-theorems as negative examples. The means we use for our definition synthesis are
in fact as simple as those described in [20]. The strength of our approach comes from
the use of a theorem prover that efficiently validates or rejects definition candidates.
The idea to use the new constant “?” in our synthesizer is inspired by proofs that some
fragments of IPC reduced to two variables have a (small) finite number of equivalence
classes [14,15] as well as by the introduction of new variables, in work on polynomial
embeddings of S4 into IPC [17,18].

We refer to [5] for a thorough discussion of the merits of IEL compared to epis-
temic logics following closely classical modal logic, but the central idea about using
intuitionistic logic is that of belief and knowledge as the product of verification. Our
embedding of IEL in IPC can be seen as a simplified view of this process through a
generic “awareness of an agent” concept in line with [13].

In [1] the concept of epistemic specifications is introduced that support express-
ing knowledge and belief in an Answer Set Programming framework. Interestingly,
refinements of this work like [21] and [3] discuss difficulties related to expressing an
assumption like p → Kp in terms of ASP-based epistemic operators.

Equilibrium logic [4] gives a semantics to Answer Set programs by extending the
3-valued intermediate logic of here-and-there HT with Nelson’s constructive strong
negation. In [22] a 5-valued truth-table semantics for equilibrium logic is given. In [23]
(and several other papers) epistemic extensions of equilibrium logic [4] are proposed, in
which Kp → p. By contrast to “alethic inspired” epistemic logics postulating Kp → p
we closely follow the p → Kp view on which [5] is centered.

While we have eliminated Dosen’s double negation modality [6] as an epistemic
operator Kp ≡ ¬¬p, it is significant that it came out as the only other meaningful
candidate produced by our definition synthesizer.

This suggests that it might be worth investigating further how a similar definition
discovery mechanism as the one we have used for IEL and S4 would work for logics
with multiple negation operators like equilibrium logic.

Besides the Kp → p vs. p → Kp problem a more general question is the choice
of the logic supporting the epistemic operators, among logics with finite truth-value
models (e.g., classical logic or equilibrium logic) or, at the limit, intuitionistic logic
itself, with no such models. Arguably, this could be application dependent, as epistemic
operators built on top of IPC are likely to fit better the landscape with intricate nuances
of a richer set of epistemic and doxastic operators, while such operators built on top of
finite-valued intermediate logics would benefit from simpler decision procedures and
faster evaluation mechanisms.

8 Conclusions

We have devised a general mechanism for synthesizing definitions that extend a given
logic system endowed with a theorem prover. The set of theorems on which the
extended prover should succeed and the set of non-theorems on which it should fail
can be seen as a declarative specification of the extended system. Success of the app-
roach on embedding the IEL system in IPC and failure on trying to embed S4 has
revealed the individual role of the axioms, theorems and rules that specify a given logic
system and their interaction with the necessitation rule.

Synthesis of Modality Definitions and a Theorem Prover 343

Given its generality, our definition generation technique can be applied also to epis-
temic or modal logic axiom systems to find out if they have interesting embeddings in
ASP and superintuitionistic logics for which high quality solvers or theorem provers
exist. Our program synthesis process, when the embedding succeeds, provides a way to
automate the exploration of a new logic system with help of its derived theorem prover
and facilitates the work of the human logician to validate or invalidate the intuitions
behind it.

Acknowledgement. We thank the participants to the EELP’2019 workshop (A forum with no
formal proceedings but insightful presentations and lively discussions on epistemic extensions of
logic programming systems) and the anonymous reviewers of LOPSTR’2020 for their construc-
tive comments and suggestions.

References

1. Gelfond, M.: Strong introspection. In: Proceedings of the Ninth National Conference on
Artificial Intelligence - Volume 1. AAAI 1991, pp. 386–391. AAAI Press (1991)

2. Baral, C., Gelfond, G., Son, T.C., Pontelli, E.: Using answer set programming to model multi-
agent scenarios involving agents’ knowledge about other’s knowledge. In: Proceedings of the
9th International Conference on Autonomous Agents and Multiagent Systems: Volume 1 -
Volume 1. AAMAS 2010, Richland, SC, International Foundation for Autonomous Agents
and Multiagent Systems, pp. 259–266 (2010)

3. Shen, Y.D., Eiter, T.: Evaluating epistemic negation in answer set programming. Artif. Intell.
237(C), 115–135 (2016)

4. Pearce, David: A new logical characterisation of stable models and answer sets. In: Dix,
Jürgen, Pereira, Luı́s Moniz, Przymusinski, Teodor C. (eds.) NMELP 1996. LNCS, vol.
1216, pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801

5. Artemov, S.N., Protopopescu, T.: Intuitionistic epistemic logic. Rew. Symb. Logic 9(2), 266–
298 (2016)

6. Dosen, K.: Intuitionistic double negation as a necessity operator. Publications de l’Institut
Mathématique, Nouvelle série 35(49), 15–20 (1984)

7. Glivenko, V.: Sur la logique de M. Brouwer. Bulletin de la Classe des Sciences 14, 225–228
(1928)

8. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symbol. Logic
57(3), 795–807 (1992)

9. Hudelmaier, J.: A PROLOG Program for Intuitionistic Logic. Universität Tübingen, SNS-
Bericht (1988)

10. Hudelmaier, J.: An O(n log n)-Space Decision Procedure for Intuitionistic Propositional
Logic. J. Logic Comput. 3(1), 63–75 (1993)

11. Tarau, Paul: A combinatorial testing framework for intuitionistic propositional theorem
provers. In: Alferes, José Júlio, Johansson, Moa (eds.) PADL 2019. LNCS, vol. 11372, pp.
115–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05998-9 8

12. Ferrari, Mauro., Fiorentini, Camillo, Fiorino, Guido: FCUBE: an efficient prover for intu-
itionistic propositional logic. In: Fermüller, Christian G., Voronkov, Andrei (eds.) LPAR
2010. LNCS, vol. 6397, pp. 294–301. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-16242-8 21

13. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning: preliminary report. In:
Proceedings of the 9th International Joint Conference on Artificial Intelligence - Volume
1. IJCAI 1985, San Francisco, CA, USA, pp. 491–501. Morgan Kaufmann Publishers Inc.
(1985)

https://doi.org/10.1007/BFb0023801
https://doi.org/10.1007/978-3-030-05998-9_8
https://doi.org/10.1007/978-3-642-16242-8_21
https://doi.org/10.1007/978-3-642-16242-8_21

344 P. Tarau

14. de Bruijn, N.G.: Exact finite models for minimal propositional calculus over a finite alphabet.
Technical report 75?WSK?02, Technological University Eindhoven, November 1975

15. Jongh, D.D., Hendriks, L., de Lavalette, G.R.R.: Computations in fragments of intuitionis-
tic propositional logic. J. Autom. Reasoning 7(4), 537–561 (1991). https://doi.org/10.1007/
BF01880328

16. Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theor. Comput.
Sci. 9, 67–72 (1979)

17. Egly, U.: A Polynomial translation of propositional S4 into propositional intuitionistic logic
(2007)

18. Goré, R., Thomson, J.: A correct polynomial translation of S4 into intuitionistic logic. J.
Symbol. Logic 84(2), 439–451 (2019)

19. Muggleton, S.: Inductive logic programming. New Gen. Comput. 8(4), 295–318 (1991)
20. Shapiro, E.Y.: An algorithm that infers theories from facts. In: Proceedings of the 7th Inter-

national Joint Conference on Artificial Intelligence - Volume 1. IJCAI 1981, San Francisco,
CA, USA, pp. 446–451. Morgan Kaufmann Publishers Inc. (1981)

21. Gelfond, Michael: New semantics for epistemic specifications. In: Delgrande, James P.,
Faber, Wolfgang (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 260–265. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9 29

22. Kracht, M.: On extensions of intermediate logics by strong negation. J. Philos. Logic 27(1),
49–73 (1998). https://doi.org/10.1023/A:1004222213212

23. del Cerro, L.F., Herzig, A., Su, E.I.: Epistemic equilibrium logic. In: Yang, Q., Wooldridge,
M.J., (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 2964–2970. AAAI
Press (2015)

https://doi.org/10.1007/BF01880328
https://doi.org/10.1007/BF01880328
https://doi.org/10.1007/978-3-642-20895-9_29
https://doi.org/10.1023/A:1004222213212

Author Index

Amadini, Roberto 192
Aoto, Takahito 56

Batz, Kevin 231
Brass, Stefan 210

Casso, Ignacio 271
Cirstea, Horatiu 74

Enevoldsen, Søren 249
Erbatur, Serdar 113
Esen, Zafer 173

Farka, František 133

Galindo, Carlos 293
Gange, Graeme 192

Hermenegildo, Manuel V. 271
Hughes, Jack 151

Jensen, Mathias Claus 249

Kaminski, Benjamin Lucien 231
Katoen, Joost-Pieter 231
Kikuchi, Kentaro 56
Klinkenberg, Lutz 231
Kutz, Yunus 95

Larsen, Kim Guldstrand 249
Lermusiaux, Pierre 74
López-García, P. 271

Mariegaard, Anders 249
Marshall, Andrew M. 113
Matsuoka, Satoshi 311
Meseguer, José 3
Moerman, Joshua 231
Morales, José F. 271
Moreau, Pierre-Etienne 74
Moser, Georg 37

Orchard, Dominic 151

Pérez, Sergio 293

Ringeissen, Christophe 113
Rümmer, Philipp 173

Schachte, Peter 192
Schmidt-Schauß, Manfred 95
Silva, Josep 293
Søndergaard, Harald 192
Srba, Jiří 249
Stuckey, Peter J. 192

Tarau, Paul 329

Wenzel, Mario 210
Winkler, Sarah 37
Winkler, Tobias 231

	Preface
	Organization
	Contents
	Rewriting
	Symbolic Computation in Maude: Some Tapas
	1 Introduction
	1.1 What is Maude?
	1.2 Symbolic Computation in Maude
	1.3 Tapas and Paper Napkins

	2 First Tapas Serving: Rewriting Modulo Axioms B
	3 Second Tapas Serving: Unification and Narrowing Modulo B
	4 Third Tapas Serving: Variants, and Unification Modulo E B
	5 Fourth Tapas Serving: Variant Satisfiability
	6 Dessert: Narrowing-Based Symbolic Reachability Analysis
	7 Further Reading
	7.1 Further Reading on Maude
	7.2 Further Background Reading

	References

	Runtime Complexity Analysis of Logically Constrained Rewriting
	1 Introduction
	2 Step by Step to an Optimal Bound
	3 Logically Constrained Term Rewriting
	4 Complexity Framework
	5 Processors
	6 Processors for Splitting and Loop Summary
	7 Evaluation
	8 Conclusion
	References

	Confluence and Commutation for Nominal Rewriting Systems with Atom-Variables
	1 Introduction
	2 Nominal Rewriting Systems with Atom-Variables
	2.1 Preliminaries
	2.2 Ground Nominal Terms
	2.3 Nominal Term Expressions
	2.4 Nominal Rewriting Systems with Atom-Variables
	2.5 Overlaps and Orthogonality

	3 Confluence and Commutation for Left-Linear Nominal Rewriting Systems with Atom-Variables
	3.1 Uniformity and -stability
	3.2 Parallel Reduction
	3.3 Proofs of Commutation and Confluence

	4 Conclusion and Related Work
	References

	Pattern Eliminating Transformations
	1 Introduction
	2 Preliminary Notions
	3 Pattern-Free Terms and Corresponding Semantics
	3.1 Pattern-Free Terms
	3.2 Generalized Ground Semantics
	3.3 Semantics Preserving CBTRS

	4 Deep Semantics for Pattern-Free Properties
	4.1 Deep Semantics
	4.2 Establishing Pattern-Free Properties
	4.3 Establishing Semantics Preserving Properties

	5 Related Work
	6 Conclusion and Perspectives
	References

	Unification
	Nominal Unification with Letrec and Environment-Variables
	1 Introduction
	2 Nominal Expressions
	3 Nominal Unification with Environments
	4 A Decision Algorithm
	5 Nonlinear Occurrences of Expression-Variables
	6 Conclusion and Future Work
	References

	Terminating Non-disjoint Combined Unification
	1 Introduction
	2 Preliminaries
	2.1 Equational Theories
	2.2 Equational Term Rewrite Systems
	2.3 Forward Closure

	3 Hierarchical Unification
	3.1 Subterm Collapse-Free Theories
	3.2 Forward-Closed E-Constructed TRSs

	4 Combined Hierarchical Unification
	4.1 Combining Subterm Collapse-Free Theories
	4.2 Combining Forward-Closed E-Constructed TRSs

	5 Conclusion
	References

	Types
	slepice: Towards a Verified Implementation of Type Theory in Type Theory
	1 Introduction
	2 Specification
	3 Refinement Calculus
	4 Decidability of Refinement
	5 Proof-Relevant Resolution
	6 Related Work
	7 Conclusion
	References

	Resourceful Program Synthesis from Graded Linear Types
	1 Introduction
	2 Graded Linear -calculus
	3 The Synthesis Calculi
	3.1 Subtractive Resource Management
	3.2 Additive Resource Management
	3.3 Focusing

	4 Evaluation
	5 Discussion
	References

	Verification
	Reasoning in the Theory of Heap: Satisfiability and Interpolation
	1 Introduction
	1.1 Encoding Programs Using the Theory of Heap

	2 Preliminaries
	2.1 The Theory of Heap
	2.2 An Interpolating Sequent Calculus for First-Order Logic Modulo Integers
	2.3 Reduction for the Theory of Algebraic Data-Types

	3 A Decision Procedure for the Theory of Heap
	3.1 The Core Language for Heap Formulas
	3.2 Translation to the Core Language
	3.3 The Sequent Calculus for the Core Language
	3.4 Properties of the Calculus

	4 Craig Interpolation in the Theory of Heap
	5 Related Work
	6 Conclusions and Outlook
	References

	Algorithm Selection for Dynamic Symbolic Execution: A Preliminary Study
	1 Introduction
	2 Preliminaries
	2.1 Algorithm Selection
	2.2 Dynamic Symbolic Execution

	3 The AS/DSE Model
	3.1 Solver Selection
	3.2 Solver Execution
	3.3 Solution Selection
	3.4 Aggregate Coverage

	4 A Preliminary Evaluation
	5 Related Work
	6 Conclusions
	References

	Translation of Interactive Datalog Programs for Microcontrollers to Finite State Machines
	1 Introduction
	2 Language, State Management, Example Application
	3 Computing a Sequence of States
	4 Precomputation of States
	5 Generating Compact Code for Small Microcontrollers
	6 Termination
	7 Negation
	8 Conclusion
	References

	Model Checking and Probabilistic Programming
	Generating Functions for Probabilistic Programs
	1 Introduction
	2 Formal Power Series
	3 Generating Functions
	4 FPS Semantics for pGCL
	4.1 FPS Transformer Semantics
	4.2 Healthiness Conditions of FPS Transformers
	4.3 Embedding into Kozen's Semantics Framework

	5 Analysis of Probabilistic Programs
	5.1 Invariant-Style Overapproximation of Loops
	5.2 Rational PGFs

	6 Conclusion
	References

	Verification of Multiplayer Stochastic Games via Abstract Dependency Graphs
	1 Introduction
	2 Turn-Based Stochastic Games
	2.1 Definition of Stochastic Games
	2.2 Strategies

	3 Probabilistic Weighted ATL
	4 Model Checking Through Dependency Graphs
	4.1 Abstract Dependency Graphs
	4.2 The Reduction

	5 Implementation and Experimental Evaluation
	5.1 Results

	6 Conclusion
	References

	Program Analysis and Testing
	Testing Your (Static Analysis) Truths
	1 Introduction and Motivation
	2 Preliminaries
	3 Overview of the Approach
	4 The Algorithm
	4.1 Basic Reasoning Behind the Approach
	4.2 The Algorithm
	4.3 Other Details and Observations

	5 Applications and Examples
	6 A More Detailed Case Study
	7 Related Work
	8 Conclusions and Future Work
	References

	Slicing Unconditional Jumps with Unnecessary Control Dependencies
	1 Introduction
	2 Unconditional Jumps and the PPDG
	3 Alternative Solution: Unnecessary Control Dependencies
	4 The Representation of switch Statements
	5 Implementation
	6 Conclusions
	References

	Logics
	A Formal Model for a Linear Time Correctness Condition of Proof Nets of Multiplicative Linear Logic
	1 Introduction
	2 Multiplicative Linear Logic, Proof Structures and Proof Nets
	2.1 Multiplicative Linear Logic
	2.2 MLL Proof Nets

	3 The Rewriting System over deNM-Trees
	3.1 deNM-Trees
	3.2 The Rewriting System over deNM-Trees

	4 Linear Time Correctness Condition: A Formal Approach
	4.1 Union-Find Data Structures
	4.2 Data Specification
	4.3 Operational Semantics

	5 Concluding Remarks
	References

	Synthesis of Modality Definitions and a Theorem Prover for Epistemic Intuitionistic Logic
	1 Introduction
	2 Overview of Artemov and Protopopescu's IEL logic
	3 The G4ip Prover for IPC
	3.1 The LJT/G4ip Calculus, (Restricted Here to the Implicational Fragment)
	3.2 A Lightweight Theorem Prover for Intuitionistic Propositional Logic

	4 The Definition Formula Generator
	4.1 Generating Operator Trees
	4.2 Synthesizing the Definitions of Modal Operators

	5 Discovering the Embedding of IEL and Dosen's Double Negation Modality in IPC
	5.1 The Discovery Mechanism for IEL
	5.2 Eliminating Dosen's Double Negation Modality
	5.3 Knowledge as Awareness?
	5.4 The Theorem Prover for IEL
	5.5 Discussion

	6 Discovering an Embedding of S4 Without the Necessitation Rule
	7 Related Work
	8 Conclusions
	References

	Author Index

