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1 Introduction

Conventionally, perovskite as mineral name is applied to the class of materials
possessing the same type of crystal structure as CaTiO3, which initially was
discovered in 1839 by the Prussian mineralogist Gustav Rose in the Ural Mountains
and was named after the Russian mineralogist Count Lev Aleksevich von Perovski.
Perovskites have a general formula with or derived from composition ABX3,
which exhibit many fantastic chemical and physical properties and is one of
the most intensely studied material in material field. Generally, perovskites are
composed with a large cation at A site and an octahedral BX6. A corner-shared
network is formed with the BX6 octahedras and the cation A is filled in the caves
between the octahedras. Nonideal ionic size ratios and electronic instabilities are
compensated by tilting and distorting of BX6 octahedras. Except these general
perovskite structures, many perovskite variants also attract widespread attention,
such as double perovskite and layered perovskite. Furthermore, substitution of
perovskite A, B, or X sites is allowed for tailoring of properties to meet particular
application. Due to the structure and composition flexibility, perovskites can vary
from insulating to metallicity, with a wide range of possible applications such
as electronic device and sensor [1], magnetic memory components [2], and solar
cell [3].
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In recent decades, lead halide perovskites have made tremendous progress
in photovoltaic and optoelectronic field. High visible absorption, long carrier-
diffusions lengths, and fantastic defect tolerance have led to solar cells with certified
efficiency of 25.5% [4]. However, chemical stability, mechanical reliability, and
toxicity still are three critical obstacles in the path of eventual commercializa-
tion of the emerging perovskite solar cells. This prompts a research focus in
halide perovskites to predict new perovskites with targeted properties, especially
those composed of abundant, nontoxic elements and with thermal, chemical,
and dynamic stability. The latter objectives have been traditionally met through
performing density functional theory (DFT) calculations of electronic properties,
optical absorption properties, defect properties, and performing ab initio molecular
dynamics simulations for materials at various given compositions [3, 5]. Recently,
with advances in the descriptor-based modeling techniques, researchers are able
to perform high-throughput (HT) screening to rapidly estimate certain targeted
material properties [6, 7]. Moreover, machine learning (ML), a modeling approach
that has received growing attention, has been employed to accelerate the discovery
of new perovskite materials [8]. In brief, the ML method can unveil hidden physical
properties of materials, if given abundant data and a learning rule, thereby mapping
between inputs and output data [9]. So far, most ML studies on perovskites have
been focused on all-inorganic perovskites, double perovskites, and anti-perovskites,
which all possess a particular type of crystal structure. Due to their simpler and
particular crystal structures compared to the prevailing hybrid organic-inorganic
perovskites (HOIPs), various ML methods with different choices of descriptors
have been benchmark tested for predicting new and stable perovskites [10–12].
This is because of the difficulty of representing organic cations in a fixed length
vector to be compatible with many ML algorithms. To match these challenges,
developing flexible, transferrable, and reasonable representations becomes one of
the important areas of research in ML for HOIPs. As an alternative to learning from
first-principle computational data, ML techniques are also optimal for predicting
targeted properties through training with numerous experimental data, mapping
between the high performance of devices and the various physical and chemical
origins, such as bandgap, absorption, and defect properties.

Herein, we bring a brief and in-depth review of ML-guided design and discovery
of perovskite materials for photovoltaic application, a field where LHPs with
superior performance and low cost are promising candidate for Next Gen PVs.
Our review begins with a discussion of construction of data sets, alongside the
challenges of the various collections of material data sets. The next section will
provide a review of the material representations including descriptors and feature
engineering. The final section reviews the ML applications in recent studies such
as the ML techniques accelerate the discovery and design of new perovskites with
desire stabilities and bandgaps and discovery of factors in experimental processes,
which are significantly related to performance of devices.
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2 Learning with Perovskite Databases

The cornerstone of ML material discovery is high-quality material data set, and
enough material data will ensure the performance of ML models. For perovskite-
based photovoltaic materials, abundant data have been generated through the high-
throughput calculations and experiments. Besides, some databases containing the
properties of perovskites also provide considerable data. We will discuss these three
data sources in detail.

In recent years, due to the continuing development of computing power, HT
computational material discovery strategy has become an effective and efficient
way to discover new functional materials, especially perovskite materials. Among
them, tens of thousands of new perovskite-based materials have been predicted for
photovoltaic applications. The HT computational method uses the first-principle
calculations to build a large-scale material database, which includes existing and
hypothetical materials. To facilitate such large-scale computational tasks and data
analysis, a number of well-developed software frameworks are developed, including
AFLOW [13], pymatgen [14], the Atomic Simulation Environment [15], MatCloud
[16], and so on.

The material properties directly determine the applications of materials [17]. As
shown in Fig. 1, for the design of perovskite-based photovoltaic materials, evaluat-
ing the stability of perovskites is the first step, which is also one of the challenges
restricting the practical application of perovskites. The stability of perovskite is
mainly evaluated by three different aspects: (1) structural stability (or formability),
(2) thermodynamic stability, and (3) dynamic stability. The formability of perovskite
is mainly judged by simple structure descriptors, which will be described in detail
in the material representation sect. 3.1. In general, the formation energy �Hf and
the energy above convex hull Ehull are utilized to evaluate the thermodynamic
stability of perovskites. The formation energy �Hf describes the energy change
of a material from an elemental component to a compound, and negative values
indicate stable compounds. The energy above convex hull Ehull describes whether
a compound tends to decompose into various elemental, binary, ternary, or more
complex components, while negative values indicate unstable compounds. Thermal
and dynamic stability represents a more realistic evaluation of material stability in
the operating environment. Computationally, phonon calculations are main methods
to assess the dynamic stability of materials and ab initio molecular dynamics is
adopted to estimate thermal stability. Due to the complexity and time-consuming of
these calculations, it is usually performed only for selected promising candidates in
HT screening processes. Secondly, the optical and electronic properties determine
the applications of perovskites. In HT calculations, the bandgap is one of the
most commonly physical parameters to evaluate the photovoltaic performance of
a material, because it directly affects the photovoltaic performance of perovskite
materials. The effective masses of electron and hole are directly related to the
mobility of the material. The small and balanced effective mass is beneficial for
carrier mobility in the solar cell materials [18].
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Fig. 1 Rational flowchart for perovskites discovery using HT calculations. (Reprinted with
permission from Ref. 17. Copyright © 2017 American Chemical Society)

Inorganic perovskites have firstly been screened by HT first-principle calcula-
tions because of the simple crystal structures and abundant candidate materials. In
2012, Castelli et al. [23, 24] explored the bandgap of around 19,000 compounds
(perovskite oxides with one or more replacements for oxygen neighbors in the
periodic table) using sophisticated semi-local functional called GLLB-SC. Korbel
et al. [19] extensively studied the stability and electronic properties of the possible
ABX3 perovskites, where X is a nonmetal and A and B cover a large part of the
periodic table. One hundred and ninety-nine perovskites were screened out from
more than 32,000 compounds after thermodynamic stability evaluation, and the
selected perovskites were characterized by calculating a variety of electronic prop-
erties, such as electronic bandgap, average hole effective mass, and so on. Emery
and Wolverton [20] presented an exhaustive dataset of 5329 cubic and distorted
inorganic perovskites in terms of formation energies, bandgap, and some other
properties, which were calculated using density functional theory (the calculation
workflow is shown in Fig. 2a).

In addition to the simple inorganic perovskite materials with formula ABX3,
inorganic double perovskite materials have also received significant attention due
to the phase space of possible compounds is substantially larger, which increases



Machine Learning Accelerated Insights of Perovskite Materials 201

Fig. 2 (a) Workflow to calculate all the properties in the dataset. (Reprinted from Ref. 20).
(b) Space of candidate perovskites for materials screening and materials screening process
by considering gradually the properties relevant to photovoltaic performance. (Reprinted with
permission from Ref. 21. Copyright 2017 American Chemical Society)
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considerably the probability of finding promising candidates with the desired
properties [21, 22, 25–27]. As shown in Fig. 2b, Zhao et al. [21] constructed
a rich class of double perovskites without Pb2+ ions to solve the toxicity of
perovskites. After gradually considering the properties relevant to photovoltaic
performance, i.e., decomposition enthalpy, bandgap, carrier effective masses, and
exciton binding energy, 11 optimal materials were identified as candidates in
photovoltaic field. Subsequently, Cai et al. [22] computed structural, electronic,
and transport properties of around 1000 double perovskite halides using high-
throughput first-principles calculations to aid the discovery of photovoltaic materials
(see Fig. 2d).

Compared with inorganic perovskite, hybrid organic-inorganic perovskites
(HOIPs), as one of the most promising photovoltaic materials, have attracted
tremendous interest recently. The most distinguished virtues of HOIPs include high
power conversion efficiency (PCE), low-cost experimental synthesis, and tunable
bandgaps. In order to find more stable hybrid perovskites with higher PCE, a lot of
HT computing works have emerged [17, 28–33]. An HT computational screening
study [28] for 11,025 compositions of HOIP compounds in ABX3 and A2B′B′′X6
forms has been reported, where A is an organic or inorganic component, B′/B′′ is a
metal cation, and X is a halogen anion. The computational results contain bandgap
values at the scalar relativistic PBE level of all compositions. Besides, the hole
and electron effective masses of 1923 candidate semiconductors with bandgaps
smaller than 3.5 eV were also estimated. Another effort on computational screening
of possible replacements for methylammonium or lead was shown in Fig. 3a, in
which 11 different molecular organic cations and 29 different divalent cations were
considered [29]. All thermodynamically stable hybrid perovskites were then further
characterized by their bandgaps and effective masses. Moreover, Jacobs et al. [34]
focused on finding materials that comprise nontoxic elements, stable in a humid
operating environment, and have an optimal bandgap for single junction. From a set
of 1845 materials, 15 materials passed all screening criteria for single junction cell
applications. Notably, these efforts primarily focused on the single perovskite or
double perovskite structure. Besides perovskite structures, there exist in principles
other organic-inorganic hybrid ternary metal halide compounds with appropriate
metal elements and the stoichiometry of component elements that are more stable
and even show better optoelectronic properties than the typical perovskite structures.
Li and Yang [30] carried out HT calculations on 4507 hypothetical compounds. The
chemical formulas of selected candidates include A2BX4, A3B2X9, and A2BX6, in
which A = MA (CH3NH3), FA (CH(NH2)2), AD ((CH2)2NH2), and X = Cl, Br, or
I. As shown in Fig. 3b, the bandgap and electron/hole effective masses of all these
candidates were calculated and used to screen appropriate candidates, thereby the
formation enthalpy and decomposition enthalpy of those were computed to evaluate
the stabilities.

HT calculations have produced considerable data on perovskite materials, espe-
cially thermodynamic stability and electronic properties, while theoretical predicted
materials are often difficult to experimental synthesis. The fabrication process based
on non-vacuum solution has obvious advantages, such as being suitable for scale-
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Fig. 3 (a) Molecular cations and periodic system of the elements considered for candidate
perovskites. (Reprinted with permission from Ref. 29. Copyright 2018 The Royal Society of
Chemistry). (b) Schematic diagram of the HT screening process for a total number of 4507
compounds, which were generated from 24 different crystal structures. (Reprinted with permission
from Ref. 30. Copyright 2019 The Royal Society of Chemistry)

up production, lowering process temperature, lowering energy consumption, and
lowering costs, thereby receiving increasing attention in the photovoltaic field.
In addition, solvent-based methods can be implemented flexibly in automated
HT experimentation, allowing rapid screening of perovskites [37–45]. Chen et
al. [46] built an automatic HT experimentation platform for synthesis and char-
acterization of HOIPs with suitable wide bandgap. This platform automatically
and efficiently synthesized 95 perovskite polycrystalline samples derived from
binary mixtures of five common perovskite precursors and then measured the
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Fig. 4 (a) Sketch of the optimized experimental workflow. (Reprinted with permission from Ref.
35. Copyright 2019 Elsevier Inc.). (b) A robotic platform was adopted to conduct a comprehensive
solvent engineering for making lead halide perovskites in a high-throughput manner. Deeper
insights into the working mechanisms and selection criteria of antisolvents were investigated and
summarized. (Reprinted with permission from Ref. 36. Copyright 2020 Elsevier Inc.)

corresponding photoluminescence and absorption, yielding six compositing per-
ovskite sample with an optical bandgap of ≈1.75 eV. Apart from exploring stable
HOIPs with wide bandgap, the discovery of new perovskite compounds has also
been attempted with HT experimentations. Figure 4a illustrates the sketch of the
optimized experimental workflow, which enables the realization of rapid search for
new lead-free perovskites in the multi-parameter chemical space [35]. Moreover,
a self-assembled semi-automated platform based on a standard pipetting robot
was utilized to screen the efficient antisolvents for different solvent-perovskite
systems and study the influence of interactions among the solvent molecules,
cations, metal-halides, and antisolvents (Fig. 4b). In this work, 336 combinations of
perovskite-solvent-antisolvent could be prepared and characterized by the platform
in 2 days [36]. Although HT experimentations have made remarkable achievements
on the discovery and evolution of perovskite materials, they are still in their infancy
due to their higher cost and complexity with respect to HT calculations.

Besides HT computations and experimentations, some databases also provide
considerable perovskite data for ML after years of development. The HybriD3

material database [47], jointly created by Duke University and others, compre-
hensively collects experimental and computational material data of crystalline
organic-inorganic compounds. The database contains existing, predicted, and newly
synthesized materials. Researchers in the Chemical Material Solution Center of
Korea Research Institute of Chemical Technology collected data on the detailed
characteristics, structure, and performance of each layer of perovskite solar cells
from the literatures, and established a perovskite solar cell database (Perovskite
Solar Cells DB) [48]. The database collected a total of 688 documents, 2711



Machine Learning Accelerated Insights of Perovskite Materials 205

structures, and 17,098 properties, and readers can search independently for different
properties and structures, and the database also provides corresponding links to data
literatures for reference. The Computational Material Repository (CMR) [49], led
by the Center for Atomic Materials Physics of the Technical University of Denmark,
uses effective methods to represent and analyze the electronic structure of materials.
Among them, there are a number of different CMR projects that cover different
types of perovskites. The analysis shows that these perovskite projects include
electronic structure, spectrum, and some other different properties. Marchenko et
al. provided an open-access database of experimentally investigated hybrid organic-
inorganic two-dimensional perovskite-like crystal structure, which contains various
properties of 515 compounds from published literatures [50]. In addition, many
comprehensive online material databases built from first-principles calculations also
contain a large amount of perovskite data, including AFLOWLIB [13], Materials
Project [51], Open Quantum Materials Database (OQMD) [52], and Atomly [53].
These databases not only provide a large amount of perovskite data, but also have
become an important carrier of information circulation and an important link of data
analysis in materials science.

3 Materials Representations

The process of converting the material system into an accurate numerical repre-
sentation is the key for ML model building to achieve great performance [54–56].
In this process, the relationship between microstructure and target properties
(quantitative structure property relationships (QSPR)) enables to be established by
using descriptive parameters (defined as descriptors or features) [57, 58]. In general,
different problems need to choose specific material descriptors, which heavily rely
on the characteristics and target properties of materials. Therefore, to accurately
and comprehensively describe the QSPR of materials, the construction of material
descriptors usually requires the prior knowledge of the fundamental chemistry and
physics [54].

The construction process of the material descriptors is actually to integrate
the physical and chemical knowledge related to the target properties into the
ML model, which controls the performance of a ML approach. In addition to
satisfying desired accuracy of the predictions, any good material descriptor should
satisfy the following conditions: (1) descriptors can uniquely describe materials
and basic processes related to target properties; (2) materials with large differences
(similarities) should be represented by descriptors with the same large differences
(similarities); (3) the descriptors should be determined in such a way as to avoid
extensive calculations to make a preliminary assessment of the material properties;
and (4) the dimensions of descriptors should be kept as low as possible while
ensuring model accuracy [7]. In the following content, we will give a concise
summary of descriptors for perovskites in photovoltaic applications.
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3.1 Descriptors for Perovskites in Photovoltaic Applications

In the past few years, numerous studies of perovskite material design based
on ML techniques have emerged that target stability, bandgap, PCE, and other
photovoltaic properties. Accordingly, a variety of material descriptors for perovskite
have developed and provided an effective way to describe the QSPR between
structures and photovoltaic properties for perovskites. These descriptors that can
be obtained directly without calculations or experiments mainly fall into three
categories: element properties, crystal structure, and experimental parameter. The
element property descriptors are mainly used to provide the elemental information
of perovskite composition, including the atomic number, Mendeleyev number,
orbital radii of atoms, ionic radius of ions, electronegativity, and so on. Crystal
structure descriptors contain tolerance factor, octahedral factor, Smooth Overlap
of Atomic Positions (SOAP) [59], Crystal Graph Convolutional Neural Networks
(CGCNN) [10], and so on. Experimental parameter descriptors, such as precursor
concentration, pKa values, and so on, are usually applied to accelerated experimental
synthesis or characterization of perovskites. In addition to the three main categories
mentioned above, some other descriptors are also utilized for perovskites, such
as binary element descriptors (a set of binary digits representing the presence
of chemical elements) [58]. After the descriptor is selected, Fig. 5 schematically
illustrates the procedure to generate such descriptors for compounds.

Among these three types of descriptors, the development of crystal structure
descriptors plays a significant role in perovskite design. The general chemical
formula of perovskites is ABX3, and the crystal structure of cubic perovskites is
shown in Fig. 6a, respectively. To describe the formability of cubic perovskites,
Goldschmidt [62] proposed an empirical formula named tolerance factor based on
crystal structure in 1926, defined as t = (rA + rX) /

√
2 (rB + rX), in which the rA,

rB, and rX represent ionic radii of A-, B-, and X-site ions, respectively. According
to the rigid sphere model, the length of A-X bonds and B-X bonds can be assumed
as rA + rX and rB + rX, respectively. Instead of tolerance factor, Li et al. [63]

Fig. 5 Schematic illustration of how to generate compound descriptors. In representation matrix,
xij denotes the representation of feature j in compound i. Here, xij is a scalar or vector
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Fig. 6 Structure of (a) cubic perovskites ABX3 and (b) double perovskites A2BB′X6. (c)
Representation of tolerance factor (t), octahedral factor (μ), and atomic packing fraction (η) for
cubic perovskites. rA, rB, and rX represent the ionic radii of A-, B-, and X-site ions, respectively.
According to the rigid sphere model, VA, VB, and VX represent the atomic volume of A-, B-, and X-
site atoms, respectively. a represents the lattice constant of the cubic cell of perovskites. (Reprinted
with permission from Ref. 60. Copyright 2017 American Chemical Society)

proposed a binary descriptor (t, μ) to further clarify the formability of perovskites,
which μ is the octahedral factor defined as μ = rB/rX [2]. Based on the analysis
of existing perovskites, the stable region in (t, μ) map for halide perovskites is
0.813 < t < 1.107 and 0.377 < μ < 0.895 [64]. These empirical rules successfully
guide the discovery of numerous stable perovskites; however, both tolerance factor
and octahedron factor are developed based on the inorganic cubic perovskite
structure, resulting in the great limitation of application and low predictive accuracy
for the formability of other perovskite structures, such as HOIPs and double
perovskites. To improve the tolerance factor reliability for HOIPs, Kieslich et al.
[65] extended the Goldschmidt tolerance factor by considering the effective radii
of organic ions in HOIPs. According to the results, HOIPs were expected to form
for tolerance factor between 0.8 and 1, as in the case of solid-state perovskites. To
expand the application range of tolerance factor to double perovskites (structure
is show in Fig. 6b), Sun and Yin [66] combined the atomic packing fraction (η)
with t and μ, and developed a geometric structure descriptor (t + μ)η, which
was linearly related to the decomposition energies of perovskites (Fig. 6c). For
cubic halide and chalcogenide perovskites, the accuracy of thermodynamic stability
prediction was over 86%. Filip et al. [60] developed a generalized tolerance factor
t = (rA/rX + 1)/[2(μ + 1)2 + Δμ2]1/2 by analyzing crystal structure of double
perovskites. In contrast to the traditional tolerance factor, the generalized tolerance
factor was taken into account two octahedral parameters related to the B- and B′-
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site cations, the average octahedral factor μ = (rB + rB′)/2rX and the octahedral
mismatch Δμ = |rB − rB′ |/2rX. Benefitting from these careful considerations, the
predictive accuracy of generalized tolerance factor for double perovskites reached
80%. These developed crystal structure descriptors have laid the foundation for
subsequent ML studies of perovskite materials.

Designing descriptors based on physical and chemical intuition might introduce
deviation, resulting in ignoring the best descriptor and hidden structure-property
relationship. Fortunately, big-data analysis and symbolic regression technology can
quickly and intelligently construct ideal descriptors for target property. One of the
attractive methods is the sure independence screening and sparsifying operator
(SISSO) [61]. Base on this algorithm, Bartel et al. [12] developed an improved

tolerance factor τ = rX
rB

− nA

(
nA − rA/rB

ln(rA/rB)

)
, where nA represents the oxidation

state of A-site ions. The new descriptor τ exposes a high prediction accuracy of
perovskite stability (92%) on the dataset containing 576 experimentally existing
ABX3 compounds, while the Goldschmidt tolerance factor t only correctly classifies
74% compounds on the same dataset. In particular, the Goldschmidt tolerance factor
t can correctly distinguish 49% of non-perovskites, and τ achieves 89% accuracy for
non-perovskites, leading to the great improvement of predictive capability. Besides,
the new descriptor τ exhibits the high accuracy for A2B′B′′X6 compounds (91%
accuracy), suggesting the strong generalization ability on perovskites.

3.2 Feature Engineering

For any ML method that targets toward a desired material property, it usually
depends on certain number of features (descriptors). Although there may be many
factors that affect the target property of materials, the number of features must
be reasonable. The best strategy is to choose features that perfectly represent
the corresponding property, and the number of features should be less than the
number of materials in input dataset to avoid the curse of dimensionality and model
overfitting [67]. Especially for material simulation, the amount of data available may
be only about 103 or less. For such small-scale dataset, how to reasonably choose
the material descriptor is crucial [68].

In the process of ML, we usually preliminary perform a relatively rough descrip-
tor screening process. First of all, some features based on the prior knowledge of
the physic and chemistry are chosen to build the initial feature set. Then, feature
selection, basically a ranking procedure, is applied to pick out the best features
by evaluating the model performance. For small-scale data sets, Lu et al. [69, 70]
employed a “last-place elimination” feature selection procedure in a ML algorithm
to optimize the most relevant features. One can also do feature screening through
batch processing, such as principal component analysis, clustering, and so on. For
large-scale data sets, because the scale of data set itself is very large, features can be
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extracted automatically through a deep learning algorithm without artificial feature
set construction. For example, Ziletti et al. [71] constructed a deep learning neural
network model based on diffraction images for automatic classification of crystal
structures.

In addition to some of the conditions mentioned above for descriptor construc-
tion, some specific conditions according to physics and chemistry should also be
satisfied. Regarding the design of the descriptor, no matter which form is used, it
should be invariant to certain transformations-spatial translational symmetry and
rotational symmetry. Therefore, we cannot simply turn the descriptor into a pure
“data problem.” It should contain some physical and chemical origins.

4 Machine Learning in Perovskite-Based Material Discovery
and Study

4.1 Stability

The first step in design of new perovskites is to evaluate the stability, which is
usually assessed by the tolerance factor and the octahedron factor. Although these
two factors provide a quantitative range for the formability of stable perovskites,
their predictions are not accurate enough. The ML-based approach can describe the
materials more detailed by constructing appropriate descriptors, and thereby more
reliable prediction results can be obtained theoretically. To predict the formability
of ABO3 perovskite, Pilania et al. [75] trained a ML model based on 354 ABO3
compounds, and created a high-dimensional feature space relating to perovskite
structure formability. The approach achieves 95% accuracy in the prediction of
perovskite formability. Subsequently, the authors utilized this ML-based approach
to search new perovskite halides. In this work, a ML model based on 185
experimentally known perovskites was built to evaluate the formability of perovskite
halides. After exploring a number of initial features, ionic radii, tolerance factor,
and octahedron factor were determined as the three effective features affecting
perovskite formability, demonstrating the great importance of geometric factor on
perovskite formability. The trained model achieved an accuracy of 92% for the test
set [76]. In addition to formability, some ML models made good performance in
predicting the thermodynamic stability of perovskites [77, 78]. For example, ML
model was applied to predict the thermodynamic stability of all possible perovskite
and antiperovskite crystals that can be generated with elements from hydrogen to
bismuth (excluding rare gases and lanthanides) according to the energy above the
convex hull. ML algorithm gives the mean absolute error (MAE) of the energy
above the convex hull (121 meV/atom) in the test set of 230,000 perovskites, after
being trained in 20,000 samples (Fig. 7a) [79]. In addition to cubic perovskites,
ML-based approach also makes a progress in identifications of diverse phases of
perovskites. Balachandran et al. [72] developed a two-step framework to search for
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Fig. 7 (a) Mean absolute error (MAE, meV/atom) of the test set for AdaBoost used with extremely
random tress averaged over all compounds containing each element of the periodic table. The
numbers in parentheses are the actual MAE for each element. (Reprinted with permission from
Ref. 72. Copyright 2017 American Chemical Society). (b) The ML workflow for the prediction
of new ABO3 cubic perovskites. Two independent ML models for the classification of ABO3 into
perovskites or not (machine learning 1) and cubic or noncubic perovskites (machine learning 2).
(Reprinted with permission from Ref. 73. Copyright 2018 American Physical Society)

cubic perovskites in ABO3 compounds (Fig. 7b). Firstly, a ML model was utilized
for distinguishing perovskites and non-perovskites with an average cross-validation
accuracy of 90%. Then, another ML model was applied for screening out cubic
perovskites, and the average cross-validation accuracy was over 94%. Ye et al. [73]
introduced deep neural network into predicting the formation energy of perovskite
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Fig. 8 (a) Crystal structure of AByB′
(1−y) X3 perovskites in different space groups. The ML

workflow for prediction of stability perovskite for experimental synthesis. (Reprinted with
permission from Ref. 11. Copyright 2019 American Chemical Society)

oxides. Based on only the two descriptors of electronegativity and ionic radius,
the trained ML model obtained a high accuracy and a MAE of 20–34 meV/atom.
Furthermore, a new binary encoding scheme was introduced to, including the effect
of cation orderings, extend ML models to mixed perovskites with low MAE (20–
39 meV/atom).

The success of ML in evaluating the thermodynamic stability of single per-
ovskites has inspired more application of ML-based approaches for other more
complex perovskites, such as double perovskites, mixed perovskites, and HOIPs
[11, 70, 74, 81–83]. Askerka et al. [11] proposed a learning-in-template strategy
to rapidly select out double perovskites from 5 × 106 candidates. As displayed in
Fig. 8, a series of possible templates corresponding to different crystal structures
and stoichiometries were defined. In principle, any A2B′B′′X6 compound belongs
to one of these templates. The training and test sets contain formation energy
data of 7.9 × 103 compounds in defined chemical space, and the accuracy of
the trained ML model is up to 97%. Considering the difference of ionic radii of
X-site ions in mixed X-site inorganic perovskites, Lu et al. proposed a modified
Goldschmidt tolerance factor and octahedron factor using ML feature engineering.
By applying the optimal feature set contained two new descriptors, the accuracy
of the gradient boosting classification (GBC) model for perovskite formability
is up to 89% [70]. Ali et al. [83] built a deep neural network model to study
the cubic phase stability of mixed-cation perovskites. The predicted cubic phase-
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stability diagram reveals that with increasing Cs proportion, perovskites possess
higher cubic phase stability. This stems from that the large ionic radii of organic
molecules in HOIPs bring the internal stress, and the small ionic radii of Cs might
offset this internal stress. Moreover, under the guidance of ML-predicted results,
MA0.85DMA0.15PbI3 (dimethylammonium (DMA)) can be recovered to the cubic
phase at room temperature by adding <10 mol% of cesium cation additives. This
suggests that the established ML model can effectively guide further experimental
synthesis, avoiding plenty of trial-and-error processes.

The stability of perovskite devices in the operation environment is very important
for the practical application of perovskites [80, 84]. Sun et al. [35] utilized a fully
connected deep neural network to classify compounds based on experimental X-ray
diffraction data into 0D, 2D, and 3D structures with 90% accuracy, more than ten
times faster than human analysis. Kirman et al. [85] constructed a framework by
combining HT experiments and convolution neural networks to effectively guide
unexplored perovskite single crystals experiments. With 7000 graphs from 96 per-
ovskite single crystal growth experiments with different experimental parameters,
the MLmodel was trained to recognize whether crystals could be possibly grown. In
addition to distinguishing perovskite crystals, exploring the impact of experimental
parameters on the crystallization of perovskite crystals can effectively guide the
sequence experiments. Accordingly, a ML regression model was utilized to establish
the map between experimental parameters and the probabilities of crystallization,
and returned optimal experimental parameters for crystallization.

The poor environmental stability of perovskites severely hinders their prac-
tical applications. Various works have discovered that posttreatment with small
molecules by dip-coating or spin-coating can effectively improve the stability of
perovskites in the humid environment [80, 84]. However, the addition of some
molecules (such as amines) might destroy the perovskites film structures. Therefore,
it is of practical importance for improving the environmental stability of perovskites
through finding suitable molecules possessing compatibility for the perovskite film.
Yu et al. [86] established a MLmodel to study the relationship between properties of
amines and their reactivity, and achieved 86% accuracy on predicting the outcomes
for whether the qualities of perovskite films are maintained after posttreatment. The
results show that amine compounds and pyridine derivatives with a few hydrogen
bond donors, large space volume, and large number of substitutions on nitrogen
atoms have high compatibility with perovskite films, which can effectively guide
further experimental synthesis.

4.2 Photovoltaic Property

The most important electronic property for a solar absorber is bandgap. According
to the Shockley-Queisser limit, perovskites with bandgap in the optimal range of
0.9–1.6 eV are promising for single-junction solar cells [87]. Therefore, selecting
perovskites with appropriate bandgaps is a vital step in solar cell design. It is
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well known that DFT calculations based on PBE functional seriously underesti-
mates bandgaps for semiconductors and insulators. However, advanced theoretical
methods (such as hybrid functional or GW) are computationally expensive and
time consuming making a high-throughput search inefficient, not to mention
experiments. An effective strategy is to combine HT calculation or experimentation
with ML to minimize the high cost. In recent years, bandgap prediction has
been attempted across a wide range of materials, especially perovskites, using
different ML methods such as neural networks, support vector regression, and
gradient boosting regression (GBR) [88–97]. Pilania et al. [98] applied kernel
ridge regression algorithm to predict the bandgap of double perovskites at the
GLLB-SC-level, in which a systematic feature-engineering approach was utilized
to identify the optimal feature set from a set of more than 1.2 million candidate
features. The final ML model achieved a high prediction accuracy on bandgap
(about 0.947). In order to obtain more accurate bandgap values, the researchers
developed a multi-fidelity framework combining first-principles calculations and
ML techniques, which can estimate high-fidelity data based on low-fidelity data
[99]. In this work, PBE-level bandgap values of 599 double perovskites were treated
as low-fidelity data, while bandgap values at the Heyd-Scuseria-Ernzerhof (HSE06)
level of the same perovskites were treated as the high-fidelity data. By utilizing
the framework, high-fidelity HSE06-level bandgap values were approximated from
low-fidelity PBE-level bandgap values. Besides inorganic perovskite, Lu et al. [69]
developed a framework combining ML techniques and DFT calculations to rapidly
predict bandgaps of HOIPs. The GBR model was trained based on PBE-level
bandgap values of 212 HOIPs, and achieved high coefficient of determination (R2)
of 97% (Fig. 9c). As is shown in Fig. 9a, the feature importance reveals that, in
structure features, the tolerance factor has the most significant impact on bandgap.
Besides, the ionization energy, electronegativity, and electron affinity energy of B-
site ions are more related to bandgap than those of A and X-site ions. Subsequently,
the trained model was applied to predict the bandgap of 5158 unexplored HOIPs
and the prediction result is shown in Fig. 9c. Finally, six HOIPs were picked out
and validated using DFT calculations. Results in Fig. 9d show that the accuracy
of ML-predicted bandgaps is comparable to that of DFT calculations. Similarly,
Marchenko developed a ML model using GBR basing on the open-access database
of experimentally investigated HOIPs with a 2D perovskite-like crystal structure for
the prediction of a bandgap with accuracy within 0.1 eV [50]. The SOAP kernel was
used to describe the local atomic environment of each atom and the trained model
achieved R2 as high as 0.9.

Rational chemical mixing is an effective approach to appropriately tune proper-
ties of perovskites. For example, mixing halogen elements can adjust the bandgap
of halide perovskites, leading to higher performance as solar cells materials [101].
Choubisa et al. developed a descriptor related to the atomic arrangement for mixed
perovskites, called as crystal site feature embedding (CSFE, see Fig. 10) [102].
Based on the CSFE representation, the ML model for total energies achieves an
MAE of 3.5 meV/atom, and the ML model for bandgaps possesses an MAE of
0.069 eV. The trained model was applied to the predicted bandgap of triple B-site
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Fig. 9 (a) Importance of the selected features. The 14 selected features are ranked using GBR
algorithm. (b) The fitting results of test bandgaps EPBE

g and predicted bandgaps EML
g . The

subplot is the convergence of model accuracy for five cross-validation split of the data. (c) Data
visualization of predicted bandgaps for all possible HOIPs (one color represents a class of halogen
perovskites) with tolerance factor. (d) A comparison between ML-predicted and DFT-calculated
results of six selected HOIPs. (Reprinted with permission from Ref. 70)

MAPbxSnyCdzI3 perovskites. ML-predicted results revealed that a small proportion
of Cd can tune the bandgap of perovskites to the optimal range for photovoltaic
applications. Furthermore, ML models for total energies and bandgaps based on
CSFE representation are also suitable for two-dimensional perovskites, with a MAE
of 7 meV/atom and 0.13 eV, respectively. Moreover, a variational autoencoder was
employed to realize inverse design for perovskites with target properties. Besides
searching for potential solar cells materials (bandgap between 1.1 and 1.3 eV),
perovskites for infrared sensors (bandgap ~1 eV) and ultraviolet lasers (bandgap
~3.2 eV) were also screened, and selected perovskites were validated by DFT
calculations based on HSE06 functional.

The power conversion efficiency (PCE) is a standard parameter to assess the
ability of light-electron energy conversion for photovoltaic devices, relating to the
optical absorption performance of absorber materials, defect structures, energy-level
mismatch, etc. [100]. Searching for high-performance PSCs generally based on the
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Fig. 10 Workflow for materials discovery using crystal site feature embedding. (Reprinted with
permission from Ref. 100. Copyright 2020 Elsevier Inc.)

exhaustive search method, which brings expensive cost of time, materials, equip-
ment, and man power. ML techniques could provide some guidelines and accelerate
the discovery of high-performance PSCs without numerous experiments. Odabasi
and Yildirim [104] systematically reviewed publications related to perovskites solar
cells, and collected 1921 data from 800 publications. Constituent materials and
preparation methods of perovskites solar cells were selected as the input variables of
the random forest regression model, and PCE was taken as the output variable. Since
the input variables of n-i-p and p-i-n perovskites based solar cells were different, two
models were trained for each type of solar cells, respectively. For ML model of n-i-p
solar cells, the root mean squared error (RMSE) of training set and test set is 1.70
and 3.29, respectively. The model of p-i-n solar cells achieves the RMSE of 1.51
and 2.91 for training set and test set, respectively (Fig. 11). For perovskite solar
cells with PCE in the range of 18–23.3%, the association rule mining techniques
results exhibit that mixing cations is an effective approach to obtain the solar
cells with stabilized PCE higher than 18%. Li et al. [103] collected 333 PSC
data from 2000 peer-reviewed publications, and proposed a two-step framework
to study the performance of PSCs. At the first step, the experimental bandgap
values of perovskites are predicted. Then an ML model to predict the PCE of PSCs
was established with considering experimental bandgaps, the difference of HOMO
energy level between hole transporting layers and perovskites, and the difference
of LUMO energy level between electron transporting layers and perovskites. The
RMSE ofMLmodels for bandgaps and PCE is 0.06 eV and 3.23%, respectively. The
optimal bandgap range corresponding to the highest PCE is from 1.15 to 1.35 eV,
demonstrating high consistency with the Shockley-Queisser limit.
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Fig. 11 Actual versus predicted performances by random forest model for training and testing for
regular (n-i-p) cells; training and testing for inverted cells. (Reprinted with permission from Ref.
103. Copyright 2018 Elsevier Ltd.)

5 Conclusion and Prospects

To summarize, the rapid development of ML techniques has accelerated novel
perovskite material discovery and mechanism exploration. Considering the con-
tinuous developments in experimental and computational tools, as well as the ML
and data management technologies, ML-aided perovskite researches will increase
dramatically. However, there are also some challenges that need to be overcome for
the more effective utilization of ML in perovskite researches.

First of all, the importance of data issues in ML researches cannot be overem-
phasized. Perovskite data generated from the first-principle calculations are rich,
especially some material properties like bandgap and formation energy. However,
high-quality calculation or experimental data are still lacking due to the high
cost and time consuming. Consequently, the models trained basing on low-quality
datasets contain bias and are not very suitable for practical application. When high-
quality datasets tend to be small, models constructed from these datasets have
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limited generalization ability while they are sensitive to the outliers, noise and
imbalanced data structure. The strategies to solve the above contradictions and
challenges are as follows. (1) Transfer learning may be beneficial for the ML
application in small-scale datasets of perovskite-based photovoltaic materials. A
ML model (usually with a small data set) can be built from different (but similar)
structures’ data with larger-scale. In detail, the ML models are firstly utilized to
analyze the large datasets created with low-cost computational methods, then the
experimental or high accuracy computational data as supplements are utilized to
correct the internal bias of the model. This technique can not only fix the problem
of data lack, but also reduce the gap between theory and experiment. (2) Using
active learning algorithm. Active learning is an iterative procedure, where the initial
model is trained on a small dataset, and in each step, the model is re-trained
on data expanded with new samples, which are added based on results from the
previous steps in order to maximize the learning rate. (3) In fact, the overwhelming
majority of scientific knowledge is published as text, so scientific literature is in
fact served as data sources as well. In addition to the material data, the literatures
contain valuable knowledge about the connections and relationships between the
data items interpreted by the authors. Therefore, extracting data and QSPR from the
literatures through techniques such as natural language processing will facilitate the
development of ML in perovskite research. (4) The high-quality perovskite database
should be built according to FAIR (Findable, Accessible, Interoperable, Reusable)
data sharing principle [105].

There are also some issues need to be addressed for ML models. A good ML
model mainly depends on two factors: first, the predictive performance of the
ML model; and second, the interpretability potential of the model. On one hand,
the generalization ability of the model is not always verified. A lot of work has
achieved excellent performance on the training and test sets, but the prediction
results of extended dataset are often not validated using first-principle calculations
or experiments. On the other hand, it is often challenging to provide a physical and
chemical interpretation of complexMLmodels, as the goal of the learning process is
to find a model that maximizes prediction performance, which may require (possibly
non-linear) combinations of hundreds of features. But if the model can be explained
based on physical and chemical principle, it will help researchers to insight the
structure-property relationship of materials more deeply. In this aspect, feature
importance analysis, model visualization, and SHAP analysis [106] will help the
development of interpretable models.
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