
Genetic Algorithms
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Genetic algorithms (GAs), developed by John Holland and his colleagues in 1975
[1], has been applied to many fields in search and optimization that belongs to
the larger class of evolutionary algorithms (EAs). This approach is a metaheuristic
inspired by the mechanisms of evolution, such as selection, crossover, and mutation.
Drawing on the theory of biological evolution, the goals of their research have been
solved into a biological evolution process by genetic algorithm, which generates
next-generation solutions through operations such as duplication, crossover, and
mutation. In this way, after n generations of evolution, it is very likely to evolve
function with high fitness values. In fact, there are several methods available
for solving the global optimization problems in materials science and related
fields. Some of the well-known GAs include artificial bee colony, particle swarm
optimization, differential evolution, etc.

1 Artificial Bee Colony Algorithms

The artificial bee colony algorithmwas proposed by Karaboga (2005) [2] to simulate
the intelligent behavior of a honeybee swarm. It consists of three main parts: food
sources, employed foragers, and unemployed foragers. In order to better explain
the basic principles of artificial bee colony algorithm, the three basic elements are
introduced in detail as follows:
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1. Food sources
In the algorithm, food sources are mainly to represent different solutions,

which depends on many factors such as its proximity to the nest, its richness
or concentration of its energy, and the ease of extracting this energy. The
“profitability” was used to evaluate the excellence of a food source.

2. Employed foragers
Also known as a leader, it corresponds to the food source collected. The

leading bee stores information about a food source (distance relative to the hive,
direction, food source abundance, etc.) and shares this information with other
bees with a certain probability.

3. Unemployed foragers
The main task of unemployed foragers is to find and exploit food sources.

There are two types of unemployed foragers: scouts and onlookers. Scouts begin
to search for new food sources near the hive; Onlookers is waiting in the hive
and to find the nectar source by sharing relevant information with the leader
(employed foragers). In general, the average number of scouts is about 5–10% of
the colony.

In the formation of searching the food sources, the exchange of information
between bees is the most important part. The dancing area is the most important
information exchange place in the hive. The dancing of the bees is called a waggle
dance. The information of food source is shared with other bees in the dancing area,
leading to express the profitability of food source on the dance floor. Therefore, the
onlookers can observe a large number of food sources and choose more profitable
sources due to some internal motivation or possible external clue. The probability
of bees being recruited is proportional to the profitability of the food source.

1.1 Main Steps of the Artificial Bee Colony Algorithm

Based on the above explanation of initializing the algorithm population, employed
bee phase, probabilistic selection scheme, onlooker bee phase, and scout bee phase,
the pseudo-code of the artificial bee colony algorithm is given below [3]:
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Algorithm 1 Artificial Bee Colony Algorithm

01: Initialize the population of solutions xi, j = 1, 2· · · SN, j = 1, 2· · · n,
triali = 0, triali = 0 is the non-improvement number of the solution Xi, used for
abandonment (food source Xi depending on its probability value pi)
02: Evaluate the population
03: cycle = 1
04: repeat

{– – Produce a new food source population for employed bees – –}
06: fori = 1 to SNdo
07: Produce a new food source Vi for the employed bee of the food source Xi using
vi, j = xi, j + φi, j(xi, j − xk, j) and evaluate its quality
08: Apply a greedy selection process between Vi and , select the better one.
09: If solution Xi does not improve triali = triali + 1, otherwise triali = 0
10: end for
11: Calculate the probability values pi for the solutions using fitness values.

{– – Produce a new food source population for onlooker bees – –}
12: t = 0, i = 1
13: repeat
14: if random < pi then
15: Produce a new food source for onlooker bee
16: Apply a greedy selection process between Vi and Xi, select the better one
17: If solution Xi does not improve triali = triali + 1, otherwise triali = 0
18: t = t + 1
19: endif
20: until (t = SN)

{– – Determine Scout – –}
21: if max(triali) > limit then
22: Replace Xi with a new randomly produced solution
23: end if
24: Memorize the best solution achieved so far
25: cycle = cycle + 1
26: until (cycle=Maximum Cycle Number)
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Algorithm 2 A Novel Initialization Approach

01: Set the maximum number of chaotic iteration K ≥ 300, the population size SN, and the
individual counter i = 1, j = 1

{– – chaotic systems – –}
03: for i = 1 to SN do
04: for j = 1 to n do
05: Randomly initialize variables ch0, j ∈ (0, 1), set iteration counter k = 0
06: fork = 1 to K do
07: chk + 1, j = sin (πchk, j)
08: end for
09: xij = xmin, j + chk, j(xmax, j − xmin, j)
10: end for
11: end for

{– – Opposition-based learning method – –}
13: Set the individual counter i = 1, j = 1
14: fori = 1 to SNdo
15: forj = 1 to ndo
16: oxi, j = xmin, j + xmax, j − xi, j
17: end for
18: end for
19: Selecting SN fittest individuals from set the {X(SN)} ∪ OX(SN) as initial population
25: cycle = cycle + 1
26: until (cycle=Maximum Cycle Number)

1.2 Applications of the Artificial Bee Colony in Functional
Materials

Interestingly, artificial bee colony has been tailored successfully, to solve a wide
variety of discrete and continuous optimization problems. The distribution of
published research articles on artificial bee colony with respect to applications,
hybridizations, and modifications is shown in Fig. 1 [4].

The artificial bee colony also has been mostly implemented in design of many
materials. For example, variables in design of multilayer radar-absorbing material
with various numbers of layers are optimally determined using artificial bee colony
which is one of the latest natural-inspired algorithms [5]. The multilayer radar-
absorbing material in terms of electrical and geometric variables is conceptually
synthesized with the aid of artificial bee colony optimization algorithm. Five truss
examples with fixed-geometry and up to 200 elements were studied to verify that the
ABC algorithm is an effective optimization algorithm in the creation of an optimal
design for truss structures [6].
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Fig. 1 The distribution of
published research articles on
artificial bee colony

1.3 Current Status of Research on Artificial Bee Colony
Algorithms

In 2005, Karaboga proposed a more complete model of artificial bee colony
algorithm and solved the function optimization problem with artificial bee colony
algorithm, which achieved certain results. From the experimental results, the
artificial bee colony algorithm is more excellent than the heuristic algorithm in terms
of nonrestrictive numerical optimization.

More and more attempts have been made to improve the algorithm. Gao and
Liu [7] introduced a new initialization approach and a novel search mechanism to
improve the artificial bee colony algorithm. The results showed that the improved
algorithm can outperform some conventional algorithms in accuracy, convergence
speed, stability, and robustness. Zhu and Kwong [8] proposed an improved artificial
bee colony algorithm, called Gbest-guided artificial bee colony algorithm. The
results show that the Gbest-guided artificial bee colony algorithm possesses superior
performance in most of the experiments, as compared to the conventional artificial
bee colony algorithm. A modified artificial bee colony algorithm, developed by Gao
and Liu [3], has been shown to be competitive to other population-based algorithms.
The new optimization algorithm is based on that the bee searches only around the
best solution of the previous iteration, leading to improving the exploitation.
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2 Particle Swarm Optimization Algorithms

Particle swarm optimization (PSO) is a branch of evolutionary algorithms, which
is inspired by the choreography of a bird flock that seems to be effective for
optimizing a wide range of functions. In fact, it can be viewed as a distributed
behavior algorithm that performs multidimensional search. PSO was first proposed
by Kennedy and Eberhart in 1995 [9].

The principle of POS is similar to other evolutionary algorithms, and it also
moves individuals in the group to a better place. Unlike other evolutionary algo-
rithms, the particle swarm algorithm does not use any evolutionary operators, each
individual member is regarded as a particle, which runs at a certain speed in space,
and uses flying speed and position to adjust the entire algorithm space. Therefore,
all the individuals can quickly find the global stable position and near-optimal
geographical position. The PSO has been experimentally proven to be competitive
and better than most of the algorithms on many optimization problems.

In the particle swarm algorithm, the position of each particle is updated using its
velocity vector as depicted in Fig. 2 [10]. And the detail operation through Eq. (1)
as following:

Vi,j (t + 1) = ωVi,j (t) + c1r1,j
[
pbest i,j (t) − Xi,j (t)

]

+ c2r2,j
[
gbestj (t) − Xi,j (t)

]
Xi,j (t + 1) = Xi,j (t) + Vi,j (t + 1)

(1)

where pbesti, j = (pbesti1, pbesti2, . . . , pbestiD) and gbestj = (pbest1, pbest2, . . . ,
pbestD) are current location and population global location, respectively. X is a set
of positions of i particles in a D-dimensional space. ω is inertia weight. c1 and c2
are self-confidence factor and swarm confidence factor. r1 and r2 are two separately
generated random numbers. The algorithm flowchart of PSO is presented in Fig. 3.

Fig. 2 Depiction of the velocity and position updates in PSO
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Fig. 3 The flowchart of PSO

The steps of PSO evolution are as follows:

1. Generate random the position and velocity of all particles, and optimize each
particle pbest and gbest.

2. Generate new position and velocity for each particle and compare them with the
previous pbest. If the current position is better than previous pbest, then replace
previous pbest. Otherwise, keep the current value.

3. For each particle, compare its position with the previous gbest. If the present
position is better than gbest, then previous gbest is replaced. Otherwise, keep the
current value.

4. Updating of the velocity and position of each particle, using the above equation.
5. If the convergence condition is not met, return to step (2). There are several

criteria for convergence, such as free energy, cell sizes, and symmetry.
6. If the convergence condition is met, the present gbest value is taken as the optimal

solution.
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2.1 Applications of the Particle Swarm Optimization
in Multifunctional Materials

Recently, PSO algorithm has been employed to various optimization problems
for 0D nanoparticles or clusters, 2D layers and its atom adsorption, 2D surface
reconstructions, and 3D crystals. And this model has been successfully used to
inversely design multifunctional materials (e.g., superhard materials, electrides,
optical materials) for many ternary and ternary compounds.

For example, PSO algorithm is used to predict the structures of many ternary Np-
H compounds. The searching results of the energetically most favorable structures
of NpHx (x = 1–10) found by us are plotted in Fig. 4 by PSO algorithm at ambient
and high pressures. The complete pressure–composition phase diagram of Np–H
compounds is shown in Fig. 5, with the stable structures identified using colors and
space groups. The relative formation enthalpies of the energetically most favorable
structures of NpHx found by us are plotted in Fig. 6 with cell sizes of 1–6 formula
units, covering the pressure range up to 200 GPa. For ternary compounds, the PSO
algorithm has been successfully used to predict the ambient pressure structures of
PuGaO3 and CeGaO3, as shown in Fig. 7 [11].

2.2 Current State of the Particle Swarm Optimization

Since the PSO was proposed in 1995, the mathematical model of PSO is relatively
simple and its application is surprisingly considerable, which has prompted a lot of
researchers to study it. There have been a lot of research achievements in theoretical
research of algorithm, the modification of model, and the fusion arithmetic.

1. Theoretical research
Ozcan and Mohan [12] have analyzed the theory of particle swarm algorithm

in 1999, the formula of the algorithm has been updated for the first time.
Then Clerc and Kennedy analyzed the operation of particle swarm algorithm in
multidimensional space [13]. Trelea have investigated the convergence of particle
swarm algorithm by using discrete dynamic system and proposed some methods
of parameter selection that are helpful for the overall stability and convergence
of the algorithm. It has been well confirmed in the experimental data [14].

2. The modification of model
In 1998, Shi and Eberhart published a paper about modified PSO algorithms

at the International Conference on Swarm Intelligence. Inertia weight was
introduced for the first time by this algorithm, with such improvements widely
used in the academic community, gradually converted to the standard particle
swarm optimization algorithm which is widely used at present. In order to
improve this algorithm, Eberhart and Shi proposed to adjust with fuzzy system
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Fig. 4 Crystal structures of the predicted stable neptunium hydrides compounds: (a) Fm3m
structure of NpH at 100 GPa, (b) Fm3m structure of NpH2 at ambient pressure, (c) P63/mmc
structure of NpH2 at 25 GPa, (d) P6/mmm structure of NpH2 at 150 GPa, (e) P63cm structure of
NpH3 at ambient pressure, (f) Pnma structure of NpH3 at 50 GPa, (g) R3m structure of NpH3 at
100 GPa, (h) Cmcm structure of NpH3 at 160 GPa, (i) I4/mmm structure of NpH4 at 200 GPa. The
large and small spheres denote neptunium and hydrogen atoms, respectively

[15]. Subsequently, Clerc confirmed that the effectiveness of the proposed
algorithm was convergent [13].

3. The fusion arithmetic
Angeline has introduced the selection operation in evolutionary computation

and proposed a hybrid particle swarm optimization algorithm model [16, 17].

Because the PSO algorithms have some of significant advantages, such as simple
model, easy to implement, and non-gradient and less variables, it shows excellent
results in the continuous discontinuous optimization, combinatorial optimization,
and dynamic optimization. Recently, PSO algorithm has been employed to various
optimization problems for 0D nanoparticles or clusters, 2D layers and its atom
adsorption, 2D surface reconstructions, and 3D crystals. The application of PSO in
structure prediction has been proved to be a popular technique. The POS algorithms
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Fig. 5 Convex hulls of the Np–H system at selected pressures. Solid points connected by the
solid line denote thermodynamic stable phases, while empty points connected by the dotted line
represent unstable/metastable phases

have been interface to some mature structure prediction codes, such as CALYPSO
[18] and USPEX [19], which have been successfully applied to investigate a great
variety of materials at high pressures.

3 Differential Evolution Algorithms

3.1 Brief Introduction of the Differential Evolution Algorithm

Differential Evolution (DE) is a parallel direct search method which optimizes a
problem by iteratively trying to improve a candidate solution for the multidimen-
sional optimization problem. DE is a particular method to create new vector (also
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Fig. 6 Predicted pressure–composition phase diagram of the Np–H crystal phases

Fig. 7 Calculated enthalpy (for per formula unit) of predicted phases versus volume for (a)
PuGaO3 and (b) CeGaO3 compounds with the PBEsol + U approach. Thermo-Stable level is
the sum of the enthalpy of the decomposition products (PuO2/CeO2, Ga2O3, and α-Ga)
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Fig. 8 DE mutation scheme
for three random vectors

Fig. 9 The flowchart of the DE algorithm

known as genome/chromosome) for the population. While iterating over generations
to evolve to an optimal state, existing chromosomes is used to create new offspring
as potential candidates to make it to the subsequent generation. Diagram of the DE
is depicted in Fig. 8. The main steps in DE are as follows [20]:

1. For each genome in the current population, we select three random vectors.
2. If a uniformly distributed random number (randi,j[0,1]) is less than the defined

crossover rate, create a new offspring vector. Otherwise use the same genome as
the parent.

3. Subtract two of these genome vectors.
4. Scale the difference of any two of these three vectors by a user-defined scale

parameter λ.
5. Add the scaled difference vector to the third genome.

The D-dimension vector can be used to represent a set of D-dimensional param-
eters, called a single parameter [21]. A population consists of NP D-dimensional
parameter vectors xi, G, i = 1, 2, . . . , NP for each generation G [22]. The flowchart
of the DE algorithm is shown in Fig. 9. Mutation, crossover, and selection are
described below. For a more detailed description, please refer to [22].
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3.1.1 Mutation

Mutation vectors are generated according to vi, G + 1 = xr1, G + F · (xr2, G − xr3, G)
with randomly selected indexes, corresponding to each target vector xi, G. It is
important to note that the indexes must be different from each other and different
from the running index i. Consequently, the number of parameter vectors in a
population must be at least four. F is an actual and constant factor ∈[0, 2] that
controls the amplification of the difference vector (xr2, G − xr3, G).

It is necessary to note that the more subtle the differences between parameters of
parent r2 and r3, the smaller the difference vector and therefore the perturbation.
This means that if the population is close to the optimal value, the step size
will decrease accordingly. This is similar to automatic step control in standard
evolutionary strategies.

3.1.2 Crossover

The trial vector generated by the target vector is mixed with the mutated vector
using the following scheme

uji,G+1 =
{

vji,G + 1 if (r(j) ≤ CR) or j = rn(i)

xji,G if (r(j) > CR) and j �= rn(i)

where j = 1, 2, . . . ,D, r(j) ∈ [0, 1] is the jth evaluation of a uniform random number
generator. CR is the crossover constant ∈[0, 1]. CR = 0 means that no crossover
operator was used in the DE algorithm. rn(i) ∈ (1, 2, . . . ,D) is a randomly chosen
index which ensures that ui, G + 1 gets at least one element from . Otherwise, no new
parent vector would be produced and the population would not alter.

3.1.3 Selection

If and only if the test vector produces a better cost function value than the parameter
vector , it is accepted as the new parent vector of the next generation G + 1. This
is a “greedy” option. If not, the target vector is retained again as the parent vector
of generation G + 1. There are three strategy parameters altogether: NP: Number
of members in a population, F: Amplification factor of the difference vector, CR:
Crossover constant.

3.1.4 Other Variants of DE

There are numerous variants of DE which can be classified as DE/x/y/z, where x
specifies the vector to be mutated, y is the number of difference vectors used, and z
denotes the crossover scheme.



128 S. Li and D. Li

Table 1 Applications of differential evolution in medicine and pharmacology

Year Researchers Application

2004 Magoulas, Plagianakos, and Vrahatis Colonoscopic diagnosis
2006 Koutsojannis and Hatzilygeroudis Intelligent diagnosis and treatment of

acid-base disturbances based on blood
gas analysis data

2004–2005 Saastamoinen, Ketola, and Turunen Sport medicine
2015 Konstantin Kozlov et al. Geospatial immune
2017 T. Vivekanandan, N. ChSriman

Narayana Iyengar
Heart disease

Table 2 Applications of differential evolution in optics community

Year Researchers Application

2004 Al-Kuzee, Matsuura, and Goodyear Optimize plasma etch processes
2004 Zhang and Zhong Calibrate camera
2005 Chan, Toader, and John PBG design
2006 Akdagli and Yuksel Laser diode nonlinearity
2006 Bluszcz and Adamiec Optical stimulated luminescence decay
2006 Ling, Wu, Yang, and Wan Design holographic grating
2007 Pan and Xie Deformation measurement
2016 Fernando Lezama Optical networks
2016 Soham Sarkar Reflective optics system
2017 Md. Ghulam Saber Optical material

x is note “rand” (randomly chosen population vector) or “best” (the best vector
from the current population). Since we use only one difference vector, y is one
in the described scheme. The current variant for z is “bin” (independent binomial
experiments) which means crossover. With this notation, the conventional DEmodel
can be written as . Another possibility is the method DE/best/2/bin, the mutant
vector vi, G + 1 = xbest, G + F · (xr1, G − xr2, G + Xr3, G − xr4, G) can be obtained.

3.2 Applications of the Differential Evolution Algorithm

Recently, differential evolution algorithm has been intensively implemented in
medical applications (focus on the diagnosis, classification, and treatment of cancer,
Table 1), optics community (Table 2), the early accurate prediction of earthquakes
(Table 3), and thermal engineering (Table 4) [23]. And most of the applications
of differential evolution in physics focus on stellarator design and plasma. Other
reported applications include chaos control [24], and optimization of the structure
of atomic and molecular clusters [25].

Since the DE algorithm [26] was proposed by Storn and Price in 1995, the algo-
rithm has been favored by more and more researchers. The research on the algorithm
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Table 3 Applications of differential evolution in seismology

Year Researchers Application

1998, 2000 Bartal et al. Optimize the seismic networks in Israel
2007 Ruzek et al. Find seismic velocity models yielding travel times

consistent with observed experimental data
2018 Thomas Meehan The roots of this algorithm and main developments are

examined to offer a better understanding of its essential
features

Table 4 Applications of differential evolution in thermal engineering

Year Researchers Application

2006 Coelho Modeling of a thermal system
2007 Babu and Munawar Design of heat exchangers
2016 G. Balaji Thermal generator maintenance

scheduling
2017 Emerson Hochsteiner deVasconcelos Segundo Economic optimization design for

shell-and-tube heat exchangers
2019 Feng Tan Thermal analysis of spindle
2020 Mohammad H. Nadimi-Shahraki Introducing a multi trial vector

approach to combine various search
strategies

and its application has shown a rapid growth during past few years. The DEwas used
to solve Chebyshev polynomials at the early stages. By comparing with a variety
of metaheuristic algorithms, it was found that the algorithm showed increasing
effectiveness. The algorithm is currently used in many fields, including neural
networks, industrial engineering, mechanical engineering, electronic engineering,
electrical engineering, control engineering, civil engineering, software engineering,
image processing, and other fields.

4 Conclusions

In summary, evolutionary algorithms model is a very simple but very powerful
stochastic global optimizer, which is widely used in many scientific and engineering
fields for function optimization. Evolutionary algorithms make it possible to use
computers to extract useful knowledge from massive amounts of the acquired
knowledge. It should be pointed out that there is no absolute good or bad between
different evolutionary algorithms. We should select the appropriate evolutionary
algorithms with different data structures in different situations.
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