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1 Introduction

Carbon is capable of forming many allotropes due to its valency. The well-known
forms of carbon include diamond and graphene. In the past decades, many more
allotropes have been further discovered and researched, such as carbon nanotube,
nanotubes, and buckminsterfullerene. At the present time, around 500 hypothetical
3-periodic carbon allotropes are known; each of them exhibits significantly different
properties and wide potentials of applications. Recently, due to the enhancement
of high performance computing (HPC) power, and algorithmic improvements,
computational materials science has gradually become an important supplement to
traditional theory and experiment for the study of carbon allotropes, as well as a
crucial bridge between micro and macro, theory and experiment [1–3]. On one hand,
it can help us to understanding the microstructure and behavior of carbon materials
in atomic level, and on the other hand, it can predict the properties and formation
mechanism of carbon materials without doing experiments.

2 Traditional Force Fields

Molecular dynamic (MD) simulation is most widely used for studying atomistic
systems, which can monitor the atomic-level time-evolution of physical and chemi-
cal processes and predict macroscopic properties from microscopic details. Starting
with an initial atomic locations and velocities, MD simulations require the atomic
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forces as input to propagate the atoms locations and their velocities to the next
timestep (at which point, the atomic forces are reevaluated), the cycle continues,
thus allowing for an iterative time-evolution of the system. The atomic forces at each
timestep may be obtained either using quantum mechanics (QM) based methods,
such as density functional theory (DFT), or parameterized classical semiempirical
analytical interatomic force fields, such as Stillinger-Weber potentials, Tersoff
potential, and so forth [4–6]. Choosing between the two approaches depends on
which side of the cost-accuracy trade-off ones wishes to be at. QM methods (also
referred to as ab initio or first-principles methods) are versatile and offer the
capability to accurately model a range of chemistries and chemical environments
by solving for the Schrodinger equation. However, the computational complexity
of QM methods is at least cubic in the number of electrons; consequently, practical
applications of these methods at present are limited to studies of phenomena whose
typical length and time scales are of the order of nanometers and picoseconds,
respectively [1]. Parameterized classical force fields can be used to access truly
large-length and long-time scales, which typically are 6–10 orders of magnitude
faster than DFT, because the influence of electrons is not taken into account in the
calculation of atomic force [7]. However, these approaches are also problematic,
as such force fields cannot precisely reproduce QM forces and have limited
transferability; for instance, they are not transferable to situations that were not
originally used in the parameterization [8–10]. Facing this scenario, it is necessary
to develop novel and efficient force field. The advent of big-data analytics and easy
to access to HPC resources has brought powerful machine learning (ML) techniques
to the forefront. Meanwhile, ML methods hold promise in resolving the disconnect
between force field developers and the end-users, which is common in classical
potential function development, in other words, empowering the users to develop
new or tailor existing force fields to meet their needs [11].

3 Machine Learning Force Field

Since US President Barack Obama proposed the genome project in 2010, the
application cases of ML in material development have been emerging. For example,
rapid search for high thermal conductivity materials [12], design of low interface
thermal resistance superlattice structure [13], utilizing neural network assisted
drug development [14], screening of high-throughput materials [15], prediction of
material structure [16], design of ultra-high hard materials [17], and so forth.

ML mainly uses a trained model (such as neural network algorithm, Bayesian
optimization algorithm, and random forest) to extracting information from large
historical datasets (from experiments, simulations, online database, etc.), and then
accurately capture the relationship between structures and properties by data mining
techniques for materials discovery and properties prediction [4]. Recently, a data-
driven and ML-based atomic force field development research has attracted wide
concern due to its flexibility and adaptability. In contrast to conventional interatomic
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potentials and QM-based methods, the ML-based paradigm has been verified by
many groups is a feasible pathway in the creation of interatomic force field that
both has the accuracy and versatility of QM methods and the low computing cost of
parameterized semiempirical interatomic potentials. The ML-based force field was
first proposed independently by Botu [5] and Li [18]; they used vector structural
descriptors as fingerprints of atomic environments, and separately learned indi-
vidual force components using kernel regression and Gaussian process regression.
Recently, Glielmo et al. [4] proposed a novel scheme, which predicts the forces as
vector quantities using Gaussian process regression. Additionally, they added the
many-body kernel to represent the dependence of force not only on interatomic
distance but also bone angle. Because many more force components as a training
dataset can be obtained from DFT calculation directly, the construction of the ML
force field is easier than that of ML potentials. ML force field has been successfully
constructed for many elemental materials, such as Al [4, 5, 19, 20], Si [21],
and Cu [12], and a few multicomponent materials, such as SiO2 [22]. Moreover,
the feasibility of ML force field has been verified by several static and dynamic
applications, including melting, stress-strain behavior, point defect diffusion in bulk,
proper description of dislocation core regions, metal phase transition and adatom
organization as surface, and so forth [4, 22].

Traditionally, the parameters in classical semiempirical interatomic potential are
obtained by fitting to QM calculations or experimental data under equilibrium
state, as the red dotted line region shown in Fig. 1a, therefore, overemphasis on
equilibrium configurations often result in performs poorly in predicting the relative
energies in transition state or far-from-equilibrium position. However, ML-based
force field can overcome this issue by learning from reference datasets in the whole
potential energy space, as shown in Fig. 1b.

The application of ML in molecular force field development largely falls into
two broad categories: one approach is based on classical semiempirical analytical
interatomic potentials, employing ML algorithms to optimize the potential param-
eters, namely, ML-based optimized force field. The other approach is to establish
nonlinear mapping by ML models between atomic configurations and potential
energies or force, which has no fixed mathematical functional form, namely,

Fig. 1 The data obtained used for constructing atomic force fields: (a) classical semiempirical
force field, (b) ML-based force field
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Fig. 2 An overview of ML-based potential function parameters optimization framework.
(Adapted with permission from ref. [7], copyright 2019 Physical Chemistry publishing)

ML-based force field. The train datasets of these two approaches are both obtained
from DFT calculation, which can ensure the accuracy of prediction [23–27].

Chan et al. [7] proposed a ML-based optimized force field to accurately simulate
the dynamical process at reactive interfaces and low dimensional system, such as
clusters and molecules. The procedure as shown in Fig. 2, which involves (1)
defining or selecting a functional form, the functional from selection apart from
the material being studied but also strongly dependent on the phenomenon being
explored, (2) constructing an extensive training data set from electronic structure
calculations, and the training as far as possible to encompassing all possible atomic
environments and coordinates likely to be encountered in dynamic simulations, (3)
optimizing force-field parameters using ML algorithms, such as genetic algorithms
(GA), formulating a fitting procedure and implementing these algorithms on HPCs.

For ML-based force field, the force field is transferable and adaptive due to
overcoming the limitations result from the predefined mathematical functional form.
For instance, new reference configurations can be added to enhance the versatility
of the force field as required [28–31]. A typical ML-based force field development
workflow mainly consists of four key steps, which are: (1) generation of reference
data, such as, using DFT; (2) fingerprinting or quantifying the atomic environments,
in a manner that will allow the fingerprint as input in regression model; (3) choosing
a subset from the reference data set, using clustering and sampling techniques
to reduce the learning cost while ensuring that the dataset retain the diversity of
the original reference data set; (4) learning from the training set, thus construct a
nonlinear mapping between the atomic configurations and the forces, followed by
testing the learned model on the remainder of the data set. The entire framework
involved in the construction of force field is portrayed schematically in Fig. 3.
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Fig. 3 Workflow for the creation of machine learning force field. (Adapted with permission from
ref. [12], copyright 2017 NPJ Computational Materials publishing)
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Fig. 4 ML-based force field framework for carbon allotropic

4 Procedure to Develop ML-Based Force Field

A ML-based force field framework for carbon allotropic is given in Fig. 4.
First, constructing a comprehensive reference database as possible, in addition to
commonly encountered crystalline phases, diamond and graphite, other relevant
phase of carbon should also be taken in account, such as amorphous carbon. In order
to facilitate the input of regression model, a proper fingerprint or descriptor should
be selected to quantifying the local environment of an atom, the local environment
of an atom typical divide into 2-body, 3-body, and many-body. Next, a cluster
and sample algorithm employed to identify the redundant and noncontributing data
to reduce computing costs. Finally, selecting a regression model to establish the
fingerprint-force mapping, the energy E is further approximated as a sum of the
atomic energies

E =
∑

i

ε (di) (1)
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where di is the feature vector of atom i, which accounts for the chemical environ-
ment of atom i that depends on positions and chemical identities of its neighboring
atoms up to a given cutoff radius. The ε represents the atomic energy as a function
of descriptors. The details of each key step will be described next.

4.1 Reference Database

The reference data used for creating force field must be as accurate and comprehen-
sive as possible, ensuring sufficiently low intrinsic errors. Generally, calculations
(such as first-principles, molecular dynamics, lattice dynamics, and so forth) [32,
33], experiments [34–36] and online libraries [37, 38] have been used to collect
these data. Among these approaches, first-principles is most convenient and quick
approach to sample reference data for ML force field construction because abundant
reference structures and corresponding quantum mechanical properties (i.e., energy
and atomic force) can be directly obtained from one piece of an ab initio MD
trajectory. For example, Li et al. [22] obtained abundant atomic configurations of
Cu and SiO2 by fast ab initio MD, such as face-centered cubic supercells, surface
(111) supercells, surface (100) supercells, and amorphous supercells. Huan et al.
further expanded the atomic configurations and corresponding force by rotating the
collected atomic configurations, and providing more force components than that in
the original dataset. To mimic the diverse environments an atom could exist in, Botu
et al. [4] built several periodical and non-periodical equilibrium configurations, such
as (a) defect free bulk, (b) surfaces, (c) point defects, vacancies and adatoms, (d)
isolated clusters, (e) grain boundaries, (f) lattice expansion and compression, and (g)
edge type dislocations, as shown in Fig. 5. To correctly describe the nonequilibrium
behavior of an atom, initially atoms are randomly perturbed to coerce the dynamics
into sampling nonequilibrium environments. The combination of ab initio MD and
random perturbations resulted in a diverse set of reference atomic environments and
forces.

4.2 Structural Fingerprints

Each atomic energy contribution depends only on its local environment, as shown
is Fig. 6, which is represented by a feature space vector or fingerprint so as to
numerically represent atomic configurations [31]. The accuracy of the ML force
field will strongly depend on the selection of the fingerprint; a good fingerprint
should possess the following properties: (1) it can be encoded as a fixed-length
vector so as to facilitate regression, (2) it should retain basic physical symmetry
invariant, such as translation, rotation, or permutation, (3) it is complete, i.e.,
different atomistic neighborhood configurations lead to different fingerprints and
vice versa, and the “distance” between the fingerprints should be proportional
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Fig. 5 Reference configurations used to sample atomic environments for training and testing
of force field. (Adapted with permission from ref. [4], copyright 2017 Physical Chemistry C
publishing)

to the intrinsic difference between the atomistic neighborhood configurations. A
number of structural descriptors have been proposed to represent the local atomic
environment, such as atom-centered symmetry functions [39], bispectrum [40], and
Smooth Overlap of Atomic Positions (SOAP) kernel [41]. The most widely used
descriptor is the vector atomic fingerprint function, which was proposed by Botu
and Ramprasad, and has been proven to be an effective structural descriptor in
the prediction of vectorial atomic properties [4]. Using the fingerprint, the atomic
environment of the ith atom in a specific atomic configuration can be represented by
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Fig. 6 Transform atomistic neighborhood configurations into feature vectors and train non-liner
regression models. (Adapted with permission from ref. [1], copyright 2018 Chemical Physics
publishing)
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where rij signifies the distance between atoms i and j, and rα
ij is a scalar projection

of this distance along the α direction (α = x, y or z). η is a parameter that controls
the decay rate, and fc is the cutoff function that gradually reduces the contribution of
distant atoms and truncates the interatomic interaction when rij is larger than cutoff
distance Rc.

Although Eq. (2) has been proved to be very effective in various materials, it
ignores bond angle information, which might be insufficient for complex covalent
materials. For this, Li et al. [22] have modified Eq. (2) and proposed another
structural fingerprint that takes the bond angle into consideration. The formulas of
the two structural fingerprints are:

V
1,α
i =

∑

j

rα
ij

rij
e−η(rij −Rs)

2 × fc
(
rij

)
(3)
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rij + −→
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)α(
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))ζ × e
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2 −Rs

)2
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(
rij

) × fc (rik) (4)

Equations (3) and (4) are called a radial structural fingerprint and angular
structural fingerprint, respectively, where rik and rij are the interatomic distances
between i and k, and i and j, respectively. θ ijk is the angle between bonds ij and
ik. (rij + rik)α is the scalar projection of vector (rij + rik) along the α direction.
Two parameters of radial fingerprint V

1,α
i , that is, η and Rs, are used to control the
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width of the peak and shift the peak position. Two additional parameters, that is,
ζ and θ s, are used in angular fingerprint V

2,α
i . Applying the θ s parameter allows

the probing of specific regions of the angular environment in a similar manner
to that accomplished by Rs in the radial part. Finally, the ML force fields were
compared with DFT and MD simulations in structural optimization, it is found
that the proposed angular fingerprints can significantly improve the accuracy of ML
force fields for both Cu and SiO2.

To capture the transition state during the structural phase transformation, many-
body term needs to be taken into consideration. For example, Zong et al. [42] adopt
three different types of local environments related to structural phase transforma-
tions are fingerprinted, namely, the change in bond length (pairwise terms), shape
change (three-body terms), as well as volume change (many-body terms). For two-
and three- terms, which is similar to the above treatment, so we will not explain
any more here. For the many-body contributions, which is similar to the embedding
energy term of the MEAM potential. The formulas is

V Mb
i (μ, σ ) = ln

(
ρm

i (μ, σ )
)

(5)

where μ and σ are adjustable parameters, ρm
i (μ, σ ) refers to the neighborhood

density of a given atom i, define as

ρm
i (μ, σ ) =

∑

j �=i

e− (rij −μ)
2

σ2 fc
(
rij

)
(6)

4.3 Sampling and Clustering

The next step in the construction workflow is to select a representative set of
atomic environments for training purposes. To do so, it is necessary to identify
the redundant and noncontributing data points from within the millions sampled.
Random selection of training data from reference data is the most common
approach, which typically results in the selected training configurations dominated
by the high-populated domains while other domains are under-represented [5].
As shown in Fig. 7a, the training data randomly selected from the reference data
contains essentially no configuration with large amplitude forces. To ensure the
diversity of reference data, Huan et al. [12] proposed force-binning and clustering
training data selection methods. In the force-binning method, the reference data was
arranged into a number of force amplitude intervals and then the training data was
selected from all the intervals, as shown in Fig. 7b. In the clustering approach, the
reference data divide into a given number of clusters in fingerprint space and then
the training data is selected from each cluster, as shown in Fig. 7c.

Another widely used method is dimensionality reduction techniques, such as
principal component analysis (PCA) to project V d

i onto a lower dimension space.
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Fig. 7 An illustration of three methods for selecting a training set, including random (a) force
amplitude sampling (b) and fingerprint space clustering (c). (Adapted with permission from ref.
[12], copyright 2017 NPJ Computational Materials publishing)

In PCA the original atomic fingerprint is linearly transformed into uncorrelated and
orthogonal pseudo variables. For example, Chapman et al. [43] captured more than
99% of the original fingerprint information by adopting such strategy. Moreover,
some other similar dimension reduction techniques could be adopted to select
representative data set, such as kernel-PCA or multidimensional scaling. Recently,
using least absolute shrinkage and selection operator (LASSO) or genetic algorithm
(GA) to select the important fingerprints from a large pool of candidates also have
been proposed, which can have good balance between computational cost and
accuracy.

4.4 Machine Learning

Once the reference data and atomic representation are in place, the final step is
to carry out a learning algorithm to establish the fingerprint-force mapping. In the
taxonomy of ML approaches, this is a “supervised learning” problem, because the
input data (structures) are labeled (have reference energies); more specifically, it
represents a regression task, because a continuous range of output values (energies)
is sought. At present, various machine learning algorithms have been used in
force field development, such as Kernel-based methods, linear model (LM), neural
network model (NNM), and so forth. Next, we will give a brief introduction.

4.4.1 Kernel Ridge Regression

KRR is a powerful method that has widely been used in materials informatics, in
which an atomic property is interpolated as a liner combination of kernel functions,
as shown in Fig. 8, the latter measuring how similar a new configuration’s descriptor
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Fig. 8 Schematic of kernel
methods to interpolate atomic
properties by comparing an
environment (red) with the
reference database (green)

(red) is to those of the reference data (green). The property is typically a local
energy, or a force acting on an atom, and the kernels can be understood as similarity
measures (on a scale from zero to one) between the new environment and those
contained in the database, both of which are represented by the descriptor. The
regression coefficients that weigh each kernel basis function are computed during
the fitting using simple linear algebra. Kernel ridge regression (KRR) and Gaussian
Process Regression (GPR) are two currently employed techniques, differing only
slightly in how these coefficients are computed.

Botu et al. [4] choose this method as the ML workhorse created a force field for
six element bulk solids, including Al, Cu, Ti, W, Si, and C, and show that all of them
can reach chemical accuracy. KRR predicts the atomic force Fi corresponding to the
configuration i as

Fi =
Nt∑

j=1

aj exp

[
−1

2

(
dij

σ

)2
]

(7)

where the sum runs ergodic Nt configurations in fingerprint space, dij is the
“distance” between configurations i and j, here, refer to Euclidean norm. The
“length” scale in this space is specified by σ .

4.4.2 Linear Model

LM is developed to describe the linear dependence between structural fingerprints
and forces due to its simplicity and speed. For example, Li et al. [22] choose liner
regression model to construct ML force field and compared with DFT calculation in
both element (Cu) and binary (SiO2) materials. They found that the force prediction
error less than 0.1 eV/Ȧ−1. The LM takes the form

Fα
i = w1V

α,(1)
i + w2V

α,(2)
i + · · · + wnV

α,(n)
i (8)
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Fig. 9 High-dimensional neural network for a ternary system containing elements (a–c). R∗ ={
R∗
1 , R

∗
2 , · · · , R∗

N∗

}
, G∗ =

{
G∗

1,G
∗
2, · · · ,G∗

N∗

}
, E∗ =

{
E∗
1 , E

∗
2 , · · · , E∗

N∗

}
, * = {A, B, C}

where w1 is the regression coefficient, which is typically determined quickly using
a standard least-squares technique. When matrix V includes the fingerprints of the
reference atomic environments and F denotes the atomic forces obtained by DFT,
the residual sum of squares (‖Vw − F‖2)2 is minimized in the linear regression,
where ‖ • ‖2 denotes the L2 norm.

4.4.3 Neural Network Model

NNs are a set of mathematical functions that aim at resembling the functionality of
neurons in brain, which was first proposed by Pro. Dr. J. Behler [3] in 2007, the
structure as shown in Fig. 9, which represent a high-dimensional NN for a ternary
system containing elements A, B, and C. The numbers of atoms per element are
NA, NB, NC, respectively. The total short-range energy Es is the sum of all atomic
energies EX

i (X = A,B,C), which are provided by individual atomic NNs. For a
given element, the architecture and parameters of the atomic NNs are the same. The
symmetry function vectors GX

i provide the information about the local chemical
environments of the atoms to the atomic NNs. Consequently, GX

i depends on the
Cartesian position vectors RX

i of all the atoms within the cutoff spheres, which is
represented by the black arrows. In such a method, a local atomic environment was
described by generalized symmetry functions. NN potentials have been developed
for many materials, such as Si, C, Cu, ZnO, TiO2, H2O dimers, Li3PO4, Cu clusters
supported on Zn oxide and Au/Cu nanoparticles with water molecules. Additionally,
they have been used to simulate the atom diffusion, phase transition, and search for
equilibrium structures with not only MD but also the nudged elastic band (NEB)
method, Monte Carlo methods and metadynamics.
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5 Applications of ML Force Fields for Carbon Allotropes

5.1 ML Force Field for Graphene

Graphene has been the subject of extensive investigation since it was first iso-
lated due to its interesting phenomena, such as the phonon-assisted diffusion of
small molecules on the graphene surface, the study of thermal transport, and the
incorporation of nuclear quantum effects into simulations which would benefit
greatly from a highly accurate graphene model. Recently, ML-based force fields
for graphene have emerged and attracted intensive attention. For example, Rowe
et al. [44] constructed such an accurate interatomic potential for graphene using
the GAP ML methodology. In this work, the total energy was decomposed into
a sum of two-, three-, and many-body interactions, which are weighted based on
their respective statistically measured contributions, the order of descriptors used
in each term as follows: two atoms distance, symmetry functions, SOAP. Finally,
to evaluating the accuracy of the ML model, compare the capabilities with those
of empirically constructed potentials. As shown in Fig. 10, which shows the forces
prediction ability of graphene GAP model and a number of other popular methods
compared to the reference DFT method, black points indicate forces perpendicular
to the plane of the graphene sheet (out-of-plane) while red points indicate forces
oriented in the plane. The inset in the graphene GAP plot has a different scale
on the y axis to show more clearly the distribution of force errors, it is clear that
the predictions of the graphene GAP model align very closely with the reference
DFT method. Additionally, the author also calculated the lattice parameters and in-
plane thermal expansion of graphene using the developed GAPmodel and compared
predictions of the finite temperature phonon spectra of graphene with experimental
results.

In addition, Wen et al. [45] presented a hybrid potential that employs a neural
network to describe short-range interactions and a theoretically motivated analytical
term to model long-range dispersion for multilayer graphene. This potential can
provide accurate energy and forces for both intralayer and interlayer interactions,
correctly reproducing DFT results for structural, energetic, and elastic properties.
Subsequently, Wen et al. [46] proposed another dropout uncertainty neural network
potential for carbon and showed that it can be used to predict the stress and phonon
dispersion in graphene.

5.2 ML Force Field for Diamond

As a significant member in carbon allotropes, diamond has been a hot spot in
scientific research due to its fantastic mechanical and thermal properties. To better
understand the atomistic behavior in diamond, an accuracy carbon potential is
crucial. In 2017, Deringer et al. [47] reported a GAP model trained primarily on the
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Fig. 10 The force prediction
ability of graphene GAP
model, DFTB, LCBOP, and
Tersoff potentials compared
to the reference DFT method.
(Adapted with permission
from ref. [44], copyright
Physical Review B 2018
publishing)

amorphous and liquid phases of carbon based on DFT-local-density approximation
reference data. Subsequently, Rowe and Deringer [48] proposed another improved
GAP model on the basis of previous work, in which a large number of new
configurations and exotic carbon allotropes are considered, such as nanotubes,
cubic and hexagonal diamond and fullerene, as shown in Fig. 11a. To obtain more
comprehensive database meanwhile keep the computational effort at the fitting stage
tractable, they combined the farthest point sampling method with a number of
mandatory configurations chosen using chemical intuition. The structural fingerprint
of a configuration is quantified by SOAP descriptors. During model validation stage,
they present an extensive and rigorous testing of GAP model for a wide range
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Fig. 11 (a) The selected configurations, as well as a representation of their position in phase space.
(b) Phonon dispersion relation for diamond as predicted by GAP (black) with comparison to DFT
reference data (red). (Adapted with permission from ref. [48], copyright 2020 Chemical Physics
publishing)
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of properties, as well as compare the results of GAP model to commonly used
empirical potentials. As shown in Fig. 11b, the phonon dispersion of diamond
is predicted successfully. In addition, the improved GAP model also correctly
predicts the formation energies of diamond, graphite, fullerenes, and nanotubes,
to an accuracy of a few meV, and achieves comparable accuracy for a number of
crystalline and amorphous surfaces. The computed formation energies of defects
are also accurate, with overall errors significantly lower than those obtained from
comparable empirical models. Early, Rustam et al. [49] used an ab initio quality
neural-network potential for large-scale simulations of the graphite-to-diamond
transition assuming that it occurs through nucleation. The nucleation mechanism
accounts for the observed phenomenology and reveals its microscopic origins. Other
ML-based potentials for graphite-diamond phase study can be seen in ref. [50–52].

5.3 ML Force Field for Amorphous Carbon

The atomic structures of amorphous carbon samples depend strongly on density
and are characterized by the coexistence of threefold (“sp2”) and fourfold bonded
(“sp3”) carbon atoms; low- and high-density forms of amorphous carbon are loosely
reminiscent of graphite and diamond, respectively. Deringer et al. [53] combined
ML and DFT obtained new atomistic insight into carbonaceous energy materials.
They started by modeling nanoporous carbons as used in supercapacitors. Using
GAP, which has been “trained” with DFT data to fit energies and forces for
amorphous and partly graphitized configurations as well as bulk graphite, they
found the structural fingerprint of carbons is their atomic coordination relating to the
local bonding (“sp/sp2/sp3”). Finally, the accuracy of GAP was tested specifically
for snapshots from annealing trajectories, as shown in Fig. 12a; it achieves an
energy accuracy within 2 kJ mol−1 of DFT data but completes the task several
orders of magnitude faster. During annealing, the sp2 count in the model systems
quickly rises, as shown in Fig. 12b, which agrees well with electron energy-loss
spectroscopy experiments. Comparing a calculated pair distribution function to
representative experiments find that it successfully reproduces all general features,
as shown in Fig. 12c. Shortly after, Deringer et al. [54] utilized this GAP fitted
by a database of liquid and amorphous carbon configurations for random structure
searching and readily predicted several higher- to unknown carbon allotropes.
Besides, Csányi et al. [47] also introduced a similar GAP for atomistic simulations
of amorphous elemental carbon and yielded accurate energetic and structural
properties over a wide range of densities.
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Fig. 12 (a) DFT versus GAP-computed energies for structures at various points of annealing
trajectories. The root-mean-square error (RMSE) between these quantities is given. (b) Count of
sp2-bonded atoms during annealing; dashed lines indicate removal of unphysical long chains. (c)
PDF analysis. (Adapted with permission from ref. [53], copyright 2018 Royal Society of Chemistry
publishing)

6 Future Directions and Perspective

With continued increase in computing power, MD is emerging as a powerful tool for
atom-level modeling as well as explore some micro mechanism without experiment.
The predictive power of MD hinges strongly on the interatomic force field used
to describe the atomistic interactions in the system. While the ML framework
and the application cases presented above highlight the feasibility of using data-
driven approaches for accurate modeling, however, there is still much room for
improvement. The list below is some certain regions that would require further
focused studies in the near future.
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• The accuracy and speed of the ML force field depends on the choice of structural
descriptors or fingerprints, so it is crucial to select the important descriptors
from a large pool of candidates. For this issue, there is still controversy. Some
researchers hold the view that the descriptors selected should depend on chemical
or physical intuition or the basic knowledge of physic, because the essence of
descriptor is physic. Some researchers proposed that blind spots exist in our
intuitive judgment, for instance, the atomic force may be associated with several
fingerprints combination. So ML can help us auto select descriptors.

• As materials science or chemical systems become ever increasingly complex,
the configuration space for reference dataset will increase exponentially. This
brings a challenge for the conventional nonlinear regression learning algorithm
to handling such high dimension fitting issue, so some deep or advanced ML
algorithms need to be developed.

• Most of the classical MD simulations employ predefined functional forms that
can often limit the chemistry and physics that can be captured. While it appears
that there can be significant improvements made by using data-driven approaches
that employ extensive training data sets and advanced optimization, there will
always be a ceiling limit imposed by the use of predefined functional forms.
Existing force field with predefined functional form are not sufficiently flexible
and cannot be transferred easily from one material class to another.

• Regardless of the application domain or area, all training data used for MLmodel
should be carefully prepared and sufficiently diverse; for example, the reference
configurations should span a wide range of energies, namely, the sampling not
only includes near-equilibrium state but also consists of far-from-equilibrium
configurations.

• Classical MD performs well under static or equilibrium issues while typically
lacks predictive ability when it encounters dynamic and transport properties. One
way to address this challenge is to include transition state configurations in the
training data set. Going forward, we envisage that the temperature-dependent
characteristics obtained from on-the-fly MD can also be used as part of the
training program. This would allow us to directly train MD force field that can
also capture dynamical and other transport properties or temperature-dependent
properties of interest.

• Iterative improvement and cross-validation techniques are seldom used in the
fitting of potentials. Even if with a DFT-based data set, there will always exist
errors and then could be propagated to the atomistic potential model. Although
higher-level theories can be introduced to generate training data and reduce
errors, it is obvious that the uncertainty in prediction at various scales still
needs to be quantified. Recent Strachan and his colleagues’ work on quantitative
methods of functional uncertainty represents an important future direction for
assessing model errors. Cross-validation, sensitivity analysis, and uncertainty
quantification are the key to improve the quality and prediction ability of
interatomic potentials in MD.

In summary, using ML-based force field is indeed a powerful and feasible tool to
accelerate atomistic simulations. Obtaining such high fidelity force prediction at a



Machine Learning Interatomic Force Fields for Carbon Allotropic Materials 111

very low cost has opened up an important way for the study of carbon materials and
chemical phenomena. This can lead to revolutionary progress, enabling us to access
time and length scales in carbon materials modeling that were hitherto considered
to be inaccessible to MD.
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