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Preface

Developing algorithmic approaches for the design and discovery of new functional
materials can have huge technological and social impact. Usually, such rational
design requires a holistic perspective over the full multistage design process.
With big data generated by theory and experiments, machine learning approaches
have been extensively employed in materials genome initiatives and materials
informatics, which can potentially solve some of our challenges on the way to
rational materials design. Over the last few decades, materials research has shifted
toward more rational design. There are now many examples, such as the accelerated
discovery of thermoelectric materials, high-entropy alloys, and thermal functional
materials.

Machine learning methods have lowered the cost of exploring new structures
of unknown compounds. Furthermore, machine learning methods can be used to
predict reasonable expectations, and then the output of the machine learning models
can be validated by experimental results. In recent years, new insight has been
revealed, and several elaborative tools have been developed for materials science
and engineering. Moreover, searchable and interactive databases could promote
research regarding emerging materials. Recently, the databases containing a large
number of high-quality material properties for new advanced materials discovery
have been developed. The development of machine learning will allow us to pursue
our aim of understanding and designing of materials in a new way. Moreover, it
looks set to make a significant impact on human life and, with numerous commercial
developments emerging, will become a major academic topic over the coming years.

This book sets the subject into context by first of all describing the chief
advancements of these artificial intelligence methods and their applications in
materials design. The aim of this book is to provide an introduction both to existing
scientific community in this field and for new people who wish to enter it. The book
should also be useful for graduate-level students who want to explore this new field
of research. With content relevant to both academic and commercial viewpoints, the
book will interest researchers and postgraduates as well as consultants and industrial
engineers.

v



vi Preface

The single chapters have been written by internationally recognized experts in
computer science and material science and provide in-depth introductions to the
directions of their research. Moreover, one chapter outlines the basic information
about the AI principles and algorithm, followed by chapters addressing most
important and commonly adopted computational and analysis methods in compu-
tational material science, and application of these functional materials in various
fields, including electronics, optoelectronics, thermoelectric energy conversion,
high-entropy alloys, and robotics. We are sure that this book will be a useful
reference not only for scientists and engineers exploring material science but also for
graduate and postgraduate students specializing in computer, physics, and material
science.

We are most grateful to Springer Nature publisher for the invitation to edit
this book, and for kind and efficient assistance in editing this book. We are also
grateful to all book chapter authors for sharing their expertise in this multi-author
monograph. Their strong efforts and enthusiasm for this project were indispensable
for bringing it to success.

Suzhou, P.R. China Yuan Cheng

Beijing, China Tian Wang

Singapore, Singapore Gang Zhang
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Brief Introduction of the Machine
Learning Method

Tian Wang

1 Introduction

In [1], machine learning is defined as:
Definition: A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P , if its performance at tasks in
T , as measured by P , improves with experience E.

With big data generated by theory and experiments, machine learning approaches
have been extensively employed in materials genome initiatives and materials
informatics. In addition to the data calculated based on first principles theory,
the experimental data from imaging, spectroscopy, inelastic neutron scattering
techniques, etc. have also been adopted to accelerate the process of materials
design and discovery. The quality and rate of theoretical predictions for the design
of functional materials have been improved with data from technical advances.
Machine learning methods have lowered the cost of exploring new structures of
unknown compounds. Furthermore, machine learning methods can be used to
predict reasonable expectations, and then the output of the machine learning models
can be validated by experimental results. Both qualitative and quantitative methods,
which are based on high-throughput computations and autonomous workflows,
were employed to facilitate thermoelectric research with respect to novel material
discovery, design, synthesis, and optimization [2].

To satisfy target functionality, an inverse design method was introduced. As
shown in Fig. 1 from [3], a cycle procedure consisting of prediction, synthesis,
and characterization was adopted to discover new materials with the desired
functionalities [3]. The bottom part of the figure consists of possible compounds
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Fig. 1 Direct and inverse approaches for the design of materials. The bottom part of the figure is
composed of compounds of known structure and unreported compounds. The contour in the upper
part of the figure delineates the variation of the target property or functionality. In the direct design
approach, all possible compounds are investigated first. Then, a calculation of target functionality
is carried out for each compound. Conversely, in the inverse design approach, the compounds with
desirable functionality are investigated

of the material. The blue and white circles are the existing compounds of known
composition and structure. The blue diamonds represent chemically plausible but
unreported compounds. The upper part of the figure is a contour of the considered
property. In direct design approaches, all possible compounds are investigated,
and their properties are calculated to predict a new material. Alternately, in the
inverse design approaches, the functionality is declared and calculated first, and
then only the compounds with desirable properties are investigated. For the design
of materials, machine learning has been applied to the synthesis step to accelerate
the process of strategy searching.

Direct design approach

• Task T : calculation of target functionality; all compounds are investigated firstly.
• Performance measure P : part of the materials with the accurately predicted

properties.
• Training experience E: a database of the materials with given properties; the

properties are the supervised labels.

Inverse design approach

• Task T : search the appropriate materials; the functionality is declared and
calculated first.

• The P and E are as the same as direct design approach.
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2 Notation

In computer systems, “experience” (E) usually exists in the form of “data.” With
the computational methods, machine learning studies the strategies to improve
performance. With the learning algorithm and the experience data, the appropriate
model can provide a corresponding judgment for the new situation.

For the materials research, the set of records establish a data set. Each record
is the description of the instance or the sample. The components that reflect the
performance or characteristics of an object in a certain aspect are called attributes
or features. The values of the attributes or features are called attribute values. The
space formed by attributes is called attribute space or sample space.

The procedure that obtains the model from the data is learning or training, which
is achieved by the learning algorithms. The data employed in the training procedure
is called training data. Each sample is a training sample. The training samples
construct the training set. (xi, yi) is the i-th sample. yi ∈ Y is the label of xi . Y

is the label space, which is the set of the labels. For most practical applications,
the original input data are typically pre-processed to transform them into some new
space of variables, where the pattern recognition problem will be easier to solve.
This pre-processing stage is sometimes also called feature extraction. Note that new
test data must be pre-processed using the same steps as the training data.

Take D = {x1, x2, . . . , xm} as a data set consists of m instances. Each instance
is described with d attributes. Each instance xi = (xi1; xi1; . . . ; xid), xi ∈ X is a
feature vector in the sample space X with the d dimensionality. xij is the j -th value
of the xi .

The learning task can be generally divided into two categories: supervised
learning and unsupervised learning. Applications in which the training data com-
prises examples of the input vectors along with their corresponding target vectors
are known as supervised learning problems. Classification and regression are the
supervised learning method. The aim of the classification problems is to assign each
input to a finite number of discrete categories. If the desired output consists of one
or more continuous variables, then the task is called regression. In the supervised
learning method, the goal is to learn the function from the input x to the targets t .
For a labeled set {(xi, ti)}Ni=1, which is the training set, the number of the training
samples is N .

In unsupervised learning problems, the training data consists of a set of input
vectors x without any corresponding target values. Clustering, density estimation,
and visualization are the unsupervised learning method. The goal of clustering
is to discover groups of similar examples within the data. Density estimation is
to determine the distribution of data within the input space. The purpose of the
visualization is to project the data from a high-dimensional space down to two or
three dimensions.
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3 Support Vector Machine

SVM can be adopted in the materials classification problem. The two-class classifi-
cation problem using linear models is:

y(x) = wTφ(x) + b, (1)

where φ(x) denotes a fixed feature-space transformation. b is a bias parameter. The
training data set comprises N input vectors x1, . . . , xN , with corresponding target
values t1, . . . , tN where tn ∈ {−1, 1}, and new data points x are classified according
to the sign of y(x). If the training data set is linearly separable in feature space, w

and b satisfy y(xn) > 0 for points having tn = +1 and y(xn) < 0 for points having
tn = −1, tny(xn) > 0 for all training data points.

To classify the training data set, the solution should try to find the one that will
give the smallest generalization error. The support vector machine approaches this
problem through the concept of the margin, which is defined to be the smallest
distance between the decision boundary and any of the samples, as illustrated
in Fig. 2.

The perpendicular distance of a point x from a hyperplane defined by y(x) where
y(x) takes the form Eq. 1 is given by |y(x)|

||w|| . The distance of a point xn to the decision
surface is given by

tny(xn)

||w|| = tn(w
T φ(xn) + b)

||w|| . (2)

The margin is given by the perpendicular distance to the closest point xn from
the data set. w and b are optimized to maximize this distance. Thus, the maximum
margin solution is found by solving:

Fig. 2 As shown in the left figure, the margin is defined as the perpendicular distance between
the decision boundary and the closest of the data points. As shown in the right figure, maximizing
the margin leads to a particular choice of the decision boundary. The support vectors, which are
indicated by the circles, determine the location of this boundary
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arg max
w,b

{ 1

||w|| min
n

[tn(wT φ(xn) + b)]}. (3)

where 1
||w|| is outside the optimization over n because w does not depend on n. If

w → kw and b → kb are rescaled, the distance tny(xn)
||w|| is unchanged. For the point

that is closest to the surface

tn(w
T φ(xn) + b) = 1. (4)

All data points will satisfy the constraints

tn(w
T φ(xn) + b) ≥ 1 n = 1, . . . , N. (5)

This is known as the canonical representation of the decision hyperplane. The
data points where the equality holds, the constraints are said to be active. The
remainder is inactive. Maximizing ||w||−1 is equivalent to minimizing ||w||2:

arg min
w,b

1

2
||w||2, (6)

subject to the constraints given by Eq. 5. Lagrange multipliers an ≥ 0 is introduced
to solve the constrained optimization problem. The Lagrangian function is

L(w, b, a) = 1

2
||w||2 −

N∑

n=1

an{tn(wT φ(xn) + b) − 1}, (7)

where a = (a1, . . . , aN)T . Setting the derivatives of L(w, b, a) with respect to w

and b equal to zero

w =
N∑

n=1

antnφ(xn). (8)

N∑

n=1

antn = 0. (9)

Eliminate w and b from L(w, b, a). The dual representation of the maximum
margin problem is

L(a) =
N∑

n=1

an − 1

2

N∑

n=1

N∑

m=1

anamtntmk(xn, xm), (10)
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an ≥ 0 n = 1, . . . , N, (11)

N∑

n=1

antn = 0. (12)

The kernel function is defined by k(x, x′) = φ(x)T φ(x′). In order to classify
new data points using the trained model, the sign of y(x) is evaluated.

y(x) =
N∑

n=1

antnk(x, xn) + b. (13)

A constrained optimization of this form satisfies the Karush-Kuhn-Tucker (KKT)
conditions, which in this case require that the following three properties hold

an ≥ 0, (14)

tny(xn) − 1 ≥ 0, (15)

an{tny(xn) − 1} = 0. (16)

Thus for every data point, either an = 0 or tny(xn) = 1. Any data point for which
an = 0 will play no role in making predictions. The remaining data points are called
support vectors. Once the model is trained, only the support vectors retained.

tn

(
∑

m∈S

amtmk(xn, xm) + b

)
= 1, (17)

where S denotes the set of indices of the support vectors. b is given by

b = 1

NS

∑

S

(
tn −

∑

m∈S

amtmk(xn, xm)

)
, (18)

where NS is the total number of support vectors. The maximum margin hyperplane
is defined by the support vectors.

4 Clustering

Cluster is adopted for the task of dividing data into meaningful groups based on
the information of data. Clustering is an unsupervised machine learning method.
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Typical models contain centroid models (e.g., k-means algorithm), connectivity
models (e.g., hierarchical clustering), and density models (e.g., density-based spatial
clustering of applications with noise (DBSCAN)). The similarity within a cluster
and the difference between clusters indicate the structure or properties within the
data. K-means clustering is introduced.

In terms of the most common clustering method k-means, given a set of d-
dimensional Euclidean variables, i.e., observations, (x1, x2, . . . , xn), k-means is
aimed at dividing n observations into k(k ≤ n) sets S = {S1, S2, . . . , Sk} satisfying
the objective:

arg min
S

k∑

i=1

∑

x∈Si

‖x − μi‖2 = arg min
S

k∑

i=1

|Si | Var Si, (19)

where μi is the mean of the data in the set Si and n observations are partitioned into
k clusters where each observation belongs to a cluster with the nearest mean.

It is convenient at this point to define some notation to describe the assignment
of data points to clusters. For each data point xn, we introduce a corresponding set
of binary indicator variables rnk ∈ {0, 1} where k = 1, . . . , K describing which of
the K clusters the data point xn is assigned to, so that if data point xn is assigned to
cluster k, then rnk = 1 and rnj = 0 for j �= k. This is known as the 1-of-K coding
scheme. We can then define an objective function, sometimes called a distortion
measure, given by

J =
N∑

n=1

K∑

k=1

rnk‖xn − μk‖2, (20)

which represents the sum of the squares of the distance of each data point to
its assigned vector μk . Our goal is to find values for the {rnk} and the {μk} to
minimize J .

Consider first the determination of the rnk . Because J is a linear function of rnk ,
this optimization can be performed easily to give a closed form solution. The terms
involving different n are independent, and we can optimize for each n separately by
choosing rnk to be 1 for whichever value of k gives the minimum value of ‖xn −
μk‖2. In other words, we simply assign the n-th data point to the closest cluster
center. More formally, this can be expressed as

rnk =
{

1 if k = arg minj ‖xn − μj‖2

0 otherwise.
(21)

Now consider the optimization of the μk with the rnk held fixed. The objective
function J is a quadratic function of μk , and it can be minimized by setting its
derivative with respect to μk to zero giving
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2
N∑

n=1

rnk(xn − μk) = 0. (22)

which we can easily solve for μk to give

μk =
∑

n rnkxn∑
n rnk

. (23)

The denominator in this expression is equal to the number of points assigned
to cluster k, and so this result has a simple interpretation, namely, set μk equal
to the mean of all of the data points xn assigned to cluster k. For this reason,
the procedure is known as the k-means algorithm. Updating rnk and updating μk

correspond respectively to the E (expectation) and M (maximization) steps of the
EM algorithm.

4.1 Expectation-Maximization Algorithm

In many practical learning settings, only a subset of the relevant instance features
might be observable. Consider a problem in which the data D is a set of instances
generated by a probability distribution that is a mixture of k distinct Normal
distributions.

Applied to k-means problem, the EM algorithm searches for a maximum
likelihood hypothesis by repeatedly re-estimating the expected values of the hidden
variables zij given its current hypothesis (μi . . . μk) and then recalculating the maxi-
mum likelihood hypothesis using these expected values for the hidden variables. The
EM algorithm first initializes the hypothesis to h = (μ1, μ2), where μ1 and μ2 are
arbitrary initial values. It then iteratively re-estimates h by repeating the following
two steps until the procedure converges to a stationary value for h.

1 Calculate the expected value E[zij ] of each hidden variable zij , assuming the
current hypothesis h = (μ1, μ2) holds.

2 Calculate a new maximum likelihood hypothesis h′ = (μ′
i , μ

′
2), assuming the

value taken on by each hidden variable zij is its expected value E[zij ] calculated
in Step 1. Then replace the hypothesis h = (μi, μ2) with the new hypothesis
h′ = (μ′

i , μ
′
2) and iterate.

Step 1 must calculate the expected value of each zij . This E[zij ] is just the
probability that instance xi was generated by the j -th Normal distribution.

E[zij ] = p(x = xi |μ = μj )∑2
n=1 p(x = xi |μ = μn)

= e
− 1

2σ2 (xi−μj )2

∑2
n=1 e

− 1
2σ2 (xi−μn)2

. (24)
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Thus the first step is implemented by substituting the current values (μl, μ2)

and the observed xi into the above expression. In the second step, we use the
E[zij ] calculated during Step 1 to derive a new maximum likelihood hypothesis
h′ = (μ′

i , μ
′
2). As we will discuss later, the maximum likelihood hypothesis in this

case is given by

μj ←
∑m

i=1 E[zij ]xi∑m
i=1 E[zij ] . (25)

The above algorithm for estimating the means of a mixture of k Normal
distributions illustrates the essence of the EM approach: The current hypothesis
is used to estimate the unobserved variables, and the expected values of these
variables are then used to calculate an improved hypothesis. It can be proved that on
each iteration through this loop, the EM algorithm increases the likelihood P(D|h)

unless it is at a local maximum. The algorithm thus converges to a local maximum
likelihood hypothesis for (μl, μ2).

4.2 EM Related to K-Means

The comparison of the k-means algorithm with the EM algorithm for Gaussian
mixtures shows that there is a close similarity. Whereas the k-means algorithm
performs a hard assignment of data points to clusters, in which each data point
is associated uniquely with one cluster, the EM algorithm makes a soft assignment
based on the posterior probabilities. In fact, we can derive the k-means algorithm
as a particular limit of EM for Gaussian mixtures as follows. Consider a Gaussian
mixture model in which the covariance matrices of the mixture components are
given by εI , where ε is a variance parameter that is shared by all of the components,
and I denotes the identity matrix, so that

p(x|μk,Σk) = 1

(2πε)1/2 exp

{
− 1

2ε
‖x − μk‖2

}
. (26)

Consider the EM algorithm for a mixture of K Gaussians of this form in which
we treat ε as a fixed constant instead of a parameter to be re-estimated. The posterior
probabilities, or responsibilities, for a particular data point xn, are given by

γ (znk) = πkexp{−‖xn − μk‖2/2ε}∑
j πj exp{−‖xn − μk‖2/2ε} (27)

Consider the limit ε → 0, we see that in the denominator, the term for which
‖xn − μj‖2 is smallest will go to zero most slowly, and hence the responsibilities
γ (znk) for the data point xn all go to zero except for term j , for which the
responsibility γ (znk) will go to unity. Note that this holds independence of the



10 T. Wang

values of the πk so long as none of the πk is zero. Thus, in this limit, we obtain
a hard assignment of data points to cluster, just as in the K-means algorithm, so that
γ (znk) → rnk . Each data point is thereby assigned to the cluster having the closest
mean.

The EM re-estimation equation for the μk then reduces to the k-means result.
Note that the re-estimation formula for the mixing coefficients simply re-sets the
value of πk to be equal to the fraction of data points assigned to cluster k, although
these parameters no longer play an active role in the algorithm. Finally, with the
limit ε → 0, the expected complete data log-likelihood becomes

EZ[ln p(X,Z|μ,Σ, π)] → −1

2

N∑

n=1

K∑

k=1

rnk‖xn − μk‖2 + const. (28)

Maximizing the expected complete data log-likelihood is equivalent to minimiz-
ing the distortion measure J for the K-means algorithm. Note that the K-means
algorithm does not estimate the covariances of the clusters but only the cluster
means.

5 Regression

In the field of machine learning, regression analysis is a statistical analysis process
for estimating the quantitative relationships among two or more variables. Most
commonly, the regression function represents the relationship between a dependent
variable and one or more independent variables. Many techniques for solving regres-
sion problems have been developed, such as linear regression, logistic regression,
polynomial regression, ridge regression, and LASSO regression.

If there is a data set consists of N samples xi , i = 1, . . . , N, and a response ti ,
e.g., the xi, ti ∈ R, the task about regression is to predict the value of t of a new
sample x. The direct way is to build a function y(x) whose values for new inputs x

are to predict the values t .

5.1 Linear Regression

Linear regression models a linear relationship between independent variables x and
the response y. In general, given a data set {yi , xi1, xi2, . . . , xip}ni=1 of n statistical
units, the model takes the following form:

yi = w + w1xi1 + w2xi2 + . . . + wpxip + εi, i = 1, 2, . . . , n, (29)

where εi is an unobserved random error.
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Often these n equations are arranged in matrix notation as

y = Xw + ε, (30)

where

y =

⎛

⎜⎜⎜⎝

y1

y2
...

yn

⎞

⎟⎟⎟⎠ , X =

⎛

⎜⎜⎜⎝

xT1
xT2
...

xTn

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

1 x11 · · · x1p

1 x21 · · · x2p

...
...

. . .
...

1 xn1 · · · xnp

⎞

⎟⎟⎟⎠ ,w =

⎛

⎜⎜⎜⎝

w0

w1
...

wp

⎞

⎟⎟⎟⎠ , ε =

⎛

⎜⎜⎜⎝

ε1

ε2
...

εn

⎞

⎟⎟⎟⎠ . (31)

The optimization of linear regression seeks to minimize the loss function, which
evaluates the difference between predicted and true values. In most cases, quadratic
loss function J are used as loss function for linear regression models.

Jw = min
w

{‖Xw − y2‖2
2}. (32)

Linear regression models are usually used to fit a predictive model training set
and predict new explanatory variables.

The linear combination of the input variables is

y(x,w) = w0 + w1x1 + · · · + wDxD (33)

where x = (x1, · · · , xD)T and w = (w0, w1, · · · , xD)T. If the input x is computed
with the nonlinear function φ, which is called basis function, the model can be
extended into:

y(x,w) = w0 +
M−1∑

j=1

wiφj (x). (34)

The transformed function is:

y(x,w) =
M−1∑

j=0

wiφj (x) = wTφ(x). (35)

where w = (w0, · · · , wM−1)
T, φ = (φ0, · · · , φM−1)

T, and φ0 = 1.
The target t is given by a deterministic function y with the noise ε

t = y(x,w) + ε. (36)

where ε is the residual error between the linear predictions and the true response. ε

is assumed to have a Gaussian or normal distribution. ε ∼ N (μ, σ 2). μ and σ are
the mean and the variance, respectively.
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5.2 Polynomial Regression

Polynomial regression is a method used to model the nonlinear relationship between
the independent variables and response. In general, y is modeled as an n-th degree
polynomial:

y = Xw + ε, (37)

y =

⎛

⎜⎜⎜⎝

y1

y2
...

yn

⎞

⎟⎟⎟⎠ , X =

⎛

⎜⎜⎜⎝

xT1
xT2
...

xTn

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

1 x1 x2
1 · · · xm

1
1 x2 · · · xm

2
...

...
. . .

...

1 xn · · · xm
n

⎞

⎟⎟⎟⎠ ,w =

⎛

⎜⎜⎜⎝

w0

w1
...

wm

⎞

⎟⎟⎟⎠ , ε =

⎛

⎜⎜⎜⎝

ε1

ε2
...

εn

⎞

⎟⎟⎟⎠ ,

(38)
where ε is a random unobserved error. Quadratic loss functions are usually used as
the loss functions of polynomial regression models. A high-order equation increases
the complexity of the model, but at the same time, a broader range of functions can
be modeled. Moreover, the incorporation of the holder means (also called the power
means) to construct descriptors can consider a large range of functions and include
the different orders of means from harmonic to quadric means.

5.3 Ridge Regression and LASSO Regression

The results from linear and polynomial models are influenced by the noise in the
training set. Therefore, including more adjustable parameters may fail to make
reliable predictions. In principle, if the model exactly reproduces the training
samples but cannot provide the correct prediction, then the phenomenon referred
to as overfitting has ensued. Generally, overfitting occurs when there are too many
adjustable parameters and the training set is not large enough. Ridge regression is
a regression method that prevents overfitting by introducing the L2 regularization
term α||w||2, so the loss function of ridge regression can be written as:

J (w) = min
w

{‖Xw − y‖2
2 + α‖w‖2}. (39)

LASSO regression carries out L1 regularization in the form of α‖w‖1 to avoid
overfitting. Its loss function can be written as:

J (w) = min
w

{
1

2N
‖Xw − y‖2

2 + α‖w‖1

}
. (40)

When a ridge regression or a LASSO regression model is trained, L2 regular-
ization enforces the coefficients of the irrelevant features to be lower, while the
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L1 regularization method will set those coefficients to zero. In this way, a ridge
regression model or a LASSO regression model limits its complexity. Therefore,
this approach avoids overfitting and can identify essential descriptors.

6 Decision Tree and Ensemble Learning

Decision tree is a type of supervised machine learning method for approximating
discrete-valued target functions. Each tree is composed of two entities, i.e., leaves
and decision nodes. Decision nodes are the places that split the data, and the leaves
provide the decisions or the final outcomes. Each branch descending from that node
corresponds to one of the possible values for this attribute, and each node in the
tree specifies a test of some attribute of the instance. Decision trees can handle both
numeric and categorical data and are easy to interpret as a white model. Iterative
dichotomizer 3 (ID3), C4.5, and classification and regression trees (CART) are the
most famous algorithms used to generate a decision tree. Entropy is the basis of ID3
and C4.5. If the data set is S, then the set of classes in S is X and the proportion of
the elements in class x to the number of elements in S is p(x). Entropy H of S can
be written as:

H(S) =
∑

x∈X

−p(x)log2p(x). (41)

In ID3, the information gain is used to split the data set S:

IG(S,A) = H(S) −
∑

t∈T

p(t)H(t) = H(S) − H(S|A), (42)

where A is an attribute that splits set S, T represents the subsets generated from
splitting set S by attribute A so that S = ∪t∈T t , and p(t) is the proportion of the
number of elements in t to the number of elements in set S.

C4.5 uses the gain ratio Gain_ratio instead.

Gain_ratio(S,A) = IG(S,A)/IV (A), (43)

where IV (A) = −∑t∈T p(t)log2p(t), i.e., the intrinsic value of A.
As for CART, the Gini impurity I is a measure of the difference.

IS = 1 −
∑

x∈X

p(x)2, (44)

where IS is the Gini impurity of set S.
Decision tree learning is generally best suited to problems with the following

characteristics:
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• Instances are represented by attribute-value pairs.
• The target function has discrete output values.
• Disjunctive descriptions may be required. Decision trees naturally represent

disjunctive expressions.
• The training data may contain errors. Decision tree learning methods are robust

to errors, both errors in classifications of the training examples and errors in the
attribute values that describe these examples.

• The training data may contain missing attribute values.

The basic learning algorithm of ID3 learns decision trees by constructing them
top-down. Each instance attribute is evaluated using a statistical test to determine
how well it alone classifies the training examples. The best attribute is selected and
used as the test at the root node of the tree. A descendant of the root node is then
created for each possible value of this attribute, and the training examples are sorted
to the appropriate descendant node. The entire process is then repeated using the
training examples associated with each descendant node to select the best attribute
to test at that point in the tree. This forms a greedy search for an acceptable decision
tree. The information gain is adopted to select the most useful attribute. Entropy
characterizes the (im)purity of an arbitrary collection of examples. For a collection
S contains positive and negative examples of some target concept, the entropy of S
relative to this Boolean classification is

Entropy(S) = −p⊕log2p⊕ − p�log2p�, (45)

where p⊕ is the proportion of positive examples in S and p� is the proportion of
negative examples in S. 0log0 is 0.

Entropy specifies the minimum number of bits of information needed to encode
the classification of an arbitrary member of S. For example, if p⊕ is 1, the receiver
knows the drawn example will be positive, so no message need to be sent, and
the entropy is zero. If p� is 0.5, one bit is required to indicate whether the drawn
example is positive or negative.

If the target attribute can take on c different values, then the entropy of S relative
to this c-wise classification is defined as

Entropy(S) ≡
c∑

i=1

−pilog2pi, (46)

where pi is the proportion of S belonging to class i. If the target attribute can take
on c possible values, the entropy can be as large as log2c.

Based on the entropy, information gain is defined to measure the effectiveness of
an attribute in classifying the training data. Gain(S,A) of an attribute A, relative to
a collection of examples S, is defined as
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Algorithm 1 ID3:Examples are the training examples. TargetMttribute is the
attribute whose value is to be predicted by the tree. Attributes is a list of other
attributes that may be tested by the learned decision tree. Returns a decision tree
that correctly classifies the given Examples
Require: Examples, T argetMttribute, Attributes

Ensure: A decision tree
1: Init Root node for the tree
2: if all Examples are positive then
3: return the single-node tree Root , with label = +
4: else if all Examples are negative then
5: return the single-node tree Root , with label = −
6: else if Attributes is empty then
7: return the single-node tree Root , with label = most common value of

T argetMttribute in Examples

8: end if
9: A ← the attribute from Attributes that best∗ classifies Examples.

10: The decision attribute for Root ← A

11: for each possible value, vi , of A do
12: Add a new tree branch below Root , corresponding to the test A = vi

13: Let Examples vi be the subset of Examples that have value vi for A

14: if Examples vi is empty then
15: below this new branch add a leaf node with label = most common value of

T argetMttribute in Examples.
16: else
17: below this new branch add the subtree

ID3(Examples vi , T argetMttribute, AttributesłA))

18: end if
19: end for
20: return Root

Gain(S,A) = Entropy(S) −
∑

v∈V alues(A)

|Sv|
|S| Entropy(Sv), (47)

where V alues(A) is the set of all possible values for attribute A and Sv is the subset
of S for which attribute A has value v (i.e., Sv = {s ∈ S|A(s) = v}). Note the
first term is just the entropy of the original collection S and the second term is the
expected value of the entropy after S is partitioned using attribute A. The expected
entropy described by this second term is simply the sum of the entropies of each
subset Sv , weighted by the fraction of examples |Sv |

|S| that belong to Sv . Gain(S,A)

is therefore the expected reduction in entropy caused by knowing the value of
attribute A. Gain(S,A) is the information provided about the target function value,
given the value of some other attribute A. The value of Gain(S,A) is the number of
bits saved when encoding the target value of an arbitrary member of S, by knowing
the value of attribute A.
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7 Neural Network

A neural network (NN) is a machine learning method inspired by biological neural
networks; it tries to find mathematical representations of information processing in
biological systems. Conventional computers use some algorithms to solve problems
that we already know how to address, but NNs may find the solution to problems that
humans do not precisely know how to solve. These NNs are capable of modeling any
complex function and achieving high accuracies on the premise that large amounts
of data are available.

The basic neural network model can be described as a series of functional
transformations. First we construct M linear combinations of the input variables
x1, . . . , xD in the form

aj =
D∑

i=1

w
(1)
j i xi + w

(1)
j0 , (48)

where j = 1, . . . ,M , and the superscript (1) indicates that the corresponding
parameters are in the first “layer” of the network. w

(1)
j i are weights. w

(1)
j0 are biases.

aj are activations. Each of them is then transformed using a differentiable, nonlinear
activation function h(·)

zj = h(aj ). (49)

These values are again linearly combined to give output unit activations

ak =
M∑

j=1

w
(2)
kj zj + w

(2)
k0 , (50)

where k = 1, . . . , K , and K is the total number of outputs. This transformation
corresponds to the second layer of the network. The w

(2)
k0 are bias parameters. The

output unit activations are transformed using an appropriate activation function to
give a set of network outputs yk . The choice of the activation function is determined
by the nature of the data and the assumed distribution of target variables.

The neural network model comprises two stages of processing, each of which
resembles the perceptron model, and for this reason, the neural network is also
known as the multilayer perceptron (MLP). A key difference compared to the
perceptron, however, is that the neural network uses continuous sigmoidal nonlin-
earities in the hidden units, whereas the perceptron uses step-function nonlinearities.
This means that the neural network function is differentiable with respect to the
network parameters, and this property will play a central role in network training.

If the activation functions of all the hidden units in a network are taken to
be linear, then for any such network, we can always find an equivalent network
without hidden units. This follows from the fact that the composition of successive
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linear transformations is itself a linear transformation. However, if the number of
hidden units is smaller than either the number of input or output units, then the
transformations that the network can generate are not the most general possible
linear transformations from inputs to outputs because the information is lost in
the dimensionality reduction at the hidden units. In general, however, there is little
interest in multilayer networks of linear units.

x is the input, and y is the output. Given a training set comprising a set of input
vectors {xn}, where n = 1, . . . , N , together with a corresponding set of target
vectors {tn}, the error function is

E(w) = 1

2

N∑

n=1

‖y (xn,w) − tn‖2 .

The error backpropagation is adopted for evaluating the gradient of an error
function E(w) for a feedforward neural network. A local message-passing scheme is
adopted in which information is sent alternately forwards and backwards through the
network. Most training algorithms involve an iterative procedure for minimization
of an error function, with adjustments to the weights being made in a sequence
of steps. At each such step, we can distinguish between two distinct stages. In the
first stage, the derivatives of the error function with respect to the weights must
be evaluated. In the second stage, the derivatives are then used to compute the
adjustments to be made to the weights.

Take the network with a single layer of sigmoidal hidden units together with
a sum-of-squares error as an example. Many error functions of practical interest
comprise a sum of terms, one for each data point in the training set

E(w) =
N∑

n=1

En(w).

Consider first a simple linear model in which the outputs yk are linear combina-
tions of the input variables si

yk =
∑

i

wkixi,

together with an error function that, for a particular input pattern n, the error
function is

ynk = yk (xn,w).
The gradient of this error function with respect to a weight wji is given by

∂En

∂wji

= (
ynj − tnj

)
xni,
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which can be interpreted as a “local” computation involving the product of an “error
signal” ynj − tnj associated with the output end of the link wji and the variable xni

associated with the input end of the link. It is the basic component for the multilayer
feedforward networks.

Regularization is adopted to control the complexity of a neural network model in
order to avoid overfitting. One regularizer is quadratic, giving a regularized error of
the form

Ẽ(w) = E(w) + λ

2
wTw.

This regularizer is also known as weight decay. The effective model complexity
is then determined by the choice of the regularization coefficient λ.

8 Data Set

The materials data and informative landscape are the most important sources of the
machine learning method. Taking the TE materials as an example, the data resources
related to TE materials are collected in Table 1 from [3]. Some specific databases
in materials informatics could be used for transfer learning and providing research
tools.

9 Conclusion

Considerable effort has been devoted to improving the performance of materials.
The optimization of multiple interrelated characteristics is required to be analyzed.
As the data analysis capability of the machine learning methods, they have been
applied in research on materials. A brief introduction of the typical machine learning
methods, i.e., SVM, clustering, regression, decision tree, and neural network, which
can be employed in the material studies is provided. Furthermore, some data sets
could be adopted in the properties analysis of the machine learning are introduced.
The high-throughput computation and machine learning methods will play an
indispensable role in the field of materials research. The data in the experimental
results and the simulation output could be researched. With the development of the
machine learning and the materials, the breakthroughs in the integration may arise.
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Table 1 Material databases for machine learning

Name URL Category

TEDesignLab www.tedesignlab.org Thermoelectrics

UCSB-MRL
thermoelectric
database

www.mrl.ucsb.edu:8080/datamine/
thermoelectric.jsp

Thermoelectrics

NIST-JANAF janaf.nist.gov Thermochemical

ASM phase diagrams www.asminternational.org/AsmEnterprise/
APD

Thermodynamics

CALPHAD
databases

www.thermocalc.com/products-services/
databases/thermodynamic

Thermodynamics

Thermophysical
Properties of Matter
Database

cindasdata.com/products/tpmd Thermophysics

Cambridge
Structural Database
(CSD)

www.ccdc.cam.ac.uk/solutions/csd-system/
components/csd

Crystallography

Crystallography
Open Database

www.crystallography.net Crystallography

CRYSTMET www.semanticscholar.com Crystallography

Inorganic Crystal
Structure Database

cds.dl.ac.uk/cds/datasets/crys/icsd/llicsd.html Crystallography

Pearson’s Crystal
Data

www.crystalimpact.com/pcd/Default.htm Crystallography

Powder Diffraction
File (PDF)

www.icdd.com/products/index.htm Crystallography

The Cambridge
Crystallographic
Data Centre

www.ccdc.cam.ac.uk/pages/Home.aspx Crystallography

AFLOWLIB aflowlib.org Computational

NIST Interatomic
Potentials Repository

www.ctcms.nist.gov/potentials Computational

NoMaD nomad-repository.eu/cms Computational

Open
Knowledgebase of
Interatomic Models
(OpenKIM)

openkim.org Computational

phononDB phonondb.mtl.kyoto-u.ac.jp Computational

The Open Quantum
Materials Database

oqmd.org Computational

nanoHUB nanohub.org Nanomaterials

Nanomaterial
Registry

www.nanomaterialregistry.org Nanomaterials

AIST Research
Information
Database

www.aist.go.jp/aist_e/list/database/riodb General Materials Data

(continued)

www.tedesignlab.org
www.mrl.ucsb.edu:8080/datamine/thermoelectric.jsp
www.mrl.ucsb.edu:8080/datamine/thermoelectric.jsp
www.asminternational.org/AsmEnterprise/APD
www.asminternational.org/AsmEnterprise/APD
www.thermocalc.com/products-services/databases/thermodynamic
www.thermocalc.com/products-services/databases/thermodynamic
www.ccdc.cam.ac.uk/solutions/csd-system/components/csd
www.ccdc.cam.ac.uk/solutions/csd-system/components/csd
www.crystallography.net
www.semanticscholar.com
www.crystalimpact.com/pcd/Default.htm
www.icdd.com/products/index.htm
www.ccdc.cam.ac.uk/pages/Home.aspx
www.ctcms.nist.gov/potentials
www.nanomaterialregistry.org
www.aist.go.jp/aist_e/list/database/riodb
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Table 1 (continued)

Name URL Category

Citrination citrination.com General materials data

InfoChem www.infochem.de General materials data

Knovel app.knovel.com/web/browse.v General materials data

MatNavi (NIMS) mits.nims.go.jp/index_en.html General materials data

MatWeb www.matweb.com General materials data

NIMS Materials
Database (MatNavi)

mits.nims.go.jp/index_en.html General materials data

NIST Materials Data
Repository (DSpace)

materialsdata.nist.gov/dspace/xmlui General materials data

Pauling File paulingfile.com General materials data

Pearson’s Crystal
Data

www.crystalimpact.com/pcd/Default.htm General materials data

The Open Quantum
Materials Database

quantum-machine.org/datasets General materials data

NRELMatDB materials.nrel.gov General materials data

SpringerMaterials materials.springer.com General materials data

The Computational
Materials Repository

cmr.fysik.dtu.dk General materials data

The Materials
Project

materialsproject.org General materials data

Total Materia www.totalmateria.com General materials data

ChemSpider www.chemspider.com Chemical data

PubChem pubchem.ncbi.nlm.nih.gov Chemical data

Reaxys www.elsevier.com/solutions/reaxys Chemical data

References

1. Mitchell, T. M. (1997). Machine learning. McGraw-Hill Science.
2. Bishop, C. M. (2006). Pattern recognition and machine learning. P101. Springer.
3. Wang, T., Zhang, C., Snoussi, H., & Zhang, G. (2020). Machine learning approaches for

thermoelectric materials research. Advanced Functional Materials, 30(5), 1906041.

www.infochem.de
www.matweb.com
www.crystalimpact.com/pcd/Default.htm
www.totalmateria.com
www.chemspider.com
www.elsevier.com/solutions/reaxys


Machine Learning for High-Entropy
Alloys

Shuai Chen, Yuan Cheng, and Huajian Gao

1 Overview of High-Entropy Alloys

In 2004, Yeh et al. [1] and Cantor et al. [2] independently proposed a novel
category of multi-principal component alloys consisting of five or more constituent
elements with atomic compositions between 5 and 35 atomic percent, which are
today widely termed as HEAs. With multi-principal components, HEAs possess
unique microstructures with fundamental core effects and exhibit many impressive
properties for practical applications. In this section, we will give an overview of
HEAs. Four fundamental core effects of HEAs are discussed in Sect. 1.1. Some
popular preparation methods of HEAs are introduced in Sect. 1.2. The reported
excellent properties of HEAs are summarized in Sect. 1.3.
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1.1 Fundamentals of High-Entropy Alloys

Due to the complex elemental compositions, the outstanding mechanical properties
of HEAs are featured by four fundamental core effects, which are summarized
as: (1) high-entropy effect for thermodynamics; (2) sluggish diffusion effect for
kinetics; (3) severe lattice distortion effect for structures; and (4) cocktail effect for
properties. High-entropy effect determines the thermodynamic equilibrium phase
and associated microstructure. Sluggish diffusion effect influences the kinetics
during phase transformation. Severe lattice distortion effect affects the deformation
behaviour and the structure-property relation. Cocktail effect implies the unexpected
behaviour appeared after alloying different elements. We will discuss these four
fundamental core effects separately.

1.1.1 High-Entropy Effect

It was first proposed by Yeh et al. [1] that, in multi-principal component alloys
consisting of five or more elements in near equimolar concentrations, intermetallic
compounds could be suppressed and solid-solution phases stabilized by the high-
entropy effect. Based on the second law of thermodynamics, at given pressure and
temperature, an alloy system attains its thermodynamically equilibrium state if its
Gibbs free energy is the lowest [3]. The Gibbs free energy of forming alloys from
mixing elemental components is expressed as:

ΔGmix = ΔHmix − T ΔSmix (1)

where �Gmix is the Gibbs free energy of mixing, �Hmix the enthalpy of mixing, T
the absolute temperature, and �Smix the entropy of mixing.

The entropy of mixing can be calculated from the following four contributions:

ΔSmix = ΔSconf
mix + ΔSvib

mix + ΔSelec
mix + ΔS

mag
mix (2)

where ΔSconf
mix is the configurational entropy,ΔSvib

mix the vibrational entropy,

ΔSelec
mix the electronic randomness entropy, and ΔS

mag
mix the magnetic dipole entropy.

The configurational entropy is always dominant among all four types of entropies,
and represents the mixing entropy in the alloys system [3]. For an alloy system of n
elements in a random solid solution, the configurational entropy is [4]:

ΔSconf
mix = −R

n∑

i=1

ci ln ci (3)

where R is the gas constant, and ci is the mole fraction of the ith element. The
enthalpy of mixing for the n-element alloy can be calculated as [5]:

ΔHmix =
n∑

i=1,i �=j

4ΔHmix
AB cicj (4)
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where ΔHmix
AB is the mixing enthalpy of binary equimolar AB alloys, and the values

can be obtained from literature [5, 6].
Elemental phases with one principal element have slightly negative �Hmix and

slightly positive �Smix, intermetallic compounds possess highly negative �Hmix but
slightly positive �Smix, and solid-solution phases consisting of multiple elements
feature moderately negative �Hmix but highly positive �Smix, which enhances their
stability. Therefore, high-entropy effect helps to stabilize the formation of solid-
solution phases with superior properties.

1.1.2 Sluggish Diffusion Effect

The diffusion is sluggish in HEA, as compared with conventional alloys. Diffusion
is difficult to measure experimentally, so early support of this effect relies on indirect
evidence [4], such as secondary observations that include formations of nanocrystals
and amorphous phases upon solidification and on qualitative interpretations of
microstructural stability upon cooling. Direct diffusion experiments were performed
by Tsai et al. [7] in 2013 with a near-ideal solution system of CoCrFeMnNi in stable
single face-centre-cubic (FCC) solid solution. The experimental measurements
showed that the diffusion coefficients in the CoCrFeMnNi HEA are lower than those
in the FCC FeCrNi alloys and FCC pure metals. Correspondingly, the activation
energies in the HEA are higher than those in the FeCrNi alloys and pure metals.
Among the five elements in the CoCrFeMnNi HEA, Ni is the slowest diffusing
element, while Mn is the fastest diffusing element. The order of increasing diffusion
rate is Ni < Co < Fe < Cr < Mn. Because of the diversity of atoms surrounding each
lattice site, an atom/vacancy can face a variable path to diffuse/migrate, and the
vacancy trapping effect of low-energy sites would lead to the sluggish diffusion.

To evaluate the quantity of low-energy sites and high-energy barriers, the
energetic data for the vacancy migration in the CoCrFeMnNi HEA have been
quantitatively examined based on atomistic simulations [8]. Initially, a vacancy on a
lattice site (numbered “0” in Fig. 1a) was introduced in a sample from the Canonical
Monte Carlo (CMC) simulation. Then, a nearest neighbouring atom was moved
to the vacant site. After each movement, the neighbouring atoms surrounding the
vacancy were relaxed. Finally, the variation of potential energy with positions as the
atoms repeatedly move is plotted in Fig. 1b. Because the migration of a vacancy to a
nearest neighbouring site corresponds to the opposite movement of the neighbouring
atom, the energy barrier of vacancy migration could be calculated according to the
potential energy curve. The average energy barriers for the five elements are shown
in Fig. 1c. These data demonstrate that the average migration energy barriers are
different for the five elements, and the order is Ni > Co > Cr > Fe > Mn, which is
close to the diffusivity measured in experiment (Ni < Co < Fe < Cr < Mn) [7].

Sluggish diffusion effect is very important for HEA since it provides many
advantages [3]. For example, sluggish diffusion facilitates super-saturated states
and fine precipitates in HEA structures. It can also enhance the creep resistance,
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Fig. 1 (a) A schematic diagram of an HEA sample with a vacancy. (b) Variation of potential
energy with vacancy position during the vacancy migration. (c) Average energy barrier of vacancy
migration for the five elements [8]. A schematic illustration of BCC crystal structure: (d) perfect
lattice of β-Ti metal; (e) severely distorted lattice of TiNbTaZrHf HEA [9]

weaken the particle coarsening, increase the recrystallization temperature, and
reduce the grain growth rate, which benefit the microstructures and properties of
HEAs for high-performance structural materials. Moreover, in practical applications
demanding slow diffusion kinetics, such as high-temperature applications, this
effect makes HEAs extremely competitive.

1.1.3 Severe Lattice Distortion Effect

A solid-solution phase is formed stably as a whole matrix in a HEA due to high-
entropy effect, regardless of the fact whether its structure is body-centre-cubic
(BCC), FCC, hexagonal-close-packed (HCP), B2 (ordered BCC), or L12 (ordered
FCC). In the matrix, there is severe lattice distortion since every atom in the lattice
site is surrounded by diverse types of atoms. As shown in Fig. 1d [9], the pure
β-Ti metal has a perfect BCC crystal structure, which consists of atoms with the
same size. Adding Nb, Ta, Zr, and Hf elements in the β-Ti metal for composing
TiNbTaZrHf HEA, as shown in Fig. 1e, results in severe lattice distortions due to
different sized atoms, where the elemental components are considered to occupy a
lattice site with the same probability. Due to the severe lattice distortions, the crystal
structure of HEA suffers local lattice strain and stress, making dislocation motion
more difficult, as compared with the pure metals or conventional alloys.

A quantitative parameter considering the atomic size difference by Zhang et al.
[5] is widely used to evaluate the lattice distortion.
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δ =
√√√√

n∑

i=1

ci(1 − ri/r)
2 (5)

where n is the number of elemental components in the HEA system, ci the
mole fraction of the ith element, ri the atomic radius of the ith element, and

r the average atomic radius
(

= ∑n
i=1 ciri).

Direct characterizations of lattice distortion are extremely challenging in exper-
iment. The pair distribution function (PDF), which describes the distribution of
distances between atomic pairs contained within a given volume, has been utilized
to quantitatively estimate the distorted local structure of HEA by Tong et al. [10]
under the measurement of high-energy synchrotron X-ray and neutron scattering.
Based on the PDF measurement, the lattice distortion can be quantified as ε =
(a1st − aavg)/aavg, where a1st is the lattice parameter obtained by fitting to the
first peak of PDF curve, and aavg is the lattice parameter obtained by fitting to
the overall spectrum. Tong et al. [10] found that the FeCoNiCrPd HEA had a
lattice distortion parameter ε = 0.79%, about twice as large as that of the Ni80Pd20
alloy (ε = 0.41%). Clearly, substituting Ni atoms with similar-sized Fe, Co, and Cr
atoms resulted in a dramatic increase in lattice distortion. This unexpected increase
cannot be simply explained by the difference in atomic size. Besides the atomic
size difference, differences in crystal-structure tendencies (FCC, BCC, HCP, B2,
or L12) and bonding energies among constituents can also cause severe lattice
distortions. The lattice distortion effect is very broad, which not only influences
the thermodynamic stability and deformation mechanisms, but can also affect a
wide range of other properties. For example, the lattice distortion seems to have
some effect on ductility and can substantially improve the friction stress, leading to
enhanced strength and sensitivity to the grain size [11, 12].

1.1.4 Cocktail Effect

The cocktail effect is a term commonly used in the acoustic field to describe the
ability to focus one’s listening attention on the voice of a single speaker among a
mixture of other conversations and background noises [13]. Multi-metallic cocktail
effect was first put forward by Ranganathan [14] to highlight the advantages of
conventional alloys, compared to which this effect becomes even more pronounced
in HEAs. For HEAs, the cocktail effect refers to unexpected properties which do not
exist in a single element but can be obtained by mixing diverse types of elements.
This effect emphasizes the fact that the properties of HEA can be dramatically tuned
by adjusting the elemental compositions and preparation method. Some examples
on the excellent properties of HEAs due to the cocktail effect will be discussed in
Sect. 1.3.

For an HEA, its crystal structure is a multicomponent solid solution, which can
be considered as an atomic-scale composite. Therefore, its properties originate not
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only from the intrinsic properties of the constituents following the mixture rules
but also from the cocktail effects of mixing different elements, providing greater
opportunities for alloy designers to achieve unprecedented properties. However, it
is also challenging since the cocktail effect is complicated and difficult to predict
based on the available theoretical frameworks. For example, the phase diagrams of
most binary and ternary alloy systems are available. For HEAs, however, there is
not a single integrated phase diagram to guide the researchers to design the alloys
with specific target. Here, ML approach has proven useful in guiding the HEA
design based on limited data. These four core effects play fundamental roles in
the investigation and understanding on the microstructures and properties of HEAs.
It can be expected that great efforts will be made to establish the fundamental
framework of multi-principal HEAs in the coming years.

1.2 Preparation Methods of High-Entropy Alloys

The development of HEAs is closely associated with the investigation of amorphous
alloys [13]. Therefore, the preparation and fabrication methods of HEAs often
refer to those of amorphous alloys, which can be categorized into three major
approaches [3]. The first approach is liquid-state mixing, which is also the main
route, including arc melting, laser melting, inductive melting, electric-resistance
melting, laser engineered net shaping, and laser cladding [15]. The second approach
is solid-state mixing, containing mechanical alloying and subsequent consolidation.
The third approach is gas-state mixing, and the techniques include sputter deposi-
tion, atomic layer deposition, pulse-laser deposition, molecular-beam epitaxy, and
vapour-phase deposition. Through these preparation methods various morphologies
of HEAs could be fabricated, including three-dimensional bulk, two-dimensional
film/coating, and one-dimensional fibrous HEAs. We will choose one typical
preparation method from each route for detailed introduction, i.e., arc melting,
mechanical alloying, and sputter deposition.

1.2.1 Arc Melting

Arc melting is the dominant preparation method to synthesize bulk HEAs among the
diverse fabrication routes. Figure 2a demonstrates a schematic diagram of the arc-
melting method [16]. The temperature of torch can reach as high as 3000 ◦C, which
is tuned by adjusting the electrical power. The arc-melting method is applicable to
most of the elemental compositions, including those with high melting temperatures,
by mixing them in the liquid state. However, this method may not be the best choice
for those elements with a relatively low melting temperature, e.g., Mg, Mn, and Zn,
since they tend to evaporate after heating. In that case, the elemental compositions
of HEAs are difficult to be precisely controlled for arc melting if these elements are
added. For these elements, electric-resistance melting or inductive melting may be
much more suitable.
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Fig. 2 A schematic diagram of HEA preparation methods: (a) arc melting [16]; (b) sputter
deposition [17]; and (c) mechanical alloying [18]

Tsao et al. [16] synthesized an Al0.3CrFe1.5MnNi0.5 HEA by the arc-melting
method, as shown in Fig. 2a. The HEA sample was melted at a temperature around
1530–1580 ◦C for 2–3 min repeatedly and solidified with turning of the solidified
ingots for five times to reach a completely alloyed state. The HEA microstructures
consisted of dendrites (DR) as matrix and interdendrites (IR). IR were Ni-rich FCC
phase, DR were Cr-rich BCC phase, and a small portion of cross-like Ni-rich FCC
phase was also formed. The as-prepared samples were under heat treatment at 650–
750 ◦C for 8 h and then quenched in water to further explore the effects of age
treatment on the microstructure and hardness of this Al0.3CrFe1.5MnNi0.5 HEA.
After ageing at 650 ◦C, both AlNi and Cr5Fe6Mn8 precipitations appeared within
the DR, where cross-like FCC phase disappeared. During ageing at 750 ◦C, the AlNi
precipitations in the DR were larger and formed globular shape inside the grain
matrix, contributing to a hardening effect. This work demonstrates that dual-phase
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(FCC + BCC) structures are formed in HEAs, and the precipitations are beneficial
to the mechanical properties.

For the effect of cooling rate on the crystal structure and chemical composition
of HEAs during arc melting, Singh et al. [19] performed a detailed investigation of
AlCoCrCuFeNi HEA by melting the constituent elements in an induction levitation
furnace and then following two different processing conditions (splat quenching and
normal casting) in a copper crucible under a pure argon atmosphere. Normal casting
was produced in flowing argon, which provided a normal cooling rate of 10–20 K/s.
They observed similar microstructures consisting of dendrites and interdendrites
in HEA samples after normal cooling as in Tsao et al.’s experiments [16]. Splat
quenching was operated in vacuum (10−6 mbar) in an electromagnetic levitation
chamber, which reached an ultrafast cooling rate of 106–107 K/s. Interestingly, a
single BCC phase is obtained by ultrafast cooling. Singh et al.’s work [19] indicates
that, for some HEAs, a solid-solution phase can only be formed at a relatively
fast cooling rate, which is a metastable state. A relatively slow cooling rate causes
the formation of multiple phases, leading to a remarkable reduction in the mixing
entropy because of the elemental segregation among these phases [13].

1.2.2 Mechanical Alloying

Mechanical alloying is a processing technique of solid-state powder involving
repeated cold welding, fracturing, and re-welding of powder particles in a high-
energy ball mill [20]. A schematic diagram of mechanical-alloying method is shown
in Fig. 2c [18]. Originally developed to produce oxide-dispersion strengthened Fe-
and Ni-base superalloys for aerospace applications, mechanical alloying has been
shown capable of synthesizing a wide variety of equilibrium and non-equilibrium
alloys ranging from blended elemental to pre-alloyed powders. Mechanical alloying
of HEAs normally follows a three-step procedure. First, the elemental constituents
are mixed and milled into fine powders in a ball mill. Then, a hot-isostatic-pressing
process is performed to impact and sinter these fine powders simultaneously. Last,
a heat-treatment process is applied to remove internal stresses induced by cold
compaction.

The greatest advantage of mechanical alloying is to synthesize novel HEAs
that are impossible to prepare by other techniques, such as alloying of normally
immiscible elements or directly coating HEA on a substrate. The reason is that the
limitations imposed by phase diagrams are not applicable to mechanical alloying
for its completely solid-state processing. The CrMnFeCoNi HEA is one of the
most notable and promising HEAs that has been studied and widely termed as
Cantor alloy. However, there are only a few published papers on CrMnFeCoNi
HEA coating. Tian et al. [18] synthesized CrMnFeCoNi HEA coating on a Q235
steel substrate by mechanical-alloying method. First, HEA powders were prepared.
Then, the Q235 substrate was put into the prepared powders. Last, a milling process
was performed for 10 h, after that the HEA coating was successfully prepared. Both
the as-prepared powders and the final coating presented single FCC solid solutions.
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The coating thickness was 180 μm, exhibiting a good bonding strength with the
substrate. The constituents were homogeneously distributed in the coating without
component segregation. The corrosion results show that the HEA coated Q235 has
better corrosion resistance than the pure Q235 in 3.5 wt% NaCl solution.

High-pressure torsion is a popular technique that achieves not only grain refine-
ment up to the nanometre scale but also diverse phase transformations. Kilmametov
et al. [21] applied the high-pressure torsion technique to a multicomponent powder
for the first time to produce a bulk nanostructured CoCrFeMnNi HEA by high-
pressure-torsion induced mechanical alloying. Micrometre sized elemental powders
were blended in equimolar concentrations, consolidated and deformed at 5 GPa
using imposed shear strain equivalent up to 100 rotations, leading to a fully dense
bulk CoCrFeMnNi HEA. Single-phase nanocrystalline HEA (grain size of 50 nm)
with smaller chromium oxide precipitates (particle size of 7–10 nm) exhibited an
amazing hardness of 6.7 GPa, which is one of the highest reported values for bulk
CoCrFeMnNi HEAs.

1.2.3 Sputter Deposition

Among gas-state preparation methods, sputter deposition, as shown in Fig. 2b [17],
is the most widely used one to synthesize HEA films. To date, bulk HEAs have been
extensively investigated, but small-dimensional HEAs have drawn less attentions,
such as HEA films/coatings and small-sized pillars. With incremental demands
for micro-/nanoscale devices for practical applications in high-temperature and
harsh environments, the fabrication and investigation of small-dimensional HEAs
become increasingly important, where magnetron-sputtering deposition exhibits
great potentials. In the sputter deposition of HEAs, the sputtered atoms are ejected
from the sputtering target by ion or atom bombardment from the sputtering gas, and
then randomly deposited on the substrate to form HEA. The microstructures of the
HEA are mainly determined by the processing parameters, including the form of
source material, atmosphere pressure, work piece temperature, and substrate bias
voltage.

Using magnetron co-sputtering technique, Zou et al. [17] deposited NbMoTaW
HEA films and small-sized pillars on silicon and sapphire substrates at room tem-
perature. Ion beam-assisted deposition (IBAD) method [22] was employed to reduce
deposition rate and grain size. During mechanical testing under a nanoindenter,
the HEA pillars exhibited extraordinarily high yield strengths of ~10 GPa, which
were among the highest reported values for the compressions of micro- and nano-
pillars. The strength of such HEA pillar was one order of magnitude higher than
that of its bulk form, along with significantly enhanced ductility (compressive
plastic strains > 30%). The HEA films demonstrated substantially enhanced stability
under long-duration high-temperature conditions (at 1100 ◦C for 3 days). Such
excellent properties of small-dimensional HEAs have potential applications in high-
temperature and high-stress conditions.
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1.3 Excellent Properties of High-Entropy Alloys

Since they were proposed in 2004, HEAs with extraordinary mechanical, phys-
ical, and chemical properties have been reported in succession, such as high
hardness, enhanced strength–ductility synergy, excellent thermal stability, supe-
rior wear/corrosion/irradiation resistance, and high-performance catalytic proper-
ties [23–25]. Alloying-element compositions, crystal-phase structures, grain sizes,
preparation techniques, and annealing treatments play important roles in the
microstructural evolutions and associated properties of HEAs. Here we mainly
discuss the hardness, strength–ductility synergy, and high-temperature properties
of HEAs.

1.3.1 Hardness

Hardness is one of the most popular approaches to examining the mechanical prop-
erties of HEAs since Vickers hardness measurement can be performed efficiently
and effectively with less requirement for the size and shape of the sample. For
some thin films of HEAs, their yield stresses are difficult to measure directly, but
micro-hardness tests can be easily performed with high precision. The hardness
values of HEAs change widely in each alloy system. In the AlxCoCrCuFeNi HEAs,
the hardness varies from 133 to 655 HV when the x value increases from 0.0 to
3.0, along with a phase transformation from FCC to BCC structures [1]. With the
substitution of Co or Cu with Mo or Ti, the hardness value generally increases.
For example, AlCo0.5CrFeMo0.5Ni and Al0.2Co1.5CrFeNi1.5Ti HEAs exhibit a high
hardness value of 788 HV [26] and 717 HV [27], respectively. Thus, the selection
of the HEA system and adjustment of the elemental concentrations are critical in
determining the hardness of HEA.

To systematically investigate the compositional dependence of HEA hardness,
Zhu et al. [28] tuned the atomic ratio of the constituent elements in three typical
equimolar CoCrFeNiMn, CoCrFeNiAl, and CoCrFeNiCu HEAs to form 78 alloys,
whose phase structures and hardness values are shown in Fig. 3. Single phase
(FCC or BCC), duplex FCC phases, and duplex BCC phases, formed within a wide
compositional space in 68 out of the 78 HEAs, were not limited to the equimolar
compositions with the maximum mixing entropy. With the precipitation of hard
sigma phases, the hardness of the FeNiCrMn alloy is 528 ± 82 HV (Fig. 3a).
With Ni addition, the hardness decreases to 145–166 HV when x reaches 10% for
(CoCrFeMn)(100-x)Nix HEAs due to the decreased volume fraction of sigma phase.
(CrFeNiMn)(100-x)Cox HEAs exhibit almost the same value of hardness, which may
be attributed to the small volume fraction of sigma phase.

Differed from the (CoCrFeMn)(100-x)Nix and (CrFeNiMn)(100-x)Cox HEAs with
a single FCC phase, CoCrFeNiAl HEAs have BCC structures, exhibiting rela-
tively high hardness as shown in Fig. 3b. The hardness of (CoCrFeAl)(100-x)Nix



Machine Learning for High-Entropy Alloys 31

Fig. 3 Hardness of the as-cast (a) (CoCrFeMn)(100-x)Nix and (CrFeNiMn)(100-x)Cox HEAs, and
(b) (CoCrFeAl)(100-x)Nix, (CrFeNiAl)(100-x)Cox, (CoCrNiAl)(100-x)Fex, and (CoFeNiAl)(100-x)Crx
HEAs. The legend “+” centred symbols denote multiple phases, fully open symbols represent
either single or duplex FCC phases, fully closed symbols denote duplex BCC phases, and left-half
open symbols represent FCC and duplex disordered plus ordered BCC phases [28]

HEAs decreases since phase transformation from BCC to FCC structures occurs
with increasing Ni concentration. Even though the (CoCrNiAl)(100-x)Fex, (CoFe-
NiAl)(100-x)Crx and (CrFeNiAl)(100-x)Cox HEAs have similar BCC structures, their
variation trends of hardness are different. With the increase of x value, the hardness
value of (CrFeNiAl)(100-x)Cox and (CoCrNiAl)(100-x)Fex HEAs decreases, while that
of (CoFeNiAl)(100-x)Crx increases. As mentioned by Zhu et al. [28], the different
variation trends of hardness among different HEAs may be due to the different bond
energies, which need further investigation. Therefore, an optimal design of HEAs
with desired hardness is a complicated task, which can be especially challenging
for trial-and-error experimental developments. This is where an ML approach could
provide some valuable insights.

1.3.2 Strength and Ductility Synergy

Metallic materials have been widely used as structural materials, where the strength
and ductility are two baseline mechanical properties. The goal is to achieve high
strength and high ductility in such materials as much as we can, which is challenging
since these two properties often exhibit a trade-off, i.e., a gain in strength usually
induces a sacrifice in ductility. Heterogeneities have been intentionally introduced
into conventional metals/alloys, such as a grain/twin size gradient, lamellae thick-
ness gradient, and phase structure gradient [29], to promote strain hardening and
hence uniform tensile ductility, achieving considerably improved strength–ductility
synergy. Motivated by the role of heterogeneities in conventional metals/alloys,
researcher also tailored heterogeneities in HEAs to promote strength–ductility
synergy.
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Ma et al. [12] categorized the heterogeneities in HEAs into multiple lev-
els. The first level arises from the multiple principal elements at the atomic
level, i.e., the compositional and packing arrangements of various elemental
atoms (short−/medium-range ordering in the neighbour shells). For example,
Ding et al. [30] synthesized a CrFeCoNiPd HEA, where all five elements formed
atomic aggregation with a wavelength of 1–3 nm. This heterogeneity exhibited
considerable resistance to dislocation glide, leading to higher yield strength without
compromising ductility. The next level of heterogeneity refers to the nanoscaled
clusters, complexes, or precipitates. For example, Lei et al. [31] doped a TiZrHfNb
HEA with 2.0 atomic percent oxygen, leading to a strength–ductility synergy with
tensile strength improved by 48.5 ± 1.8% and ductility enhanced by 95.2 ±
8.1%. The underlying mechanism is that oxygen tends to form ordered interstitial
complexes, changing the dislocation shear mode from planar slip to wavy slip,
promoting double cross-slip and dislocation multiplication during deformation.

The third level of heterogeneity comes from multi-phase structures that evolve
from a single-phase solid solution, including transforming to dual phase, eutectic
lamellae structure, martensites, etc. For example, Shi et al. [32] synthesized a
AlCoCrFeNi2.1 eutectic HEA (EHEA) with a dual-phase heterogeneous lamella
(DPHL) structure. Mechanical properties of the DPHL HEAs and various reported
superior metallic materials are compared in Fig. 4. Both Shi et al.’s DPHL HEAs
[32] and other reported HEAs [33–39] are separated from the general trend of
conventional metallic materials for the tensile strength-elongation map (Fig. 4a),
suggesting a promoted strength–ductility synergy in HEAs. However, in the yield
strength-elongation map (Fig. 4b), only Shi et al.’s HEAs [32] stand out from
the trend, with yield strength of ~1.5 GPa and elongation of ~16%. Due to phase
decomposition, there are substantial hard intergranular ordered BCC phases in the
soft FCC lamella matrix to impart an additional rigid deformation constraint to FCC
grains, thereby strengthening the HEAs. Moreover, the as-prepared EHEAs can
activate microcrack-arresting mechanisms to further extend their strain-hardening
ability for improved ductility.

The fourth level originates from the defects in the crystal structures and the grain-
size distribution with a length scale from nanometre to micrometre. For example,
Wu et al. [40] designed an Al0.1CoCrFeNi HEA by combining non-recrystallized
and recrystallized grains in heterogeneous structures, which exhibits enhanced
strength-ductility synergy from both the underlying plastic accommodation and
hardening processes (dislocation hardening, back-stress hardening and twinning).
The above multiple levels of heterogeneities in HEAs, leading to lattice friction
and back stress hardening, can be utilized as efficient strategies to enhance the
strength–ductility synergy of HEAs. The high strength and good ductility provide
great potentials for HEAs to outperform conventional metals/alloys in numerous
fields, such as civilian infrastructure, transportation, and aerospace.
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1.3.3 High-Temperature Properties

To develop novel HEAs with desired properties for high-temperature applications
has been one of the major interests of the HEA research community. Among
the various HEAs, those consisting of refractory elements, i.e., refractory HEAs,
have been of particular interest due to their high strength at elevated temperatures.
For example, Senkov et al. [41] produced single BCC phase NbMoTaW and
VNbMoTaW refractory HEAs, with yield strengths as high as 400–500 MPa at
1600 ◦C. Strength retention at elevated temperatures has drawn a large amount of
attention. However, the densities of refractory HEAs are usually very high, such
as 13.8 g/cm3 for NbMoTaW HEA, and 12.4 g/cm3 for VNbMoTaW HEA, and
refractory HEAs often exhibit an inferior elongation to fracture at room temperature.

To reduce density and enhance ductility at room temperature, the high-density
constituents can be substituted by some lower density ones. For example, HfNbTa-
TiZr HEA (with density of 9.94 g/cm3) exhibits a high compression yield strength of
929 MPa and a superior room temperature ductility greater than 50% [42]. To further
increase the high-temperature strength and decrease the density of HfNbTaTiZr
HEA, different strategies could be adopted, e.g., by adding low-density elements
like Mo, Cr, and Al [43, 44] or alternatively by adding Si so that a low-density
secondary phase could be formed [45]. For example, Juan et al. [46] enhanced the
yield strength from 100 to 550 MPa at 1200 ◦C by adding Mo in HfNbTaTiZr HEA,
while maintaining a reasonable room temperature ductility of 12%. To date, the
refractory HEA family mainly consists of eleven elements: Hf, Nb, Ta, Ti, Zr, V, W,
Mo, Cr, Al, and Si. Other refractory elements, such as Ir, Os, Re, Rh, and Ru, have
not yet been utilized in refractory HEAs.

Fig. 4 (a, b) Mechanical properties of dual-phase heterogeneous lamella (DPHL) HEAs [32]
in comparison with conventional metallic materials and other HEAs, including precipitation-
hardened HEAs [33], metastable brittle HEAs [34], carbon-doped HEAs [35], dual-phase HEAs
[36], as-cast eutectic HEA (EHEA) [37], ultrafine-grained (UFG) EHEA [38], complex and
hierarchical (CH) EHEA [39]
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2 Computational Modelling and Machine Learning
Approaches for High-Entropy Alloys

The huge elemental and compositional space of HEAs provides great oppor-
tunities to discover new HEAs with desired properties. Meanwhile, the large
unexplored material search space is also challenging for the conventional exper-
imental/simulation techniques in the field. Data-driven ML approaches provide
an accurate, computationally inexpensive, interpretable, and transferable way to
rapidly screen a given search space to identify the most promising material
candidates. In the past few decades, substantial advancement of ML algorithms has
expanded the application of data-driven approach throughout science, commerce,
and industry. One of the challenges in utilization of ML approaches for material
discovery is the lack of large experimental datasets, especially in the space of HEA
materials. This problem can be mitigated through computational methods. In this
section, we will introduce some of the computational methods and ML approaches
for HEA design. Computational methods for HEA design are discussed in Sect. 2.1.
Some ML predictions of phase formations are introduced in Sect. 2.2, and examples
of ML predictions of mechanical properties are summarized in Sect. 2.3.

2.1 Conventional Computational Methods for HEA Design

To accelerate the discovery and development of HEAs, high-throughput com-
putations and multi-scale simulations are in demand. Computational methods
can be utilized to investigate the HEAs spanning different time/length scales
and to describe the structural and physical characteristics of materials qualita-
tively/quantitatively, assisting researchers to understand the materials from multiple
aspects. High-throughput calculations can also complement the experiment to
provide substantial data for ML models. Computational methods, like experimental
techniques, can concentrate on different features of the material, such as different
levels of structure descriptions (from atomic level to nanoscale, and to macroscale),
as well as various properties (mechanical, physical, or chemical behaviour), etc.
Thus, different computational methods targeting different mechanisms have been
developed: density functional theory (DFT), molecular dynamics (MD), Monte
Carlo (MC), discrete dislocation dynamics (DDD), phase-field method (PFM),
thermodynamics model (TM), finite element method (FEM), as well as calculation
of phase diagram (CALPHAD). Below we will discuss three most widely used
computational methods for HEA design: DFT calculation, MD simulation, and
CALPHAD modelling.



Machine Learning for High-Entropy Alloys 35

2.1.1 DFT Calculation

Generally, first-principle calculation aims to solve the Schrodinger equation with
structures and atoms as the input. The Schrodinger equation, however, often has
difficulties describing a complex system, and is often limited to dealing with
sufficiently simple systems. To simplify the Schrodinger equation, DFT [47, 48] has
emerged as one of the most popular first-principle methods. The DFT simplifies the
problem of multi-electrons to that of a single electron, describes physical properties
of the ground state based on the ground state electron density, and has been
extensively employed to study the microstructures and properties of HEAs [49].
Plane-wave-based methods are widely utilized to solve the Kohn–Sham equation
for the total energy and force of a HEA system, after which the cell structure and
atomic positions are both updated towards the equilibrium state using a structural
optimization algorithm. Green’s function is also a powerful approach to handling
the Kohn–Sham equation within a self-consistent effective medium model.

In principle, a large supercell is required to simulate a HEA, which is extremely
difficult for DFT. Although DFT has already employed many simplifications in
solving the Schrodinger equation, the computational cost is still quite expensive
for HEA systems that consist of multiple constituents. Fortunately, the cluster
expansion theory can be employed to utilize a small cell to model the large supercell.
For example, one of the popular methods is the specific quasirandom structure
(SQS) [50], which allows to capture the chemical disorder and to simulate the local
relaxation effects via optimizing the atomic distribution by satisfying the objective
functions, including pair correlation, three-body correlation and all the way to
many-body correlation, etc., within the neighbouring shells of a solid solution.
Moreover, Jiang et al. [51] reported a small set of ordered structures (SSOS)
approach to capture the random structures of HEAs, achieving a good accuracy
yet with significantly reduced computational cost. For example, an SSOS-3 × 5
containing only three 5-atom cell structures (Fig. 5a–c) can perfectly match 20
pair correlation functions of the random BCC five-element HEA for the first- and
second-nearest neighbours. To achieve the same level of accuracy, it is necessary to
use a much larger 125-atom structure in the SQS approach (Fig. 5d).

2.1.2 MD Simulation

Molecular dynamics is a computational method capable of simulating the move-
ments of atoms/molecules (defined as particles). The particles interact with each
other and move to energetically favourable sites, capturing a dynamic evolution of
the simulated system. The forces exerted on the particles and the system energies are
calculated according to the interatomic potentials. The trajectories of particles are
updated by solving Newton’s equations of motion for each particle numerically.
MD simulations are capable of relating atomic-level structures to microscopic
behaviours, which have a very extensive range of applications, such as for predicting
the mechanical and thermal properties of HEAs [52–54]. Compared with DFT
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Fig. 5 Three 5-atom cell structures in SSOS-3 × 5 for DFT calculation are shown in (a–c),
respectively. A 125-atom SQS structure for DFT calculation is shown in (d) [51]. Polycrystalline
model of CoNiFeAl0.3Cu0.7 for MD simulation where colour indicates (e) atom type and (f) phase
as determined from common neighbour analysis. (g) Variation of yield strength with average grain
size for polycrystalline CoNiFeAl0.3Cu0.7 HEA under compression along the x direction by MD
simulation [52]

calculations, MD simulations can handle much larger time and length scales.
MD simulation can also be combined with MC simulation to further extend the
simulation scales [8].

HEAs with FCC structures always possess a low yield strength in the range
of 200–600 MPa [55]. To tackle this issue, Fu et al. [56] synthesized a nanocrys-
talline CoNiFeAl0.3Cu0.7 HEA with a single FCC phase. This HEA exhibited an
amazing yield strength of 1.8 GPa, which was remarkably higher than that of
other FCC structured HEAs [55]. To reveal the deformation mechanisms in Fu
et al.’s experiments [56], Li et al. [57] performed MD simulations to investigate
the compressive process of nanocrystalline HEA with the same composition and
similar grain size, from which they concluded that the high strength were associated
with a strain-induced phase transformation from FCC to BCC structures. The phase
transformation in HEA occurs when the stress induced by severe lattice distortion
and external loading exceeds the critical stress required for the nucleation of BCC
phase in the matrix.

Chen et al. [52] systematically investigated the phase stability, mechanical
properties, and deformation mechanisms of CoFeNiAlxCu1-x (x = 0.1–0.9) HEAs.
Cohesive energy data demonstrate that, when Al concentrations is low (x < 0.4),
FCC structure is more stable. Otherwise, BCC structure is more stable. Hall-Petch
and inverse Hall-Petch relations were obtained in both FCC and BCC HEAs (FCC
CoNiFeAl0.3Cu0.7 HEA is shown in Fig. 5e–g). Microstructural evolutions indicate
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that the dominant deformation mechanisms are dislocation slip and deformation
twinning in the Hall-Petch regime of FCC HEA because of the low stacking
fault energy. In contrast, the deformation mechanism of BCC structures is phase
transformation. For the inverse Hall-Petch relation, the deformation mechanisms
are grain rotation and grain boundary migration for both FCC and BCC HEAs.

2.1.3 CALPHAD Modelling

Different from DFT calculation and MD simulation, CALPHAD [58] is used to
perform thermodynamic and kinetic calculations to obtain the phase diagrams and
thermodynamic properties of HEAs according to the thermodynamic databases.
Phase diagrams play a key role in understanding the HEA formation and usually
refer to a graph with axes for composition and temperature of a HEA system,
displaying regions where different single phases are stable and where two or
more of them coexist. CALPHAD calculations also allow to investigate the phase
compositions, fractions, and stabilities as a function of constituents, pressures, and
temperatures. This is a powerful tool for predicting the HEA structure under differ-
ent conditions, providing not only rational guidance for experimental preparation
but also substantial data for ML models. Besides, CALPHAD can be used to predict
the thermodynamic properties for each phase and multiple phases.

A reliable thermodynamic database is a prerequisite for CALPHAD modelling
of HEAs. Gao et al. [3] stated that the top priority in establishing a reliable database
of HEAs is to gather the phase-equilibrium data from the lower-order alloy systems,
i.e., the corresponding binaries and ternaries. Unfortunately, such experimental data
are usually not sufficient. Fortunately, DFT calculations and MD simulations often
can complement experiment to fill up the thermodynamic data. To date, several
commercial software with robust thermodynamic database are available, such as
Thermo-Calc [59], Pandat [60], and FactSage [61]. In particular, the TCHEA
database [59] developed for HEAs includes all the binary and most ternary systems
associated with 26 elements, while the PanHEA database [60] contains all the binary
and ternary systems related to HEAs consisting of Al, Co, Cr, Cu, Fe, Mn, and Ni,
providing unprecedented possibilities for computational method assisted discovery
of HEAs.

MacDonald et al. [62] employed Thermo-Calc’s TCHEA database to perform
systemic analysis by comparing the CALPHAD-predicted phases and the experi-
mentally observed phases in the CoCuFeMnNi HEA. Figure 6a plots a step diagram
with the equilibrium phases over a range of temperatures predicted by CALPHAD.
This diagram indicates a disordered FCC phase with all the constituent elements
(labelled as L12#2 in red) from the melting temperature (1157 ◦C) to 727 ◦C.
A Cu-rich disordered FCC phase (labelled as L12 in green) is predicted from
low temperature to 727 ◦C, and an Fe-Co-rich B2 phase (labelled as B2 in light
blue) is predicted from low temperature to 559 ◦C. The step diagram agrees with
the experimentally observed phases well, except for some errors in the precise
temperature points at which the phases form.
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Fig. 6 (a) Phase diagram of the CoCuFeMnNi HEA in the temperature range of 400–1600 ◦C
predicted by CALPHAD. Phase compositions by CALPHAD predictions and experimental
measurements for the three phases: (b) Fe-Co-rich B2 phase, (c) Cu-rich FCC phase, and (d)
matrix FCC phase [62]

The coarsening of secondary phases during post deformation annealing treatment
at 600 ◦C for 24 h allows for quantitative energy dispersive X-ray spectrometer
measurements of each phase observed. These experimental measurements are
compared with the CALPHAD predicted compositions of each phase at 500 ◦C
in Fig. 6b–d, since 500 ◦C is the highest temperature that CALPHAD predicts
the formations of all three phases. For the compositions of the ordered Fe-Co B2
phase (Fig. 6b) and the matrix disordered FCC phase (Fig. 6d), the predicted data
are in relatively good agreement with experimental data. The experimental Cu-rich
phase contains dramatically higher compositions of Ni and Mn than CALPHAD
predicted. This trend indicates that the modelling of a segregating element in an
HEA appears to be unreliable in Thermo-Calc software with this TCHEA database
[62]. ML approaches are likely to provide guidance in addressing this inconsistence.
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2.2 Machine Learning Predictions of Phase Formations

The intrinsic property of an HEA highly depends on the phase structure: single
solid-solution phase (FCC, BCC or HCP), intermetallic compound or amorphous
phase. Therefore, accurate prediction of the resulting phase for a given elemental
composition is crucial to the rational design and development of new HEAs.
Computational methods, such as DFT and CALPHAD, have been employed for
predicting the phase formation. However, these methods are not always efficient for
a large search space of HEAs. Based on experimental data, parametric methods with
various empirical thermo-physical parameters, such as entropy of mixing, enthalpy
of mixing, valence electron concentration, and atomic size difference, have been
used to make predictions of phase formations [1]. However, these empirical rules
only provide limited representation capability and their performance is not always
satisfactory. In contrast to conventional computational and parametric methods,
data-based ML can improve both the accuracy and efficiency of predictions for
HEAs. We will discuss some of ML predictions on single phase (FCC, BCC &
HCP), intermetallic compound, and amorphous phase of HEAs below.

2.2.1 Single-/Multi-Phase Solid Solution

Yeh et al. [1] proposed that equimolar compositions maximize the configurational
entropy of HEAs, stabilizing the formation of solid-solution (SS) phase. This trend
indicates that the possibility for the SS formation in HEAs increases with the
number of constituent elements increasing. However, it is well known that the
SS formation in HEAs does not merely depend on the elemental quantities [5].
The Hume-Rothery rules [63] have been widely used to predict the SS formations
of binary alloys, indicating that the misfit in the features of constituent elements
strongly influences the SS formations in binary alloys. For HEAs, King et al. [64]
proposed an empirical rule, correctly predicting the formation and stability of 177
single-phase structures of the 185 experimentally reported HEAs. However, the
empirical rules for the prediction of SS formation proposed so far usually have very
compromised predictability [65].

Motivated by this idea, Pei et al. [65] performed an ML study with a large
dataset (1252 samples) and showed that the SS formations could be quite accurately
predicted (93%). The dataset for ML consisted of 625 single-phase and 627 multi-
phase samples from binary to quinary alloys, whose compositions, phase structures,
and thermodynamic properties were obtained from CALPHAD modelling, DFT
calculation, and hybrid MC/MD simulation [66]. The descriptors used for ML were
elemental properties, whose pair correlations with alloy phases are shown in Fig.
7a. The correlation matrix indicates that the elemental properties, such as bulk
modulus, vaporization heat, and valence, possess quite strong correlations (>0.6).
Because most elemental properties exhibit strong correlations with each other (i.e.,
collinearity), it is impossible to employ a simple linear model to predict the phases
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Fig. 7 (a) The correlation matrix of elemental properties with alloy phases. (b) The variation of
new parameter γ with lattice misfit δ. The values of γ ≥ 3 are tuned to 3 for better visualization.
(c) The predictability of the new rule when γ ≥ 1 with α = 0.2 (i) only and (ii) hybrid with δ ≤
6%. (d) Validation of the new rule γ ≥ 1 with α = 0.2 rule by CALPHAD method [65]

accurately. It is obvious that simple pair correlations are not robust to map elemental
properties to the phases; hence a nonlinear ML model is highly demanded.

Nonlinear Gaussian process is a powerful ML algorithm, which has led to
high predictability with an accuracy of 93% [65]. For ML predictions of phase
formations, Pei et al. [65] identified the most important descriptors: molar volume,
bulk modulus, and melting temperature. By utilizing these descriptors, a new
thermodynamics-based rule was developed to predict SS phases, with a new
parameter γ calculated as the ratio of Gibbs free energy of N-component alloys to
the lowest Gibbs free energy of its binaries. If γ ≥ 1, a single-phase solid solution
is predicted to form. The ML prediction results are shown in Fig. 7b, c, which
accurately predicts 88% FCC, 66% BCC, and 93% HCP alloys with an optimized
parameter a = 0.2. The average accuracy is 73% by the empirical rule alone. If
it is hybrid with the empirical rule of atomic size misfit δ ≤ 6%, the accuracy
increases to 81%, giving much better predictability than by the rule alone. To test the
predictability of this rule, the phase structures of new alloys were also predicted and
compared with CALPHAD modelling. The high consistency between CALPHAD
and ML in Fig. 7d indicates that Pei et al.’s rule [65] obtained from ML can act as a
guide to discover HEAs with desired phase structures.
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By coupling thermodynamic and chemical features with a random forest model,
Kaufmann et al. [67] also proposed a high-throughput ML approach to predict the
single- or multi-phase SS formation. The dataset contained a total of 1798 unique
samples with equimolar compositions from Lederer et al.’s DFT calculations [68].
The 1798 samples consisted of 117 binaries, 441 ternaries, 1110 quaternaries, and
130 quinaries. The ML prediction accuracy for the binary, ternary, quaternary, and
quinary samples were 87.2%, 63.3%, 62.2%, and 72.3%, respectively. The incorrect
predictions were found to be related to the lack of training data for the ternary
compositions as well as the absence of compositions that were not single-phase BCC
or FCC in the quaternaries and quinaries. This model can be employed as a primary
tool or integrated into existing alloy discovery workflows to explore material space
in an unconstrained manner and to predict the results of new experiments.

With an experimental dataset containing 322 as-cast samples consisting of
ternary to nonary multi-principal element alloys, Li et al. [69] built a support
vector machine model to distinguish the FCC, BCC single phases, and the remain-
ing phases, achieving a cross-validation accuracy over 90% after training and
testing. Five elemental properties, i.e., atomic size difference, valence electron
concentration, configurational entropy, mixing enthalpy, and melting temperature,
were selected as descriptors to reduce the risk of overfitting. With this model,
the phases of 267 BCC and 369 FCC equimolar HEAs in the composition space
of 16 metallic elements were further predicted. Interestingly, dozens of refractory
HEAs possessing high ratios of melting point to density have been sought out. In
particular, 11 of them are well consistent with the experimental measurements [70–
72]. Besides, 20 quinary refractory HEAs with highest melting points also agree
well with DFT calculations. This proposed ML model complements the calculation
of phase diagrams and provides useful guidance for designing new HEAs.

2.2.2 Solid-Solution, Intermetallic, and Amorphous Phases

Beside the above SS phase, diverse other phases, such as intermetallic (IM) com-
pound or amorphous phase (AM), also appeared in HEAs. Based on ML algorithm,
Zhou et al. [73] examined the commonly used design rules for HEA phases. The
dataset used for ML contained 601 as-cast alloys with 131 SS alloys, 248 IM alloys,
165 AM alloys, 6 mixed IM and AM alloys, and 51 mixed SS and IM alloys. The
descriptors contained 13 parameters, including mean atomic radius (a), atomic size
difference (δ), electronegativity (χ ), standard deviation of electronegativity (�χ ),
average valance electron concentration (VEC), standard deviation of VEC (σVEC),
average mixing enthalpy (�Hmix), standard deviation of mixing enthalpy (σ�H),
ideal mixing entropy (Sid), average of the melting temperatures of constituent
elements (Tm), standard deviation of melting temperature (σT), mean bulk modulus
(K), and standard deviation of bulk modulus (σK).

Figure 8 shows a comparison of sensitivity measures of the 13 descriptors for
AM, IM, and SS phases, which are coloured according to the ratio of mean to
standard deviation. Red colour stands for positive correlation, while blue colour for
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Fig. 8 The sensitivity measures of 13 design parameters for (a) amorphous (AM), (b) inter-
metallics (IM), and (c) solid-solution (SS) phases. (d) The plot of δ vs. �Hmix for SS, IM, and
AM. (e) Comparison of the accuracy of 1-descriptor, 3-descriptor, 4-descriptor, and 13-descriptor
model [73]

negative correlation. The sensitivity measure of Sid for SS is highly positive (+13 in
Fig. 8c), while that for IM is quite negative (−7 in Fig. 8b). Figure 8c indicates that a
higher value of Sid tends to form SS phase, which is consistent with the high entropy
effect. In particular, the sensitivity measure of Sid is positive for AM (+5 in Fig. 8a),
suggesting that increasing the chemical complexity does promote glass formation.
Figure 8c also shows that δ has a remarkable influence on the SS formation, whereas
�Hmix and Sid exhibit similar degrees of influence on the SS formation. The highly
negative value of δ (−16 in Fig. 8c) indicates that the atomic size mismatch needs
to be minimized in order to obtain SS phase.

As shown in Fig. 8d, SS has a narrower distribution of δ and �Hmix than
AM and IM, indicating that SS is more related to the variation of δ or �Hmix as
compared with IM and AM. It also demonstrates that increasing δ will promote
AM and IM and inhibit SS, which is consistent with the negative values of δ for
SS in Fig. 8c (−16). For a quantitative comparison, ML prediction accuracies with
different sets of descriptors are estimated and compared in Fig. 8e. Clearly, ML
model with a single parameter Sid exhibits the poorest accuracy, as low as ~62% for
IM. Generally, the addition of other elemental properties as descriptors, such as δ,
�Hmix, and �χ , increases the prediction accuracy for all three phases. Therefore,
the ML model with all elemental properties (13 descriptors) is better than the other
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models with only partial design parameters. The extremely high accuracy for the
best ML model (95.6% for AM, 92.2% for IM, and 97.8% for SS) demonstrates
that the ML approach is a powerful tool for designing HEAs with desired phase
structures.

Using a comprehensive experimental dataset summarized in the review article
of HEAs [4], including 401 different HEAs with 174 SS, 54 IM, and 173 mixed
SS and IM (SS + IM) phases, Huang et al. [74] also employed ML algorithms
to explore phase selection rules. Three popular ML algorithms, i.e., support vector
machine (SVM), K-nearest neighbours (KNN), and artificial neural network (ANN),
were adopted to screen out the most suitable ML model. Five parameters were
employed as descriptors, including VEC, �χ , δ, Sid, and �Hmix. The whole dataset
was divided into four nearly equal portions to execute a cross-validation to avoid
overfitting. Each portion was utilized as the testing data only once. When one
portion of data was used as testing data, the others were training data. Therefore,
four times training and testing of the ML model were performed on different subsets
of the full data to execute the cross-validation process, creating a robust model
with improved accuracy. The final accuracy was calculated as the average value
of these four testing results. The testing accuracy for the SVM, KNN, and ANN
models are 64.3%, 68.6%, and 74.3%, respectively. Therefore, the trained ANN
model outperforms others and is used for the subsequent predictions of new HEAs.

Utilizing a genetic algorithm (GA) to choose the ML model and associated
descriptors efficiently, Zhang et al. [75] collected 550 as-cast HEAs with stable
phase formation information from literature sources [76] to construct a dataset
and performed a systematic framework. Single BCC phase, single FCC phase, and
dual FCC and BCC phase were considered as the SS phase, while intermetallic
compounds and amorphous phases were regarded as the non-solid-solution (NSS)
phase. Nine ML models with combinations of seventy material descriptors were
tested, where GA was employed to achieve an efficient search. The optimized
classification model exhibited an accuracy up to 88.7% for identifying SS and NSS
HEAs and further to 91.3% for distinguishing BCC, FCC, and dual-phase HEAs.
With a small dataset of 118 samples, Islam et al. [77] employed neural network ML
model to recognize the underlying data pattern and predict the corresponding phase
of multi-principal element alloys. The trained ML model reached an accuracy of
over 99% for the full dataset, while an average generalization accuracy higher than
80% were obtained for the cross-validation training and testing datasets.

2.2.3 Precipitation

For the precipitation in HEAs, Sato et al. [78] studied the strengthening of ordered
L12 precipitate (γ′) in the CoAlW alloy system in 2006, which has sparked
the research interest in designing novel γ′-strengthened Co-base superalloys with
excellent properties for aircraft applications. For example, Liu et al. [79] proposed
an ML strategy to design Co-base superalloys (CoaAlbWcNidTieTafCrg) with
multiple targeted properties optimized simultaneously. Among all the properties
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that the γ′-strengthened superalloys possess, the γ′ solvus temperature is one of the
most important, since it reflects the upper limit of temperature capability. Hence,
to develop superior γ′-strengthened Co-base alloys, a high γ′ solvus temperature
(i.e., Tγ′-solvus > 1250 ◦C) is essential. Moreover, the targeted processing window
(�Tp = Tsolidus – Tγ′-solvus ≥ 40 ◦C), freezing range (�Tf = Tliquidus – Tsolidus ≤
60 ◦C), microstructural stability, and density (ρ ≤ 8.7 g/cm3) were also optimized
simultaneously by Liu et al. [79].

In Liu et al.’s work [79], the quantities of samples in the original dataset were
31, 68, 94, and 134 for the density, liquidus, solidus, and γ′ solvus temperature,
respectively. With the chemical compositions as the descriptors, six different
regression models, including AdaBoost, support vector machine with a kernel of
radial basis function, decision tree, k-nearest neighbours, random forest (RF), and
gradient tree boosting (GTB) algorithms, were built by Liu et al. [79]. The receiver
operating characteristic (ROC) curve was used to evaluate the performance of the
ML model, as shown in Fig. 9a. When the ROC curve is closer to the upper
left corner of the graph, the model shows better performance. The area under the
ROC curve (i.e., AUC value) can also be employed to evaluate the accuracy of
ML predictions. The closer the AUC value is to 1, the higher the accuracy of the
ML model. The mean value of 100 AUC values for the GTB model is 0.96 and
larger than that of other models. The best ML models for predicting the γ′ solvus
temperature, liquidus, density, and solidus were the GTB, GTB, GTB, and RF,
respectively, whose performances on the testing dataset are shown in Fig. 9b–e.
Therefore, the GTB model is the best among the six different regression models and
chosen as the ML model for the subsequent predictions of new alloys in the potential
composition space.

For the CoaAlbWcNidTieTafCrg alloys, the potential composition space was
defined by Liu et al. [79] as: 30% ≤ a ≤ 100%, 10% ≤ b ≤ 15%, 1% ≤ c ≤
8%, 20% ≤ d ≤ 50%, 1% ≤ e ≤ 8%, 1% ≤ f ≤ 4%, 2% ≤ g ≤ 10%, where the
concentrations of elements were in atomic percent. Each alloy in this space was
constrained by a > d to satisfy the concept of Co-base alloys with a + b + c +
d + e + f + g = 100%. A series of new Co-base superalloys were screened out
successfully and synthesized out of 210,000 candidates experimentally. As shown
in Fig. 9f, three iterations were performed in experiments until the as-prepared
alloy’s γ ′ solvus temperature was >1250 ◦C and no longer increased significantly.
The best candidate, Co-36Ni-12Al-2Ti-4Ta-1W-2Cr, exhibited the highest γ ′ solvus
temperature (1266.5 ◦C), a satisfying density of 8.68 g/cm3, a γ ′ volume fraction
of 74.5%, and excellent high-temperature (1000 ◦C) oxidation resistance. Thus, ML
has provided a new strategy to optimize multicomponent alloys with precipitations
to obtain multi-target properties.

For more complicated precipitations in HEAs, Qi et al. [80] classified 600+
reported HEAs for ML based on their phases and precipitations: disordered FCC
(A1), disordered BCC (A2), disordered HCP (A3), mixed disordered FCC +
BCC (A1 + A2), ordered BCC (B2), disordered solid-solution phases + B2
precipitations (SS + B2), and IM mixed with the other phases (IM+). Single-
phase HEA predictions (89–90% success rates) had higher accuracy than mixed
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Fig. 9 (a) The ROC curve of ML model. The standard deviation of 100 ROC curves is marked
in grey, and a random classification is plotted by the pink dashed line. The ML predictions of
the best model on the testing dataset as a function of experimental measurements for the (b) γ ′
solvus temperature, (c) solidus, (d) liquidus and (e) density, respectively. The error bars are the
standard deviation of 1000 ML predictions. The pink dotted line indicates perfect match, i.e., the
ML predictions and experimental measurements are in good agreement. (f) The experimental γ ′
solvus temperature as a function of the number of iterations. The pink dashed line plots the target
1250 ◦C [79]

phase predictions (78–85% success rates) with 50–90% training sets. Overall, this
ML model gave accurate predictions on phase formations, where both the overall
predictions and single-phase predictions of HEAs were >80%. Furthermore, 42
new HEAs with randomly selected complex compositions were prepared by suction
casting to validate the ML predictions, and 34 out of the 42 HEA samples were
correctly predicted by ML, exhibiting an accuracy of 81%. This highly predictive
ML approach can be employed to complement experiment in guiding HEA design.

2.3 Machine Learning Predictions of Mechanical Properties

As mentioned above, the huge compositional space of HEAs provides a nice
opportunity to improve mechanical properties, such as hardness, yield strength,
ductility, Young’s modulus, and elastic constant, yet at the same time sets a great
challenge in elemental selection and concentration optimization, especially if only
explored through trial-and-error type of experiments. ML approach has proven to be
a powerful strategy to predict phase formations of HEAs, as discussed in the above
section. Here in this section, we discuss some of the ML predictions on hardness,
Young’s modulus, and elastic constant of HEAs.
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2.3.1 Hardness

Hardness is a measure of the resistance to localized plastic deformation induced by
mechanical indentation or abrasion. Wen et al. [81] formulated a materials design
strategy combining a ML surrogate model with design of experiment (DOE) to
search for HEAs with large hardness in AlCoCrCuFeNi HEA system. The dataset
consisted of 155 samples, which included 22 quaternaries, 95 quinaries, and 38
senaries, all with measured hardness. The iterative design loops are schematically
shown in Fig. 10, where iteration loop I (blue dashed line) only uses composition
as descriptor and iteration loop II (red solid line) utilizes both composition and
feature as descriptors. A ML surrogate model (Fig. 10c) was trained first based
on the dataset with hardness (Fig. 10a) and composition and feature as descriptors
(Fig. 10b1 and b2). Then, the obtained ML model (Fig. 10c) was employed to
predict the hardness of new HEAs in a virtual search space (Fig. 10d). A utility
function was used (Fig. 10e) to select a candidate for experimental synthesis (Fig.
10f) by balancing exploitation (relatively high predicted hardness) and exploration
(acceptable predicted uncertainties). The measured hardness of newly synthesized
sample was added into the training set (Fig. 10a) to perform the next round of
iteration to improve the surrogate model.

Fig. 10 A schematic of the iteration loop by ML for accelerated discovery of HEAs, including (a)
dataset construction with hardness, (b) descriptor selection (b1: composition and b2: feature), (c)
ML surrogate model training, (d) new predictions for a search space, (e) utility function to choose
experimental candidates, and (f) experimental preparation and measurement. A feature pool is
added into the descriptors of Iteration Loop II, as compared with Iteration Loop I [81]
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Fig. 11 (a) Model evaluation by calculating the mean RMSE for different regression models in
Iteration Loop I. The inset enlarges the curves for the three best models of svr.r, bpnn, and knn. (b)
The predicted hardness values versus the measured ones for samples in the datasets for Iterative
Loop II, including the new experimental data during seven iterations. (c) The hardness values of the
newly synthesized samples during iterations. The inset draws the highest predicted values during
iterations. Black and purple dashed lines indicate the best values in the original training dataset
and obtained using Iterative Loop I, respectively [81]

For the ML models, Wen et al. [81] used a series of regression algorithms,
including linear regression (lin), polynomial regression (poly), back propagation
neural network (bpnn), regression tree (cart), k-nearest neighbour (knn), and support
vector regression with linear kernel (svr.l), polynomial kernel (svr.p), and radial
basis function kernel (svr.r), to predict the hardness. The performance of each ML
model in Iteration Loop I was evaluated by calculating the mean root mean square
error (mean RMSE) on the testing set, whose results with different split ratios of
training and testing sets are shown in Fig. 11a. Overall, the error of each ML model
decreased with increasing the size of training set. When the size of training set
was 70% and that of testing set was 30%, the svr.r model presented the minimum
prediction error. Thus, the svr.r model was selected to predict the hardness of new
alloys in the virtual search space for subsequent iterations.

Figure 11b shows the ML predicted hardness as a function of the experimental
measurements for all samples from the original dataset and the newly synthesized
ones by experiment. The closer the data is to the diagonal line, the more adequate the
model is. Figure 11c shows the measured hardness of the newly synthesized samples
for Iteration Loop I (labelled as composition in grey) and II (labelled as composition
+ knowledge in colour). Compared with Iteration Loop I, the samples predicted
in the first iteration of Iteration Loop II exhibited higher hardness than all of the
original samples. A sample with hardness of 843 HV was discovered for Iteration
Loop II, which was 8.8% higher than the highest value in the original dataset. The
hardness values obtained in Iteration Loop II were always higher than those in
Iteration Loop I during the iterations. The best performer, Al47Co20Cr18Cu5Fe5Ni5,
possessing the highest hardness, was predicted in the fourth iteration of Iteration
Loop II. Its hardness value reached as high as 883 HV, which was 14% larger than
the highest value in the original dataset. This strategy offers a recipe to rapidly
optimize HEA systems towards desired properties.

For an AlCoCrFeMnNi HEA system by substituting Cu with Mn, Chang et
al. [82] utilized an artificial neural network (ANN) model to explore promising
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compositions for synthesis of high-hardness HEAs. In the dataset, 91 experimental
records composed of targeted elements were collected from literature, including
compounds from binary alloys to senary alloys. Simulated annealing (SA), a
probabilistic algorithm for approaching the global optimum of a function, was
adopted in this work to screen out the candidate with targeted hardness and risk. The
ML results demonstrated that the SA algorithm could accelerate the discovery of
novel alloys in the unexplored compositional space, by identifying three candidates
with hardness >600 HV. In particular, one candidate showed a 20% increase
compared with the highest value in the original dataset. The correlations between
the predicted composition, hardness, and microstructure were further explored by
experiment. Experimental measurements indicate that the evolution of the hardness
is related to the phase transition from FCC to BCC + B2.

To design HEAs with high hardness and low density, Menou et al. [83]
utilized a multi-objective optimization genetic algorithm combining solid solution
hardening (SSH) and CALPHAD modelling with data mining. This approach
screened out 3155 alloys that were Pareto-optimal or non-dominated, meaning that
no other candidate would form single solid solution and have higher SSH and
lower density simultaneously than any one of them. Among the 3155 samples,
Al35Cr35Mn8Mo5Ti17 was chosen for experimental validation by vacuum arc
melting. This as-prepared alloy formed a single disordered solid solution, exhibiting
a Vickers hardness of 658 HV and a density below 5.5 g/cm3. This is one of
the hardest metals/alloys ever reported for such a low density, demonstrating the
promise of ML in discovering novel alloys with multi-objective optimization, as
compared with experimental trial-and-error approaches.

2.3.2 Young’s Modulus

Young’s modulus is a mechanical property that measures the stiffness of a solid
material. It defines the relationship between stress (force per unit area) and strain
(proportional deformation) in the linear elasticity regime of a material under uniax-
ial deformation. In the TiMoNbZrSnTa alloy system, Yang et al. [84] formulated a
ML approach to explore BCC β-Ti alloys with low Young’s modulus (shown in Fig.
12). The dataset was composed of 82 reported β-Ti alloy samples with low Young’s
modulus from literature, including binary, ternary, quaternary, and quinary alloys in
TiMoNbZrSnTa systems. ML algorithms, including random forest (RF), auxiliary
gradient-boosting regression tree (XGBoost), and support vector regression (SVR),
were trained based on the dataset with Young’s modulus and elemental composition.
In the forward design (Loop I in Fig. 12), when the alloy compositions are chosen,
the Young’s modulus can be predicted. Moreover, if the target Young’s modulus
is set, then alloy compositions can be predicted in the reverse design (Loop II
in Fig. 12). To increase the accuracy of ML prediction, some features reflecting
the low Young’s modulus and β structural stability were implemented into the
ML process as descriptors, including the Mo equivalence and the cluster-formula
approach, in which the former feature represented the β structural stability, and the
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Fig. 12 A schematic diagram for the design loop of multicomponent β-Ti alloys with target
Young’s modulus in the TiMoNbZrSnTa system by machine learning [84]

latter reflected the interactions among elements. Besides, the genetic algorithm was
utilized to handle the nonlinear optimization problem. By setting different objective
functions, new alloys were screened out by ML and then validated by experimental
preparations and measurements. The newly synthesized samples would be put into
the original database for another round of training and prediction.

For the forward design (Loop I), both the RMSE and the coefficient of deter-
mination (R2) were utilized as the criterion for evaluating the prediction accuracy.
Since the dataset size of 82 samples was somewhat limited, the multiple hold-out
method was employed to ensure accuracy. This process was performed for 500 times
in these three models by randomly partitioning samples into training set (90%) and
testing set (10%). Figure 13a shows that the mean RMSE values for the training
(testing) set are 1.3 ± 0.6 (4.6 ± 0.7) GPa, 3.8 ± 0.3 (4.9 ± 0.9) GPa, and 3.9 ±
0.4 (5.2 ± 0.9) GPa for XGBoost, RF, and SVR methods, respectively. Moreover,
Fig. 13b shows that the mean values of R2 for the training (testing) set are 98 ± 1
(87 ± 2)%, 89 ± 1 (84 ± 4)%, and 88 ± 2 (73 ± 3)% for XGBoost, RF, and SVR,
respectively. Therefore, the predicted accuracy of the XGBoost method is higher
than those of the RF and SVR methods for the ML prediction of Young’s modulus
in this alloy system.

For the reverse design (Loop II) of new alloys with low Young’s modulus,
the evolution histories of the genetic algorithm with the objective function of low
Young’s modulus are shown in Fig. 13c, d, in which the objective function and the
mean value of Young’s modulus are plotted as the red and black lines, respectively.
These evolution curves indicate that the predicted values are converged to objective
values after about 50 iterations to obtain [(Mo0.5Sn0.5)−(Ti13Zr1)](Nb0.5Ta0.5)
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Fig. 13 (a) RMSE and (b) R2 values of XGBoost, RF, and SVR methods with 90% training
set and 10% testing set. The evolution histories of the genetic algorithm with the objective
function of low Young’s modulus to obtain (c) [(Mo0.5Sn0.5)−(Ti13Zr1)](Nb0.5Ta0.5) and (d)
[(Mo0.3Sn0.7)−(Ti13.5Zr0.5)](Nb1.5Ta0.5) alloys. The objective function and the mean value of
Young’s modulus are plotted as the red and black lines, respectively [84]

(Fig. 13c) and [(Mo0.3Sn0.7)−(Ti13.5Zr0.5)](Nb1.5Ta0.5) (Fig. 13d) alloys, respec-
tively, indicating a high efficiency of this reverse design. Experimental measure-
ments of Young’s modulus for these two predicted new alloys (not included in the
original database) indeed reached the minimum values (46–49 GPa). Therefore, this
design framework seems capable of predicting high-performance alloys with desired
properties including Young’s modulus.

For low- (binary), medium- (ternary, quaternary), and high-entropy (quinary)
alloys, Roy et al. [85] implemented gradient boost classification model to explore
the crystal phase and Young’s modulus of an alloy system composed of 5 refractory
elements (Mo, Ta, Ti, W, and Zr). The database for phase prediction consisted of
329 samples where 159 entries were BCC phase, 111 entries were FCC phase, and
59 entries were multi-phase, while the database for Young’s modulus consisted of
only 87 samples because of limited experimental reports. The ML predictions with
experimental validations indicate that the electronegativity difference and mean
melting temperature contribute most to the phase formation of these refractory
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alloys, while the enthalpy of mixing and melting temperature have dominant
influences on the Young’s modulus of these alloys. Moreover, it also indicates
that the entropy of mixing only has negligible impacts on the phase formation and
Young’s modulus, reigniting the debate on its veritable role in determining the phase
and property of HEAs.

2.3.3 Elastic Constants

Elastic constants (e.g., bulk and shear moduli) are parameters that linearly relate
stress and strain within the elastic range of a material. As observed in many alloy
systems, the elastic constants are closely related to the lattice-distortion-induced
strain [86]. It is known that severe lattice distortion naturally exists in HEAs,
which may be partly due to the atomic size differences of the constituent elements.
For example, the single-phase FCC Al0.3CoCrFeNi HEA, which possesses large
size differences among its five types of components, is a typical system to adopt
for detailed investigation of the relationship between the elastic properties and
lattice distortion. Kim et al. [86] used an integrated experimental and computational
approach to explore the elasticity of FCC Al0.3CoCrFeNi HEA based on in situ
neutron diffractions, DFT calculations, and ML predictions. It has been reported
that, for studying the elastic parameters of HEAs, both Coherent Potential Approx-
imation (CPA) and SQS are generally suitable [87]. Therefore, Kim et al. [86]
utilized both CPA and SQS methods to calculate elastic constants for comparison.

The calculated values (SQS and CPA) and experimental measurements (neutron
diffraction) for the elastic constants of Al0.3CoCrFeNi HEA are compared in Fig.
14a. Compared with the CPA results, the elastic constants obtained from the SQS
method are more consistent with those from neutron-diffraction experiments. The
differences between SQS calculations and experimental measurements are within
5% for all elastic constants, indicating reasonable accuracy of the SQS method. To
evaluate the effects of lattice distortion on the elastic properties of HEAs, a series
of DFT calculations based on a volume-only optimized SQS with atoms fixed on
the lattice sites and a fully relaxed SQS structure with the lattice distortion were
performed. Figure 14b indicates that the relaxed SQS structure with lattice distortion
considered gives more accurate results on bulk and shear moduli, as compared with
SQS method with fixed atoms and CPA method. ML was performed using two
models, the gradient boosting machine local polynomial regression (GBM-Locfit)
and the gradient boosting trees algorithm (GB Trees), with the database containing
the results of DFT calculations. The bulk and shear moduli of GBM-Locfit and GB
Trees predictions are also plotted in Fig. 14b, indicating that the GB-Trees model
exhibits better predictions than the GBM-Locfit model for the bulk modulus. For the
shear modulus, GBM-Locfit model overestimated the experimental measurement,
while GB-Trees model underestimated the value. This work could inspire more
future studies to search for novel alloy based on similar integrated approaches.

Using a similar approach with integrated experimental measurements, theoretical
DFT calculations, and ML predictions, Lee et al. [88] also studied the elastic
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Fig. 14 (a) Comparison of experimentally measured and computationally calculated bulk and
shear moduli of Al0.3CoCrFeNi HEA. (b) Comparison of computationally calculated, experimen-
tally measured, and ML predicted bulk and shear moduli

and plastic deformation behaviours of a single BCC NbTaTiV refractory HEA at
elevated temperatures. ML models with the GB Trees algorithm were trained based
on the DFT-calculated bulk and shear moduli, compound structural information,
and elemental properties. A temperature-dependent elastic anisotropic deformation
behaviour was revealed by in situ neutron-diffraction experiments. The single-
crystal elastic moduli and macroscopic Young’s, bulk, and shear moduli were
measured by in situ neutron diffraction, with results exhibiting excellent agreement
with those from DFT calculations, ML predictions, and resonant ultrasound spec-
troscopy. The ML predicted shear and bulk moduli were 36.6 GPa and 146.3 GPa
with relative errors of 2.5% and 6%, respectively. This work further highlights an
integrated experimental and computational approach in the discovery of new HEAs
for structural materials applications.

Dai et al. [89] demonstrated that ML can also serve as a powerful tool to help
study HEAs through MD simulations. In their work, a deep learning potential
(DLP) for high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C was fitted with prediction
errors in energy and force being 9.4 meV/atom and 217 meV/Å, respectively.
The robustness of the DLP was validated by accurately predicting the variation
of structures and properties of mono-phase carbides TMC (TM = Ti, Zr, Hf, Nb,
and Ta) with temperature. For example, they were able to predict an increase
from 4.5707 to 4.6727 Å in lattice constants, an increase from 7.85 × 10−6 K−1

to 10.58 × 10−6 K−1 in thermal expansion coefficients, while a decrease from
2.02 W·m−1·K−1 to 0.95 W·m−1·K−1 in phonon thermal conductivities of high
entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C in temperature ranging from 0 ◦C to 2400 ◦C.
The predicted properties at room temperature agree well with experimental mea-
surements, demonstrating the accuracy of the DLP. With introduction of ML
potentials in MD simulations, one could address many complicated problems that
are intractable by conventional computational methods.
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3 Summary

This chapter is dedicated to an overview of machine learning approaches and
applications for high-entropy alloys, a relatively new class of materials that have
attracted considerable interest from the materials research communities in the past
decade. Towards this goal, we started by reviewing some of the most fundamental
features that characterize HEAs, such as high entropy, sluggish diffusion, severe
lattice distortion, and cocktail effects. The high entropy effect tends to stabilize a
solid-solution phase as matrix, while the sluggish diffusion effect facilitates accesses
to super-saturated states and fine precipitates. The lattice distortion effect improves
lattice friction and leads to strength enhancement. The cocktail effect underlines the
superior properties beyond the rules of mixture in a multi-principal element alloy.
Major preparation methods of HEAs include arc melting, mechanical alloying, and
sputter deposition. Arc melting is a dominant preparation method to synthesize bulk
HEAs, while sputter deposition is suitable for film/coating deposition. Mechanical
alloying has the advantage in alloying of normally immiscible elements. Superior
properties of HEAs include high hardness, excellent balance between strength and
ductility, and performance under extreme conditions such as high temperature.
FCC structured HEAs typically possess a low hardness. By tuning elemental types
and concentrations, one can induce phase transformation or precipitate formation
to increase the hardness. By tailoring heterogeneities in HEAs, such as short-
range ordering, dual phase, and gradient grains, strain hardening and uniform
tensile ductility can be substantially enhanced, resulting in considerably improved
strength–ductility synergy. Moreover, HEAs consisting of refractory elements can
achieve superior high-temperature properties.

Conventional computational methods to investigate the structures and properties
of HEAs include DFT, MD, and CALPHAD. DFT calculation is suitable to obtain
the energetic data and to predict the structural stability of HEAs by utilizing SQS
or SOSS approaches. MD simulation is a powerful method to calculate some of
the mechanical and physical properties as well as reveal deformation mechanisms
in HEAs, reaching time and length scales way beyond those of DFT. CALPHAD
modelling can predict not only the phase compositions, fractions, and stability as
functions of composition, pressure, and temperature, but also the thermodynamic
properties for each phase and multiple phases. CALPHAD is a powerful tool to
relate the HEA structure to property under different conditions, providing not only
useful guidance for experimental synthesis but also abundant data for ML approach.

One of the most exciting recent developments in the field is the rapid advance of
ML approaches to predict the phase structures and mechanical properties of HEAs.
For phase formation in HEAs, accurate predictions of the resulting phases, including
solid-solution phase, intermetallic compound, and amorphous phase, can be real-
ized. The database for ML usually comes from both experiment and CALPHAD,
reaching thousands of data points. The validated high-performance ML algorithms
are Gaussian process, random forest regression, support vector machine, artificial
neural network, and gradient tree boosting. The mechanical properties, hardness,
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Young’s modulus, and elastic constant have all been studied by the ML approach,
achieving good accuracy with support vector machine, artificial neural network,
or gradient-boosting regression. Compared with phase predictions, the database of
property prediction is mostly collected from experiment, whose size is relatively
small (typically only hundreds of samples). Therefore, high-throughput experimen-
tal or computational methods are desperately needed to provide large amount of
data for the ML approach. Although there are abundant studies focusing on HEAs in
recent years, current exploration on the structure and property of HEAs is only at the
tip of an iceberg. More aspects on microstructures (short−/medium-range ordering),
deformation mechanisms (dislocation motion and twinning formation), and thermal
properties (melting point and thermal conductivity) still call for ML and other
approaches to provide more insights. The huge compositional space of HEAs offers
unlimited opportunities for academic and industrial research and development,
where ML can be integrated with experimental and simulation methods to accelerate
the discovery of next generation materials with unprecedented properties.
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Two-Way TrumpetNets and TubeNets for
Identification of Material Parameters

S. Y. Duan, X. Han, and G. R. Liu

1 Introduction

Reliable specification of material parameters is critically important in structural
evaluation, health monitoring, and default detection. It helps to ensure the reliability
of the structures and the system performance during services [1, 2]. In many cases,
the nominal material properties used in the design or analysis or evaluation of the
structure are obtained by testing the standard samples of raw materials [2]. Such
material parameters can be substantially different from the actual properties of
the material in the structure manufactured through hot or code work processes to
produce desired shapes and geometry. The discrepancy could be as much as 20%
of the nominal data [3]. This situation is also true for the composite structures,
which are often made of fibers and matrix materials through a curing process of
heating cycles. Depending on the actual manufacturing process and the desired
shape of the structure, the material property can also be inhomogeneous, that is
varying from locations to locations [1]. Moreover, for fiber-reinforced composites,
the number of material constants has increased and the properties are anisotropic in
nature [4]. In order to obtain actual material parameters of composite structures,
effective techniques are explored. Among these techniques, the nondestructive
evaluation of composite material properties by computational inverse techniques
is most preferential [5–13].

S. Y. Duan · X. Han (�)
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of
Technology, Tianjin, China
e-mail: xhan@hebut.edu.cn

G. R. Liu
Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati,
Cincinnati, OH, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
Y. Cheng et al. (eds.), Artificial Intelligence for Materials Science, Springer Series
in Materials Science 312, https://doi.org/10.1007/978-3-030-68310-8_3

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68310-8_3&domain=pdf
mailto:xhan@hebut.edu.cn
https://doi.org/10.1007/978-3-030-68310-8_3


60 S. Y. Duan et al.

Advanced nondestructive methods for material characterization of composites
utilize complex relationships between the structure behavior (or responses) and
material constants. These relationships are often represented by a mathematical
and/or computational model at least in one direction, which defines the forward
problem. In the revise direction, such relationship can often only be expressed in
an implicit manner, and hence the problem becomes an inverse problem. If a set
of reasonably accurate experimentally measured data of structure responses, or/and
a sufficiently accurate predicative computer model for the structural responses is
available, the inverse problem can be casted into a parameter identification problem.
In such an inverse procedure, a set of parameters corresponding to the material
property can be identified by minimizing error functions formulated using the
measured or/and computed responses, such as in displacements, strains, and natural
frequencies [14–16]. However, such an inverse procedure can often be expensive,
due to the need for a large number of calls for forward model in the minimization
process.

Neural network (NN) has been applied to solve inverse problems. Examples
include the reconstruction of constitutive properties using depth–load responses
[17], group velocities, phase velocities, and slowness measurements [18]. Estima-
tion of contact forces was performed from impact-induced time-history of strains
[19, 20]. The implementation of the NN technique has greatly assisted the research
in the material science and technology [21]. In general, the forward problem is
often well defined for a stable and unique solution, because it is governed explicitly
by partial differential equations and obtaining the responses is an integral (and
hence a smoothing) operators [14]. The inverse problem, on the other hand, is
difficult to define well, and hence is often ill-posed, because the inverse solution
is obtained thorough essentially a differential (and hence a harshening) operators
[14]. In addition, these harshening operators are usually not possible to formulate
explicitly, and theoretical analysis of solution stability becomes largely impossible,
leading to difficulties to find proper remedies. Therefore, solutions can change
significantly for small changes in settings in the inverse problem, in addition to
the high computational costs. The NN approach offers means to simplify the setting
of inverse problems in the form of a NN structure.

An NN mimics the functional process of the biological neurons, and is often
configured artificially in a structure of layers of neurons. The output of a neuron
in a layer is idealized as an affine mapping (with is linear) of the inputs from
the previous layer of neurons, and is regulated by proper “activation” functions to
introduce nonlinearity. A loss (or error) function, usually in terms of a sum of mean-
squared-error, can then be built between the outputs of these neurons at the last layer
(as the predicted responses for given training sample sets) and the true (measured)
responses. Because these activation functions are usually chosen to be differentiable,
at least in piecewise, and together with the simple affine mapping in all these
previous layers, the (seemly complicated) loss function becomes differentiable.
Hence, a gradient-based minimization technique can be used to “train” the NN
by minimizing the loss function in the back-propagation process. The effective use
of gradient-based minimization techniques allows the NN to be trained efficiently,
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using essentially the steepest decent methods. Note also that the true responses can
be “simulated” by a predictive computer model using true parameters with properly
added noises simulating the measurement errors. In addition, computer models
can also be used to generate training samples, by sampling over the entire given
parameter space where the inverse solution leaves. Therefore, when a computer
model is made available, NN can be trained for many types of inverse problems
[13, 22, 23]. Due to the unique structure of the NN, it can offer a systematic
approach to solve inverse problems, provided a proper configuration can be found.
It has been demonstrated that once properly trained, an NN can become a real-time
computational tool as a surrogate model in place of the expensive computer model
for complex mechanics problems [14].

Recently, TrumpetNets were proposed for unified analyses of both forward and
inverse problems [24]. It has a unique architecture of trumpet shape, allowing
possible direct inversion over the trained net. The TrumpetNets can be trained using
any physics-law-based numerical solver (typically a predicative computer model) as
a trainer. Once successfully trained, the TrumpetNets can then be used for real-time
computations of both forward and inverse problems. Applications of this method
for mechanical problems of materials and structures can be found in Ref. [24, 25].
The major breakthrough of the TrumpetNet concept is that it reveals the physics
of the underline problem explicitly in terms of numerical numbers of weights and
biases of the trained nets. Moreover, using the TrumpetNet, the solution to the
inverse problem for some problems can even be “analytically” derived by a chain of
inversions of matrices of the weight matrices in the network layers. In these cases,
the training of the inverse NN is no longer necessary. It is, to the best knowledge of
the authors, the simplest procedure to solve inverse problems for an explicit form
of solutions. It is thus an enabling technology for at least certain types of inverse
problems. This claim has been corroborated by some problems of mechanics of
materials and structures [16, 24, 25].

It is generally understood that training a forward problem is usually much more
straightforward compared to training the corresponding inverse problem [26]. This
is especially true for mechanics problems governed by partial differential equations,
which generally have smooth forward solutions. It is also expected that the same
idea of TrumpetNet maybe extended to problems governed by integral equations in a
reverse manner. For integral problems, however, the training of the inverse problem
may be easier, and thus can be trained first. The trained TrumpetNet for the forward
problem can then be “analytically” derived. Moreover, the TrumpetNet approach
enables the variable in a problem flowing in two-way in the neural networks.
Thus, the effort for establishment of pair TrumpetNets (forward and inverse) can be
roughly at the same level of the effort for training the single forward TrumpetNet.
This enables effective processing both forward and inverse problems simultaneously
to realize the idea of “total solution” to a problem [24].

For many problems, the TrumpetNet can be further simplified into a tubular
shape. In such cases, TubeNet is practically a flattened TrumpetNet via special
treatments for dimensionality adjustment of the training datasets. It is expected that
the TubeNet is applicable for many inverse problems. It has been demonstrated to
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be effective for inverse problems of mechanics for composites with as many as eight
material parameters [25]. The technique for dimension reduction in the TubeNet is
the principal component analysis (PCA) technique invented by Pearson [26]. PCA
reduces the dimension of the training dataset to that of the input parameter dataset
[25]. For some problems, the TubeNet can use the explicit inversion procedure
termed as DWI approach, which is a chain of matrix inversions for the weight
matrices of the network layers in the trained forward TubeNet.

In this chapter, our discussion will be focused on the latest NN techniques of
the TrumpetNets and the TubeNets for inverse analysis of mechanics problems. The
contents of this chapter are largely based on our published journal papers [24, 25].

2 Problem Setting and Solving Strategy

2.1 Production of Composites

Composite materials are typically made from two or more components with
different properties, and hence usually microscopically heterogeneous. The property
of the combined materials at macroscopical level can be obtained using methods of
rule-of-mixture [27]. It derived from the micro-mechanics principle using the prop-
erties of the components by assuming some pattern of fiber arrangement within the
matrix. However, the manufacturing process of composite materials will inevitably
change the volume fraction, fiber arrangement, and fiber direction. Moreover,
depending on the actual manufacturing process and the desired shape of the structure
shown in Fig. 1, the material property can also be inhomogeneous and varying from
locations to locations [3]. In this study our focus is on continuous-fiber-reinforced
thermosetting-resin composites that are produced using an advanced manufacture
process known as high-pressure resin transfer molding, which are used in mass
production of composites. The flowchart of the high-pressure resin transfer molding
is schematically shown in Fig. 1. The composite porous prepreg is placed into the
mold cavity. The mold is then enclosed and hydraulic pressure is applied to compact
the material to the design thickness and shape. Once the mold is enclosed, more
resin and a hardener mixture are injected through high pressure into the cavity in
the prepreg. The high throughput rate for the mixed resin flows allows the cavity to
be filled quickly to significantly reduce the manufacturing time. The prepreg is then
heated up and highly pressured, via controlled manner. In such a temperature- and
pressure-controlled environment, the resin curing reaction occurs until completion,
and finally the composite material product is demolded [28].
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Fig. 1 Manufacturing processes to form composite materials into desired shapes

2.2 Strategy for Solving Inverse Problems

2.2.1 Measurement Strategy

A composite laminate produced using the above process is considered to demon-
strate the process of identification of the material constants of each layers in the
laminate, in a systematic way by performing an inverse analysis. For an effective
inverse analysis, a best possible measurement strategy must be designed to set
up the experiments [14]. This includes how to support the laminate, what type of
loading (such as tension, compression, locations) should be applied, and what type
of responses (such as displacement, strains, locations) should be measured.

2.2.2 Sensitivity Analysis

The measurement strategy mentioned above shall ensure that the parameters
(material constants in our case) to be identified is sufficiently sensitive to the
responses to be measured. This process is called sensitivity analysis, and critical
to overcome the ill-posedness in the inverse analysis [14]. The sensitivity analysis
can always be done using a predictive computer model (called forward model)
created based on mechanics principle governing the behavior of the laminate.
Once a forward model is created, a detailed sensitive analysis should be carried
out, by perturbation techniques [29]. It shall evaluate the relative contribution
of each individual parameters set to be inversely identified parameters to the
structural response [30]. It computes and then ranks the contribution ratios for
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each model parameter [31]. The insensitive parameters should next be removed,
because it is unlikely to be identified accurately, using the current inverse analysis
strategy. This would reduce the numbers of the model parameters to be identified.
If these insensitive parameters must be identified, one has to change the inverse
analysis strategy (such as boundary conditions, loading conditions and measurement
variables and locations), so as to improve the sensitivity.

In actual inverse parameter identification, one shall use the actual measured
response data. In this study, however, we use simulated measurement data for the
training of TrumpetNets or TubeNets for inverse analyses: using FEM model to
compute the responses and then add in proper levels of noises to mimic the mea-
surement error. This allows us to focus our study on the methodology on network
configuration and the features of the proposed TrumpetNets and TubeNets. Local
sensitivity study will be conducted in this work, to ensure sufficient sensitivities
in the obtaining dataset for training of the TrumpetNets or TubeNets. Parameters
that are not sufficiently sensitive to the responses are removed, and only sensitive
parameters are kept to be inversely identified. The final number of the neurons in
the input layer for the TrumpetNets or TubeNets is finally determined.

2.2.3 Inverse Analysis Using Two-Way NN Models

The schematic flowchart is shown in Fig. 2. The procedure includes the following
major steps.

1. Establish a two-way NN model architecture for both forward and inverse
analyses (see Figs. 3 and 4).

2. Create a forward computer model using the FEM. The FEM model is then used
to generate a training dataset for all parameters of material constants sampled
form a predefined parameter space.

3. Train the forward NN model using the training dataset and the standard back-
propagation algorithm, and then export and store the weights and biases of the
trained forward NN when necessary.

4. Use the trained forward NN to generate a dataset for training the inverse NN. Or,
5. Using Direct-weight-inversion (DWI) method (see Sect. 3.2) to compute directly

all the weights and biases for neurons in all layer in the inverse NN.
6. Once the inverse NN is trained and created, it is ready to produce the parameters

(material constants), by feeding it with a set of structural responses.
7. Finally, one can assess the quality of the identified material constants, by feeding

those into the forward NN (or the FEM model) to compute the structural
response, and checking its discrepancy from the response data used in step 6.
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Fig. 2 Flowchart for inverse
identification of material
properties of composites
using Two-way NN models
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3 Two-Way TrumpetNets and TubeNets

In this study, two-way NN models of both the TrumpetNets and the TubeNets will
be used. The configuration of the two-way TrumpetNets for forward and inverse
problems is shown in Fig. 3 [24]. This special NN structure with trumpet shape is
based on the over-posedness concept [14] that an inverse problem is usually posed
with much more numbers of measurable responses compared to the numbers of
parameters to be identified. This is usually necessary for parameters’ intercorrelated
nature of inverse problems.

The configuration of the TubeNets, a special form of TrumpetNets, is shown in
Fig. 4 [25], in which the number of inputs, outputs, as well as the neuron number
of the hidden layers are all the same. In this case, more measurable responses are
still used, because of the requirements for solution existence in inverse problems.
To reduce the number of measured responses to the same number of inputs, some
dimensionality reduction methods, such as PCA technique, is used.

3.1 Setting Up Forward or Inverse Problem

As discussed earlier, an inverse problem cannot usually formulate explicitly.
However, we know that it is always related to its corresponding forward problem.
Inverse is simply reciprocal to forward. In this chapter, we assume the forward
problem is governed by a set of given partial differential equations. Based on our
definition, the forward problems can often be well posed, to which one can obtain
stable solution, as long as a proper computational method can be used [32, 33].
A corresponding inverse problem usually cannot be posed well, and have some
ill-posedness [14]. This is because the solution to a forward problem is obtained
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essentially through an integration process, and hence it is smooth. The solution to an
inverse problem, on the other hand, often can only obtained through a complicated
implicit process that is essentially equivalent to a differential process to the given
inputs [14].

This chapter considers inverse problems of structural mechanics. The forward
problem is governed by the equilibrium equations with all the material parameters,
loading, and boundary conditions given. Solving the forward problem is to find
the responses (in terms of displacements and/or strains). Our inverse problem is to
determine the material parameters using given (measured or simulated) responses
[14]. A computer model, such as FEM model, is created for the structure, with a
set of given or assumed material parameters. For the training of forward NN, a set
of material parameters will be sampled from predefined parameter space (based on
the existing knowledge on the problems). The sampling uses a standard orthogonal
Latin hypercube sampling method that is often used for creating data point with
proper coverage [34].

3.2 Direct-Weight-Inversion (DWI) Approach

3.2.1 DWI Formulae for TrumpetNets

This technique computes directly all the weights and biases for each and every layer
in the inverse TrumpetNet using explicit formulae and the weights and biases of
the already derived forward TrumpetNet. This is because the trained weights and
biases of the forward TrumpetNet practically unearthed the “net” or “connections”
between the variables in interest for the inverse problem. Training samples are thus
no longer needed for the inverse TrumpetNet creation if the numerical inversion is
successful. The formulations for the proposed TrumpetNet are briefed herein for
quick reference.

For the trained forward TrumpetNet, it is supposed to have the weights and biases
for all the layers of neurons. For the ith neuron in the lth layer, one shall have [24]
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where “→” hat stands for the forward TubeNet; Nl
n denotes the number of neurons

in the lth layer; −→w l
ij specifies the weights of the ith neuron in the lth layer in

connection with the jth neuron in the (l-1th) layer; and
−→
b

l

i represents the bias of
the ith neuron in the lth layer; ϕ denotes the activation function for the ith neuron
in the lth layer. Often than not the activation function is the same for neurons at the
hidden layers, but it can also be different from neuron to neuron.

It is worth noting that the elements in w, b, z, and ϕ are all known by the end of
the forward TrumpetNet training. Therefore, Eq. (2) can be rewritten as
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wherein ϕ−1 indicates the inverse activation function for the current neuron in the
current layer. Equation (3) can be also rewritten in matrix form:
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where the vector a and b collect, respectively, all the values of the neurons in the
layer.

The activation function matrix has the form of
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The weight matrix has the form of
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which is in general a “slender” matrix for a TrumpetNet. The “flow” of the forward
TrumpetNet is then inversed to create the inverse TrumpetNet as shown in Fig. 1.
Solving Eq. (4) obtains
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where the standard regularized least square approach is applied; α2 expresses the
Tikhonov regularization parameter; Iα stands for the corresponding identity matrix.
The regularization parameter should be determined based on the level of noise in
the measurements for outputs of measurable or the level of the added noise into

the computed response. It is worth noting that the matrix
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become a square matrix. Equation (7) can be rewritten as
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where the leftward arrow stands for inverse TrumpetNet.
When the Leaky ReLU activation function is used, there is

ϕ(z) = Leaky Relu(z) =
{

λ+z when z ≥ 0
λ−z when z < 0

(9)

where λ+ and λ− are given nonzero constants. In many cases, λ+ = 1, and λ− < 1.
Their values could be different for different neurons in different layers, but they
should be nonzero, which is a prerequisite for TrumpetNets. The inverse of the
Leaky ReLU function becomes
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It should be noted that the sign switch is determined by zil instead of −→
a

l
i . In

the current study, we attempted to solve it by trial-and-error. Specifically, in the
allowable value range of λ, different values of λ are used to train neural network
before λ can be roughly determined according to the accuracy requirement of the
neural network. The underlying principle is to derive a largest possible value for λ.
Therefore, the condition number of the system can be small, while maintaining λ

small enough for the required nonlinearity.
Tanh activation function can be expressed in general as follows,

ϕ(z) = y = sinh(z)
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=
(
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)
(
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) (11)
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Inversion of the tanh function has the form of

z = ϕ−1(y) = 1

2
log

(
y + 1

1 − y

)
(12)

When the tanh activation function is used, at the lth layer, there is
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= 1

2 log
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a

l
i

) (13)

The values for all neurons at different layers in the inverse TrumpetNet can be
calculated using the above equations and those weights and biases for the trained
forward TrumpetNet. Because number of neurons in each layer of the current
TrumpetNets is in an order of thousands at most in general, the computations in
Eq. (8) span a time interval of seconds even on a notebook. On another positive

note, because

(−→
W

l
)T−→

W
l

is a square matrix for the sensitivity conditions of inputs

and outputs, it is expected to behave well and even symmetric positive definite. The
regularization term α2Iα offers an additive stability if needed, especially for noisy
data. Therefore, the current DWI approach is expected to be efficient. Our inverse
TrumpetNets is thus, in theory, capable of performing inverse analysis in real time
if the inverse is successful and sufficiently accurate.

3.2.2 DWI Formulae for TubeNets

Because of the architecture of the TubeNet, as shown in Fig. 4,
−→
W

l
is a square

matrix, which can be inverted directly without the use of the least-square formula-
tion. Equation (7) thus becomes

−→
a

l−1 ≈
[−→
W

l + α2Iα

]−1 {
ϕ−l−→a l − −→

b
l
}

(14)

where the standard regularization technique is also used. Equation (14) can be
rewritten as

−→
a

l−1 ≈
[−→
W

l + α2Iα

]−1

︸ ︷︷ ︸
←−
W

l

ϕ−l−→a l +
{
−←−

W
l−→
b

l
}

︸ ︷︷ ︸
←−
b

l

(15)
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From this formulation, it is seen that the explicit computations of the weights
and biases of the inverse TubeNet is even simpler than those for the TrumpetNet.

It is worth noting that weight matrix
−→
W

l
is square, but not symmetric in general.

Therefore, it may not necessarily be invertible. In our practice, however, it is found

that
−→
W

l
is often well conditioned for many problems for successful inversion. It

is believed to be attributed to adoption of PCA, which renders the training dataset
orthogonal and the trained forward TubeNet to behave well. More rigorous proofs
for the invertibility of the weight matrix of a TubeNet using PCA training dataset
is, however, necessary. In this chapter, we simply pick the necessary number of
principle components starting from largest as approximation and discard all the rest.
It is understood that if too small number of components are adopted, the system
may become ill-conditioned. More researches are expected to circumvent this kind
of situations. We believe the best way is to change the inverse analysis strategy by
increasing the sensitivity, so that more principal components can yield larger value.

Noting that in Eq. (15), the Tikhonov regularization with a positive regularization
parameter α2 is used. This ensures that Eq. (15) will always have a solution in theory
because the regularized weight matrix is made positive definite invertible. However,
in our study so far, we have not yet found a case to require nonzero α, and the
weight matrix alone is already well behaved and invertible, at least for many of the
problems we have studied, as discussed in detail in Sect. 4. The regularization term
will be kept in Eq. (15) because the formulation is more theoretically rigorous. It is
helpful for problems that are strongly ill-posed [14].

4 Identification of Material Parameters for Composites

An example is to identify the engineering elastic constants of a composite laminate
made of anisotropic materials with many layers of different fiber orientations.
Material constants include the elastic constants (as well as engineering constants)
at macro scale and the fiber orientation of laminates. Examples are presented to
evaluate both TrumpetNet and TubeNets using an idealized benchmark problem
of a composite laminated plate. We aim to inversely identify the material elastic
constants of the carbon and glass fiber reinforced plies from the displacement or
strain responses on the surface of the laminate. Totally five cases are studied.

4.1 Setup of the Forward Problem

A rectangular composite laminated plate is considered, which are composed from
twelve layers of hybrid fiber-reinforced materials, i.e., carbon and glass fiber
reinforced plies, as shown in Fig. 5. It is symmetrically stacked in a sequence
of [C90/G−45/C+45/G0/C+45/G−45]s, where C stands for carbon fiber reinforced
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Fig. 5 Hybrid composite
laminated plate subjected to
load

Table 1 Material parameters of carbon fiber and glass fiber [14]

Material E1 (GPa) E2 (GPa) μ G12 (GPa) G23 (GPa)

Carbon 142.20 9.26 0.33 4.80 12.43
Glass 38.48 9.38 0.29 3.14 12.44

ply, G represents glass fiber reinforced ply, and the number in the subscript of C
or G denotes the lay-up angle. The length, width, and thickness of the laminate
are 50 mm, 40 mm, and 2.4 mm, respectively. The nominal values of Young’s
modulus (E1, E2), Poisson’s ratio (μ), and shear modulus (G12, G23) for the material
parameters of carbon fiber and glass fiber are shown in Table 1.

The laminated plate is constrained on the left edge as shown in Fig. 5. It is
subjected to vertical uniform pressure on the top edge. Firstly, a FEM model is
created to compute the displacement responses for specified externally forces. A
mesh sensitivity study is then conducted to eliminate mesh dependence of the
solution to identify that the mesh with 1024 (32 × 32) elements is sufficiently
fine for converged solutions as shown in Fig. 5. This mesh is used for production
runs throughout the study in this chapter for generation of multiple sets of training
samples for TrumpetNets and TubeNets. The computation is implemented for a set
of parameters in the parameter space, which is determined based on the setting of the
study case. The popular TensorFlow© is utilized to create all the neural networks
throughout this study. The following settings are adopted in all the current case
studies unless specified explicitly otherwise.
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1. TrumpetNets: When training a TrumpetNet, totally 25 nodes marked with green
dots in Fig. 5 are evenly selected from the 1024 (32 × 32) element mesh as
the “measurement” points for structural displacement responses. No PCA is
performed for all the TrumpetNet cases, meaning that the output layer of the
TrumpetNet always has 25 neurons.

2. TubeNets: When training a TubeNet, all the 1089 (33 × 33) nodal displace-
ments (see Fig. 5 as the “raw” measurement points for structural displacement
responses) are selected as the training dataset. PCA is performed to reduce 1089
dimensions of the training dataset to a number that matches the neuron number
in the layers of the corresponding TubeNet. This means that for a TubeNet with
n neurons in a layer, we keep only n leading principal components to discard all
the rest components.

4.2 Sensitivity Analysis

Before an inverse procedure is initiated, sensitivity analyses are carried out to
investigate effects of the parameters in the input data on the output data. This
is particularly important for an inverse problem to ensure the measurements are
usable in the identification of parameters [35]. It is endowed by our experiences in
processing inverse problems that good understanding for the corresponding forward
problem is indispensable for conducting successful inverse mechanics problem.
Sensitive analysis study is an effective method to establish such an understanding.
The sensitivity study will thus be carried out using the forward computer model by
varying the parameters in the input data in the relevant domain and computing the
corresponding changes in the measurable displacements. When a displacement is
found not sensitive to a parameter, the displacement will be removed from the input
data. The inverse procedure is thus modified to improve effectiveness. Otherwise,
when other parameters are found having strong effects on the displacements and if
they are measurable, these displacements will be included in the input data.

The local sensitivity (S) of structure responses to the variety of material
parameter is introduced as an index to evaluate the contribution of load condition to
this correlation. Some proper steps should be followed in sensitivity analysis:

1. A simulation experiment is designed according to material mechanics and
standards for material parameters testing. The appropriate structural responses,
e.g., stress, displacement, or strain, are selected.

2. Making one material parameter vary around a fixed value (nominal parameter)
with all the other parameters kept constant. Uniform samples of material
parameters are then generated.

3. Using the samples obtained in the above step 2 and the FE solver to calculate the
structural responses.

4. Calculate the sensitivity (S) using the following formulae.
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Table 2 Sensitivity of strain to the material parameters

Parameters
Strain E1 E2 μ G12 G23

Mean sensitivity for the 25 nodes εxx 58.5 7.4 4 16.5 0.3
εxy 25.9 13.5 4.7 23.8 0.5
εxy 30.1 8.1 1.3 10.9 0.3

Table 3 Sensitivity of displacements to the material parameters

Parameters
Direction E1 E2 μ G12 G23

Mean sensitivity for the 25 nodes X 54.5 5.5 4.5 14.0 2.2
Y 54.2 3.0 1.2 6.7 0
Z 18 13.1 2.6 9.7 0.3

S = Δsr

Δmp
(16)

where �sr denotes the gradient of the structural response; �mp represents the
gradient of the material parameters.

5. Repeat the above steps 2–4 to get the sensitivity of the structural response to each
material parameter.

The abovementioned sensitivity analyses are carried out to investigate effects
of the five parameters in Table 1 on the displacement or strain of the composite
laminated plate. The results are shown in Tables 2 and 3. Table 2 shows the mean
sensitivity of strain εxx, εyy, and εxy to the material parameters for the 25 test
nodes in Fig. 5, respectively. Table 3 shows the mean sensitivity of displacements
to the material parameters in x, y, and z directions for the 25 test nodes in Fig. 5.
Comparing the mean sensitivity results of Tables 2 and 3, they all show that the order
of sensitivity from the largest to the smallest is E1, G12, E2, μ, and G23. Only G23 are
found not sensitive to the strain or displacement. The G23 needs measured through
other means that uses measurements sensitive to G23. Therefore, we concentrate on
the inverse identification of material parameters (E1, E2, μ, G12). From Table 2, the
material parameters are more sensitive to εxx than that to εyy and εxy. Therefore, in
the further study, the εxx will be selected as the structural response to each material
parameter. As shown in Table 3, all the four material parameters are more sensitive
to the displacement responses in x and z directions than that to the displacement
responses in the y direction. While comparing with z direction displacement, the
value of the displacement in x direction is tiny as shown in Fig. 6. Considering the
measurement error in practical application, the z direction and y direction can be
selected as the structural response.



Two-Way TrumpetNets and TubeNets for Identification of Material Parameters 75

Ux (´10-1 mm) Uy (´10-1 mm) Uz (mm)

(a) (b) (c)

+5.36
+4.69
+4.01
+3.34
+2.67
+1.99
+1.32
+0.64
-0.03
-0.70
-1.37
-2.05
-2.72

+0.00
-0.82
-1.65
-2.47
-3.29
-4.12
-4.94
-5.77
-6.59
-7.42
-8.24
-9.07
-9.89

+0.00
-0.29
-0.58
-0.87
-1.17
-1.16
-1.75
-2.04
-2.34
-2.63
-2.92
-3.22
-3.51

Fig. 6 Displacement distribution: (a) in x direction, (b) in y direction, and (c) in z direction

4.3 Case 1: Training Inverse TrumpetNet Using Datasets
Generated by FEM Model

An inverse TrumpetNet is then directly trained using the sample points calculated by
an FEM model as a trainer. This is a standard practice for solving inverse problems
[14]. It also serves as a benchmark for other case studies. The difference in this
study is that we will use a particular TrumpetNet that has a structure as shown in
Fig. 1 with 25-15-4 neurons for input-hidden-output layers.

A set of forward problems is firstly solved: the displacements at the 25 nodes
on the surface of the plate marked as green dots in Fig. 5 are computed for a set
of different material elastic constants for the carbon fiber layers in the laminated
plates. An inverse problem is then solved: inversely identify the E1, E2, μ, G12 for
the carbon-fiber plies with assumptions that the material constants for the glass fiber
plies and all the other parameters are given. The domain of the parameter space is
confined in a hyper-polygon as follows:

E1ε [127.98, 156.42] GPa;E2ε [8.334, 10.186] GPa;

με [0.297, 0.363] ;G12ε [4.32, 5.28] GPa.

The computed response is the displacement in y-direction for this case. Standard
orthogonal Latin hypercube sampling method is used [34] to generate totally
2400 discrete sampling points in the four-dimensional parameter space. 2400 FEM
models are created and run in batch on ABAQUS for all these 2400 cases, which
give us a 2400 training samples. The inverse TrumpetNet using the ReLU activation
function is then trained directly by these 2400 samples. The loss function value
converges to 5 × 10−5 in 486 mins to complete the inverse TrumpetNet training.
The trained inverse TrumpetNet is then tested using 100 test samples, which
are generated independently also using the standard orthogonal Latin hypercube
sampling method. The root-mean-square (RMS) of test errors for the four identified
parameters are all lower than 1% as shown in Fig. 7. This proves the solvability of
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Fig. 7 Test errors of inverse TrumpetNet using the training dataset calculated by FEM model
(Note: inverse TrumpetNet structure: 25-15-4; activation function: ReLU; training samples: 2400;
test samples: 100; final loss: 5 × 10−5)

Fig. 8 Test errors of forward TrumpetNet with 4-15-25 neurons (Note: activation function: ReLU;
training samples: 2400; test samples: 100; final loss: 6 × 10−5)

the inverse solution to this inverse problem using the standard approach: training the
inverse TrumpetNet directly using physic-law-based models [24, 36–38].

4.4 Case 2: Training Inverse TrumpetNet Using Datasets
Generated by the Trained Forward TrumpetNet

In this case study, a forward TrumpetNet is firstly trained using the 2400 training
samples generated in Case 1. It has an input layer of 4 neurons, a hidden layer of 15
neurons, and an output layer of 25 neurons. The activation function is still ReLU. It
takes only 50 min for the loss function to converge, which is much faster than the
training of the inverse TrumpetNet directly using the FEM model as discussed in
Case 1. The test errors of the forward TrumpetNet are summarized in Fig. 8.

The trained forward TrumpetNet is then adopted as a surrogate model to generate
training samples for the inverse TrumpetNet. Its structure contains 25-15-4 neurons
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Fig. 9 Comparison of
training efficiencies between
traditional method and the
novel method

Fig. 10 Test errors of inverse TrumpetNet using the training dataset generated by forward
TrumpetNet (Note: inverse TrumpetNet structure: 4-15-25; activation function: ReLU; training
samples: 2400; test samples: 100; final loss: 6 × 10−5)

same as in Case 1. Another set of 2400 training sample are also generated in the
four-dimensional parameter space. Because the forward TrumpetNet is used in this
case, sample generation is very fast to take only 0.5 s as seen in Fig. 9. The training
time for the inverse TrumpetNet, however, is 432 min, which is similar to that for
Case 1. The test errors for the inverse TrumpetNet are shown in Fig. 10. The test
errors of the inverse TrumpetNet trained using the training dataset calculated by
the forward TrumpetNet is slightly higher than that trained directly using numerical
computation samples.
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The training efficiency of the novel training method is 40% higher than that of the
traditional training method as shown in Fig. 9. Although roughly similar interval of
time for training the inverse TrumpetNet is required, the preparation of the training
samples become much faster. It should be emphasized that the total time for training
both forward and inverse TrumpetNets is almost the same as that for the single
inverse TrumpetNet. It is thus recommended to train both because two-way solver
for real-time computations is derived simultaneously, without extra cost, for both
forward and inverse problems as suggested by Liu [24].

4.5 Case 3: Inverse TrumpetNet Using DWI Approach Without
Trained

Two types of TrumpetNet are constructed efficiently for both forward and inverse
analyses. The first TrumpetNet is for forward analyses. It contains 4 neurons for
the input layer, 15 neurons per layer for the 2 hidden layers, and 25 neurons for
the output layer. The activation function in this case is Leaky ReLU. The forward
TrumpetNet is trained until the error function (loss) is reduced to 1%. It takes about
250 s to complete the training on our PC. The trained forward TrumpetNet is then
tested using 100 independent test samples. The maximum error for all the 100 test
samples is 0.11% as shown in Fig. 11. The total time taken for running the 100 test-
samples is 0.012 s, which is practically instant. This implies, for any specified set
of material parameters within the trained domain, the computation with the trained
forward TrumpetNet of the displacements at all the 25 nodes on the laminate surface
can be registered as real-time computation. The training of the forward TrumpetNet
is basically similar to that for Case 2 except for that the different activation functions
and addition of one hidden layer. The reason for adding one hidden layer is to
improve the accuracy of the solution.

The second TrumpetNet for inverse analyses contains 25 neurons for the input
layer, 2 hidden layers with 15 neurons per layer, and 4 neurons for the output layer.
In this Case 3, the DWI approach as formulated in Sect. 3.2 is used. The weight

Fig. 11 Test errors for forward TrumpetNet with 4-15-15-25 neurons (Note: activation function:
Leaky ReLU; training samples: 2400; test samples: 100; final loss: 5 × 10−5)
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Fig. 12 Test errors of inverse TrumpetNet generated by DWI approach (Note: TrumpetNet
structure: 25-15-15-4; activation function: Leaky ReLU; 100 test samples generated by FEM
models)

Fig. 13 Condition number of
matrix Tl in Eq. (7)

matrices and bias vectors of the inverse TrumpetNet are computed directly using
the formulae and those weight matrices and bias vectors for the trained forward
TrumpetNet. In this way, training of the inverse TrumpetNet is no longer necessary.
The inverse TrumpetNet is also tested using 100 independent test samples created
using the FEM models. The minimum RMS error from all these 100 test samples is
113% as shown in Fig. 12. This pronounced error indicator implies that the inverse
TrumpetNet cannot be used to predict these 4 material constants of the carbon fiber
layers for the laminated plate. The constructed inverse TrumpetNet is not valid
though the total time taken for all the 100 test-samples is as short as 0.01 s.

The reason for the failure is then examined. It is found that the condition number
of Tl in Eq. (7) is very large at the hidden layer (layer 2) as shown in Fig. 13. It
suggests that Tl is ill-conditioned, indicating that the weight matrices of inverse
TrumpetNet may not be reliable.

This may also be an indication of ill-posedness of the inverse problem. The
regularization parameter α in a quite large range is thus used and further tests
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Fig. 14 Prediction errors for inverse TrumpetNet (Note: TrumpetNet structure: 25-15-15-4;
activation function: Leaky ReLU; 100 test samples generated by forward TrumpetNet)

Fig. 15 Prediction errors for inverse TrumpetNet with 0.0001% noise (Note: TrumpetNet struc-
ture: 25-15-15-4; activation function: Leaky ReLU; 100 test samples generated by FEM model)

are conducted. However, the situation does not improve, suggesting that the
regularization method is also not effective for our problem.

The forward TrumpetNet is then adopted to generate samples (in place of FEM
model samples) for testing the inverse TrumpetNet. The test results are shown in Fig.
14. The maximum error is 0.18%. It can be stated that the inverse TrumpetNet well
passes the tests. This proves that the DWI equations given in Sect. 3.2 are reliable.
Note that the inverse TrumpetNet is always “overly-fitted” because of adoption of
the analytical DWI approach.

To further explore the reasons, various levels of white noises to the test samples
are generated by the forward TrumpetNet. The test results are listed in Figs. 15, 16,
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Fig. 16 Prediction errors for inverse TrumpetNet with 0.001% noise (Note: TrumpetNet structure:
25-15-15-4; activation function: Leaky ReLU; 100 test samples generated by FEM model)

Fig. 17 Prediction errors for inverse TrumpetNet with 0.01% noise (Note: TrumpetNet structure:
25-15-15-4; activation function: Leaky ReLU; 100 test samples generated by FEM model)

and 17, respectively, for noise levels of 0.001%, 0.01%, and 0.1%. It is seen that the
prediction errors increase significantly with the increasing noise level.

It can be said that the current inverse TrumpetNet is very sensitive to noise. More
studies are needed to overcome this problem. For now, when TrumpetNets are used,
the inverse TrumpetNet should be trained using datasets generated using the trained
forward TrumpetNet. The alternative is to use TubeNet, which is discussed in the
following section.
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4.6 Inverse TubeNet Using DWI Approach

4.6.1 TubeNets with PCA-Treated Training Samples

The large test errors of the inverse TrumpetNet may be attributed to the least-square
method in the matrix inversion process for DWI (Eq. 7), in which a 25 by 25 matrix
is drastically reduced to a lower dimension matrix, such as 4 by 4 matrix or 8 by
8 matrix, in a simple averaging manner. To improve, a novel TubeNet concept is
developed in this work to create a tubular network for training the forward network
that has the same number of neurons for all (input, hidden, and output) layers. In
these particular cases, they have 4-4-4-4 neurons and 8-8-8-8 neurons. To achieve
this, the number of the outputs for the forward TubeNet should be reduced from 25
to 4 or 8 without compromising substantially the information in the displacement
response data. PCA is then used for this purpose, which is a powerful method for
dimension reduction by retaining only the major leading principal components. The
following lists the steps for the procedure to construct the TubeNets.

1. Use the y-direction displacements of all the 1089 nodes on the plate surface as
the raw output data for training the forward TubeNet.

2. Perform PCA analysis to generate principal components for all the 1089 nodal
displacements for all the 2400 training samples.

3. Choose only four and eight major principal components as the final outputs to
train the 4-4-4-4 and 8-8-8-8 forward TubeNet. All the weights and biases of the
TubeNet after the training are then achieved.

4. Use these weights and biases of the trained forward TubeNet and DWI approach
to compute directly the weights and biases for the inverse TubeNet using the Eqs.
(14) and (15) given in Sect. 3.2.

5. Test the inverse TubeNet using samples independently generated using the FEM
model and treated with PCA.

4.6.2 Case 4: Inverse TubeNet with 4-4-4-4 Neurons

A 4-4-4-4 inverse TubeNet following the same procedure given in Sect. 4.6.1 is then
constructed. The number of parameters is now back to four: E1, E2, μ, G12 of the
carbon fiber plies. In this case, the displacements in the y-direction at all the 1089
nodes on the plate surface are adopted to train the forward TubeNet. PCA is used
to reduce the dimensionality from 1089 to four for all the 2400 samples generated
using FEM model. The contribution rates for the first ten principal components of a
typical training sample are computed as listed in Fig. 18. For the current case of 4-
4-4-4 TubeNets, the first four principal components are selected as the output of the
forward TubeNet. Figure 19 lists the values of the first four principal components
for 10 (out of 2400) samples.

The activation function tanh is used in the training of the forward TubeNet.
The time spent on the training is about 26 min. Figure 20 shows the test errors
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Fig. 18 Contribution rate of components

Fig. 19 Results of principal component analyses

Fig. 20 Test errors of forward TubeNet trained by nodal displacements in y direction (Note:
TubeNet structure: 4-4-4-4; activation function: tanh; training samples: 2400; test samples: 100;
final loss: 1.4 × 10−4)

of the trained forward TubeNet when it is used to predict the first four principal
components. It is seen again that the error is small for the first dominant principal
component 1. Comparatively, errors for principal components 2, 3, and 4 are much
higher, which is out of the concern because the objective of this study is to generate
inverse TubeNet for inverse problems.
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Fig. 21 Test errors of inverse TubeNet with input nodal displacements in y direction (Note:
TubeNet structure: 4-4-4-4; activation function: tanh)

Fig. 22 Test errors of forward TubeNet trained by nodal displacements in both y and z directions
(Note: TubeNet structure: 4-4-4-4; activation function: tanh)

Using the weights and biases of the trained forward TubeNet, an inverse TubeNet
is generated using the DWI formulae. The inverse TubeNets are also tested using
100 test samples generated using FEM model and treated by PCA. Satisfactory
accuracy of the inverse TubeNet is found as shown in Fig. 21.

Further studies using nodal displacements in both y and z directions, which leads
to a totally 2 × 1089 = 2178 samples, are carried out to train the forward TubeNet
before generating the inverse TubeNet using the DWI formulae. It is observed that
the accuracy of the inverse TubeNet is further improved as shown in Fig. 22 and
Fig. 23. With reference to the condition of the weight matrix of the neural network
for the forward problem, it is expected to be well conditioned as shown in Fig. 24.
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Fig. 23 Test errors of inverse TubeNet with input nodal displacements in y and z directions (Note:
TubeNet structure: 4-4-4-4; activation function: tanh)

Fig. 24 Condition number
of W

To investigate the influences of the large error of principal components 3 and 4 on
the inverse TubeNet, 10% and 20% Gaussian noises are added to the components
3 and 4. The noise data are then input into the inverse TubeNet. The prediction
errors are shown in Figs. 25 and 26. When the variance of Gaussian noises is 10%,
the prediction results of the inverse TubeNet are barely affected. Even when the
Gaussian noises become 20%, the prediction results of the inverse TubeNet still
exhibit high accuracy. This is attributed to the low contribution rates of these two
components. Thus, their noises have little effects on the accuracy of the inverse
TubeNet.

It is worth mentioning that all the 1024 integration points in the mesh have
been employed to create the TubeNets. Attempts with less number of nodal
displacements, which are roughly distributed evenly on the surface of the plate,
have also tried to create TubeNets. It is found that as long as the number is not too
small, such as 25 nodal displacements, the creation procedure is feasible.
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Fig. 25 Prediction errors of inverse TubeNet (10% Gaussian noise) (Note: TubeNet structure:
4-4-4-4; activation function: tanh)

Fig. 26 Prediction errors for inverse TubeNet (20% Gaussian noise) (Note: TubeNet structure:
4-4-4-4; activation function: tanh)

4.6.3 Case 5: Inverse TubeNet with 8-8-8-8 Neurons

A 8-8-8-8 inverse TubeNet is also created following the same procedure given in
Sect. 4.6.1. In this case, the number of parameters becomes eight: E1, E2, μ, and
G12, respectively, for the carbon-fiber plies and the glass-fiber plies. The parameter
space now becomes eight-dimensional, which is intractable inverse problem for
the standard inverse methods [11]. Herein, the nodal displacements in y-direction
computed using FEM model and treated with PCA are adopted as the training
samples.

An 8-8-8-8 forward TubeNet is trained using tanh activation function. Because of
the high-dimensional parameter space, the samples in training dataset are increased
to 12,000 to achieve reliable training results. After 23 h (1380 min) training, the loss
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Fig. 27 Test errors of forward TubeNet trained by nodal displacement in y direction (Note:
TubeNet structure: 8-8-8-8; activation function: tanh; training samples: 12,000; test samples: 100;
final loss: 1.4 × 10−4)

Fig. 28 Condition number
of W of the TubeNet structure
8-8-8-8 (Note: composite
structural response: nodal
displacement in y direction)

function of the forward TubeNet converges to a satisfactory value of 1.4 × 10−4.
A set of 100 test samples are used to evaluate the forward TubeNet. The evaluation
results are shown in Fig. 27.

The weight matrixes and bias vectors of the inverse TubeNet are subsequently
computed using the DWI formulae. The inverse TubeNet is tested using 100 test
samples, and complex numbers are found in the output of the inverse TubeNet. It
indicates that the result is wrong and the inverse procedure fails. The condition of
the weight matrix of the neural network for the forward problem is then examined,
it is also found not well conditioned as shown in Fig. 28. When the number of
training samples is increased, the loss value of the forward TubeNet does not drop,
suggesting ineffectively low sensitivity to the displacement data.

Because strain is the derivative of displacement, the strain value may be sensitive
to the changes of the parameters to be inversely identified. Thus, the strains at the
Gauss points of the elements of our FEM model are tentatively adopted as the
output responses of the forward problem. The forward TubeNet is then retrained.
The preceding eight parameters remain the target parameters to be inversed. The
strain component ε11 is used as the output responses of the forward problem. S4R
elements are adopted in the FEM model with the default setting in ABAQUS (one
Gauss point per element). There are totally 1024 integration points in the model.
PCA is conducted for all the training samples. The structure of the forward TubeNet
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Fig. 29 Test errors of forward TubeNet trained by strain at the Gauss points (Note: TubeNet
structure: 8-8-8-8; activation function: tanh; training samples: 48,000; test samples: 100; final loss:
5.2 × 10−5)

Fig. 30 Test errors for analytically derived inverse TubeNet (Note: TubeNet structure: 8-8-8-8;
activation function: tanh; test samples: 100)

is 8-8-8-8; the activation functions used in the hidden layer is tanh. Due to the high
dimension of the parameter space, training samples are now increased to 48,000 to
avail reliable training results. After about 24 h training in our PC, the loss function
of the forward TubeNet converges to a satisfactory level of 5.2 × 10−5. A set of 100
independent test samples are used to evaluate the trained forward TubeNet, and the
evaluation results are shown in Fig. 29.

Using the weight matrixes and bias vectors for the trained forward TubeNet, the
weight matrixes and bias vectors for the inverse TubeNet are computed. The inverse
TubeNet is also tested using 100 test samples, and the maximum RMS of test errors
for all the 100 test samples is 1.06% as shown in Fig. 30. The condition of the
weight matrix of the neural network for the forward problem is then checked to be
well conditioned as shown in Fig. 31. It can be stated that an accurate 8-8-8-8 inverse
TubeNet for inverse analyses of composite laminated plates has been successfully
derived to identify eight parameters using the strain (ε11) values at the Gaussian
integral points.
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Fig. 31 Condition number
of W of the TubeNet structure
8-8-8-8 (Note: composite
structural response: strain at
the Gauss points)

5 Conclusions

This chapter introduces two artificial neural networks: TrumpetNets and TubeNets.
They have special configurations designed for both forward and inverse analyses.
From problems of mechanics, both NNs are trained using FE models. Once properly
trained, the TrumpetNets can be used for real-time analyses of both forward and
inverse problems. The TubeNets is particularly effective for real-time analysis of
inverse problems because of the use of explicit DWI technique developed by the
authors. The idea of TrumpetNets and TubeNets serves as promising effective
approach to process inverse problems. More intensive work is needed on the
trainability and applicability of these types of NNs. More effective techniques on
overcoming the possible ill-posedness are also needed to make the TrumpetNets
and TubeNets more effective for noisy datasets.
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Machine Learning Interatomic Force
Fields for Carbon Allotropic Materials

Xiangjun Liu, Quanjie Wang, and Jie Zhang

1 Introduction

Carbon is capable of forming many allotropes due to its valency. The well-known
forms of carbon include diamond and graphene. In the past decades, many more
allotropes have been further discovered and researched, such as carbon nanotube,
nanotubes, and buckminsterfullerene. At the present time, around 500 hypothetical
3-periodic carbon allotropes are known; each of them exhibits significantly different
properties and wide potentials of applications. Recently, due to the enhancement
of high performance computing (HPC) power, and algorithmic improvements,
computational materials science has gradually become an important supplement to
traditional theory and experiment for the study of carbon allotropes, as well as a
crucial bridge between micro and macro, theory and experiment [1–3]. On one hand,
it can help us to understanding the microstructure and behavior of carbon materials
in atomic level, and on the other hand, it can predict the properties and formation
mechanism of carbon materials without doing experiments.

2 Traditional Force Fields

Molecular dynamic (MD) simulation is most widely used for studying atomistic
systems, which can monitor the atomic-level time-evolution of physical and chemi-
cal processes and predict macroscopic properties from microscopic details. Starting
with an initial atomic locations and velocities, MD simulations require the atomic
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forces as input to propagate the atoms locations and their velocities to the next
timestep (at which point, the atomic forces are reevaluated), the cycle continues,
thus allowing for an iterative time-evolution of the system. The atomic forces at each
timestep may be obtained either using quantum mechanics (QM) based methods,
such as density functional theory (DFT), or parameterized classical semiempirical
analytical interatomic force fields, such as Stillinger-Weber potentials, Tersoff
potential, and so forth [4–6]. Choosing between the two approaches depends on
which side of the cost-accuracy trade-off ones wishes to be at. QM methods (also
referred to as ab initio or first-principles methods) are versatile and offer the
capability to accurately model a range of chemistries and chemical environments
by solving for the Schrodinger equation. However, the computational complexity
of QM methods is at least cubic in the number of electrons; consequently, practical
applications of these methods at present are limited to studies of phenomena whose
typical length and time scales are of the order of nanometers and picoseconds,
respectively [1]. Parameterized classical force fields can be used to access truly
large-length and long-time scales, which typically are 6–10 orders of magnitude
faster than DFT, because the influence of electrons is not taken into account in the
calculation of atomic force [7]. However, these approaches are also problematic,
as such force fields cannot precisely reproduce QM forces and have limited
transferability; for instance, they are not transferable to situations that were not
originally used in the parameterization [8–10]. Facing this scenario, it is necessary
to develop novel and efficient force field. The advent of big-data analytics and easy
to access to HPC resources has brought powerful machine learning (ML) techniques
to the forefront. Meanwhile, ML methods hold promise in resolving the disconnect
between force field developers and the end-users, which is common in classical
potential function development, in other words, empowering the users to develop
new or tailor existing force fields to meet their needs [11].

3 Machine Learning Force Field

Since US President Barack Obama proposed the genome project in 2010, the
application cases of ML in material development have been emerging. For example,
rapid search for high thermal conductivity materials [12], design of low interface
thermal resistance superlattice structure [13], utilizing neural network assisted
drug development [14], screening of high-throughput materials [15], prediction of
material structure [16], design of ultra-high hard materials [17], and so forth.

ML mainly uses a trained model (such as neural network algorithm, Bayesian
optimization algorithm, and random forest) to extracting information from large
historical datasets (from experiments, simulations, online database, etc.), and then
accurately capture the relationship between structures and properties by data mining
techniques for materials discovery and properties prediction [4]. Recently, a data-
driven and ML-based atomic force field development research has attracted wide
concern due to its flexibility and adaptability. In contrast to conventional interatomic
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potentials and QM-based methods, the ML-based paradigm has been verified by
many groups is a feasible pathway in the creation of interatomic force field that
both has the accuracy and versatility of QM methods and the low computing cost of
parameterized semiempirical interatomic potentials. The ML-based force field was
first proposed independently by Botu [5] and Li [18]; they used vector structural
descriptors as fingerprints of atomic environments, and separately learned indi-
vidual force components using kernel regression and Gaussian process regression.
Recently, Glielmo et al. [4] proposed a novel scheme, which predicts the forces as
vector quantities using Gaussian process regression. Additionally, they added the
many-body kernel to represent the dependence of force not only on interatomic
distance but also bone angle. Because many more force components as a training
dataset can be obtained from DFT calculation directly, the construction of the ML
force field is easier than that of ML potentials. ML force field has been successfully
constructed for many elemental materials, such as Al [4, 5, 19, 20], Si [21],
and Cu [12], and a few multicomponent materials, such as SiO2 [22]. Moreover,
the feasibility of ML force field has been verified by several static and dynamic
applications, including melting, stress-strain behavior, point defect diffusion in bulk,
proper description of dislocation core regions, metal phase transition and adatom
organization as surface, and so forth [4, 22].

Traditionally, the parameters in classical semiempirical interatomic potential are
obtained by fitting to QM calculations or experimental data under equilibrium
state, as the red dotted line region shown in Fig. 1a, therefore, overemphasis on
equilibrium configurations often result in performs poorly in predicting the relative
energies in transition state or far-from-equilibrium position. However, ML-based
force field can overcome this issue by learning from reference datasets in the whole
potential energy space, as shown in Fig. 1b.

The application of ML in molecular force field development largely falls into
two broad categories: one approach is based on classical semiempirical analytical
interatomic potentials, employing ML algorithms to optimize the potential param-
eters, namely, ML-based optimized force field. The other approach is to establish
nonlinear mapping by ML models between atomic configurations and potential
energies or force, which has no fixed mathematical functional form, namely,

Fig. 1 The data obtained used for constructing atomic force fields: (a) classical semiempirical
force field, (b) ML-based force field
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Fig. 2 An overview of ML-based potential function parameters optimization framework.
(Adapted with permission from ref. [7], copyright 2019 Physical Chemistry publishing)

ML-based force field. The train datasets of these two approaches are both obtained
from DFT calculation, which can ensure the accuracy of prediction [23–27].

Chan et al. [7] proposed a ML-based optimized force field to accurately simulate
the dynamical process at reactive interfaces and low dimensional system, such as
clusters and molecules. The procedure as shown in Fig. 2, which involves (1)
defining or selecting a functional form, the functional from selection apart from
the material being studied but also strongly dependent on the phenomenon being
explored, (2) constructing an extensive training data set from electronic structure
calculations, and the training as far as possible to encompassing all possible atomic
environments and coordinates likely to be encountered in dynamic simulations, (3)
optimizing force-field parameters using ML algorithms, such as genetic algorithms
(GA), formulating a fitting procedure and implementing these algorithms on HPCs.

For ML-based force field, the force field is transferable and adaptive due to
overcoming the limitations result from the predefined mathematical functional form.
For instance, new reference configurations can be added to enhance the versatility
of the force field as required [28–31]. A typical ML-based force field development
workflow mainly consists of four key steps, which are: (1) generation of reference
data, such as, using DFT; (2) fingerprinting or quantifying the atomic environments,
in a manner that will allow the fingerprint as input in regression model; (3) choosing
a subset from the reference data set, using clustering and sampling techniques
to reduce the learning cost while ensuring that the dataset retain the diversity of
the original reference data set; (4) learning from the training set, thus construct a
nonlinear mapping between the atomic configurations and the forces, followed by
testing the learned model on the remainder of the data set. The entire framework
involved in the construction of force field is portrayed schematically in Fig. 3.
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Fig. 3 Workflow for the creation of machine learning force field. (Adapted with permission from
ref. [12], copyright 2017 NPJ Computational Materials publishing)
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4 Procedure to Develop ML-Based Force Field

A ML-based force field framework for carbon allotropic is given in Fig. 4.
First, constructing a comprehensive reference database as possible, in addition to
commonly encountered crystalline phases, diamond and graphite, other relevant
phase of carbon should also be taken in account, such as amorphous carbon. In order
to facilitate the input of regression model, a proper fingerprint or descriptor should
be selected to quantifying the local environment of an atom, the local environment
of an atom typical divide into 2-body, 3-body, and many-body. Next, a cluster
and sample algorithm employed to identify the redundant and noncontributing data
to reduce computing costs. Finally, selecting a regression model to establish the
fingerprint-force mapping, the energy E is further approximated as a sum of the
atomic energies

E =
∑

i

ε (di) (1)
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where di is the feature vector of atom i, which accounts for the chemical environ-
ment of atom i that depends on positions and chemical identities of its neighboring
atoms up to a given cutoff radius. The ε represents the atomic energy as a function
of descriptors. The details of each key step will be described next.

4.1 Reference Database

The reference data used for creating force field must be as accurate and comprehen-
sive as possible, ensuring sufficiently low intrinsic errors. Generally, calculations
(such as first-principles, molecular dynamics, lattice dynamics, and so forth) [32,
33], experiments [34–36] and online libraries [37, 38] have been used to collect
these data. Among these approaches, first-principles is most convenient and quick
approach to sample reference data for ML force field construction because abundant
reference structures and corresponding quantum mechanical properties (i.e., energy
and atomic force) can be directly obtained from one piece of an ab initio MD
trajectory. For example, Li et al. [22] obtained abundant atomic configurations of
Cu and SiO2 by fast ab initio MD, such as face-centered cubic supercells, surface
(111) supercells, surface (100) supercells, and amorphous supercells. Huan et al.
further expanded the atomic configurations and corresponding force by rotating the
collected atomic configurations, and providing more force components than that in
the original dataset. To mimic the diverse environments an atom could exist in, Botu
et al. [4] built several periodical and non-periodical equilibrium configurations, such
as (a) defect free bulk, (b) surfaces, (c) point defects, vacancies and adatoms, (d)
isolated clusters, (e) grain boundaries, (f) lattice expansion and compression, and (g)
edge type dislocations, as shown in Fig. 5. To correctly describe the nonequilibrium
behavior of an atom, initially atoms are randomly perturbed to coerce the dynamics
into sampling nonequilibrium environments. The combination of ab initio MD and
random perturbations resulted in a diverse set of reference atomic environments and
forces.

4.2 Structural Fingerprints

Each atomic energy contribution depends only on its local environment, as shown
is Fig. 6, which is represented by a feature space vector or fingerprint so as to
numerically represent atomic configurations [31]. The accuracy of the ML force
field will strongly depend on the selection of the fingerprint; a good fingerprint
should possess the following properties: (1) it can be encoded as a fixed-length
vector so as to facilitate regression, (2) it should retain basic physical symmetry
invariant, such as translation, rotation, or permutation, (3) it is complete, i.e.,
different atomistic neighborhood configurations lead to different fingerprints and
vice versa, and the “distance” between the fingerprints should be proportional
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Fig. 5 Reference configurations used to sample atomic environments for training and testing
of force field. (Adapted with permission from ref. [4], copyright 2017 Physical Chemistry C
publishing)

to the intrinsic difference between the atomistic neighborhood configurations. A
number of structural descriptors have been proposed to represent the local atomic
environment, such as atom-centered symmetry functions [39], bispectrum [40], and
Smooth Overlap of Atomic Positions (SOAP) kernel [41]. The most widely used
descriptor is the vector atomic fingerprint function, which was proposed by Botu
and Ramprasad, and has been proven to be an effective structural descriptor in
the prediction of vectorial atomic properties [4]. Using the fingerprint, the atomic
environment of the ith atom in a specific atomic configuration can be represented by
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Fig. 6 Transform atomistic neighborhood configurations into feature vectors and train non-liner
regression models. (Adapted with permission from ref. [1], copyright 2018 Chemical Physics
publishing)
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where rij signifies the distance between atoms i and j, and rα
ij is a scalar projection

of this distance along the α direction (α = x, y or z). η is a parameter that controls
the decay rate, and fc is the cutoff function that gradually reduces the contribution of
distant atoms and truncates the interatomic interaction when rij is larger than cutoff
distance Rc.

Although Eq. (2) has been proved to be very effective in various materials, it
ignores bond angle information, which might be insufficient for complex covalent
materials. For this, Li et al. [22] have modified Eq. (2) and proposed another
structural fingerprint that takes the bond angle into consideration. The formulas of
the two structural fingerprints are:
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∑

j

rα
ij

rij
e−η(rij −Rs)

2 × fc
(
rij
)

(3)
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Equations (3) and (4) are called a radial structural fingerprint and angular
structural fingerprint, respectively, where rik and rij are the interatomic distances
between i and k, and i and j, respectively. θ ijk is the angle between bonds ij and
ik. (rij + rik)α is the scalar projection of vector (rij + rik) along the α direction.
Two parameters of radial fingerprint V

1,α
i , that is, η and Rs, are used to control the
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width of the peak and shift the peak position. Two additional parameters, that is,
ζ and θ s, are used in angular fingerprint V

2,α
i . Applying the θ s parameter allows

the probing of specific regions of the angular environment in a similar manner
to that accomplished by Rs in the radial part. Finally, the ML force fields were
compared with DFT and MD simulations in structural optimization, it is found
that the proposed angular fingerprints can significantly improve the accuracy of ML
force fields for both Cu and SiO2.

To capture the transition state during the structural phase transformation, many-
body term needs to be taken into consideration. For example, Zong et al. [42] adopt
three different types of local environments related to structural phase transforma-
tions are fingerprinted, namely, the change in bond length (pairwise terms), shape
change (three-body terms), as well as volume change (many-body terms). For two-
and three- terms, which is similar to the above treatment, so we will not explain
any more here. For the many-body contributions, which is similar to the embedding
energy term of the MEAM potential. The formulas is

V Mb
i (μ, σ ) = ln

(
ρm

i (μ, σ )
)

(5)

where μ and σ are adjustable parameters, ρm
i (μ, σ ) refers to the neighborhood

density of a given atom i, define as

ρm
i (μ, σ ) =

∑

j �=i

e− (rij −μ)
2

σ2 fc
(
rij
)

(6)

4.3 Sampling and Clustering

The next step in the construction workflow is to select a representative set of
atomic environments for training purposes. To do so, it is necessary to identify
the redundant and noncontributing data points from within the millions sampled.
Random selection of training data from reference data is the most common
approach, which typically results in the selected training configurations dominated
by the high-populated domains while other domains are under-represented [5].
As shown in Fig. 7a, the training data randomly selected from the reference data
contains essentially no configuration with large amplitude forces. To ensure the
diversity of reference data, Huan et al. [12] proposed force-binning and clustering
training data selection methods. In the force-binning method, the reference data was
arranged into a number of force amplitude intervals and then the training data was
selected from all the intervals, as shown in Fig. 7b. In the clustering approach, the
reference data divide into a given number of clusters in fingerprint space and then
the training data is selected from each cluster, as shown in Fig. 7c.

Another widely used method is dimensionality reduction techniques, such as
principal component analysis (PCA) to project V d

i onto a lower dimension space.
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Fig. 7 An illustration of three methods for selecting a training set, including random (a) force
amplitude sampling (b) and fingerprint space clustering (c). (Adapted with permission from ref.
[12], copyright 2017 NPJ Computational Materials publishing)

In PCA the original atomic fingerprint is linearly transformed into uncorrelated and
orthogonal pseudo variables. For example, Chapman et al. [43] captured more than
99% of the original fingerprint information by adopting such strategy. Moreover,
some other similar dimension reduction techniques could be adopted to select
representative data set, such as kernel-PCA or multidimensional scaling. Recently,
using least absolute shrinkage and selection operator (LASSO) or genetic algorithm
(GA) to select the important fingerprints from a large pool of candidates also have
been proposed, which can have good balance between computational cost and
accuracy.

4.4 Machine Learning

Once the reference data and atomic representation are in place, the final step is
to carry out a learning algorithm to establish the fingerprint-force mapping. In the
taxonomy of ML approaches, this is a “supervised learning” problem, because the
input data (structures) are labeled (have reference energies); more specifically, it
represents a regression task, because a continuous range of output values (energies)
is sought. At present, various machine learning algorithms have been used in
force field development, such as Kernel-based methods, linear model (LM), neural
network model (NNM), and so forth. Next, we will give a brief introduction.

4.4.1 Kernel Ridge Regression

KRR is a powerful method that has widely been used in materials informatics, in
which an atomic property is interpolated as a liner combination of kernel functions,
as shown in Fig. 8, the latter measuring how similar a new configuration’s descriptor
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Fig. 8 Schematic of kernel
methods to interpolate atomic
properties by comparing an
environment (red) with the
reference database (green)

(red) is to those of the reference data (green). The property is typically a local
energy, or a force acting on an atom, and the kernels can be understood as similarity
measures (on a scale from zero to one) between the new environment and those
contained in the database, both of which are represented by the descriptor. The
regression coefficients that weigh each kernel basis function are computed during
the fitting using simple linear algebra. Kernel ridge regression (KRR) and Gaussian
Process Regression (GPR) are two currently employed techniques, differing only
slightly in how these coefficients are computed.

Botu et al. [4] choose this method as the ML workhorse created a force field for
six element bulk solids, including Al, Cu, Ti, W, Si, and C, and show that all of them
can reach chemical accuracy. KRR predicts the atomic force Fi corresponding to the
configuration i as

Fi =
Nt∑

j=1

aj exp

[
−1

2

(
dij

σ

)2
]

(7)

where the sum runs ergodic Nt configurations in fingerprint space, dij is the
“distance” between configurations i and j, here, refer to Euclidean norm. The
“length” scale in this space is specified by σ .

4.4.2 Linear Model

LM is developed to describe the linear dependence between structural fingerprints
and forces due to its simplicity and speed. For example, Li et al. [22] choose liner
regression model to construct ML force field and compared with DFT calculation in
both element (Cu) and binary (SiO2) materials. They found that the force prediction
error less than 0.1 eV/Ȧ−1. The LM takes the form

Fα
i = w1V

α,(1)
i + w2V

α,(2)
i + · · · + wnV

α,(n)
i (8)
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Fig. 9 High-dimensional neural network for a ternary system containing elements (a–c). R∗ ={
R∗

1 , R∗
2 , · · · , R∗

N∗

}
, G∗ =

{
G∗

1,G
∗
2, · · · ,G∗

N∗

}
, E∗ =

{
E∗

1 , E∗
2 , · · · , E∗

N∗

}
, * = {A, B, C}

where w1 is the regression coefficient, which is typically determined quickly using
a standard least-squares technique. When matrix V includes the fingerprints of the
reference atomic environments and F denotes the atomic forces obtained by DFT,
the residual sum of squares (‖Vw − F‖2)2 is minimized in the linear regression,
where ‖ • ‖2 denotes the L2 norm.

4.4.3 Neural Network Model

NNs are a set of mathematical functions that aim at resembling the functionality of
neurons in brain, which was first proposed by Pro. Dr. J. Behler [3] in 2007, the
structure as shown in Fig. 9, which represent a high-dimensional NN for a ternary
system containing elements A, B, and C. The numbers of atoms per element are
NA, NB, NC, respectively. The total short-range energy Es is the sum of all atomic
energies EX

i (X = A,B,C), which are provided by individual atomic NNs. For a
given element, the architecture and parameters of the atomic NNs are the same. The
symmetry function vectors GX

i provide the information about the local chemical
environments of the atoms to the atomic NNs. Consequently, GX

i depends on the
Cartesian position vectors RX

i of all the atoms within the cutoff spheres, which is
represented by the black arrows. In such a method, a local atomic environment was
described by generalized symmetry functions. NN potentials have been developed
for many materials, such as Si, C, Cu, ZnO, TiO2, H2O dimers, Li3PO4, Cu clusters
supported on Zn oxide and Au/Cu nanoparticles with water molecules. Additionally,
they have been used to simulate the atom diffusion, phase transition, and search for
equilibrium structures with not only MD but also the nudged elastic band (NEB)
method, Monte Carlo methods and metadynamics.



Machine Learning Interatomic Force Fields for Carbon Allotropic Materials 105

5 Applications of ML Force Fields for Carbon Allotropes

5.1 ML Force Field for Graphene

Graphene has been the subject of extensive investigation since it was first iso-
lated due to its interesting phenomena, such as the phonon-assisted diffusion of
small molecules on the graphene surface, the study of thermal transport, and the
incorporation of nuclear quantum effects into simulations which would benefit
greatly from a highly accurate graphene model. Recently, ML-based force fields
for graphene have emerged and attracted intensive attention. For example, Rowe
et al. [44] constructed such an accurate interatomic potential for graphene using
the GAP ML methodology. In this work, the total energy was decomposed into
a sum of two-, three-, and many-body interactions, which are weighted based on
their respective statistically measured contributions, the order of descriptors used
in each term as follows: two atoms distance, symmetry functions, SOAP. Finally,
to evaluating the accuracy of the ML model, compare the capabilities with those
of empirically constructed potentials. As shown in Fig. 10, which shows the forces
prediction ability of graphene GAP model and a number of other popular methods
compared to the reference DFT method, black points indicate forces perpendicular
to the plane of the graphene sheet (out-of-plane) while red points indicate forces
oriented in the plane. The inset in the graphene GAP plot has a different scale
on the y axis to show more clearly the distribution of force errors, it is clear that
the predictions of the graphene GAP model align very closely with the reference
DFT method. Additionally, the author also calculated the lattice parameters and in-
plane thermal expansion of graphene using the developed GAP model and compared
predictions of the finite temperature phonon spectra of graphene with experimental
results.

In addition, Wen et al. [45] presented a hybrid potential that employs a neural
network to describe short-range interactions and a theoretically motivated analytical
term to model long-range dispersion for multilayer graphene. This potential can
provide accurate energy and forces for both intralayer and interlayer interactions,
correctly reproducing DFT results for structural, energetic, and elastic properties.
Subsequently, Wen et al. [46] proposed another dropout uncertainty neural network
potential for carbon and showed that it can be used to predict the stress and phonon
dispersion in graphene.

5.2 ML Force Field for Diamond

As a significant member in carbon allotropes, diamond has been a hot spot in
scientific research due to its fantastic mechanical and thermal properties. To better
understand the atomistic behavior in diamond, an accuracy carbon potential is
crucial. In 2017, Deringer et al. [47] reported a GAP model trained primarily on the
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Fig. 10 The force prediction
ability of graphene GAP
model, DFTB, LCBOP, and
Tersoff potentials compared
to the reference DFT method.
(Adapted with permission
from ref. [44], copyright
Physical Review B 2018
publishing)

amorphous and liquid phases of carbon based on DFT-local-density approximation
reference data. Subsequently, Rowe and Deringer [48] proposed another improved
GAP model on the basis of previous work, in which a large number of new
configurations and exotic carbon allotropes are considered, such as nanotubes,
cubic and hexagonal diamond and fullerene, as shown in Fig. 11a. To obtain more
comprehensive database meanwhile keep the computational effort at the fitting stage
tractable, they combined the farthest point sampling method with a number of
mandatory configurations chosen using chemical intuition. The structural fingerprint
of a configuration is quantified by SOAP descriptors. During model validation stage,
they present an extensive and rigorous testing of GAP model for a wide range
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Fig. 11 (a) The selected configurations, as well as a representation of their position in phase space.
(b) Phonon dispersion relation for diamond as predicted by GAP (black) with comparison to DFT
reference data (red). (Adapted with permission from ref. [48], copyright 2020 Chemical Physics
publishing)
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of properties, as well as compare the results of GAP model to commonly used
empirical potentials. As shown in Fig. 11b, the phonon dispersion of diamond
is predicted successfully. In addition, the improved GAP model also correctly
predicts the formation energies of diamond, graphite, fullerenes, and nanotubes,
to an accuracy of a few meV, and achieves comparable accuracy for a number of
crystalline and amorphous surfaces. The computed formation energies of defects
are also accurate, with overall errors significantly lower than those obtained from
comparable empirical models. Early, Rustam et al. [49] used an ab initio quality
neural-network potential for large-scale simulations of the graphite-to-diamond
transition assuming that it occurs through nucleation. The nucleation mechanism
accounts for the observed phenomenology and reveals its microscopic origins. Other
ML-based potentials for graphite-diamond phase study can be seen in ref. [50–52].

5.3 ML Force Field for Amorphous Carbon

The atomic structures of amorphous carbon samples depend strongly on density
and are characterized by the coexistence of threefold (“sp2”) and fourfold bonded
(“sp3”) carbon atoms; low- and high-density forms of amorphous carbon are loosely
reminiscent of graphite and diamond, respectively. Deringer et al. [53] combined
ML and DFT obtained new atomistic insight into carbonaceous energy materials.
They started by modeling nanoporous carbons as used in supercapacitors. Using
GAP, which has been “trained” with DFT data to fit energies and forces for
amorphous and partly graphitized configurations as well as bulk graphite, they
found the structural fingerprint of carbons is their atomic coordination relating to the
local bonding (“sp/sp2/sp3”). Finally, the accuracy of GAP was tested specifically
for snapshots from annealing trajectories, as shown in Fig. 12a; it achieves an
energy accuracy within 2 kJ mol−1 of DFT data but completes the task several
orders of magnitude faster. During annealing, the sp2 count in the model systems
quickly rises, as shown in Fig. 12b, which agrees well with electron energy-loss
spectroscopy experiments. Comparing a calculated pair distribution function to
representative experiments find that it successfully reproduces all general features,
as shown in Fig. 12c. Shortly after, Deringer et al. [54] utilized this GAP fitted
by a database of liquid and amorphous carbon configurations for random structure
searching and readily predicted several higher- to unknown carbon allotropes.
Besides, Csányi et al. [47] also introduced a similar GAP for atomistic simulations
of amorphous elemental carbon and yielded accurate energetic and structural
properties over a wide range of densities.
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Fig. 12 (a) DFT versus GAP-computed energies for structures at various points of annealing
trajectories. The root-mean-square error (RMSE) between these quantities is given. (b) Count of
sp2-bonded atoms during annealing; dashed lines indicate removal of unphysical long chains. (c)
PDF analysis. (Adapted with permission from ref. [53], copyright 2018 Royal Society of Chemistry
publishing)

6 Future Directions and Perspective

With continued increase in computing power, MD is emerging as a powerful tool for
atom-level modeling as well as explore some micro mechanism without experiment.
The predictive power of MD hinges strongly on the interatomic force field used
to describe the atomistic interactions in the system. While the ML framework
and the application cases presented above highlight the feasibility of using data-
driven approaches for accurate modeling, however, there is still much room for
improvement. The list below is some certain regions that would require further
focused studies in the near future.
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• The accuracy and speed of the ML force field depends on the choice of structural
descriptors or fingerprints, so it is crucial to select the important descriptors
from a large pool of candidates. For this issue, there is still controversy. Some
researchers hold the view that the descriptors selected should depend on chemical
or physical intuition or the basic knowledge of physic, because the essence of
descriptor is physic. Some researchers proposed that blind spots exist in our
intuitive judgment, for instance, the atomic force may be associated with several
fingerprints combination. So ML can help us auto select descriptors.

• As materials science or chemical systems become ever increasingly complex,
the configuration space for reference dataset will increase exponentially. This
brings a challenge for the conventional nonlinear regression learning algorithm
to handling such high dimension fitting issue, so some deep or advanced ML
algorithms need to be developed.

• Most of the classical MD simulations employ predefined functional forms that
can often limit the chemistry and physics that can be captured. While it appears
that there can be significant improvements made by using data-driven approaches
that employ extensive training data sets and advanced optimization, there will
always be a ceiling limit imposed by the use of predefined functional forms.
Existing force field with predefined functional form are not sufficiently flexible
and cannot be transferred easily from one material class to another.

• Regardless of the application domain or area, all training data used for ML model
should be carefully prepared and sufficiently diverse; for example, the reference
configurations should span a wide range of energies, namely, the sampling not
only includes near-equilibrium state but also consists of far-from-equilibrium
configurations.

• Classical MD performs well under static or equilibrium issues while typically
lacks predictive ability when it encounters dynamic and transport properties. One
way to address this challenge is to include transition state configurations in the
training data set. Going forward, we envisage that the temperature-dependent
characteristics obtained from on-the-fly MD can also be used as part of the
training program. This would allow us to directly train MD force field that can
also capture dynamical and other transport properties or temperature-dependent
properties of interest.

• Iterative improvement and cross-validation techniques are seldom used in the
fitting of potentials. Even if with a DFT-based data set, there will always exist
errors and then could be propagated to the atomistic potential model. Although
higher-level theories can be introduced to generate training data and reduce
errors, it is obvious that the uncertainty in prediction at various scales still
needs to be quantified. Recent Strachan and his colleagues’ work on quantitative
methods of functional uncertainty represents an important future direction for
assessing model errors. Cross-validation, sensitivity analysis, and uncertainty
quantification are the key to improve the quality and prediction ability of
interatomic potentials in MD.

In summary, using ML-based force field is indeed a powerful and feasible tool to
accelerate atomistic simulations. Obtaining such high fidelity force prediction at a
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very low cost has opened up an important way for the study of carbon materials and
chemical phenomena. This can lead to revolutionary progress, enabling us to access
time and length scales in carbon materials modeling that were hitherto considered
to be inaccessible to MD.
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Genetic Algorithms

Shichang Li and Dengfeng Li

Genetic algorithms (GAs), developed by John Holland and his colleagues in 1975
[1], has been applied to many fields in search and optimization that belongs to
the larger class of evolutionary algorithms (EAs). This approach is a metaheuristic
inspired by the mechanisms of evolution, such as selection, crossover, and mutation.
Drawing on the theory of biological evolution, the goals of their research have been
solved into a biological evolution process by genetic algorithm, which generates
next-generation solutions through operations such as duplication, crossover, and
mutation. In this way, after n generations of evolution, it is very likely to evolve
function with high fitness values. In fact, there are several methods available
for solving the global optimization problems in materials science and related
fields. Some of the well-known GAs include artificial bee colony, particle swarm
optimization, differential evolution, etc.

1 Artificial Bee Colony Algorithms

The artificial bee colony algorithm was proposed by Karaboga (2005) [2] to simulate
the intelligent behavior of a honeybee swarm. It consists of three main parts: food
sources, employed foragers, and unemployed foragers. In order to better explain
the basic principles of artificial bee colony algorithm, the three basic elements are
introduced in detail as follows:
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1. Food sources
In the algorithm, food sources are mainly to represent different solutions,

which depends on many factors such as its proximity to the nest, its richness
or concentration of its energy, and the ease of extracting this energy. The
“profitability” was used to evaluate the excellence of a food source.

2. Employed foragers
Also known as a leader, it corresponds to the food source collected. The

leading bee stores information about a food source (distance relative to the hive,
direction, food source abundance, etc.) and shares this information with other
bees with a certain probability.

3. Unemployed foragers
The main task of unemployed foragers is to find and exploit food sources.

There are two types of unemployed foragers: scouts and onlookers. Scouts begin
to search for new food sources near the hive; Onlookers is waiting in the hive
and to find the nectar source by sharing relevant information with the leader
(employed foragers). In general, the average number of scouts is about 5–10% of
the colony.

In the formation of searching the food sources, the exchange of information
between bees is the most important part. The dancing area is the most important
information exchange place in the hive. The dancing of the bees is called a waggle
dance. The information of food source is shared with other bees in the dancing area,
leading to express the profitability of food source on the dance floor. Therefore, the
onlookers can observe a large number of food sources and choose more profitable
sources due to some internal motivation or possible external clue. The probability
of bees being recruited is proportional to the profitability of the food source.

1.1 Main Steps of the Artificial Bee Colony Algorithm

Based on the above explanation of initializing the algorithm population, employed
bee phase, probabilistic selection scheme, onlooker bee phase, and scout bee phase,
the pseudo-code of the artificial bee colony algorithm is given below [3]:
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Algorithm 1 Artificial Bee Colony Algorithm

01: Initialize the population of solutions xi, j = 1, 2· · · SN, j = 1, 2· · · n,
triali = 0, triali = 0 is the non-improvement number of the solution Xi, used for
abandonment (food source Xi depending on its probability value pi)
02: Evaluate the population
03: cycle = 1
04: repeat

{– – Produce a new food source population for employed bees – –}
06: fori = 1 to SNdo
07: Produce a new food source Vi for the employed bee of the food source Xi using
vi, j = xi, j + φi, j(xi, j − xk, j) and evaluate its quality
08: Apply a greedy selection process between Vi and , select the better one.
09: If solution Xi does not improve triali = triali + 1, otherwise triali = 0
10: end for
11: Calculate the probability values pi for the solutions using fitness values.

{– – Produce a new food source population for onlooker bees – –}
12: t = 0, i = 1
13: repeat
14: if random < pi then
15: Produce a new food source for onlooker bee
16: Apply a greedy selection process between Vi and Xi, select the better one
17: If solution Xi does not improve triali = triali + 1, otherwise triali = 0
18: t = t + 1
19: endif
20: until (t = SN)

{– – Determine Scout – –}
21: if max(triali) > limit then
22: Replace Xi with a new randomly produced solution
23: end if
24: Memorize the best solution achieved so far
25: cycle = cycle + 1
26: until (cycle=Maximum Cycle Number)
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Algorithm 2 A Novel Initialization Approach

01: Set the maximum number of chaotic iteration K ≥ 300, the population size SN, and the
individual counter i = 1, j = 1

{– – chaotic systems – –}
03: for i = 1 to SN do
04: for j = 1 to n do
05: Randomly initialize variables ch0, j ∈ (0, 1), set iteration counter k = 0
06: fork = 1 to K do
07: chk + 1, j = sin (πchk, j)
08: end for
09: xij = xmin, j + chk, j(xmax, j − xmin, j)
10: end for
11: end for

{– – Opposition-based learning method – –}
13: Set the individual counter i = 1, j = 1
14: fori = 1 to SNdo
15: forj = 1 to ndo
16: oxi, j = xmin, j + xmax, j − xi, j
17: end for
18: end for
19: Selecting SN fittest individuals from set the {X(SN)} ∪ OX(SN) as initial population
25: cycle = cycle + 1
26: until (cycle=Maximum Cycle Number)

1.2 Applications of the Artificial Bee Colony in Functional
Materials

Interestingly, artificial bee colony has been tailored successfully, to solve a wide
variety of discrete and continuous optimization problems. The distribution of
published research articles on artificial bee colony with respect to applications,
hybridizations, and modifications is shown in Fig. 1 [4].

The artificial bee colony also has been mostly implemented in design of many
materials. For example, variables in design of multilayer radar-absorbing material
with various numbers of layers are optimally determined using artificial bee colony
which is one of the latest natural-inspired algorithms [5]. The multilayer radar-
absorbing material in terms of electrical and geometric variables is conceptually
synthesized with the aid of artificial bee colony optimization algorithm. Five truss
examples with fixed-geometry and up to 200 elements were studied to verify that the
ABC algorithm is an effective optimization algorithm in the creation of an optimal
design for truss structures [6].
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Fig. 1 The distribution of
published research articles on
artificial bee colony

1.3 Current Status of Research on Artificial Bee Colony
Algorithms

In 2005, Karaboga proposed a more complete model of artificial bee colony
algorithm and solved the function optimization problem with artificial bee colony
algorithm, which achieved certain results. From the experimental results, the
artificial bee colony algorithm is more excellent than the heuristic algorithm in terms
of nonrestrictive numerical optimization.

More and more attempts have been made to improve the algorithm. Gao and
Liu [7] introduced a new initialization approach and a novel search mechanism to
improve the artificial bee colony algorithm. The results showed that the improved
algorithm can outperform some conventional algorithms in accuracy, convergence
speed, stability, and robustness. Zhu and Kwong [8] proposed an improved artificial
bee colony algorithm, called Gbest-guided artificial bee colony algorithm. The
results show that the Gbest-guided artificial bee colony algorithm possesses superior
performance in most of the experiments, as compared to the conventional artificial
bee colony algorithm. A modified artificial bee colony algorithm, developed by Gao
and Liu [3], has been shown to be competitive to other population-based algorithms.
The new optimization algorithm is based on that the bee searches only around the
best solution of the previous iteration, leading to improving the exploitation.
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2 Particle Swarm Optimization Algorithms

Particle swarm optimization (PSO) is a branch of evolutionary algorithms, which
is inspired by the choreography of a bird flock that seems to be effective for
optimizing a wide range of functions. In fact, it can be viewed as a distributed
behavior algorithm that performs multidimensional search. PSO was first proposed
by Kennedy and Eberhart in 1995 [9].

The principle of POS is similar to other evolutionary algorithms, and it also
moves individuals in the group to a better place. Unlike other evolutionary algo-
rithms, the particle swarm algorithm does not use any evolutionary operators, each
individual member is regarded as a particle, which runs at a certain speed in space,
and uses flying speed and position to adjust the entire algorithm space. Therefore,
all the individuals can quickly find the global stable position and near-optimal
geographical position. The PSO has been experimentally proven to be competitive
and better than most of the algorithms on many optimization problems.

In the particle swarm algorithm, the position of each particle is updated using its
velocity vector as depicted in Fig. 2 [10]. And the detail operation through Eq. (1)
as following:

Vi,j (t + 1) = ωVi,j (t) + c1r1,j

[
pbest i,j (t) − Xi,j (t)

]

+ c2r2,j

[
gbestj (t) − Xi,j (t)

]
Xi,j (t + 1) = Xi,j (t) + Vi,j (t + 1)

(1)

where pbesti, j = (pbesti1, pbesti2, . . . , pbestiD) and gbestj = (pbest1, pbest2, . . . ,
pbestD) are current location and population global location, respectively. X is a set
of positions of i particles in a D-dimensional space. ω is inertia weight. c1 and c2
are self-confidence factor and swarm confidence factor. r1 and r2 are two separately
generated random numbers. The algorithm flowchart of PSO is presented in Fig. 3.

Fig. 2 Depiction of the velocity and position updates in PSO
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Fig. 3 The flowchart of PSO

The steps of PSO evolution are as follows:

1. Generate random the position and velocity of all particles, and optimize each
particle pbest and gbest.

2. Generate new position and velocity for each particle and compare them with the
previous pbest. If the current position is better than previous pbest, then replace
previous pbest. Otherwise, keep the current value.

3. For each particle, compare its position with the previous gbest. If the present
position is better than gbest, then previous gbest is replaced. Otherwise, keep the
current value.

4. Updating of the velocity and position of each particle, using the above equation.
5. If the convergence condition is not met, return to step (2). There are several

criteria for convergence, such as free energy, cell sizes, and symmetry.
6. If the convergence condition is met, the present gbest value is taken as the optimal

solution.
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2.1 Applications of the Particle Swarm Optimization
in Multifunctional Materials

Recently, PSO algorithm has been employed to various optimization problems
for 0D nanoparticles or clusters, 2D layers and its atom adsorption, 2D surface
reconstructions, and 3D crystals. And this model has been successfully used to
inversely design multifunctional materials (e.g., superhard materials, electrides,
optical materials) for many ternary and ternary compounds.

For example, PSO algorithm is used to predict the structures of many ternary Np-
H compounds. The searching results of the energetically most favorable structures
of NpHx (x = 1–10) found by us are plotted in Fig. 4 by PSO algorithm at ambient
and high pressures. The complete pressure–composition phase diagram of Np–H
compounds is shown in Fig. 5, with the stable structures identified using colors and
space groups. The relative formation enthalpies of the energetically most favorable
structures of NpHx found by us are plotted in Fig. 6 with cell sizes of 1–6 formula
units, covering the pressure range up to 200 GPa. For ternary compounds, the PSO
algorithm has been successfully used to predict the ambient pressure structures of
PuGaO3 and CeGaO3, as shown in Fig. 7 [11].

2.2 Current State of the Particle Swarm Optimization

Since the PSO was proposed in 1995, the mathematical model of PSO is relatively
simple and its application is surprisingly considerable, which has prompted a lot of
researchers to study it. There have been a lot of research achievements in theoretical
research of algorithm, the modification of model, and the fusion arithmetic.

1. Theoretical research
Ozcan and Mohan [12] have analyzed the theory of particle swarm algorithm

in 1999, the formula of the algorithm has been updated for the first time.
Then Clerc and Kennedy analyzed the operation of particle swarm algorithm in
multidimensional space [13]. Trelea have investigated the convergence of particle
swarm algorithm by using discrete dynamic system and proposed some methods
of parameter selection that are helpful for the overall stability and convergence
of the algorithm. It has been well confirmed in the experimental data [14].

2. The modification of model
In 1998, Shi and Eberhart published a paper about modified PSO algorithms

at the International Conference on Swarm Intelligence. Inertia weight was
introduced for the first time by this algorithm, with such improvements widely
used in the academic community, gradually converted to the standard particle
swarm optimization algorithm which is widely used at present. In order to
improve this algorithm, Eberhart and Shi proposed to adjust with fuzzy system
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Fig. 4 Crystal structures of the predicted stable neptunium hydrides compounds: (a) Fm3m
structure of NpH at 100 GPa, (b) Fm3m structure of NpH2 at ambient pressure, (c) P63/mmc
structure of NpH2 at 25 GPa, (d) P6/mmm structure of NpH2 at 150 GPa, (e) P63cm structure of
NpH3 at ambient pressure, (f) Pnma structure of NpH3 at 50 GPa, (g) R3m structure of NpH3 at
100 GPa, (h) Cmcm structure of NpH3 at 160 GPa, (i) I4/mmm structure of NpH4 at 200 GPa. The
large and small spheres denote neptunium and hydrogen atoms, respectively

[15]. Subsequently, Clerc confirmed that the effectiveness of the proposed
algorithm was convergent [13].

3. The fusion arithmetic
Angeline has introduced the selection operation in evolutionary computation

and proposed a hybrid particle swarm optimization algorithm model [16, 17].

Because the PSO algorithms have some of significant advantages, such as simple
model, easy to implement, and non-gradient and less variables, it shows excellent
results in the continuous discontinuous optimization, combinatorial optimization,
and dynamic optimization. Recently, PSO algorithm has been employed to various
optimization problems for 0D nanoparticles or clusters, 2D layers and its atom
adsorption, 2D surface reconstructions, and 3D crystals. The application of PSO in
structure prediction has been proved to be a popular technique. The POS algorithms
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Fig. 5 Convex hulls of the Np–H system at selected pressures. Solid points connected by the
solid line denote thermodynamic stable phases, while empty points connected by the dotted line
represent unstable/metastable phases

have been interface to some mature structure prediction codes, such as CALYPSO
[18] and USPEX [19], which have been successfully applied to investigate a great
variety of materials at high pressures.

3 Differential Evolution Algorithms

3.1 Brief Introduction of the Differential Evolution Algorithm

Differential Evolution (DE) is a parallel direct search method which optimizes a
problem by iteratively trying to improve a candidate solution for the multidimen-
sional optimization problem. DE is a particular method to create new vector (also
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Fig. 6 Predicted pressure–composition phase diagram of the Np–H crystal phases

Fig. 7 Calculated enthalpy (for per formula unit) of predicted phases versus volume for (a)
PuGaO3 and (b) CeGaO3 compounds with the PBEsol + U approach. Thermo-Stable level is
the sum of the enthalpy of the decomposition products (PuO2/CeO2, Ga2O3, and α-Ga)
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Fig. 8 DE mutation scheme
for three random vectors

Fig. 9 The flowchart of the DE algorithm

known as genome/chromosome) for the population. While iterating over generations
to evolve to an optimal state, existing chromosomes is used to create new offspring
as potential candidates to make it to the subsequent generation. Diagram of the DE
is depicted in Fig. 8. The main steps in DE are as follows [20]:

1. For each genome in the current population, we select three random vectors.
2. If a uniformly distributed random number (randi,j[0,1]) is less than the defined

crossover rate, create a new offspring vector. Otherwise use the same genome as
the parent.

3. Subtract two of these genome vectors.
4. Scale the difference of any two of these three vectors by a user-defined scale

parameter λ.
5. Add the scaled difference vector to the third genome.

The D-dimension vector can be used to represent a set of D-dimensional param-
eters, called a single parameter [21]. A population consists of NP D-dimensional
parameter vectors xi, G, i = 1, 2, . . . , NP for each generation G [22]. The flowchart
of the DE algorithm is shown in Fig. 9. Mutation, crossover, and selection are
described below. For a more detailed description, please refer to [22].
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3.1.1 Mutation

Mutation vectors are generated according to vi, G + 1 = xr1, G + F · (xr2, G − xr3, G)
with randomly selected indexes, corresponding to each target vector xi, G. It is
important to note that the indexes must be different from each other and different
from the running index i. Consequently, the number of parameter vectors in a
population must be at least four. F is an actual and constant factor ∈[0, 2] that
controls the amplification of the difference vector (xr2, G − xr3, G).

It is necessary to note that the more subtle the differences between parameters of
parent r2 and r3, the smaller the difference vector and therefore the perturbation.
This means that if the population is close to the optimal value, the step size
will decrease accordingly. This is similar to automatic step control in standard
evolutionary strategies.

3.1.2 Crossover

The trial vector generated by the target vector is mixed with the mutated vector
using the following scheme

uji,G+1 =
{

vji,G + 1 if (r(j) ≤ CR) or j = rn(i)

xji,G if (r(j) > CR) and j �= rn(i)

where j = 1, 2, . . . , D, r(j) ∈ [0, 1] is the jth evaluation of a uniform random number
generator. CR is the crossover constant ∈[0, 1]. CR = 0 means that no crossover
operator was used in the DE algorithm. rn(i) ∈ (1, 2, . . . ,D) is a randomly chosen
index which ensures that ui, G + 1 gets at least one element from . Otherwise, no new
parent vector would be produced and the population would not alter.

3.1.3 Selection

If and only if the test vector produces a better cost function value than the parameter
vector , it is accepted as the new parent vector of the next generation G + 1. This
is a “greedy” option. If not, the target vector is retained again as the parent vector
of generation G + 1. There are three strategy parameters altogether: NP: Number
of members in a population, F: Amplification factor of the difference vector, CR:
Crossover constant.

3.1.4 Other Variants of DE

There are numerous variants of DE which can be classified as DE/x/y/z, where x
specifies the vector to be mutated, y is the number of difference vectors used, and z
denotes the crossover scheme.
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Table 1 Applications of differential evolution in medicine and pharmacology

Year Researchers Application

2004 Magoulas, Plagianakos, and Vrahatis Colonoscopic diagnosis
2006 Koutsojannis and Hatzilygeroudis Intelligent diagnosis and treatment of

acid-base disturbances based on blood
gas analysis data

2004–2005 Saastamoinen, Ketola, and Turunen Sport medicine
2015 Konstantin Kozlov et al. Geospatial immune
2017 T. Vivekanandan, N. ChSriman

Narayana Iyengar
Heart disease

Table 2 Applications of differential evolution in optics community

Year Researchers Application

2004 Al-Kuzee, Matsuura, and Goodyear Optimize plasma etch processes
2004 Zhang and Zhong Calibrate camera
2005 Chan, Toader, and John PBG design
2006 Akdagli and Yuksel Laser diode nonlinearity
2006 Bluszcz and Adamiec Optical stimulated luminescence decay
2006 Ling, Wu, Yang, and Wan Design holographic grating
2007 Pan and Xie Deformation measurement
2016 Fernando Lezama Optical networks
2016 Soham Sarkar Reflective optics system
2017 Md. Ghulam Saber Optical material

x is note “rand” (randomly chosen population vector) or “best” (the best vector
from the current population). Since we use only one difference vector, y is one
in the described scheme. The current variant for z is “bin” (independent binomial
experiments) which means crossover. With this notation, the conventional DE model
can be written as . Another possibility is the method DE/best/2/bin, the mutant
vector vi, G + 1 = xbest, G + F · (xr1, G − xr2, G + Xr3, G − xr4, G) can be obtained.

3.2 Applications of the Differential Evolution Algorithm

Recently, differential evolution algorithm has been intensively implemented in
medical applications (focus on the diagnosis, classification, and treatment of cancer,
Table 1), optics community (Table 2), the early accurate prediction of earthquakes
(Table 3), and thermal engineering (Table 4) [23]. And most of the applications
of differential evolution in physics focus on stellarator design and plasma. Other
reported applications include chaos control [24], and optimization of the structure
of atomic and molecular clusters [25].

Since the DE algorithm [26] was proposed by Storn and Price in 1995, the algo-
rithm has been favored by more and more researchers. The research on the algorithm
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Table 3 Applications of differential evolution in seismology

Year Researchers Application

1998, 2000 Bartal et al. Optimize the seismic networks in Israel
2007 Ruzek et al. Find seismic velocity models yielding travel times

consistent with observed experimental data
2018 Thomas Meehan The roots of this algorithm and main developments are

examined to offer a better understanding of its essential
features

Table 4 Applications of differential evolution in thermal engineering

Year Researchers Application

2006 Coelho Modeling of a thermal system
2007 Babu and Munawar Design of heat exchangers
2016 G. Balaji Thermal generator maintenance

scheduling
2017 Emerson Hochsteiner deVasconcelos Segundo Economic optimization design for

shell-and-tube heat exchangers
2019 Feng Tan Thermal analysis of spindle
2020 Mohammad H. Nadimi-Shahraki Introducing a multi trial vector

approach to combine various search
strategies

and its application has shown a rapid growth during past few years. The DE was used
to solve Chebyshev polynomials at the early stages. By comparing with a variety
of metaheuristic algorithms, it was found that the algorithm showed increasing
effectiveness. The algorithm is currently used in many fields, including neural
networks, industrial engineering, mechanical engineering, electronic engineering,
electrical engineering, control engineering, civil engineering, software engineering,
image processing, and other fields.

4 Conclusions

In summary, evolutionary algorithms model is a very simple but very powerful
stochastic global optimizer, which is widely used in many scientific and engineering
fields for function optimization. Evolutionary algorithms make it possible to use
computers to extract useful knowledge from massive amounts of the acquired
knowledge. It should be pointed out that there is no absolute good or bad between
different evolutionary algorithms. We should select the appropriate evolutionary
algorithms with different data structures in different situations.
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Accelerated Discovery of Thermoelectric
Materials Using Machine Learning

Rinkle Juneja and Abhishek K. Singh

1 Introduction

Thermoelectric materials convert heat to electricity and hence could be major
contributors in addressing the global energy crisis [1–7]. The energy conversion
performance of a thermoelectric material is assessed by a dimensionless figure

of merit, ZT , given by ZT = S2σ
κe+κl

T , where S, σ , κe, κl , and T are Seebeck
coefficient, electrical conductivity, electronic thermal conductivity, lattice thermal
conductivity, and absolute temperature, respectively. A material exhibiting simulta-
neously favorable electronic and thermal transport properties will have high figure
of merit and hence would be useful for designing efficient thermoelectric device.
However, obtaining high figure of merit in materials is a challenging task. This is
due to inherent interdependence of transport properties (S, σ , κe) as well as difficulty
in finding materials with low κl , thereby limiting the use of thermoelectrics for
large-scale commercial applications. To realize the full potential of thermoelectric
technology, strategies to overcome these fundamental challenges are required.

Over the years, significant efforts have been made by the thermoelectric com-
munity, which has led to emergence of several novel concepts and methodologies
for obtaining highly efficient thermoelectric materials. The key focus of these
efforts includes addressing the interdependence of transport properties for obtaining
high power factor (S2σ ) and phonon engineering to achieve ultralow lattice
thermal conductivity. Some of the effective strategies employed for favorable
electronic transport are carrier pocket engineering, composite engineering, quantum
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confinement, and modulation doping [8–11]. For achieving ultralow lattice thermal
conductivity, some of the techniques proven to be successful are introduction
of rattler atoms in complex polyhedral systems, simpler materials with bonding
anisotropy to host rattler atoms, introduction of atomic-scale point defects, nanos-
tructuring, grain boundaries, and strain modulation [12–19].

Employing these conventional approaches for exploration of highly efficient
thermoelectrics among the pool of large materials space is very time-consuming as
well as challenging. With the advent of Materials Genome Initiative, data-assisted
methods have been providing an alternative cost-effective route for accelerated dis-
covery of materials with desired functionalities [20–24]. Based on high-throughput
screening or machine learning based prediction models, reliable estimate of various
resource extensive properties for a large class of materials has been successful [25–
31]. The set of descriptors, which enters as an input to the machine learning models,
often unravels the qualitative description of target properties in the form of simple
physical properties.

In recent years, the high-throughput and machine learning methods have been
used extensively for designing thermoelectrics. Since these methods rely on the
quantity as well as quality of data, this requirement has spur an extensive effort
to develop various databases focusing on thermoelectric properties of materials
[32–37]. By specifying various screening criteria, these databases are utilized for
high-throughput screening of materials with desired electronic and thermal transport
properties. The very first effort in this direction was made by Madsen et al.
[38], wherein an automated band structure based high-throughput screening was
employed on Sb-containing compounds in Inorganic Crystal Structure Database
and LiZnSb was suggested as one of the potential thermoelectric compounds. Since
then, there is surge in high-throughput screening of efficient thermoelectric mate-
rials [39–48]. However, high-throughput screening requires the estimate of target
property for all the compounds in the database and hence still relies on availability
of extensive computational resources to compute the target property. To accelerate
this process, these databases have been utilized to develop machine learning based
prediction models for electronic as well as thermal transport properties [47–51].

From the perspective of thermoelectric screening, simultaneous assessment of
electronic as well as thermal transport properties is required. However, the data-
assisted approaches have been utilized to develop independent prediction models for
these properties. The proposed material with favorable electronic transport may lack
in exhibiting low thermal conductivity and vice versa, thereby may not be a potential
candidate for thermoelectric. This implies that a connection, if any, between these
two transport properties would be very significant for making the thermoelectric
screening efficient. Recently, using machine learning, a connection between these
transport properties is unraveled by identifying the common descriptors affecting
both [48]. Bonding characteristics are shown to control both the transport properties
and hence correlate the otherwise independent transport properties. This work
demonstrated the power of machine learning in identifying hidden connections
between unrelated quantities.
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Although the data-assisted methods represent significant advancement in accel-
erated screening of materials with desired functionalities, one of the bottlenecks
to be addressed is the transferability of developed models across different class
of materials. Most of the machine learning models developed on one class of
materials show poor transferability when tested on another class. This emphasizes
the need to develop a generalized universal model for a given target property of
interest. Recently, an algorithm ‘guided patchwork kriging’ is proposed for building
a generalized model for lattice thermal conductivity [52].

In this chapter, we will discuss major milestones achieved using the high-
throughput and machine learning approaches for accelerated screening of thermo-
electrics. The chapter is arranged as follows: In Sect. 2, the generic computational
tools required for assessing the thermoelectric properties will be discussed. It will
also include a brief introduction to data-assisted algorithms for development of
prediction models. Section 3 will include a brief overview of available databases
and the descriptors employed for developing prediction models. Section 4 will
discuss the efforts to address the electronic as well as thermal transport properties
using high-throughput and machine learning methods. Section 5 will introduce the
potential of machine learning in establishing a connection between electronic and
thermal transport properties. Section 6 will focus on algorithmic developments
for highly transferable prediction models. The final Sect. 7 will conclude the
chapter along with future perspectives in the direction of accelerated thermoelectric
materials discovery.

2 Methodology

Building computational databases for high-throughput and machine learning meth-
ods requires the inputs from density functional theory (DFT)-based approaches. The
theoretical estimation of various properties within DFT framework can be obtained
with the help of outputs from the solution of Kohn-Sham equations [53, 54]. There
are different possible choices to take into consideration for solving the Kohn-Sham
equations such as type of basis sets, exchange and correlation functional, and rep-
resentation of ion-electron interactions. Typical calculations use plane-wave basis
set in conjugation with local density approximation (LDA) or generalized gradient
approximation (GGA) for exchange and correlation [55–57] by representing core
and valence electron interactions via projector augmented wave (PAW) potentials
[58, 59]. Due to inability of local and semi-local functionals (LDA and GGA)
in accurately describing exchange and correlation, one often has to use resource-
extensive approximations such as GW [60]. The choice of approximations depends
on the trade-off between the required accuracy and computational efficiency. There
are various widely used DFT codes available to perform these calculations such
as Vienna Ab initio Simulation Package (VASP) and WIEN2k code [55, 56, 61].
These electronic structure methods have been proven successful in estimating
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various microscopic properties of materials and in providing deeper insights into
fundamental physical and chemical properties.

By taking the input eigenvalues from electronic structure calculations, the elec-
tronic transport properties can be obtained by solving the semi-classical Boltzmann
transport equation (BTE) under constant scattering time approximation [62]. Under
this approximation, it is assumed that relaxation time has very less dependence on
temperature as well as carrier concentration. The electronic structure calculations
coupled with solution of BTE can provide Seebeck coefficient S and scaled
electrical conductivity σ

τ
. The numerical implementation for solving BTE for

electronic transport properties is available in the software package BoltzTraP [63].
The relaxation time τ can be approximated either by using deformation potential
theory [64] or by fitting scaled electrical conductivity data to experiments. For
obtaining the thermal properties, BTE is coupled with harmonic and anharmonic
interatomic force constants (IFCs). DFT can provide IFCs by calculating the forces
using Hellmann-Feynman theorem [65]. Harmonic IFCs describing the vibrational
spectrum can be obtained by various methods such as using frozen phonon method
and density functional perturbation theory [66]. The software tool such as Phonopy
can diagonalize the dynamical matrix and hence can provide the phonon eigenvalues
[67]. The numerical implementation to obtain lattice thermal conductivity using
harmonic and anharmonic IFCs is also available in various software packages such
as ShengBTE [68] and Phono3py [69, 70].

For developing the machine learning based prediction models, the relation-
ship between the input descriptors and target output is established using various
statistical techniques [23, 71]. Depending upon the type of database, there are
various methods, which can be employed for development of prediction models
such as linear regression, polynomial regression, ridge regression, Gaussian process
regression, logistic regression, Bayesian optimization, decision trees, and neural
networks. The details about these methods can be found in the review article by
Wang et al. [37] and references therein. The performance of developed models is
often assessed by defining the metric root mean square error (RMSE) and coefficient
of determination (R2). Low RMSE along with high R2 is considered as a quality
regression metric for the developed models.

3 Ingredients for Statistical Methods

One of the most important requirements for the statistical methods is the availability
of databases of properties for a large class of materials. Besides the experimentally
available data, advancement in computational resources has led to development
of various high-quality computational databases containing information of various
physical properties of enormously large number of materials [37, 72]. Most of
such databases are publicly available to the community, such as Materials Project
[73], Open Quantum Materials Database [74], AFLOW for Materials [75], Novel
Materials Discovery [76], Polymer Genome [77], aNANt [30], and NIST JARVIS
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[78]. The efforts to generate data specific to thermoelectric properties are growing
recently either by collecting the properties from the literature [40] or by explicit
theoretical calculations [33, 47, 48, 50, 52]. These databases could be utilized in
high-throughput screening and development of machine learning based prediction
models.

For machine learning based prediction models, the choice of descriptors is
another crucial ingredient besides the high-quality data for property of interest.
Since the purpose of machine learning methods is to develop prediction models for
resource-extensive properties, it is always preferred to have the set of descriptors,
which are easily available. These descriptors may include (a) the information of
elemental properties such as melting point, boiling point, electronegativity, and
atomic mass; (b) information of structural properties such as number of elements,
number of atoms, bond distances, and coordination number; (c) information from
computationally inexpensive DFT calculation outputs; and (d) properties quantified
from the emerging trends from the data or the correlations with target output.
Given the enormous choice of availability of such descriptors and their dependence
on the type of data as well as the property of interest, the selection process of
descriptors is challenging [79]. There are several algorithms to select the optimized
set of descriptors such as least absolute selection and shrinkage operator (LASSO)
[80], SISSO [81], and principal component analysis (PCA) [82]. By selecting an
appropriate set of descriptors, machine learning methods can be employed for
accelerated prediction of target properties of interest. The schematic illustrating the
data-assisted materials discovery is shown in Fig. 1.

DatabasesHigh-throughput
Screening

Descriptors

ML

Experimental validation

S2σ
к TZT = +-

Fig. 1 Schematic illustrating the data-assisted high-throughput and machine learning based
discovery of thermoelectric materials
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4 High-Throughput Screening and Machine Learning
Prediction Models for Thermoelectrics

For thermoelectrics, the properties need to be addressed are electronic transport
properties, namely, Seebeck coefficient, electrical conductivity, and thermal trans-
port properties, namely, lattice thermal conductivity. For the electronic transport
part, the very first effort of employing high-throughput screening was on Sb-
containing compounds available in the Inorganic Crystal Structure Database [38].
For the initial screening, compounds with disorders, partial occupancies, containing
lanthanide atoms, or highly electronegative elements were dropped. Among the
remaining 570 compounds, this study proposed the narrow band gap LiZnSb
system as a potential thermoelectric material among ZnSb systems. For addressing
the electronic transport properties in nanograined systems, which are considered
to be efficient thermoelectrics than their corresponding bulk counterparts, high-
throughput scheme by introducing constant mean free path approximation was
proposed [39]. In this approximation, the mean free path was correlated with the
grain size. The power factor for more than 2500 compounds from the AFLOW
repository was computed in the nanograin limit, and its correlation with carrier
mass and electronic band structure was presented. This work outlined the guiding
rules for screening high power factor nanograined materials. The nanograined
approximation to calculate the transport coefficients was further employed on
half-Heusler compounds [41]. By applying electronic and thermodynamic filtering
criterion for 79,057 half-Heusler compounds from AFLOW repository, the transport
properties of 75 thermodynamically stable compounds were characterized in the
nanograin limit. This study identifies that nanograined half-Heuslers have higher
figure of merit as compared to potential thermoelectric materials belonging to
Group IV and III–V. For class-independent high-throughput screening of electronic
transport properties, a highly diverse database of 2838 compounds covering wide
elemental, structural, and chemical space was generated [48]. Several compounds
with simultaneously high Seebeck coefficient S and scaled electrical conductivity
σ
τ

were proposed, resulting in identification of ultrahigh power factor materials.
High throughput has also been utilized to draw conclusions about the transport
properties based on the trends in the certain properties. For example, high-
throughput screening of data from the Materials Project was carried out to study
the Fermi surface complexity [46]. It was found that the complexity factor is highly
correlated with inertial effective mass, which has significant effect on power factor.
Hence, this study proposed inertial effective mass as an effective descriptor affecting
the power factor of materials.

Besides high-throughput screening, there are machine learning based prediction
models developed for electronic transport properties. Starting from a database of
2838 compounds, the prediction models for Seebeck coefficient S and scaled elec-
trical conductivity σ

τ
were developed [48]. The descriptors used for developing the

prediction models consisted of elemental and structural properties of compounds.
The elemental descriptors comprised of mean and standard deviation of easily
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available properties such as boiling point (B.P.), melting point (M.P.), specific
heat (cg

p), molar specific heat (cp), molar volume (Vm), heat of fusion (Hf ), heat
of vaporization (Hv), Pauling electronegativity (χp), first ionization energy (I.E.1),
group and period in the periodic table, elemental thermal conductivity (κele), atomic
number (Z), atomic mass (M), covalent radius (rcov), van der Waals radius (rvdw),
and density (ρ). The structural information included average bond distance (B.D.),
average bond strength (B.S.), volume per atom (Vatom), volume of cell (Vcell), and
coordination number (C.N.). The target property was chosen to be log-scaled mean
of S and σ

τ
in the carrier concentration range 1019 to 1022 cm−3. The choice of

log scale was to take care of the large variation of transport properties. The chosen
carrier concentration range is optimal for achieving high power factor thermoelectric
materials. The mean of transport properties was chosen because the inverse coupled
relationship between S and σ

τ
would make the mean to correspond to the regime,

where maximum of power factor occurs. For development of the models, Gaussian
process regression was used, and the relevant set of descriptors employed for
prediction was selected by least absolute shrinkage and selection operator (LASSO)
[23, 71]. It selects the descriptors by the L1 regularization. For n-type and p-type
log-scaled mean of S, the developed model gives train/test RMSE of 0.10/0.10, R2

of 0.98/0.98, and RMSE of 0.12/0.12, R2 of 0.97/0.97, respectively. For the scaled
electrical conductivity, the developed model for n-type and p-type log-scaled mean
of σ

τ
gives train/test RMSE of 0.08/0.08, R2 of 0.99/0.99 and RMSE of 0.10/0.10, R2

of 0.99/0.99, respectively. The unprecedented accuracies of the developed models
for electronic transport properties ensure scanning a large search space of materials
with favorable electronic transport properties in a very less time without the need of
explicit DFT calculations. For evaluating the figure of merit, one needs to calculate
σ by estimating the relaxation time τ either from experiments or approximation
such as deformation potential theory [64]. Recently, a prediction model for room
temperature electrical conductivity is developed on an experimental database of
124 compounds using gradient boost regression [49]. The developed model gives
high accuracy with train/test RMSE of 0.21/0.22 and R2 of 0.98/0.98. Using the
predicted electrical conductivity and the calculated scaled electrical conductivity,
the temperature dependence of electronic relaxation time is determined, which
outperforms the dependence obtained from deformation potential approach.

Since thermal transport estimation is more resource extensive than electronic
transport, extensive efforts have been devoted in employing data-assisted methods
for thermal transport property κl . A combined high-throughput and machine
learning based approach was proposed by Carrete et al. to identify low and
high κl half-Heusler compounds [42]. Starting from a set of 79,057 half-Heusler
compounds from AFLOW repository, high-throughput screening conditions such
as negative formation energy, mechanical stability, and thermodynamic stability
were imposed, which resulted in 75 compounds. Using the random forest regression
technique and suitable descriptors, this study developed a classification model to
identify high and low κl half-Heuslers, which resulted in accelerated screening of
desired thermoelectrics among the half-Heusler compounds. In an effort to develop
computationally inexpensive approach for high-throughput-based estimation of
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κl , Automatic-Gibbs-Library (AGL) have been implemented within AFLOW and
Materials Project databases, which calculates the thermal properties based on
quasi-harmonic Debye approximation [34]. The AGL estimated and experimental
κl for 75 compounds of different symmetry showed high Pearson correlation.
This study provided accelerated screening of desired thermoelectrics based on
the ordinal ranking of κl through AGL. Besides AGL, there are development of
several semiempirical models, which take few inexpensive DFT parameters and
structural attributes as input and hence can be utilized for high-throughput pre-
screening [83, 84]. Further, to cover the large exploration space for searching low
κl materials, Bayesian optimization-based virtual screening of materials was carried
out [50]. First-principles anharmonic calculations were used to calculate κl of 101
compounds containing rocksalt, zincblende, and wurtzite structures. The model
constructed using this dataset was used for virtual screening of 54,779 compounds
through Bayesian optimization. Based on the high ranking, 221 compounds were
proposed as potential candidates with low κl . Hence, the virtual screening can be
very useful for exploring a diverse database without prior estimate of κl for all the
compounds.

For most of the machine learning based prediction models of lattice thermal
conductivity, the set of descriptors is either very large or consisted of complex
physical properties. Additionally, the relevant descriptors are often screened by
compressed sensing methods. Recently, by generating a high-throughput property
map, a set of four descriptors, directly related to the physics of lattice thermal
conductivity, has been proposed [47]. Starting from a dataset of 2162 binary,
ternary, and quaternary compounds belonging to different crystal systems, the
screening criterion such as non-metallic behavior and dynamical stability was
employed. The screening resulted in identification of 12 ultralow and 11 ultrahigh
κl compounds. For the selection of descriptors, an extensive property map of
harmonic and quasi-harmonic properties was analyzed, as illustrated in Fig. 2. These
properties exhibited the trends for broadly categorizing the compounds falling under
ultralow and ultrahigh lattice thermal conductivity. For example, the span of phonon
frequencies for ultralow κl compounds was found to be lower compared to ultrahigh
κl compounds. Therefore, maximum phonon frequency (ωmax) was chosen to be
one of the descriptors to capture qualitative trends in the variation of κl . Among the

ln
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ln(κl)DFT

ωmax

Σ

Descriptors from high-throughput property map Prediction Model

Mass Volume K-path
γc

ω γ

ωc=3ω

Fig. 2 Selection of descriptors from high-throughput generated property map
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quasi-harmonic properties, the Grüneisen parameter is often correlated to the extent
of anharmonicity in a material, wherein high Grüneisen parameter corresponding to
high anharmonicity leads to low κl and vice versa. However, this dependence alone
was not sufficient to explain the observed trends in κl in the database. Instead, it
was found that the spread of Grüneisen parameter with respect to frequency was
representative of low and high κl . For instance, materials with ultralow κl had
larger spread in the low-frequency regime as compared to materials with ultrahigh
κl , thereby confirming the fact that low-lying modes dominate the anharmonicity.
Hence, the spread of Grüneisen parameter was quantified in the low-frequency
regime to define another descriptor for κl . The cut-off to define the low-frequency
regime was decided by analyzing the Pearson correlation coefficient of integrated
Grüneisen parameter for different values of low frequencies with κl . The spread
integrated upto 3 THz was found to have maximum correlation with κl . Hence,
the second proposed descriptor was integrated Grüneisen parameter up to 3 THz
(γc=3). Among the structural properties, the average mass of constituent elements
(M) and the volume of the system (V) were found to be roughly correlated inversely
with κl . Hence, the proposed four descriptors ωmax , γc=3, M, and V were able to
broadly capture the variation in κl across different class of systems, without explicit
evaluation of higher-order anharmonic force constants.

The property map-guided descriptors were used in development of prediction
model for κl , as illustrated in Fig. 2. Gaussian process regression was employed in
developing the model, and the best model gave train/test RMSE of 0.20/0.21 and
R2 of 0.99/0.99 for log-scaled κl . The proposed descriptors have close relation with
widely used Slack model, where κl is defined as

κl = A
Mθ3

DV
1
3

γ 2T n
2
3

Here θD is Debye temperature, n is number of atoms in the unit cell, and γ is the
average Grüneisen parameter. The constant A is defined as

A = 2.43 × 10−8

1 − 0.514
γ

+ 0.228
γ 2

.

By estimating θD from the phonon density of states in the frequency range 0 to
0.25 of maximum phonon frequency, κl using Slack model was estimated for all the
compounds in the database. On comparison with κl calculated using first-principles
anharmonic calculations, it was found that Slack model κl was overestimated for
majority of compounds. To have a comparison with the machine learning prediction
model, another prediction model for κl was developed using properties entering
in Slack model as descriptors, namely, θD , γ , M, V, and n. The developed model
using Slack descriptors gave train/test RMSE of 0.29/0.30, which was higher than
the developed model using property map guided descriptors. Hence, the simpler
harmonic and quasi-harmonic-based descriptors could be utilized for accelerated
prediction of κl . These high-throughput and machine learning based methods
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for both the electronic and thermal transport properties illustrate the process of
accelerated identification of materials. If the search space of all these studies is
combined, it covers huge diversity among the materials. Estimating the transport
properties for these many compounds would have taken unrealistically long time
by conventional methods, whereas the data-assisted methods are able to give the
reliable estimate in fraction of time, accelerating the process by several orders of
magnitude.

5 Connection Between Electronic and Thermal Transport

The data-assisted methods, described above, address the electronic and thermal
transport properties independently. However, for the screening of efficient thermo-
electrics, the materials need to have simultaneously favorable electronic as well
as thermal transport properties. Moreover, there is no discussion of a convincing
connection between these transport properties by conventional methods, despite
these properties have overlapping origin lying in various forms of electron-phonon
interactions. Recently, a connection between electronic and thermal transport
properties has been established with the help of machine learning methods [48]. The
rationale behind recognizing the connection between these otherwise independent
transport properties was to identify common parameters, which control both of these
properties, simultaneously. By closely analyzing the above-discussed prediction
models for electronic and thermal transport properties, it is found that a set
of elemental and structural descriptors predict both of these transport properties
with unprecedented accuracies. This implies that these descriptors may provide
a possible bridge to relate both of these properties. This has been illustrated
schematically in Fig. 3.

Among elemental and structural descriptors, only a minimal set of those descrip-
tors was chosen, which had well-defined underlying physics in controlling both
the transport properties. One such descriptor was electronegativity. The difference
in electronegativity of constituent elements in a compound is a deciding factor

Electronic Transport Thermal TransportBonding Chemistry

n, p 

S2 σ /
τ 

Temperature

Machine 
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κ 
l

Fig. 3 Machine learning unraveling the connection between electronic and thermal transport via
bonding information of materials
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of covalent or ionic bonding, which eventually affects dispersion of bands [85–
87]. Less or highly dispersive bands have been shown to have profound effect
on electronic transport properties S and σ [9, 10, 14]. Electronegativity has also
been directly related to ionicity having inverse correlation with thermal transport
property, κl [88–90]. Hence, electronegativity could be one of the possible bridging
descriptors. The other descriptors of such type included the structural attributes
such as volume, coordination number, bond distances, and bond strength. These
attributes have been shown to affect significantly the electronic dispersion features
[91–95] and hence the electronic transport properties. These descriptors are also
shown to control thermal transport properties [16, 95]. Volume of system has been
shown to have inverse correlation with κl [47]. Coordination number has been one
of the descriptors assessing anharmonicity and hence κl in a system [83]. Nature of
chemical bonding controls the phonon group velocities. Soft lattices with weaker
bonding strength and large bond distances will have low phonon group velocities
and hence will have low κl . Hence, the descriptor set consisting of electronegativity,
volume, coordination number, and bonding attributes controls both the transport
properties.

These descriptors clearly indicated a possibility of connection between these
transport properties. To unravel this connection, a prediction model for thermal
transport property κl was developed by giving input to the model as electronic
transport properties along with these bridging descriptors. The descriptors cor-
responding to electronic transport properties were mean and standard deviation
of S and σ

τ
for both n- and p-type carriers, wherein mean would correspond to

power factor peak and standard deviation would capture the variation of these
properties with respect to carrier concentration. Using these descriptors, Gaussian
process regression-based prediction model for log-scaled κl gave train/test RMSE of
0.19/0.19 and R2 of 0.99/0.99. The high accuracy of the developed model signified
the connection between two transport properties via few bridging descriptors. To
get further physical insights about the connection, simple mathematical operations
were employed to generate millions of non-linear combinations of the desecrators
used for the development of prediction model. By analyzing the Pearson correlation
of these descriptors with κl , the formula showing highest correlation of 0.70 was of
the form:

exp

(
σ

τ

mean

n
+ B.S.

)
1

exp(B.D.)

This includes scaled electrical conductivity σ
τ

, bond distances B.D., and bond
strength B.S. The bond strength was estimated by integrating the bonding and anti-
bonding contributions in crystal orbital Hamilton population (COHP) [96, 97]. This
analysis further substantiated the importance of bonding chemistry in unraveling the
connection between the two transport properties. This connection could be utilized
for efficient screening of desired thermoelectrics with simultaneous control over
electronic as well as thermal transport properties of a system. The work also shows
a pathway to connect oftentimes unconnected physical properties. This may open
up a new and very unconventional paradigm for physical sciences.



144 R. Juneja and A. K. Singh

6 Towards Universal Models: Algorithm Development

Various data-assisted efforts outlined above highlight tremendous contribution
by the scientific community in accelerated discovery of materials with desired
properties. However, for a single target property of interest, there is availability of
various developed prediction models. These models differ broadly with respect to
the set of descriptors and type of class of materials involved for training the model.
Since the predictability quality of any machine learning model depends profoundly
on the type of data being fed to the model for training, this poses a serious concern
towards transferability of available models, when tested on different classes not
included in the training database. The transferability issue has been addressed
by proposing a new algorithm to develop generalized model for lattice thermal
conductivity [52]. To have the generalizability in the model, the input data has to be
highly diverse with respect to elemental, chemical, and structural space. As shown
in Fig. 4, such a dataset was compiled, which includes materials belonging to all
seven crystal systems, constituent elements belonging to any group of the periodic
table representing diversity in elemental physical properties, and the target output κl

having four orders of magnitude variation. The Gaussian process regression-based
prediction model for this comprehensive dataset gave train/test RMSE of 0.24/25 for
log-scaled κl . The accuracy of developed model was very less compared with state-
of-the-art models for κl discussed above. Hence, increasing variability in data affects
the prediction accuracy. One of the major reasons for inferior prediction accuracy for
versatile database could be the inability of a single model to capture every possible
local detail in the database. Hence, localized regression-based methods could be
the solution to develop generalized models without compromising the prediction
accuracy.

There are various successful localized regression-based approximations [98–
106], wherein the input database is divided into smaller subsets and highly accurate
local prediction models corresponding to each subset are developed. However,
two different local developed models may not give the same prediction output at
the common boundary separating the corresponding local regimes. Hence, care
must be taken to smoothen out the discontinuity at the shared boundaries while
using these regression techniques. Among several algorithms, which address the
discontinuity issue, patchwork kriging is one of the highly numerically stable
algorithms [107, 108]. In patchwork kriging, the created local regions are patched
together at the common boundary. The patched region contains few data points
belonging to both the local regions, with the constraint that models developed on
both local regions should predict similar target output for all the data points in the
patch.

For employing this approximation for prediction of κl , one of the crucial steps
was to identify the properties with respect to which the local regimes in the database
would be created. Proper subdivisions of the data are one of the detrimental factors
for assessing the prediction quality of the developed local models. Hence, the
database was subdivided with respect to various easily accessible properties. The
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Fig. 4 Generation of extensive database consisting of compounds with all seven crystal symme-
tries for building transferable model

subdivisions with respect to κl were also considered. In each of these trials of
dividing the data, only two local regions were created. This was because the size
of database was not too large and increasing the local regimes would have resulted
into overfitted local models due to less data points in each local region. The two
partitions were created with respect to the ascending order of magnitude of different
properties. The range of magnitude of a property in particular local region was
decided such that there are fairly similar numbers of data points in each partition.

For each local dataset belonging to partitioning with respect to different prop-
erties, Gaussian process regression-based models were developed using elemental
and structural descriptors. The prediction accuracies belonging to local regimes
with respect to different properties were very different, further emphasizing the
fact that localized regression-based methods depends significantly on the type of
data in the created local regimes. In most of such created partitions, the model
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gave high accuracy of prediction only in one partition. However, the models
obtained by partitioning the data with respect to κl gave similar performance
quality in both the partitions. It also resulted in models with highest accuracy,
wherein train/test RMSE of 0.13/0.13 and 0.11/0.12 was obtained for the first and
second partition, respectively. There was a significant improvement in accuracy
compared to the single model developed above on this database. Additionally,
the localized regression-based accuracies achieved here were higher/comparable to
models developed on particular class of materials [51, 109].

Although the above approach gave excellent accuracy using patchwork kriging,
the partitioning with respect to κl makes it challenging to deploy this approach for
compounds with no available information of their κl magnitude. In order to decide
the particular local partition for unknown κl compounds, the use of model developed
over the entire database was proposed. This model, termed as global model, would
predict at least the correct order of magnitude of κl for unknown compounds and
hence can further guide them towards a particular partition to have accurate estimate
of κl using the local model of that partition. This two-step prediction algorithm
was termed as guided patchwork kriging, wherein the global model will guide the
compounds in deciding the particular local partition model for accurate prediction.
The proposed approach can spur more efforts by the scientific community in the
direction of development of universal models for desired target property of interests.

7 Conclusions and Future Perspective

In conclusion, we have described the high-throughput and machine learning based
approaches to screen the large search space of materials for thermoelectric appli-
cations. Given the computational complexity involved and the interdependence of
transport properties, data-assisted methods have contributed significant advance-
ment in exploring the potential materials for thermoelectrics. Based on various
forms of regression analysis, many compounds in different categories have been
proposed with favorable electronic and thermal transport properties, which can
be confirmed experimentally. The machine learning methods have also been suc-
cessful in unraveling a connection between otherwise independent electronic and
thermal transport properties. This could pave way for more effective screening of
thermoelectrics by addressing the inversely coupled properties simultaneously. The
current efforts of the community are in the direction of developing unique universal
models for a single target property of interest. The universal models will be highly
transferable across different possible classes of materials.

Despite the considerable progress, there are several challenges as well as areas
to focus upon to further take the accelerated thermoelectric search to newer
heights. The very first challenge could be towards development of universal
models. Although guided patchwork kriging approach has been proposed to provide
transferable models, the database employed contains up to quaternary compounds
due to involved computational complexity, with increase in system size. Hence,
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universal models, which include extensively larger database of materials, are
required. The compilation of such database could be possible if every database
employed for high throughput and machine learning is made available to the
community. Another approach to address transferability could be achieved by
developing materials using adaptive design. The virtual database for adaptive design
does not require the information of target output beforehand and hence could be
utilized to search newer possible compositions as potential thermoelectrics. Another
challenge is experimental realization of proposed thermoelectric materials by data-
assisted methods. Even if a material has the highest figure of merit, there are several
factors involved in utilizing it as thermoelectric device such as assembling process
and finding suitable contact interface. Hence, if experimental inputs and theoretical
outputs are combined, major breakthroughs could be achieved, and promises of
thermoelectric towards a more greener and sustainable future could be fulfilled.
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Thermal Nanostructure Design
by Materials Informatics

Run Hu and Junichiro Shiomi

1 Introduction

There has always been a demand for materials with desired thermal properties,
because they are fundamentally important in various applications. For instance,
materials with high thermal conductivity are in high demand for thermal manage-
ment of electronic devices, especially with the increasing 5G telecommunication
and cloud computing. Meanwhile, materials with low thermal conductivity are used
in thermoelectrics and thermal insulation. Although the synthesis and manufacturing
processes of the materials have advanced in recent years through the use of
advanced micro/nano-fabrication techniques and 3D printing, material design is an
important precedent step. Material design techniques have sequentially undergone
several paradigms, such as empirical, model-based, computational, and big-data-
driven paradigms. The accumulated data from material design experiments and
simulations have contributed to the fourth paradigm, which unifies the theories,
experiments, and simulations from the previous three paradigms. This has led
to the emergence of a new field of material informatics (MI) [1–5]. However,
there are still two obstacles that limit the efficiency of material design—material
selection and structural configuration. Choosing the appropriate materials is the
first challenge during the material design process. Currently, material selection can
be performed on the basis of several databases that contain tens of thousands of
crystal compounds, such as Material Project [6], AFLOW [7], ICSD [8], OQMD
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[9], and AtomWork [10]. However, development of materials with specific thermal
properties is challenging because of the tremendous number of available starting
materials. Structural configuration is another challenge because all materials are
composed of atoms that can be configured in various ways, which may surpass
the computation power of most existing computers. For example, carbon exists as
diamond, graphite, graphene, and amorphous carbon with varying atomic configu-
rations. The defects [11], roughness [12, 13], nanoinclusions [14], and interfacial
adhesion or bonding [15] differ in many ways. Consequently, it is challenging
to quickly develop an optimal nanostructure with desired thermal properties from
many starting candidates.

The rise of MI has enabled the integration of material-property calculations or
measurement methods with informatics; hence, the search for an optimal structure
with the desired properties has been greatly accelerated [16–18]. MI has been
successfully applied in various material design fields, such as drugs, polymers,
catalysis, and cathode materials for lithium-ion batteries [19–22]. The application
of MI to thermal properties has also been gradually developed. In this chapter,
we provide an overview of the recent progress of MI application in the field of
heat transfer, mainly focusing on thermal conduction and thermal emission. In
the first part of the chapter, typical MI algorithms are briefly introduced, and
the emerging nanostructure designing/optimizing strategies based on MI-enabled
thermal conduction and thermal emission modulation are summarized in the second
part. A summary and discussion on the opportunities and challenges in this field and
perspectives on the possible future direction of the field are outlined in the final part.

2 MI Algorithm

2.1 Bayesian Optimization

Bayesian optimization (BO) is a machine learning algorithm based on experimental
design. As shown in Fig. 1, the optimized process can be divided into two parts:
initial training set and prediction model modification. First, the black-box function
is set up from a training set, whose thermal properties would have been obtained by
calculation and then a new set is chosen for calculation. Then, the prediction model
is built using the Bayesian linear regression model coupled with a random feature
map based on the initial training set:

y = wTϕ(x) + ε (1)

where w denotes a D-dimensional weight vector of the same size as the available
data, ϕ represents the feature map, x is a d-dimensional descriptor vector of the
candidate, and ε is the noise term, which follows the normal distribution with mean
0 and variance ζ . The inner product corresponding to the Gaussian kernel can be
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Fig. 1 BO process [24]

obtained by selecting a random feature map [23]. After developing the prediction
model, the thermal property distribution of the remaining candidates is provided.
The best candidate is selected based on the preset optimized criteria. Then, the
accurate thermal property of the selected candidate is calculated and added to the
training examples. The calculation of the thermal property is arranged optimally
and search for the optimal candidate can be greatly accelerated by performing this
procedure repeatedly. The open-source Python library COMBO was constructed
using the BO principle to run the optimization process automatically [24].

2.2 Monte Carlo Tree Search

For candidates in the range of hundreds of thousands, BO can efficiently and
accurately be used for the optimization task. However, as the quantity increases,
the optimized efficiency of the BO is considerably reduced. Consequently, another
effective algorithm named Monte Carlo tree search (MCTS) is used [25, 26]. MCTS
couples the precise tree search with the generality of random simulation, which is
suitable for selection of a candidate from a large quantity.

As shown in Fig. 2, the MCTS is based on a search tree that is constructed
node by node, with each node selected based on the evaluation of the simulated
case. Each node provides two important pieces of information: the times the node
has been visited and estimated value based on the simulation results. The MCTS
algorithm process mainly consists of four parts: selection, expansion, simulation,
and backpropagation. In the first step of selection, the algorithm starts at the initial
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Fig. 2 MCTS process, which consists of four parts: selection, expansion, simulation, and back-
propagation [25]

position (root node), then the optimal child nodes are recursively selected based on
the upper confidence bound (UCB) until the leaf node is reached. The UCB score is
defined as

ui = Vi

ni

± b

√
2 ln Nparent

ni

(2)

where Vi is the cumulative simulation values of all structures derived from this node,
b is a tunable bias parameter for balancing the tree exploitation and exploration,
ni is the number of times this node has been visited, Nparent is the number of
times its parent has been visited, and the operative symbols + and − correspond
to the maximum and minimum thermal property optimization cases, respectively.
In the second expansion step, one child node is added to the branch if the leaf
node is not a terminal node. Then, in the simulation step, one playout is randomly
selected from the terminal node and the thermal property is calculated. Finally, in the
backpropagation step, the key parameters ni, Nparent, and Vi are updated on the path
back from the terminal node to the root node according to the calculated thermal
property. Although using MCTS does not guarantee finding the global optimal
structure, it can efficiently provide a suboptimal structure close to the optimal
structure.

2.3 Shotgun Transfer Learning

Machine learning algorithms have become powerful research tools in MI; however,
since the volume and diversity of the available data are insufficient, the potential
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Fig. 3 Neural transfer learning using frozen featurizers [27]

of most algorithms has not been fully explored. The shotgun transfer learning
algorithm has potential to overcome the limitations imposed by limited data [27].

Shotgun transfer learning is based on neural networks, which can be defined as
Yt = ft(S). The aim is to predict the corresponding thermal property Yt for a specific
material S using a small data set of size nt:

Dt = {
Yt,i , St,i |i = 1, . . . , nt

}
(3)

where {Yt,i, St,i} represents the ith training case. There are several approaches to
overcome the limitations imposed by limited data, where the models trained on a
different property Ys based on an abundant data set Ds are recused and transferred
to the model in the task. There are typically two processes for neural transfer
learning: frozen featurizers and fine-tuning techniques. As shown in Fig. 3, an L
layer pretrained neural network Ys = fs(S) can be obtained by solving a source task
on a proxy property to the target when using the frozen featurizer approach. The
Lth-order composite function arranges the input, g1, to the output layer, gL, in which
the shallow layers are responsible for creating the material description basis using
general features, while only the last one or two layers gather the specific features
to predict a source property. The shallow layers are frozen as a feature extractor,
φ(S) = (gK◦ gK−1 . . . ◦g1)(S) with K < L, while φ(S) is repurposed for supervised
learning of a different property. During fine-tuning, a pretrained model is used as a
starting point and fine-tuned to a target task based on available instances. First, the
weights on the last few layers of the pretrained model are randomly initialized, and
the learned parameters in the remaining layers are used as initial values. Then, all
these parameters are retrained at a small learning rate, which controls the weight
updating on each gradient descent iteration while preserving the domain-invariant
knowledge.
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3 MI-Enabled Thermal Conduction Modulation

3.1 Optimal Nanostructure Design

The thermal conductivity of materials plays an important role in thermal manage-
ment applications, and thus the design of materials with desired thermal properties
is important. However, the thermal conductivity requirements vary between each
case. Ju et al. [28] developed a framework by combining the atomistic Green’s
function (AGF) [13] with BO methods [24], and determined the efficiency of finding
the maximal and minimal thermal conductivity for Si/Ge interface nanostructures.
Figure 4a shows the MI procedure. The designed structure is an interfacial region
that is sandwiched between two kinds of materials, namely A (Si) and B (Si
or Ge). In the transverse direction, periodic boundary conditions are set for an
infinite cross-section simulation. The interface structure consists of either Si or Ge,
aiming to find the optimized distribution for Si or Ge with the largest or smallest
thermal conductivity based on the optimization. During optimization, the thermal
conductivity of each candidate structure is calculated via the AGF method. Then,
as shown in Fig. 4b, the optimal interface structures with maximal and minimal
thermal conductivity were found by conducting BO training and optimizing the
process repeatedly, as described in Chap. 2. For maximal thermal conductivity
structures, the optimal interface structure with Si–Si lead is understandable, and
the continuum Si bridge connecting the two leads provides a channel for coherent
phonons. The optimal structure with Si-Ge lead can be regarded as a kind of rough
interface, resulting in phonon transmission enhancement at the interface [13]. As
for the minimal thermal conductivity cases, the optimal structures are all aperiodic
superlattices (SLs), which are different from the periodic SLs.

To explore the structural features of the low thermal conductivity aperiodic SLs,
the optimized structure of the machine learning system is reset, which is shown in
Fig. 5a, with the binary codes used as the descriptors to denote each unit layer (“1”
indicates Ge and “0” indicates Si) whose thickness is set as 5.43 Å. The optimized
SL with different unit lengths and atomic fractions was obtained. Meanwhile, the
optimal structure with the lowest thermal conductivity was aperiodic. For further
analysis of the physical mechanism, the effect of the layer thickness and number
of interfaces on the thermal conductivity was investigated. The results are shown
in Fig. 5b, c. The dependence on the number of interfaces was apparent as the
phonon scattering increased with the number of interfaces. Figure 4d shows that the
thermal conductance decreased with increasing layer thickness owing to the Fabry–
Pérot oscillations [29, 30]. For a given SL structure, the interface number and layer
thickness are two competing parameters. On optimizing the balance between these
two parameters, the aperiodic SLs gain more freedom for structural arrangement
compared to their corresponding periodic SLs, resulting in their superior reduction
in thermal conductivity. To further emphasize the competitive relationship between
the two parameters, the thermal conductance of all candidates was calculated for the
14-unit cell (UL) SL with equal Si/Ge fraction and 10-UL SL with variable Si/Ge

http://dx.doi.org/10.1007/978-3-030-68310-8_2
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Fig. 4 (a) Optimization procedure for the Si/Ge interface nanostructures. (b) Optimal structures
with the maximum and minimum interfacial thermal conductance [28]

fraction, as shown in Fig. 5d. In both cases, there was a minimum for each number
of interfaces, which also proves the competitive case. In addition, for structures with
the same number of interfaces, the thermal conductivity greatly varied because of
the different thicknesses of each layer. Since the thermal conductance spreading
range was comparable to their magnitude, the Fabry–Pérot resonance had the
same effect on thermal transport as phonon scattering. This is because the phonon
scattering remains unchanged in the structure with the same interface number.
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Fig. 5 (a) Schematic representation of the 8-UL SL with equal fraction of Si and Ge atoms
at the Si–Si interface to illustrate the descriptor. (b) Thermal conductance and phonon transmission
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To further explore the physical mechanism of the phonon properties of the
optimized structure, coherent phonon effects are analyzed in terms of constructive
interferences and destructive interferences. For this purpose, the phonon trans-
mission is separated into two parts, which are coherent effects and incoherent
effects by comparing the phonon transmission via the full AGF calculation and
cascade transmission model. The phonon reflection at an interface leads to thermal
resistance enhancement, and additional thermal resistance can be enhanced by
further interference of phonons. In this process, the former reflection can be
regarded as an incoherent effect because there is little effect on whether the phonon
is coherent or not, while the latter interference should be regarded as coherent
effect for interference requires phonons to be coherent. In the cascade model,
the phonon transmission can be calculated as 1

Ξcascade
= ∑

i

1
Ξi

− N−1
ΞSi

, where N

represents the number of interfaces, �i denotes the transmission coefficients of
the ith interface, and �Si represents the phonon transmission of a perfect silicon
crystal. Figure 5e compares the transmission calculated by the cascade model and
full AGF model for periodic SLs with different numbers of periods (2, 4, and 6). As
the superlattice periods increase, the transmission of the cascade model decreases
quickly, whereas the transmission of the full AGF calculation decreases first and
then converges. This is understandable because in the cascade model, only the
incoherent phonon transport can be reflected, while in the full AGF calculation,
coherent phonon transport is captured when crossing multiple layers. In the full AGF
calculation, the convergence phenomenon suggests that constructive and destructive
interferences cancelled each other in the periodic superlattice, demonstrating that
the thermal conductance of the structure can be further inhibited by adjusting the
construction and destructive interferences. Taking the optimal aperiodic 10-UL
superlattice as an example. The phonon transmission via the cascade model and
full AGF calculation are shown in Fig. 5f. The transmission obtained by the cascade
model had approximately the same trend and magnitude, which suggests that the
aperiodic structure effectively suppresses the constructive phonon to destructive
interference, leading to minimal thermal conductance.

�
Fig. 5 (continued) versus layer thickness. (c) Thermal conductance and phonon transmission
versus the number of interfaces. (d) Thermal conductance versus number of interfaces for 14-
UL SL with equal Si/Ge fraction and 10-UL with variable Si/Ge fraction. Comparison between
the phonon transmission obtained from the cascade model and full AGF calculation, (e) periodic
superlattices with different number of periods, where one period consists of a Si UL and Ge UL
denoted as “10.” (f) Optimal aperiodic superlattice structure with total thickness of 10 UL [28]
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3.2 Experimental Realization of Optimal Nanostructure

The above study is theoretical and the interatomic force constant (IFC) is empirical;
however, experimental verification remains an open question. Hu et al. [31]
also employed MI design coupled with first-principle-based AGF calculations to
optimize the GaAs/AlAs interface nanostructures. They succeeded in predicting
the optimal GaAs/AlAs interface nanostructure with minimal thermal conductivity
based on coupling BO optimization and first-principles AGF, which was then
verified by experiments. The optimization of the SL is shown in Fig. 6a. All the can-
didate structures were prepared by denoting the GaAs unit layer as 0 and AlAs unit
layer as 1. The SL structure was sandwiched between the two semi-infinite GaAs
leads. First-principles were used to calculate the corresponding IFCs. Then, by
combining the mass matrices and IFCs, the dynamical matrix was obtained, which
was used as input in the AGF to calculate the thermal conductivity. The optimal
structure with the lowest thermal conductivity was quickly found with only 2.7%
calculation of the total candidate by combining the assorted calculation method
with BO optimization. Then, the optimal structure was fabricated by molecular
beam epitaxy and measured by the time-domain thermoreflectance (TDTR) method,
which is shown in Fig. 6b, for experimental verification. Figure 6c illustrates the
distribution of the theoretical and practical values of the thermal conductivity of the
optimized structure at different temperatures. The simulation results agree well with
the experiments, considering the SL interface roughness, demonstrating that the
thermal conductance can effectively be controlled by the design of the SL structure.

Further, the physical mechanism is investigated, and the phonon properties
of the optimal structure and the corresponding periodic structure are calculated.
Figure 7a illustrates the inverse participation ratio (IPR) of the optimal aperiodic
and periodic SLs, in which the yellow dashed lines denote the IPR of a pure
GaAs crystal. Compared with the periodic structure, there is a stronger phonon
localization in the optimal structure, which reaches the maximum above the optical
phonon frequency of 6.37 THz. A similar trend can also be observed in the acoustic
phonon, which is shown in Fig. 7b. The impact on conductivity of the number
of modes should be considered since the IPR can only quantify the magnitude of
phonon localization per mode. Therefore, the weighted IPR is calculated, as shown
in Fig. 7d. More and stronger peaks appear in the weighted IPR of the optimal
aperiodic structure, which suggests that the phonon localization effect within the
acoustic phonon range is more significant. The weighted IPR curve of the optimal
structure is similar to the difference between the spectral thermal conductivities
of the optimal aperiodic and periodic structures shown in Fig. 7e. This indicates
that the reduced thermal conductivity of the optimal structure originates from
the enhanced phonon localization within the acoustic phonon range because of
its constructive aperiodicity. To explore the physical mechanism underlying the
localized mode, the standard deviation of the local density of states (LDOS) was
calculated, as shown in Fig. 7f. Similar to the weighted IPR, the LDOS has a strong
correlation with the spectral thermal conductivity difference. The projection of the
x-direction-accumulated LDOS within the acoustic phonon frequency in the y–z
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Fig. 6 (a) Flowchart of the optimal control of the thermal conduction of the GaAs/AlAs interface
SL nanostructure. (b) Schematics of the optimal GaAs/AlAs SL structure obtained by materials
informatics (MI) and its experimental TEM images. (c) Experimental and calculated thermal
conductivities of the optimized aperiodic and periodic SL nanostructures [31]

plane of the periodic and optimal aperiodic structures is shown in Fig. 7g. It can be
clearly observed that the phonons are mostly localized in the As atoms in the AlAs
layers, whereas the phonons are uniformly distributed in the GaAs layers. This is
possible because the atomic masses of As and Ga are almost the same, while that
of the Al atom is smaller. This inhibits the kinetic energy transfer between Al and
As atoms. Figure 7h shows the LDOS projection at three typical peak frequencies
in Fig. 7d. The distribution of the localized phonons varies significantly at each
frequency, while the phonon localization does not occur in periodic structures.

The above analysis indicates that some local structures in the optimized structure
can effectively enhance the phonon interference. To identify the specific local
structures, phonon pattern analysis was performed. These local structures are
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Fig. 7 Comparison of the frequency-dependent IPR I(ω) of the two structures in the (a) full and
(b) acoustic phonon frequency ranges. Blue-dashed square in (a) denotes the acoustic phonon
range and is magnified in (b). Yellow dashed lines denote the small and uniform IPR for pure GaAs
crystals. (c) Spectral DOS of the two structures in the full phonon frequency range. (d) Spectral
weighted IPR in the acoustic phonon frequency range. (e) Spectral thermal conductivity difference
between that of the periodic structure and that of the optimized aperiodic structure. (f) Spectral
standard deviation of the LDOS for the two structures in the acoustic phonon frequency range. (g)
Projected LDOS distribution on the y–z plane with only the acoustic phonons in the periodic and
optimized aperiodic structures. (h) Projected LDOS in the y–z plane of the two structures at 2.30,
3.27, and 3.59 THz [31]

important for reducing phonon transmission in four different frequency ranges
from low to high frequency (−0 to 2.25 THz, 2.25 to 3.3 THz, 3.3 to 5.4 THz,
and 5.4 to 6.5 THz). The pattern analysis results show that the local structures
that appear most frequently in optimized structures with low thermal conductivity
are 101010, 110101, 101010, and 101001 in each frequency range, respectively.
Furthermore, 101101 appears as the top local structure in all frequency ranges; thus,
the top four local structures are defined as 101010, 110101, 101001, and 101101.
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Fig. 8 (a) Local structure independence and correlation examination. (a) Schematic of the
optimized SL (16-ULs) and extended SL (24-ULs). (b) Averaged phonon transmission of the 24
extended SLs, i.e., all possible sequences when serially connecting the four key local structures
101010, 110101, 101001, and 101101. The shadowed region denotes the standard deviation. (c)
Comparison of the phonon transmissions of the optimized SL and extended SL (averaged) made
to the same lengths (48 ULs) by repeating three times and twice, respectively [31]

The local structure can maximize the inhibition of phonon transmission within
the corresponding frequency range, leading to the lowest thermal conductivity.
Therefore, more local structures in an SL result in a lower thermal conductivity.
The optimal SL possesses all the local structures, and hence has the lowest thermal
conductivity. To further explore the function of the local structures, the optimal
SL was unfolded to 101010, 110101, 101001, and 101101 and then connected in
series as shown in Fig. 8a. This was done to determine whether the function of
the local structures to suppress the thermal conductivity can be separated. First, the
influence of the four local structures on the phonon transmission was investigated
to assess whether the local structures are weakly correlated. As shown in Fig. 8b,
the blue curve and shadow region represent the average phonon transmissions of
all 4P4 = 24 possibilities (Fig. 8a) and its standard deviation, respectively. The
small standard deviation indicates a weak correlation among the local structures. To
compare the extended SL and optimized SL, both structures were simply repeated
to construct a 48-UL SL since their lengths are different. As shown in Fig. 8c, the
difference in phonon transmission between the structures is small. In conclusion,
the local structures were weakly correlated to inhibit the phonon transport, and the
optimal aperiodic structure introduced interference over a broad range of phonon
frequencies by connecting various local structures.
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Fig. 9 (a) Periodically nanostructured GNR. (b) Antidot GNR. (c, d) Optimal structure for
P/Rth and its electron/phonon band compared with the pristine GNR with 4 and 7 atom defects,
respectively [32]

3.3 Thermoelectric Nanostructures Design

MI algorithms have shown excellent performance for single-target optimization
(low thermal conductivity). However, in practice the optimized targets are numerous
and usually coupled together, which is a great challenge for MI algorithms. To
demonstrate the feasibility of using the MI algorithm for multi-goal optimization,
Yamawaki et al. [32] successfully predicted the optimal thermoelectric structure
of graphene nanoribbons (GNR) using the BO algorithm. The thermoelectric
properties of a material are quantified using the expression ZT = RthS2T/Rel, where
Rth and Rel denote the thermal resistance and electronic resistance, respectively,
S is the Seebeck coefficient, and T is the temperature. As shown in Fig. 9a,
first, to clarify the structural optimization direction, the short-period nanostructured
GNRs were analyzed. The hexagonal lattices with removed carbon atoms and
complete hexagonal lattices were denoted as 0 and 1, respectively. The binary
sequences were then used as descriptors for MI training and prediction. Since
thermoelectric properties vary with the chemical potentials (μ), the value of the
peak chemical potential (μpeak), which provides the maximum ZT value for the
realistic chemical potential from −1 to 1 eV, should be selected for evaluating
thermoelectric properties. Figure 9c, d shows the GNR structures with 4 and 10
atom defects that have the highest power factor P(=S2/Rel) and Rth, respectively.
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In the P-optimized structure, vacancies spread throughout the entire GNR area,
except for the hexagonal lattices along the edge. The optimized structure resulted
in the strong flattening of the electronic bands around the energy levels of the
edge state, resulting in bandgap generation. Moreover, the zigzag structure in the
middle area could lead to phonon scattering without affecting the edge state; thus,
the thermoelectric performance was greatly enhanced. Meanwhile, for the other
Rth-optimized structures, the labyrinthian shape of the GNR resulted in significant
phonon localization, which greatly reduced their group velocity, resulting in the
highest ZT. Although the labyrinthian shape greatly contributes to the high ZT,
the GNR with edges are preferred owing to their stable thermodynamic properties
and experimental feasibility [33]. Therefore, from the optimization results of the P-
optimized structure, a new simulation model shown in Fig. 7b was built. This was
composed of an antidot nanostructured region connected with semi-infinite pristine
GNRs. The entire structure consists of a pristine structural (denoted as 1) sections
and antidot structural (denoted as 0) sections, where the pore is located in the center
of the section with a diameter of 2.9 Å.

Another round of BO optimization was performed using the new model.
Figure 10 compares the different thermoelectric properties of the pristine structure,
periodic antidot structure, and optimal aperiodic antidot structure. Figure 10a
compares the different thermoelectric properties of the pristine structure (black),

Fig. 10 (a) Comparison of the thermoelectric properties of the pristine, periodic, and optimal
structures. (b) Periodic and optimal aperiodic antidot GNRs. (c, d) Phonon and electron transmis-
sion functions. (e) Transmission and DOS in the nanostructured region, in which the edge state
is represented by the dashed line. (f) LDOS distribution of the resonant states of the periodic and
optimal structures [32]
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periodic antidot structure (blue), and optimal structure (red), while Fig. 10b shows
the configuration of the periodic antidot structure and optimal structure. The
distribution of the antidots in the optimal structure was aperiodic, which effectively
increases its ZT 11 times. These results demonstrate that the thermal and electrical
properties of the structure can be improved simultaneously via the optimization
of the antidots distribution. To explore the mechanism underlying the enhanced
thermoelectric properties of the GNRs, the phonon and electron transport properties
were analyzed in detail. From the perspective of thermal conduction, there are
mainly two competing factors affecting thermal transfer in the antidot structures;
thus, the surface scattering effect resulting from the antidots and interference effect
among antidots [34]. Therefore, similar to Ju’s research results [28], aperiodic
structures gain more structural regulatory freedom than the periodic structures,
which further reduces their thermal conductivity. This intuitive physical knowledge
cannot fully explain why this specific structure is optimal. Therefore, the design
of the optimal structure still depends on machine learning. Meanwhile, in terms of
electric transport, the electron transmission function of the representative structures
is compared in Fig. 10d. In finite periodic structures, the peaks of electron
transmission corresponding to resonant states appear and split as the number of
antidots increases. The thermoelectric performance can be further enhanced by
utilizing the edge state seen for electron transmission in the energy band ranging
from −0.078 to 0.048 eV. For utilization of the edge state, inhibition of the electron
transmission of resonant states with energy near that of the edge state is required. In
general, in random infinite potential fields, the transmission of any electron states
is inhibited because of state localization. However, the optimal distribution of the
antidots can inhibit electron transmission in the target electron states, which is called
resonant peaks in this case. Figure 10e shows that in both the periodic and optimal
structures, the resonant states appear near the edge state, whereas the electron
transmission in the optimal structure is strongly suppressed. To gain insights into
the transmission of the resonant states, the LDOS at the resonant energy was colored
onto each atom as shown in Fig. 10f. The indices of the resonant state in Fig. 10f
correspond to those in Fig. 10e. The LDOS was distributed uniformly throughout
the entire finite periodic structure, while state localization existed within limited
areas in the optimal aperiodic structure. It is intuitive that the uniformly distributed
states effectively enhance electron transport, while strong localization suppresses
electron transport.

3.4 Disordered Structural Parameters Exploring in Aperiodic
Superlattices

The works in sections above prove that random multilayer (RML) structures can
effectively localize coherent phonons, thus reducing the lattice thermal conductivity
(κL). However, there is poor definition of the degree of randomness in localized
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structures, which is conducive to linking structures via physical mechanisms and
further optimizing the material design process. Therefore, defining the degree of
randomness of different RMLs and relationship between the degree of randomness
and thermal conductivity is of great significance in optimizing the thermal conduc-
tion in RMLs.

Consequently, Chakraborty et al. [35] succeeded in quantitatively defining the
disorder in the layer/periodic thickness of the RMLs by identifying two randomness
parameters—the thickness-based and period-based index of randomization. They
demonstrated the effectiveness of machine learning in optimizing the RML with
lowest κL based on the randomness parameters. The three typical structures are
shown in Fig. 11a, i.e., the periodic superlattice (SL), RML structure, and gradient
multilayer (GML) structure, in which the cyan and golden blocks represent material
A and material B, respectively. The thickness distributions of the GMLs and RMLs
are the same; however, the layer thickness of the former is distributed in ascending
order.

The impact of the arrangement of the layer thicknesses on the κL of the RMLs
was investigated using the molecular dynamics (MD) method. Two GMLs (GML1
and GML2) were created as the origin structures, and the periods and average
thicknesses of both structures were set as N = 32 and d = 4 unit cells (UCs),
respectively. To gradually introduce disorder into the GMLs, the corresponding
RMLs were constructed by swapping the ith and jth layers of the same type of
atom that was randomly selected. In this way, the obtained RMLs shared the same
thickness distribution but different thickness arrangements with the original GML.
Therefore, the number of swaps (S) is used as an index to quantify the degree
of disorder in GML. For each GML, 10 sets of RMLs with S varying from 0 to
50 were obtained via 10 independent swapping rounds. Figure 12a (GML1) and
Fig. 12f (GML2) show that κL is inversely proportional to S. In addition, the specific
exponential fitting curves were plotted to describe the qualitative relationship
between these two parameters in GML1 and GML2. To quantify the disorder in the
layer thicknesses, the thickness-based index of randomization Rd is defined as [36]:

Rd =

√√√√
∑N

i=2

[(
dA,i − dA,i−1

)2 + (
dB,i − dB,i−1

)2]

N
(4)

where dA,i and dB,i are the layer thickness of materials A and B in the ith period,
respectively, and N is the number of periods in the RML. Figure 12b (GML1) and
Fig. 12g (GML2) show that Rd increases as S increases. Furthermore, as shown in
Fig. 12c, h, the κL of GML1 (GML2) decreases as Rd increases. Besides randomness
in the layer thickness, period-wise randomness also appears during swapping. The
period-based index of randomness Rp has been proposed to identify the period-wise
randomness as
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Fig. 11 (a) Schematic of the structures simulated in this work. Cyan and golden regions are
composed of A- and B-type atoms, respectively. (b) Simplified schematic of a neural network
(NN). The top and bottom layer are the feature vector and output layer, respectively. The middle
layers are the hidden layers. x1, x2, . . . , xp represent the features of the MI model, while p
represents the number of features and y = κL is the final output [35]

Rp =

√√√√
∑N

i=2

[((
dA,i + dA,i−1

)− (
dB,i − dB,i−1

))2]

N
(5)

The relationship between Rp, S, and κL is similar to that of Rd. By comparing
Fig. 12(a–e) (f–j) for GML1 (GML2), it can be concluded that Rd and Rp are the
two effective structural parameters that can relate the κL with the randomness of
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Fig. 12 (a) Changes in the lattice thermal conductivity as GML is introduced with randomness
through the thickness position swapping method for (a) GML1 and (f) GML2. The insets of panels
(a) and (f) are the normalized transmission spectra of SL, GML, RML (S = 5), and RML (S = 40),
corresponding to GML1 and GML2, respectively. The changes in Rd with respect to the number of
swaps are provided in (b) GML1 and (g) GML2. (c, h) Changes in κL with respect to Rd for GML1
(GML2). The changes in Rp with respect to the number of swaps are provided in (d) GML1 and
(i) GML2. (e, j) Changes in κL with respect to Rp for GML1 (GML2). Changes in lattice thermal
conductivity of 3400 multilayer structures with respect to the change in (a) R for layer thickness
(Rd), (b) R for period (Rp), and (c) standard deviation of the layer thicknesses (δ) [35]

the RMLs. In addition, the swapping method is also effective in suppressing the
κL of a structure with a specific thickness distribution. Figure 12a (GML1) and
Fig. 12f (GML2) illustrate the phonon transmission of GML (S = 0) and two RMLs
(with S = 5 and 40) and their corresponding periodic counterparts. When compared
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with the periodic structure, broadband phonon localization appeared in the GML. In
addition, the localization degree in the RMLs gradually increased as the introduction
of disorder increased.

The above analysis results showed that the indexes of randomness Rd and RP
can effectively correlate the disorder with κL for RMLs with different thickness
arrangements. However, the difference in thickness distribution is not explicitly
reflected in these two parameters. Therefore, to identify the RMLs with different
thickness distributions, the standard deviation (δ) is determined as

δ =

√√√√
∑N

i=1

[(
dA,i − d

)2 + (
dB,i − d

)2]

2N
(6)

Figure 12m shows the δ and κL of 3400 structures with N = 32 and d = 4
UC, half of which are randomly created RML structures while the other are
corresponding GMLs. The κL as a function of Rd and Rp of these structures are also
shown in Fig. 12k, l. The κL of an RML and its GML cannot be recognized only
based on δ because they have the same thickness distribution. Combined with the
previous research results [37], the author concludes that there is a complex nonlinear
relationship between the κL of an RML and randomness parameters Rd, Rp, and δ.

Based on the above findings, the thickness arrangement and thickness distribu-
tion were proven to be effective structural parameters that can define the κL of an
RML in a complex nonlinear manner. To handle this complex problem, a machine
learning (ML) prediction model can be used, on the premise that the model can
be adequately trained with the structural features and κL of the RMLs. As shown
in Fig. 11b, a neural network (NN)-based ML model was developed to predict the
κL of the RMLs. To avoid overfitting, the number of hidden layers and nodes in
each hidden layer were selected based on careful experimentation. The number of
layers and nodes are two main hyperparameters [38], which are responsible for
the construction NN, and they rely solely on a particular data set. In this case,
the authors chose to use the scaled exponential linear activation function [39] and
the “Adam” [40] optimizer because it performs very well with less hyperparameter
adjustments and requires a small amount of memory to compute. The training steps
are as follows: first, the adjusted or assigned weights and biases are used to calculate
the output y based on the feature vector x. Then, the errors between the predicted
output y and actual output ŷ are determined as E = ŷ − y. Next, the weight factor for
each input at each node is tuned through the backward propagation algorithm. The
above steps are repeated for adequate epochs until the desired accuracy is achieved.
The biases and weights at each node are fixed when the ML model is trained for
a chosen number of epochs. These fixed parameters are then used to calculate the
final output based on the input feature vector.

Based on the above ML model, the prediction of κL for different RMLs was
conducted. The input structural features for the ML model are defined as the
thickness sequence, Rd, Rp, δ, �dmax, and �dmin, where �dmax and �dmin denote
the maximal and minimal deviation of the monolayer thickness relative to the
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average layer thickness of the RML. All the training and predicting structures were
randomly constructed with the same thickness distribution. Figure 13a–d shows the
comparison between the κL of the RMLs using the ML prediction model and actual
value from the MD simulations, which are divided into four different combinations
of features. The attenuation trend of the κL of the RMLs with increase in S was
predicted by the ML model. As shown in Fig. 13a, the thickness sequence can be a
sufficient feature parameter to predict the κL of the RMLs with the same thickness
distribution. The addition of other parameters, such as Rd, δ, Rp, �dmax, or �dmin,
did not improve the accuracy of the prediction. The disorder parameters (Rd, Rp,
and δ) exhibit reasonable accuracy for ML prediction, which is certainly a more
efficient approach compared with the sequence as the feature. To make the ML
model more general, the training samples were changed because too many elements
of the thickness sequence (2 × N) slow down the training and testing process.
During the training process, the ML model is trained with 3400 sets of different
structures, half of which are RMLs with random thickness distribution and the
remaining part is composed of the corresponding GMLs. Then, the model is used to
predict the κL of the structures in Fig. 13a–d, whose results are shown in Fig. 13e–h.
Figure 13e shows that the thickness sequence is no longer a self-sufficient feature
for ML prediction with reasonable quantitative accuracy. Meanwhile, as shown in
Fig. 13f, g, the randomness parameters (Rd, δ, and Rp) can improve the prediction
accuracy once they are combined with the thickness sequence. Moreover, the
disorder parameters can effectively distinguish the κL of the RMLs with a specific
thickness distribution, as shown in Fig. 13h. Therefore, the sequence, Rd, Rp, and δ

are significant structural features of an ML model to predict the κL of the RMLs
with acceptable accuracy. These findings may contribute to the development of
superlattices with low thermal conductivity and research on phonon localization,
which is a growing field [41–44].

4 MI-Enabled Thermal Emission Modulation

4.1 Thermal Nanostructure Designs for Radiative Cooling

The radiation cooling technology, which cools by unidirectionally radiating thermal
energy of objects to an atmospheric transparent window at a wavelength ranging
from 8 to 13 μm, has shown great potential for application in the field of building
energy conservation and thermal management [45–48]. To simultaneously increase
the radiative heat flow into the atmosphere window and decrease the absorption
of thermal radiation from the atmosphere, it is important for the atmospheric
transparent window to have a high emissivity and near-zero emissivity in the
remaining wavelength bands. Multilayered photonic crystals are often used as a
platform for tailoring thermal radiative properties because of their lithography-free
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Fig. 13 Comparison between the MD-predicted thermal conductivity, that is, the true values, and
ML-predicted values of a set of RMLs generated by the swapping method with S increasing from
0 (GML) to 50 based on different training data. Different combinations of parameters were used
as features of the ML model. Specifically, (a, e) sequence; (b, f) sequence, Rd, δ, Rp, �dmax, and
�dmin; (c, g) sequence, Rd, δ, and Rp; and (d, h) Rd, δ, and Rp were used to train the model [35]
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fabrication and scalability. However, the structural design of the photonic crystal
requires many parameters to be optimized, which makes it ideal for MI optimization.

Guo et al. [49] proposed a highly selective radiative cooling structure based
on the rigorous coupled wave analysis (RCWA) method coupled with the BO
algorithm. As shown in Fig. 14a, the candidate structure consists of a grating
and multilayered structures that are divided into several layers, each with multiple
material and thickness possibilities. The radiative properties of each structure
can be determined using the RCWA method. In this work, the optimizing target,
namely the figure of merit, is defined as the relative emissivity of the atmospheric
transparent window minus the emissivity of the remaining wavelength bands.
Therefore, the optimal structure with the best radiative cooling effect can be found
by conducting the RCWA combined with the BO method. The radiative property
of the optimal structure is shown in Fig. 14b. The selective emissivity peaks match
the atmospheric transparent window. Figure 14c shows the p-polarized emissivity
dispersion indicating the robustness of the high emissivity to the incident angle.
This shows that the absorption enhancement originates from the excited magnetic
polariton resonance [50]. The polar angle dependence of the emissivity of the
optimal structure under p- and s-polarized incident waves is illustrated in Fig. 14d,
e, respectively. By comparing these two images, it is apparent that the p-polarized
incident emissivity is significantly enhanced in the range of 8–11 μm, indicating the
importance of the top grating structure in phonon polariton excitation.

The normalized magnetic field shown in Fig. 14f–i for a specific wavelength
at the peaks and valleys of the emissivity is used to further analyze the magnetic
resonance. The strong magnetic dipoles appeared at wavelengths for the peaks of
the emissivity, expand outward, and become less concentrated as the emissivity
decreased. This confirms that the absorption enhancement in the optimal structure
is related to the magnetic polariton resonance. In the p-polarized wave, the incident
magnetic field can be assumed to be along the direction perpendicular to the incident
plane; hence, when the high emissivity is supported by the magnetic polaritons, the
incident polar angle does not affect the magnetic field. The intrinsic absorption band
of SiO2 at 12.5 and 20 μm may lead to a low emissivity in the range of 11–13 μm,
which makes it harder to achieve perfect radiative properties (high emissivity in the
range of 11–13 μm and low emissivity above 13 μm).

Since only one-dimensional periodic structures are considered in this work and
the optimal emissivity is only applicable to p-polarized waves, the polarization
dependency problem will appear during the practical application of this theoretical
structure. To solve this problem, a two-dimensional periodic structure should be
introduced during optimization. However, solving the electromagnetic field based
on the RCWA entails dealing with the two-dimensional Fourier term; thus, the
number of solutions would be at least a square multiple of those for the one-
dimensional case, which is more time- and resource-consuming.

To solve the above challenges, Kitai et al. [51] proposed a factorization machine
with a quantum annealing (FMQA) algorithm and demonstrated its effectiveness by
optimizing the radiative cooling performance of a two-dimensional block stacking
metamaterial. The FMQA process is illustrated in Fig. 15a, where the target property
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Fig. 14 (a) Schematic illustration of the MI method based on the RCWA coupled with the BO
method. (b) Radiative properties of the optimal structure. (c) Emissivity dispersion of the optimal
structure under a p-polarized incident wave. The polar angle dependence of the emissivity for p-
polarized (d) and s-polarized (e) waves. Contour plot of the normalized magnetic field for incident
wavelength of (f) 8.93 μm, (g) 9.46 μm, (h) 10.58 μm, (i) 10.82 μm, respectively [49]



Fig. 15 (a) Schematics of the FMQA algorithm. (b) Best figure of merit as a function of the
number of structures calculated (iterations) by FMQA using a quantum annealer and random
search. (c) Comparison of the computing time required to perform 500 iterations for automated
materials discovery using an exhaustive search and a quantum annealer. (d) Optimal metamaterial
structure, in which the blue, red, and gray squares denote SiO2, SiC, and PMMA, respectively.
(e) Emissive power calculated by RCWA of the designed optimal structure. For comparison, the
emissive power of the blackbody (blue line) and optimal structure with one column (gray line) is
plotted. Contour plots of the (f) normalized electric power dissipation density and (g) normalized
magnetic field for the optimal structure at selected wavelengths [51]
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Fig. 16 Example of the target metamaterial structure for L = 6 and C = 3, binary variables
expressing it, and emissive powers of the target metamaterial (red curve) and blackbody (blue
curve) calculated by RCWA [51]

of the optimization task is the FOM of the radiative cooling calculated by RCWA.
The target metamaterial structure was composed of SiO2 and SiC wires placed in
poly(methyl methacrylate) (PMMA). As shown in Fig. 16, each wire was deposited
along the y-axis, which was set as the periodic boundary condition. The x–z plane
was divided into uniform units with a side length of 1 μm, which are either SiO2,
SiC, or PMMA. The number of units in the z and x directions of the structure were
denoted as L and C, respectively. The metamaterial structure was first encoded
into binary sequences to utilize the quantum annealer. As shown in Fig. 16, the
configuration of the wired materials (SiO2 or SiC) and PMMA was determined
by L × C bits alone with a complementary sequence, which was used to define
the type of wired materials in each layer. During the ML optimization process,
the factorization machine (FM) was trained first with the available data, based on
which, a new candidate related to an acquisition function flows to the quadratic
constrained binary optimization solved by a quantum annealer was selected. Then,
the information on the property and structure of the new candidates were added to
the training data for retraining the FM. To verify the superiority of the FMQA, the
optimal FOM was plotted in Fig. 15b by random search and FMQA as a function
of the iteration numbers, with the inset showing the optimal structure. The FMQA
could find a structure with a higher figure of merit after fewer iterations, suggesting
that it is a useful method for new metamaterial design. Meanwhile, many typical
ML optimization algorithms controlled by an acquisition function, such as the
BO algorithm, often conduct an exhaustive search in the selection part, which is
time consuming. Figure 15c compares the computing time between the exhaustive
search algorithm and FMQA as a function of the structure size. Both methods
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could effectively determine the optimal structure within 500 iterations. However,
the required time increased more than tenfold for exhaustive search compared to
quantum annealers for a large 18 bits case, which indicates that the FMQA can be
used to overcome the computational barrier in MI.

The FMQA is conducted over many structures with different number of layers
(L) and columns (C). The structure and emissive power of the optimal candidate are
shown in Fig. 15d, e, where the emittance peaks fall into the atmospheric transparent
window. In addition, the emissive power of the optimal structure with one column
was plotted as a gray line, which is smaller than the designed metamaterial.
This means that the designed structure is essential for better performance of the
radiative cooling. During the FMQA optimization process, it was found that the
structures with SiO2 located separately at the top and bottom sides and SiC
occupying the middle part always exhibits a high figure of merit. To understand
this phenomenon, the electric power dissipation density of the optimal structure
at different wavelengths was evaluated, as shown in Fig. 15f. The SiO2 on both
ends dominate the absorption in the lower wavelength band (8–11 μm), while
the middle SiC layer absorbs most of the wave energy in the higher wavelength
band (11–13 μm). The physical mechanism of the high emissivity of the optimal
structure was then analyzed. Since the emissivity of the p-wave dispersion relation
shows incident angular independence (not shown here), it can be concluded that the
resonance in the structure does not originate from the surface phonon polariton,
which shows a high incident angular dependence. To further demonstrate the
magnetic polariton resonance, Fig. 15g shows the normalized magnetic field at
different typical wavelengths. By comparing Fig. 15f and g, it can be observed that
there always exists strong magnetic field inhibition at the part with a high emissivity,
where the polariton resonance is excited. In addition, the confined magnetic field
becomes decentralized and flatter as the emissivity decreases, which indicates that
the high emissivity of the optimal structure results from the magnetic polariton
resonance.

4.2 Thermal Nanostructures Design for Ultranarrow Thermal
Emission

Wavelength-selective narrow-band thermal radiation control is a key technology
in the application of incandescent light sources [52], microbolometers [53], and
infrared heaters [54]. In the past few decades, various state-of-the-art nanostructures
have been proposed and demonstrated, such as multilayer [55, 56], photonic crystals
[57], and metal-insulator-metal metamaterials [58, 59]. Among these nanostruc-
tures, multilayers have become a research hotspot because of their relatively simple
processing technology and high scalability.

Sakurai et al. [60] proposed an ultranarrow-band wavelength-selective thermal
radiator based on the BO method coupled with the transfer matrix method (TMM)
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Fig. 17 (a) Schematic of the optimization method combining TMM and BO algorithm. (b)
Schematic of the ideal optical property of the narrow-band thermal radiator. (c) Optimal structures
of the narrow-band thermal radiators at target wavelength of 6.0, 5.0, and 7.0 μm, respectively. (d)
Calculated spectral directional emissivity of the optimal structure. (e) Measured spectral directional
emissivity of the fabricated structure. (f) Cross-sectional TEM images of the fabricated sample at
λt = 6.0 μm [60]

and experimentally demonstrated the optimized radiative properties of the proposed
multilayered structures. Figure 17a shows a schematic of the optimization method.
The target structures consist of N unit layers, in which there are three kinds of
alternative materials for each layer, i.e., Ge, Si, or SiO2. The emissivity spectra
of the candidate structure can be calculated using the TMM. The target optical
property is shown in Fig. 17b. The ideal radiator exhibits a sharp and high emissivity
at λt with a bandwidth �λ, while the emissivity for the rest of the wavelengths is
suppressed to prevent radiative heat loss. The optimal structures for λt = 6.0, 5.0,
and 7.0 μm are shown in Fig. 17c and consist of a similar aperiodic multilayered
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Fig. 18 Contour plots of the normalized magnetic field intensity (a–c) and power dissipation
density (d–f) for target wavelengths of (a, d) 5.0 μm, (b, e) 6.0 μm, and (c, f) 7.0 μm [60]

structure. Their corresponding spectral directional emissivity is shown in Fig. 17d.
The ideal sharp and high emissivity at the target wavelength is achieved based on
the optimal structure, while no redundant peaks are observed within the rest of the
wavelength range. To verify the optimized simulation results, the optimal structures
were experimentally fabricated. As shown in Fig. 17e, the three tailored emissive
peaks were observed, although the peak emissivity decreased and the peak location
redshifted by approximately 0.5 μm. The discrepancy phenomenon results from
the thickness deviation of the single layers in the samples from the ideal values.
However, in general, the main features, thus the emissivity peak at the selective
wavelength was achieved.

To further investigate the mechanism of the optimized optical properties, the
magnetic field was calculated, as shown in Fig. 18. As shown in Fig. 18a–c, the
electromagnetic energy is strongly confined in the Ge layer at λt = 5 and 6 μm,
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whereas at λt = 7 μm the strong confinement is in the SiO2 layer. This suggests that
the enhanced emissivity in the optimized structure originates from localized modes,
which is similar to the defect modes in the photonic crystals [61]. Defect modes
exist inside a photonic bandgap in photonic crystals; therefore, this is a common
phenomenon in periodic structures. However, it is interesting to find a similar
localized mode inside the optimal aperiodic structures. In other words, the optimized
defect layers, which are used to construct an emissive sharp peak, were introduced
into the photonic crystals. As shown in Fig. 18c, the defect layer corresponds to
a sandwich structure with two layers of Ge and one layer of SiO2. Therefore,
the optimized structure successfully inhibits the other emissive peaks because of
the higher-order harmonics. To quantitatively analyze the power absorbed by the
optimized structure, the power dissipation density was calculated and shown in
Fig. 18d–h. The strong absorption occurs at the tungsten substrate, whereas the
weak absorption occurs within the SiO2 layer. Therefore, it can be concluded that
the thermal energy dissipation mainly appears in the metallic substrate because of
the large optical loss.

4.3 Thermal Nanostructure Designs for Thermophotovoltaic
System

Thermophotovoltaic (TPV) systems increase the Shockley–Queisser limit of the
solar photovoltaic (SPV) systems by transforming the broad input solar spectrum
to tailored narrow-band thermal emission [62]. For thermal emitter structure design,
the 1D-multilayer Tamm plasmon polaritons structures are superior in both tunable
performance and scalable manufacturing, which is composed of a metallic mirror
and distributed Bragg reflector (DBR). Hu et al. [63] constructed a TPV system
by integrating a Tamm emitter with a solar cell. They optimized the Tamm emitter
by taking the system efficiency and power density as coupling parameters using
the MCTS algorithm. As shown in Fig. 19a, there are two typical TPV systems
composed of different types of Tamm emitters, i.e., the DBR-side and metal-side
emitters. The DBR consists of alternate SiO2 and TiO2 layers, while the metal
layer is composed of W-Al2O3 alloy with tunable percentages of the W ingredient
(fw). Figure 20b shows the Tamm emitter optimization process using the MCTS
method, in which the SiO2 and TiO2 layers of the DBR were encoded as 1 and
0, respectively, to form binary sequences that serve as descriptors in ML. The
corresponding emissivity spectrum is then calculated by TMM and used as input to
the PV cell model to determine the system efficiency and power density. The ideal
emissivity of the Tamm emitter was investigated before optimization, as shown in
Fig. 19c. When the bandgap wavelength λbg is fixed, the output power P increases
monotonically with increase in the unity emissivity width D, whereas the system
efficiency peaks at a specific width. Meanwhile, when D is maintained, even a
small right shift can result in a significant drop in both system efficiency and power
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Fig. 19 (a) Structural diagram of the TPV system with metal-side and DBR-side emitter. (b)
Schematic of the MCTS optimization process for a Tamm emitter, namely the sequence of the
DBR layers to maximize the power density and system efficiency of the TPV. (c) Ideal emissivity
spectrum of the TPV system [63]
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Fig. 20 Optimization results of the (a) metal-side and (b) DBR-side TPV system structures. (c, d)
Incident and absorbed power spectra companions. Comparison of the (e) system efficiency and
(f) photocurrent at different input voltages. Electric field of the (g) metal-side and (h) DBR-side
emitter at 1.708 μm [63]
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density. These findings indicate that it is difficult to achieve the ideal emissivity by
manual structural design, and hence ML optimization is advantageous.

The optimized results of the Tamm emitters with different W-percentages ranging
from 15% to 95% are shown in Fig. 20a, b. For the metal-side emitter, as the fw
increases, the power density P increases at first and then decreases. A similar trend
is observed for the DBR-side emitter. A high system efficiency requires a low fw,
while high power demands the fw to be as large as possible before the inflection
point. The gray circles in Fig. 20a, b represent the Pareto front lines, while the
global optimal results are denoted by the red star in both cases. By comparing
the Pareto front lines between the two structures, the metal-side structure shows
superior properties because of its higher system efficiency and power density. To
further analyze the mechanism, the performance parameters of these two TPV
structures were compared, as shown in Fig. 20. The power spectrum of the metal-
side emitter was stronger at the bandgap wavelength than that of the DBR-side
emitter, which affects the system efficiency and power density, as discussed in
Fig. 19c. Figure 20d shows the power spectra absorbed by the two structures. It
indicates that the PV cell can only absorb the thermal photons whose wavelength is
lower than the bandgap, and the metal-side emitter is more suitable for matching the
PV cell because its emissivity is closer to the ideal emissivity curve. Furthermore,
the photocurrent and system efficiency of the metal-side emitter are higher than
those of the DBR-side emitter at different input voltages, which is consistent with
the optimization of the former. The electric field of the two optimized emitters at a
specific wavelength is shown in Fig. 20g, h, both of which are typical sine functions.
Meanwhile, the electric intensity of the metal-side TPV system is stronger, resulting
in enhanced thermal emission. To further illustrate the superiority of the optimal
aperiodic structures, the same properties in Fig. 20 of the corresponding periodic
structure were simulated as shown in Fig. 21. The metal-side Tamm emitter still
exhibits better performance than the DBR-side emitter, which is consistent with
previous conclusions. From the above findings, it can be concluded that the Tamm
emitters with aperiodic structures are better for matching the PV cells. However,
such aperiodic structures cannot be designed by manual search because of the many
candidate structures to select; hence ML algorithm can be applied. In addition, since
there are many interfaces in the Tamm emitters, the interface quality, such as the
material defects, thickness, accuracy, and roughness, have a huge influence on the
radiative properties of the emitter, thus greatly affecting the performance of the TPV
system. Therefore, the manufacturing precision of the fabricated samples is of great
importance for experimental validation.

4.4 Thermal Nanostructure Designs for Thermal Camouflage

Thermal camouflage, another interesting thermal functionality, aims to blend the
targets into the background to confront IR detection. According to the Stefan–
Boltzmann law, the detected thermal energy is coupled with the target temperature
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Fig. 21 Comparison of the metal-side and DBR-side TPV systems with periodic DBR. (a)
Incident power spectral comparison. Comparison of the (b) system efficiency and (c) photocurrent
different input voltages. (d) Electric field of the metal-side and DBR-side emitter with periodic
DBR at 1.708 μm [63]

and surface emissivity. Therefore, there are two ways to achieve thermal cam-
ouflage: by maintaining temperature close to the background and changing the
surface emissivity to generate an equivalent detected temperature. Conductive
thermal metamaterials have been developed based on the first method [70–72].
However, the application of conductive thermal metamaterials is limited because
they can only control the in-plane heat conduction. To control the out-of-plane
thermal emission, radiative thermal metamaterials have been proposed. However,
to date, the function of radiative thermal metamaterials have not been studied
as comprehensively as their conductive counterparts. Consequently, Song et al.
[73] theoretically investigated the surface emissivity of the Au/Ge/Au structure,
using RCWA, and successfully achieved thermal camouflage, thermal illusion,
and thermal messaging functionalities. Figure 22a illustrates the one-dimensional
metal/insulator/metal (MIM) structure in a unit cell. The grating ridge is a double-
layer patch consisting of Au and Ge on the top and bottom, respectively. The patches
then periodically array on the Au substrate to form the metamaterial structure,
in which the grating width w can be regulated to control the surface emissivity.
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Fig. 22 (a) Schematic of the single Au/Ge/Au MIM structure, in which a thin-layer Ge spaces
the Au grating and Au substrate. The grating width w is screened from 0.9 to 1.4 μm and the
corresponding surface emissivity spectra are plotted in (b) where the wavelength range is 6–16 μm.
(c) Integrated radiation power with varied grating width of five typical points in (d). (d, g, j)
Original temperature field of a plate with a heat source in the center. (e, h, k) Surface emissivity
distribution for different applications. (f) The hot spot is camouflaged and a uniform temperature
is observed instead, demonstrating the thermal camouflage functionality. (i) Four separated hot
spots emerge because of the uniform temperature field in (f), demonstrating the thermal illusion
functionality. (l) The heat signature of “HELLO” is observed because of the uniform temperature
field in (f), demonstrating the thermal messaging functionality [73]

Figure 22b shows the emissivity spectra as a function of the grating width. As the
grating width increases, the emissivity peak of the structure continuously redshifted.
These peaks result from the magnetic polaritons (MPs) in the MIM structure, which
originates from the strong coupling of the magnetic resonance in the MIM structures
with the external electromagnetic (EM) fields [74].

Referring to the working wavelength band of the IR camera, the authors focused
on the integrated radiation power in the working wavelength range of 8–13 μm.
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As shown in Fig. 22d, a real temperature field with a point heat source was
generated. To achieve the thermal camouflage effect by emissivity engineering,
the surface was divided into 101 × 101 UCs, and different MIM structures were
deposited on each unit cell to achieve consistent surface integrated radiation power.
Figure 22c shows the integrated radiation power of five UCs with different grating
widths. The desired radiation power Pd is quantified when the standard deviation
(STD) of the surface integrated radiation power is minimal. Then, as shown in
Fig. 22c, the widths of each unit cell on the surface are selected consecutively by
the dashed line. Figure 22e, f shows the distribution of the designed emissivity on
the surface and its corresponding camouflage temperature field. The camouflage
temperature field is evenly distributed and the real heat source vanishes in the
background, demonstrating the thermal camouflage effect. Based on the same
strategy, the thermal illusion and thermal messaging functionalities can be realized
by engineering the local surface emissivity. The corresponding designed surface
emissivity distribution and performance are shown in Fig. 22d–i.

The above work has many novel thermal functions achieved via surface emissiv-
ity regulation. However, this structure can only be applied in static scenes, once the
heat source moves, the thermal functionalities fail. Nematic liquid crystals (LCs),
which are typical stimuli-responsive materials, show great potential for tuning
thermal radiation by external electrical stimulation because of their inherently high
optical anisotropy, low energy, and adjustable LC particle orientation [75–77].
Inspired by this, Liu et al. [78] demonstrated the emissivity-engineered radiative
metasurface to achieve dynamic thermal camouflage based on the metal-liquid
crystal-metal (MLCM) structure. Figure 23a shows a schematic of the proposed
MLCM structure. The grating ridge is a double-layer patch consisting of Au and LC
on the top and bottom, respectively. The patches then are periodically distributed on
the Au substrate to form the metamaterial structure; hence the transmittance can be
neglected. Figure 23b shows the emissivity spectra as a function of the orientation
angles from 0◦ to 90◦ in the wavelength range of 6–20 μm. As the orientation
angle increases, the emissivity peak of the structure redshifted continuously from
8.7 to 11.8 μm, resulting in a significant difference between the integrated radiation
power of the MLCM with different orientation angles in the working wavelength
range of 8–13 μm. Therefore, the orientation angle in the MLCM structure can
be utilized to control its radiative energy over a wide range to achieve a pseudo-
surface temperature for dynamic thermal camouflage. Furthermore, a physical scene
is established. To generate a dynamic temperature field, laser beams at the bottom
of a Si plate are generated. The laser point moves at a certain velocity. Figure 23d
illustrates the 3D temperature field at t = 10 s. To achieve thermal camouflage with
emissivity engineering, the top surface of the plate is divided into M × N UCs.
Then, different MLCM structures with different LC orientation angles are deposited
on each unit cell. Figure 23c shows the integrated radiation power variation of five
typical UCs in a plate with different orientation angles [73]. The LC orientation
angle distribution on the surface at different times could be obtained using the same
strategy as in the above work. To demonstrate the dynamic thermal camouflage, the
laser moves from the start point to the end of the plate at a constant velocity along
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Fig. 23 (a) Schematic of the MLCM-based metasurface architecture. Orientation angle θLC of
the crystals in liquids can be dynamically adjusted by the input voltage. (b) RCWA-predicted
emissivity spectra in terms of wavelength and orientation angle. (c) Integrated radiation power with
varied orientation angle of five typical unit cells along the x-axis. (d) Demonstration of the dynamic
thermal camouflage via the radiative LC-based metasurfaces, including the real temperature, angle
distribution, and the detected temperature at 10, 30, and 50 s [78]

the x-axis. Figure 23d shows the real temporal temperature fields at 10, 30, and
50 s. Following the emissivity regulation algorithm, the temporal orientation angle
distributions and corresponding camouflage temperature fields at different time
steps are also shown in Fig. 23d. In the real temperature field, the heat source can
easily be identified; however, in the camouflage temperature field monitored by the
IR camera, the heat source vanishes, demonstrating dynamic thermal camouflage.

The above work proves the superiority of the metamaterial structure in realizing
different radiative thermal functionalities. However, metamaterials are usually
complex with many structural parameters, especially the multilayered structures.
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There are many possible combinations of materials and geometric designs for each
layer. Currently, structural design is achieved by manually selecting the optimal
parameters for different thermal functionalities. This consumes a lot of design time
and does not lead to a better structure. Consequently, MI has great application
potential in solving this complex structural design problem. Rapid ML optimization
of the structure for different thermal functions reduces the design time to find the
optimal material parameters and obtain better thermal functionalities.

5 Summary and Perspectives

MI has been successfully demonstrated as an effective and powerful tool for
optimizing thermal materials with desired thermal properties in the last several
years. For thermal conduction, MI has been applied to search for superlattices
with low thermal conductance and defective GNRs with the high thermoelectric
properties. For thermal radiation, MI has been applied to explore metamaterials with
excellent radiative cooling effects, multilayered photonic crystals, ultranarrow-band
wavelength-selective emissivity, and Tamm emitter TPV system with the highest
power density and efficiency. MI assist in efficiently finding optimal structures and
understanding new physics behind the optimized novel materials and structures.
However, several technical challenges still need to be solved, which are described
below for future exploration.

Current structure design still suffers from the limitation of small scales and
systems. As the scale of the computing system increases, computing time will
become a huge challenge. Moreover, the enlargement of the system is always
accompanied by more complicated physics, which will further complicate the
calculations. For example, for the multilayered structures discussed above, as the
layer thickness increases, the phonon-phonon scattering becomes dominant. To
ensure the accuracy of the calculation, the anharmonic lattice dynamics (ALD)
should be introduced; however, this is more time- and resource-consuming than
the harmonic AGF calculations. The increase in computing time for a single
structure is greatly amplified in the subsequent MI process because the optimization
process requires the calculation of thousands of structures, which makes the entire
calculation expensive. Therefore, improvement in computing speed and efficiency is
urgently required in MI. Another option is to find a compromise between accuracy
and speed, which can be achieved in a hierarchical manner. There, a low-precision
method is used for high-speed screening for the first time, followed by high-
precision refining steps.

The new effective descriptor is a significant factor in the development of MI.
When conducting data screening, many of the existing works only use descriptors
that are related to the structural or chemical properties of the candidate, which means
that descriptors do not necessarily contain the physical properties. For nanostructure
design, the current descriptors are often defined as binary values denoting the
element type; however, such descriptors generally contain many elements, which
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will slow down the optimization process. Therefore, more effort should be put
in finding better descriptors to represent the structure. For instance, as described
in Sect. 3.4, the disorder structural parameters can also represent the structures.
The development of new descriptors is currently underway to further improve the
efficiency of the optimization.

There are also some non-technological issues that need to be addressed. For
instance, although first-principles based ALD calculations have become an accepted
way to calculate the thermal conductivity of materials, the results from different
research groups are not systematically organized. The urgent problem is to link the
difference among input and output formats of various tools used for calculations,
such as VASP [64, 65], Quantum ESPRESSO [66], etc., for DFT force calculations,
and ALAMODE [67], Phonon3py [68], ShengBTE [69], etc., for the ALD calcu-
lations. In addition, it is also necessary to set standards for calculating parameters,
such as the cutoff length, mesh size, and pseudopotentials. There is an opportunity
to expand and standardize database for collecting and sharing data from different
individuals.

In any case, the application of MI to heat transfer is expected to expand across the
various forms of heat transfer (conduction, convection, and radiation), from nano-
to macroscale, and from simulations to experiments.
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Machine Learning Accelerated Insights
of Perovskite Materials

Shuaihua Lu, Yilei Wu, Ming-Gang Ju, and Jinlan Wang

1 Introduction

Conventionally, perovskite as mineral name is applied to the class of materials
possessing the same type of crystal structure as CaTiO3, which initially was
discovered in 1839 by the Prussian mineralogist Gustav Rose in the Ural Mountains
and was named after the Russian mineralogist Count Lev Aleksevich von Perovski.
Perovskites have a general formula with or derived from composition ABX3,
which exhibit many fantastic chemical and physical properties and is one of
the most intensely studied material in material field. Generally, perovskites are
composed with a large cation at A site and an octahedral BX6. A corner-shared
network is formed with the BX6 octahedras and the cation A is filled in the caves
between the octahedras. Nonideal ionic size ratios and electronic instabilities are
compensated by tilting and distorting of BX6 octahedras. Except these general
perovskite structures, many perovskite variants also attract widespread attention,
such as double perovskite and layered perovskite. Furthermore, substitution of
perovskite A, B, or X sites is allowed for tailoring of properties to meet particular
application. Due to the structure and composition flexibility, perovskites can vary
from insulating to metallicity, with a wide range of possible applications such
as electronic device and sensor [1], magnetic memory components [2], and solar
cell [3].

Shuaihua Lu and Yilei Wu contributed equally with all other contributors.

S. Lu · Y. Wu · M.-G. Ju (�) · J. Wang (�)
School of Physics, Southeast University, Nanjing, China
e-mail: shlu@seu.edu.cn; ylwu@seu.edu.cn; juming@seu.edu.cn; jlwang@seu.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
Y. Cheng et al. (eds.), Artificial Intelligence for Materials Science, Springer Series
in Materials Science 312, https://doi.org/10.1007/978-3-030-68310-8_8

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68310-8_8&domain=pdf
mailto:shlu@seu.edu.cn
mailto:ylwu@seu.edu.cn
mailto:juming@seu.edu.cn
mailto:jlwang@seu.edu.cn
https://doi.org/10.1007/978-3-030-68310-8_8


198 S. Lu et al.

In recent decades, lead halide perovskites have made tremendous progress
in photovoltaic and optoelectronic field. High visible absorption, long carrier-
diffusions lengths, and fantastic defect tolerance have led to solar cells with certified
efficiency of 25.5% [4]. However, chemical stability, mechanical reliability, and
toxicity still are three critical obstacles in the path of eventual commercializa-
tion of the emerging perovskite solar cells. This prompts a research focus in
halide perovskites to predict new perovskites with targeted properties, especially
those composed of abundant, nontoxic elements and with thermal, chemical,
and dynamic stability. The latter objectives have been traditionally met through
performing density functional theory (DFT) calculations of electronic properties,
optical absorption properties, defect properties, and performing ab initio molecular
dynamics simulations for materials at various given compositions [3, 5]. Recently,
with advances in the descriptor-based modeling techniques, researchers are able
to perform high-throughput (HT) screening to rapidly estimate certain targeted
material properties [6, 7]. Moreover, machine learning (ML), a modeling approach
that has received growing attention, has been employed to accelerate the discovery
of new perovskite materials [8]. In brief, the ML method can unveil hidden physical
properties of materials, if given abundant data and a learning rule, thereby mapping
between inputs and output data [9]. So far, most ML studies on perovskites have
been focused on all-inorganic perovskites, double perovskites, and anti-perovskites,
which all possess a particular type of crystal structure. Due to their simpler and
particular crystal structures compared to the prevailing hybrid organic-inorganic
perovskites (HOIPs), various ML methods with different choices of descriptors
have been benchmark tested for predicting new and stable perovskites [10–12].
This is because of the difficulty of representing organic cations in a fixed length
vector to be compatible with many ML algorithms. To match these challenges,
developing flexible, transferrable, and reasonable representations becomes one of
the important areas of research in ML for HOIPs. As an alternative to learning from
first-principle computational data, ML techniques are also optimal for predicting
targeted properties through training with numerous experimental data, mapping
between the high performance of devices and the various physical and chemical
origins, such as bandgap, absorption, and defect properties.

Herein, we bring a brief and in-depth review of ML-guided design and discovery
of perovskite materials for photovoltaic application, a field where LHPs with
superior performance and low cost are promising candidate for Next Gen PVs.
Our review begins with a discussion of construction of data sets, alongside the
challenges of the various collections of material data sets. The next section will
provide a review of the material representations including descriptors and feature
engineering. The final section reviews the ML applications in recent studies such
as the ML techniques accelerate the discovery and design of new perovskites with
desire stabilities and bandgaps and discovery of factors in experimental processes,
which are significantly related to performance of devices.



Machine Learning Accelerated Insights of Perovskite Materials 199

2 Learning with Perovskite Databases

The cornerstone of ML material discovery is high-quality material data set, and
enough material data will ensure the performance of ML models. For perovskite-
based photovoltaic materials, abundant data have been generated through the high-
throughput calculations and experiments. Besides, some databases containing the
properties of perovskites also provide considerable data. We will discuss these three
data sources in detail.

In recent years, due to the continuing development of computing power, HT
computational material discovery strategy has become an effective and efficient
way to discover new functional materials, especially perovskite materials. Among
them, tens of thousands of new perovskite-based materials have been predicted for
photovoltaic applications. The HT computational method uses the first-principle
calculations to build a large-scale material database, which includes existing and
hypothetical materials. To facilitate such large-scale computational tasks and data
analysis, a number of well-developed software frameworks are developed, including
AFLOW [13], pymatgen [14], the Atomic Simulation Environment [15], MatCloud
[16], and so on.

The material properties directly determine the applications of materials [17]. As
shown in Fig. 1, for the design of perovskite-based photovoltaic materials, evaluat-
ing the stability of perovskites is the first step, which is also one of the challenges
restricting the practical application of perovskites. The stability of perovskite is
mainly evaluated by three different aspects: (1) structural stability (or formability),
(2) thermodynamic stability, and (3) dynamic stability. The formability of perovskite
is mainly judged by simple structure descriptors, which will be described in detail
in the material representation sect. 3.1. In general, the formation energy �Hf and
the energy above convex hull Ehull are utilized to evaluate the thermodynamic
stability of perovskites. The formation energy �Hf describes the energy change
of a material from an elemental component to a compound, and negative values
indicate stable compounds. The energy above convex hull Ehull describes whether
a compound tends to decompose into various elemental, binary, ternary, or more
complex components, while negative values indicate unstable compounds. Thermal
and dynamic stability represents a more realistic evaluation of material stability in
the operating environment. Computationally, phonon calculations are main methods
to assess the dynamic stability of materials and ab initio molecular dynamics is
adopted to estimate thermal stability. Due to the complexity and time-consuming of
these calculations, it is usually performed only for selected promising candidates in
HT screening processes. Secondly, the optical and electronic properties determine
the applications of perovskites. In HT calculations, the bandgap is one of the
most commonly physical parameters to evaluate the photovoltaic performance of
a material, because it directly affects the photovoltaic performance of perovskite
materials. The effective masses of electron and hole are directly related to the
mobility of the material. The small and balanced effective mass is beneficial for
carrier mobility in the solar cell materials [18].
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Fig. 1 Rational flowchart for perovskites discovery using HT calculations. (Reprinted with
permission from Ref. 17. Copyright © 2017 American Chemical Society)

Inorganic perovskites have firstly been screened by HT first-principle calcula-
tions because of the simple crystal structures and abundant candidate materials. In
2012, Castelli et al. [23, 24] explored the bandgap of around 19,000 compounds
(perovskite oxides with one or more replacements for oxygen neighbors in the
periodic table) using sophisticated semi-local functional called GLLB-SC. Korbel
et al. [19] extensively studied the stability and electronic properties of the possible
ABX3 perovskites, where X is a nonmetal and A and B cover a large part of the
periodic table. One hundred and ninety-nine perovskites were screened out from
more than 32,000 compounds after thermodynamic stability evaluation, and the
selected perovskites were characterized by calculating a variety of electronic prop-
erties, such as electronic bandgap, average hole effective mass, and so on. Emery
and Wolverton [20] presented an exhaustive dataset of 5329 cubic and distorted
inorganic perovskites in terms of formation energies, bandgap, and some other
properties, which were calculated using density functional theory (the calculation
workflow is shown in Fig. 2a).

In addition to the simple inorganic perovskite materials with formula ABX3,
inorganic double perovskite materials have also received significant attention due
to the phase space of possible compounds is substantially larger, which increases
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Fig. 2 (a) Workflow to calculate all the properties in the dataset. (Reprinted from Ref. 20).
(b) Space of candidate perovskites for materials screening and materials screening process
by considering gradually the properties relevant to photovoltaic performance. (Reprinted with
permission from Ref. 21. Copyright 2017 American Chemical Society)
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considerably the probability of finding promising candidates with the desired
properties [21, 22, 25–27]. As shown in Fig. 2b, Zhao et al. [21] constructed
a rich class of double perovskites without Pb2+ ions to solve the toxicity of
perovskites. After gradually considering the properties relevant to photovoltaic
performance, i.e., decomposition enthalpy, bandgap, carrier effective masses, and
exciton binding energy, 11 optimal materials were identified as candidates in
photovoltaic field. Subsequently, Cai et al. [22] computed structural, electronic,
and transport properties of around 1000 double perovskite halides using high-
throughput first-principles calculations to aid the discovery of photovoltaic materials
(see Fig. 2d).

Compared with inorganic perovskite, hybrid organic-inorganic perovskites
(HOIPs), as one of the most promising photovoltaic materials, have attracted
tremendous interest recently. The most distinguished virtues of HOIPs include high
power conversion efficiency (PCE), low-cost experimental synthesis, and tunable
bandgaps. In order to find more stable hybrid perovskites with higher PCE, a lot of
HT computing works have emerged [17, 28–33]. An HT computational screening
study [28] for 11,025 compositions of HOIP compounds in ABX3 and A2B′B′′X6
forms has been reported, where A is an organic or inorganic component, B′/B′′ is a
metal cation, and X is a halogen anion. The computational results contain bandgap
values at the scalar relativistic PBE level of all compositions. Besides, the hole
and electron effective masses of 1923 candidate semiconductors with bandgaps
smaller than 3.5 eV were also estimated. Another effort on computational screening
of possible replacements for methylammonium or lead was shown in Fig. 3a, in
which 11 different molecular organic cations and 29 different divalent cations were
considered [29]. All thermodynamically stable hybrid perovskites were then further
characterized by their bandgaps and effective masses. Moreover, Jacobs et al. [34]
focused on finding materials that comprise nontoxic elements, stable in a humid
operating environment, and have an optimal bandgap for single junction. From a set
of 1845 materials, 15 materials passed all screening criteria for single junction cell
applications. Notably, these efforts primarily focused on the single perovskite or
double perovskite structure. Besides perovskite structures, there exist in principles
other organic-inorganic hybrid ternary metal halide compounds with appropriate
metal elements and the stoichiometry of component elements that are more stable
and even show better optoelectronic properties than the typical perovskite structures.
Li and Yang [30] carried out HT calculations on 4507 hypothetical compounds. The
chemical formulas of selected candidates include A2BX4, A3B2X9, and A2BX6, in
which A = MA (CH3NH3), FA (CH(NH2)2), AD ((CH2)2NH2), and X = Cl, Br, or
I. As shown in Fig. 3b, the bandgap and electron/hole effective masses of all these
candidates were calculated and used to screen appropriate candidates, thereby the
formation enthalpy and decomposition enthalpy of those were computed to evaluate
the stabilities.

HT calculations have produced considerable data on perovskite materials, espe-
cially thermodynamic stability and electronic properties, while theoretical predicted
materials are often difficult to experimental synthesis. The fabrication process based
on non-vacuum solution has obvious advantages, such as being suitable for scale-



Machine Learning Accelerated Insights of Perovskite Materials 203

Fig. 3 (a) Molecular cations and periodic system of the elements considered for candidate
perovskites. (Reprinted with permission from Ref. 29. Copyright 2018 The Royal Society of
Chemistry). (b) Schematic diagram of the HT screening process for a total number of 4507
compounds, which were generated from 24 different crystal structures. (Reprinted with permission
from Ref. 30. Copyright 2019 The Royal Society of Chemistry)

up production, lowering process temperature, lowering energy consumption, and
lowering costs, thereby receiving increasing attention in the photovoltaic field.
In addition, solvent-based methods can be implemented flexibly in automated
HT experimentation, allowing rapid screening of perovskites [37–45]. Chen et
al. [46] built an automatic HT experimentation platform for synthesis and char-
acterization of HOIPs with suitable wide bandgap. This platform automatically
and efficiently synthesized 95 perovskite polycrystalline samples derived from
binary mixtures of five common perovskite precursors and then measured the
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Fig. 4 (a) Sketch of the optimized experimental workflow. (Reprinted with permission from Ref.
35. Copyright 2019 Elsevier Inc.). (b) A robotic platform was adopted to conduct a comprehensive
solvent engineering for making lead halide perovskites in a high-throughput manner. Deeper
insights into the working mechanisms and selection criteria of antisolvents were investigated and
summarized. (Reprinted with permission from Ref. 36. Copyright 2020 Elsevier Inc.)

corresponding photoluminescence and absorption, yielding six compositing per-
ovskite sample with an optical bandgap of ≈1.75 eV. Apart from exploring stable
HOIPs with wide bandgap, the discovery of new perovskite compounds has also
been attempted with HT experimentations. Figure 4a illustrates the sketch of the
optimized experimental workflow, which enables the realization of rapid search for
new lead-free perovskites in the multi-parameter chemical space [35]. Moreover,
a self-assembled semi-automated platform based on a standard pipetting robot
was utilized to screen the efficient antisolvents for different solvent-perovskite
systems and study the influence of interactions among the solvent molecules,
cations, metal-halides, and antisolvents (Fig. 4b). In this work, 336 combinations of
perovskite-solvent-antisolvent could be prepared and characterized by the platform
in 2 days [36]. Although HT experimentations have made remarkable achievements
on the discovery and evolution of perovskite materials, they are still in their infancy
due to their higher cost and complexity with respect to HT calculations.

Besides HT computations and experimentations, some databases also provide
considerable perovskite data for ML after years of development. The HybriD3

material database [47], jointly created by Duke University and others, compre-
hensively collects experimental and computational material data of crystalline
organic-inorganic compounds. The database contains existing, predicted, and newly
synthesized materials. Researchers in the Chemical Material Solution Center of
Korea Research Institute of Chemical Technology collected data on the detailed
characteristics, structure, and performance of each layer of perovskite solar cells
from the literatures, and established a perovskite solar cell database (Perovskite
Solar Cells DB) [48]. The database collected a total of 688 documents, 2711
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structures, and 17,098 properties, and readers can search independently for different
properties and structures, and the database also provides corresponding links to data
literatures for reference. The Computational Material Repository (CMR) [49], led
by the Center for Atomic Materials Physics of the Technical University of Denmark,
uses effective methods to represent and analyze the electronic structure of materials.
Among them, there are a number of different CMR projects that cover different
types of perovskites. The analysis shows that these perovskite projects include
electronic structure, spectrum, and some other different properties. Marchenko et
al. provided an open-access database of experimentally investigated hybrid organic-
inorganic two-dimensional perovskite-like crystal structure, which contains various
properties of 515 compounds from published literatures [50]. In addition, many
comprehensive online material databases built from first-principles calculations also
contain a large amount of perovskite data, including AFLOWLIB [13], Materials
Project [51], Open Quantum Materials Database (OQMD) [52], and Atomly [53].
These databases not only provide a large amount of perovskite data, but also have
become an important carrier of information circulation and an important link of data
analysis in materials science.

3 Materials Representations

The process of converting the material system into an accurate numerical repre-
sentation is the key for ML model building to achieve great performance [54–56].
In this process, the relationship between microstructure and target properties
(quantitative structure property relationships (QSPR)) enables to be established by
using descriptive parameters (defined as descriptors or features) [57, 58]. In general,
different problems need to choose specific material descriptors, which heavily rely
on the characteristics and target properties of materials. Therefore, to accurately
and comprehensively describe the QSPR of materials, the construction of material
descriptors usually requires the prior knowledge of the fundamental chemistry and
physics [54].

The construction process of the material descriptors is actually to integrate
the physical and chemical knowledge related to the target properties into the
ML model, which controls the performance of a ML approach. In addition to
satisfying desired accuracy of the predictions, any good material descriptor should
satisfy the following conditions: (1) descriptors can uniquely describe materials
and basic processes related to target properties; (2) materials with large differences
(similarities) should be represented by descriptors with the same large differences
(similarities); (3) the descriptors should be determined in such a way as to avoid
extensive calculations to make a preliminary assessment of the material properties;
and (4) the dimensions of descriptors should be kept as low as possible while
ensuring model accuracy [7]. In the following content, we will give a concise
summary of descriptors for perovskites in photovoltaic applications.
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3.1 Descriptors for Perovskites in Photovoltaic Applications

In the past few years, numerous studies of perovskite material design based
on ML techniques have emerged that target stability, bandgap, PCE, and other
photovoltaic properties. Accordingly, a variety of material descriptors for perovskite
have developed and provided an effective way to describe the QSPR between
structures and photovoltaic properties for perovskites. These descriptors that can
be obtained directly without calculations or experiments mainly fall into three
categories: element properties, crystal structure, and experimental parameter. The
element property descriptors are mainly used to provide the elemental information
of perovskite composition, including the atomic number, Mendeleyev number,
orbital radii of atoms, ionic radius of ions, electronegativity, and so on. Crystal
structure descriptors contain tolerance factor, octahedral factor, Smooth Overlap
of Atomic Positions (SOAP) [59], Crystal Graph Convolutional Neural Networks
(CGCNN) [10], and so on. Experimental parameter descriptors, such as precursor
concentration, pKa values, and so on, are usually applied to accelerated experimental
synthesis or characterization of perovskites. In addition to the three main categories
mentioned above, some other descriptors are also utilized for perovskites, such
as binary element descriptors (a set of binary digits representing the presence
of chemical elements) [58]. After the descriptor is selected, Fig. 5 schematically
illustrates the procedure to generate such descriptors for compounds.

Among these three types of descriptors, the development of crystal structure
descriptors plays a significant role in perovskite design. The general chemical
formula of perovskites is ABX3, and the crystal structure of cubic perovskites is
shown in Fig. 6a, respectively. To describe the formability of cubic perovskites,
Goldschmidt [62] proposed an empirical formula named tolerance factor based on
crystal structure in 1926, defined as t = (rA + rX) /

√
2 (rB + rX), in which the rA,

rB, and rX represent ionic radii of A-, B-, and X-site ions, respectively. According
to the rigid sphere model, the length of A-X bonds and B-X bonds can be assumed
as rA + rX and rB + rX, respectively. Instead of tolerance factor, Li et al. [63]

Fig. 5 Schematic illustration of how to generate compound descriptors. In representation matrix,
xij denotes the representation of feature j in compound i. Here, xij is a scalar or vector
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Fig. 6 Structure of (a) cubic perovskites ABX3 and (b) double perovskites A2BB′X6. (c)
Representation of tolerance factor (t), octahedral factor (μ), and atomic packing fraction (η) for
cubic perovskites. rA, rB, and rX represent the ionic radii of A-, B-, and X-site ions, respectively.
According to the rigid sphere model, VA, VB, and VX represent the atomic volume of A-, B-, and X-
site atoms, respectively. a represents the lattice constant of the cubic cell of perovskites. (Reprinted
with permission from Ref. 60. Copyright 2017 American Chemical Society)

proposed a binary descriptor (t, μ) to further clarify the formability of perovskites,
which μ is the octahedral factor defined as μ = rB/rX [2]. Based on the analysis
of existing perovskites, the stable region in (t, μ) map for halide perovskites is
0.813 < t < 1.107 and 0.377 < μ < 0.895 [64]. These empirical rules successfully
guide the discovery of numerous stable perovskites; however, both tolerance factor
and octahedron factor are developed based on the inorganic cubic perovskite
structure, resulting in the great limitation of application and low predictive accuracy
for the formability of other perovskite structures, such as HOIPs and double
perovskites. To improve the tolerance factor reliability for HOIPs, Kieslich et al.
[65] extended the Goldschmidt tolerance factor by considering the effective radii
of organic ions in HOIPs. According to the results, HOIPs were expected to form
for tolerance factor between 0.8 and 1, as in the case of solid-state perovskites. To
expand the application range of tolerance factor to double perovskites (structure
is show in Fig. 6b), Sun and Yin [66] combined the atomic packing fraction (η)
with t and μ, and developed a geometric structure descriptor (t + μ)η, which
was linearly related to the decomposition energies of perovskites (Fig. 6c). For
cubic halide and chalcogenide perovskites, the accuracy of thermodynamic stability
prediction was over 86%. Filip et al. [60] developed a generalized tolerance factor
t = (rA/rX + 1)/[2(μ + 1)2 + Δμ2]1/2 by analyzing crystal structure of double
perovskites. In contrast to the traditional tolerance factor, the generalized tolerance
factor was taken into account two octahedral parameters related to the B- and B′-
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site cations, the average octahedral factor μ = (rB + rB′)/2rX and the octahedral
mismatch Δμ = |rB − rB′ |/2rX. Benefitting from these careful considerations, the
predictive accuracy of generalized tolerance factor for double perovskites reached
80%. These developed crystal structure descriptors have laid the foundation for
subsequent ML studies of perovskite materials.

Designing descriptors based on physical and chemical intuition might introduce
deviation, resulting in ignoring the best descriptor and hidden structure-property
relationship. Fortunately, big-data analysis and symbolic regression technology can
quickly and intelligently construct ideal descriptors for target property. One of the
attractive methods is the sure independence screening and sparsifying operator
(SISSO) [61]. Base on this algorithm, Bartel et al. [12] developed an improved

tolerance factor τ = rX
rB

− nA

(
nA − rA/rB

ln(rA/rB)

)
, where nA represents the oxidation

state of A-site ions. The new descriptor τ exposes a high prediction accuracy of
perovskite stability (92%) on the dataset containing 576 experimentally existing
ABX3 compounds, while the Goldschmidt tolerance factor t only correctly classifies
74% compounds on the same dataset. In particular, the Goldschmidt tolerance factor
t can correctly distinguish 49% of non-perovskites, and τ achieves 89% accuracy for
non-perovskites, leading to the great improvement of predictive capability. Besides,
the new descriptor τ exhibits the high accuracy for A2B′B′′X6 compounds (91%
accuracy), suggesting the strong generalization ability on perovskites.

3.2 Feature Engineering

For any ML method that targets toward a desired material property, it usually
depends on certain number of features (descriptors). Although there may be many
factors that affect the target property of materials, the number of features must
be reasonable. The best strategy is to choose features that perfectly represent
the corresponding property, and the number of features should be less than the
number of materials in input dataset to avoid the curse of dimensionality and model
overfitting [67]. Especially for material simulation, the amount of data available may
be only about 103 or less. For such small-scale dataset, how to reasonably choose
the material descriptor is crucial [68].

In the process of ML, we usually preliminary perform a relatively rough descrip-
tor screening process. First of all, some features based on the prior knowledge of
the physic and chemistry are chosen to build the initial feature set. Then, feature
selection, basically a ranking procedure, is applied to pick out the best features
by evaluating the model performance. For small-scale data sets, Lu et al. [69, 70]
employed a “last-place elimination” feature selection procedure in a ML algorithm
to optimize the most relevant features. One can also do feature screening through
batch processing, such as principal component analysis, clustering, and so on. For
large-scale data sets, because the scale of data set itself is very large, features can be
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extracted automatically through a deep learning algorithm without artificial feature
set construction. For example, Ziletti et al. [71] constructed a deep learning neural
network model based on diffraction images for automatic classification of crystal
structures.

In addition to some of the conditions mentioned above for descriptor construc-
tion, some specific conditions according to physics and chemistry should also be
satisfied. Regarding the design of the descriptor, no matter which form is used, it
should be invariant to certain transformations-spatial translational symmetry and
rotational symmetry. Therefore, we cannot simply turn the descriptor into a pure
“data problem.” It should contain some physical and chemical origins.

4 Machine Learning in Perovskite-Based Material Discovery
and Study

4.1 Stability

The first step in design of new perovskites is to evaluate the stability, which is
usually assessed by the tolerance factor and the octahedron factor. Although these
two factors provide a quantitative range for the formability of stable perovskites,
their predictions are not accurate enough. The ML-based approach can describe the
materials more detailed by constructing appropriate descriptors, and thereby more
reliable prediction results can be obtained theoretically. To predict the formability
of ABO3 perovskite, Pilania et al. [75] trained a ML model based on 354 ABO3
compounds, and created a high-dimensional feature space relating to perovskite
structure formability. The approach achieves 95% accuracy in the prediction of
perovskite formability. Subsequently, the authors utilized this ML-based approach
to search new perovskite halides. In this work, a ML model based on 185
experimentally known perovskites was built to evaluate the formability of perovskite
halides. After exploring a number of initial features, ionic radii, tolerance factor,
and octahedron factor were determined as the three effective features affecting
perovskite formability, demonstrating the great importance of geometric factor on
perovskite formability. The trained model achieved an accuracy of 92% for the test
set [76]. In addition to formability, some ML models made good performance in
predicting the thermodynamic stability of perovskites [77, 78]. For example, ML
model was applied to predict the thermodynamic stability of all possible perovskite
and antiperovskite crystals that can be generated with elements from hydrogen to
bismuth (excluding rare gases and lanthanides) according to the energy above the
convex hull. ML algorithm gives the mean absolute error (MAE) of the energy
above the convex hull (121 meV/atom) in the test set of 230,000 perovskites, after
being trained in 20,000 samples (Fig. 7a) [79]. In addition to cubic perovskites,
ML-based approach also makes a progress in identifications of diverse phases of
perovskites. Balachandran et al. [72] developed a two-step framework to search for
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Fig. 7 (a) Mean absolute error (MAE, meV/atom) of the test set for AdaBoost used with extremely
random tress averaged over all compounds containing each element of the periodic table. The
numbers in parentheses are the actual MAE for each element. (Reprinted with permission from
Ref. 72. Copyright 2017 American Chemical Society). (b) The ML workflow for the prediction
of new ABO3 cubic perovskites. Two independent ML models for the classification of ABO3 into
perovskites or not (machine learning 1) and cubic or noncubic perovskites (machine learning 2).
(Reprinted with permission from Ref. 73. Copyright 2018 American Physical Society)

cubic perovskites in ABO3 compounds (Fig. 7b). Firstly, a ML model was utilized
for distinguishing perovskites and non-perovskites with an average cross-validation
accuracy of 90%. Then, another ML model was applied for screening out cubic
perovskites, and the average cross-validation accuracy was over 94%. Ye et al. [73]
introduced deep neural network into predicting the formation energy of perovskite
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Fig. 8 (a) Crystal structure of AByB′
(1−y) X3 perovskites in different space groups. The ML

workflow for prediction of stability perovskite for experimental synthesis. (Reprinted with
permission from Ref. 11. Copyright 2019 American Chemical Society)

oxides. Based on only the two descriptors of electronegativity and ionic radius,
the trained ML model obtained a high accuracy and a MAE of 20–34 meV/atom.
Furthermore, a new binary encoding scheme was introduced to, including the effect
of cation orderings, extend ML models to mixed perovskites with low MAE (20–
39 meV/atom).

The success of ML in evaluating the thermodynamic stability of single per-
ovskites has inspired more application of ML-based approaches for other more
complex perovskites, such as double perovskites, mixed perovskites, and HOIPs
[11, 70, 74, 81–83]. Askerka et al. [11] proposed a learning-in-template strategy
to rapidly select out double perovskites from 5 × 106 candidates. As displayed in
Fig. 8, a series of possible templates corresponding to different crystal structures
and stoichiometries were defined. In principle, any A2B′B′′X6 compound belongs
to one of these templates. The training and test sets contain formation energy
data of 7.9 × 103 compounds in defined chemical space, and the accuracy of
the trained ML model is up to 97%. Considering the difference of ionic radii of
X-site ions in mixed X-site inorganic perovskites, Lu et al. proposed a modified
Goldschmidt tolerance factor and octahedron factor using ML feature engineering.
By applying the optimal feature set contained two new descriptors, the accuracy
of the gradient boosting classification (GBC) model for perovskite formability
is up to 89% [70]. Ali et al. [83] built a deep neural network model to study
the cubic phase stability of mixed-cation perovskites. The predicted cubic phase-
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stability diagram reveals that with increasing Cs proportion, perovskites possess
higher cubic phase stability. This stems from that the large ionic radii of organic
molecules in HOIPs bring the internal stress, and the small ionic radii of Cs might
offset this internal stress. Moreover, under the guidance of ML-predicted results,
MA0.85DMA0.15PbI3 (dimethylammonium (DMA)) can be recovered to the cubic
phase at room temperature by adding <10 mol% of cesium cation additives. This
suggests that the established ML model can effectively guide further experimental
synthesis, avoiding plenty of trial-and-error processes.

The stability of perovskite devices in the operation environment is very important
for the practical application of perovskites [80, 84]. Sun et al. [35] utilized a fully
connected deep neural network to classify compounds based on experimental X-ray
diffraction data into 0D, 2D, and 3D structures with 90% accuracy, more than ten
times faster than human analysis. Kirman et al. [85] constructed a framework by
combining HT experiments and convolution neural networks to effectively guide
unexplored perovskite single crystals experiments. With 7000 graphs from 96 per-
ovskite single crystal growth experiments with different experimental parameters,
the ML model was trained to recognize whether crystals could be possibly grown. In
addition to distinguishing perovskite crystals, exploring the impact of experimental
parameters on the crystallization of perovskite crystals can effectively guide the
sequence experiments. Accordingly, a ML regression model was utilized to establish
the map between experimental parameters and the probabilities of crystallization,
and returned optimal experimental parameters for crystallization.

The poor environmental stability of perovskites severely hinders their prac-
tical applications. Various works have discovered that posttreatment with small
molecules by dip-coating or spin-coating can effectively improve the stability of
perovskites in the humid environment [80, 84]. However, the addition of some
molecules (such as amines) might destroy the perovskites film structures. Therefore,
it is of practical importance for improving the environmental stability of perovskites
through finding suitable molecules possessing compatibility for the perovskite film.
Yu et al. [86] established a ML model to study the relationship between properties of
amines and their reactivity, and achieved 86% accuracy on predicting the outcomes
for whether the qualities of perovskite films are maintained after posttreatment. The
results show that amine compounds and pyridine derivatives with a few hydrogen
bond donors, large space volume, and large number of substitutions on nitrogen
atoms have high compatibility with perovskite films, which can effectively guide
further experimental synthesis.

4.2 Photovoltaic Property

The most important electronic property for a solar absorber is bandgap. According
to the Shockley-Queisser limit, perovskites with bandgap in the optimal range of
0.9–1.6 eV are promising for single-junction solar cells [87]. Therefore, selecting
perovskites with appropriate bandgaps is a vital step in solar cell design. It is
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well known that DFT calculations based on PBE functional seriously underesti-
mates bandgaps for semiconductors and insulators. However, advanced theoretical
methods (such as hybrid functional or GW) are computationally expensive and
time consuming making a high-throughput search inefficient, not to mention
experiments. An effective strategy is to combine HT calculation or experimentation
with ML to minimize the high cost. In recent years, bandgap prediction has
been attempted across a wide range of materials, especially perovskites, using
different ML methods such as neural networks, support vector regression, and
gradient boosting regression (GBR) [88–97]. Pilania et al. [98] applied kernel
ridge regression algorithm to predict the bandgap of double perovskites at the
GLLB-SC-level, in which a systematic feature-engineering approach was utilized
to identify the optimal feature set from a set of more than 1.2 million candidate
features. The final ML model achieved a high prediction accuracy on bandgap
(about 0.947). In order to obtain more accurate bandgap values, the researchers
developed a multi-fidelity framework combining first-principles calculations and
ML techniques, which can estimate high-fidelity data based on low-fidelity data
[99]. In this work, PBE-level bandgap values of 599 double perovskites were treated
as low-fidelity data, while bandgap values at the Heyd-Scuseria-Ernzerhof (HSE06)
level of the same perovskites were treated as the high-fidelity data. By utilizing
the framework, high-fidelity HSE06-level bandgap values were approximated from
low-fidelity PBE-level bandgap values. Besides inorganic perovskite, Lu et al. [69]
developed a framework combining ML techniques and DFT calculations to rapidly
predict bandgaps of HOIPs. The GBR model was trained based on PBE-level
bandgap values of 212 HOIPs, and achieved high coefficient of determination (R2)
of 97% (Fig. 9c). As is shown in Fig. 9a, the feature importance reveals that, in
structure features, the tolerance factor has the most significant impact on bandgap.
Besides, the ionization energy, electronegativity, and electron affinity energy of B-
site ions are more related to bandgap than those of A and X-site ions. Subsequently,
the trained model was applied to predict the bandgap of 5158 unexplored HOIPs
and the prediction result is shown in Fig. 9c. Finally, six HOIPs were picked out
and validated using DFT calculations. Results in Fig. 9d show that the accuracy
of ML-predicted bandgaps is comparable to that of DFT calculations. Similarly,
Marchenko developed a ML model using GBR basing on the open-access database
of experimentally investigated HOIPs with a 2D perovskite-like crystal structure for
the prediction of a bandgap with accuracy within 0.1 eV [50]. The SOAP kernel was
used to describe the local atomic environment of each atom and the trained model
achieved R2 as high as 0.9.

Rational chemical mixing is an effective approach to appropriately tune proper-
ties of perovskites. For example, mixing halogen elements can adjust the bandgap
of halide perovskites, leading to higher performance as solar cells materials [101].
Choubisa et al. developed a descriptor related to the atomic arrangement for mixed
perovskites, called as crystal site feature embedding (CSFE, see Fig. 10) [102].
Based on the CSFE representation, the ML model for total energies achieves an
MAE of 3.5 meV/atom, and the ML model for bandgaps possesses an MAE of
0.069 eV. The trained model was applied to the predicted bandgap of triple B-site
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Fig. 9 (a) Importance of the selected features. The 14 selected features are ranked using GBR
algorithm. (b) The fitting results of test bandgaps EPBE

g and predicted bandgaps EML
g . The

subplot is the convergence of model accuracy for five cross-validation split of the data. (c) Data
visualization of predicted bandgaps for all possible HOIPs (one color represents a class of halogen
perovskites) with tolerance factor. (d) A comparison between ML-predicted and DFT-calculated
results of six selected HOIPs. (Reprinted with permission from Ref. 70)

MAPbxSnyCdzI3 perovskites. ML-predicted results revealed that a small proportion
of Cd can tune the bandgap of perovskites to the optimal range for photovoltaic
applications. Furthermore, ML models for total energies and bandgaps based on
CSFE representation are also suitable for two-dimensional perovskites, with a MAE
of 7 meV/atom and 0.13 eV, respectively. Moreover, a variational autoencoder was
employed to realize inverse design for perovskites with target properties. Besides
searching for potential solar cells materials (bandgap between 1.1 and 1.3 eV),
perovskites for infrared sensors (bandgap ~1 eV) and ultraviolet lasers (bandgap
~3.2 eV) were also screened, and selected perovskites were validated by DFT
calculations based on HSE06 functional.

The power conversion efficiency (PCE) is a standard parameter to assess the
ability of light-electron energy conversion for photovoltaic devices, relating to the
optical absorption performance of absorber materials, defect structures, energy-level
mismatch, etc. [100]. Searching for high-performance PSCs generally based on the
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Fig. 10 Workflow for materials discovery using crystal site feature embedding. (Reprinted with
permission from Ref. 100. Copyright 2020 Elsevier Inc.)

exhaustive search method, which brings expensive cost of time, materials, equip-
ment, and man power. ML techniques could provide some guidelines and accelerate
the discovery of high-performance PSCs without numerous experiments. Odabasi
and Yildirim [104] systematically reviewed publications related to perovskites solar
cells, and collected 1921 data from 800 publications. Constituent materials and
preparation methods of perovskites solar cells were selected as the input variables of
the random forest regression model, and PCE was taken as the output variable. Since
the input variables of n-i-p and p-i-n perovskites based solar cells were different, two
models were trained for each type of solar cells, respectively. For ML model of n-i-p
solar cells, the root mean squared error (RMSE) of training set and test set is 1.70
and 3.29, respectively. The model of p-i-n solar cells achieves the RMSE of 1.51
and 2.91 for training set and test set, respectively (Fig. 11). For perovskite solar
cells with PCE in the range of 18–23.3%, the association rule mining techniques
results exhibit that mixing cations is an effective approach to obtain the solar
cells with stabilized PCE higher than 18%. Li et al. [103] collected 333 PSC
data from 2000 peer-reviewed publications, and proposed a two-step framework
to study the performance of PSCs. At the first step, the experimental bandgap
values of perovskites are predicted. Then an ML model to predict the PCE of PSCs
was established with considering experimental bandgaps, the difference of HOMO
energy level between hole transporting layers and perovskites, and the difference
of LUMO energy level between electron transporting layers and perovskites. The
RMSE of ML models for bandgaps and PCE is 0.06 eV and 3.23%, respectively. The
optimal bandgap range corresponding to the highest PCE is from 1.15 to 1.35 eV,
demonstrating high consistency with the Shockley-Queisser limit.
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Fig. 11 Actual versus predicted performances by random forest model for training and testing for
regular (n-i-p) cells; training and testing for inverted cells. (Reprinted with permission from Ref.
103. Copyright 2018 Elsevier Ltd.)

5 Conclusion and Prospects

To summarize, the rapid development of ML techniques has accelerated novel
perovskite material discovery and mechanism exploration. Considering the con-
tinuous developments in experimental and computational tools, as well as the ML
and data management technologies, ML-aided perovskite researches will increase
dramatically. However, there are also some challenges that need to be overcome for
the more effective utilization of ML in perovskite researches.

First of all, the importance of data issues in ML researches cannot be overem-
phasized. Perovskite data generated from the first-principle calculations are rich,
especially some material properties like bandgap and formation energy. However,
high-quality calculation or experimental data are still lacking due to the high
cost and time consuming. Consequently, the models trained basing on low-quality
datasets contain bias and are not very suitable for practical application. When high-
quality datasets tend to be small, models constructed from these datasets have
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limited generalization ability while they are sensitive to the outliers, noise and
imbalanced data structure. The strategies to solve the above contradictions and
challenges are as follows. (1) Transfer learning may be beneficial for the ML
application in small-scale datasets of perovskite-based photovoltaic materials. A
ML model (usually with a small data set) can be built from different (but similar)
structures’ data with larger-scale. In detail, the ML models are firstly utilized to
analyze the large datasets created with low-cost computational methods, then the
experimental or high accuracy computational data as supplements are utilized to
correct the internal bias of the model. This technique can not only fix the problem
of data lack, but also reduce the gap between theory and experiment. (2) Using
active learning algorithm. Active learning is an iterative procedure, where the initial
model is trained on a small dataset, and in each step, the model is re-trained
on data expanded with new samples, which are added based on results from the
previous steps in order to maximize the learning rate. (3) In fact, the overwhelming
majority of scientific knowledge is published as text, so scientific literature is in
fact served as data sources as well. In addition to the material data, the literatures
contain valuable knowledge about the connections and relationships between the
data items interpreted by the authors. Therefore, extracting data and QSPR from the
literatures through techniques such as natural language processing will facilitate the
development of ML in perovskite research. (4) The high-quality perovskite database
should be built according to FAIR (Findable, Accessible, Interoperable, Reusable)
data sharing principle [105].

There are also some issues need to be addressed for ML models. A good ML
model mainly depends on two factors: first, the predictive performance of the
ML model; and second, the interpretability potential of the model. On one hand,
the generalization ability of the model is not always verified. A lot of work has
achieved excellent performance on the training and test sets, but the prediction
results of extended dataset are often not validated using first-principle calculations
or experiments. On the other hand, it is often challenging to provide a physical and
chemical interpretation of complex ML models, as the goal of the learning process is
to find a model that maximizes prediction performance, which may require (possibly
non-linear) combinations of hundreds of features. But if the model can be explained
based on physical and chemical principle, it will help researchers to insight the
structure-property relationship of materials more deeply. In this aspect, feature
importance analysis, model visualization, and SHAP analysis [106] will help the
development of interpretable models.
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