Strong Pseudoconvexity and Strong )
Quasiconvexity of Non-differentiable e
Functions

Sanjeev Kumar Singh, Avanish Shahi, and Shashi Kant Mishra

Abstract In this chapter, we introduce the concept of strong pseudomonotonicity
and strong quasimonotonicity of set-valued maps of higher order. Non-differentiable
strong pseudoconvex/quasiconvex functions of higher order are characterized by
the strong pseudomonotonicity/quasimonotonicity of their corresponding set-valued
maps. As a by-product, we solve the open problem (converse part of Proposition 6.2)
of Karamardian and Schaible (J. Optim. Theory Appl. 66:37-46, 1990) for the
more general case as strong pseudoconvexity for non-smooth, locally Lipschitz
continuous functions.

Keywords Generalized convexity - Generalized monotonicity - Clarke
generalized subdifferential mappings

2010 Mathematics Subject Classification 90C25, 90C30, 90C99

1 Introduction

The concept of monotone maps was introduced by Minty [10] in 1964. Karamardian
[5] extended the concept of monotonicity to strict and strongly monotone maps and
also established the relationship between the strongly convex functions and strongly
monotone maps. Furthermore, Karamardian and Schaible [6] discussed about seven
kinds of monotone maps and established their relationships with corresponding
convex functions.

Besides some penalty results for nonlinear programs, Lin and Fukushima [8]
introduced the concept of strongly convex functions of order o > 0 and established
their relationship with strongly monotone maps of order o > 0.
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It is very natural to see that a function is convex, and then its generalized
subgradients are monotone (see [12]). The class of non-differentiable functions
plays a very crucial role in the study of generalized convexity and generalized
monotonicity. The theory of generalized gradients of non-smooth functions was
given by Clarke [1], Rockaffelar [13], and Hiriart-Urruty [4].

Komlési [7] proposed the relationship of quasi (pseudo, strict pseudo) convexity
of lower semicontinuous bifunctions and multifunctions with quasi (pseudo, strict
pseudo) monotonicity of its generalized derivatives. In 2003, Fan et al. [3] estab-
lished the relationships between (strict, strong) convexity and quasiconvexity of
non-differentiable functions and (strict, strong) monotonicity and quasimonotonic-
ity of set-valued mappings. In addition to that, Fan et al. [3] also investigated the
relationships between (strict, strong, and sharp) pseudoconvexity of non-smooth
functions and (strict, strong, and sharp) pseudomonotonicity of set-valued map-
pings. Recently, Singh et al. [14] presented the first-order characterizations of strong
pseudoconvex/quasiconvex functions of higher order. In addition to that, Mishra
et al. [11] established the relationships between generalized convex functions and
generalized monotone maps in case of semidifferentiability.

Motivated by the work of Karamardian and Schaible [6], Lin and Fukushima
[8], and Fan et al. [3], we generalize the concepts of strong convex-
ity/pseudoconvexity/quasiconvexity to  strong  convexity/pseudoconvexity/
quasiconvexity of order ¢ > 0 for non-differentiable, locally Lipschitz
continuous functions and establish their relationships with strong monotonic-
ity/pseudomonotonicity/quasimonotonicity of order o > 0 of set-valued mappings.

2 Preliminaries

Let X be a real Banach space with a norm ||.|| and X* be its dual space with a norm
|I.II*. Let U be a non-empty open convex subset of X, F : X — 2X" be a set-valued
mapping from a real Banach space to the family of non-empty subsets of X*, and
f : X — R be a non-differentiable real-valued function.

Definition 2.1 ([1,9]) Let f be locally Lipschitz continuous at a given point x € X
and v be any other vector in X. The Clarke generalized directional derivative of f
at x in the direction of v, denoted by f 0 (x; v), is defined by

fo(x§ v) = limsup SO+t — f()’)
y—>x, t}0 t

Definition 2.2 ([1,9]) Let f be locally Lipschitz continuous at a given point x € X
and v be any other vector in X. The Clarke generalized subdifferential of f at x,
denoted by 9¢ f (x), is defined by

Ffx) =18 e X*: fOsv) > (£,v), Vv e X}.



Strong Pseudoconvexity and Strong Quasiconvexity of Non-differentiable Functions 197

Lemma 2.1 ([1, 91) Let f be locally Lipschitz continuous with a constant L at
x € X. Then,

(a) 3¢ f(x) is a non-empty convex weak*-compact subset of X* and ||&||x < L for

every & € 9° f (x).
(b) Foreveryv € X, fo(x; v) = max{{&,v) : £ € 0° f(x)}.

Lemma 2.2 ([1,9]) If f is convex on X and locally Lipschitz continuous at x € X,
then € f (x) coincides with the subdifferential 0f (x) of f at x in the sense of convex
analysis and fO(x; v) coincides with the directional derivative f'(x;v) for each
v € X, where

f)={EeX": f() — f(x) = (£, y —x),Vy € X},

fo+t) - fx)
t

/ : =i
S (x5 v) lim

Lemma 2.3 ([1] (Mean Value Theorem)) Let x and y be points in X, and suppose
that f is Lipschitz on an open set X containing the line segment [x, y]. Then, 3 a
point u € (x, y) such that

f) = f(») €0 fu), x —y).

Definition 2.3 ([2]) A function f is quasiconvex on a convex set X of R" if
Vx,y € X, A €[0, 1], we have

fO)<fO)= fOx+A =1y < fO).

Proposition 2.1 ([2]) Let f be a locally Lipschitz continuous function on X. Then,
f is said to be quasiconvex if and only if for any x, y € X and any n € 3¢ f(y), we
have

f&) < fO) = (n,x—y) <0

3 Strong Convexity and Monotonicity of Order ¢

We collect some definitions related to strong convexity and strong monotonicity of
order o, where o > 0 be any positive integer, that is, strong convexity and strong
monotonicity of integer order o > 1 [8].

Definition 3.1 ([8]) A function f : X — R is said to be strongly convex of order
o > 0 on a non-empty open convex subset X C R" if 3 ¢ > 0 such that for any
x,y € X and any A € [0, 1], we have
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fOx+ A=y <Af()+ A =2 f) — il =Mllx — yll.

Definition 3.2 ([8]) F is said to be strongly monotone of order ¢ > O on X if 3 a
constant & > 0 such that for any x, y € X andany u € F(x), v € F(y), we have

(u—v,x —y) =alx—y|°.

Proposition 3.1 Let f be alocally Lipschitz continuous function on an open convex
subset X. Then, f is strongly convex of order o > 0 on X if and only if 3 ¢ > 0 and
n € 0° f(y) such that

J) = fO) = x = y)+clx—yl°.

Proof Let f be strongly convex function of order o > 0 on X. Then, for any
x,y € X and any A € [0, 1], we have

FOx+A =0y <Af(x)+ A =2 f(y) —cAd=1]x =y, )]

SO +Ax—=y)— Q)

; S fO) = f) —cd=Vlx —y|°.

Taking lim sup, we have
A0

PO x =) < fO) = f() —el =n)x = yII°. )
Again, 35 € 3¢ f(y) such that (7, x — y) < f%(y, x — y), and then
(n,x—y) < f@) = f(y) —c=N)]x =yl
fO=fO)=mx=—y+lx—yl°. ¢ =cl-2.
Conversely, suppose that f(x) — f(y) = (n, x — y) +cllx — y|°.

Letx #ye X, A€[0,1], x =y + A(x —y) € X as X is convex.
In particular, 3 ng € 3¢ f (x;) such that

f) = f(x) = (no, x —x) +cllx — x|, (3)
and

FO) = f@) = o,y —x) +clly —xll”. 4)
Multiplying inequality (3) by A and (4) by (1 — 1) and adding them, we obtain

M)+ A=) = fx) = A =1)7|lx = y[I” + A% (1 =) lx — y]°.
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Consider [(1—=2)° 1427 1 for0 <A <2, [A=A) 1427 11> 1= +Ar =
1, and for A > 2, since the real function ¢(1) = A°~! is convex on (0,1), then
[(1 =27~ +277 1 = (5)7 2.

It follows from the above argument that 3 some constant ¢ >0 independent of
x, y, and A such that

FOx+ 1 =0y SAf@) + A=) f(y) —cal —n)x - y|°.

Therefore, f is strongly convex of order o > 0 on X. O

Theorem 3.1 Let f be a locally Lipschitz continuous function on X. Then, f is
strongly convex of order o > 0 on X if and only if o€ f is strongly monotone of
order o > 0 on X.

Proof Let f be strongly convex of order o > 0, then for any x,y € X and n €
0 f(y), we have

f)=f) = nx—y)+clx—yl°. (5)

Interchanging the role of x and y and for any & € 9° f(x), we have
FO) = f) =& y—x)+cly —x|. (6)
Adding inequalities (5) and (6), we get
0= (n—§x—y) +2lx—yl°
(E—n.x—y)=Blx—yl°.

Therefore, 9¢ f is strongly monotone of order o on X.
Conversely, suppose that 9¢ f is strongly monotone of order ¢ > 0 on X; that is,
forany x,y € X, 3& € 9° f(x) and n € 3¢ f(y) such that

(E—nx—y)=allx—y|°.

By the mean value theorem, forany x # y € X, 3z = Ax + (1 — A)y for some
X € (0,1)and 3 5y € 9° f(z) such that

1

f(x)—f(y)=<no,x—y>=x(no,z—y% 7

Since 9¢ f is strongly monotone of order & > 0 on X,
(mo—mn,z—y) =allz—yl’,

forany z # y € X.
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(mo.z—y) = mz—y) +alz—yl°. (®)

Using inequality (8) in inequality (7), we have
1 o
) = fO) z 7.z = y) +eallz = yI7],

F) = fO) = mx—y) +ar Hx —yl°.

Therefore,

J) = fO) = x—y)+clx =yl

Hence, f is strongly convex of order o > 0. O

Remark 3.1 Proposition 3.1 and Theorem 3.1 generalize Proposition 3.1 and
Theorem 3.4 of Fan et al. [3], respectively, which was given for o = 2.

4 Strong Pseudoconvexity and Pseudomonotonicity
of Order o

We introduce the concept of strongly pseudoconvex functions of order ¢ > 0 for
non-smooth locally Lipschitz continuous functions.

Definition 4.1 Let f be a locally Lipschitz continuous function on X. Then, f is
said to be strongly pseudoconvex of order ¢ > 0 on X if for any x, y € X and for
any n € 0 f(y) 3 > 0, we have

mx—=y)+alx =yl =0= f(x)— f(y) =0.

Remark 4.1 For o = 2, the definition was given by Fan et al. [3].

We introduce the concept of strongly pseudomonotone of set-valued mappings of
order o > 0 for non-smooth locally Lipschitz continuous functions.

Definition 4.2 F is said to be strongly pseudomonotone of order o > 0 on X if for
any x,y € X and any u € F(x),v € F(y), 3aconstant @ > 0, and we have

(v.x =y +alx =y 20= (u,x —y) = 0.

Remark 4.2 For o = 2, the definition was given by Karamardian and Schaible [6]
for real-valued mappings.
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We establish the relationship between strong pseudoconvexity of locally Lips-
chitz continuous functions and strong pseudomonotonicity of set-valued mappings
of order o > 0, which is the natural generalization of the locally Lipschitz strong
pseudoconvex functions given by Fan et al. [3].

Remark 4.3 Fan et al. [3] have left an open problem as the converse of Theorem 4.3,
and we prove necessary and sufficient both part for more general class as locally
Lipschitz strong pseudoconvex functions of order o > 0.

Theorem 4.1 Let f be a locally Lipschitz continuous function on X. Then, f
is strongly pseudoconvex of order ¢ > 0 on X if and only if 0°f is strongly
pseudomonotone of order o > 0 on X.

Proof Let f be strongly pseudoconvex of order o > 0 on X, then forany x, y € X
and n € 0° f(y) 3 a constant ¢ > 0, such that

(mx—=y)+alx—=ylI°>=0= f(x)> f(y).

Since we know that every strongly pseudoconvex function of order ¢ > 0 is
quasiconvex,

fx+ A =2y) = f). €))

Also, by the definition of non-smooth quasiconvex function if for any x, y € X and
any £ € 9° f(x), we have

fOx+A =My = f(x)=( Gx+1-1y)—x) <0,
= (§,x—y)=0.

Therefore, we have

mx—y) talx—ylI”=20= (¢ x—y) =0.
Thus, 9¢ f is strongly pseudomonotone of order o on X.

Conversely, suppose that 3¢ f is strongly pseudomonotone of order o > 0, then

forany x,y € X and &€ € 9°f(x),n € 9 f(y), 3 aconstant 8 > 0, such that

mx—y)+Bllx—ylI”=20=(§,x—y) 0.

Equivalently,

(. x=y)<0=(n,x—y) +Blx—yl” <0. (10)
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We want to show that f is strongly pseudoconvex of order o > 0; that is, for any
x,y € Xandn € d°f(y), 3 aconstant @ > 0, and we have

mx—y)+alx—=ylI”=0= fx) = f(). (11)
Suppose, on contrary, f(x) < f(y).

By the mean value theorem, 3 z = Ax + (1 — A)y for some A € (0, 1) and
no € 3¢ f(z), such that

J@) = f(y) = mo,x—y)= %(no,z -y <0.
Since 9€ f is strongly pseudomonotone of order o,
(no.z—y) <0=(n.z=y)+Bllz—yll° <0,
(n0.2=y) <0= {n,x = y) + 27" x =y <0,

which contradicts to the left-side inequality of (11).
Hence, f(x) > f(y), and f is strongly pseudoconvex of order o > 0. O

Remark 4.4 Every strongly monotone map of order o > 0 is strongly pseudomono-
tone of order o > 0, but the converse is not necessarily true.

Example 4.1 Let F : X — R, where X = [0, 4] defined by

2—xfor0<x <1,
1 forl <x <4.

F(x):{

This is an example of strongly pseudomonotone map of order & > 0, but not
strongly monotone map of order o > 0.

5 Strong Quasiconvexity and Quasimonotonicity of Order ¢

Definition 5.1 Let f be a locally Lipschitz continuous function on an open convex
subset X. Then, f is said to be strongly quasiconvex of order o > 0 on X if for any
x,y € Xand any n € 0 f(y) da > 0, we have

fX)<fO)=mx—y +alx—y|” <0.

Definition 5.2 F is said to be strongly quasimonotone of order ¢ > 0 on X if for
anyx,y € Xandanyu € F(x),v € F(y) 38 > 0, we have

(v,x —y) > 0= (u,x —y) = Bllx — yl°.
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Theorem 5.1 Let f be a locally Lipschitz continuous function on X. Then, f
is strongly quasiconvex of order o > 0 on X if and only if 3°f is strongly
quasimonotone of order o > 0 on X.

Proof Let f be strongly quasiconvex of order o > 0 on X, then forany x # y € X
and n € 9 f(y), 3 aconstant « > 0, such that

fX)<fO)=mx—y +allx—y|” <0. (12)

We have to show that 9¢ f is strongly quasimonotone on X; that is, for any & €
¢ f(x)and n € 3¢ f(y), 3 aconstant 8 > 0, such that

nx—y)>0= (&, x—y)=Bllx—yl°.

As f is strongly quasiconvex, then it is also quasiconvex; that is, for any n <
¢ f(y), we have

mx—=y)>0= f(x)> f(y).
By the definition of strongly quasiconvex function of order ¢ > 0, we have
JO) < fx) =& y—x)+aly—x|? <0,
FO < f)= (& x—y) =alx—yl°.

Therefore, we have (n,x —y) > 0= (§,x —y) > a|lx — y|°.

Thus, 9¢ f is strongly quasimonotone of order o.

Conversely, suppose that o€ f is strongly quasimonotone of order o > 0, then
forany & € 0 f(x) and n € 0 f(y), 3 aconstant 8 > 0, such that

(n.x—y)>0= (&, x—y) = Bllx—yll.

We want to show that f is strongly quasiconvex of order o > 0; that is, f(x) <
F» = mx—y) +allx -yl <0.

Suppose that f(x) < f(y).

By the mean value theorem, 3 z = Ax + (1 — A)y for some A € (0, 1) and

no € 0° f(z), such that

1

S =)= mo,x —y)= X(no,z—y> <0.

By the use of strongly quasimonotone map, we have
o,y —2)>0=(n,y—2z2)=Blly—z|,

o,y —z) > 0= (n,y—x) > By —x|°,
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Mo,y —2)>0=(n,x —y)+alx —y|I° <0,

Hence, f is strongly quasiconvex of order o > O. O

Remark 5.1 Every strongly quasiconvex function of order ¢ > 0 is quasiconvex,
but the converse is not always true.

Remark 5.2 The class of quasi-functions is the largest class, so every strongly
pseudomonotone map of order ¢ > 0 is strongly quasimonotone of order o > 0,
but it is not always true in the converse case.

Example 5.1 Let F : X — R, where X = [—2, 2] defined by

0 for -2 <x <0,
Fx)=1x forO<x <1,
2x —1forl1 <x <2.

This is an example of strongly quasimonotone map of order ¢ > 0, but not strongly
pseudomonotone map of order o > 0.
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