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Preface

The aim of this book is twofold. Firstly, it presents interesting problems from natural
and engineering sciences and techniques to tackle them. Secondly, it demonstrates
the deep and fruitful interaction between those problems, mathematical modeling
and theory, computational methods as well as scientific and high performance
computing.

The chapters we have selected do not only show that all of these areas indeed
contribute to successfully solve a large variety of problems. Rather, they underline
that success very often relies on strong links between problem understanding,
mathematics, and computing. Without scientific and high performance computing
the power of modern compute systems cannot be efficiently exploited. Vice versa,
the design of new compute systems and architectures heavily benefits from the
knowledge and ideas of knowledgeable users. Another important basis for the
success of a solution technique is the link between the problem, its appropriate
modeling, and the design of algorithms, taking into account available or potential
computational capabilities. Of course, this process is closely connected with
mathematical understanding and the development of deep mathematical insights.

The 32 chapters of the book are assigned to one of the following parts:

• Partial and Ordinary Differential Equations
• Optimization and Optimal Control
• High Performance and Scientific Computing
• Stochastic Models and Statistics

Many of the contributions are related to more than one of these chapters so
that our assignment is just a first orientation. The focus of the contributions
ranges from more theoretical topics—like the conceptualization of infinity, error
bounds in complementarity, efficient domain decomposition, or the analysis of
probability distributions—to various applied themes, among them high capacity
wireless communication, the impact of a Tsunami, reactor safety, infectious disease
modeling, or the improvement of human health. Let us also highlight some of
the contributions from computational science: parallel simulations by means of
linear hybrid automaton models for cyber-physical systems, challenges for high
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vi Preface

performance computing caused by machine learning and artificial intelligence, the
simulation of power saving concepts on circuits, or the parallelization of feature
extraction techniques.

We are convinced that readers will find interesting and inspiring chapters and that
the book will serve practitioners and researches as well as beginners and experts.

Our sincere thanks go to all authors who submitted a manuscript. Moreover,
we greatly acknowledge the work of the reviewers. The editors would like to
express their thanks to Springer for the support, especially for the valuable help
by Mr. Raghupathy Kalyanaraman. We are thankful to our families and friends
for their patience, support, and love during the preparation of this volume. Last
but not least, we acknowledge the financial support by the All India Council of
Technical Education (AICTE), New Delhi, and by the Dr. A. P. J. Abdul Kalam
Technical University in Lucknow under the Visvesvaraya Research Promotion
Scheme (VRPS).

Ghaziabad, Uttar Pradesh, India Vinai Kumar Singh

Rende, Italy Yaroslav D. Sergeyev

Dresden, Sachsen, Germany Andreas Fischer
September, 2020
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Some Significant Results on the Union
Graph Derived from Topological Space

R. A. Muneshwar and K. L. Bondar

Abstract In the recent paper, authors introduced a concept of union graph �(τ ) of
a topological space (X, τ) and discussed some basic properties such as connected-
ness, diameter, and girth of union graph. They proved that ω(�(τ )) and χ(�(τ )) of
union graph of (X, τ) are equal, if |X| > 3. Moreover, we discussed some results
on domination number, independence number, degree, etc., of a union graph. In this
paper, we discuss some important properties of �(τ ). It is shown that if τ be any
topology defined on X with |X| = 3, then the union graph �(τ ) is the connected
graph if and only if topology τ is discrete topology or τ = {φ,X,U, V = Uc}.
Moreover, we show that if τ be any topology other than discrete topology defined
on X with |X| = n and if Kn or Pn+1 is a subgraph of a simple connected graph G
having at most (2n − 3) vertices, then G is not a union graph of (X, τ).

1 Introduction

Graph theory has wide range of applications in different fields. Beck [1] introduced
a concept of zero divisor graph of ring. In the recent decades, graph of several
algebraic structures are defined. Among these graphs, zero divisor graphs of ring
and module are more attractive for many researchers because of their application in
several areas such as Electrical Engineering, Computer Science, etc. Angsuman Das
introduced some graphs of vector space that can be found in [2–4] and derived some
properties of these graphs. Some authors discussed the graph of a vector space that
can be found in [5, 9]. Some properties on incomparability graphs of lattices were
discussed by Wasadikar, M. and Survase P. [10, 11]. We [6–8] also introduced some

R. A. Muneshwar (�)
P. G. Department of Mathematics, N.E.S. Science College, Nanded, Maharashtra, India

K. L. Bondar
P. G. Department of Mathematics, Government Vidarbha Institute of Science and Humanities,
Amravati, Maharashtra, India

© Springer Nature Switzerland AG 2021
V. K. Singh et al. (eds.), Recent Trends in Mathematical Modeling and High
Performance Computing, Trends in Mathematics,
https://doi.org/10.1007/978-3-030-68281-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68281-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-68281-1_1


4 R. A. Muneshwar and K. L. Bondar

new concepts of graphs of (X, τ)] and discussed some important properties of these
graphs.

Definition 1 (Union Graph of Topological Space [8]) Let τ be a topology defined
on a finite set X, and then, a graph �(τ ) = (V ,E) is called as a union graph of a
(X, τ), where V = {U ∈ τ | U �= φ,U �= X} and E = {(U1, U2) | U1 ∪ U2 =
X,∀U1, U2 ∈ V }.
Note If two vertices U1, U2 are adjacent in �(τ ), then it is denoted by U1 ∼ U2 or
(U1, U2).

As the graph has a wide range of applications in various fields, this motivates to
define a union graph of topological space and make it applicable into various fields.
An attempt has been made to convert topology into graph and try to study various
properties of topology by using graph theory. For undefined concepts and terms, the
reader can be referred to [12].

2 Connectedness of Union Graph

Now we discuss some results on connectedness of a union graph of (X, τ).

Throughout this section, even if it is not mentioned explicitly, we assume that the
underlying graph G is simple connected graph.

Theorem 1 Let τ be any topology other than discrete topology defined on X with
|X| = 3. If K3 is a subgraph of a graph G with at most 6 vertices, then G is not
union graph of (X, τ).

Proof Suppose G is a union graph of (X, τ) and K3 is a subgraph of G with vertex
set V (K3) = {A,B,C} of K3, as shown in Fig. 1.

From graph, we have A ∼ B,A ∼ C, and B ∼ C, and hence, A ∪ B = X,A ∪
C = X, and B ∪ C = X.

Case (i) If |A| = |B| = |C| = 2, then clearly A ∩ B,A ∩ C, and B ∩ C are the
open subsets of X of cardinality 1. Therefore, τ is a discrete topology,
a contradiction.

Fig. 1 Subgraph K3 of graph
G
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Case (ii) If |A| = |B| = 2, |C| = 1, then C ⊂ A or C ⊂ B, i.e., C �∼ A or
C �∼ B, a contradiction.

Case (iii) If |A| = |B| = 1, |C| = 2, then A ⊂ C or B ⊂ C, i.e., A �∼ C or
B �∼ C, a contradiction.

Thus, if K3 is a subgraph of G, then G is not a union graph of (X, τ) with |X| = 3
and |τ | = 5. 	

Theorem 2 Let τ be any topology other than discrete topology defined on X with
|X| = 4. If K4 is a subgraph of a graph G with at most 12 vertices, then G is not a
union graph of (X, τ).

Proof Let τ be any topology defined on X with X = {α1, α2, α3, α4}. Assume that
G is a union graph of (X, τ) with at most 12 vertices and K4 is a subgraph of G,
with V (K4) = {A,B,C,D} is vertex set of K4, as shown in Fig. 2.

From simple set theory and by Theorem 5.1[8], we have A = {α1, α2, α3}, B =
{α1, α2, α4}, C = {α1, α3, α4}, and D = {α2, α3, α4}. Then, A ∩ B ∩ C,A ∩ B ∩
D,A ∩ C ∩ D, and B ∩ C ∩ D are the 1-element open sets in X, a contradiction,
since τ is other than discrete topology. Thus, if G is not a union graph of (X, τ)
with at most 12 elements whose subgraph is K4. 	

Theorem 3 Let τ be any topology other than discrete topology defined on X with
|X| = n. If Kn is a subgraph of a graph G with at most (2n − 3) vertices, then
{α1}, {α2}, ..., {αn} ∈ τ .

Proof Let τ be any topology other than discrete topology defined on X with X =
{α1, α2, ...., αn−1, αn}. Assume thatG is a union graph of (X, τ)with at most 2n−3
vertices and Kn is a subgraph of G, and let V = {A1, A2, ..., An} be a vertex set of
Kn. Then by Theorem 5.1 [8], vertices A1, A2, A(n−1), An of Kn are of cardinality
(n − 1). As A1, A2, ..., An−1, An are open in (X, τ), then the finite intersection
Bk = ∩n1,i �=kAi = {αk} is open in X, ∀ k = 1, 2, ..., n. Thus, all singleton subsets
are open in (X, τ). 	

Theorem 4 Let τ be any topology other than the discrete topology defined on X
with |X| = 3. If Kn is a subgraph of graph G with at most 2n − 3 vertices, then
{α1}, {α2}, ..., {αn} ∈ τ .

Fig. 2 Subgraph K4 of graph
G
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Proof Let τ be any topology other than discrete topology defined on X with X =
{α1, α2, ...., αn−1, αn}.
Step I: Let there is a topological space (X, τ), where τ is other than discrete

topology with |X| = 3 whose graph is G. Suppose K3 is a subgraph
of G. By Theorem 5.1 [8], open sets A1, A2, A3 of cardinality 2 are the
vertices of K3. Then clearly, Bk = ∩3

1,i �=kAi = {αk} are open in X, ∀
k = 1, 2, 3, a contradiction, since τ is other than the discrete topology.

Step II: Assume that the result is true for m = n− 1, i.e., if K(n−1) is a subgraph
of G, then {α1}, {α2}, ..., {α(n−1)} are open in (X, τ).

Let τ be any topology other than discrete topology defined on X with |X| = n and
Kn is a subgraph of G.

Claim: The subsets {αk}, ∀ k = 1, 2, ..., n, are open in (X, τ).

If A1,A2, . . . , An are the vertices of Kn, then by Theorem 5.1 [8], we have Ak =
{αi}ni=1,i �=k, ∀ k = 1, 2, ..., n, are the vertices of Kn. Suppose Y = {αi}n−1

i=1 ∈ τ . As
A1, A2, ..., A(n−1), An ∈ τ then Bk = Y ∩ Ak, ∀k = 1, 2, ..., (n− 1), are the open
subsets of Y of cardinality (n− 2).
Let Z = {Bk = Y ∩Ak | ∀k = 1, 2, ..., (n−1)} be a collection of open subsets of Y
of cardinality (n− 2), and then by Theorem 5.1[8], Z forms a clique in Gy of size
(n− 1), where Gy is a graph of subspace Y that is a subgraph of the graph of �(τ ).
Then by mathematical induction, we have that {α1}, {α2}, ..., {α(n−1)} are the open
subsets of Y , and hence, they are open in X. Let A = ∩nk=1Ak = {αn} ∈ τ. Thus, all
singleton subsets {α1}, {α2}, ..., {α(n−1)}, {αn} are open in (X, τ), a contradiction.
Thus by mathematical induction, the result holds for all n. 	

Theorem 5 Let τ be any topology other than discrete topology defined on X with
|X| = n. If Kn is a subgraph of graph G with at most 2n − 3 vertices, then G is not
a union graph of (X, τ).

Proof Let τ be any topology other than discrete topology defined on X with X =
{α1, α2, ...., αn−1, αn}. Assume that, if Kn is a subgraph of G with at most 2n − 3
vertices. Then by Theorems 3 and 4, {α1}, {α2}, ..., {αn} ∈ τ, a contradiction. Thus,
if Kn is a subgraph of G, then G is not a union graph of topology τ on X. 	

Theorem 6 Let τ be any topology other than discrete topology defined on X with
|X| = 3. If G is a graph with at most 5 vertices and P3 is a subgraph of G, then G
is not a union graph of (X, τ).

Proof Let τ be any topology other than discrete topology defined on X. Assume
that P3 is a subgraph of G with V (P3) = {A,B,C} be the vertex set of P3, as
shown in Fig. 3.

From graph, we have A ∼ B,B ∼ C, and hence, A ∪ B = X and B ∪ C = X.

Case (i) If |A| = |B| = |C| = 2, then A∪B = X,B ∪C = X, and A∪C = X,
and hence, A ∼ B,A ∼ C, and B ∼ C a contradiction.

Case (ii) If |A| = |B| = 2 and |C| = 1, then A ∪ B = X and A ∩ B �= φ. Let us
denote C = A ∩ B, and then C �∼ A and C �∼ B, a contradiction.
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Fig. 3 The subgraph P3 of
graph G

Fig. 4 The subgraph P4 of
graph G

Case (iii) If |A| = |B| = 1 and |C| = 2, then A ⊂ C or B ⊂ C, and hence,
A �∼ C or B �∼ C and A �∼ B, a contradiction.

Thus, if P3 is a subgraph of G, then G is not a union graph of (X, τ). 	


Theorem 7 Let τ be any topology other than discrete topology defined on X with
|X| = 3. If P4 is a subgraph of graph G with at most 5 vertices, then G is not a
union graph of (X, τ).

Proof Let τ be any topology other than discrete topology defined on X. Assume
that P4 is a subgraph G with the vertex set {A,B,C,D} of P4, as shown in Fig. 4.
From graph, we have A �∼ C and A �∼ D, and hence, A ∪ C �= X, A ∪ D �= X.
Thus, A ⊂ D or D ⊂ A and A ⊂ C or C ⊂ A.

Case (i) If A ⊂ D and A ⊂ C, then |A| = 1, |C| = |D| = 2. Hence, |C ∩D| = 1
andC∩D = A. From graph, we haveA ∼ B, and hence,A∪B = X,A∩B = φ,
and |B| = 2. As |B| = |D| = 2, then B ∼ D, a contradiction, since |X| = 3.
Thus, G is not a union graph of (X, τ).

Case (ii) If A ⊂ D and C ⊂ A, then C = φ, a contradiction.
Case (iii) If D ⊂ A and A ⊂ C, then D = φ, a contradiction.
Case (iv) If D ⊂ A and C ⊂ A, then C ∪D = A �= X,C �∼ D, a contradiction.

Thus, if P4 is a subgraph of G, then G is not a union graph of (X, τ). 	

Theorem 8 Let τ be any topology other than discrete topology defined on X with
|X| = 4. If P5 is a subgraph of graph G with at most 12 vertices, then G is not a
union graph of (X, τ).
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Proof Let τ be any topology other than discrete topology defined on X. Assume
that P5 is a subgraph of G,, and let V (P5) = {A,B,C,D,E} be a vertex set of P5,
as shown in Fig. 5.

From graph, we have A �∼ C,A �∼ D,A �∼ E,B �∼ D,B �∼ E, and C �∼ E.
Hence, A ∪ C �= X,A ∪ D �= X,A ∪ E �= X,B ∪ D �= X,B ∪ E �= X, and
C ∪ E �= X.

Case I: If |A| = 3, as A �∼ C,A �∼ D, and A �∼ E, then we have C,D,E ⊂ A,
and B = Ac. Therefore, C ∪ D ⊂ A �= X with C �∼ D, a contradiction. Thus,
|A| �= 3. Similarly, we can prove that |B|, |C|, |D|, |E| �= 3.

Case II: If |A| = 2, then B = Ac, since A ∼ B. As B ∼ C and |C| �= 3,
then C = A, a contradiction. Hence, |A| �= 2, and similarly, we can prove
|B|, |C|, |D|, |E| �= 2.

Also, if |A| = 1, then |B| = 3, a contradiction. Thus, if P5 is a subgraph of G with
at most 12 vertices, then G is not a union graph of (X, τ) with |X| = 4. 	


Theorem 9 Let τ be any topology other than discrete topology defined on X with
|X| = n. If Pn+1 is a subgraph of graph G with at most 2n − 2 vertices, then G is
not a union graph of (X, τ).

Proof Let τ be any topology other than discrete topology defined on X with
X = {α1, α2, ...., αn−1, αn}. Assume that Pn+1 is a subgraph of a G with vertex set
V (Pn+1) = {A1, A2, ..., An+1} of Pn+1, as shown in Fig. 6. From Fig. 6, we have

Fig. 5 The subgraph P5 of
graph G

Fig. 6 The subgraph Pn+1 of graph G
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A1 �∼ Ai , for i = 3, 4, ..., (n + 1), A2 �∼ Aj , for j = 4, 5, ..., (n + 1), A(n−1) �∼
A(n+1). Hence, A1 ∪ Ai �= X, for i = 3, 4, ..., (n + 1), A2 ∪ Aj �= X, for
j = 3, 4, ..., (n+ 1), and A(n−1) ∪ A(n+1) �= X.

Case I: If |A1| = (n − 1). As A1 �∼ Ai , for i = 3, 4, ..., (n + 1), then Ai ⊂ A1,
for i = 3, 4, ..., (n + 1). Therefore, Ai ∪ Aj �= X for i �= j = 3, 4, ..., (n + 1),
and hence, Ai �∼ Aj for i �= j = 3, 4, ..., (n+ 1), a contradiction. Thus, |A1| �=
(n− 1), similarly |Ai | �= (n− 1), for i = 2, 3, 4, ..., (n+ 1).

Case II: If |A1| = (n− 2).
As A1 �∼ Ai , for i = 3, 4, ..., (n + 1), then Ai ⊂ A1, for i = 3, 4, ..., (n + 1)
or Ai is the singleton set. If Ai ⊂ A1, for i = 3, 4, ..., (n + 1), or Ai is the
singleton set, then Ai �∼ Aj for i �= j = 3, 4, ..., (n+ 1), a contradiction. Thus,
|Ai | �= (n− 2), similarly |Ai | �= (n− 2), for i = 2, 3, 4, ..., (n+ 1).

Case III: If |A1| = (n− k), for simplicity suppose A1 = {a1, a2, ..., a(n−k)}.
As A1 ∼ A2, then Ac1 ⊂ A2, and hence {a(n−k+1), a(n−k+2), ..., an} ⊂ A2. Again
as A2 ∼ A3, then Ac2 ⊂ A3 and Ac3 ⊂ A2, that is, {a1, a2, ..., a(n−k)} ⊂ A3.
Also, as A3 ∼ A4, then Ac3 ⊂ A4, that is, {a(n−k+1), a(n−k+2), ..., an} ⊂ A4. As
A1 �∼ Ai , for i = 3, 4, ..., (n+ 1), then Ac1 �⊂ Ai , for i = 3, 4, ..., (n+ 1), that is,
{a(n−k+1), a(n−k+2), ..., an} �⊂ Ai , for i = 3, 4, ..., (n+1), which is a contradiction.
Thus, |A1| �= (n− k), similarly |Ai | �= (n− k), for i = 2, 3, 4, ..., (n+ 1).
Thus, if P(n+1) is G with at most 2n − 2 vertices, then G is not a graph of (X, τ)
with |X| = n. 	

Theorem 10 Let τ be any topology other than discrete topology defined on X with
|X| = 3. If G is a graph with at most 5 vertices and C4 is a subgraph of G, then G
is not a union graph of (X, τ).

Proof Suppose G is a union graph of (X, τ) and C4 is a subgraph of G with
V (C4) = {A,B,C,D} is the vertex set of C4, as shown in Fig. 7.

From graph, we have C ∼ D,A ∼ D,A ∼ B, and B ∼ C. Therefore, C ∪
D = X,A ∪ D = X,A ∪ B = X, B ∪ C = X, and hence, (A ∩ C) ∪ D = X,

(A∩C)∪B = X, A∪ (B ∩D) = X, C ∪ (B ∩D) = X. This implies |A∩C| = 1,
|D| = 2, |A ∩ C| = 1, |B| = 2, |B ∩D| = 1, |A| = 2, |B ∩D| = 1, |C| = 2, a
contradiction. Thus, if C4 is a subgraph of G with at most 5 vertices, then G is not
a union graph of (X, τ), with |X| = 3. 	


Fig. 7 The subgraph C4 of G
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Theorem 11 If τ be any topology defined on X with |X| = 3, then �(τ ) is a
connected graph if and only if τ is the discrete topology or τ = {φ,X,U, V = Uc}.
Proof Let τ be any topology other than discrete topology defined onX with |X| = 3
and |τ | = 6. Suppose G is connected with vertex set V (G) = {A,B,C,D}, then
possible simple connected graphs with four vertices are as shown in Figs. 8 and 9.

As K3 is a subgraph of graphs G3,G4,G5,G7 and G8, then by Theorem 1, they
are not a union graph of (X, τ) with |X| = 3 and |τ | = 6. Also, P4 is a subgraph of
G1, then by Theorem 7, G1 is not a union graph of (X, τ) with |X| = 3 and |τ | = 6.
As C4 is a subgraph of G2, then by Theorem 10, C4 is not a union graph of (X, τ)
with |X| = 3 and |τ | = 6. Since P3 is a subgraph of G6, then by Theorem 6, G6 is
not a union graph of (X, τ) with |X| = 3 and |τ | = 6.
Suppose �(τ ) is connected with vertex setV (�(τ )) = {A,B,C}, then possible
connected graph with three vertices is as shown in Fig. 10.

As K3 is a subgraph of graph G9, then by Theorem 1, G9 is not a union graph of
(X, τ) with |X| = 3 and |τ | = 5. Also, P3 is a subgraph of G10, then by Theorem 6,
G10 is not a union graph of (X, τ) with |X| = 3 and |τ | = 5.

Fig. 8 Some connected graph with four vertices

Fig. 9 Some connected graph with four vertices
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Fig. 10 Some connected
graph with three vertices

Fig. 11 Some connected
graph with two vertices

Let τ be any topology defined on X with |X| = 3 and |τ | = 4. Suppose G11 is
connected with V (G11) = {A,B}, then possible connected graph with two vertices
is as shown in Fig. 11.

Suppose graph of a topology (X, τ) is G8 = P2 with vertex set V (G) = {A,B}.
From graph, we have A ∼ B; hence, A ∪ B = X. Thus, B = Ac (otherwise,
A ∩ B �= φ, a contradiction).
Conversely, suppose τ = τd be the discrete topology, then by Theorem 3.8 [8], �(τ )
is the connected graph. Also, if τ = {φ,X,U, V = Uc}, then clearly U ∪ V = X,
and hence, U ∼ V . Thus, graph �(τ ) is the connected graph with two vertices U
and V . 	


3 Conclusion

In this paper, we study connectedness and some important results of union graph of
(X, τ). It is shown that if τ is any topology defined on X with |X| = 3 then the
corresponding union graph �(τ ) is connected if and only if τ is discrete topology
or τ = {φ,X,U, V = Uc}. Moreover, we show that if Pn+1 or Kn is a subgraph
of a simple connected graph G with at most (2n − 2) vertices then G is not a union
graph of (X, τ) with |X| = n and τ is other than discrete topology. The main goal
of this study is to discuss different properties of (X, τ) and �(τ ). The present study
also tries to establish relationship between �(τ ) and (X, τ).

Acknowledgments The authors are thankful to Mr. Krishnath Masalkar and Dr. Pradnya Survase
for fruitful discussions and their helpful suggestions in this work.
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Existence and Uniqueness Results of
Second Order Summation–Difference
Equations in Cone Metric Space

G. C. Done, K. L. Bondar, and P. U. Chopade

Abstract In this paper, we investigate the existence and uniqueness results for
summation–difference type equations in cone metric spaces. The results are
obtained by using some extensions of Banach’s contraction principle in a complete
cone metric space.

1 Introduction

The study of difference equations is found to be more useful in the field of
numerical, engineering, as well as social sciences. Agrawal [2] and Kelley and
Peterson [13] had developed a theory of difference equation and their inequalities.
Later K. L. Bondar et al. [4–7] studied existence, uniqueness, and comparison
results for some difference equations and summation equations. G. C. Done, K. L.
Bondar, and P. U. Chopade investigated the existence and uniqueness results for
summation–difference type equations and nonhomogeneous first order nonlinear
difference equation with nonlocal condition in cone metric spaces, which can be
found in [8, 9].

The aim of this paper is to study the existence and uniqueness of solutions for
the summation–difference equations of second order and the existence of unique
common solution of the summation equations.

In Section 3, we consider the following summation–difference equation of
second order of the form:
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�2x(t−1) = Ax(t)+
t−1∑

s=0

k(t, s, x(s))+
b−1∑

s=0

h(t, s, x(s)), t ∈ J = [0, b], (1)

x(0) = x0, �x(0) = y0, (2)

whereA is the infinitesimal generator of a strongly continuous cosine family {C(t) :
t ∈ R} in a Banach space X, the functions k, h : J × J × X → Z are continuous,
and the given x0, y0 are the elements of X.

In Sect. 4, we study the existence of unique common solution of the summation
equations of the following type:

x(t) =
t−1∑

s=a
k1(t, s, x(s))+

b−1∑

s=a
h1(t, s, x(s))+ g1(t), t ∈ [a, b], (3)

x(t) =
t−1∑

s=a
k2(t, s, x(s))+

b−1∑

s=a
h2(t, s, x(s))+ g2(t), t ∈ [a, b], (4)

where x, g1, g2 : [a, b] → X; the functions ki, hi : [a, b] × [a, b] × X → X(i =
1, 2) are the continuous functions.

Finally in Sect. 5, we give example to illustrate the application of our results.

2 Preliminaries

Let us recall the concepts of the cone metric space, and we refer the reader to [1, 10,
11, 14, 16] for the more details.

Definition 1 Let E be a real Banach space and P is a subset of E. Then, P is called
a cone if and only if:

1. P is closed, nonempty, and P �= 0;
2. a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P ;
3. x ∈ P and −x ∈ P ⇒ x = 0.

For a given cone P ∈ E, we define a partial ordering relation ≤ with respect to P
by x ≤ y if and only if y − x ∈ P . We shall write x < y to indicate that x ≤ y but
x �= y, while x � y will stand for y − x ∈ intP , where int P denotes the interior
of P . The cone P is called normal if there is a number K > 0 such that ≤ x ≤ y

implies ‖x‖ ≤ k‖y‖, for every x, y ∈ E. The least positive number satisfying above
is called the normal constant of P .

In the following, we always suppose E is a real Banach space, P is cone in E
with int P �= φ, and ≤ is partial ordering with respect to P .
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Definition 2 ([10]) Let X be a nonempty set. Suppose that the mapping d : X ×
X → E satisfies

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x), for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z)+ d(z, y), for all x, y ∈ X.

Then, d is called a cone metric on X and (X, d) is called a cone metric space.

Example 1 ([10]) Let E = R
2, P = {(x, y) ∈ E : x, y ≥ 0}, x = R, and d :

X×X → E such that d(x, y) = (|x− y|, α|x− y|), where α ≥ 0 is a constant and
then (X, d) is a cone metric space.

Definition 3 Let X be an ordered space. A function 	 : X → X is said to a
comparison function if every x, y ∈ X, x ≤ y implies that	(x) ≤ 	(y),	(x) ≤ x

and limn→∞ ‖	n(x)‖ = 0, for every x ∈ X.

Example 2 Let E = R
2, p = {(x, y) ∈ E : x, y ≥ 0}, and it is easy to check

that 	 : E → E with 	(x, y) = (ax, ay), for some a ∈ (0, 1), is a comparison
function. Also if 	1,	2 are the two comparison functions over R, then 	(x, y) =
(	1(x),	2(y)) is also a comparison function over E.

3 Existence and Uniqueness of Solutions

Let X be a Banach space with norm‖.‖. Let B = C(J,X) Banach space of all
continuous functions from J into X endowed with supremum norm

‖x‖∞ = sup{‖x(t)‖ : t ∈ J }.

Let P = (x, y) : x, y ≥ 0 ⊂ E = R
2, and define

d(f, g) = (‖f − g‖∞, α‖f − g‖∞)

for every f, g ∈ B, and then it is easily seen that (B, d) is a cone metric space.
In many cases, it is advantageous to treat second ordered difference equations

directly rather than to convert first order systems. We can study second order
equations in the theory of the strongly continuous cosine family. If {C(t) : t ∈ R}
is a strongly continuous cosine family in X, then {S(t) : t ∈ R} associated to the
given strongly continuous cosine family is defined by

S(t)x =
t−1∑

s=0

C(s)x, x ∈ X, t ∈ R.

The infinitesimal generator A : X → X of a cosine family {C(t) : t ∈ R} is
defined by
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Ax = �2C(t)x|v=0, x ∈ D(A),

where D(A) = {x ∈ X : C(.)x ∈ C2(R, X)}. Let M ≥ 1 and N be the two positive
constants such that ‖C(t)‖ ≤ M and ‖S(t)‖ ≤ N for all t ∈ J .

Definition 4 The function x ∈ B that satisfies the summation equation

x(t) = C(t)x0+S(t)y0+
t−1∑

s=0

S(t−s)
[ s−1∑

τ=0

k(s, τ, x(τ ))+
b−1∑

τ=0

h(s, τ, x(τ ))
]
, t ∈ J

is called the mild solution of the initial value problem (1)–(2).

We need the following Lemma for further discussion.

Lemma 1 ([15]) Let (X, d) be a complete cone metric space, where P is a normal
cone with normal constant K . Let f : X → X be a function such that there exists a
comparison function 	 : P → P such that

d(f (x), f (y)) ≤ 	(d(x, y))

for very x, y ∈ X. Then, f has a unique fixed point.

We list the following hypotheses for our convenience:

(H1): There exist continuous functions p1, p2 : J × J → R
+ and a comparison

function 	 : R2 → R
2 such that

(‖k(t, s, u)− k(t, s, v)‖, α‖k(t, s, u)− k(t, s, v)‖) ≤ p1(t, s)	(d(u, v)),

and

(‖h(t, s, u)− h(t, s, v)‖, α‖h(t, s, u)− h(t, s, v)‖) ≤ p2(t, s)	(d(u, v)),

for every t, s ∈ J and u, v ∈ Z.
(H2):

N

b−1∑

t=0

b−1∑

s=0

[p1(t, s)+ p2(t, s)] ≤ 1.

Theorem 1 Assume that hypotheses (H1) − (H2) hold. Then, the initial value
problem (1)–(2) has a unique solution x on J .

Proof The operator F : B → B is defined by
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Fx(t) = C(t)x0 + S(t)y0 +
t−1∑

s=0

S(t − s)[
s−1∑

τ=0

k(s, τ, x(τ ))+
b−1∑

τ=0

h(s, τ, x(τ ))].
(5)

By using the hypothesis (H1)− (H2), we have

(‖Fx(t)−Fy(t)‖, α‖Fx(t)−Fy(t)‖)

=
(∥∥∥

t−1∑

s=0

S(t − s)[
s−1∑

τ=0

k(s, τ, x(τ ))+
b−1∑

τ=0

h(s, τ, x(τ ))]

−
t−1∑

s=0

S(t − s)[
s−1∑

τ=0

k(s, τ, y(τ ))+
b−1∑

τ=0

h(s, τ, y(τ ))]
∥∥∥,

α

∥∥∥
t−1∑

s=0

S(t − s)[
s−1∑

τ=0

k(s, τ, x(τ ))+
b−1∑

τ=0

h(s, τ, x(τ ))]

−
t−1∑

s=0

S(t − s)[
s−1∑

τ=0

k(s, τ, y(τ ))+
b−1∑

τ=0

h(s, τ, y(τ ))]
∥∥∥
)

≤
t−1∑

s=0

N

(∥∥∥
s−1∑

τ=0

k(s, τ, x(τ ))+
b−1∑

τ=0

h(s, τ, x(τ ))−
s−1∑

τ=0

k(s, τ, y(τ ))−
b−1∑

τ=0

h(s, τ, y(τ ))

∥∥∥,

α

∥∥∥
s−1∑

τ=0

k(s, τ, x(τ ))+
b−1∑

τ=0

h(s, τ, x(τ ))−
s−1∑

τ=0

k(s, τ, y(τ ))−
b−1∑

τ=0

h(s, τ, y(τ ))

∥∥∥
)

≤
t−1∑

s=0

N

[( s−1∑

τ=0

‖k(s, τ, x(τ ))− k(s, τ, y(τ ))‖, α
s−1∑

τ=0

‖k(s, τ, x(τ ))− k(s, τ, y(τ ))‖
)

+
( b−1∑

τ=0

‖h(s, τ, x(τ ))− h(s, τ, y(τ ))‖, α
b−1∑

τ=0

‖h(s, τ, x(τ ))− h(s, τ, y(τ ))‖
)]

≤
t−1∑

s=0

N
[ s−1∑

τ=0

P1(t, s)	(‖x−y‖∞, α‖x−y‖∞+
b−1∑

τ=0

P2(t, s)	(‖x−y‖∞, α‖x−y‖∞
]

≤
b−1∑

s=0

N
[ b−1∑

τ=0

P1(t, s)	(‖x−y‖∞, α‖x−y‖∞+
b−1∑

τ=0

P2(t, s)	(‖x−y‖∞, α‖x−y‖∞
]
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≤ 	(‖x − y‖∞, α‖x − y‖∞)N
b−1∑

s=0

b−1∑

τ=0

[P1(t, s)+ P2(t, s)]

≤ 	(‖x − y‖∞, α‖x − y‖∞) (6)

for every x, y ∈ B. This implies that d(Fx, Fy) ≤ 	(d(x, y)), for every x, y ∈ B.
Now an application of Lemma 1 gives that the operator F has a unique point in B.
This means that Eqs. (1)–(2) have a unique solution. 	


4 Existence of Common Solutions

Let X be a Banach space with norm‖.‖. Let Z = C([a, b], X) be a Banach space of
all continuous functions from J into X endowed with supremum no

‖x‖∞ = sup{‖x(t)‖ : t ∈ [a, b]}.

Let P = (x, y) : x, y ≥ 0 ⊂ E = R
2 be a cone and define d(f, g) = (‖f −

g‖∞, α‖f −g‖∞) for every f, g ∈ Z, and then it is easily seen that (Z, d) is a cone
metric space.

Definition 5 ([12]) A pair (S, T ) of self-mappings X is said to be weakly com-
patible if they commute at their coincidence point (i.e., ST x = T Sx whenever
Sx = T x). A point y ∈ X is called point of coincidence of a family Tj , j = 1, 2, . . .
of self-mappings on X if there exists a point x ∈ X such that y = Tjx for all
j = 1, 2, . . ..

Lemma 2 ([3]) Let (X, d) be a complete cone metric space and P be an order
cone. Let S, T , f : X → X be such that S(X) ∪ T (X) ⊂ f (X). Assume that the
following conditions hold:

(i) d(Sx, T y) ≤ αd(f x, Sx)+ βd(fy, T y)+ γ d(f x, fy), for all x, y ∈ X, with
x �= y, where α, β, γ are the non-negative real numbers with α + β + γ < 1.

(ii) d(Sx, T x) < d(f x, Sx) + d(f x, T x), for all x ∈ X, whenever Sx �= T x.
If f (X) or S(X) ∪ T (X) is a complete subspace of X, then S, T , and f

have a unique point of coincidence. Moreover, if (S, f ) and (T , f ) are weakly
compatible, then S, T , and f have a unique common fixed point.

We list the following hypotheses for our convenience:

(H3): Assume that

(F )x(t) =
t−1∑

s=a
k1(t, s, x(s))+

b−1∑

s=a
h1(t, s, x(s))
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and

(G)x(t) =
t−1∑

s=a
k2(t, s, x(s))+

b−1∑

s=a
h2(t, s, x(s))

for all t, s ∈ [a, b].
(H4): There exist α, β, γ, p ≥ 0 such that

(|Fx(t)−Gy(t)+ g1(t)− g2(t)|, α|Fx(t)−Gy(t)+ g1(t)− g2(t)|)

≤ α(|Fx(t)+ g1(t)− x(t)|, p|Fx(t)+ g1(t)− x(t)|)

+β(|Gy(t)+ g2(t)− y(t)|, p|Gy(t)+ g2(t)− y(t)|)

+γ (|x(t)− y(t)|, p|x(t)− y(t)|), ,

where α + β + γ < 1, for every x, y ∈ Z with x �= y and t ∈ [a, b].
(H5): Whenever Fx + g1 �= Gx + g2

sup
t∈[a,b]

(|Fx(t)−Gy(t)+ g1(t)− g2(t)|, α|Fx(t)−Gy(t)+ g1(t)− g2(t)|)

< sup
t∈[a,b]

α(|Fx(t)+ g1(t)− x(t)|, p|Fx(t)+ g1(t)− x(t)|)

+β(|Gx(t)+ g2(t)− y(t)|, p|Gx(t)+ g2(t)− y(t)|)

for every x ∈ Z.

Theorem 2 Assume that hypotheses (H3) − (H5) hold. Then, the summation
equations (3)–(4) have a unique common solution x on [a, b].
Proof Define S, T : Z → Z by S(x) = Fx + g1 and T (x) = Gx + g2. Using
hypothesis, we have

(|Sx(t)− Ty(t)|, α|Sx(t)− Ty(t)|) ≤ α(|Sx(t)− x(t)|, p|Sx(t)− x(t)|)

+β(|Ty(t)− y(t)|, p|Ty(t)− y(t)|)

+γ (|x(t)− y(t)|, p|x(t)− y(t)|),

for every x, y ∈ Z and x �= y. Hence,

(‖S − T ‖∞, α‖S − T ‖∞) ≤ α(‖Sx − x‖∞, p‖Sx − x‖∞)

+β(‖Ty − y‖∞, p‖Ty − y‖∞)

+γ (‖x − y‖∞, p‖x − y‖∞).
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Next, if s(x) �= T (x), we have

(‖S − T ‖∞, α‖S − T ‖∞) ≤ α(‖Sx − x‖∞, p‖Sx − x‖∞)

+β(‖T x − x‖∞, p‖T x − x‖∞)

for every x ∈ Z. By Lemma 2, if f is the identity map on Z, the summation
equations (3)–(4) have a unique common solution. 	


5 Application

In this section, we give an example to illustrate the usefulness of our results. In
Eqs. (1)–(2), we define

k(t, s, x) = ts+xs

6
, h(t, s, x) = (ts)2+ tsx2

6
, s, t ∈ [0, 2], x ∈ C([0, 2],R),

and consider metric d(x, y) = (‖x− y‖∞, α‖x− y‖∞) on C([0, 2],R) and α ≥ 0.
Then clearly, C([0, 2],R) is a complete cone metric space.
Now, we have

(|k(t, s, x(s))−k(t, s, y(s))|, α|k(t, s, x(s))− k(t, s, y(s))|)
= (|ts + xs

6
− (ts + ys

6
)|, α|ts + xs

6
− (ts + ys

6
)|)

= (|ts + xs

6
− ts − ys

6
|, α|ts + xs

6
− ts − ys

6
|)

= (
s

6
|x − y|, α s

6
|x − y|)

= s

6
(‖x − y‖∞, α‖x − y‖∞)

= p∗
1	

∗
1(‖x − y‖∞, α‖x − y‖∞),

where p∗
1(t, s) = s

3 , which is a function of [0, 2] × [0, 2] into R
+ and a comparison

function 	∗
1 : R2 → R

2 such that 	∗
1(x, y) = 1

2 (x, y). Also, we have

(|h(t, s, x(s))− h(t, s, y(s))|, α|h(t, s, x(s))− h(t, s, y(s))|)

= (|(ts)2 + tsx2

6
− ((ts)2 + tsy2

6
)|, α|(ts)2 + tsx2

6
− ((ts)2 + tsy2

6
)|)

= (|(ts)2 + tsx2

6
− (ts)2 − tsy2

6
|, α|(ts)2 + tsx2

6
− (ts)2 − tsy2

6
|)
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= (
ts

6
|x2 − y2|, α ts

6
|x2 − y2|)

≤ ts

6
(‖x2 − y2‖∞, α‖x2 − y2‖∞)

≤ ts

6
(‖x − y‖∞, α‖x − y‖∞)

= p∗
2	

∗
1(‖x − y‖∞, α‖x − y‖∞),

where p∗
2(t, s) = ts

3 , which is a function of [0, 2] × [0, 2] into R
+.

Moreover,

1∑

s=0

[p∗
1(t, s)+ p∗

2(t, s)] =
1∑

s=0

[ s
3

+ ts

3
] = 1

3
(1 + t)

sup
t∈[0,2]

1

3
(1 + t) = 1.

Also,

1∑

t=0

1∑

s=0

[p∗
1(t, s)+ p∗

2(t, s)] =
1∑

t=0

1∑

s=0

[ s
3

+ ts

3
] =

1∑

t=0

1

3
(1 + t) ≤ 1.

With these choices of functions, all requirements of Theorem 1 are satisfied;
hence, the existence and uniqueness are verified.

6 Conclusion

In this paper, the existence and uniqueness of solutions for second order summation–
difference type equations and the existence of unique common solution of the
summation equations in cone metric spaces have been studied. Moreover, an
application is discussed.
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Influence of Radiant Heat and
Non-uniform Heat Source on MHD
Casson Fluid Flow of Thin Liquid Film
Beyond a Stretching Sheet

Jagadish V. Tawade, Mahadev Biradar, and Shaila S. Benal

Abstract In the present paper, we are exploring the movement of Casson thin liquid
film fluid with thermal conduction and impacting radiant heat and non-uniform heat
source/sink above time dependent stretching plane. Using appropriate method, the
governed non-linear PDE renewed in to ODE. The confluence method has been
digitally revealed. The effect of the f ′ (skin friction) and temperature profile on
thin film movement has been discussed numerically. Furthermore, the concept and
physical parameters such as Pr, S, Nr, and M”, and Casson fluid parameter had been
conversed diagrammatically. Pr, S, Nr, and M denote Prandtl number, unsteadiness,
thermal radiation, and magnetic field, respectively.

Keywords Casson fluid flow · Non-uniform heat source · Stretching sheet ·
Nusselt number · Prandtl number

1 Introduction

Uniqueness and study of flow of heat convey of thin films have fascinated attention
of many researchers’ outstanding prosperous applications in the last two decades.
Refer to their multiple implementations in engineering such as food refining,
reactor liquefaction, and representation polymeric amide; smooth prominence of
artificial section; and tempering. Protuberance process is appreciatively worth for
maintenance of the surface grade of transfer. All shell procedures require refined
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plane for the finest product of exterior properties such as small abrasion, strength,
and clearness. The standard product of bump swelling depends greatly on the
film flow and heat transfer predictable on a lean liquid above a stretching plate,
investigate the study of energy and heat transfer in such processes is essential.

The examination flow of a thin liquid layer on an unstable stretching sheet
was studied by Wang [1], and later it was enlarged by Dandapat et al. [2] as
well as heat transfer properties. It is reported that since fluids have slower friction
the speed generates a considerable amount of heat generated in case of flexible
sheet extrusion, and thus, the heat transfer speed can change significantly, due to
viscous dissipation. Sarma and Rao [3] studied the heat transfer in a viscoelastic
fluid on a stretching sheet analytically in the existence of viscous dissipation
and interior heat generation. Sarojamma et al. [4] introduced a numerical model
of unsteady MHD flux convinced by an integrated stretching plane turn round
Casson fluid with magnetohydrodynamic radiant heat. Abel et al. [5] inspected
the result of asymmetrical heat source on MHD heat transfer in a liquid film on
a digitally unstable stretching sheet with viscous dissipation. Many authors [6–
12] have executed a mathematical analysis and results of various thermo-physical
characteristics on the flow of fluid film on a stretching plane in the presence of
different physical parameters to show the velocity and heat transfer. Casson fluid is
initiated by Casson and has been examined by the flow of curves of printing inks
and later explained and represented by blood, honey, jelly, tomato sauce, polymers,
etc. Lately, Megahed et al. [13], Kalyani et al. [14], Vijaya et al. [15], Eldabe et
al. [16], etc. inspected the influence of flow on heat transfer of a Casson fluid in a
thin film on a drawing sheet. In this article, we have investigated the flow of Casson
liquid film fluid with transference of heat and having the effect of thermal radiation
and a non-uniform heat source/sink on a time dependent stretch plane. Almost all
the abovementioned studies unnoticed, the collective consequences of thermal and
non-uniform radiation on heat convey which is principle point of sight of preferred
properties of result. In the existing study, we put in the same for the heat transfer
Casson thin liquid film from an unsteady stretching sheet. The conclusion acquired
in comparison individual with Wang et al. [1], Megahed et al. [13], Kalyani et al.
[14]. Without a query from the bench top, our outcomes are in admirable agreement
with that of the results mentioned above in certain borderline cases.

2 Theory/Calculation

We consider non-Newtonian liquid Casson thin film of thickness h(t) over a heated
stretching foil that emerges from a contracted slit at the beginning of the Cartesian
coordinate system as shown schematically in Fig. 1. The movement of the fluid
inside the film is outstanding in the stretching sheet. Unbroken plane equivalent to
x-axis also proceeds in its individual plane with a velocity
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Free surface
B

Slit u

Stretching sheet

0

T
C h(t)

Ts(x,t); Cs(x,t)U(x,t)

y

x

Fig. 1 Constitutes model of coordinate system

U(x, t) = bx

(1 − αt)
. (1)

α and b are the fixed constants with dimensions per moment. Stretching plate,
temperature, and concentration T are implicit to be different with space x from the
slit as

Ts(x, t) = T0−Tref

[
bx2

2ν

]
(1−αt)−

3
2 . (2)

The stress–strain relation of non-Newtonian Casson fluid can be written as

τij =
⎧
⎨

⎩
2(μB + PY√

2π
)eij , π > πc

2(μB + PY√
2πc

)eij , π < πc.
(3)

π = eij eij , and eij (i, j)th μB is the plastic dynamic viscosity of the non-
Newtonian fluid, Py yields the stress of the fluid, π is the product of the component
of deformation rate with itself, namely, π = eij eij , eij (i, j)th is the component of
deformation rate, and πc is the critical value of π that depends on the non-Newtonian
model. Under these presumptions, equations of the flow in the liquid film are given
by

∂u

∂x
+ ∂v

∂y
= 0 (4)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= v

(
1 + 1

λ

)
∂2u

∂y2 − σB2

ρ
u (5)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= k

ρCp

∂2T

∂y2 + μ

ρCp

(
1 + 1

λ

)(
∂u

∂y

)2
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+ 16σ ∗T 3
0

3ρCpk∗
∂2T

∂y2 + q ′′′

ρCp
. (6)

velocity components of fluid in x direction along with u and y directions along
with ν, T represents the temperature, μ denotes the dynamic viscosity, σ is the

electrical conductivity, γ = μB

√
2πc
Py

is the Casson parameter, ρ is the density,

Cp is the specific heat at constant pressure, k is the thermal conductivity, σ ∗
Stefan–Boltzmann constant, k∗ is the absorption coefficient. q ′′ “non-uniform heat
source/sink” is modeled as

q
′′′ = Kuw(x)

xυ

[
A∗(Ts − T∞)f ′ + (T − T∞)B∗.

]
(7)

A∗ and B∗ are the coefficients of “space & temperature dependent internal
heat generation/absorption respectively.” There arise two cases: A∗ > 0, B∗ > 0
communicate to interior heat creation and A∗ < 0, B∗ < 0 communicate to
interior heat immersion. In advance, it is implicit that the induced magnetic field
is insignificantly small. The corresponding boundary conditions are

u = U, v = 0, T = Ts at y = 0 (8)

∂u

∂y
= ∂T

∂y
= 0 at y = h (9)

v = ∂h

∂t
at y = h. (10)

At this phase, we construct a mathematical problem that perfectly worked out
only for x ≥ 0. In addition, the established surface planar liquid film is flat, therefore
to keep away from the difficulty due to plane effects. The impact of port shear is due
to the idle atmosphere, and especially the outcome of exterior tension is assumed
irrelevant. The viscous shear stress

τ = μ

(
∂u

∂y

)

& heat flux

q = −k
(
∂T

∂y

)

evaporates action of free plane (at y = h). The following uniformity transformations
are introduced:

η =
[

b

ν (1 − αt)

] 1
2

y, ψ = x

[
b

1 − αt

] 1
2

f (η) (11)
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T = T0 − Tref

[
bx2

2ν (1 − αt)
3
2

]
θ(η), θ(η) = T − T0

Ts − T0
(12)

u = ∂ψ

∂y
= bx

1 − αt
f ′(η) and v = −∂ψ

∂x
= −

[
b

1 − αt

] 1
2

f (η), (13)

where ψ is the stream function and u and v are the velocity components.

2.1 Method of Solution

Eqs. (5)–(7) are converted into the following non-linear boundary value problem as:

(
1 + 1

λ

)
f ′′′ +

[
ff ′′ − s

(
f ′ + η

2
f ′′)− (f ′)2 −Mf ′] = 0 (14)

(
1 + 4

3
Nr

)
θ ′′

+ Pr

[
f θ ′ − 2f ′θ − S

2

(
ηθ ′ + 3θ

)+ Ec

(
1 + 1

λ

)
(f ′′)2 + A∗f ′ + B∗θ

]
= 0.

(15)

The boundary conditions are

f ′(0) = 1, f (0) = 0, θ(0) = 1 (16)

f ′′(β) = 0, θ ′(β) = 0 (17)

f (β) = Sβ

2
, (18)

where S ≡ α
b

“unsteady parameter”; M = σB2
0

ρb
“magnetic field parameter”;

Pr = ρCpν

k
; Nr = 4σ ∗T 3∞

kk∗ “thermal radiation”; Ec = U2

Cp(Ts−T0)
“Eckert number”, so

that Eq. (11) gives

β =
[

b

ν(1 − αt)

] 1
2

h. (19)

Since β denotes the indefinite constant that should be determined, the complete
position presents the boundary value problem. The velocity density is obtained by

dh

dt
= −αβ

2

[
ν

b(1 − αt)

] 1
2

. (20)
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Consequently, the kinematic limit at y = h(t) given by (11) modifies into the open
shell condition (20). The surface drag coefficient Cfx and “Nusselt number Nux”
play an important role in estimating the surface drag force, the rate of heat transfer

CfRe
1
2
x = −2

(
1 + 1

λ

)
f ′′(0), (21)

and

NuxRe
− 1

2
x = θ ′(0), (22)

where Rex = Ux
υ

“local Reynolds number.” Eqs. (14) and (15) corresponding to
boundary conditions (16) to (18) are solved numerically by the shooting technique.
These equations are renewed into a set of first order differential equations as follows:

df0

dη
= f1,

df1

dη
= f2 ,

(
1 + 1

λ

)
df2

dη
= S

(
f1 + η

2
f2

)
+ f 2

1 − f0f2 +Mf1

(23)

dθ0

dη
= θ1,

(
1 + 4

3
Nr

)
dθ1

dη

= Pr

[
S

2
(3θ0 + ηθ1)+ 2f1θ0 − θ1f0 − Ec

(
1 + 1

λ

)
(f2)

2 − A∗f1 − B∗θ0.

]

(24)

The associated periphery conditions take the form:

f1(0) = 1, f0(0) = 0, θ0(0) = 1 (25)

f0(β) = Sβ

2
, f2(β) = 0, θ1(β) = 0. (26)

Here, f0(η) = f (η) and θ0(η) = θ . This requires the initial values
f2(0) and θ1(0), and hence, the appropriate values are preferred and later
integration is approved. A step size is �η = 0.01. The value of β so obtained
will satisfy the boundary condition f0(β) = Sβ

2 with an error of tolerance 10−8.

3 Results and Discussion

Current research was decided “ to study the flow of non-Newtonian Casson liquid
film flux in a time dependent stretching sheet with the consequences of MHD (non-
uniform heat source/sink), A∗, and B∗ & Nr thermal radiation.” The determination
of physical outcomes of different coating parameters on the velocity f (η) and
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temperature θ(η) profiles, displayed in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11.
Tables 1, 2, and 3 constitute evaluation of numerical results published earlier.
In this article, the author explores the collaboration sound effects of “viscous
dissipation, non-uniform heat source/sink,” and “thermal radiation” for Casson fluid
that has loads of scope in the heat exchange processes. However, film thickness β
sink unsteady parameter β enhances, i.e., “by stretching the sheet, heat flux, and
skin friction.” Boosts quantity of boundary shrinks later. The obtained results are
tabulated and exhibited graphically (Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11).

Figure 2a,b exhibits the impact of the liquid film thickness β, keeping S = 0.8
and S = 1.2 fixed. As β increases, the flow velocity of the liquid film drops. On the
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Fig. 3 (a) and (b) represents “magnetic field (M)” on transverse velocity (f ) and horizontal
velocity (f ′)
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Fig. 5 (a) and (b) illustrates consequence “thermal radiation parameter Nr” on Casson fluid in for
S = 0.8 and S = 1.2, respectively
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Table 1 Comparing results of β and f
′′

with accessible text for various values of S

Table 2 Comparing results of −(1 + 1
λ
) f

′′
and −θ ′(0)” for variety of values

other hand, velocity profile reduces with higher values of β. However, for the same
variation of β, the temperature is found to increase as conveyed in Fig. 8a,b.

Figure 3a,b represents influence of magnetic field (M) on transverse velocity (f )
and horizontal velocity (f ′). The existence of magnetic field shows a decline in
velocity in the momentum boundary layer up to the special point η = 0.5, where
velocity attains a minimum and next starts enhancing. Expanding the magnetic field
reduces velocity up to special point as higher values of M propose more conflicts
in the fluid region due to Lorentz force, and after crossing the special point, the
velocity enhances attaining its maximum at the free shell.
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Table 3 Comparison of −θ ′(0) considering variety of values of Pr, Ec, and Nr and variations of A∗
and B∗

Figure 4 discloses fixed value of the unsteady parameter (S), transverse velocity
(f ) enhances monotonically from the surface, and increasing values of S increases
the transverse velocity for η ≥ 0.2, while horizontal velocity (f ′) increases
throughout the boundary layer with major increase at free surface. Raise of
unsteadiness parameter enhances temperature in the boundary layer shown in Fig. 9.

Figure 5a,b illustrates the outcomes of thermal radiation parameter Nr on Casson
fluid for S = 0.8 and S = 1.2, respectively. Practically, increasing values of Nr
increases the temperature, which can be easily seen as the presence of thermal
radiation releases higher thermal energy.

Figure 6a,b explains the results of Pr scheduled θ(η)(temperature profile) for
S = 0.8 and 1.2, respectively. From both figures, thermal boundary layer thickness
and temperature decline as the Pr enhances. For higher ideals of Pr, temperature
decreases rapidly. Figure 7a,b represents the consequences of Ec on temperature
for S = 0.8 and S = 1.2, respectively. As temperature distribution fluid raises,
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Eckert number increases with frictional heating. Figures 10a,b and 11a,b depict
temperature profile on variety of “non-uniform heat source/sink parameters A∗ and
B∗.” Increase in the values of A∗ and B∗ increases the values of θ(η).

4 Conclusion

Our aim is to find momentum and heat transfer presentation of Casson fluid in excess
of extending plane in the presence of oblique M (magnetic field), “non-uniform heat
source/sink,” and Nr in k (“porous medium”).

Inferences are as follows:

• As the heat transmit rate improves, the suction parameter attracts.
• In the current study, we have seen that as the magnetic field increases the

resistance decreases.
• Non-uniform heat source increases for different values, and the“thermal bound-

ary layer thickness also increases.”
• The θ(η) “temperature profiles increases for superior values of radiant parame-

ter.”
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MHD Boundary Layer Flow of Casson
Fluid with Gyrotactic Microorganisms
over Porous Linear Stretching Sheet and
Heat Transfer Analysis with Viscous
Dissipation

G. C. Sankad and Ishwar Maharudrappa

Abstract A study associated with bioconvection flow and heat transfer analysis
due to Casson fluid and gyrotactic microorganisms over a linear stretching sheet
through a porous medium in the presence of magnetic field is considered. The
related governing equations of the physical situation are deformed into a system
of nonlinear ordinary differential equations using Oberbeck–Boussinesq approxi-
mations and similarity transformation .The obtained coupled equations are solved
with the help of differential transform method to get Taylor’s series solutions for the
momentum, energy, concentration of nanoparticles, and density of microorganisms.
The combined effects of distinct nondimensional parameters on the solutions are
represented through graphs.

Keywords Boundary layer · Stretching sheet · Bioconvection · Porous ·
Gyrotactic microorganisms · Differential transform method

1 Introduction

Influence of porous media and magnetic field on the boundary region of nanofluids
near stretching surface has huge applications in mechanical industries as well as in
physics. Investigation on Casson fluid flow and heat exchange on boundary region
has shown great importance in industries. Sakiadis [1] examined the boundary layer
performance on continuous solid surface moving on both flat and cylindrical plane.
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Poo et al. [2] explored the consequence of variable viscosity on flow and heat
exchange to a continuous moving flat plate. Mukhopadhyay et al. [3] studied MHD
boundary region flow and warm exchange over a stretching sheet with variable
viscosity. Abel et al. [4] analyzed viscoelastic fluid flow and heat transfer near
the stretching sheet with variable viscosity. Study on bioconvection induced due
to nanofluid and microorganisms has driven tremendous attention for its importance
in improving quality of the product in bioindustries. Within the last few decades
and in advance, lot of research work was done by the well-known scholars [5–14]
on boundary region flow and heat exchange induced by the porous media near the
stretching surface influenced by magnetic field.

The present work is on the study of bioconvection occurred due to Casson
nanofluid and gyrotactic microorganisms in the MHD boundary region through
porous media above the stretching sheet. Further, we have explored influence
of Brownian motion and thermophoresis on the fluid flow and heat flow. It is
revealed in the literature survey that no work is done on this physical circumstance
where Casson model is characterized as non-Newtonian fluid containing gyrotactic
microorganisms through porous media near the linear stretching surface introduced
under the influence of magnetic field. Presently, we have tried to solve the arising
modeled equations utilizing differential transform method and obtained the Taylor’s
series solution for a system of coupled nonlinear differential equations associated
with boundary conditions. The outcomes of considered BVP are good in agreement
with the boundary conditions.

2 Mathematical Formulation

Let us consider that unsteady non-Newtonian fluid including gyrotactic microorgan-
isms is allowed to flow along the x-axis above the linear stretching sheet through
the porous media. Magnetic field is applied uniformly normal to the surface of
boundary region and neglecting the impact of induced magnetic field. It is supposed
that fluid is water based so that microorganisms are alive and there is not much
effect of the nanoparticles on activity of microorganisms. Fluid dilution avoids
volatility of bioconvection due to microorganisms and nanoparticles. Based on
these assumptions, we can form the following governing equations for the present
problem:

∂u

∂x
+ ∂v

∂y
= 0 (1)

u∂u
∂x

+ v ∂v
∂y

= ν
(

1 + 1
β

)
∂2u
∂y2 −

(
σB2

0
ρ

+ ν
K

)
u−

(
1−C∞
ρf

)
ρ∞gα(T − T∞)

−
(
ρp−ρ∞
ρf

)
g(C − C∞)−

(
ρm−ρf
ρf

)
gγ (N −N∞)

(2)
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u
∂T

∂x
+ v

∂T

∂y
= K

ρCp

∂2T

∂y2 + τ

(
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∂C
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∂T

∂y
+ DT

T∞

[
∂T
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]2
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+ ν
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[
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∂y
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∂C
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+ v

∂C

∂y
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∂2C

∂y2 + DT
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∂2T

∂y2 (4)

u
∂N

∂x
+ v

∂N

∂y
+ bWc

Cw − C∞

(
∂

∂y

[
N
∂C

∂y

])
= Dm

∂2N

∂y2
, (5)

where ρ is the Casson fluid density, γ is an average volume of microorganisms,
DB is the Brownian diffusion coefficient, DT is the thermophoresis diffusion
coefficient, τ = (ρC)p

(ρC)f
is the ratio of effective heat capacity of the fluid with ρf

and ρp being density of the fluid and density of the particle, and β is the Casson
fluid parameter.
The boundary conditions are

ν = 0, u = bx, T = Tw, C = Cw, N = Nw, as y → 0,
u → 0, T → T∞, C → C∞, N → N∞, as y → ∞. ,

}
(6)

where b > 0 is the stretching rate. Using the similarity transformation into the
governing equations:

η = y
x
Ra

1
4
x f (η), ψ = mRa

1
4
x f (η), θ(η) = T−T∞

Tw−T∞ , φ(η) = C−C∞
Cw−C∞ ,

χ(η) = N −N∞
Nw −N∞

, Rax = (1 − C∞)αg�Tf
mν

x3.

⎫
⎪⎬

⎪⎭
(7)

We form the following coupled nonlinear ordinary differential equations:

(
1 + 1

β

)
f

′′′−
(

1

2Pr

)
f

′′+
(

3

4Pr

)
ff

′′−(M+κ)f ′+θ−Nrφ−Rbχ = 0, (8)

θ
′′ +

(
3

4

)
f θ

′ +Nbθ
′
φ

′ +Ntθ
′2 + PrEcf
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Lef φ
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(
Nt
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)
θ

′′ = 0, (10)

χ
′′ +

(
3

4

)
Scf χ

′ − Pe

[
φ

′
χ

′ + φ
′′
(χ + σ)

]
= 0. (11)

The associated dimensionless boundary conditions are



40 G. C. Sankad and I. Maharudrappa

f (0) = 0, f
′
(0) = λ, θ(0) = 1, φ(0) = 1, χ(0) = 1, as η → 0,

f
′
(∞) = 0, θ(∞) = 0, φ(∞) = 0, χ(∞) = 0, as η → ∞.

}

(12)
The dimensionless parameters used in Eqs. (9) to (12) are given by
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(13)
where M is the modified magnetic parameter, Pe is the Peclet number, Le is
the conventional Lewis number, Nr is the buoyancy ratio parameter, Rb is the
bioconvection Rayleigh number, Nb is the Brownian motion parameter, Nt is the
thermophoresis parameter, Sc is the Schmidt number, σ is the (dimensionless)
bioconvection constant, and λ is the slip parameter.

3 Solution of the Problem

Using DTM [11], Eqs. (8)–(13) can be transformed into the following differential
forms:
(

1 + 1
β

)
(s + 1)(s + 2)(s + 3)F [s + 3] = (M + κ)(s + 1)F [s + 1] − θ [s]+

Nrφ[s] + Rbχ [s] + 1
2Pr

s∑
r=0

(s − r + 1)F [s − r + 1](s + 1)F [r + 1]−
3
4Pr

s∑
r=0

F [s − r](r + 1)(r + 2)F [r + 2],
(14)

where F [0] = 0, F [1] = a1, F [2] = a2,

(s + 1)(s + 2)θ [s + 2] = − 3
4

s∑
r=0

F [s − r](r + 1)θ [r + 1]−

Nb

s∑
r=0

(s − r + 1)θ [s − r + 1](r + 1)θ [r + 1]−

Pe
s∑

r=0
(s − r + 1)θ [s − r + 1](r + 1)(r + 2)θ [r + 2],

(15)

where θ [0] = 1, θ [1] = a3,
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(s + 1)(s + 2)φ[s + 2] = − 3
4Le

s∑
r=0

F [s − r](r + 1)φ(r + 1)

−Nt
Nb

s∑
r=0

(s + 1)(s + 2)θ [s + 2],
(16)

where φ[0] = 1, φ[1] = a4,

(s + 1)(s + 2)χ [s + 2] = Pe
s∑

r=0
(s − r + 1)φ[s − r + 1](s + 1)χ [s + 1]+

Pe
s∑

r=0
χ [s − r](s + 1)(r + 2)φ[r + 2] + Peσ(s + 1)(s + 2)φ[s + 2]−

3
4Sc

s∑
r=0

F [s − r](r + 1)χ [r + 1],
(17)

where χ [0] = 1, χ [1] = a5.
F [s], θ [s], φ[s], and χ [s] are the differential transforms of f (η), θ(η), φ(η),

and χ(η), respectively. a1, a2, a3, a4, and a5 are the constants, and these can be
determined with the aid of Eqs. (14)–(17) and the boundary conditions. For s =
0, 1, 2, 3 . . ., we get

F [3] = a2
1Pr

12
(

1+ 1
β

) + a1

(
M− 1

Da
√
Ra

)

6
(

1+ 1
β

) + Nr+Rb−1

6
(

1+ 1
β

)

θ [2] = −
(

1

2
a3a4Nb + a2

3Nt

2
+ 1

2
a2

1EcPr

)

φ[2] = Nt

(
1
2 a3a4Nb+ 1

2 a
2
3Nt+ 1

2 a
2
1EcPr

)

Nb

χ [2] = 1
2

[
a4a5Pe + NtPe

(
a3a4Nb+a2

3Nt+a2
1EcPr

)

Nb
+ NtPe

(
a3a4Nb+a2

3Nt+a2
1EcPr

)

Nb
σ

]
.

Similarly, we can find F [4], θ [4], φ[4], χ [2], and χ [3], and taking Pr = 6.2,
β = 1, M = 5, Nr = 0.5, Rb = 0.1, Nt = 0.1, Nb = 0.1, Le = 10, Sc = 0.1,
Pe = 1, σ = 0.2, Ra = 0.5, and Da = 0.5 and solving for all the five transformed
equations in five unknowns using the boundary condition and Pade approximation,
we obtain a1 = 0.130491, a2 = 0.105687, a3 = 4.053355, a4 = 6.91778, a5 =
−0.579615, and the Taylor’s series solutions for Eqs. (8)–(11) are

f (η) = 0.130491η + 0.105687η2 + 0.0254366η3 + 0.00931264η4 + 0.0315593η5

−0.00705885η6 + 0.0000565214η7 − 0.0010699η8 − 0.000362508η9

−0.000426626η10 − 0.000221054η11 − . . . .

θ(η) = 1 + 4.05355η − 2.22364η2 + 0.747091η3 − 0.0810705η4 + 0.0117574η5

−0.0306772η6 + 0.00773456η7 + 0.0069833η8 − 0.00369728η9
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−0.00112102η10 + 0.000891603η11 − . . . .

φ[η] = 1 + 6.91778η + 2.22364η2 − 1.87547η3 − 0.738584η4 + 0.0213219η5

+0.231329η6 + 0.0247125η7 − 0.0279245η8 + 0.0103749η9

+0.00405778η10 + 0.00242809η11 − . . . .

χ [η] = 1 − 0.579615η + 0.663541η2 − 1.578781η3 − 2.064390η4 − 4.637221η5

−5.451773η6 − 6.076239η7 − 4.203908η8 − 1.521497η9

+1.73707η10 + 3.626755η11 − . . . .

4 Results and Discussion

Discussion of bioconvected flow of Casson fluid nanoparticles and gyrotactic
microorganisms under the influence of uniformly applied magnetic field normal
to the surface through porous media and heat exchange analysis is carried out.
In this work, the solution is represented in Taylor’s series utilizing DTM for all
the governing equations. It is intended to analyze an impact of nondimensional
parameters on the velocity of the fluid, temperature, concentration of nanoparticles,
and gyrotactic microorganisms through graphs.

Velocity Profile Figures 1, 2, 3, and 4 are the velocity profiles of the Casson fluid
for values of a range of parameters. In Fig. 1, the velocity of the Casson fluid flow
increases due to applied magnetic field normal to the surface for growing values of
Casson fluid parameter. Separation of boundary layers due to magnetic field and
bioconvection impact due to the microorganisms and nanofluids together brings
increase in the motion of the fluid. From Fig. 2, it is observed that the velocity

Fig. 1 Velocity profile for
β = 0.5, 0.6, 0.7, 0.8

β=0.5,0.6,0.7,0.8
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Fig. 2 Velocity profile for
Ec = 1, 3, 5, 8
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Fig. 3 Velocity profile for
M = 3, 4, 6, 7
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Fig. 4 Velocity profile for
Nb = 0.8, 1, 1.2, 1.5
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of the fluid decreases for the growing values of the viscous dissipation parameter.
It is due to the reason that the viscosity of the fluid improves for increasing values
of Eckert number, which in turn affects the motion of the fluid. Figure 3 shows the
reduction of the velocity with rising values of the magnetic parameter. This is due
to the reason that the applied magnetic field is perpendicular to the fluid flow, and
hence, the increasing force applied resists the fluid flow. Fig. 4 displays the increase
in the velocity for the increase of Nb.

Temperature Profile Figures 5, 6, 7, and 8 are the temperature profiles for different
values of nondimensional parameters, and we found that raise of warm for the
growing values of Casson fluid parameter, viscous dissipation parameter, Brownian
motion parameter, and thermophoresis parameter. In Fig. 5, the growing values of
Casson fluid parameter lead to raise in the temperature profile due to the reason
that the velocity of the fluid ascends for different values of Casson fluid parameter.
Figure 6 shows the enhancement of temperature profile for the increasing values
of viscous dissipation parameter (Ec). The influence of the Nb and Nt is shown
in Fig. 8. Nb and Nt have effect on fluid flow and heat flow. Temperature profile

Fig. 5 Temperature profile
for β = 0.5, 0.6, 0.7, 0.8
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Fig. 6 Temperature profile
for Ec = 1, 3, 5, 8
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Fig. 7 Concentration of
nanoparticles profile for
Nb = 0.8, 1, 1.2, 1.5 and
Nt = 0.1
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Fig. 8 Temperature profile
for Nt = 0.8, 1, 1.2, 1.5 and
Nb = 0.1
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decreases with increase in the values of Nb and Nt . The reason is that nanoparticles
exhibit different values of Nb and Nt .

Concentration of Nanoparticles and Microorganisms Concentration profiles of
Casson nanoparticles and microorganisms are described in Figs. 7, 9, 10, 11, 12, and
13. It can be experiential that concentration profiles of Casson fluid nanoparticles
are unlike as compared to the concentration profiles of microorganisms. In Fig. 9,
it is found that the concentration of nanoparticles diminishes with growing values
of β. Figure 10 describes the concentration of nanofluid particles decreases for
raising values of Eckert number. Figure 11 describes the concentration of nanofluid
particles increases for raising values of magnetic parameter. Figure 12 give relation
between concentration of nanofluid particles and Brownian motion parameter.
Figure 13 gives relation between thermophoresis parameter and microorganisms
concentration. The graph shows decrease in the concentration of nanofluid particles
and microorganisms profiles for the increased values of Nb and Nt . The outcomes
of the profiles are due to the dependency of Brownian parameter on reduced thermal
enhancement and concentration on temperature field, respectively.
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Fig. 9 Concentration of
nanoparticles profile for
β = 0.5, 0.6, 0.7, 0.8
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Fig. 10 Concentration of
nanoparticles profile for
Ec = 1, 3, 5, 8
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Fig. 11 Concentration of
nanoparticles profile for
M = 3, 4, 6, 7
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Fig. 12 Concentration of
microorganisms for
Nb = 0.8, 1, 1.2, 1.5 and
Nt = 0.1
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Fig. 13 Concentration of
microorganisms for
Nt = 0.8, 1, 1.2, 1.5 and
Nb = 0.1
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5 Conclusion

Our study addresses an analytic solution of bioconvection of MHD boundary layer
flow and heat exchange of Casson nanofluids and gyrotactic microorganisms over a
linear stretching sheet through porous media. A Taylor’s series solution is obtained
for momentum, energy, concentration equation of nanofluids, and density of gyro-
tactic microorganism’s equations using differential transform method. Interesting
features of the velocity of the stream and heat exchange are described.

• Velocity of Casson fluid decreases for increasing values of viscous dissipation
parameter (Ec).

• Nanoparticles possess unlike values of Brownian motion parameter (Nb) and
thermophoresis parameter (Nt ). Hence, the concentration of nanofluid and heat
flow reduces for growing values of Nb and Nt .

• The concentration of microorganism reduces for an enhanced magnitude of
Casson fluid parameter due to sensitivity of microorganisms and thinning of
boundary layer thickness.
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Design of Coupled FIR Filters for Solving
the Nuclear Reactor Point Kinetics
Equations with Feedback

Dr. M. Mohideen Abdul Razak

Abstract A new method of solving the nuclear reactor point kinetics equations
with feedback is presented in this chapter. In small nuclear reactors, the reactor
power transients are estimated by solving the stiff point kinetics equations with
feedback. Here, a new computational method is developed using finite impulse
response (FIR) filters for solving the stiff point kinetics equation with feedback.
The point kinetics equations are converted into convolution equation by applying
discrete Z transform. The power and precursor concentrations, appearing in the
point kinetics equations, are written in terms of convolution equation with different
impulse response functions. The impulse response functions characterize the FIR
filter. This method is applied to estimate the transients in few benchmark thermal
reactors for different types of reactivity perturbations with temperature feedback,
i.e., step, ramp, and oscillatory reactivity inputs. This method has high stability, i.e.,
a small change in the time step of the order of 5 or 10 does not lead to large error
in the solution. The transients estimated by this method are compared with other
standard methods and they are found to be in good agreement.

Keywords Finite impulse response · Reactor · Transient

1 Introduction

The power transients in nuclear reactors are estimated by solving the time-dependant
neutron diffusion equation in three dimensions. For small reactors, the point kinetics
equations are sufficient in predicting the power transients caused by reactivity
perturbations. The prediction of reactor power under reactivity perturbation is
important from the safety point of view. The point kinetics equations describe
the space-independent time-evolution of nuclear reactor power and precursor
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concentrations under reactivity perturbation. The point kinetics equations are stiff
differential equations, and they require a very small time step to solve the equations.
There are various methods to solve the point kinetics equations. Aboanber and
Nahla [1, 2] developed the analytical inversion method for solving the point reactor
kinetics equations with temperature feedback. Nahla [3] applied Taylor’s Series
Method (TSM) for solving the point kinetics equations. Aboanber [4] and Nahla
[5] developed the analytical exponential method and the generalized Runge–Kutta
method for solving the point kinetics equations. Li et al. [6] presented the better
basis function (BBF) method for solving the point kinetics equations. Recently the
modified exponential time differencing method was developed [7] to solve the point
kinetics equations using large time step. The major constraint in solving the stiff
point kinetics equations is the proper selection of time step. In most of the cases, a
small change in the time step may lead to large error in the solution of point kinetics
equation.

In the present work, a new computational method is developed using the finite
impulse response (FIR) filters for solving the reactor point kinetics equations with
feedback. According to this new computational method, the power and precursor
concentrations, appearing in the point kinetics equations, are written as convolution
integrals. The convolution integrals are solved using discrete Z transform. By
applying inverse Z transform, the power and precursor concentrations are written as
simple convolution equation with different impulse response functions. The impulse
response functions characterize the FIR filters. Here, the impulse response functions
are chosen according to the type of reactivity perturbation. By appropriately choos-
ing the impulse response functions, the FIR filters can be designed for solving the
point kinetics equations with feedback. The impulse response functions are different
for power and precursor concentrations. The impulse response functions are found
to be stable and possess finite radius of convergence. This new computational
method is applied to estimate the nuclear reactor power transient in few benchmark
thermal reactors for different types of reactivity perturbations, i.e., step, ramp, and
oscillatory. In all the cases, the estimated power transient is found to be in good
agreement with the standard methods. The advantage of this computational method
is that the power transient can be estimated using large time step without losing
accuracy, and this method has high stability, i.e., a change in the sampling time
interval by a factor of 5 or 10 does not alter the solution to a larger extent. In all
the cases, the estimated power transient, for various types of reactivity perturbations
with feedback, is found to be in good agreement with the reference results. A scheme
to choose the sampling time interval is also discussed.

2 Point Kinetics Equations and FIR Filters

Consider the point kinetics equations [8] describing the nuclear reactor power
transient:
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dp(t)

dt
=
(
ρ(t)− β

�

)
p(t)+

6∑

i=1

λiCi(t) (1)

dCi

dt
=
(
βi

�

)
p(t)− λiCi, (i = 1, 2, . . . 6) (2)

In the above Eqs. (1) and (2), p is the power, � is the prompt neutron generation
time, β i is the effective fraction of the ith group of delayed neutrons, β is the

total effective fraction of delayed neutrons
(
β = ∑6

i=1βi

)
, and λi and Ci are the

decay constant and precursor concentration of the ith group of the delayed neutron.
The initial conditions of the point kinetics equations are given as p(t = 0) = p0,
ci (t = 0) = βi

�λi
p0, where p0 is the steady state power before the introduction

of any external reactivity. In the above equation, ρ(t) = ρex(t) + ρfb(t) is the net
reactivity acting on the reactor, ρex(t) is the external reactivity, and ρfb(t) is the
feedback reactivity. In the case of constant reactivity insertion (without feedback),
ρ(t) = ρex(t) = ρ0, and the solution of Eqs. (1) and (2) can be written as:

p(t) =
6∑

i=1

λi

t∫

−∞
e

(
ρ0−β
�

)
(t−τ)

Ci (τ ) dτ (3)

Ci(t) =
(
βi

�

) t∫

−∞
e−λi(t−τ)p (τ ) dτ (4)

Equations (3) and (4) are rewritten as:

p(t) =
6∑

i=1

λi

0∫

−∞
e

(
ρ0−β
�

)
(t−τ)

Ci (τ ) dτ +
6∑

i=1

λi

t∫

0

e

(
ρ0−β
�

)
(t−τ)

Ci (τ ) dτ (5a)

Ci(t) =
(
βi

�

) 0∫

−∞
e−λi(t−τ)p (τ ) dτ +

(
βi

�

) t∫

0

e−λi(t−τ)p (τ ) dτ (5b)

It is assumed that before the application of reactivity perturbation, i.e., t ≤ 0, the
reactor is at constant power, i.e., p(t) = p0, Ci(t) = C0 and net reactivity acting on
the reactor is zero. Under this assumption, Eqs. (5a) and (5b) are rewritten as:
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p(t) = p0e

(−β
�

)
t +

6∑

i=1

λi

t∫

0

e

(
ρ0−β
�

)
(t−τ)

Ci (τ ) dτ (6a)

Ci(t) = C0e
−λi t +

(
βi

�

) t∫

0

e−λi(t−τ)p (τ ) dτ (6b)

The integrals appearing in Eqs. (6a) and (6b) are convolution integrals. Using Z
transform [9], the convolution integrals (Eqs. 6a and 6b) are written as:

p(t) = p0e

(−β
�

)
t + Ts

6∑

i=1

λig(Z)Ci(Z) (7a)

Ci(t) = C0e
−λi t + Ts

(
βi

�

)
h(Z)p(Z) (7b)

where Ts is the sampling period,

g(Z) =
∞∑

n=0

g [n] z−n, h(Z) =
∞∑

n=0

h [n] z−n, p(Z) =
∞∑

n=0

p [n] z−n,

Ci(Z) =
∞∑

n=0

Ci [n] z−n, g [n] = e

(
ρ0−β
�

)
n

and hi [n] = e−λin
(8)

Using Eq. (8) and making use of inverse Z transform [9], the power and precursor
concentrations (Eqs. 7a and 7b) are written as:

p(n) = p0e

(−β
�

)
n + Ts

6∑

i=1

λi

n∑

m=0

g [n−m]Ci [n] (9)

Ci(n) = C0e
−λin + Ts

(
βi

�

) n∑

m=0

hi [n−m]p [n] (10)

Equations (9) and (10) are the representation of finite impulse response (FIR)

filters. In the above equations, g [n] = e

(
ρ0−β
�

)
n

is the impulse response function
for calculating the power (step reactivity without feedback) and hi [n] = e−λin is
the impulse response function for calculating the precursor concentration. Here, the
FIR filters, (Eqs. 9 and 10), are coupled, i.e., to calculate p(n), the value of Ci[n]
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is required and to calculate Ci[n], the value of p(n) is required. The power and
precursor concentration are obtained from coupled FIR filters as follows. First, an
initial guess about p(n, n > 1) is assumed and this is used to get the value of Ci(n).
This Ci(n) is again used to get the value of p(n). This process is repeated iteratively
till the values of p(n) and Ci(n) are converged. The coupled form of realization of
FIR filters for solving the point kinetics equations (Eqs. 9 and 10) with one group
of delayed neutron precursor is shown in Fig. 1.

Denoting
∞∑
n=0

g [n−m]Ci [n] = g [n] ∗ Ci [n] = Ci [n] ∗ g [n] = y1 [n] and

∞∑
n=0

hi [n−m]p [n] = hi [n] ∗ p [n] = p [n] ∗ hi [n] = y2i [n], the power and

precursor concentrations (Eqs. 9 and 10) are rewritten as:

p(n) = p0e

(−β
�

)
n + Ts

6∑

i=1

λiy1 [n] (11)

Ci(n) = C0e
−λin + Ts

(
βi

�

)
y2i [n] (12)

Fig. 1 Realization of coupled FIR filters for solving the point kinetics equations for step reactivity
without feedback (assuming one group delayed neutron precursor). Ln = C0e

−(λiTs)n and Mn =
p0e

( −β
�

)
Tsn
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Equations (11) and (12) do not satisfy the initial boundary condition, i.e., to
satisfy the initial condition, the impulse response functions, y1[n] and y2i[n], are
improved such that:

ỹ1 [n] = y1 [n] − 1

2
[g [n]Ci [0] + g [0]Ci [n]] (13)

˜y2i [n] = y2i [n] − 1

2
[hi [n]p [0] + hi [0]p [n]] (14)

Using the improved impulse response functions, (Eqs. 13 and 14), the FIR filter
representations of power and precursor concentrations are given as:

p(n) = p0e

(−β
�

)
n + Ts

6∑

i=1

λiỹ1 [n] (15)

Ci(n) = C0e
−λin + Ts

(
βi

�

)
˜y2i [n] (16)

3 Selection of Sampling Time Interval Ts

For step reactivity (constant input) insertions (|ρ0| < β) without feedback, the
impulse response functions for power and precursor concentrations are found to

be g [n] = e

(
ρ0−β
�

)
Tsn and hi [n] = e−λiTsn, respectively. In this case, the radius

of convergence of the impulse response function g[n] is given by |Z| > e

(
ρ0−β
�

)
Ts

and the radius of convergence of hi[n] is given by |Z| > e−λiTs for the precursor
concentration “i”. For minimum sampling time interval, the radius of convergence
is 1 and for maximum sampling time interval, the radius of convergence is 0. In
this way, the radius of convergence lies between zero and one, i.e., 0 < |Z| < 1.
This is shown in Figs. 2a, b for power and precursor concentrations. By increasing
the number of terms in the summation in Eqs. (9) and (10), the power and
precursor concentrations can be accurately estimated. In other words, for a given
transient duration, by choosing small sampling time interval, power and precursor
concentrations can be estimated accurately. This is equivalent to choosing the radius
of convergence nearer to one. Hence by fixing the radius of convergence nearer
to one, the sampling time interval, Ts, can be estimated. In the present case, the
radius of convergence is fixed as 0.9 and the sampling time interval, for power, is
found to be Ts = loge(0.9)(

ρ0−β
�

) . In a similar way, the sampling time interval for precursor
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a b

Fig. 2 (a) Region of convergence (ROC) of impulse response function g[n] for power under step
reactivity of insertion (|ρ0| < β) without feedback. The region of convergence is 0 < |Z| < 1,

R1 = e

(
ρ0−β
�

)
Ts , and R2 = 1. (b) Region of convergence (ROC) of impulse response function hi[n]

for precursor concentration. The region of convergence is 0 < |Z| < 1, R1 = ee
−λi Ts and R2 = 1

concentration (using hi[n]) is found to be Ts(i) = loge(0.9)
λi

. The minimum of Ts and
Ts(i) is taken as the sampling time interval.

4 Numerical Results

4.1 Transient from Step Reactivity Without Feedback

Consider the power transients of the thermal reactor described by [3]. The
decay constants of the neutron precursors and the delayed neutron fractions
of the thermal reactor are taken as λ1 = 0.0127 s−1, λ2 = 0.0317 s−1,
λ3 = 0.115 s−1, λ4 = 0.311 s−1, λ5 = 1.4 s−1, λ6 = 3.87 s−1, β1 = 0.000285 ,
β2 = 0.0015975, β3 = 0.00141, β4 = 0.0030525, β5 = 0.00096, β6 = 0.000195,
and � = 5.0 × 10−4 s. Step reactivities ρ0 = − 1$, ρ0 = − 0.5$, ρ0 = + 0.5$
and ρ0 = 1.0$ are inserted and the resulting power transient is computed using
coupled FIR filters. Table 1 shows the values of the power transients obtained from
coupled FIR filters along with the exact values given by Nahla [3]. The absolute
errors, |(Xcal − Xexact)|, are shown in Table 1. From the Table 1, it is observed that
the coupled FIR method is capable of estimating the transient to a good accuracy.
It is also shown in Table 2 that as the sampling time interval is changed by a factor
of 10 or 20, the error in the estimation of power transient is small, indicating that
this method has high stability against the change in the sampling time interval.
The impulse response functions for power and precursor concentrations are found
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Table 1 The power estimated by the coupled FIR filters and the exact values (Nahla [3])

Reactivity Time Exact value Coupled FIR method (Ts = 1.0e-3s) Absolute error

−1.0$ 1.00 0.43333 0.43691 0.00358
10.0 0.23611 0.23687 0.00076

−0.5$ 1.00 0.60705 0.61044 0.00339
10.0 0.39607 0.39701 0.00094

+0.5$ 1.00 2.51149 2.46761 0.04388
10.0 14.2150 14.0498 0.16520

+1.0$ 0.50 10.3562 10.3531 0.00310
1.00 32.1448 32.1356 0.00920

Table 2 The absolute error in the estimation of power transient as the sampling time interval (Ts)
is varied

Ts Reactivity Time Exact value Coupled FIR method Absolute error

0.001 s +1.0$ 1.0 32.1356 32.1835 0.04790
0.01 s +1.0$ 1.0 32.1356 31.8037 0.37980
0.02 s +1.0$ 1.0 32.1356 31.4398 0.74370

to be g [n] = e

(
ρ0−β
�

)
n

and hi [n] = e−λin, respectively. In this case, the radius

of convergence of the impulse response function g[n] is given by |Z| > e

(
ρ0−β
�

)

and the radius of convergence of hi[n] is given by |Z| > e−λi for the precursor
concentration “i”. In general, the radius of convergence of hi[n] can be taken to be
|Z| > e−λ0 , where λ0 is the minimum value of decay constant of the precursor
group.

4.2 Transient from Step Reactivity with Temperature Feedback

Consider another example of thermal reactor described by Nahla [3] with the fol-
lowing parameters: λ1 = 0.0124 s−1, λ2 = 0.0305 s−1, λ3 = 0.111 s−1, λ4 = 0.301
s−1, λ5 = 1.13 s−1, λ6 = 3.0 s−1, β1 = 0.00021 , β2 = 0.00141, β3 = 0.00127,
β4 = 0.00255, β5 = 0.00074, β6 = 0.00027, and�= 5.0 × 10−5 s. A step reactivity
ρ0 = 0.5$ is inserted, and the temperature rise (T(t)) with power (p(t)) in the reactor
is given by:

∂T (t)

∂t
= 0.05 p(t)

◦
C/s

The feedback reactivity is given by [3]:

∂ρfb

∂T
= −5.0 × 10−5

(
�k

k

)
/

◦
C
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Table 3 The peak power computed using coupled FIR filter (Ts = 1.0e-3) for various step reactivity
insertions with temperature feedback

Reactivity Peak power Time (s) of occurrence of peak power
Coupled FIR filter TSM Coupled FIR filter TSM

+0.5$ 44.429 45.754 28.07 28.29
+1.0$ 808.0851 807.8765 0.954 0.953
+1.2$ 8020.365 8020.848 0.323 0.317
+1.5$ 43,023.16 43,021.00 0.174 0.168
+2.0$ 167,844.6 167,739.00 0.103 0.098

The estimated peak power is compared with Taylor Series Method (TSM) (Nahla [3])

With temperature feedback, the power and precursor concentration are given by:

p(n) = p0e

(−β
�

)
n + Ts

6∑

i=1

λi

n∑

m=0

g [n−m]Ci [n]

+ Ts

n∑

m=0

g [n−m]

(
ρfb [n]p [n]

�

) (17)

Ci(n) = C0e
−λin + Ts

(
βi

�

) n∑

m=0

hi [n−m]p [n] (18)

The peak power and the time of occurrence of peak power, under the temperature
feedback, are estimated using the coupled FIR filters for various step reactivity
insertions. The results are given in Table 3 along with that obtained using Taylor
series method (TSM) [3].

4.3 Transient from Ramp Reactivity Without Feedback

4.3.1 Transient from Positive Ramp Reactivity

Consider an example of thermal reactor described by Nahla [5], with the following
parameters: λ1 = 0.0127 s−1, λ2 = 0.0317 s−1, λ3 = 0.115 s−1, λ4 = 0.311 s−1,
λ5 = 1.4 s−1, λ6 = 3.87 s−1, β1 = 0.000266 , β2 = 0.001491, β3 = 0.001316,
β4 = 0.002849, β5 = 0.000896, β6 = 0.000182, and � = 2.0 × 10−5 s. A positive
ramp reactivity of the form ρ(t) = (0.25$)t/s and ρ(t) = (0.5$)t/s is inserted in the
reactor, the transient following this reactivity is estimated by coupled FIR filter,
and the result is compared with that of GAEM method [5]. The results are given in
Tables 4 and 5. In this case, the power and precursor concentrations are given by:
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Table 4 The power transient computed using coupled FIR filter (Ts = 1.0e-3) for ramp reactivity
0.25$/s

Time
Coupled FIR method
(Ts = 5.0e-5s) 0.25$/s GAEM Absolute error

0.25
0.50
0.75
1.00

1.070897
1.159835
1.271031
1.411403

1.069541
1.156694
1.265331
1.401981

0.001356
0.003141
0.005700
0.009422

The power transient is compared with the GAEM method (Nahla [3]). The absolute error is shown

Table 5 The power is computed using coupled FIR filter (Ts = 1.0e-3) for ramp reactivity 0.50$/s,
and it is compared with the GAEM method (Nahla [3])

Time
Coupled FIR method
(Ts = 5.0e-5s) 0.5$/s GAEM Absolute error

0.25
0.50
0.75
1.00

1.152200
1.377465
1.727601
2.322041

1.149200
1.368927
1.707600
2.275271

0.00300
0.00853
0.02000
0.04677

The absolute error is shown

p(n) = p0e

(−β
�

)
n + Ts

6∑

i=1

λi

n∑

m=0

k [n−m]Ci [n]

+ Ts

n∑

m=0

k [n−m]

(
ρex [n]p [n]

�

) (19)

Ci(n) = C0e
−λin + Ts

(
βi

�

) n∑

m=0

hi [n−m]p [n] (20)

In the above equations (Eqs. 19 and 20), the impulse response function k [n] =
e

(−β
�

)
n

and ρex(t) = 0.1βt. In this case, the radius of convergence of the impulse

response function k[n] is given by |Z| > e

(−β
�

)

, and the radius of convergence of
hi[n] is given by |Z| > e−λi for the precursor concentration “i”.

4.3.2 Transient from Negative Ramp Reactivity

Consider another example of thermal reactor described by Li et al. [6], with
the following parameters: λ1 = 0.0127 s−1, λ2 = 0.0317 s−1, λ3 = 0.115 s−1,
λ4 = 0.311 s−1, λ5 = 1.4 s−1, λ6 = 3.87 s−1, β1 = 0.000266, β2 = 0.001491,
β3 = 0.001316, β4 = 0.002849, β5 = 0.000896, β6 = 0.000182, and
� = 2.0 × 10−5 s. A negative ramp reactivity of the form ρ(t) = − 0.1$ t/s is
inserted in the reactor, the transient following this reactivity is estimated by coupled
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Table 6 The power is computed using coupled FIR filter (Ts = 1.0e-3) for negative ramp
reactivity, −0.1$/s, and the power transient is compared with the GAEM method (Nahla [3])

Time Coupled FIR method TSM Absolute error

2.0
4.0
6.0
8.0
10.0

0.786412
0.604639
0.464981
0.360466
0.282778

0.791955
0.612976
0.474027
0.369145
0.290636

0.00554
0.00834
0.00905
0.00868
0.00786

The absolute error is shown

Table 7 The power is computed using coupled FIR filter for sinusoidal reactivity insertion
ρ(t) = 0.001 sin (4π t) and compared with the modified ETD method (Mohideen Abdul Razak
and Devan [7])

Time
Coupled FIR method
(Ts = 1.0e-4s)

Modified ETD
method Absolute error

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.0

1.000000
0.876102
0.932204
1.123357
1.182720
1.002299
0.880687
0.937168
1.129228
1.188583
1.007087
0.884874
0.941632
1.009291

1.0000000
0.8828488
0.9334387
1.1070115
1.1615297
0.9992939
0.8857330
0.9366979
1.1108737
1.1653616
1.0024811
0.8885748
0.9397346
1.0039612

0.000000
0.006747
0.001235
0.016345
0.02119
0.003005
0.005046
0.00047
0.018354
0.023221
0.004606
0.003701
0.001897
0.00533

The absolute error is shown

FIR, and the result is compared with that of Taylor Series Method [3]. The results
are shown in Table 6.

4.4 Transient from Oscillatory Reactivity

The power transients caused by a sinusoidal reactivity insertion are analyzed
here for the thermal reactor described by Li et al. [6]. The delayed neutron
precursor parameters are given as follows: λ1 = 0.0127 s−1, λ2 = 0.0317 s−1,
λ3 = 0.115 s−1, λ4 = 0.311 s−1, λ5 = 1.4 s−1, λ6 = 3.87 s−1, β1 = 0.000266 ,
β2 = 0.001491, β3 = 0.001316, β4 = 0.002849, β5 = 0.000896, β6 = 0.000182,
and � = 2.0 × 10−5 s. A sinusoidal reactivity of the form ρ(t) = 0.001 sin (4π t) is
inserted in the reactor, the transient following this reactivity is estimated by coupled
FIR method, and the result is compared with that of the modified exponential time
differencing method [7]. The estimated power transient is given in Table 7.
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5 Conclusion

A new computational method for estimating the nuclear reactor power transients
using finite impulse response (FIR) filter is developed and presented. The nuclear
power transients, in small reactors, are estimated by solving the point kinetics
equations. According to this method, the stiff point kinetics equations are written as
convolution integrals. The convolution integrals are converted into simple algebraic
equations using discrete Z transform. Here, the power and precursor concentrations
are written as simple algebraic equations. This method has less computational
effort in estimating the transients. The impulse response functions, involved in the
convolution, characterize the FIR filters. Here, the reactor power and precursor
concentrations are represented by two different FIR filters. The impulse response
function is different for different types of reactivity perturbation. The impulse
response functions are found to be stable, and they have finite radius of convergence.
This method is applied to estimate the power transient of thermal reactor for step
(constant) reactivity perturbation with temperature feedback. The power transients
estimated with temperature feedback are found to be in good agreement with
standard results. In a similar manner, the method is also applied to estimate the
power transients for ramp reactivity input. The estimated power transients under
ramp reactivity perturbation are found to be in good agreement with reference
results. It is also shown that this method has high stability, i.e., any change in the
time step by a factor of 10 or 20 will not lead to large error in the estimation of
power. From the comparisons of results, it can be concluded that this method is
capable of estimating the reactor power transients for various types of reactivity
perturbations with feedback. This method can be easily designed and implemented
for estimating the power transient with feedback. A scheme to choose the sampling
time interval for solving the stiff point kinetics equations is also established.
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Convergence of Substructuring Domain
Decomposition Methods for
Hamilton–Jacobi Equation

Bankim C. Mandal

Abstract I present the convergence behavior of classical Schwarz, Dirichlet–
Neumann, and Neumann–Neumann methods for the Hamilton–Jacobi equation. The
methods are based on domain decomposition (DD) algorithms, where one semi-
discretizes in time or fully discretizes the equation, and use DD method to the
resulting equation in phase space. These methods are based on a non-overlapping
spatial domain decomposition, and each iteration involves subdomain-solves with
Dirichlet or Neumann boundary conditions. However, unlike for elliptic problems,
each subdomain solve can also involve a solution in space and time, and the interface
conditions may also be time-dependent in case of waveform relaxation version of
these methods. I introduce a coarse grid correction to get rid of the convergence
dependence on the number of subdomains. Numerical results are shown to illustrate
the performance of these algorithms with benchmark examples.

Keywords Dirichlet–Neumann · Neumann–Neumann · Waveform relaxation ·
Domain decomposition methods · Hamilton–Jacobi equation

Mathematics Subject Classification 65M55, 65Y05, 65M15

1 Introduction

There is a wide variety of plasma simulations where the resolution of key length
scales (such as the Debye length and gradients in the self-consistent electromagnetic
fields) is crucial, for example, plasma arc formation, virtual cathodes, and plasma
opening switches. One common approach to resolve these length scales is to
employ a kinetic representation of the plasma; however, such simulations are
computational and memory-intensive. Domain decomposition (DD) methods are
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established approach for distributing computational effort and in-memory storage
across many computational nodes. However, DD methods have not been formulated
for implicit solutions to the Vlasov equations. Furthermore, DD methods have not
been formulated for implicit solutions to a wider class of problems, namely the
Hamilton–Jacobi (H–J) equations; Pfirsch [22, 23] first showed that the Vlasov
equation can be reformulated as an the H–J equation, and for more details, see
[24, 28]. Starting from Schwarz [26] through Picard [25], Lindelöf [14], and
Bjørstad and Widlund [1], the development of DDM has come a long way. In
this chapter, I am particularly interested in DD methods for solving space–time
problems. There are mainly two approaches to solve them: firstly, the method
of lines, i.e., the classical approach where the problem is discretized in time to
obtain a sequence of elliptic problems, and then DDM [3, 4] are applied to the
resulting problems. The disadvantage of this approach is that one is forced to include
uniform time steps across the whole domain, which is restrictive for multi-scale
problems. Classical Schwarz method for PDEs is based on local solutions by using
Dirichlet boundary conditions on the artificial interfaces between the subdomains
and iteration; see [15, 26]. Dirichlet–Neumann algorithm was first introduced by
Bjørstad & Widlund [1] and further studied in [2, 17, 18]. The method is based
on a non-overlapping domain decomposition in space, and the iteration requires
subdomain solves with Dirichlet boundary conditions followed by subdomain solves
with Neumann boundary conditions. The performance of the algorithm for elliptic
problems is now well understood; see, for example, the book [27] and the references
therein. The second approach is the waveform relaxation (WR) methods; here, one
solves the space–time subproblems for the whole time window in one go.

There are multiple variants of the WR-type DDMs, such as Schwarz wave-
form relaxation (SWR) [7, 11], optimized SWR [8, 9], and more recently the
DNWR [10, 19], and NNWR [12, 13, 16]. In these algorithms, one first decomposes
the spatial domain into two or several overlapping or non-overlapping subdomains,
followed by subdomain solves by adding suitable artificial boundary condition(s).
These boundary conditions are usually called transmission conditions (TCs), which
transmit information between neighboring subdomains via iterations. Depending on
the nature of the TCs, one observes difference in convergence behavior.

I consider the following Hamilton–Jacobi equation as our guiding example:

∂tφ +H(∇φ) = 0, φ(x, 0) = φ0(x), x ∈ Ω, t ∈ [0, T ], (1)

where H is a Hamiltonian, and periodic boundary conditions are imposed for
Ω ⊂ R

d . The domainΩ is a bounded domain of regular or irregular shape; however,
I focus on only regular-shaped domain for the discussion. The H–J equations appear
in many applications, such as calculus of variations, control theory, and differential
games. I consider here three particular types of DD methods, namely, Schwarz
method, Dirichlet–Neumann method, and Neumann–Neumann method.
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2 Problem Formulation and Domain Decomposition
Methods

I start with a correlation between the H–J equation and conservation laws (CLs).
Although the solution to (1) is continuous, it has discontinuous derivatives, even if
φ0(x) is a C∞ function. By taking a spatial derivative of (1), we obtain

(φx)t + (H(φx))x = 0.

Setting u := φx , we can rewrite the above equation as

ut +H(u)x = 0, (2)

which is of the form of a scalar CL. Note that, the solution u to (2) is the derivative
of φ to (1). Conversely, the solution φ to (1) is the integral of a solution u to (2).
For more details, see [5, 20, 21]. However, the analogy between the CLs and the
H–J equation fails for higher spatial dimensions. The correspondence is somehow
effective for some specific the H–J equations, see [21]. So, effective numerical
schemes for solving hyperbolic CL can be used to solve the H–J equation.

A standard (mono-domain) approach for the H–J equation is to replace the
Hamiltonian with a numerical Hamiltonian, Ĥ , discretize equation (1) in space
and time, and solve the resulting non-linear system of equations using a Newton–
Raphson method at each time step. For example, one might take the Lax–Friedrich
approximation,

Ĥ = H

(
φ+
x + φ−

x

2
,
φ+
y + φ−

y

2
,
φ+
z + φ−

z

2

)
− αx

(
φ+
x − φ−

x

2

)

−αy
(
φ+
x − φ−

x

2

)
− αz

(
φ+
x − φ−

x

2

)
,

where αx = max | ∂
∂u
H(u, v,w)|, αy = max | ∂

∂v
H(u, v,w)|, αz = max | ∂

∂w

H(u, v,w)|, and φ±
i are the upwind and downwind approximation to the derivatives

in the appropriate direction.
Now, I introduce domain decomposition methods for Hamilton–Jacobi equation.

Suppose that the domain Ω is decomposed into N overlapping or non-overlapping
subdomains, Ωk , with Ω = ∪Ωk as in Fig. 1. DD methods decompose the original
problem into smaller subproblems defined in each subdomain; the subproblems are
coupled using transmission conditions T on the artificial (subdomain) boundaries,
i.e.,

∂tφk + Ĥ (∇φk) = 0, φk(x, 0) = φ0(x), x ∈ Ωk, t ∈ [0, T ],
T (φk(z, t)) = T (φj (z, t)), z ∈ ∂Ωk ∩ Ω̄j , j = 1, . . . , N.
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Fig. 1 Decomposition of a
space–time domain,
[0, L] × [0, T ] domain

Ω1 Ω2 ΩN 1 ΩN

0 L

t

T

xx1 x2 xN 2 xN 1

These coupled subproblems are decoupled using a Schwarz iteration [26].
Various transmission conditions have previously been analyzed for wide classes
of PDEs, for example, for second-order parabolic and hyperbolic equations, see
[9] and more recent development in [10], and for Maxwell’s equation in [6].
However, no one has addressed DD solutions to Hamilton–Jacobi equations, which
are particularly challenging because discontinuities in the derivatives can occur even
if smooth initial data is chosen.

2.1 Classical Schwarz Algorithm

To start with, we apply classical Schwarz algorithm to (1) by splitting the spatial
domain Ω into Ω1 and Ω2, with or without overlap. Suppose we use forward Euler
in time and upwind scheme in space to discretize (1):

φn+1
i = φni − �tH

(
φni −φni−1

�x
)
, (3)

with |H ′(α)| ≤ �x
�t . Since the scheme is explicit in nature, the DD method will

produce the solution in the first iteration. Two different solution plots are given in
Fig. 2, for both with and without overlap. The solutions after first time step are
plotted. It is evident that, the DD method with explicit schemes only decouples
the big problem into smaller subproblems and solves them to produce complete
solution. Hence, it lacks the basic parallel nature of a DD algorithm. One thus
needs to focus on implicit schemes. For example, we consider the linear advection
equation and use implicit upwind scheme to discretize. Therefore, the classical
Schwarz algorithm is given by

⎧
⎪⎪⎨

⎪⎪⎩

φn+1
i −φni�t + k

φn+1
i −φn+1

i−1
�x = 0,

φn+1
1 = un+1

left ,

φn+1
J = ϕn1+l ,

⎧
⎪⎪⎨

⎪⎪⎩

ϕn+1
i −ϕni�t + k

ϕn+1
i −ϕn+1

i−1
�x = 0,

ϕn+1
1 = φn+1

J−l ,
ϕn+1
J = un+1

right,

(4)
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Fig. 2 Convergence of Schwarz algorithm with explicit upwind scheme for Hamilton–Jacobi
equation: with overlap on the left and without overlap on the right panel
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Fig. 3 Convergence of classical Schwarz algorithm with implicit upwind scheme for linear
advection equation with overlap: solution after first iteration on the left panel and after second
iteration on the right
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Fig. 4 Convergence of classical Schwarz algorithm with implicit upwind scheme for linear
advection equation without overlap: solution after first iteration on the left panel and after second
iteration on the right

where φni := φ(xi, tn), uleft and uright are given physical boundaries, and {φ, ϕ}
are subdomain solutions. The algorithm is valid for both with overlap or without
overlap (l = 0). In Fig. 3, I show two-step convergence of the solution after one
time step in overlapping case. The non-overlapping case is plotted in Fig. 4.
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2.2 Dirichlet–Neumann and Neumann–Neumann Algorithms

I introduce the DN and NN algorithms for the H–J equation, after semi-discretizing
the equation in time. The DN method is given as follows: given initial guesses as
interface values gn,

⎧
⎪⎪⎨

⎪⎪⎩

φn+1
i −φni�t +H(∇φn+1

i ) = 0,

φn+1
1 = un+1

left ,

φn+1
J = gn+1,

⎧
⎪⎪⎨

⎪⎪⎩

ϕn+1
i −ϕni�t +H(∇ϕn+1

i ) = 0,

∂xϕ
n+1
1 = ∂xφ

n+1
J ,

ϕn+1
J = un+1

right,

(5)

with the update condition gn+1 = θgn+1 + (1 − θ)ϕn+1
1 for θ ∈ (0, 1]. I iterate at

each time step n until convergence before proceeding to the next time step.
The NN method is given as follows: given initial guesses as interface values hn,

I compute the Dirichlet subproblems

⎧
⎪⎪⎨

⎪⎪⎩

φn+1
i −φni�t +H(∇φn+1

i ) = 0,

φn+1
1 = un+1

left ,

φn+1
J = hn+1,

⎧
⎪⎪⎨

⎪⎪⎩

ϕn+1
i −ϕni�t +H(∇ϕn+1

i ) = 0,

ϕn+1
1 = hn+1,

ϕn+1
J = un+1

right,

(6)

followed by the Neumann solves:

⎧
⎪⎪⎨

⎪⎪⎩

ξn+1
i −ξni�t +H(∇ξn+1

i ) = 0,

ξn+1
1 = 0,

∂xξ
n+1
J = ∂xφ

n+1
J − ∂xϕ

n+1
1 ,

⎧
⎪⎪⎨

⎪⎪⎩

ηn+1
i −ηni�t +H(∇ηn+1

i ) = 0,

−∂xηn+1
J = ∂xφ

n+1
J − ∂xϕ

n+1
1 ,

ηn+1
J = 0,

(7)

with the updating step: hn+1 = hn+1 − θ{φn+1
J + ϕn+1

1 } for θ ∈ (0, 1].
On the contrary, in a waveform relaxation approach, one makes an initial guess

of the solution on the artificial boundary, φ[0]
k (z, t), where z ∈ ∂Ωk ∩ Ω̄j , j =

1, . . . , N , and solves the decoupled problems

∂tφ
[�]
k + Ĥ (∇φ[�]

k ) = 0, φ
[�]
k (x, 0) = φ0(x), x ∈ Ωk, t ∈ [0, T ], (8)

T (φ[�]
k (z, t)) = T (φ[�−1]

j (z, t)), z ∈ ∂Ωk ∩ Ω̄j , j = 1, . . . , N. (9)

The challenge is to find appropriate (possibly non-linear) transmission condi-
tions (9), which result in a convergent scheme. The choice of transmission con-
ditions is highly problem-dependent, and the convergence behavior differs based on
the problem and the artificial conditions.
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3 Numerical Illustrations

I implement these DD algorithms numerically for few standard benchmark model
problems. I consider three cases: linear flux, convex, and non-convex flux functions.
Since these problems are inherently non-linear, one needs to introduce Newton
iteration to solve each subdomain problem, and then there is another iterative
process for DD methods. I call the first one as inner iteration and the later outer
iteration (Tables 1, 2, 3, 4).

(a) Case 1: Linear Flux, H(u) = 3u, φ0(x) = − cos(πx), T = 1, and Δx =
1/400.

(b) Case 2a: Convex Flux, H(u) = (u+ 1)2/2, φ0(x) = − cos(πx), T = 0.5/π2,
and Δx = 1/400.

(c) Case 2b: Convex Flux, H(u) = (u + 1)2/2, φ0(x) = πx/2 − tan−1(103x),
T = 0.015/π2, and Δx = 1/400. For larger final time, mono-domain solution
(Newton) does not converge!

(d) Case 3: Non-convex Flux,H(u) = − cos(u+1), φ0(x) = − cos(πx), T = 0.1,
and Δx = 1/400.

3.1 Comparison with Waveform Relaxation Methods

Now, I compare the performance of classical methods with waveform relaxation-
based methods for both convex and non-convex fluxes (Tables 5 and 6).

Table 1 Comparison of
inner–outer iterations for
linear flux function (Case 1)

Δt Newton iteration Schwarz iteration, δ = 2Δx

1/20 3 4

1/40 3 3

1/80 3 2

1/160 3 2

1/320 3 2

Table 2 Comparison of inner–outer iterations for convex flux (Case 2a); X denotes the divergence
of the method

Schwarz iteration, Schwarz iteration,

Δt Newton iteration δ = 2Δx δ = 20Δx

T/20 X – –

T/40 X – –

T/80 7 X 2

T/160 6 X 2

T/320 5 3 2
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Table 3 Comparison of
inner–outer iterations for
convex flux and non-smooth
initial condition (Case 2b)

Δt Newton iteration Schwarz iteration, δ = 2Δx

T/20 – –

T/40 12 X

T/80 10 5

T/160 8 5

T/320 7 3

Table 4 Comparison of inner–outer iterations for non-convex flux (Case 3)

Schwarz iteration, Schwarz iteration,

Δt Newton iteration δ = 2Δx δ = 20Δx

T/20 16 12 3

T/40 11 9 3

T/80 8 8 3

T/160 7 7 2

T/320 6 6 2

Table 5 Comparison in wall
time between classical and
waveform methods for
convex flux (Case 1)

Δt Methods Wall time DD iteration

1/40 CS 1.44 2

WR 4.38 12

1/80 CS 2.41 2

WR 7.07 12

Table 6 Comparison in wall
time between classical and
waveform methods for
non-convex flux (Case 2)

Δt Methods Wall time DD iteration

1/40 CS 2.43 2

WR 14.38 26

1/80 CS 3.94 2

WR 23.60 25

(a) Case 1: Convex Flux, H(u) = (u+ 1)2/2, φ0(x) = − cos(πx), T = 0.02/π2,
and Δx = 1/400.

(b) Case 2: Non-convex Flux H(u) = − cos(u+1), φ0(x) = − cos(πx), T = 0.1,
and Δx = 1/400.

4 Concluding Remarks

I have introduced domain decomposition methods for Hamilton–Jacobi equation.
I formulate the Schwarz, the DN, and the NN algorithms to solve the underlying
non-linear space–time problem. These algorithms involve Newton iterative method
in each of the DD iteration. With numerical experiments, I have shown faster
convergence in classical DD methods in comparison to waveform relaxation
methods.
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Dynamical Behaviour of Dengue: An SIR
Epidemic Model

Sudipa Chauhan, Sumit Kaur Bhatia, and Simrat Chaudhary

Abstract In this chapter, we have demonstrated the dynamical behaviour of
dengue using an SIR epidemic model, spanning both distributed and discrete time
delays. The existence of boundary and interior equilibrium points has been studied.
Furthermore, we have discussed the local stability of the equilibrium points. The
disease-free equilibrium point is locally asymptotically stable if R0 < 1 and
b > β1 +β2e

−bτ and unstable for R0 > 1. The endemic equilibrium point is locally
asymptotically stable for [0,τ

′
), and it undergoes Hopf bifurcation at τ = τ

′
. The

direction and stability of Hopf bifurcation have been established using the normal
form theory and the centre manifold theorem, and lastly the analytical results are
verified numerically, and further, sensitivity analysis is conducted to show how the
periodic solution of the system is dependent upon delay, rate of infection, and birth
and death rate.

Keywords Discrete delay · Distributed delay · Basic reproduction number ·
Local stability · Hopf bifurcation

Mathematics Subject Classification 34A38, 92D30

1 Introduction

From an endemic to a pandemic, dengue has stretched its length and breadth with
an estimated 50 million infections per year across 100 countries approximately.
This arbovirus is primarily attributed to the distribution of able mosquito vectors
across tropical and sub-tropical areas. Prima facie here is the urban-adapted “Aedes
aegypti.” It breeds in dense man-made environments. The accelerated urbanization
in Asia and Latin America propelled an increased population, leading to ample
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vector-breeding sites within densely packed urban communities and surrounding
areas instigating its endemic nature. According to the World Health Organization
(WHO), about 390 million cases of dengue fever occur worldwide each year,
with around 96 million requiring medical treatment. Thailand has reached 10,446
recorded cases of dengue fever in 2018, as of mid-May, with 15 related deaths.
Sri Lanka reported 80,732 cases of dengue fever, with 215 deaths from January
to July 2017. New Delhi, India, reported an outbreak of dengue fever, with 1872
testing positive for the illness in September 2015. Dengue fever has been a recurrent
problem in West Bengal with a major outbreak in 2012, which involved several
districts of West Bengal [1]. And, the list is endless. Dengue virus infection is
inapparent sometimes, but it can trigger versatile clinical manifestations starting
from mild fever to life-threatening dengue shock syndrome [2]. The incubation
period is approximately of 10–15 days. The patient starts showing symptom
after incubation period. Till now, many mathematical models have been discussed
by the researchers to study the qualitative and quantitative analysis of dengue
or other epidemic disease [3–5]. One of the simplest compartmental models in
epidemiology to formulate any disease dynamics is an SIR model. This consists
of three compartments, S stands for the number of susceptible, I for the number of
infected, and R for the recovered population. This was proposed by Kermack and
McKendrick [6], and it is as follows:

dS

dt
= −βSI (1)

dI

dt
= βSI − γ I (2)

dR

dt
= γ I. (3)

Here, β is the contact rate and γ is the recovery rate from the infected compartment.
This model takes the population size to be fixed (i.e. there are no births, no deaths
due to disease, or deaths by natural causes). Also, the incubation period (i.e. the
period between exposure to an infection and the appearance of the first symptoms)
of the infectious agent is instantaneous. But, simple mathematical models cannot be
used to understand the rich dynamics of the disease like dengue. Since we know that
time lag is present in the transmission phase of dengue, it is required to incorporate
delay to study the rich dynamics of such models. Delay differential equations are
widely used in epidemiology, and problems related to delay have been investigated
by a number of authors [7–11]. Several authors have investigated this disease and
presented their work regarding the same [12–16]. Recently, in 2019, the authors [17]
developed a dengue transmission mathematical model with discrete time delays and
estimated the reproduction number. However, they did not incorporate distributive
delay in the model which is a more generalized case. The distributive delay is
considered in reference to [18]. Furthermore, the existence of periodic solution and
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the direction of Hopf bifurcation have not been discussed in their paper, and the
effect of rest of the parameters on the stability of the system was also untouched by
them.

Hence, motivated by the above literature, in this chapter, we have constructed
the SIR model with distributed and discrete time delays. The chapter is organized as
follows: the mathematical model is proposed in Sect. 2, followed by the existence of
equilibrium points in Sect. 3. The local stability, the existence of Hopf bifurcation,
and its direction of stability are discussed in Sects. 4, 5, and 6. Finally, the analytic
results are validated numerically in the last section with conclusion and supporting
graphs.

2 Mathematical Model Formulation

In this section, we will propose our new model from the basic SIR epidemic model,
by incorporating distributed and discrete time delays:-

dS
dt

= −β1I
∫ t
−∞ F(t − τ)S(τ)dτ − bS + b(S + I + R)

dI
dt

= β1I
∫ t
−∞ F(t − τ)S(τ)dτ − β2e

−bτ S(t − τ)I (t − τ)− bI
dR
dt

= β2e
−bτ S(t − τ)I (t − τ)− bR.

(4)

Here, F(t), called the delay kernel, is a weighting factor that indicates how
much emphasis should be given to the size of the population at earlier times to
determine the present effect on resource availability, and we are normalizing it
to
∫ +∞

0 F(τ)dτ = 1. It is done so that distributive delay must not affect the
equilibrium values. Furthermore, we have considered F(t) = ae−at , a > 0, which
signifies weak delay kernel, which indicates that the maximum weighted response
of the growth rate of population is due to current population density, while past
densities have (exponentially) decreasing influence. In addition, a few standard
assumptions are taken which are as follows:

• All newborns are considered to be susceptible as soon as they are born.
• The population considered has a constant size N , and the variables are normal-

ized to N = 1, that is, S(t)+ I (t)+ R(t) = 1 for all t .
• Births and deaths occur at equal rates b in N , and all the newborns are

susceptible.
• Infected individuals after recovering are transferred to the “removed” class R

through the infections period τ that is given by β2e
−bτ S(t − τ)I (t − τ).

Thus, we only need to consider the following system:

dS
dt

= −β1I
∫ t
−∞ F(t − τ)S(τ)dτ − bS + b

dI
dt

= β1I
∫ t
−∞ F(t − τ)S(τ)dτ − β2e

−bτ S(t − τ)I (t − τ)− bI
dR
dt

= β2e
−bτ S(t − τ)I (t − τ)− bR.

(5)
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Table 1 Meaning of
variables and parameters

Variable/Parameter Meaning

S Number of susceptible

I Number of infective

R Number of recovered

β1 Interaction rate of S and Z

β2 Contact rate of susceptible and infective

τ Discrete time delay

e−bτ Survival rate of individuals

b Daily death removal rate

The initial conditions of the system take the form S(θ) = φ1(θ), I (θ) =
φ2(θ), R(θ) = φ3(θ) and φ1(θ) > 0, φ2(θ) > 0, and φ3(θ) > 0 for θ = [−τ, 0]
and φ1(0) > 0, φ2(0) > 0, and φ3(0) > 0, where φ = (φ1(θ), φ2(θ), φ3(θ)) ∈
C+ ×C+. Here, C is the Banach space C = C([−τ, 0],R) of continuous functions
mapping the interval [−τ, 0] into R, equipped with the supremum norm. The non-
negative cone is defined as C+ = C([−τ, 0],R+).

Furthermore, we reduce the system using linear chain trick [19] by defining
(proof given in the Appendix)

Z(t) =
∫ t

−∞
F(t − τ)S(τ)dτ. (6)

In the above system (5), the first two equations are independent of R, and hence, the
final system becomes

dS

dt
= −β1IZ − bS + b

dI

dt
= β1IZ − β2e

−bτ S(t − τ)I (t − τ)− bI (7)

dZ

dt
= a(S − Z),

and the parameters and the variables have already been defined in Table 1.

3 Existence of Equilibrium Points

In this section, the disease-free equilibrium and the endemic equilibrium points
would be discussed.

• The disease-free equilibrium is E0(1, 0, 1).
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• The endemic equilibrium point is E∗( b
(β1−β2e

−bτ ) , (1 − 1
R0
), b

(β1−β2e
−bτ ) ), which

exists if R0 > 1 and β1 > β2e
−bτ , where R0 = β1

b+β2e
−bτ is the basic

reproduction number. Which reduces to R
′′
0 = β1

b+β2
in the absence of delay.

4 Local Stability of Equilibrium Points

In this section, we will be discussing the local stability of the disease-free and
endemic equilibrium points.

Theorem 4.1

1. The disease-free equilibrium point is locally asymptotically stable for R0 < 1 if
b > β1 + β2e

−bτ .
2. The endemic equilibrium point is locally stable for R0 > 1 in [0, τ ∗] and

possesses Hopf bifurcation for τ > τ ∗.

Proof The general Jacobian matrix for the given system of equations is

J (S, I, Z) =
⎡

⎣
−b −β1Z −β1I

0 β1Z − b β1I

a 0 −a

⎤

⎦+ e−λτ
⎡

⎣
0 0 0

−β2e
−bτ I −β2e

−bτ S 0
0 0 0

⎤

⎦ .

The characteristic equation corresponding to the disease-free equilibrium
E0(1, 0, 1) is given by

(−b − λ)(β1 − b − β2e
−(b+λ)τ − λ)(−a − λ) = 0. (8)

Clearly, (8) always has two negative roots, which are λ = −a,−b. All other roots
of (8) are determined by the following equation:

λ+ b + β2e
−(b+λ)τ − β1 = 0. (9)

Let H(λ) = λ+ b + β2e
−(b+λ)τ − β1. We note that H(0) = b + β2e

−bτ − β1 < 0

if R0 = β1
b+β2e

−bτ > 1, and limλ→+∞H(λ) = +∞. It follows from the continuity
of the function H(λ) on (−∞,+∞) that the equation H(λ) = 0 has at least one
positive root. Hence, (9) has at least one positive root. Therefore, the disease-free
equilibrium E0 is unstable for R0 > 1.

Now, we prove thatE0 is locally stable forR0 < 1. Let us suppose that λ = α+iβ
be the root of Eq. (9); then, separating the real and imaginary parts, we get

β1 − b = β2e
−bτ e−ατ cosβτ

ω = β2e
−bτ e−ατ sinβτ .
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On squaring and adding the above equations, we get (β1 − b)2 + ω2 =
(β2e

−bτ e−ατ )2
(β1 − b)2 + ω2 ≤ (β2e

−bτ )2
ω2 ≤ (b + β2e

−bτ )(β2e
−bτ + β1 − b)(1 − R0).

ω2 has no positive solution for R0 < 1 if b > β1 + β2e
−bτ . Thus, it is proved

that disease-free equilibrium point is locally asymptotically stable for R0 < 1 if
b > β1 + β2e

−bτ . 	

The characteristic equation corresponding to the endemic equilibrium point

E∗( b
(β1−β2e

−bτ ) , 1 − 1
R0
, b
(β1−β2e

−bτ ) ) is given by

λ3 + C2λ
2 + C1λ+ C0 + e−λτ

(
D2λ

2 +D1λ+D0
) = 0, (10)

where

C2 = −a − β1S
∗ + b + bS∗,

C1 = −b2S∗ − β1(1 − 1
R0
)− 2ab + aβ1 + bS∗β1),

C0 = −aβ1β2Z
∗(1 − 1

R0
)+ ab(β1 − b)+ aβ1S

∗(1 − 1
R0
)(β1 − b),

D2 = β2e
−bτ S∗,

D1 = β2e
−bτ (a + bS∗), and

D0 = −aβ2e
−bτ (β1(1 − 1

R0
)S∗ − b)+ β2I

∗Z∗e−bτ (−aβ1 + 1)

In this section, two cases would be discussed, i.e. when τ = 0 and τ �= 0. We begin
with the case of τ = 0 as it is necessary that the nontrivial equilibrium point should
be locally stable for τ = 0, so that we can obtain the local stability for all non-
negative values of delay and further can find the critical value that may destabilize
the system.

Case 1: τ = 0
The endemic equilibrium point in this case is given by E∗( b

β1−β2
, 1 − 1

R
′′
0

, b
β1−β2

),

which exists when R
′′
0 > 1 and β1 > β2, where R

′′
0 = β1

b+β2
. The characteristic

equation reduces to

λ3 + (C2 +D2)λ
2 + (C1 +D1)λ+ (C0 +D0) = 0. (11)

By Routh–Hurwitz criteria, E∗ is locally asymptotically stable, if (C2 + D2) > 0
and (C2 + D2)(C1 + D1) − (C0 + D0) > 0. We assume in the sequel that this
condition is true and now discuss the case for τ > 0.

Case 2: τ > 0
As we know that the characteristic equation in this case is given by (10). Now, let
λ = ιζ . Hence, (10) can be written as

(ιζ )3 + C2(ιζ )
2 + C1(ιζ )+ C0 + [D2(ιζ )

2 +D1(ιζ )+D0]e−ιζ τ = 0
⇒ −ιζ 3 −C2ζ

2 +C1ιζ +C0 + [−D2ζ
2 +D1ιζ +D0][cos(ζ τ )− ι sin(ζ τ )] = 0.
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Separating real and imaginary parts, we get

−ζ 3 + C1ζ +D1ζ cos(ζ τ )+ sin(ζ τ )(D2ζ
2 −D0) = 0

and, −C2ζ
2 + C0 −D2ζ

2 cos(ζ τ )+D0 cos(ζ τ )+D1ζ sin(ζ τ ) = 0,

or

D1ζ cos(ζ τ )+ sin(ζ τ )(D2ζ
2 −D0) = ζ 3 − C1ζ ,

and D1ζ sin(ζ τ )− cos(ζ τ )(D2ζ
2 −D0) = C2ζ

2 − C0.

And, after squaring both sides and adding both the equations, we get

ζ 6 +G2ζ
4 +G1ζ

2 +G0 = 0, (12)

where

G2 = C2
2 − 2C1 −D2

2,
G1 = C2

1 − 2C0C2 + 2D0D2 −D2
1, and

G0 = C2
0 −D2

0.

Next, let H = ζ 2. Therefore, (12) reduces to

H 3 +G2H
2 +G1H +G0 = 0. (13)

According to the Routh–Hurwitz stability criterion, (13) has roots with negative real
parts if G0 ≥ 0, G2 ≥ 0, and G2G1 ≥ G0. But, H = ζ 2 ≥ 0 clearly indicates that
our assumption λ = ιζ is wrong. Hence, the characteristic equation has no positive
roots, and the real part of all the eigenvalues is negative for all τ ≥ 0.

Therefore, the system of equations is stable when τ ≥ 0.

5 Existence of Hopf Bifurcation

In this section, we discuss the criteria for the existence of Hopf bifurcation. The
characteristic equation for the system of equations at the endemic equilibrium point
E∗ is

λ3 + C2λ
2 + C1λ+ C0 + e−λτ

(
D2λ

2 +D1λ+D0
) = 0, (14)

where

C2 = −a − β1S
∗ + b + bS∗,

C1 = −b2S∗ − β1(1 − 1
R0
)− 2ab + aβ1 + bS∗β1),

C0 = −aβ1β2Z(1 − 1
R0
)+ ab(β1 − b)+ aβ1S

∗(1 − 1
R0
)(β1 − b),

D2 = β2e
−bτ S∗,
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D1 = β2e
−bτ (a + bS∗), and

D0 = −aβ2e
−bτ (β1(1 − 1

R0
)S∗ − b)+ β2I

∗Z∗e−bτ (−aβ1 + 1).

On multiplying (14) by eλτ on both sides, we get

(λ3 + C2λ
2 + C1λ+ C0)e

λτ +D2λ
2 +D1λ+D0 = 0. (15)

Let λ = ισ . And hence, (15) can be written as

[(ισ )3 + C2(ισ )
2 + C1(ισ )+ C0]eιστ +D2(ισ )

2 +D1(ισ )+D0 = 0
⇒ [−ισ 3 −C2σ

2 +C1(ισ )+C0][cos(στ)+ ι sin(στ)]−D2σ
2 +D1ισ +D0 = 0.

Separating real and imaginary parts, we get

[−σ 3 + C1σ ] cos(στ)+ sin(στ)[−C2σ
2 + C0] = −D1σ ,

and [−C2σ
2 + C0] cos(στ)− sin(στ)[−σ 3 + C1σ ] = D2σ

2 −D0.

On solving the above two equations, we get

sin(στ) = g4σ
5 + g5σ

3 + g6σ

σ 6 + g1σ 4 + g2σ 2 + g3
(16)

cos(στ) = g7σ
4 + g8σ

2 + g9

σ 6 + g1σ 4 + g2σ 2 + g3
, (17)

where

g1 = C2
2 − 2C1,

g2 = C2
1 − 2C0C2,

g3 = C2
0 ,

g4 = D2,
g5 = C2D1 − C1D2 −D0,
g6 = C1D0 − C0D1,
g7 = D1 − C2D2,
g8 = C2D0 + C0D2 − C1D1, and
g9 = −C0D0.

Furthermore, adding the square of Eqs. (16) and (17), we have

σ 12 + z1σ
10 + z2σ

8 + z3σ
6 + z4σ

4 + z5σ
2 + z6 = 0, (18)

where

z1 = 2g1 − g2
4,

z2 = 2g2 + g2
1 − 2g4g5 − g2

7,
z3 = 2g3 + 2g1g2 − g2

5 − 2g4g6 − 2g7g8,
z4 = 2g1g3 + g2

2 − g2
8 − 2g7g9 − 2g5g6,
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z5 = 2g2g3 − 2g8g9 − g2
6, and

z6 = g2
3 − g2

9.

Next, we take a = σ 2. Then, Eq. (18) gets reduced to

a6 + z1a
5 + z2a

4 + z3a
3 + z4a

2 + z5a + z6 = 0. (19)

Now, let

L̃(a) = a6 + z1a
5 + z2a

4 + z3a
3 + z4a

2 + z5a + z6. (20)

Since L̃(a) → ∞ as a → ∞, and z6 < 0 if g2
3 < g2

9, then by Descartes’ rule of
signs, Eq. (20) has at least one positive real root.

Let us assume that we have six positive roots for Eq. (20), denoted by
a1, a2, a3, a4, a5 and a6. Then,
σ1 = √

a1, σ2 = √
a2, σ3 = √

a3, σ4 = √
a4, σ5 = √

a5, σ6 = √
a6.

From (17), we have

cos(σj τ ) = g7σ
4
j + g8σ

2
j + g9

σ 6
j + g1σ

4
j + g2σ

2
j + g3

, (21)

where j = 1, 2, 3, 4, 5, 6. Hence, we get

τ
(k)
j = 1

σj

[
arccos

(
g7σ

4
j + g8σ

2
j + g9

σ 6
j + g1σ

4
j + g2σ

2
j + g3

)
+ 2kπ

]
, (22)

where j = 1, 2, 3, 4, 5, 6 and k = 0, 1, 2, 3, . . .
Then, the pair of imaginary roots is ±ισj . Next, we define τ

′ = min τ (0)j and σ
′ =

σ(τ
′
). To establish Hopf bifurcation at τ = τ

′
, we need to prove that Re(dλ

dτ
)
τ=τ ′ �=

0.
Taking the derivative of (14) with respect to τ , we get

dλ

dτ
= −

[
(λ3 +C2λ

2 +C1λ+C0)λe
λτ

eλτ ((3λ2 +2C2λ+C1)+τ(λ3 +C2λ2 +C1λ+C0))+ (2D2λ+D1)

]
.

(23)

And hence, it follows that

(
dλ

dτ

)−1

= −
[
(3λ2 + 2C2λ+ C1)e

λτ + (2D2λ+D1)

λeλτ (λ3 + C2λ2 + C1λ+ C0)
+ τ

λ

]
. (24)
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Furthermore, substituting λ = ισ
′
, we get

(
dλ

dτ

)−1

|
τ=τ ′ = −

[
d̃1 + ιd̃2

d̃3 + ιd̃4

]
+ ι

τ
′

σ
′ , (25)

where

d̃1 = −3(σ
′
)2 cos(σ

′
τ

′
)+ C1 cos(σ

′
τ

′
)− 2C2σ

′
sin(σ

′
τ

′
)+D1,

d̃2 = 2C2σ
′
cos(σ

′
τ

′
)− 3(σ

′
)2 sin(σ

′
τ

′
)+ C1 sin(σ

′
τ

′
)+ 2D2σ

′
,

d̃3 = (σ
′
)4 cos(σ

′
τ ′)+C2(σ

′
)3 sin(σ

′
τ

′
)−C1(σ

′
)2 cos(σ

′
τ

′
)−C0σ

′
sin(σ

′
τ

′
), and

d̃4 = (σ
′
)4 sin(σ

′
τ ′)− C2(σ

′
)3 cos(σ

′
τ

′
)− C1(σ

′
)2 sin(σ

′
τ

′
)+ C0σ

′
cos(σ

′
τ

′
).

Thus,

Re

(
dλ

dτ

)−1

|
τ=τ ′ = −

[
d̃1d̃3 + d̃2d̃4

d̃3
2 + d̃4

2

]
. (26)

We notice that

sign

{
Re

(
dλ

dτ

)
|
τ=τ ′

}
= sign

{
Re(

dλ

dτ
)−1|

τ=τ ′
}
. (27)

And hence, we can conclude that the endemic equilibrium point of the given system
of equations is asymptotically stable for [0, τ ′

), and it undergoes Hopf bifurcation
at τ = τ

′
.

6 Direction and Stability of Hopf Bifurcation

In the previous section, we obtained certain conditions under which the given system
of equations undergoes Hopf bifurcation, with time delay τ = τ

′
being the critical

parameter. In this section, by taking into account the normal form theory and the
centre manifold theorem, which were introduced by Hassard et al. [20], we will
be presenting the formula determining the direction of Hopf bifurcation and will
be obtaining conditions for the stability of bifurcating periodic solutions, as well.
Since Hopf bifurcation occurs at the critical value τ

′
of τ , there exists a pair of pure

imaginary roots ±ισ (τ ′
) of the characteristic equation (14).

Let, x1 = S − S∗, x2 = I − I ∗, and x3 = Z − Z∗ (where S∗, I ∗, and Z∗ are the
values of S, I , and Z in the case of endemic equilibrium point).

Thus, the given system of equations gets transformed into the following system:

dx1

dt
= −β1x2x3 − β1I

∗Z∗ − β1Z
∗x2 − β1I

∗x3 − bx1 − bS∗ + b
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dx2

dt
= β1x2x3 + β1I

∗Z∗ + β1Z
∗x2 + β1I

∗x3 − β2e
−bτ x1(t − τ)x2(t − τ)

− β2e
−bτ S∗x2(t − τ)

− β2e
−bτ I ∗x1(t − τ)− β2e

−bτ S∗I ∗ − bx2 − bI ∗

dx3

dt
= ax1 + aS∗ − ax3 − aZ∗.

We also let t → τ t and τ = τ
′ + μ. Then, the system finally takes the form of an

FDE in C = C([−1, 0], R3 as

ẋ(t) = Lμ(xt )+ F(μ, xt ), (28)

where x(t) = (x1(t), x2(t), x3(t))
T ∈ R3 and Lμ : C → R3, F : C × R → R3 are

given, respectively, by
Lμ(ψ) = (τ

′ + μ)L1ψ(0) + (τ
′ + μ)L2ψ(−1), and F(μ,ψ) = (τ

′ + μ)F1
where,

L1 =
⎡

⎣
−b −β1Z

∗ −β1I
∗

0 β1Z
∗ − b β1I

∗
a 0 −a

⎤

⎦,

L2 =
⎡

⎢⎣
0 0 0

−β2e
−b(τ ′+μ)I ∗ −β2e

−b(τ ′+μ)S∗ 0
0 0 0

⎤

⎥⎦, and

F1 =
⎡

⎢⎣
−β1ψ2(0)ψ3(0)

β1ψ2(0)ψ3(0)− β2e
−b(τ ′+μ)ψ1(−1)ψ2(−1)
0

⎤

⎥⎦.

We also have that, ψ = (ψ1, ψ2, ψ3)
T ∈ C, and xt (θ) = x(t + θ) for θ ∈ [−1, 0].

By the Riesz representation theorem, there exists a function η(θ, μ) of bounded
variation for θ ∈ [−1, 0], such that

Lμ(ψ) =
∫ 0

−1
dη(θ, μ)ψ(θ). (29)

This equation holds for ψ ∈ C.
In fact, we can take

η(θ, μ) = (
τ

′ + μ
)
L1δ(θ)+

(
τ

′ + μ
)
L2δ(θ + 1), (30)

where, L1 and L2 have already been given above, and δ(θ) is Dirac delta function.
Next, for ψ ∈ C1([−1, 0], R3), we define the following:
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A(μ)ψ =
{

dψ(θ)
dθ

, θ ∈ [−1, 0)∫ 0
−1 dη(s, μ)ψ(s), θ = 0,

and

R(μ)ψ =
{

0, θ ∈ [−1, 0)
F (μ,ψ), θ = 0

Then, the system (28) is equivalent to

ẋt = A(μ)xt + R(μ)xt , (31)

where xt (θ) = x(t + θ) for θ ∈ [−1, 0].
Next, for ϕ ∈ C1([0, 1], R3), the adjoint operator A∗ of A can be defined as

A∗ϕ(s) =
{ −dϕ(s)

ds
, s ∈ (0, 1]∫ 0

−1 dη
T (t, 0)ϕ(−t), s = 0,

and hence for ψ ∈ ([−1, 0], R3), ϕ ∈ ([0, 1], R3), a bilinear inner product, in order
to normalize the eigenvalues of A and A∗, can be defined as follows:

< ϕ(s), ψ(θ) >= ϕ̄(0)ψ(0)−
∫ 0

−1

∫ θ

γ=0
ϕ̄(γ − θ)dη(θ)ψ(γ )dγ, (32)

where η(θ) = η(θ, 0), and ϕ̄ is the complex conjugate of ϕ. It can be verified that
the operatorsA andA∗ are adjoint operators with respect to this bilinear form. Thus,
since ±ισ ′

τ ′ are eigenvalues of A(0), they are the eigenvalues of A∗ as well.
We need to compute the eigenvectors of A(0) and A∗ corresponding to the

eigenvalues ισ
′
τ

′
and −ισ ′

τ
′
, respectively.

Let us suppose that q(θ) = (1, α
′
, β

′
)T eισ

′
τ
′
θ is the eigenvector of A(0)

corresponding to ισ
′
τ ′.

Then, A(0)q(θ) = λq(θ), that is, A(0)q(θ) = ισ
′
τ ′q(θ),

or
[λI − A(0)]q(0) = 0,

which gives the following:

τ
′

⎡

⎢⎣
ισ

′ + b β1Z
∗ β1I

∗

β2e
−bτ ′

I ∗e−ισ
′
τ
′
ισ

′ + β2e
−bτ ′

S∗e−ιτ
′
σ

′ − β1Z
∗ + b −β1I

∗
−a 0 ισ

′ + a

⎤

⎥⎦

⎡

⎣
1
α

′

β
′

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦

or



Dynamical Behaviour of Dengue: An SIR Epidemic Model 85

⎡

⎢⎣
ισ

′ + b β1Z
∗ β1I

∗

β2e
−bτ ′

I ∗e−ισ
′
τ
′
ισ

′ + β2e
−bτ ′

S∗e−ιτ
′
σ

′ − β1Z
∗ + b −β1I

∗
−a 0 ισ

′ + a

⎤

⎥⎦

⎡

⎣
1
α

′

β
′

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦

(since τ
′ �= 0).

And, on solving this, we get q(0) = (1, α
′
, β

′
)T , where

α
′ = β1I

∗β ′−β2e
−bτ ′ e−ισ

′
τ ′ I∗

ισ
′+β2S

∗e−bτ
′
e−ισ

′
τ ′−β1Z

∗+b
, and β

′ = a

a+ισ ′ .

Next, let us suppose that q∗(θ) = D(1, (α
′
)∗, (β ′

)∗)eισ
′
τ
′
θ be the eigenvector of

A∗ corresponding to the eigenvalue −ισ ′
τ

′
, and hence in a similar manner, we can

obtain(
α

′)∗ = −β1Z
∗

−ισ ′−β1Z
∗+b+β2S

∗e−bτ
′
eισ

′
τ
′ , and (β

′
)∗ = (βI∗α′−β1I

∗)∗
a−ισ ′ .

From (32), we get

< q∗(s), q(θ) > = D̄
(

1, ¯(
α

′)∗
,

¯(
β

′)∗) (1, α′
, β

′)T

−
∫ 0

−1

∫ θ

γ=0
D̄(1, ¯(α′

)∗, ¯(β
′
)∗)e−ισ

′
τ
′
(γ−θ)dη(θ)

× (1, α
′
, β

′
)T eισ

′
τ
′
γ dγ

= D̄[1 + (α
′
)∗α′ + (β

′
)∗β ′ − (1, ¯(α′

)∗, ¯(β
′
)∗)

×
∫ 0

−1
θeισ

′
τ
′
θ dη(θ)(1, α

′
, β

′
)T .

Now, let ψ(θ) = θeισ
′
τ
′
θ

⇒ ψ(0) = 0, and ⇒ ψ(−1) = −e−ισ ′
τ
′
.

Thus, from (32) and the definition of ψ as taken above, we finally get that

< q∗(s), q(θ) >= D̄[1 + (α
′
)∗α′ + (β

′
)∗β ′ − τ ′(I ∗ + α

′
S∗) ¯(α′

)∗βe−bτ
′
e−ισ

′
τ
′ ].

Hence, D̄ = 1

[1+(α′
)∗α′+(β ′

)∗β ′−τ ′(I∗+α′
S∗) ¯

(α
′
)∗βe−bτ

′
e−ισ

′
τ
′ ]

,

such that < q∗(s), q(θ) >= 1 and < q∗(s), q̄(θ) >= 0.
In the remaining part of this section, using the same ideas as in [20], we now

compute the coordinates in order to describe the centre manifold C0 at μ = 0. Let
xt be the solution of (28) when μ = 0.

Next, define

z̃(t) =< q∗, xt >,W(t, θ) = xt − 2Re[z̃(t)q(θ)]. (33)

Now, on the centre manifold C0, we have
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W(t, θ) = W(z̃(t), ¯̃z(t), θ) = W20(θ)
z̃2

2
+W11(θ)z̃ ¯̃z+W02(θ)

¯̃z2

2
+ . . . , (34)

where z̃ and ¯̃z are local coordinates for the centre manifold C0 in the direction of
q∗ and q̄∗. We note that W is real if xt is real, and we will be considering the real
solutions only.

From (33), we have ˙̃z(t) =< q∗, ẋt >

=< q∗, A(μ)xt + R(μ)xt >

=< A∗(μ)q∗, xt > + < q∗, R(μ)xt >
= ισ

′
τ

′
z̃(t)+ < q∗, R(μ)xt > (since A∗q∗ = λ̄q∗)

= ισ
′
τ

′
z̃(t) + q̄∗(0)F (0, xt ) (from the definition of bilinear product and taking

θ = 0)
= ισ

′
τ

′
z̃(t)+ q̄∗(0)F (0,W(z̃, ¯̃z, 0)+ 2Re[z̃q(0)])

= ισ
′
τ

′
z̃(t)+ q̄∗(0)F0(z̃, ¯̃z)

= ισ
′
τ

′
z̃(t)+ g(z̃, ¯̃z),

where

g(z̃, ¯̃z) = q̄∗(0)F0(z̃, ¯̃z) = g20
z̃2

2
+ g11z̃ ¯̃z+ g02

¯̃z2

2
+ g21

z̃2 ¯̃z
2

+ . . . (35)

From (35), we have

xt (θ) = (x1t (θ), x2t (θ), x3t (θ)) = W(t, θ)+ z̃q(θ)+ ¯̃zq̄(θ),
and q(θ) = (1, α

′
, β

′
)T eιθσ

′
τ
′
.

And thus, we can obtain that

x1t (0) = W
(1)
20 (0)

z̃2

2 +W
(1)
11 (0)z̃

¯̃z+W
(1)
02 (0)

¯̃z2

2 + z̃+ ¯̃z+O(|z̃, ¯̃z|3),
x2t (0) = W

(2)
20 (0)

z̃2

2 +W
(2)
11 (0)z̃

¯̃z+W
(2)
02 (0)

¯̃z2

2 + α
′
z̃+ ᾱ

′ ¯̃z+O(|z̃, ¯̃z|3),
x3t (0) = W

(3)
20 (0)

z̃2

2 +W
(3)
11 (0)z̃

¯̃z+W
(3)
02 (0)

¯̃z2

2 + β
′
z̃+ β̄

′ ¯̃z+O(|z̃, ¯̃z|3),
x1t (−1) = W

(1)
20 (−1) z̃

2

2 +W
(1)
11 (−1)z̃ ¯̃z+W

(1)
02 (−1)

¯̃z2

2 + z̃+ ¯̃z+O(|z̃, ¯̃z|3),
x2t (−1) = W

(2)
20 (−1) z̃

2

2 + W
(2)
11 (−1)z̃ ¯̃z + W

(2)
02 (−1)

¯̃z2

2 + α
′
z̃e−ισ

′
τ
′ + ᾱ

′ ¯̃zeισ ′
τ
′

+O(|z̃, ¯̃z|3),
x3t (−1) = W

(3)
20 (−1) z̃

2

2 + W
(3)
11 (−1)z̃ ¯̃z + W

(3)
02 (−1)

¯̃z2

2 + β
′
z̃e−ισ

′
τ
′ + β̄

′ ¯̃zeισ ′
τ
′

+O(|z̃, ¯̃z|3).
From the definition of F(μ, xt ), we get

g(z̃, ¯̃z) = τ
′
D̄
(

1, ¯(
α

′)∗
,

¯(
β

′)∗)
⎡

⎢⎣
−β1x2t (0)x3t (0)

β1x2t (0)x3t (0)− β2e
−bτ ′

x1t (−1)x2t (−1)
0

⎤

⎥⎦

= τ
′
D̄
{
z̃2
[
α

′
β

′(− β1 + ¯(
α

′
)∗
β
)

+ α
′
e−ισ

′
τ
′(− ¯(

α
′
)∗
β2e

−bτ ′)]
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+ 2z̃ ¯̃z
[(

−β1 + ¯(
α

′
)∗
β
)
Re
{
α

′
β̄

′
}
+Re

{
α

′
e−ισ

′
τ
′}(− ¯(

α
′
)∗
β2e

−bτ ′)]

+ ¯̃z2
[(

− β1 + ¯(
α

′
)∗
β
)
ᾱ

′
β̄

′ + ᾱ
′
eισ

′
τ
′(− ¯(

α
′
)∗
β2e

−bτ ′)]

+ z2z̄

2

[(
− β1 + ¯(

α
′
)∗
β
)(
β̄

′
W

(2)
20 (0)+ 2β

′
W

(2)
11 (0)+ 2α

′
W

(2)
11 (0)

+ ᾱ
′
W

(3)
20 (0)

)

− ¯(
α

′
)∗
β2e

−bτ ′(
W

(2)
20 (−1)+ 2W(2)

11 (−1)+ 2α
′
e−ισ

′
τ
′
W

(1)
11 (−1)

+ ᾱ
′
W

(1)
20 (−1)eισ

′
τ
′)]}

.

Now, comparing the coefficients, we get

g20 = 2τ
′
D̄[α′

β
′
(−β1 + ¯(α′

)∗β)+ α
′
e−ισ

′
τ
′
(− ¯(α′

)∗β2e
−bτ ′

)]
g11 = 2τ

′
D̄[(−β1 + ¯(α′

)∗β)Re{α′
β̄

′ } + Re{α′
e−ισ

′
τ
′ }(− ¯(α′

)∗β2e
−bτ ′

)]
g02 = 2τ

′
D̄[(−β1 + ¯(α′

)∗β)ᾱ′
β̄

′ + ᾱ
′
eισ

′
τ
′
(− ¯(α′

)∗β2e
−bτ ′

)]
g21 = τ

′
D̄[(−β1 + ¯(α′

)∗β)(β̄ ′
W

(2)
20 (0)+ 2β

′
W

(2)
11 (0)+ 2α

′
W

(2)
11 (0)+ ᾱ

′
W

(3)
20 (0))

− ¯(α′
)∗β2e

−bτ ′
(W

(2)
20 (−1)+ 2W(2)

11 (−1)+ 2α
′
e−ισ

′
τ
′
W

(1)
11 (−1)

+ᾱ′
W

(1)
20 (−1)eισ

′
τ
′
)].

We can clearly see that in order to determine g21, we will have to compute W20(θ)

and W11(θ).
From (33) and (35), we have

Ẇ = ẋt − 2Re
[ ˙̃z(t)q(θ)]

= A(μ)xt + R(μ)xt − 2Re
[(
ισ

′
τ

′
z̃(t)+ q̄∗(0)F0(z̃, ¯̃z)

)
q(θ)

]

= A(μ)xt + R(μ)xt − 2Re
[
ισ

′
τ

′
z̃(t)q(θ)

]
− 2Re

[
q̄∗(0)F0(z̃, ¯̃z)q(θ)

]
.

Therefore,

Ẇ =
{

AW − 2Re[q̄∗(0)F0(z̃, ¯̃z)q(θ)], θ ∈ [−1, 0)
AW − 2Re[q̄∗(0)F0(z̃, ¯̃z)q(θ)] + F0, θ = 0

(using the definition of AW and R(μ)xt ).

Therefore, let

Ẇ = AW + H̃
(
z̃, ¯̃z, θ), (36)
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where

H̃
(
z̃, ¯̃z, θ) = H̃20(θ)

z̃2

2
+ H̃11(θ)z̃ ¯̃z+ H̃02(θ)

¯̃z2

2
+ . . . (37)

On the other hand, on the centre manifold C0 near the origin, Ẇ = Wz̃
˙̃z+W ¯̃z

˙̃̄
z.

Using (37) to compare the coefficients, we finally deduce

(
A− 2ισ

′
τ

′)
W20(θ) = −H̃20(θ), AW11(θ) = −H̃11(θ). (38)

From (37), we also have H̃ (z̃, ¯̃z, θ) = −2Re[q̄∗(0)F0(z̃, ¯̃z)q(θ)], for θ ∈
[−1, 0);that is,

H̃ (z̃, ¯̃z, θ) = −q̄∗(0)F0(z̃, ¯̃z)q(θ)− q∗(0)F̄0(z̃, ¯̃z)q̄(θ)
= −(g20

z̃2

2 + g11z̃ ¯̃z+ g02
¯̃z2

2 + g21
z̃2 ¯̃z
2 + . . . ..)q(θ)− (ḡ20

¯̃z2

2

+ ḡ11z̃ ¯̃z+ ḡ02
z̃2

2 + ḡ21
¯̃z2z̃
2 )q(θ).

Now, equating this with (37), and comparing the coefficients, we have

H̃20(θ) = −g20q(θ)− ¯g02q̄(θ), H̃11(θ) = −g11q(θ)− ¯g11q̄(θ). (39)

From (39), (38), and the definition of A for θ ∈ [−1, 0), we get

Ẇ20(θ) = 2ισ
′
τ

′
W20(θ)+ g20q(θ)+ ¯g02q̄(θ). (40)

Note that, q(θ) = q(0)eισ
′
τ
′
θ . Hence, putting this value in (40), and solving it being

a linear differential equation, we get

W20(θ) = ιg20

σ
′
τ

′ q(0)e
ισ

′
τ
′
θ + ιḡ02

3σ ′
τ

′ q̄(0)e
−ισ ′

τ
′
θ + Ẽ1e

2ισ
′
τ
′
θ , (41)

where Ẽ1 = (Ẽ
(1)
1 , Ẽ

(2)
1 , Ẽ

(3)
1 ) ∈ R3 is a constant vector. Similarly, we can get

W11(θ) = − ιg11

σ
′
τ

′ q(0)e
ισ

′
τ
′
θ + ιḡ11

σ
′
τ

′ q̄(0)e
−ισ ′

τ
′
θ + Ẽ2, (42)

where Ẽ2 = (Ẽ
(1)
2 , Ẽ

(2)
2 , Ẽ

(3)
2 ) ∈ R3 is a constant vector.

Furthermore, we will be finding Ẽ1 and Ẽ2.
From the definition of A at θ = 0 and (40), we have

∫ 0

−1
dη(θ)W20(θ) = 2ισ

′
τ

′
W20(0)− H̃20(0) (43)
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∫ 0

−1
dη(θ)W11(θ) = −H̃11(0), (44)

where η(θ) = η(0, θ) (since μ = 0).
Also, for θ = 0, we have H̃ (z̃, ¯̃z, θ) = −2Re[q̄∗(0)F0(z̃, ¯̃z)q(θ)] + F0.That is,

H̃ (z̃, ¯̃z, θ) = −q̄∗(0)F0(z̃, ¯̃z)q(θ)− q∗(0)F̄0(z̃, ¯̃z)q̄(θ)+ F0,

= −(g20
z̃2

2 + g11z̃ ¯̃z+ g02
¯̃z2

2 + g21
z̃2 ¯̃z
2 + . . . ..)q(θ)− (ḡ20

¯̃z2

2 + ḡ11z̃ ¯̃z
+ ḡ02

z̃2

2 + ḡ21
¯̃z2z̃
2 )q(θ)+ F0

where F0 = τ
′

⎡

⎢⎣
−β1x2t (0)x3t (0)

β1x2t (0)x3t (0)− β2e
−bτ ′

x1t (−1)x2t (−1)
0

⎤

⎥⎦

= τ
′

⎡

⎢⎣
−β1α

′
β

′

β1α
′
β

′ − β2e
−bτ ′

α
′
e−ισ

′
τ
′

0

⎤

⎥⎦ z̃2

+
⎡

⎢⎣
−β12Re{α′

β̄
′ }

β12Re{α′
β̄

′ } − β2e
−bτ ′

2Re{α′
e−ισ

′
τ
′ }

0

⎤

⎥⎦ z̃ ¯̃z+ . . .

And thus, after comparing the coefficients, we get

H̃20(0) = −g20q(0)− ¯g02q̄(0)+ 2τ
′

⎡

⎢⎣
−β1α

′
β

′

β1α
′
β

′ − β2e
−bτ ′

α
′
e−ισ

′
τ
′

0

⎤

⎥⎦ , (45)

and

H̃11(0) = −g11q(0)− ¯g11q̄(0)+ 2τ
′

⎡

⎢⎣
−β1Re

{
α

′
β̄

′}

β1Re
{
α

′
β̄

′}− β2e
−bτ ′

Re
{
α

′
e−ισ

′
τ
′}

0

⎤

⎥⎦ .

(46)

Substituting the above values in (37), and noticing that (ισ
′
τ

′
I − ∫ 0

−1 dη(θ)e
ισ

′
τ
′
θ )

q(0) = 0, and (−ισ ′
τ

′
I−∫ 0

−1 dη(θ)e
−ισ ′

τ
′
θ )q̄(0) = 0 (since ισ

′
τ

′
is the eigenvalue

of A(0) and q(0) is the corresponding eigenvector), we obtain

Ẽ1

(
2ισ

′
τ

′
I −

∫ 0

−1
dη(θ)e2ισ

′
τ
′) = 2τ

′

⎡

⎢⎣
−β1α

′
β

′

β1α
′
β

′ − β2e
−bτ ′

α
′
e−ισ

′
τ
′

0

⎤

⎥⎦ ,

which leads to
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Ẽ1

⎡

⎢⎣
2ισ

′ + b β1Z
∗ β1I

∗

β2e
−bτ ′

I ∗e−2ισ
′
τ
′

2ισ
′ − β1Z

∗ + b + β2e
−bτ ′

S∗e−2ισ
′
τ
′ −βI ∗

−a 0 2ισ ′ + a

⎤

⎥⎦

= 2

⎡

⎢⎣
−β1α

′
β

′

β1α
′
β

′ − β2e
−bτ ′

α
′
e−ισ

′
τ
′

0

⎤

⎥⎦ .

And, from Crammer’s rule for solving system of linear equations, we get

Ẽ
(1)
1

= 2

M̃1

∣∣∣∣∣∣∣

−β1α
′
β

′
β1Z

∗ β1I
∗

β1α
′
β

′ − β2e
−bτ ′ α′

e−ισ
′
τ
′

2ισ
′ − β1Z

∗ + b + β2e
−bτ ′ S∗e−2ισ

′
τ
′

−β1I
∗

0 0 2ισ ′ + a

∣∣∣∣∣∣∣

Ẽ
(2)
1

= 2

M̃1

∣∣∣∣∣∣∣

2ισ
′ + b −β1α

′
β

′
β1I

∗

β2e
−bτ ′ I∗e−2ισ

′
τ
′
β1α

′
β

′ − β2e
−bτ ′ α′

e−ισ
′
τ
′

−β1I
∗

−a 0 2ισ ′ + a

∣∣∣∣∣∣∣

Ẽ
(3)
1

= 2

M̃1

∣∣∣∣∣∣∣

2ισ
′ + b β1Z

∗ −β1α
′
β

′

β2e
−bτ ′ I∗e−2ισ

′
τ
′

2ισ
′ − β1Z

∗ + b + β2e
−bτ ′ S∗e−2ισ

′
τ
′
β1α

′
β

′ − β2e
−bτ ′ α′

e−ισ
′
τ
′

−a 0 0

∣∣∣∣∣∣∣
,

where M̃1 =

∣∣∣∣∣∣∣

2ισ
′ + b β1Z

∗ β1I
∗

β2e
−bτ ′

I ∗e−2ισ
′
τ
′

2ισ
′ − β1Z

∗ + b + β2e
−bτ ′

S∗e−2ισ
′
τ
′ −β1I

∗
−a 0 2ισ ′ + a.

∣∣∣∣∣∣∣
Next, working in a similar pattern as above, we get

Ẽ
(1)
2 = 2

M̃2

∣∣∣∣∣∣∣

β1Re{α′
β̄

′ } −β1Z
∗ −β1I

∗

−β1Re{α′
β̄

′ } + β2e
−bτ ′Re{α′

e−ισ
′
τ
′
} β1Z

∗ − b − β2e
−bτ ′ S∗ β1I

∗
0 0 −a

∣∣∣∣∣∣∣

Ẽ
(2)
2 = 2

M̃2

∣∣∣∣∣∣∣

−b β1Re{α′
β̄

′ } −β1I
∗

−β2e
−bτ ′ I∗ −β1Re{α′

β̄
′ } + β2e

−bτ ′Re{α′
e−ισ

′
τ
′
} β1I

∗
a 0 −a

∣∣∣∣∣∣∣

Ẽ
(3)
2 = 2

M̃2

∣∣∣∣∣∣∣

−b −β1Z
∗ βRe{α′

β̄
′ }

−β2e
−bτ ′ I∗ β1Z

∗ − b − β2e
−bτ ′ S∗ −β1Re{α′

β̄
′ } + β2e

−bτ ′Re{α′
e−ισ

′
τ
′
}

a 0 0

∣∣∣∣∣∣∣
,
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where M̃2 =

∣∣∣∣∣∣∣

−b −β1Z
∗ −β1I

∗

−β2e
−bτ ′

I ∗ β1Z
∗ − b − β2e

−bτ ′
S∗ β1I

∗
a 0 −a

∣∣∣∣∣∣∣
.

Thus, we can determine W20(θ) and W11(θ), and hence, we can compute g21.
Therefore, the behaviour of bifurcating periodic solutions in the centre manifold

at the critical value τ = τ
′

is computed by the following values:

• C̃1(0) = ι

2σ ′
τ
′ (g20g11 − 2|g11|2 − |g02|2

3 )+ g21
2 ,

• μ̃2 = − Re{C̃1(0)}
Re{ dλ(τ ′ )

dτ
}
,

• β̃
′′ = 2Re{C̃1(0)},

• T̃2 = − Im{C̃1(0)}+μ̃2Im{ dλ(τ
′
)

dτ
}

σ
′
τ
′ ,

where

• μ̃2 determines the direction of Hopf bifurcation, for if μ̃2 > 0, the Hopf
bifurcation will be supercritical, and if μ̃2 < 0, the Hopf bifurcation will be
subcritical, and the bifurcating periodic solutions exist for τ > τ

′
or τ < τ

′
.

• β̃
′′ determines the stability of the bifurcating periodic solutions, for if β̃ ′′

< 0,

the bifurcating periodic solutions will be stable, and if β̃ ′′
> 0, the bifurcating

periodic solutions will be unstable.
• T̃2 determines the period of the bifurcating periodic solutions, for if T̃2 > 0, the

period increases, and if T̃2 < 0, the period decreases.

7 Numerical Simulation

In this section, we have plotted graphs in support of our analytical results. We have
shown that how the parameters β1, β2, a, and b along with τ shape the dynamics
of the system. Initially, the trajectories approach to disease-free equilibrium point
E0 at b = 0.5, β1 = 0.1, β2 = 2, τ = 3.22, and a = 0.2 for initial conditions
(0.5, 0.5, 0.2), and the value of R0 = 0.1111 < 1 along with b > β1 + β2e

−bτ is
satisfied as per Theorem 4.1 of local stability of DFE.

Modulating the parameters to b = 0.2, β1 = 10.6, β2 = 5.7, and a = 0.25
pertaining to same initial conditions (0.5, 0.5, 0.2), endemic equilibrium point
exists, and it also violates the condition b > β1+β2e

−bτ of disease-free equilibrium
point. The equilibrium point obtained is E∗(0.0465, 0.1613, 0.0256) with R0 =
3.4310 > 1. However, interestingly, the system remains stable for lower value of τ ,
i.e. τ ≤ τ ∗ = 1.9 (Fig. 1a) and undergoes Hopf bifurcation as τ > 1.9. This shows
that as we increase the rate of infection, endemicity exits in the system for even
lower value of τ . Furthermore, as we increase the value of τ , the system undergoes
bifurcation (Fig. 1d).
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Fig. 1 Dynamics of the system. (a) Behaviour of system at τ = 1.9. (b) Behaviour of system
at τ = 2. (c) Behaviour of system at a = 0.25. (d) Periodic solution of system at τ = 3. (e)
Stable behaviour of system at b = 0.29. (f) 2D graph for disease-free equilibrium. (g) Phase plane
behaviour of Endemic equilibrium point
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Contributing to the sensitivity of the model parameters, a, b, β1, and β2 elevate
system behaviour prominently. The system at b = 0.2, β1 = 10.6, β2 = 5.7, and
τ = 1.9 shows Hopf bifurcation for a > 0.25 (Fig. 1b), but as soon as the value
reduces, i.e. a ≤ 0.25 (Fig. 1c), the system stabilizes. This change in the dynamics
is also visible for b where the system at a = 0.25, β1 = 10.6, β2 = 5.7, and
τ = 1.9 is stable only till b < 0.3 (Fig. 1e), which concludes that the birth rate
and death rate should be controlled to avoid periodic solution in the system. β1 and
β2 also mark their presence. Increasing them beyond a certain limit, i.e. β1 > 10.6
(Fig. 1b, β1 = 11) and β2 > 5.7 (Fig. 1b, β2 = 6), leads to periodic solution in
the system at b = 0.2, a = 0.25, and τ = 1.9. Hence, infection rate plays a vital
role in destabilizing the system, and its control should be the utmost priority for any
government to fight against this dreadful disease.

8 Discussion

To sum up, in this chapter, we have studied the dynamical behaviour of a Dengue-
SIR epidemic model that involves both discrete and distributed delays. We have
studied the existence of disease-free and endemic equilibrium points. Furthermore,
we have studied the local stability of disease-free equilibrium point, and it has
been proved that DFE is stable for R0 < 1 if b > β1 + β2e

−bτ . The endemic
equilibrium point exists if the basic reproduction number, R0 > 1 and is locally
asymptotically stable when τ ∈ [0, τ ′) and possesses periodic solution for τ >

τ
′
. Moreover, using the normal form theory and centre manifold theorem, we

have derived explicit formulae in order to determine the stability and direction
of the bifurcating periodic solutions and obtained sensitivity analysis for all the
parameters, i.e. β1, β2, a, b, and τ involved in the system depicting their influence
on system stabilization. Therefore, in order to control dengue, government should
consider all these parameters collectively for effective eradication of dengue.

Appendix

The reduction of Z = ∫ t
−∞ F(t − τ)S(τ)dτ to ordinary equation is done by the

Leibnitz rule, which states that

d

dx

( ∫ b(x)

a(x)

f (x, t)dt
)

= f (x, b(x)).
d

dx
b(x)− f (x, a(x)).

d

dx
a(x)

+
∫ b(x)

a(x)

∂

∂x
f (x, t)dt,
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which gives

dZ

dt
= aS − aZ.

References

1. B. Bandyopadhyay, I. Bhattacharyya, et al., A comprehensive study on the 2012 Dengue fever
outbreak in Kolkata, India. Int. Sch. Res. Notices 2013, 1–5 (2013)

2. C.P. Simmons, J.J. Farrar, N. van Vinh Chau, W.B. Dengue. New England J. Med. 366, 1423–
1432 (2012)

3. M. Andraud, et al. A simple periodic-forced model for dengue fitted to incidence data in
Singapore. Math. Biosci. 244, 22–28 (2013)

4. C. Favier, et al., Early determination of the reproductive number for vector-borne diseases: the
case of dengue in Brazil. Trop. Med. Int. Health 11, 332–340 (2006)

5. S.B. Halstead, Dengue. Lancet 370, 1644–1652 (2007)
6. W.O. Kermack, A.G. McKendrick, Contributions to the mathematical theory of epidemics.

Bull. Math. Biol. 53, 33–55 (1991)
7. X. Meng, L. Chen, Global dynamical behaviors for an SIR epidemic model with time delay

and pulse vaccination. Taiwan. J. Math. 12, 1107–1122 (2008)
8. W. Zhao, T. Zhang, Z. Chang, X. Meng, Y. Liu, Dynamical analysis of SIR epidemic models

with distributed delay. J. Appl. Math. 2013, 1–15 (2013)
9. S. Chauhan, S.K. Bhatia, S. Sharma, Effect of delay on single population with infection in

polluted environment. Int. J. Math. Comput. 29, 132–150 (2018)
10. J. Ma, Q. Gao, Stability and Hopf bifurcations in a business cycle model with delay. Appl.

Math. Comput. 215, 829–834 (2009)
11. D. Lv, W. Zhang, Y. Tang, Bifurcation analysis for a ratio-dependent predator-prey system with

multiple delays. J. Nonlinear Sci. Appl. 9, 3479–3490 (2016)
12. N. Gupta, S. Srivastava, et al., Dengue in India. Indian J. Med. Res. 136, 373–390 (2012)
13. V. Racloz, R. Ramsey, et al., Surveillance of dengue fever virus: a review of epidemiological

models and early warning systems. PLoS Neglected Trop. Disease 6, 1–9 (2012)
14. A. Asmaidi, P. Sianturi, et al., A SIR mathematical model of dengue transmission and its

simulation. IOSR J. Math. 10, 56–65 (2014)
15. M. Derouich, A. Boutayeb, Dengue fever: mathematical modelling and computer simulation.

Appl. Math. Comput. 177, 528–544 (2006)
16. M.R. Calsavara, et al., An analysis of a mathematical model describing the geographic spread

of dengue disease. J. Math. Anal. Appl. 444, 298–325 (2016)
17. C. Wu, P.J.Y. Wong, Dengue transmission: mathematical model with discrete time delays and

estimation of the reproduction number. J. Biol. Dyn. 13, 1–25 (2019)
18. W. Zhao, T. Zhang, Z. Chang, X. Meng, Y. Liu, Dynamical analysis of SIR epidemic models

with distributed delay. J. Appl. Math. 2013, 1–15 (2013)
19. N. MacDonald, Time Lags in Biological Models. Lecture Notes in Biomathematics, vol. 27

(Springer, Heidelberg, 1978)
20. B. Hassard, D. Kazarinoff, Y. Wan, Theory and Applications of Hopf Bifurcation. Contributions

to Nonlinear Functional Analysis (Cambridge University Press, Cambridge, 1981)



Deformable Derivative of Fibonacci
Polynomials

Krishna Kumar Sharma

Abstract The Fibonacci sequence is the most spectacular subject in mathematics,
and the Fibonacci polynomials are generalizations of Fibonacci numbers made by
various authors. The main objective of this research paper is to construct the relation
between deformable derivative and Fibonacci polynomials. Using this relationship,
the basic properties of the Fibonacci polynomial are proposed and discussed. In
this article, the generating function of the Fibonacci polynomial for the deformable
derivative is also explained.

Keywords k-Fibonacci sequence · Fractional derivative

2010 Mathematics Subject Classification 11B39, 26A33

1 Introduction

In the present time, there are innumerable applications of Fibonacci numbers [1–3].
It has resulted in a variety of competing conceptual and mathematical models
that have been conceptualized to describe the applications of Fibonacci numbers.
Fibonacci numbers have originated from the well known Fibonacci series that was
innovated during the study of the population growth of Rabbits. Lovers of art,
nature, mathematics etc. have continuously been awe-struck by famous Fibonacci
numbers. For centuries, researchers have been working on this concept specially
those associated with Fibonacci Association. Their efforts have opened new doors
for research in connected areas. It cannot be denied that almost every field of
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science and arts has utilized Fibonacci numbers and their generalizations to suit their
purpose. Mathematicians of different realms have worked on Fibonacci numbers in
geometry, algebra, number theory, and many other branches of mathematics.

1.1 Fibonacci Sequence

The Fibonacci sequence is defined by the recurrence relation

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1. (1)

1.2 Binet’s Formula for Fibonacci Sequence

The general term of Fibonacci sequence can be defined by Binet’s formula

Fn = αn − βn

α − β
= 1√

5

[(
1 + √

5

2

)n
−
(

1 − √
5

2

)n]
, (2)

where α and β are the roots of polynomial t2 − t − 1 = 0.

1.3 k-Fibonacci Sequence

Falcon et al. [4, 5] defined k-Fibonacci sequence in this way.
For any real number k,

Fk,n+1 = kFk,n + Fk,n−1, Fk,0 = 0, Fk,1 = 1. (3)

The original Fibonacci sequence can be obtained by putting k = 1.

Fn+1 = Fn + Fn−1, F0 = 0, F1 = 1; (4)

if ζ denotes the positive roots of the equation t2 = kt + 1, then the general term
can be expressed as

Fk,n = ζ n − (−ζ )−n
ζ + ζ−1

, (5)

where ζ= k+
√
k2+4

2 .
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Falcon [4] obtained two formulae for the general term of the k-Fibonacci
sequence

Fk,n = 1

2n−1

⌊
n−1

2

⌋

∑

i=0

(
n

2i + 1

)
k(n−2i−1)(k2 + 4)i (6)

Fk,n =

⌊
n−1

2

⌋

∑

i=0

(
n− 1 − i

2i + 1

)
k(n−2i−1). (7)

1.4 The Fibonacci Polynomials

Firstly, Fibonacci polynomials were studied by Catalan, and these Fibonacci
polynomials are defined as recurrence relation

Fn+1 = tFn(t)+ Fn−1(t), n ≥ 2, F1(t) = 1, F2(t) = t, (8)

from where the first Fibonacci polynomials are

F1(t) = 1
F2(t) = t

F3(t) = t2 + 1
F4(t) = t3 + 2t
F5(t) = t4 + 3t2 + 1
F6(t) = t5 + 4t3 + 3t
F7(t) = t6 + 5t4 + 6t2 + 1
F8(t) = t7 + 6t5 + 10t3 + 4t

From these Fibonacci polynomials, Falcon [4] mentioned the following result:

Fn+1 =

⌊
n−1

2

⌋

∑

i=0

(
n− i

i

)
tn−2i , n ≥ 0. (9)

1.5 Derivative of the Fibonacci Polynomials

F ′
1(t) = 0

F ′
2(t) = 1

F ′
3(t) = 2t

F ′
4(t) = 3t2 + 2
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F ′
5(t) = 4t3 + 6t

F ′
6(t) = 5t4 + 12t2 + 3

F ′
7(t) = 6t5 + 20t3 + 12t

F ′
8(t) = 7t6 + 30t4 + 30t2 + 4

2 Deformable Fractional Derivative

Fractional calculus [6] is an effective tool that has been commonly used in many
aspects of electronics engineering and computer science applications. Although it
has a complex mathematical background, fractional calculus was discovered due to
very simple problems associated with the concept of derivation. In the case, the first
order derivative represents the slope of a function; What does a half-order derivative
of a function represent? The results of such questions have resulted in many new
unexplored diversions in the field of mathematical research. Fractional calculus
has been playing an important role in the fields of signal and image processing,
mechanics, control theory, biology, chemistry, economics, etc. In the current era,
fractional differentiation has been investigated simultaneously by several authors
and researchers. The main thrust of the research article is on deformable derivation.
In the present study, we introduce the deformable derivative of the Fibonacci
polynomial, which is an extension of the Fibonacci numbers. We construct many
interesting relationships with its deformable derivatives. These derivatives give us a
new set of integer sequences.

According to Zulfequarr et al. [7], fractional derivative can be stated as follows.
For a given number α, 0≤ α ≤ 1.

Dαf (t) = lim
ε→0

(1 + εβ)f (t + εα)− f (t)

ε
, α + β = 1. (10)

They also defined the connection between α-derivative and ordinary derivative.

Dαf (t) = βf (t)+ αDf (t), α + β = 1. (11)

2.1 Basic Properties of the Deformable Fractional Derivative

The operator Dα possesses the following properties:

(1) Linearity: Dα(af + bg) = aDα(f )+ bDα(g).
(2) Commutativity:Dα1Dα2 = Dα2Dα1 .
(3) For a constant function K, Dα(K) = βK .
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(4) Dα(f.g) = Dα(f ).g + αf.Dg, �⇒ Dα does not obey product rule.
(5) Dα(tr ) = βtr + rαtr−1, r ∈ R.

(6) Dα(et ) = et .
(7) Dα(sint) = βsint + αcost .
(8) Dα(logt) = βlogt + α

t
, t > 0.

2.2 Deformable Derivative of the Fibonacci Polynomial

Dα[F1(t)] = β

Dα[F2(t)] = βt + α

Dα[F3(t)] = β(t2 + 1)+ 2αt
Dα[F4(t)] = β(t3 + 2t)+ α(3t2 + 2)
Dα[F5(t)] = β(t4 + 3t2 + 1)+ α(4t3 + 6t)
Dα[F6(t)] = β(t5 + 4t3 + 3t)+ α(5t4 + 12t2 + 3)
Dα[F7(t)] = β(t6 + 5t4 + 6t2 + 1)+ α(6t5 + 20t3 + 12t)
Dα[F8(t)] = β(t7 + 6t5 + 10t3 + 4t)+ α(7t6 + 30t4 + 30t2 + 4)

2.3 Relation Between the Deformable Derivative Sequence and
Fibonacci Sequence

Dα[Fn(t)] =
{
β(t2 + 4)− αt

}
Fn(t)+ nα {Fn+1(t)+ Fn−1(t)}

t2 + 4
, α + β = 1.

(12)

Proof We know that

DαFn(t) = βFn(t)+ αDFn(t);
= βFn(t)+ αF ′

n(t).
	


S. Falcon [8] constructed the following relation between derivative sequence and
the Fibonacci sequence:

F ′
n(t) = nFn+1(t)− tFn(t)+ nFn−1(t)

t2 + 4
. (13)

Then, DαFn(t) = βFn(t)+ α
[
nFn+1(t)−tFn(t)+nFn−1(t)

t2+4

]

= β(t2+4)Fn(t)+α[nFn+1(t)−tFn(t)+nFn−1(t)]
t2+4

.
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Hence,

DαFn(t) =
{
β(t2+4)−αt}Fn(t)+nα{Fn+1(t)+Fn−1(t)}

t2+4
, α + β = 1.

This result can also be proved by Binet’s Formula

Fn(t) = ζ n−(−ζ )−n
ζ+ζ−1 , where ζ= t+

√
t2+4

2 .

Using Binet’s form, DαFn(t) = β
[
ζ n−(−ζ )−n
ζ+ζ−1 ] + αD[ ζ n−(−ζ )−n

ζ+ζ−1

]

DαFn(t) = βFn(t)+ α
[
n
{
ζ n−1−(−ζ )n−1

(ζ+ζ−1)
ζ ′
}

−
{
ζ n−(−ζ )−n
(ζ+ζ−1)2

(1 − ζ ′2)ζ ′
}]

. Here

ζ ′ = ζ

ζ+ζ−1 and(1 − ζ ′2) = t
ζ

;

DαFn(t) = βFn(t)+ α
[
n
{
ζ n+(−ζ )−n
(ζ+ζ−1)2

}
−
{
ζ n−(−ζ )−n
(ζ+ζ−1)

t
(ζ+ζ−1)2

}]
.

= βFn(t)+ α[n
{
ζ n+(−ζ )−n
(ζ+ζ−1)2

}
−
{

tFn(t)

(ζ+ζ−1)2

}
].

We have

Fn+1(t)+ Fn−1(t) = ζ n+1−(−ζ )−n−1

ζ+ζ−1 + ζ n−1−(−ζ )−n+1

ζ+ζ−1 = ζ n + (−ζ )−n.

�⇒ Dα[Fn(t) = βFn(t)+ α
[
n{Fn+1(t)+Fn−1(t)}−tFn(t)

(ζ+ζ−1)2

]
.

Hence,

Dα[Fn(t)] =
{
β(t2+4)−αt}Fn(t)+nα{Fn+1(t)+Fn−1(t)}

t2+4
, where α + β = 1.

2.4 Expression of α-Deformable Derivative of Fibonacci
Polynomials

From the result (8), we have

Fn+1(t) = ∑
⌊
n−1

2

⌋

i=0

(
n−i
i

)
tn−2i , n ≥ 0,

and by definition of α-deformable derivative,

Dα[Fn+1(t)] = βFn+1(t)+ αD[Fn+1(t)];
Dα[Fn+1(t)] = β

∑
⌊
n−1

2

⌋

i=0

(
n−i
i

)
tn−2i +α

∑
⌊
n−1

2

⌋

i=0 (n− 2i)
(
n−i
i

)
tn−2i−1, where α+

β = 1 and DαF1(t) = β.
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2.5 α-Deformable Derivative of Fibonacci Polynomials and
Convolved Fibonacci Polynomials

Dα[Fn(t)] = βFn(t)+ α

n−1∑

i=1

Fi(t)Fn−i (t), n > 1,Dα[F1(t)] = β. (14)

Proof By the induction method, for n = 2,

Dα[F2(t)] = βF2(t)+ α
∑1

i=1 F1(t)F1(t);
�⇒ Dα[F2(t)] = βt + α.

	

Let us suppose that the result is true for every polynomial Dα[Fm(t)],m ≤ n

Dα[Fn−1(t)] = βFn−1(t)+ α
∑n−1

i=1 Fi(t)Fn−1−i (t).

By the definition of Fibonacci polynomial, we have Fn+1 = tFn(t)+Fn−1(t). Then,

Dα[Fn+1(t)] = Dα[tFn(t)] +Dα[Fn−1(t)]
= Dα[tFn(t)] +Dα[Fn−1(t)]
= (βt + α)Fn(t)+ αtF ′

n(t)+ βFn−1(t)+ αF ′
n−1(t)

= (βt + α)Fn(t)+ αt

n−1∑

i=1

Fi(t)Fn−i (t)

+ βFn−1(t)+ α

n−2∑

i=1

Fi(t)Fn−1−i (t)

= (βt + α)Fn(t)+ βFn−1(t)+ αtFn−1(t)F1(t)

+ α

n−2∑

i=1

Fi(t)Fn−i (t)+ α

n−2∑

i=1

Fi(t)Fn−1−i (t)

= β[tFn(t)+ Fn−1(t)] + αFn(t)

+ αtFn−1(t)F1(t)+ α

n−2∑

i=1

Fi(t)[tFn−i (t)+ Fn−1−i (t)]

= βFn+1(t)+ αFn(t)F1(t)+ αFn−1(t)F2(t)

+ α

n−2∑

i=1

Fi(t)[tFn−i (t)+ Fn−1−i (t)].
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Hence,

Dα[Fn+1(t)] = βFn+1(t)+ α

n−2∑

i=1

Fi(t)Fn+1−i (t), (15)

and it implies that the result is true for n = n+ 1.
We can also conclude by Eqs. (12) and (14)

βFn(t)+ α

n−1∑

i=1

Fi(t)Fn−i (t)

=
[{
β(t2 + 4)− αt

}
Fn(t)+ nα {Fn+1(t)+ Fn−1(t)}

t2 + 4

]

α

n−1∑

i=1

Fi(t)Fn−i (t)

=
[{
β(t2 + 4)− αt

}
Fn(t)+ nα {Fn+1(t)+ Fn−1(t)}

t2 + 4

]

− βFn(t)

n−1∑

i=1

Fi(t)Fn−i (t) = [(n− 1)tFn(t)+ 2nFn−1(t)]

t2 + 4
. (16)

Proposition 2.1 Let Fn(t) be the Fibonacci polynomial; then,

Dα[Fn+1(t)+ Fn−1(t)] = β[Fn+1(t)+ Fn−1(t)] + nαFn(t). (17)

Proof We know that

Fn+1(t) =
� n

2 �∑
i=0

(
n− i

i

)
tn−2iandFn−1(t) =

⌊
n−2

2

⌋

∑

i=0

(
n− 2 − i

i

)
tn−2−2i

Fn+1(t)+ Fn−1(t) = tn +
� n

2 �∑
i=1

(
n− i

i

)
tn−2i +

⌊
n−2

2

⌋

∑

i=0

(
n− 2 − i

i

)
tn−2−2i

= tn +
� n

2 �∑
i=1

[(
n− i

i

)
+
(
n− 1 − i

i

)]
tn−2i .
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We also know [(n−i
i

)+ (n−1−i
i

)] = (
n−1−i
i−1

)
( n−i

i
+ 1) = (

n−1−i
i

)
n
i
.

Then,

Fn+1(t)+ Fn−1(t) = tn +
� n

2 �∑
i=1

(
n− 1 − i

i − 1

)
n

i
tn−2i .

Taking α-deformable derivative both the sides,

Dα[Fn+1(t)+ Fn−1(t)] = βtn + αntn−1 + nβ

⎡

⎣
n
2∑

i=1

(
n− 1 − i

i − 1

)
1

i
tn−2i

⎤

⎦

+ αn

n
2∑

i=1

(
n− 1 − i

i

)
n− 2i

i
tn−1−2i

= βtn + nβ

� n
2 �∑

i=1

(
n− 1 − i

i − 1

)
1

i
tn−2i

+ αn

� n
2 �∑

i=0

(
n− 1 − i

i

)
n− 2i

i
tn−1−2i .

Hence,

Dα[Fn+1(t)+ Fn−1(t)] = β[Fn+1(t)+ Fn−1(t)] + nαFn(t).

	


2.6 Generating Function for the α-Deformable Derivative of
Fibonacci Polynomials

In 2007, Falcon [5] obtained the generating function of the k-Fibonacci polynomial

Fk(t) = t

1 − kt − t2
.

Now, we find the deformable derivative of Fk(t)

Dα[Fk(t)] = Dα

[
t

1 − kt − t2

]
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= t

[{
β

(
1

1 − kt − t2

)}
+ α

{
1

(1 − kt − t2)2

}]

= βt

1 − kt − t2
+ α

{
t

1 − kt − t2

}2

.

3 Conclusion

It cannot be denied that the fractional differentiation is a generalization of classical
calculus and the k-Fibonacci numbers are the generalization of the Fibonacci
numbers. In the current study, deformable derivative of Fibonacci polynomials
has been obtained. During this study, many identities have been constructed and
the deformable derivative of these polynomials has been expressed in the form of
convolution of Fibonacci Polynomials. The results of this paper will hopefully act
as a stimulus for researchers and mathematicians to work in the field of fractional
calculus in a prolific manner.
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Simulation and Analysis of 5G Wireless
mm-Wave Modulation Technique for
High Capacity Communication System

M. Vinothkumar and Vinod Kumar

Abstract Millimeter-wave (mm-wave) technology has been observed as an active
part in 5th generation (5G) systems because of its potential for low-latency,
multi-gigabit wireless links. The challenging fact in mm-wave technology is
higher propagation losses at advanced carrier frequencies and also the increased
complexity of hardware required. Multiple-input multiple-output (MIMO) is a
key technology for increasing the capacity of 5G networks and the capability of
supporting a large number of users. mm-Wave MIMO is considered to be the
significant enabler for 5G wireless networks, which causes the maximum growth
in the network capacity. The massive antennas connection and multiple radio
frequency (RF) chains in wireless communication system cause excessive power
consumption. In MIMO system, spatial modulation (SM) technique enables less
complexity and low power consumption by reducing RF chain counts. This chapter
elaborates simulation and analyses the result of SM technique that can be effectively
implemented in mm-wave MIMO system to reduce power consumption.

Keywords Multi-input multi-output · Millimetre-wave · Spatial modulation ·
Spectral efficiency

1 Introduction

In wireless communication systems, significant capacity boosting can be done by
MIMO systems that gained massive research attention recently. Achieving a high
throughput and cost-effective deployment are the requirements for new transmission
technologies to overcome today’s rapid proliferation of mobile data traffic. High
capacity, low latency, and huge connectivity over the scarce wireless resources are
the scope for the future wireless communication systems where tremendous efforts
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have been put through to have a better knowledge about the benefits of mm-wave
MIMO systems under different considerations. A MIMO system enhances spectral
efficiency (SE) by multiple antennas used concurrently to transmit information bits
to the receiver. Large bandwidth (30–300 GHz) provided by mm-wave bands [2]
leads it to become the great source of future wireless communication systems.

Three main types of MIMO techniques are (1) improving power efficiency by
maximizing spatial diversity, (2) exploiting knowledge of the channel at the trans-
mitter, and (3) layered space–time method of transmitting many independent data
streams through the antenna, which increases capacity [6]. The small wavelength
in mm-wave also inspired by deploying a large number of antennas in MIMO
technology results in considerable gain improvement in terms of spectral efficiency.
The critical challenge in implementing mm-wave MIMO and massive MIMO is the
large number of RF chains required to process signals, which increases hardware
complexity and also costs more power consumption [9].

As an emerging technique, spatial modulation (SM) [5] has become the solution
to the above challenge to reduce the number of RF chains used in traditional mm-
wave and massive MIMO systems. The SM technique uses antenna indexes in
a multiple antenna system and can be a new hopeful transmission technique for
means of data transmissions. Random antennas switching method of SM is setting
one antenna active at a moment and other antennas silent. This reduces RF chain
usage in MIMO communication [1], a good trade-off between achieving spectral
efficiency and the number of RF chains required to implement MIMO system by
incorporating SM. Section II elaborates spatial modulation (SM) technique and
further the simulation results showing bit error rate (BER) performance of spatial
modulation (SM) and signal-to-noise ratio (SNR).

2 Spatial Modulation

Hardware complexity in MIMO system implementation is effectively reduced by
incorporating SM techniques that makes one antenna active to transmit bits of
information at a time and the other antenna is kept silence so that SM is using
only one RF chain. Selection of active antenna is made using m = log2 Nt bits.
Modulation techniques [3] such as binary phase shift keying (BPSK), quadrature
phase shift keying (QPSK) and quadrature amplitude modulation (QAM) are
basically mapping a group of information bits into a symbol that represents
a constellation point in complex two-dimensional diagrams. The approach of
extending two dimensions into three dimensions [8] known as spatial dimension
demonstrated a flexible mechanism that achieved high spectral efficiency and low
complexity. The information bits to be transmitted depend on constellation diagram
and the number of transmit antennas. On the selected active antenna, a symbol from
M-ary modulation such as M-PSK and M-QAM is sent. The remaining antennas
(Nt−1) are silent except active antenna. Therefore, bits to be transmitted per channel
use (bpcu) are log2Nt + log2 M .
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Fig. 1 Spatial modulation

Figure 1 shows SM system model where n bits to be transmitted are spatially
modulated resulting in the vector x(k) = [0xl . . . .0] of size Nt. xl is the
symbol transmitted from antenna number l over channel H(k). H(k) (where,
H = [h1h2h3 . . . hNt] ) is the vector corresponding to channel path gain between
transmitting and receiving antennas. The received vector is y(k) (y = Hxl+ w), w-
additive white Gaussian noise vector(AWGN). The total number of bits transmitted
using SM is n = log2(Nt) + m. Estimating the transmitting antenna number is an
important key in SM. The iterative maximum ratio combining (i-MRC) algorithm
can be used to find antenna number of the active antenna to transmit bits at a time [3].
The channel vector H(k) is considered between transmitting antenna and receiving
antenna.

Transmitting antenna number and points in constellation complex diagrams
are used in SM to transmit information bits [4]. So the information bits include
transmitted symbol that is chosen from complex signal constellation diagram and
actual location of active antenna chosen from antenna array shown in Fig. 2 with
spatial constellation line 00, 01, 10, 11. A simple example is shown in figure 2 [7],
a linear antenna array with 4 number of antennas and quadrature phase shift keying
(QPSK). SM technique is reduced to space shift keying (SSK) when information bits
carry only transmitting antenna index [3]. SM will perform coding and decoding
process while transmitting information bits that carry both antenna index and
symbol from digital modulation. Simulated SM technique with Nt = 4, Nr = 4
and m = 2 is discussed in next section.

3 Simulation Result

Transmitting antenna and receiving antenna are Nt = 4 and Nr = 4. Change in SM
compared to SSK is m = 2, which is BPSK modulation (coding) that is two-symbol
constellation. Bits per channel use (bpcu) is log2 Nt + log2 M . Transmit bits are 3
bits that are antenna bits along with message bit, where log2 Nt being the number of
bits identifying transmitting antenna from array and log2 M is a symbol in BPSK.
Each block is processed in SM mapper and divided into two sub-blocks: log2 Nt,
which selects active antenna while keeping the other antenna silent, and log2(m),
which chooses symbol in signal constellation diagram.
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Fig. 2 Spatial modulation: Tri-dimensional constellation diagram

Rayleigh fading channel matrix H(k) and Gaussian noise are calculated to
depict the transmission of generated data over wireless medium. The information
bits −1 to 0 and +1 to 1 are formulated, which represent symbols as coded in
BPSK. Multiple antennas at the receiver are exploited, under the assumption of ML
optimum detection, which is to attain receiver diversity gains through MRC.

Simulation results of SM analysed in this chapter are shown in Fig. 3, where
a flat Rayleigh fading channel is considered with AWGN and receiver is having
knowledge of channel. The bit error ratio (BER) for 4*4 BPSK SM is plotted.

4 Conclusion

This chapter has reviewed and analysed spatial modulation and its recent research
achievements. One RF chain usage in SM is effectively reducing hardware complex-
ity and its cost. SM has been known as useful physical layer transmission technique
by the combination of digital modulation and multiple antenna transmission in
MIMO wireless communication system. From the technique, it is clearly studied
that antenna number and symbol are conveying information bits, which can be a
hopeful method for low complexity MIMO implementations. SM technique avoids
inter-channel interference at the receiver input and produces no correlation among
transmitting antennas and also there is no requirement of synchronization between
antenna.
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Fig. 3 Bit error performance (BER) of SM vs. signal-to-noise ratio (SNR)
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Controllability of Fractional Stochastic
Delayed System with Nonlocal Conditions

Surendra Kumar

Abstract This chapter concerns with approximate controllability for a class of
fractional stochastic control systems with nonlocal conditions and fixed delay.
The existence of a solution is shown via the contraction mapping principle by
assuming Lipschitz continuity of nonlinear terms. A set of sufficient conditions
is also constructed which ensure that the fractional stochastic control system is
approximately controllable. The main results are verified through an example.

Keywords Fractional calculus · Stochastic analysis · Mild solution ·
Approximate controllability · Fixed point theory
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1 Introduction

Fractional calculus is about to differentiation and integration of non-integer order.
The potential applications of fractional calculus are in diffusion process, elec-
trical science, electrochemistry, viscoelasticity, control science, electromagnetic
theory, and many more [1–8]. In real-life problems, such as population dynamics,
finance, physical systems subject to thermal fluctuations involve some randomness.
Therefore, it seems reasonable to modify deterministic systems to stochastic
ones. Moreover, it is observed that the nonlocal initial conditions, introduced by
Byszewski [9, 10], provide better effect in applications than the classical ones.

Controllability is a qualitative property of a dynamical control system and is
of particular importance in both deterministic and stochastic control theories. In
infinite-dimensional spaces, exact controllability of fractional semilinear determin-
istic and stochastic systems has been investigated by many researchers [11–16]
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and the references therein. However, the concept of exact controllability is usually
too strong in infinite-dimensional setting. Therefore, it seems necessary to study a
weaker concept, namely approximate controllability for semilinear control systems.
For integer order, several researchers have studied approximate controllability for
various types of deterministic and stochastic systems with nonlocal conditions [17–
24]. The issue of approximate controllability for deterministic fractional control
systems has been raised by several authors (see [25–33]).

On the other hand, some researchers also paid their attention towards the theory
of fractional stochastic systems and developed some interesting results. Utilizing
the Krasnoselskii fixed point theorem and stochastic analysis, Sakthivel et al.
[34] proved approximate controllability of neutral stochastic fractional integro-
differential system with infinite delay. In [35], Sakthivel et al. established sufficient
conditions for approximate controllability of fractional stochastic differential equa-
tions. Using the Sadovskii fixed point theorem, Muthukumar and Rajivganthi
[36] discussed approximate controllability for fractional neutral stochastic integro-
differential system with nonlocal conditions and infinite delay. Kerboua et al. [37]
obtained some sufficient conditions for approximate controllability of fractional
stochastic control systems. Using fixed point theorem for multivalued operators,
approximate controllability for fractional stochastic differential inclusions with
nonlocal conditions and delay has been studied in [38]. Balasubramaniam et al.
[39] used Bohnenblust–Karlin’s fixed point theorem and discussed some sufficient
conditions for approximate controllability of fractional neutral stochastic integro-
differential inclusions with infinite delay. Boudaoui et al. [40] obtained approximate
controllability for fractional impulsive stochastic system with nonlocal conditions
and infinite delay. Shukla et al. [41] studied the concept of approximate controlla-
bility of fractional stochastic differential system under simple sufficient conditions.
Chadha et al. [42] studied the approximate controllability of an impulsive fractional
neutral stochastic system with nonlocal conditions in a Hilbert space.

Motivated by the above cited work, the main objective of this article is to
investigate the approximate controllability of the following nonlocal fractional
stochastic delayed differential equation:

CDα
t ξ(t) = Aξ(t)+ Bv(t)+ f (t, ξ(t − γ ))+ g(t, ξ(t − γ ))

dω(t)

dt
, t ∈ (0, τ ];

(1)

ξ(0) = ξ0 + h(ξ); ξ(t) = ϕ(t), for t ∈ [−γ, 0), (2)

where CDα
t is the Caputo fractional derivative operator of order α ∈ (0, 1), A is

a sectorial operator densely defined on the separable Hilbert space X , the state
ξ(·) is X -valued stochastic processes, the control function v(·) takes values in
L2([0, τ ],F ,V), B is a bounded linear operator from V to X , f : [0, τ ] × X → X
and g : [0, τ ] × X → LQ(K,X ) are appropriate functions to be defined latter,
and h : C([0, τ ],X ) → X is a continuous function. The random variable
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ξ0 ∈ X satisfies E‖ξ0‖2 < ∞; the initial data ϕ = {ϕ(t) : t ∈ [−γ, 0)} is
an F0-measurable, X -valued random variable independent of ω with finite second
moments.

The chapter is organized as follows: in Sect. 2, we present basic definitions
and results as preliminaries. In Sect. 3, first, the existence and uniqueness of mild
solution are discussed, and thereafter approximate controllability is studied. In
Sect. 4, an example is given to illustrate the developed theory.

2 Preliminaries

This section contains basic definitions and preliminary results, which help us to
develop further results. Throughout this chapter, we use the following notations: let
X , V , and K be the separable Hilbert spaces. For convenience, we denote the inner
products and norms in all spaces by 〈·, ·〉 and ‖ · ‖. Let (Ω,F ,P) be a complete
probability space furnished with complete family of right-continuous increasing
sub-σ -algebras {Ft : 0 ≤ t ≤ τ } satisfying Ft ⊂ F . Let {en}∞n=1 ⊂ K be a complete
orthonormal set and {βn}∞n=1 a sequence of independent Brownian motions such that

ω(t) :=
∞∑

n=1

√
λnenβn(t), t ∈ [0, τ ],

where the sequence {λn ≥ 0 : n ∈ N} is bounded, and Qen = λnen, n ∈ N with
trace tr(Q) = ∑∞

n=1 λn < ∞. The K-valued stochastic process ω(·) is called the
Winner process. The normal filtration Ft is the σ -algebra generated by {ω(s) : 0 ≤
s ≤ t} and Fτ = F .

Denoted by L(K,X ) the space of all bounded continuous operators from K to X
equipped with the usual operator norm. For ψ ∈ L(K,X ), define

‖ψ‖2
Q = tr(ψQψ∗) =

∞∑

n=1

‖√λnψen‖2.

If ‖ψ‖2
Q < ∞, thenψ is called aQ-Hilbert–Schmidt operator. LetLQ(K,X ) be the

space of all Q-Hilbert–Schmidt operators ψ : K → X . The completion LQ(K,X )
of L(K,X ) with respect to the topology induced by the norm ‖ · ‖Q is a Hilbert
space.

The space of strongly measurable, X -valued, square integrable random variables,
denoted by L2(Ω,X ), is a Banach space equipped with the norm topology ‖ξ(·)‖ =
(E‖ξ(·, w)‖2)1/2, where w ∈ Ω and the expectation E(·) is defined by E(�) =∫
Ω
�(w)dP. Let C([−γ, τ ], L2(Ω,X )) be the Banach space of continuous maps

from [−γ, τ ] to L2(Ω,X ) satisfying sup−γ≤t≤τ E‖ξ(t)‖2 < ∞. Let X2 be the
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closed subspace of C([−γ, τ ], L2(Ω,X )) consisting of measurable, Ft -adapted,
X -valued processes x ∈ C([0, τ ], L2(Ω,X )) equipped with the norm

‖ξ‖X2 :=
(

sup
0≤t≤τ

E‖ξ(t)‖2

)1/2

.

Let us recall the following well-known definitions. For more details on fractional
calculus, one can see [1, 4].

Definition 1 The Riemann–Liouville fractional integral operator of order α > 0
of a function f : [0,∞) → R with the lower limit 0 is defined as

Iαf (t) = 1

Γ (α)

∫ t

0
(t − s)α−1f (s)ds,

where Γ is the Euler gamma function.

Definition 2 The Caputo fractional derivative of order α > 0 for the function f ∈
Cm([0, τ ],R) is defined by

CDα
t f (t) = 1

Γ (m− α)

∫ t

0
(t − s)m−α−1f (m)(s)ds, m− 1 ≤ α < m ∈ N.

If f is X -valued, the integrals in Definitions 1 and 2 are taken in Bochner’s sense.

Definition 3 ([38, 43]) A closed linear operator A is called sectorial of type μ ∈ R

if there are π/2 ≤ θ ≤ π and M̃ > 0 such that the following holds: ρ(A) ⊂∑
(θ,μ) := {λ ∈ C : λ �= μ, |arg(λ−μ)| < θ}, and ‖R(λ,A)‖ := ‖(λ−A)−1‖ ≤
M̃

|λ−μ| , λ ∈ ∑(θ,μ) .

Lemma 1 ([43]) For 0 < α < 2, a linear, closed, and densely defined operator A
is inAα(θ0, μ0) if and only if λα ∈ ρ(A) for each λ ∈ Σ(θ0+π/2,μ) and for μ > μ0,
θ < θ0 there is a constant k0 depending on θ and μ such that

‖λα−1R
(
λα,A

)‖ ≤ k0

|λ− μ| .

Lemma 2 ([43]) If f satisfies the uniform Hölder condition with the exponent 0 <
δ ≤ 1 and A is a sectorial operator, then

CDα
t ξ(t) = Aξ(t)+ f (t), 0 < α < 1, t ∈ (0, τ ],

ξ(0) = ξ0,

}
(3)

has a unique solution that is given by

ξ(t) = Sα(t)ξ0 +
∫ t

0
Tα(t − s)f (s)ds,
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where

Sα(t) = Eα,1(At
α) = 1

2πi

∫

B̂"

eλt
λα−1

λα − Adλ,

Tα(t) = tα−1Eα,α(At
α) = 1

2πi

∫

B̂"

eλt
1

λα − Adλ,

where B̂" denotes the Bromwich path.

The operator A belongs to Cα(M̃, μ) if problem (3) with f = 0 has a solution
operator Sα(t) satisfying ‖Sα(t)‖ ≤ M̃eμt . Denote Cα(μ) := ∪{Cα(M̃, μ) : M̃ ≥
1}, Cα := {Cα(μ) : μ ≥ 0}, and Aα(θ0, μ0) = {A ∈ Cα : A generates analytic
solution operators Sα(t) of type (θ0, μ0)}.

For 0 < α < 1 and A ∈ Aα(θ0, μ0), ‖Sα(t)‖ ≤ M̃eμt and ‖Tα(t)‖ ≤ Ceμt (1 +
tα−1), t > 0, μ > μ0. Set

MS := sup
0≤t≤τ

‖Sα(t)‖, MT := sup
0≤t≤τ

Ceμt
(
1 + t1−α

)
.

Then, ‖Sα(t)‖ ≤ MS , ‖Tα(t)‖ ≤ tα−1MT .
By virtue of Lemma 2, we define the solution of system (1)–(2) as follows:

Definition 4 A continuous Ft -adapted stochastic process x : [−γ, τ ] → X is
called a mild solution of system (1)–(2) if for every v(·) ∈ L2([0, τ ],F ,V), ξ(t) is
measurable and satisfying

ξ(t) =
⎧
⎨

⎩

Sα(t)[ξ0 + h(ξ)] + ∫ t0 Tα(t − s)[Bv(s)+ f (s, ξ(s − γ ))]ds
+ ∫ t0 Tα(t − s)g(s, ξ(s − γ ))dω(s), t ∈ [0, τ ];
ϕ(t), t ∈ [−γ, 0).

Let ξ(t, ξ0, v) be the state value of system (1)–(2) at time t corresponding to the
control v(·) ∈ L2([0, τ ],F ,V). Then,

R(τ, ξ0, v) = {ξ(τ, ξ0, v) : v ∈ L2([0, τ ],F ,V)}

is called the reachable set of system (1)–(2) at terminal time τ , and its closure in
L2(Ω,X ) is denoted by R(τ, ξ0, v).

Definition 5 The system (1)–(2) is said to be approximately controllable on [0, τ ]
if and only if R(τ, ξ0, v) = L2(Ω,X ).

To discuss approximate controllability of system (1)–(2), introduce the operator
Lτ : L2([0, τ ],F ,V) → L2(Ω,X ) by

Lτ v :=
∫ τ

0
Tα(τ − s)Bv(s)ds,



118 S. Kumar

and the adjoin operator L∗
τ : L2(Ω,X ) → L2([0, τ ],F ,V) is given by

L∗
τ z = B∗T ∗

α (τ − s)E{z|Ft },

where B∗ and T ∗
α denote the adjoint operators of B and Tα , respectively.

Define the controllability operatorΠτ
0 : L2(Ω,X ) → L2(Ω,X ) associated with

the linear part of (1)–(2) by

Πτ
0 {·} := LτL∗

τ {·} =
∫ τ

0
Tα(τ − t)BB∗T ∗

α (τ − t)E{·|Ft }dt,

and the controllability operator associated with the linear part of fractional deter-
ministic system

CDα
t ξ(t) = Aξ(t)+ Bv(t), t ∈ (0, τ ];

ξ(0) = ξ0,

}
(4)

is given by

Ψ τ
t :=

∫ τ

t

Tα(τ − s)BB∗T ∗
α (τ − s)ds.

It is easy to see that system (4) is approximately controllable on [0, τ ] if and only
if β(βI + Ψ τ

0 )
−1 → 0 strongly as β → 0+ [44]. For more details on approximate

controllability of linear fractional deterministic control system, one can also see
[38, 45]. Moreover, for each 0 ≤ t ≤ τ , Ψ τ

t is a bounded linear operator and
‖(βI + Ψ τ

0 )
−1‖ ≤ 1

β
.

3 Main Results

In this section, we formulate and prove a set of sufficient conditions for approximate
controllability of system (1)–(2). For this purpose, we first examine the existence of
mild solution of system (1)–(2) by using Banach’s fixed point theorem. In particular,
we convert the controllability issue into a fixed point problem. Next, we show that
under some natural assumptions, the system (1)–(2) is approximately controllable.
To obtain desired results, we need the following hypotheses:

(H1) The function h satisfies linear growth and Lipschitz conditions. That is, there
are positive constants l1 and l2 such that

E‖h(ξ)− h(ζ )‖2 ≤ l1E‖ξ − ζ‖2
X2
, E‖h(ξ)‖2 ≤ l2

(
1 + E‖ξ‖2

X2

)
.
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(H2) (i) The functions f (·) : X → X and g(·) : X → LQ(K,X ) are continuous
for almost all 0 ≤ t ≤ τ , and f (·, ξ) : [0, τ ] → X and g(·, ξ) : [0, τ ] →
LQ(K,X ) are strongly measurable for each ξ ∈ X .

(ii) There are positive constants l3, l4, l5, and l6 such that

E‖f (t, ξ)− f (t, ζ )‖2 ≤ l3E‖ξ − ζ‖2, E‖f (t, ξ)‖2 ≤ l4

(
1 + E‖ξ‖2

)
,

E‖g(t, ξ)− g(t, ζ )‖2
Q ≤ l5E‖ξ − ζ‖2, E‖g(t, ξ)‖2

Q ≤ l6

(
1 + E‖ξ‖2

)
.

(H3) For t > 0, Sα(t) and Tα(t) are compact.

To define the control function, we need the following result. For more details,
one can see [46, 47].

Lemma 3 For any ξτ ∈ L2(Ω,X ), there exists φ̃ ∈ L2(Ω,F , L2([0, τ ],L(K,X )))
such that

ξτ = Eξτ +
∫ τ

0
φ̃(s)dω(s).

Thus, for any β > 0 and ξτ ∈ L2(Ω,X ), define the control function

vβ(t, ξ) : = B∗T ∗
α (τ − t)

[(
βI + Ψ τ

0

)−1[Ex̃τ − Sα(τ)(ξ0 + h(ξ))]

+
∫ τ

0

(
βI + Ψ τ

s

)−1
φ̃(s)dω(s)

]

−B∗T ∗
α (τ − t)

∫ τ

0

(
βI + Ψ τ

s

)−1
Tα(τ − s)f (s, ξ(s − γ ))ds

−B∗T ∗
α (τ − t)

∫ τ

0

(
βI + Ψ τ

s

)−1
Tα(τ − s)g(s, ξ(s − γ ))dω(s).

Lemma 4 There is a constant M̂ > 0 such that for all ξ, ζ ∈ X2, the following
hold:

E‖vβ(t, ξ)− vβ(t, ζ )‖2 ≤ M̂

β2 ‖ξ − ζ‖2
X2
,

E‖vβ(t, ξ)‖2 ≤ M̂

β2

(
1 + ‖ξ‖2

X2

)
.

Proof We prove the first inequality only, since the second inequality can be
established in a similar way. Let ξ , ζ ∈ X2 be arbitrary. Then, the Cauchy–Schwartz
inequality and assumptions (H1) and (H2) yield that
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E‖vβ(t, ξ)− vβ(t, ζ )‖2

≤ 3E
∥∥∥B∗T ∗

α (τ − t)(βI + Ψ τ
0 )

−1Sα(τ)[h(ξ)− h(ζ )]
∥∥∥

2

+ 3E

∥∥∥∥B
∗T ∗

α (τ − t)

∫ τ

0
(βI + Ψ τ

s )
−1Tα(τ − s)

×[f (s, ξ(s − γ ))− f (s, ζ(s − γ ))]ds‖2

× +3E

∥∥∥∥B
∗T ∗

α (τ − t)

∫ τ

0
(βI + Ψ τ

s )
−1Tα(τ − s)

× [g(s, ξ(s − γ ))− g(s, ζ(s − γ ))]dω(s)‖2 .

≤ 3

β2 ‖B‖2τ 2(α−1)M2
T

[
M2
S l1‖ξ − ζ‖2

X2

+ M2
T τ

α

α
[l3 + tr(Q)l5]

∫ τ

0
(τ − s)α−1E‖ξ(s − γ )− ζ(s − γ )‖2ds

≤ 3

β2
‖B‖2τ 2(α−1)M2

T

[
M2
S l1 + M2

T τ
α(τ − γ )α

α2
[l3 + tr(Q)l5]

]
‖ξ − ζ‖2

X2

≤ 3

α2β2 ‖B‖2τ 2(α−1)M2
T

[
M2
Sα

2l1 +M2
T τ

α(τ − γ )α[l3 + tr(Q)l5]
]
‖ξ − ζ‖2

X2
.

Now, compute

∫ τ

0
(τ − s)α−1E‖ξ(s − γ )− ζ(s − γ )‖2ds

=
∫ τ−γ

−γ
(τ − γ − σ)α−1E‖ξ(σ )− ζ(σ )‖2dσ

=
∫ 0

−γ
(τ − γ − σ)α−1E‖ξ(σ )− ζ(σ )‖2dσ

+
∫ τ−γ

0
(τ − γ − σ)α−1E‖ξ(σ )− ζ(σ )‖2dσ.

But, for −γ ≤ t < 0, ξ(t) = ζ(t) = ϕ(t), and hence

∫ τ

0
(τ − s)α−1E‖ξ(s − γ )− ζ(s − γ )‖2ds

=
∫ τ−γ

0
(τ − γ − σ)α−1E‖ξ(σ )− ζ(σ )‖2dσ
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≤
(∫ τ−γ

0
(τ − γ − σ)α−1dσ

)
‖ξ − ζ‖2

X2

= (τ − γ )α

α
‖ξ − ζ‖2

X2
.

Therefore, we have

E‖vβ(t, ξ)− vβ(t, ζ )‖2 ≤ M̂

β2
‖ξ − ζ‖2

X2
,

where M̂ is a suitable constant. This completes the proof. 	

Theorem 1 Suppose assumptions (H1)–(H3) hold. Then, the system (1)–(2) has a
mild solution on [−γ, τ ] provided

4

[
M2
S l1 + M2

T τ
α

α2

(
M̂‖B‖2τα

β2
+ [l3 + tr(Q)l5](τ − γ )α

)]
< 1.

Proof For β > 0, consider a map 	β : X2 → X2 defined by

(	βξ)(t)

:=
⎧
⎨

⎩

Sα(t)[ξ0 + h(ξ)] + ∫ t0 Tα(t − s)[Bvβ(s, ξ)+ f (s, ξ(s − γ ))]ds
+ ∫ t0 Tα(t − s)g(s, ξ(s − γ ))dω(s), t ∈ [0, τ ];
ϕ(t), t ∈ [−γ, 0).

Now, we show that the operator 	β has a fixed point in X2. The proof is divided
into three steps. 	

Step 1 For any ξ ∈ X2, (	βξ)(t) is continuous on [−γ, τ ]. If t ∈ [−γ, 0), then
(	βξ)(t) = ϕ(t) is clearly continuous. So, let 0 ≤ t1 < t2 ≤ τ , then

E‖(	βξ)(t2)− (	βξ)(t1)‖2

≤ 7E ‖[Sα(t2)− Sα(t1)]h(ξ)‖2

+ 7E

∥∥∥∥
∫ t1

0
[Tα(t2 − s)− Tα(t1 − s)]Bvβ(s, ξ)ds

∥∥∥∥
2

+ 7E

∥∥∥∥
∫ t2

t1

Tα(t2 − s)Bvβ(s, ξ)ds
∥∥∥∥

2

+ 7E

∥∥∥∥
∫ t1

0
[Tα(t2 − s)− Tα(t1 − s)]f (s, ξ(s − γ ))ds

∥∥∥∥
2
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+ 7E

∥∥∥∥
∫ t2

t1

Tα(t2 − s)f (s, ξ(s − γ ))ds

∥∥∥∥
2

+ 7E

∥∥∥∥
∫ t1

0
[Tα(t2 − s)− Tα(t1 − s)]g(s, ξ(s − γ ))dω(s)

∥∥∥∥
2

+ 7E

∥∥∥∥
∫ t2

t1

Tα(t2 − s)g(s, ξ(s − γ ))dω(s)

∥∥∥∥
2

≤ 7E ‖[Sα(t2)− Sα(t1)]h(ξ)‖2

+ 7t1‖B‖2
∫ t1

0
E
∥∥[Tα(t2 − s)− Tα(t1 − s)]vβ(s, ξ)∥∥2

ds

+ 7M2
T ‖B‖2 (t2 − t1)

α

α

∫ t2

t1

(t2 − s)α−1E
∥∥vβ(s, ξ)

∥∥2
ds

+ 7t1

∫ t1

0
E ‖[Tα(t2 − s)− Tα(t1 − s)]f (s, ξ(s − γ ))‖2 ds

+ 7M2
T

(t2 − t1)
α

α

∫ t2

t1

(t2 − s)α−1E ‖f (s, ξ(s − γ ))‖2 ds

+ 7t1tr(Q)
∫ t1

0
E ‖[Tα(t2 − s)− Tα(t1 − s)]g(s, ξ(s − γ ))‖2 ds

+ 7tr(Q)M2
T

(t2 − t1)
α

α

∫ t2

t1

(t2 − s)α−1E ‖Tα(t2 − s)g(s, ξ(s − γ ))‖2 ds.

The operators Sα(t) and Tα(t) are continuous in the uniform operator topology due
to (H3). Thus, using Lebesgue’s dominated convergence theorem and the continuity
of Sα(t) and Tα(t) in the uniform operator topology, we conclude that the right-
hand side of the above inequality tends to zero as t2 − t1 → 0. Therefore, the
operator (	βξ)(t) is continuous from the right in [0, τ ). A similar argument gives
the continuity of the operator (	βξ)(t) from the left in (0, τ ]. Hence, (	βξ)(t) is
continuous on [−γ, τ ].
Step 2 We now show that 	β maps X2 into itself. For t ∈ [−γ, 0), the proof is
trivial. So, let t ∈ [0, τ ], and using Lemma 4 and assumptions (H1) and (H2), we
get

E‖(	βξ)(t)‖2

≤ 5‖Sα(t)‖2[E‖ξ0‖2 + E‖h(ξ)‖2]

+ 5E

∥∥∥∥
∫ t

0
Tα(t − s)Bvβ(s, ξ)ds

∥∥∥∥
2
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+ 5E

∥∥∥∥
∫ t

0
Tα(t − s)f (s, ξ(s − γ ))ds

∥∥∥∥
2

+ 5E

∥∥∥∥
∫ t

0
Tα(t − s)g(s, ξ(s − γ ))dω(s)

∥∥∥∥
2

≤ 5M2
SE‖ξ0‖2 + 5M2

Sl2(1 + ‖ξ‖2
X2
)+ 5

M̂‖B‖2τ 2α

α2β2

(
1 + ‖ξ‖2

X2

)

+ 5
M2
T τ

2α

α2 [l4 + tr(Q)l6]
[
1 + ‖ϕ‖2 + ‖ξ‖2

X2

]
.

This yields that E‖	βξ‖2
X2

< ∞, and hence 	βξ ∈ X2. Thus, for each β > 0, we
have 	β(X2) ⊆ X2.

Step 3 Finally, we use the contraction mapping principle to show that 	β has a
fixed point in X2, which is the mild solution of fractional control system (1)–(2).
Let β > 0 and ξ , ζ ∈ X2. Then, for t ∈ [−γ, 0), we have ξ(t) = ζ(t) = ϕ(t). Next,
let t ∈ [0, τ ], then

E‖(	βξ)(t)− (	βζ )(t)‖2

≤ E

∥∥∥Sα(t)[h(ξ)− h(ζ )]

+
∫ t

0
Tα(t − s)B[vβ(s, ξ)− vβ(s, ζ )]ds

+
∫ t

0
Tα(t − s)[f (s, ξ(s − γ ))− f (s, ζ(s − γ ))]ds

+
∫ t

0
Tα(t − s)[g(s, ξ(s − γ ))− g(s, ζ(s − γ ))]dω(s)

∥∥∥
2

≤ 4

[
M2
Sl1 + M2

T τ
α

α2

(
M̂‖B‖2τα

β2 + [l3 + tr(Q)l5](τ − γ )α

)]
‖ξ − ζ‖2

X2
.

This implies that

‖	βξ −	βζ‖2
X2

≤ l(α, β)‖ξ − ζ‖2
X2
,

where l(α, β) := 4

[
M2
Sl1 + M2

T τ
α

α2

(
M̂‖B‖2τα

β2 + [l3 + tr(Q)l5](τ − γ )α
)]

< 1.

Hence, by contraction mapping principle, we conclude that 	β admits a unique
fixed point in X2.
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Theorem 2 Let f and g be uniformly bounded and suppose that (H1)–(H3) hold.
If the linear system (4) is approximately controllable, then system (1)–(2) is
approximately controllable on [0, τ ].
Proof Let ξβ be the fixed point of the operator 	β in X2. By the stochastic Fubini
theorem, it is easy to see that

ξβ(τ ) = ξτ − β(βI + Ψ τ
0 )

−1)
[
Eξτ − Sα(τ)(ξ0 + h(ξβ))

]

+β
∫ τ

0
(βI + Ψ τ

s )
−1Tα(τ − s)f (s, ξβ(s − γ ))ds

+β
∫ τ

0
(βI + Ψ τ

s )
−1[Tα(τ − s)g(s, ξβ(s − γ ))− φ̃(s)]dω(s).

	

The uniform boundedness of f and g yields that there is a subsequence

denoted by {f (·, ξβ(·)), g(·, ξβ(·))} converging to, say, {f (·, w), g(·, w)} weakly
in L2([0, τ ];X ) × L2(LQ(K,X )). Then, in view of (H3), we have Tα(τ −
s)f (s, ξβ(s − γ )) → Tα(τ − s)f (s, ω) and Tα(τ − s)g(s, ξβ(s − γ )) → Tα(τ −
s)g(s, ω) in [0, τ ] ×Ω . Thus, we obtain

E‖ξβ(τ )− ξτ‖2

≤ 7
∥∥∥β(βI + Ψ τ

0 )
−1)

[
Eξτ − Sα(τ)(ξ0 + h(ξβ)

]∥∥∥
2

+ 7E

(∫ τ

0

∥∥∥β(βI + Ψ τ
s )

−1Tα(τ − s)[f (s, ξβ(s − γ ))− f (s)]
∥∥∥ ds

)2

+ 7E

(∫ τ

0

∥∥∥β(βI + Ψ τ
s )

−1Tα(τ − s)f (s)

∥∥∥ ds
)2

+ 7E

(
tr(Q)

∫ τ

0

∥∥∥β(βI + Ψ τ
s )

−1Tα(τ − s)

× [g(s, ξβ(s − γ ))− g(s)]∥∥2
L2(LQ(K,X ))

ds
)

+ 7E

(
tr(Q)

∫ τ

0

∥∥∥β(βI + Ψ τ
s )

−1Tα(τ − s)g(s)

∥∥∥
2

L2(LQ(K,X ))
ds

)

+ 7E

(
tr(Q)

∫ τ

0

∥∥∥β(βI + Ψ τ
s )

−1φ̃(s)

∥∥∥
2

L2(LQ(K,X ))
ds

)
.

On the other hand, the approximate controllability of linear system (4) implies that
for all 0 ≤ s ≤ τ , β(βI + Ψ τ

s )
−1 → 0 strongly as β → 0+, and moreover
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‖β(βI + Ψ τ
s )

−1‖ < 1. Thus, by the Lebesgue dominated convergence theorem, it
follows that

E‖ξβ(τ )− ξτ‖2 → 0 as β → 0+.

This shows that the system (1)–(2) is approximately controllable.

4 Example

Example 1 Let X = L2([0, π ],R). Define the operator A : X → X by Aς = ς ′′
with domain

D(A) = {ς ∈ X ; ς , ς ′ are absolutely continuous, ς ′′ ∈ X , ς(0) = ς(π) = 0}.

It is well known that the set {ϕn, n = 1, 2, . . .} forms an orthonormal basis

for X , where ϕn(ς) =
√
( 2
π
) sin(nς), n ∈ N, are the normalized eigenfunctions

corresponding to the eigenvalues λn = −n2 of the operator A. Then, the C0-
semigroup generated by A is defined by

T (t)ς :=
∞∑

n=1

exp(λnt)〈ς, ϕn〉ϕn, ς ∈ X .

Thus, it follows that {T (t) : t > 0} is uniformly bounded compact semigroup, so
that R(λ,A) := (λ− A)−1 is a compact operator for λ ∈ ρ(A) [38].

Consider the following fractional stochastic delayed control system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CD
3/4
t ς(t, z) = ∂2

∂z2 ς(t, z)+ ϑ(t, z)+ f (t, ς(t − γ, z))+ g(t, ς(t − γ, z))
dω(t)
dt

ς(0, z) = ς0(z)+
∑k
j=1 γj ς(tj , z), z ∈ [0, π ]

ς(t, z) = ϕ(t, z), t ∈ [−γ, 0)
ς(t, 0) = ς(t, π) = 0, t ∈ [0, τ ] ,

(5)

where 0 < tj < τ , γj ∈ R, and ϑ : [0, τ ] × [0, π ] → R is continuous.
Define ϕ(t)(z) = ϕ(t, z), ς(t)(z) = ς(t, z), and (Bv)(t)(z) = ϑ(t, z). Set

α = 3/4 and h(t)(z) = ∑k
j=1 γjς(tj , z). Then, with the choices of A, f , g, and h,

system (5) can be written in the abstract form given by (1)–(2). Therefore, by virtue
of Theorem 2, if the hypotheses (H1)–(H3) are fulfilled and the linear deterministic
system associated with (5) is approximately controllable, then the system (5) is
approximately controllable on [0, τ ].
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On Noncritical Solutions of
Complementarity Systems

Andreas Fischer and Mario Jelitte

1 Introduction

The present paper is devoted to characterize local Lipschitzian error bounds for a
system of nonsmooth equations

F(u) = 0, (1)

where F : Rn → R
m is a (at least) locally Lipschitz continuous function whose

further properties will be specified later on. The solution set of equation (1) is
denoted by

F−1(0) := {u ∈ R
n | F(u) = 0}.

It is said that F provides a local Lipschitzian error bound at û ∈ F−1(0), if there
are constants c, ε > 0 such that

cdist[u, F−1(0)] ≤ ‖F(u)‖ for all u ∈ û+ εB, (2)

where ‖ · ‖ stands for the Euclidean norm, B := {u ∈ R
n | ‖u‖ ≤ 1} is the unit ball,

and dist[u,U ] := inf{‖u − y‖ | y ∈ U} denotes the point-to-set distance of u to a
nonempty set U ⊂ R

n.
Different types of error bounds are fundamental for the design and analysis

of numerical methods in the field of mathematical programming [29]. Let us, in
particular, consider local Lipschitzian error bounds for systems of equations. This
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type of error bounds turned out to be of high relevance for the construction of
Newton-type methods for solving these systems even if a system has nonisolated
solutions, see [1, 9, 11, 13, 25, 34, 35], for example. Later on, more difficult cases
were dealt with, which allow that a solution is not only nonisolated but that the
function F is also not differentiable there, for instance, see [2, 7, 12, 16]. Again,
local Lipschitzian error bounds played an important role.

Several problems in mathematical programming, such as generalized Nash equi-
librium problems [15], possess nonisolated solutions. It is well known that necessary
optimality conditions of those problems can be written as complementarity systems
(for a definition, see Sect. 3 or [16]). To apply Newton-type methods for the
solution of complementarity systems, they are often reformulated as systems of
equations (1). However, the resulting systems might be nonsmooth at possibly
nonisolated solutions. Therefore, Newton-type methods described in the previous
paragraph can be helpful but require the knowledge whether appropriate local
Lipschitzian error bounds hold.

The present paper contributes to this question. More in detail, based on recent
results in [17], we first extend the notion of a noncritical solution developed in
[23] to a more general case with reduced smoothness. Moreover, we will see
that the relation between the existence of a local Lipschitzian error bound and
the noncriticality carries over to our more general case. Then, in Sect. 3, we
introduce the Switching Index Condition (SIC). This new condition will allow us
to prove that a reformulation of the complementarity system as nonsmooth system
of equations (1) is strictly semidifferentiable in a certain sense. Finally, in Sect. 4,
we will consider the Karush–Kuhn–Tucker (KKT) conditions arising from smooth
inequality constrained optimization problems and, related to this, a reformulation of
the KKT conditions as a nonsmooth system of equations (1). Then, based on results
in Sects. 2 and 3, we will characterize the existence of a local Lipschitzian error
bound under SIC but without conditions on the local isolatedness of primal or dual
variables.

Notation A nonempty set C ⊂ R
n is called cone if v ∈ C implies λv ∈ C for all

λ ∈ [0,∞). For C ⊂ R
n and v ∈ C, we write v′ C→ v to say that all sequences

(vk) ⊂ C with vk → v are meant. Instead of t
(0,∞)→ 0, we write t ↓ 0. Moreover,

o : (0,∞) → R is used to denote any function satisfying o(t)/t → 0 as t ↓ 0.

2 Definitions and Preliminary Results

In this section, we exploit some results from [17], where the concept of noncritical
solutions of differentiable systems of equations, introduced in [23], is extended, in
particular to cases of nonsmooth systems.

Let C ⊂ R
n be a given set. Then, the regular tangent cone to C at u ∈ C is given

by
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T̂ C(u) :=
{
v ∈ R

n | ∀(uk) C→ u∀(tk) ↓ 0∃(vk) → v : (uk + tkv
k) ⊂ C

}
, (3)

for example, see [32, Definition 11.1.1].
Throughout the paper, û ∈ F−1(0) denotes an arbitrary but fixed solution of

equation (1). In what follows, we want to approximate T̂ F
−1(0)(û) by the cone

DF(û) :=
{
v ∈ R

n | ∃(tk) ↓ 0∃(vk) → v : ‖F(û+ tkv
k)‖ = o(tk)

}
. (4)

To this end, we will make use of two notions of directional differentiability. The
function F is called semidifferentiable at û if there exists a continuous and positively
homogeneous function F ′(û) : Rn → R

m so that, for all v ∈ R
n,

‖F(û+ tv′)− F(û)− tF ′(û)(v′)‖ = o(t) as t ↓ 0 and v′ → v (5)

is valid. Notice that, due to the local Lipschitz continuity of F , semidifferentiability
is the same as B-differentiability or directional differentiability in the sense of
Hadamard, see the discussions in [26] for instance. According to [17, Definition
3], we call F strictly semidifferentiable at û with respect to F−1(0), if there exists a
continuous and positively homogeneous function F ′(û) : Rn → R

m so that, for all
v ∈ R

n,

‖F(u+ tv′)− F(u)− tF ′(û)(v′)‖ = o(t) as u
F−1(0)→ û, t ↓ 0, and v′ → v

(6)

holds. For equivalent and more extended definitions of semidifferentiability and
strict semidifferentiability and for related discussions, we refer to [17]. Finally, note
that in (5) and (6), F(û) and F(u) are equal to 0 since û and u used in these formulas
are solutions of (1).

To proceed, we need two results from [17]. Firstly, the inclusion

T̂ F
−1(0)(û) ⊂ DF(û) (7)

is valid according to [17, Lemma 8]. Secondly, if F is semidifferentiable at û, then
[17, Lemma 5 a)] yields

DF(û) = {
v ∈ R

n | F ′(û)(v) = 0
}
. (8)

Definition 1 A solution û of (1) is called noncritical, if T̂ F
−1(0)(û) = DF(û)

holds. Otherwise, û is called critical.

This definition extends the one given in [23] to some nonsmooth setting. For more
discussion, see Remark 2 below.
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Remark 1 If F is strictly differentiable at û [32, Definition 3.2.2] with Jacobian
F ′(û) and kerF ′(û) denoting the nullspace of F ′(û), then (8) yields

DF(û) = kerF ′(û).

In this case, a condition ensuring that û is noncritical is rankF ′(û) = m, or
equivalently, F ′(û)Rn = R

m, see [31, 6.32 Exercise] for instance. The latter
condition is also known as Lyusternik’s regularity condition, cf. [4, 19, 20]. 	

Theorem 1 Suppose that F is strictly semidifferentiable at û with respect to
F−1(0). Then, û is noncritical if and only if F provides a local Lipschitzian error
bound at û.

Proof This theorem is a special case of [17, Corollary 1]. 	

Remark 2 If û is noncritical, then [17, Lemma 8] yields that the set F−1(0) is
Clarke regular at û, see [3, Definition 2.4.6] for the notion of Clarke regularity.
Thus, a crucial difference between Definition 1 and [23, Definition 1] is that
T̂ F

−1(0)(û) is now not restricted to be a linear subspace of Rn, which can be seen in
Example 1 below. Somehow surprisingly, [17, Lemma 11] shows that noncriticality
of û together with strict semidifferentiability of F at û with respect to F−1(0)
implies that T̂ F

−1(0)(û) (and thus too DF(û)) is a linear subspace. 	


3 The Switching Index Condition

For continuously differentiable functions ϕ,ψ : R
n → R

m, let us consider the
complementarity system

ϕ(u) ≥ 0, ψ(u) ≥ 0, ϕ(u)$ψ(u) = 0. (9)

There are various ways to rewrite this system as an equation [5]. Here, we use the
min-function approach and define F : Rn → R

m by

F(u) := min{ϕ(u), ψ(u)} for u ∈ R
n, (10)

where min is taken componentwise. Since

min{a, b} = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0

holds for all a, b ∈ R, we see that u ∈ R
n solves (9) if and only if F(u) = 0.

However, note that the min-function is not differentiable if a = b. Hence, F is in
general not everywhere differentiable. To deal with this problem, let us define the
index set
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V(u) := {i | ϕi(u) = ψi(u)} (11)

for any u ∈ R
n. Our aim is to apply Theorem 1 to Eq. (1) with F defined by (10).

To this end, we introduce the following condition that, as we will show later on,
ensures strict semidifferentiability with respect to the solution set of (1).

Switching Index Condition (SIC) at û.

∃ε > 0∀u ∈ F−1(0) ∩ (û+ εB) : V(û) = V(u).

As the continuity of ϕ and ψ yields V(u) ⊂ V(û) for all u ∈ F−1(0) sufficiently
close to û, SIC guarantees that the index set V(u) does not change for all solutions
u in a sufficiently small neighborhood of û, i.e., V(û) does not contain an index i
that switches to {1, . . . , m} \ V(u) for u ∈ F−1(0) sufficiently close to û.

Notice that SIC is weaker than the strict complementarity condition at û. The
latter can be written as V(û) = ∅. A trivial example, where SIC is fulfilled but strict
complementarity is violated for any solution of (9), is given by ϕ(u) := ψ(u) := 0
for u ∈ R.

The next lemma is the main result of this section. On the one hand, it is shown
that SIC ensures strict semidifferentiability of F at û with respect to F−1(0). On the
other hand, we provide a formula to compute DF(û).

Lemma 1 F is semidifferentiable at û, where F ′(û) : Rn → R
m is given by

F ′(û)i(v) =
⎧
⎨

⎩

ψ ′
i (û)v, if ϕi(û) > 0,

ϕ′
i (û)v, if ψi(û) > 0,

min{ϕ′
i (û)v, ψ

′
i (û)v}, if i ∈ V(û)

(12)

for i ∈ {1, . . . , m} and v ∈ R
n. Moreover, v ∈ DF(û) holds if and only if there is

some constant τ > 0 with

min
{
ϕ(û)+ t ϕ′(û)v, ψ(û)+ t ψ ′(û)v

} = 0 for all t ∈ [0, τ ]. (13)

If SIC is valid at û, then F is strictly semidifferentiable at û with respect to F−1(0).

Proof Because ϕ and ψ are both continuous near û, there exists δ > 0 such that for
all u ∈ û+ δB the inclusions

{i | 0 < ϕi(û)} ⊂ {i | ψi(u) ≤ ϕi(u)} ⊂ {i | ψi(û) = 0} (14)

are valid. Pick v̂ ∈ R
n arbitrarily. For any i /∈ V(û), we can assume without loss of

generality that ϕi(û) > 0. Then, (14) implies that for all u ∈ F−1(0) ∩ (û + δB),
t ≥ 0 and v ∈ v̂ + B with u+ tv ∈ û+ δB,

Fi(u+ tv) = min{ϕi(u+ tv), ψi(u+ tv)} = ψi(u+ tv) (15)
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holds true. Therefore, and becauseψ is continuously differentiable, [32, Proposition
3.4.2] yields

Fi(u+ tv)− Fi(u) = ψi(u+ tv)− ψi(u) = t ψ ′
i (û)v + o(t), (16)

as u → û, t ↓ 0, and v → v̂, implying that Fi with i /∈ V(û) is strictly differentiable
at û. For i ∈ V(û), we obtain that ϕi(û) = ψi(û) = 0 and

Fi(û+ tv)− Fi(û) = min{ϕi(û+ tv), ψi(û+ tv)}
= min

{
ϕi(û)+ tϕ′

i (û)v + o(t), ψi(û)+ tψ ′
i (û)v + o(t)

}

= t min
{
ϕ′
i (û)v, ψ

′
i (û)v

}+ o(t),

as t ↓ 0 and v → v̂, implying that Fi is semidifferentiable at û. Thus, F is
semidifferentiable at û. Moreover, the latter calculation together with (16) gives the
formula (12). The representation of DF(û) by (13) is an immediate consequence
of (8), (12), and the continuity of ϕ and ψ .

Let us finally assume that SIC is satisfied at û and consider i ∈ V(û). Then, there
exists ε ∈ (0, δ] so that ϕi(u) = ψi(u) = 0 holds for all u ∈ F−1(0) ∩ (û + εB).
Therefore, we obtain

Fi(u+ tv)− Fi(u) = t min
{
ϕ′
i (û)v, ψ

′
i (û)v

}+ o(t),

as F−1(0) & u → û, t ↓ 0, and v → v̂, implying that Fi is strictly
semidifferentiable at û with respect to F−1(0). Taking into account (16) for i /∈
V(û), we have shown that F is strictly semidifferentiable at û with respect to
F−1(0). 	

Remark 3 According to Lemma 1, we obtain for some v ∈ R

n that v ∈ DF(û) if
and only if v solves the linear complementarity system

ψ ′
i (û)v = 0, if ϕi(û) > 0,

ϕ′
i (û)v = 0, if ψi(û) > 0,

ϕ′
i (û)v ≥ 0, ψ ′

i (û)v ≥ 0, (ϕ′
i (û)v)(ψ

′
i (û)v) = 0, if i ∈ V(û).

⎫
⎬

⎭ (17)

Therefore, if V(û) �= ∅, we cannot expect DF(û) to be convex in general. In
contrast to this, T̂ F

−1(0)(û) is always convex, see [32, Proposition 11.1.2] for
instance. Thus, the equality T̂ F

−1(0)(û) = DF(û) (as requested in Definition 1
for the noncriticality of û) can be violated particularly if V(û) �= ∅. 	


Let us close the section with examples. The first example demonstrates that non-
criticality of û does not imply that the regular tangent cone to F−1(0) at û is a linear
subspace. The second example shows that in Theorem 1, strict semidifferentiability
with respect to F−1(0) cannot be replaced by semidifferentiability in general.
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Example 1 Consider ϕ(u) := (u1, u2) and ψ(u) := (1, u1) for u = (u1, u2) ∈ R
2.

Then, we find F−1(0) = {0} ×R+. Moreover, let û := 0. Now, it is easily seen that
T̂ F

−1(0)(û) = {0} × R+. According to (17) in Remark 3, we further observe that
DF(û) = {0} ×R+. Thus, we conclude that û is noncritical, whereas T̂ F

−1(0)(û) is
clearly not a linear subspace but just a half-space. 	

Example 2 Consider ϕ(u) := u1 and ψ(u) := u2 for u = (u1, u2) ∈ R

2.
Then, Lemma 1 yields that F is semidifferentiable at û := 0 but not strictly
semidifferentiable. Now, on the one hand, it is known [30, Proposition 1] that F
provides a local Lipschitzian error bound at each u ∈ F−1(0). On the other hand,
F−1(0) is clearly not Clarke regular at û. With Remark 2 in mind, û is thus referred
to as critical. This shows that in general, strict semidifferentiability with respect to
F−1(0) cannot be replaced by semidifferentiability in Theorem 1. 	


4 An Application to KKT Systems

Let us now consider the inequality constrained nonlinear optimization problem

θ(x) → min s.t. g(x) ≤ 0, (18)

where θ : R
l → R and g : R

l → R
m are assumed to be twice continuously

differentiable. The KKT system for (18) reads as

L(x,μ) := θ ′(x)$ + g′(x)$μ = 0, g(x) ≤ 0, μ ≥ 0, μ$g(x) = 0.
(19)

With

ϕ(x, μ) :=
(−L(x,μ)

−g(x)
)

and ψ(x,μ) :=
(
L(x,μ)

μ

)
, (20)

we obtain that any solution of (19) is a solution of the complementarity system (9)
with u = (x, μ) and vice versa. Thus, in the following, we consider F as in (10),
that is,

F(x, μ) = min{ϕ(x, μ), ψ(x, μ)} for (x, μ) ∈ R
l × R

m

and fix any (x̂, μ̂) ∈ F−1(0).

Remark 4 Let the multifunction M : Rl ⇒ R
m be defined by

M(x) :=
{
μ ∈ R

m | (x, μ) ∈ F−1(0)
}

for x ∈ R
l . (21)
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Because F−1(0) = {
(x, μ) ∈ R

l × R
m | μ ∈ M(x)

}
, we note that the computation

of T̂ F
−1(0)(x̂, μ̂) can be challenging [31, 8.33 Definition and formula 8(16)].

However, if x̂ is an isolated primal solution of (19), that is, there exists ε > 0
such that

F−1(0) ∩ ((x̂, μ̂)+ εB) = {x̂} × (
M(x̂) ∩ (μ̂+ εB)

)
,

then we get from [31, 6.41 Proposition] that T̂ F
−1(0)(x̂, μ̂) = {0} × T̂ M(x̂)(μ̂). 	


In the remainder, the index sets

Ig := {i | gi(x̂) = 0}, I< := {1, . . . , m} \ Ig,
Iμ := {i | μ̂i = 0}, I> := {1, . . . , m} \ Iμ

are used. Moreover, by L′
x , the Jacobian of L with respect to x is denoted.

Lemma 2 Let (v,w) ∈ R
l × R

m. Then, (v,w) ∈ DF(x̂, μ̂) if and only if (v,w)
solves the linear complementarity system

L′
x(x̂, μ̂)v + g′(x̂)$w = 0,

g′
i (x̂)v = 0 for all i ∈ I>,

g′
i (x̂)v ≤ 0 for all i ∈ Ig,

wi = 0 for all i ∈ I<,

wi ≥ 0 for all i ∈ Iμ,

wig
′
i (x̂)v = 0 for all i ∈ Ig ∩ Iμ.

(22)

Proof Lemma 1 yields (v,w) ∈ DF(x̂, μ̂) if and only if there is τ > 0 such that

0 = min

{
ϕ(x̂, μ̂)+ tϕ′(x̂, μ̂)

(
v
w

)
, ψ(x̂, μ̂)+ tψ ′(x̂, μ̂)

(
v
w

)}

= min

{
−
(
t
(
L′
x(x̂, μ̂)v + g′(x̂)$w

)

g(x̂)+ tg′(x̂)v

)
,

(
t
(
L′
x(x̂, μ̂)v + g′(x̂)$w

)

μ̂+ tw

)}

for all t ∈ [0, τ ]. This, in turn, holds if and only if

L′
x(x̂, μ̂)v + g′(x̂)$w = 0

g(x̂)+ tg′(x̂)v ≤ 0
μ̂+ tw ≥ 0

g(x̂)$w + μ̂$g′(x̂)v + t w$g′(x̂)v = 0

⎫
⎪⎪⎬

⎪⎪⎭
for all t ∈ [0, τ ]. (23)

Finally, since each solution of (22) is a solution of (23) and vice versa, the assertion
of the lemma is true. 	
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Lemma 3 (Sufficient and Necessary Conditions for SIC)

(a) SIC holds at (x̂, μ̂) if and only if there exists ε > 0 such that, for each i ∈
Ig ∩ Iμ,

gi(x) = μi for all (x, μ) ∈ F−1(0) ∩ ((x̂, μ̂)+ εB
)

is valid.
(b) If there is some ε > 0 so that, for each i ∈ Ig ∩ Iμ,

gi(x) = μi for all (x, μ) ∈ (x̂, μ̂)+ εB with min{−g(x), μ} = 0,

then SIC is fulfilled at (x̂, μ̂).
(c) Let SIC be satisfied at (x̂, μ̂). Then, there exists δ > 0 such that, for each

(x, μ) ∈ (x̂, μ̂)+ δB, we have (x, μ) ∈ F−1(0) if and only if

L(x,μ) = 0, μi = 0 for i ∈ Iμ and gi(x) = 0 for i ∈ Ig. (24)

Proof

(a) It suffices to notice that each (x, μ) ∈ F−1(0) solves L(x,μ) = 0.
(b) This assertion follows from (a) because

F−1(0) ⊂
{
(x, μ) ∈ R

l × R
m | min{−g(x), μ} = 0

}
.

(c) If SIC holds at (x̂, μ̂), then assertion (a) yields ε > 0 such that, for any (x, μ) ∈
(x̂, μ̂)+ εB, we have (x, μ) ∈ F−1(0) if and only if

L(x,μ) = 0, μi

{= 0 for i ∈ I< ∪ (Ig ∩ Iμ)

> 0 for i ∈ Ig \ Iμ ,

gi(x)

{= 0 for i ∈ I> ∪ (Ig ∩ Iμ)

< 0 for i ∈ Iμ \ Ig .

Since Iμ = I< ∪ (Ig ∩ Iμ) and Ig = I> ∪ (Ig ∩ Iμ), the latter system equals

L(x,μ) = 0, μi

{= 0 for i ∈ Iμ

> 0 for i ∈ Ig \ Iμ , gi(x)

{= 0 for i ∈ Ig

< 0 for i ∈ Iμ \ Ig .

Hence, the assertion is true for some δ ∈ (0, ε] because g is continuous.
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Notice that the property stated in item (a) of the previous lemma corresponds to
the property given in item (d) of [8, Theorem 5], which is used (in combination with
a local Lipschitzian error bound) to ensure quadratic convergence of the LP-Newton
method for the solution of KKT systems.

We can now formulate the main result of this section.

Theorem 2 Suppose that SIC is satisfied at (x̂, μ̂). Then, (x̂, μ̂) is noncritical if
and only if F provides a local Lipschitzian error bound at (x̂, μ̂).

Proof According to Lemma 1, SIC at (x̂, μ̂) implies that F is strictly semidifferen-
tiable at (x̂, μ̂)with respect to F−1(0). Therefore, Theorem 1 yields the equivalence
stated. 	

Remark 5 Notice that, although SIC is a strong assumption, it does neither imply
isolatedness of the primal solution x̂ of the KKT system (19) nor uniqueness of
the multiplier μ̂. Hence, Theorem 2 extends the existing results as those given in
[6, 8, 10, 18, 22]. 	


Recall [21, Definition 2], where μ̂ is called noncritical multiplier, if there exists
no (v,w) ∈ R

l × R
m, with v �= 0, that solves the complementarity system (22).

Otherwise, μ̂ is called critical multiplier. Equivalently, one can say that μ̂ is a
noncritical multiplier if and only if

(v,w) ∈ DF(x̂, μ̂) �⇒ v = 0. (25)

In the following, we show that noncriticality of (x̂, μ̂) corresponds to noncriti-
cality of the multiplier μ̂ provided x̂ is an isolated primal solution of (19).

Lemma 4 Suppose that x̂ is an isolated primal solution of (19). Then, (x̂, μ̂) is
noncritical if and only if μ̂ is a noncritical multiplier.

Proof At first, we obtain from (21) that

M(x̂) =
{
μ ∈ R

m |
m∑

i=1

∇gi(x̂)μi = −∇θ(x̂), μi

{= 0 for i ∈ I<

≥ 0 for i ∈ Ig

}
. (26)

Evidently, M(x̂) is a (closed and convex) polyhedron. Therefore, a combination of
[31, 6.9 Theorem] and [31, 6.29 Corollary (e)] allows to apply [31, 6.46 Theorem]
to (26), and we obtain

T̂ M(x̂)(μ̂) =
⎧
⎨

⎩w ∈ R
m |

∑

i∈Ig
∇gi(x̂)wi = 0, wi

{= 0 for i ∈ I<

≥ 0 for i ∈ Iμ

⎫
⎬

⎭ .

Taking into account Remark 4, we thus have
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T̂ F
−1(0)(x̂, μ̂) = {0} ×

⎧
⎨

⎩w ∈ R
m |

∑

i∈Ig
∇gi(x̂)wi = 0, wi

{= 0 for i ∈ I<

≥ 0 for i ∈ Iμ

⎫
⎬

⎭ .

Therefore, with Lemma 2 in mind, we observe that T̂ F
−1(0)(x̂, μ̂) = DF(x̂, μ̂) (i.e.,

(x̂, μ̂) is noncritical) is satisfied if and only if the implication in (25) holds, and thus,
if and only if μ̂ is a noncritical multiplier. 	


5 Conclusions

In the present article, the concept of noncritical solutions of nonlinear equations,
introduced in [23] and recently extended in [17], is studied. We showed how
the newly introduced Switching Index Condition (SIC) allows us to employ the
latter concept for a nonsmooth reformulation of a complementarity system. Finally,
an application to KKT systems, arising from smooth nonlinear programs with
inequality constraints, is given. As a consequence, we achieved new conditions
ensuring a local Lipschitzian error bound for such KKT systems under SIC,
but without assuming isolatedness of the primal solution or the uniqueness of a
multiplier. If, instead, the primal solution is isolated, we showed that noncritical
solutions of the nonsmooth min-reformulation of the KKT system correspond to
noncritical multipliers of this system and vice versa.

In the present paper, the problem functions ϕ and ψ appearing in the
complementarity system were assumed to be continuously differentiable. If this
assumption is violated, particular difficulties may arise and it might be helpful to
exploit weaker differentiability notions for the problem functions, for example, see
[14, 24, 27, 28, 33].
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Testing the Performance of Some New
Hybrid Metaheuristic Algorithms for
High-Dimensional Optimization
Problems

Souvik Ganguli

Abstract This chapter tests the performance of five new firefly-based hybrid
algorithms to solve unconstrained high-dimensional as well as fixed-dimensional
optimization problems. Firefly algorithm has been successfully combined with
bacterial foraging, flower pollination, pattern search, and grey wolf optimizer to
present these high performing computing algorithms. Three types of benchmark
functions are taken up to justify each of the hybrid propositions. The first two sets
of test functions, namely, the unimodal and the multimodal functions, are employed
to validate the exploitation and exploration features, respectively, of the suggested
techniques. The convergence plots show good promise in terms of convergence
speed and accuracy than the existing algorithms. Even the nonparametric test, viz.,
the Kruskal–Wallis diagram, was used to validate the test results. The third type
of test functions constituting some fixed-dimensional multimodal functions is also
evaluated using the integrated methods. The statistical measures of the error function
are also performed considering 50 independent test runs. The rank-sum test of
Wilcoxon is carried out to validate the test outcomes. The proposed methods can
also be suitably utilized to solve constrained as well as multi-objective optimization
problems.

1 Introduction

Metaheuristic algorithms have now become important tools for different applica-
tions. The word “meta” means “beyond” or “higher.” They outnumber ordinary
heuristics. With the aid of randomization, the variety of solutions obtained using
metaheuristics is always achieved. While metaheuristic algorithms are widely pop-
ular, the literature still offers no clear concept of heuristics and metaheuristics. They
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are also used almost interchangeably by many researchers. But the general trend
is aimed at marking all stochastic algorithms as metaheuristic by randomization
and global exploration. Randomization offers a positive contribution to moving
away from a local search to a global one. Nearly all metaheuristic algorithms are
thus strongly suited to nonlinear modeling and control. Metaheuristic algorithms
provide an effective means to provide, in relatively good time, appropriate solutions
to a complex problem by trial and error. These algorithms are aimed not at
finding any possible solution in the search space but at finding a feasible solution
within a reasonable time limit. But there is no guarantee that we can get the
right solutions. Any metaheuristic algorithm has two main components, namely
exploration (diversification) and exploitation (intensification). Exploration produces
a range of solutions for using the entire search space, while exploitation focuses on
searching in a particular area by exercising the knowledge that a successful current
solution is located in that area. A good balance between those two would ensure a
global solution [29].

Though human beings’ problem-solving abilities have always been heuristic or
metaheuristic since the early periods of human history, yet its scientific study is
relatively a budding venture. It was Alan Turing, who was perhaps the first person
to coin the heuristic search technique during World War II. The 1960s and 1970s
witnessed the development of Genetic Algorithms (GAs). Another breakthrough
contribution is the proposition of the Simulated Annealing (SA) method in 1982.
In 1992 and 1995, significant progress took place through the developments of Ant
Colony Optimization (ACO) and Particle Swarm Optimization (PSO), respectively.
In around 1996 and later in 1997, a vector-based evolutionary algorithm was coined
as Differential Evolution (DE) came into existence. With the advent of the twenty-
first century, things became even more fascinating. Many new algorithms like
Bacterial Foraging Algorithm (BFA), Harmony Search (HS), Artificial Bee Colony
(ABC) optimization, Firefly Algorithm (FA), Cuckoo Search (CS), Bat Algorithm
(BA), and Flower Pollination Algorithm (FPA) also evolved [29].

Few metaheuristic algorithms directly associated with this research work are
described as follows. Bacterial Foraging Algorithm (BFA), coined by Passino, was
developed on the theme of the foraging strategy of E. coli bacteria that reside in the
intestine of human beings[20]. However, investigation with complicated problems
discloses that the BFA possesses poor convergence and its performance highly
decreases with dimensionality and problem complexity. Another newcomer in the
list of metaheuristic algorithms, viz. Firefly Algorithm (FA), is motivated by the
communication and the flashing patterns of fireflies found in the tropical climatic
conditions [27]. This algorithm has shown promising superiority over several
algorithms in the recent past. An additional entrant in the tally of metaheuristic
algorithms is the Flower Pollination Algorithm (FPA) that depicts the process of
pollination in the plants having flowers. There are two fundamental mechanisms
in FPA: global and local pollination. The switching probability in the algorithm
is utilized to shift between the common global pollination and the intensive local
pollination [28]. Even dynamism in switch probability often leads to improved
solutions for different optimization problems. Grey wolf optimizer (GWO) is
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another metaheuristic technique that is based on the leadership hierarchy and
hunting behavior of grey wolves available mostly in the northern part of America
[19]. The GWO method is tremendously popular among the researchers and thus has
wide acceptance in diverse fields. Though several new algorithms [15–18, 24] have
also evolved, yet pure algorithms cannot always deliver an optimal solution and are
almost inferior to hybridizations. Moreover, Pattern Search (PS) algorithm [5] acts
as a potential candidate to offer good local search capabilities and has been widely
employed to constitute a hybrid combination with other metaheuristic algorithms.
Further, it is also found that the one-dimensional chaotic maps play a dominant role
to refine the capabilities of any metaheuristic algorithm [6].

The hybrid methods usually consist of two or more algorithms that work in cohe-
sion to achieve a successful integration synergy. Hybridization of the algorithms is
popular, due partly to improved noise handling efficiency, uncertainty, vagueness,
and inaccuracy. The hybrid topologies perform a crucial role in the search power
of the algorithms. The integration targets, at the same time seeking to mitigate any
significant drawback, to incorporate the advantages of a single algorithm into the
integrated algorithm. Overall, some improvements in both computational speed and
precision are typical of the hybridization produced [26].

Hybridization with other algorithms is one of the standard variants of any
metaheuristic algorithm. In this aspect, FA is no exception. ACO [21], GA [22], PSO
[1], DE [14], and other algorithms have successfully combined FA. FA’s strength
in hybridizing with different algorithms is found suitable in both global and local
search. While the hybrid variations of the firefly algorithm are available in the
existing literature, there is still room for the development of new hybrid algorithms
with FA. The methodology inspired by nature, coined as the Bacterial Foraging
Algorithm (BFA) [20] depending on the foraging pattern of E. coli bacteria, suffers
from the drawback of premature convergence for which a hybrid combination of
FA and BFA can be called for. To develop a new hybrid algorithm, the flower
pollination algorithm [28] with dynamic switch probability can be combined with
FA. Also, the pattern search (PS) algorithm [5] is an ideal candidate to provide
excellent local search capabilities [13, 23] and can be used as a hybrid combination
with FA. In the literature, the hybridization of the grey wolf optimizer [19] with
FA has been lacking and can be checked out. It is also found that chaos plays
an essential role in improving any metaheuristic algorithm’s performance [6]. It is
also possible to hybridize chaotic firefly algorithms (CFAs) with GWO to provide
improved convergence and accuracy compared to the parent algorithms. Making use
of fewer fixed parameters in the algorithm has been the main motive of these hybrid
topologies discussed so far. Another specialty of these algorithms is that higher-
dimensional optimization problems have been checked. Also, these algorithms were
evaluated with a competitive number of function evaluations and contrasted with
some metaheuristic algorithms reported recently.

The remainder of the chapter is constructed in the manner discussed. In Sect. 2,
the various hybrid topologies with firefly algorithms are detailed. Section 3 contains
the experiments and their results. Eventually, in Sect. 4, the key findings are
discussed with some directions for future scope.
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2 A Brief Overview of Hybrid Methodologies

The main goal of hybridizing different algorithms is to build improved performance
structures that incorporate the strengths of the individual strategies of algorithms.
Talbi proposed terminology for hybrid metaheuristic algorithms in which two high-
level or low-level algorithms can be hybridized as homogeneous or heterogeneous
with a relay or co-evolutionary method [25]. The hybrid algorithms mentioned in
this chapter are having heterogeneous architecture and are usually designated as the
low-level relay type. The hybrid topologies are low level with the impression that
both parent algorithms maintain functionalities within the hybrid system. The hybrid
approaches are relay type as the parent algorithms are used one after the other. Two
different algorithms are connected in all the hybrid propositions to return the desired
outcomes. The hybrid methods are thus heterogeneous. Figure 1 generalizes the
flowchart of the hybrid architecture discussed in this chapter.

The main reason behind this amalgamation is to resolve the drawbacks of the
single optimization algorithm and to achieve an enhanced rendition. Furthermore,
to reach the best solution possible in the time defined and finally harmonize the
diversification and intensification, it is also important to define the strength of the
proposed process. Those two concepts are utilized to investigate the new likely
outcomes and strengthen the existing method to make it more praiseworthy.

To identify the various identification models in the delta domain, Ganguli et al.
[10] have formed a merger of BFA and FA. In the literature, it was found that FA
would divide the entire population automatically into subgroups with light-intensity

Fig. 1 Flowchart of
proposed hybrid methods

Initialize population

Algorithm - A

Algorithm - B

Stopping
Criteria

Optimal solution

YES

NO
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variation as regards the attraction mechanism. Moreover, the firefly technique can
also escape from local minimum conditions owing to the long-distance mobility
using the Lévy flight mechanism. These merits of FA help it to explore. This
results in two aspects of the hybridization of the FA with BFA. In the first step,
FA undertook the heuristic research to explore the whole search area, and BFA
was utilized to change the solution consistency to the optimization problem. The
technique suggested was coined as a hybrid firefly algorithm (HFA).

A brand-new hybrid topology called the FAdFPA algorithm was devised by
combining FA with FPA to solve system identification problem [11]. By employing
FA for exploration and FPA for exploitation, the balance between diversification and
intensification was achieved in this approach. This algorithm used both the merits
of FA and FPA approaches successfully and avoided their drawbacks. In FAdFPA,
a collection of random operators initialized the search process with the FA. For a
certain count of iterations, the calculation proceeded to look for the overall best
position in the entire search domain with the help of the firefly method. As the
initial starting point for FPA, the best solution obtained via FA was taken, and
then the search process was shifted to FPA to step up the confluence toward the
optimal solution. In the hybrid algorithm, the switching probability of FPA was
made adaptive by the formula:

p = pmax − (pmax − pmin)× t

T
. (1)

In Eq. 1, pmax and pmin are the two fixed parameters of the algorithm having
a standard choice of 0.9 and 0.4, respectively, as per literature, “T ” represents the
maximum iterations, while “t” denotes the present iteration [3].

Another hybrid algorithm called the FAPS algorithm has been developed by the
authors that combine FA with PS for reduced-order modeling in the continuous-time
domain [7]. In this method, the parity between exploration and exploitation was
attained by employing FA as a global optimizer to perform exploration, while PS
performed a local search to deliver exploitation functionality. The algorithm used the
benefits of FA and PS approaches correctly and also minimized their limitations. In
FAPS, a bunch of random agents initialized the search with FA. For some iterations,
the calculation proceeded with FA to look for the best global location in the search
space. FA’s approach was taken as the starting point for PS. The quest method was
then transferred to PS to speed up the optimal global convergence. Therefore, the
integrated technique found an optimal solution faster and yet reliably.

The fusion of GWO and FA presented a new hybrid algorithm, called FAGWO to
diminish the order of single-input single-output systems in the delta domain [8]. The
balance between exploration and exploitation was achieved by applying FA globally,
while GWO conducted a quest in the local search space to reveal the intensification
functionality. The search method commenced with the initialization process from
FA with the help of a class of agents randomly. The evaluation continued for a fixed
count of iterations to attain the finest location within the global search domain. The
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outcome determined with the help of the firefly technique was taken up as the initial
point of the grey wolf optimizer. The search mechanism finally switched to the
GWO method for the convergence process to reach the optimal solution quickly. In
this way, the fusion method was able to obtain a global optimum correctly.

Another novel hybrid algorithm was also introduced to assess the Hammerstein
and Wiener model’s parameters in a unified domain incorporating the merits of
GWO with CFA [9]. The hybridization took place in two stages. First of all, GWO
was used to achieve the diversification of the algorithm to discover the optimal
solution in the complete search space. Also, using the swarm behavior of the firefly
algorithm powered by the iterative chaotic map, this algorithm’s dominance in
searching for the optimal solution has been improved. FA has a demerit to be stuck
in several local optimums. However, since the parameters used are set and do not
change with iterations, FA cannot come out of the local search. Therefore, an effort
was made to use the iterative chaotic map to modify the algorithm parameters.

The GWO method, the other constituent algorithm, also suffered from the
drawbacks of untimely convergence and sometimes get stuck at the local minimum.
Thus, a hybrid algorithm known as GWOCFA was developed to solve their demerits.
The balance between exploration and exploitation was achieved by using GWO
as a global optimizer, while the chaotic firefly technique supported local search to
deliver exploitation functionality. With a group of random agents as an initializer,
the search process began with GWO. The computation continued to find the global
best position in the complete search domain for a fixed number of iterations. GWO’s
findings were then well-selected as the source of CFA. The search technique then
shifted to the chaotic firefly algorithm for the convergence to the global optimum
within a quick time. Therefore, the combined approach could found optimum
meticulously. The algorithm parameters of FA, viz., α and γ , were varied adaptively
by applying iterative chaotic map defined by 2:

xk+1 = sin

(
πa

xk

)
, (2)

where a ∈ (0, 1) is a suitable parameter [6].

3 Results and Discussions

The global optimization techniques discussed in Sect. 2 are now used to test
some of the standard benchmark functions available in the literature. Three types
of test functions are thus considered for the study. The first category belongs to
the unimodal test functions and is characterized by a single global optimum. But
there are no local minima in these types of functions. Hence these functions test
the exploitation capability of the algorithms. The other set of functions is the
multimodal functions having quite a several local minima. The third and the last
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Table 1 Unimodal problems
and their descriptions

Test functions Dimension Search domain

Sphere (F1) 100 [−100, 100] 0

Schwefel 2.22 (F2) 100 [−10, 10] 0

Schwefel 2.21 (F3) 100 [−100, 100] 0

Rosenbrock (F4) 100 [−30, 30] 0

Step (F5) 100 [−100, 100] 0

category of the testbed is the fixed-dimensional multimodal functions that have
only multiple optimum peaks. The second and third categories of test functions are
normally employed to test the exploration capability of any algorithm. Further, they
also test how the algorithm can avoid being getting trapped in local searches. The
test functions considered in this chapter are taken up to minimize. A representative
set of unimodal test functions (F1–F5) are thus shown in Table 1. More information
about these test functions is available in [12].

From Table 1, it is seen that a hundred decision variables are taken up to evaluate
the unimodal test functions. The population size considered to solve the different
categories of optimization problems is set as 30, while the total number of iterations
has been taken up as 500. The choice is made in such a way that the number of
function evaluations (NFEs) turns out to be 15,000, quite competitive enough for a
hundred decision variables. The results of the test functions are normalized between
0 and 1, zero being the best value and 1 being the worst value of the data set. The plot
between the normalized value of the functional value and the number of iterations
for the test function F1 is carried out in Fig. 2 to test both the convergence speed
and accuracy of the HFA method over the parent and standard heuristic techniques
reported in the literature.

The graphical representation of the convergence plot in Fig. 2 shows clearly that
HFA outperforms the originator techniques FA and BFA. Moreover, our proposed
method at the same time supersedes a few classical techniques like PSO, DE,
and HS. To test further, the convergence characteristics for the test function F5
are also plotted corresponding to the hybrid topology FAPS. The firefly technique
and some latest techniques like grasshopper optimization algorithm (GOA), whale
optimization algorithm (WOA), sine cosine algorithm (SCA), and salp swarm
algorithm (SSA) are used for comparison.

The FAPS techniques outperform the WOA, SCA, and SSA methods, while the
FA and GOA approaches produce convergence plots that are quite close to the
convergence of the proposed topology as seen in Fig. 3. As metaheuristic algorithms
are stochastic processes, they do not yield unique results every time they are run on
a PC. Hence some statistical assessments must take place to validate the results.
Since multiple algorithms including the parent methods are used to compare with
the proposed methods, hence Kruskal–Wallis test [2] proves to be a good measure
to validate the outcomes obtained. The test function F4 is considered as a sample to
verify the results of the FAGWO method as significant in terms of about ten heuristic
algorithms, which is provided in Fig. 4.



150 S. Ganguli

1
F1

HFA
FA
BFA
PSO
DE
HS

0.9

0.8

0.7

0.6

0.5

N
or

m
al

iz
ed

 fu
nc

tio
n 

va
lu

e

0.4

0.3

0.2

0
0 50 100 150 200

No. of iterations
250 300 350 400 450 500

0.1

Fig. 2 Convergence plot of the test function F1 with HFA
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Fig. 3 Convergence characteristics of the test function F5 applying the FAPS technique
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Fig. 4 Kruskal–Wallis test diagram for the benchmark function F4

Table 2 List of
high-dimensional multimodal
test functions

Test functions Dimension Search domain fmin

Rastrigin (F6) 100 [−5.12, 5.12] 0

Ackley (F7) 100 [−32, 32] 0

Griewank (F8) 100 [−600, 600] 0

Penalized-1 (F9) 100 [−50, 50] 0

Penalized-2 (F10) 100 [−50, 50] 0

From the Kruskal–Wallis test results of the test function F4, it is observed
that the mean ranks of the FAGWO algorithm differ significantly from the mean
ranks of the eight algorithms out of the ten algorithms considered for this work.
Some multimodal functions (F6–F10) are likewise chosen as found popular in
the literature of benchmark functions [12]. The descriptions of these mathematical
functions are presented in Table 2.

On a similar note, the convergence curves are drawn for the multimodal functions
and compared with the parent methods as well as some metaheuristic techniques
widely cited in the literature. As a sample, the test function F7 is chosen whose
convergence plot is shown in Fig. 5. The GWOCFA method is expected to supersede
the parent algorithms FA and GWO. The techniques like DE, HS, and the bird
swarm algorithm (BSA) is used for comparison.

Only the GWO algorithm is somewhat close to the convergence plot of the
GWOCFA technique. The rest of the algorithms compared are outperformed by the
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Fig. 5 Convergence curve of the test function F7 for the GWOCFA approach

suggested method. The Kruskal–Wallis test is carried out for the test function F9 as
shown in Fig. 6.

The results as shown in Fig. 6 suggest that the mean ranks of the proposed
technique outperform those of the other algorithms on most of the occasions.
Thus, the results obtained are significant as well. Quite a handful number of fixed-
dimensional multimodal test functions are also considered for the acid test of the
proposed methods. Their descriptions are appended in Table 3.

Fifty test runs are taken up for obtaining meaningful statistical measures. The
best, worst, mean, and standard deviation of each of the test functions are then
calculated. The statistical analysis of fmin is showcased in Table 4.

From Table 4, it is evident that the hybrid methods are either competitive or
better than the parent and the standard heuristic methods used for comparison. The
results ought to be followed by some nonparametric tests. Therefore, the rank-sum
test of Wilcoxon [4] is taken up to prove that the results obtained are meaningful
with respect to the other algorithms. Some selected p-values of the Wilcoxon test
are provided in Table 5. Any p-value that is greater than 0.05 will be considered to
be insignificant as per 95% confidence interval. They are underlined in Table 5 to
make it noticeable. Only selected test functions, viz., F12, F18, F19, and F20, are
taken up for the discussion.
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Table 3 Fixed-dimensional multimodal benchmark functions and their descriptions

Test functions Dimension Search domain fmin

Foxholes (F11) 2 [−65.536, 65.536] 1

Kowalik (F12) 4 [−5, 5] 0

Six-hump camel (F13) 2 [−5, 5] −1.0316

Branin (F14) 2 [−5, 15] 0.3979

Goldstein-price (F15) 2 [−2, 2] 3

Hartman 3 (F16) 3 [0, 1] −3.8626

Hartman 6 (F17) 6 [0, 1] −3.3220

Shekel 5 (F18) 4 [0, 10] −10.1532

Shekel 7 (F19) 4 [0, 10] −10.4029

Shekel 10 (F20) 4 [0, 10] −10.5364

Most of the p-values in Table 5 are found to be quite less than 0.05, except on one
occasion that is underlined in the table. Hence, the proposed algorithms generated
valid results. The methods proposed can also be extended to solve both inequal-
ity and equality constraints-based design problems. There can also be proposed
multi-objective variants of these algorithms. For these computational algorithms,
parametric study and analysis can be performed. Also, higher-dimensional issues
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Table 4 Experimental test results of fixed-dimensional multimodal benchmark functions (F11–
F20)

Test functions Algorithms Best Worst Average Std. dev.

F11 HFA 0.998 0.998 0.998 5.61E–16

FAdFPA 0.998 0.998 0.998 5.61E–16

FAPS 0.998 0.998 0.998 5.61E–16

FAGWO 0.998 0.998 0.998 5.61E–16

GWOCFA 0.998 0.998 0.998 5.61E–16

PSOGSA 0.998 21.9884 6.2402 5.8503

FA 0.998 0.998 0.998 5.61E–16

BFA 0.998 1.0837 1.9921 0.1389

FPA 0.998 1.0709 1.0059 0.022

GWO 0.998 12.6705 3.8989 3.8756

PSO 0.998 11.7187 5.7043 3.9947

DE 0.998 0.998 0.998 5.61E–16

HS 0.998 0.998 0.998 5.61E–16

CSO 0.998 0.998 0.998 5.61E–16

BSA 0.998 12.6705 7.4437 4.6237

MFO 0.998 10.7632 2.4187 2.1847

ALO 0.998 6.9033 1.9871 1.5817

DA 0.998 3.9683 1.1964 0.6009

MVO 0.998 0.998 0.998 5.61E–16

SCA 0.998 2.9821 1.6786 0.9454

GOA 0.998 0.998 0.998 5.61E–16

SSA 0.998 2.9821 1.2959 0.6099

WOA 0.998 10.7632 2.9515 2.9054

F12 HFA 3.07E–04 3.07E–04 3.07E–04 2.19E–19

FAdFPA 3.07E–04 3.07E–04 3.07E–04 2.19E–19

FAPS 3.07E–04 3.07E–04 3.07E–04 2.19E–19

FAGWO 3.07E–04 3.07E–04 3.07E–04 2.19E–19

GWOCFA 3.07E–04 3.07E–04 3.07E–04 2.19E–19

PSOGSA 3.83E–04 0.0565 0.0107 0.006

FA 3.08E–04 4.20E–04 3.25E–04 3.40E–05

BFA 3.08E–04 7.63E–04 6.00E–04 1.32E–04

FPA 3.58E–04 7.66E–04 5.97E–04 1.23E–04

GWO 3.07E–04 0.0204 0.0085 0.0053

PSO 3.07E–04 0.0204 0.0055 0.0021

DE 4.32E–04 0.0012 7.46E–04 1.63E–04

HS 5.51E–04 0.0204 0.0079 0.0052

CSO 3.10E–04 0.0016 7.84E–04 3.79E–04

BSA 5.34E–04 0.0226 0.0065 0.0054

MFO 6.29E–04 0.0204 0.0038 0.0018

ALO 5.85E–04 0.021 0.0047 0.0022

DA 5.02E–04 0.0226 0.0069 0.0049

(continued)
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Table 4 (continued)

Test functions Algorithms Best Worst Average Std. dev.

F12 MVO 4.77E–04 0.0204 0.0076 0.0045

SCA 3.36E–04 0.0016 0.001 3.75E–04

GOA 3.13E–04 0.0633 0.0116 0.0079

SSA 3.08E–04 0.0633 0.0098 0.0033

WOA 3.13E–04 0.0078 0.0011 8.67E–04

F13 HFA −1.0316 −1.0316 −1.0316 4.5563E–16

FAdFPA −1.0316 −1.0316 −1.0316 4.5563E–16

FAPS −1.0316 −1.0316 −1.0316 4.5563E–16

FAGWO −1.0316 −1.0316 −1.0316 4.5563E–16

GWOCFA −1.0316 −1.0316 −1.0316 4.5563E–16

PSOGSA −1.0316 −1.0316 −1.0316 4.5563E–16

FA −1.0316 −1.0316 −1.0316 4.5563E–16

BFA −1.0316 −1.0316 −1.0316 4.5563E–16

FPA −1.0316 −1.0316 −1.0316 4.5563E–16

GWO −1.0316 −1.0316 −1.0316 4.5563E–16

PSO −1.0316 −1.0316 −1.0316 4.5563E–16

DE −1.0316 −1.0316 −1.0316 4.5563E–16

HS −1.0316 −1.0316 −1.0316 4.5563E–16

CSO −1.0316 −1.0316 −1.0316 4.5563E–16

BSA −1.0316 −1.0316 −1.0316 4.5563E–16

MFO −1.0316 −1.0316 −1.0316 4.5563E–16

ALO −1.0316 −1.0316 −1.0316 4.5563E–16

DA −1.0316 −1.0316 −1.0316 4.5563E–16

MVO −1.0316 −1.0316 −1.0316 4.5563E–16

SCA −1.0316 −1.0316 −1.0316 4.5563E–16

GOA −1.0316 −1.0316 −1.0316 4.5563E–16

SSA −1.0316 −1.0316 −1.0316 4.5563E–16

WOA −1.0316 −1.0316 −1.0316 4.5563E–16

F14 HFA 0.3979 0.3979 0.3979 0

FAdFPA 0.3979 0.3979 0.3979 0

FAPS 0.3979 0.3979 0.3979 0

FAGWO 0.3979 0.3979 0.3979 0

GWOCFA 0.3979 0.3979 0.3979 0

PSOGSA 0.3979 0.3979 0.3979 0

FA 0.3979 0.3979 0.3979 0

BFA 0.3979 0.3979 0.3979 0

FPA 0.3979 0.3979 0.3979 0

GWO 0.3979 0.3979 0.3979 0

PSO 0.3979 0.3979 0.3979 0

DE 0.3979 0.3979 0.3979 0

HS 0.3979 0.3979 0.3979 0

CSO 0.3979 0.3979 0.3979 0

(continued)



156 S. Ganguli

Table 4 (continued)

Test functions Algorithms Best Worst Average Std. dev.

F14 BSA 0.3979 0.3979 0.3979 0

MFO 0.3979 0.3979 0.3979 0

ALO 0.3979 0.3979 0.3979 0

DA 0.3979 0.3979 0.3979 0

MVO 0.3979 0.3979 0.3979 0

SCA 0.3979 0.3979 0.3979 0

GOA 0.3979 0.3979 0.3979 0

SSA 0.3979 0.3979 0.3979 0

WOA 0.3979 0.3979 0.3979 0

F15 HFA 3 3 3 0

FAdFPA 3 3 3 0

FAPS 3 3 3 0

FAGWO 3 3 3 0

GWOCFA 3 3 3 0

PSOGSA 3 3 3 0

FA 3 3 3 0

BFA 3 3 3 0

FPA 3 3 3 0

GWO 3 3.0002 3 5.03E–05

PSO 3 3 3 0

DE 3 3 3 0

HS 3 3 3 0

CSO 3 3 3 0

BSA 3 3 3 0

MFO 3 3 3 0

ALO 3 3 3 0

DA 3 3.0001 3 1.20E–05

MVO 3 3 3 0

SCA 3 3.0007 3.0001 1.36E–04

GOA 3 3 3 0

SSA 3 3 3 0

WOA 3 3.0007 3.0001 1.10E–04

F16 HFA −3.8628 −3.8628 −3.8628 1.3669E–15

FAdFPA −3.8628 −3.8628 −3.8628 1.3669E–15

FAPS −3.8628 −3.8628 −3.8628 1.3669E–15

FAGWO −3.8628 −3.8628 −3.8628 1.3669E–15

GWOCFA −3.8628 −3.8628 −3.8628 1.3669E–15

PSOGSA −3.8628 −3.8628 −3.8628 1.3669E–15

FA −3.8628 −3.8628 −3.8628 1.3669E–15

BFA −3.8628 −3.8628 −3.8628 1.3669E–15

FPA −3.8628 −3.8628 −3.8628 1.3669E–15

GWO −3.8628 −3.8628 −3.8628 1.3669E–15

(continued)
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Table 4 (continued)

Test functions Algorithms Best Worst Average Std. dev.

F16 PSO −3.8628 −3.8628 −3.8628 1.3669E–15

DE −3.8628 −3.8628 −3.8628 1.3669E–15

HS −3.8628 −3.8628 −3.8628 1.3669E–15

CSO −3.8628 −3.8628 −3.8628 1.3669E–15

BSA −3.8628 −3.8628 −3.8628 1.3669E–15

MFO −3.8628 −3.8628 −3.8628 1.3669E–15

ALO −3.8628 −3.8628 −3.8628 1.3669E–15

DA −3.8628 −3.8628 −3.8628 1.3669E–15

MVO −3.8628 −3.8628 −3.8628 1.3669E–15

SCA −3.8628 −3.8628 −3.8628 1.3669E–15

GOA −3.8628 −3.8628 −3.8628 1.3669E–15

SSA −3.8628 −3.8628 −3.8628 1.3669E–15

WOA −3.8628 −3.8628 −3.8628 1.3669E–15

F17 HFA −3.322 −3.322 −3.322 2.24E–15

FAdFPA −3.322 −3.322 −3.322 2.24E–15

FAPS −3.322 −3.322 −3.322 2.24E–15

FAGWO −3.322 −3.322 −3.322 2.24E–15

GWOCFA −3.322 −3.322 −3.322 2.24E–15

PSOGSA −3.322 −3.1376 −3.2755 0.0607

FA −3.322 −3.2031 −3.2507 0.0588

BFA −3.322 −3.2872 −3.3021 0.0159

FPA −3.322 −3.266 −3.3091 0.0145

GWO −3.322 −3.038 −3.2494 0.0912

PSO −3.322 −3.2031 −3.2816 0.0569

DE −3.322 −3.2473 −3.3199 0.0108

HS −3.322 −3.2031 −3.2839 0.056

CSO −3.3215 −3.2012 −3.2902 0.0383

BSA −3.2998 −2.8517 −3.0735 0.1444

MFO −3.322 −3.0867 −3.2194 0.0641

ALO −3.322 −3.2003 −3.279 0.058

DA −3.322 −2.9201 −3.233 0.106

MVO −3.322 −3.1933 −3.242 0.058

SCA −3.1746 −1.4568 −2.8877 0.3633

GOA −3.322 −3.1796 −3.2744 0.0616

SSA −3.322 −3.1555 −3.22 0.0558

WOA −3.3211 −2.9849 −3.2352 0.0983

F18 HFA −10.1532 −10.1532 −10.1532 1.26E–14

FAdFPA −10.1532 −10.1532 −10.1532 1.26E–14

FAPS −10.1532 −10.1532 −10.1532 1.26E–14

FAGWO −10.1532 −10.1532 −10.1532 1.26E–14

GWOCFA −10.1532 −10.1532 −10.1532 1.26E–14

PSOGSA −10.1532 −2.6305 −5.1565 3.3812

(continued)
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Table 4 (continued)

Test functions Algorithms Best Worst Average Std. dev.

F18 FA −10.1532 −2.6829 −8.8964 2.5951

BFA −10.1531 −10.1445 −10.1532 0.0014

FPA −10.1531 −10.1495 −10.1516 0.0012

GWO −10.1531 −2.6303 −9.0447 2.4426

PSO −10.1532 −2.6305 −6.1962 3.5019

DE −10.1532 −4.6636 −9.9631 0.8438

HS −10.1532 −2.6305 −4.6641 3.3046

CSO −10.148 −2.6783 −8.1096 2.6988

BSA −10.1532 −2.5537 −6.2203 3.4874

MFO −10.1532 −2.6305 −6.1342 3.1982

ALO −10.1532 −2.6305 −6.1293 3.2014

DA −10.1532 −2.6201 −7.0129 2.7744

MVO −10.1532 −2.6304 −7.6806 3.0299

SCA −5.0337 −0.4965 −1.7471 1.5185

GOA −10.1532 −2.6305 −4.141 2.3026

SSA −10.1532 −2.6305 −7.7015 3.3676

WOA −10.1511 −2.6238 −8.0544 2.7745

F19 HFA −10.4029 −10.4029 −10.4029 7.18E–15

FAdFPA −10.4029 −10.4029 −10.4029 7.18E–15

FAPS −10.4029 −10.4029 −10.4029 7.18E–15

FAGWO −10.4029 −10.4029 −10.4029 7.18E–15

GWOCFA −10.4029 −10.4029 −10.4029 7.18E–15

FAGWO −10.4029 −1.8376 −5.4272 3.3512

GWOCFA −10.4029 −3.7243 −9.735 2.0239

PSOGSA −10.4028 −10.4051 −10.3754 0.0312

FA −10.4023 −10.3085 −10.375 0.0304

BFA −10.4024 −10.3984 −10.4014 7.36E–04

FPA −10.4029 −2.7519 −7.5045 3.499

GWO −10.4029 −9.545 −10.3645 0.1431

PSO −10.4029 −2.7519 −5.3703 3.3616

DE −10.402 −2.7638 −8.3964 2.8284

HS −10.4027 −2.7388 −6.516 3.1794

CSO −10.4029 −1.8376 −6.8382 3.6494

BSA −10.4029 −1.8376 −6.246 3.142

MFO −10.4029 −1.8369 −7.3726 3.1526

ALO −10.4029 −1.8376 −8.1977 3.0567

DA −7.1794 −0.5239 −3.2448 1.7055

MVO −10.4029 −1.8376 −5.929 3.4966

SCA −10.4029 −1.8376 −8.1932 3.0845

GOA −10.4029 −1.8361 −6.4511 3.2374

(continued)
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Table 4 (continued)

Test functions Algorithms Best Worst Average Std. dev.

F20 HFA −10.5364 −10.5364 −10.5364 8.97E–15

FAdFPA −10.5364 −10.5364 −10.5364 8.97E–15

FAPS −10.5364 −10.5364 −10.5364 8.97E–15

FAGWO −10.5364 −10.5364 −10.5364 8.97E–15

GWOCFA −10.5364 −10.5364 −10.5364 8.97E–15

PSOGSA −10.5364 −1.8595 −5.6667 3.7404

FA −10.5364 −2.8711 −9.7699 2.3229

BFA −10.5364 −10.4534 −10.5329 0.0234

FPA −10.5293 −10.4575 −10.5055 0.0229

GWO −10.5362 −2.4217 −10.102 1.7584

PSO −10.5364 −1.6766 −6.4895 3.8488

DE −10.5364 −10.4027 −10.5316 0.0213

HS −10.5364 −2.4217 −6.0312 3.7453

CSO −10.3956 −2.7923 −7.2906 3.3233

BSA −10.5336 −1.6753 −6.7317 3.9575

MFO −10.5364 −2.4217 −8.5059 3.3297

ALO −10.5364 −1.6766 −6.2825 3.615

DA −10.5364 −2.4158 −6.6537 3.1252

MVO −10.5364 −2.4273 −8.4828 3.0974

SCA −9.4397 −0.9403 −3.4949 1.7251

GOA −10.5364 −1.6766 −4.969 3.5748

SSA −10.5364 −2.4217 −8.2053 3.3666

WOA −10.5351 −1.6741 −6.905 3.1312

can be tackled to present strategies with improved challenges. Fractional chaos is
nowadays also a common field of study. GWOCFA can therefore include operators
of fractional chaos to improve upon the solution. It is also possible to think of
different hybrid combinations with the firefly technique. In recent times, several
new algorithms have been devised, such as Equilibrium Optimizer (EO), Political
Optimizer (PO), or Marine Predator Algorithm (MPA). Researchers are anticipated
to establish their obvious variant hybridizing with FA in the coming years.

However, there are few major disadvantages to the relay hybridization scheme
suggested here. The parameter tuning is too vulnerable to these hybrid algorithms.
To minimize or optimize objective functionality, the correct choice of parameters
in these hybrid schemes is essential. In addition, the algorithms depend primarily
on the requirements for termination. Therefore, it is also necessary to choose
the appropriate NFEs to achieve the desired outcomes. The functionality of any
algorithm together with its demerits can deteriorate, as low-level hybrid topologies
have been created.
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4 Conclusions

This chapter examines five new, high-dimensional as well as fixed-dimensional
optimization problems with firefly-based hybrid algorithms. To present these high-
performance computing algorithms, the firefly technique was integrated success-
fully with bacterial foraging, flower pollination, pattern search, and grey wolf
optimizer algorithms. To support each hybrid proposition, three types of benchmark
functions are employed. The two first sets of test functions, the unimodal and the
multimodal functions, are used to verify the exploitation and exploration capabilities
of the techniques recommended. In terms of speed and precision, the convergence
characteristics show greater promise than the current algorithms. To test the validity
of the results, the Kruskal–Wallis analysis was also used. Besides, the integrated
methods are used to analyze the third category of test functions consisting of several
fixed-dimensional multimodal functions. Even in 50 separate test trials, statistical
tests for the error function are taken. The findings are confirmed by a Wilcoxon
ranking assessment. The methods proposed can also be used properly to handle
both constrained and multi-objective problems in optimization techniques.
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Consumer Decisions in the Age of the
Internet: Filtering Information When
Searching for Valuable Goods

David M. Ramsey

Abstract The Internet allows people to access information about a large number
of offers almost at the click of a button. For consumers, this has a number of
advantages. However, humans have a limited capacity for processing the available
information. Hence, consumers often use simple rules of thumb (heuristics) to
process this information. Such heuristics allow consumers to choose a good offer,
while keeping the search costs low. One such heuristic is the concept of a shortlist,
which is useful when searching for a unique valuable good, e.g., a second-hand car
or flat. A consumer can find basic information about an offer from the Internet.
This information is used to choose a shortlist of offers to inspect more closely,
before a final decision is made. This paper gives an overview of recent research
on mathematical models of such search processes. These models can be split into
three categories: (a) optimization models considering a single decision maker, (b)
game theoretic models, and (c) models of group decision procedures. Directions for
future research are also considered.

1 Introduction

People are increasingly using the Internet when making important consumer
decisions, even when the final purchase is not made online. This is due to the fact
that basic information regarding a large number of offers is available at very little
cost. For example, suppose an individual wishes to buy a new flat in a large city.
Fundamental information, e.g., price, floor space, and location, on a large number
of flats can be found very easily via the Internet. Purchasing a flat simply on the
basis of such information from the Internet is highly risky. Unless a flat is observed
in real life, it is impossible to accurately assess how appropriate an offer is. However,
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viewing each flat that meets defined conditions according to size, price, and location
may lead to prohibitively large search costs. Hence, in such scenarios, consumers
often apply strategies based on constructing a shortlist of offers, i.e., a relatively
small set of offers that appear to be attractive from initial information. This article
gives an overview of recent research on mathematical models of procedures using
shortlists to choose a unique, valuable good from a large set of offers.

Since decision makers (DMs) have limited cognitive abilities, heuristic rules,
such as the formation of a shortlist, can be very useful in choosing an appropriate
offer while controlling search costs. Heuristics should be adapted to both the process
of acquiring information and the cognitive abilities of DMs (see Simon [18, 19],
Todd and Gigerenzer [20], as well Bobadilla-Suarez and Love [3]). Shortlists can
be successful when basic information can be gained at little cost, while the costs
of exhaustive search in terms of time and/or cognitive effort are very high (see
Masatlioglu et al. [11] and Lleras et al. [8]). For example, suppose someone is
choosing a holiday destination. He/she may select a shortlist of propositions using
information from friends and colleagues (see Bora and Kops [4]). Shortlists are also
practical when offers can be categorized (Armouti-Hansen and Kops [2]). When
a DM is searching for offers described by multiple characteristics on the Internet,
filters may be applied by ordering offers according to the traits judged to be the
most crucial (see Rubinstein and Salant [17] and Mandler et al. [9]). Kimya [5]
describes a similar model where offers assessed the least positively on the basis of
a given trait are successively eliminated, in decreasing order of the importance of
traits. Such an approach may be interpreted as a procedure that constructs shortlists
of ever decreasing size until a final decision is taken.

The models described here differ from Kimya’s [5] model, as the search process
considered here is split into two stages that have clearly different natures. Search
costs are not explicitly considered in Kimya’s model, and thus, this model is more
appropriate when search costs are low or at least uniform, e.g., search is carried out
purely on the Internet. The models presented here assume that search costs in stage
one are low but are high in stage two. Such a strategy is often used by an employer
looking for a specialist employee. The employer invites written applications via the
Internet. The costs of such an invitation and assessing the written applications are
assumed to be small. Written applications commonly only give a rough estimate
of the abilities of the applicants. Thus, the employer invites the most promising
candidates for interview. These interviews are generally costly, as they involve
using a set of experts for a relatively long period and the employers pay the travel
costs of the interviewees. An important aspect in such procedures is determining
an appropriate length for the shortlist (the number of candidates to be interviewed)
according to the nature of the information gained at each stage of the process and the
costs incurred. Ramsey [13] describes a model of an individual DM searching for
a valuable good based on constructing a shortlist. Analytis [1] considers a similar
model with two stages of inspection. This approach involves what might be called
prioritizing, rather than construction of a shortlist. In the first stage (parallel search),
offers are ranked according to an initial signal. In the second stage (sequential
search), the DM observes offers sequentially from the most highly ranked to the
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least highly ranked and stops when the value of an offer is greater than the reward
expected from future search.

Section 2 presents a model of a single DM using a shortlist to choose an offer
from a large set of goods. Some extensions of the basic model involving a single
DM are considered in Sect. 3. Extensions to problems involving multiple DMs are
considered in Sect. 4. Such extensions can be broadly classified into game theoretic
models and models of group decision making. Section 5 gives a final summary and
directions for future research.

2 The Basic Model

The following model is based on the one described in Ramsey [13]. A DM must
choose one of n offers. Firstly, the DM observes in parallel an initial signal of
each offer’s value. The DM cannot measure these signals precisely but is able to
rank these signals according to their attractiveness. Such a ranking will be called
the initial ranking. According to this ranking, the DM selects k offers for further
inspection, where 1 ≤ k ≤ n. The strategy of the DM is defined by the value of k
(the length of this shortlist). Secondly, the DM obtains another signal of the value of
each offer on the shortlist. The DM then makes his/her final selection of an offer. By
assumption, if the DM observes all of the offers in both rounds, then he/she is able
to rank these offers on the basis of the two signals combined. This ranking will be
called the overall ranking. However, in the second round of inspection, the DM can
only compare the k offers on the shortlist with each other. Such a ranking will be
called the DM’s partial ranking. By assumption, this partial ranking is completely
consistent with the overall ranking, i.e., offer i is ranked above offer j in a partial
ranking if and only if offer i is ranked above offer j in the overall ranking.

By assumption, the two signals of an offer’s value to the DM are realizations
from a continuous joint distribution. The pair of signals of an offer’s value may
be correlated, but the pair of signals associated with offer i is independent of the
pair of signals associated with offer j , i �= j . An offer’s value is a function of the
two signals. Let Xm denote the value of the m-th signal (m = 1, 2) and W an offer’s
value. Given x > y, it is assumed that the random variableW |X1 = x stochastically
dominates the random variableW |X1 = y. In addition, an offer’s value is increasing
in the value of the second signal. Hence, high values of the signals correspond to
valuable offers.

The DM’s goal is to maximize his/her expected reward from search, defined to
be the value of the offer accepted minus the costs of searching. Search costs are split
into the costs of initial inspection (round one) and the costs of close inspection of
the items on the shortlist (round two). The costs of search in round one, denoted as
c1(k, n), are strictly increasing in both the length of the shortlist and the total number
of offers, k and n, respectively. These costs reflect the effort involved in the initial
inspection of the offers and forming the shortlist. In addition, by assumption, c1 is
assumed to be convex in k, i.e., c1(k, n)−c1(k−1, n) is non-decreasing in k. A cost
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function of this form reflects the large cognitive effort necessary to form shortlists of
long length. Note that this is a simplification, as when k = n the DM automatically
inspects every offer closely. Thus, in this case, the search costs should not consider
the costs of controlling the shortlist. By assumption, the costs of searching in round
two, denoted as c2(k), are increasing and convex in k. Note that it may be natural
to suppose that these costs are linear in k (when k ≥ 2, then each successive offer
on the shortlist is inspected and only needs to be compared with the most highly
ranked of the previously inspected offers). Let c(k, n) = c1(k, n) + c2(k) be the
overall search costs and Ck = c(k, n) − c(k − 1, n) denote the marginal cost of
increasing the length of the shortlist from k − 1 to k.

The form of the function describing search costs is not based on a procedure
for constructing the initial shortlist. A procedure for forming a shortlist based on
pairwise comparisons is described in Sect. 3. The structure of this procedure can
be used to define the search costs incurred. Also, note that a shortlist of length k

should simply include the k highest ranked offers on the basis of the initial round of
observations. This comes directly from the fact that the reward obtained by selecting
from such a set of offers stochastically dominates the reward obtained by choosing
from another set of k offers.

2.1 Some Theoretical Results

These results are taken from Ramsey [13]. LetWi denote the value of the i-th ranked
offer based on the initial ranking and Vk denote the value of the offer accepted when
the shortlist is of length k. Hence, Vk = max1≤i≤k{Wk}. Thus, when i > j , then Vi
stochastically dominates Vj . Let Mk denote the marginal increase in the expected
value of the offer accepted when the length of the shortlist increases from k − 1 to
k, i.e., Mk = E[Vk − Vk−1].
Theorem 1 The marginal increase in the expected value of the offer accepted,Mk ,
is non-increasing in k.

Proof By definition,

Mk = E[max{0,Wk − Vk−1}]; Mk+1 = E[max{0,Wk+1 − Vk}].

The fact that Mk ≥ Mk+1 follows directly from the fact that Wk stochastically
dominates Wk+1 and Vk stochastically dominates Vk−1. 	


The following theorem gives a criterion that the optimal length of the shortlist
must satisfy.

Theorem 2 Suppose that M2 > C2. The optimal length of the shortlist, k∗, is the
largest integer k, such that k ≤ n andMk > Ck .
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This theorem follows directly from the fact that Ck is non-decreasing in k andMk

is non-increasing in k. The condition M2 > C2 ensures that it is better to create a
shortlist of length two than automatically accept the highest ranked offer according
to the initial ranking. When k ≤ k∗, it follows that Mk > Ck , and when k > k∗,
then Mk ≤ Ck . Thus, when k < k∗, the DM expects to gain overall by increasing
the length of the shortlist, but when k ≥ k∗ the gains expected from increasing the
length of the shortlist are not expected to outweigh the costs. Thus, k∗ is the optimal
length of the shortlist.

It should be noted that if Mk = Ck , then the DM is indifferent between forming a
shortlist of length k− 1 and forming a shortlist of length k. The condition described
above assumes that when there is not a unique optimal length of shortlist, then the
smallest length from the set of optimal lengths is chosen.

2.2 Some Empirical Results from Simulations

Simulations of the search procedure were carried out using a program written in
R under the following model. The pair of signals describing an offer (X1, X2) is
assumed to come from a bivariate normal distribution. The marginal distribution of
X1 is assumed to be standard normal (i.e., of mean zero and variance one). The
coefficient of correlation between X1 and X2 is denoted by ρ, and the residual
variance of X2, i.e., the variance in X2 that is not explained by X1, is defined to
be σ 2. Thus, given X1, X2 has a normal distribution with mean ρX1 and variance

σ 2. It follows that the overall variance of the signal X2 is σ 2

1−ρ2 . The value of an
offer is defined to be W = X1 +X2. From these assumptions, E(W) = 0 and

V ar(W) = V ar(X1)+ V ar(X2)+ 2ρ
√
V ar(X1)V ar(X2)

= 1 + σ 2

1−ρ2 + 2ρσ√
1−ρ2

. (1)

Simple differentiation indicates that this variance is increasing in ρ. The costs
of closer inspection are assumed to be proportional to the residual variance of X2.
On one hand, when ρ increases, the increase in the overall variance of the offer
favors more intense search (a longer shortlist). On the other hand, the amount of
information about the overall value of an offer given by X1 also increases. This
effect favors shortlists with fewer items. The search costs incurred in round one
are c1(k, n) = 0.0001(n + k2), and the costs incurred in round two are c2(k) =
c0σ , where c0 is a constant, c0 ∈ {0.02, 0.05, 0.1}. These cost functions reflect the
logic that strategies based on shortlists should be successful when the costs of initial
observation are low relative to the costs of closer inspection. The costs of close
inspection are assumed to be proportional to the standard deviation of the second
signal, since under sequential search based purely on the second signal the expected
number of offers that are seen when c0 is fixed is independent of σ (see Ramsey [12].
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Table 1 Optimal lengths of shortlists for relatively high costs of close inspection (c = 0.1) and
correlated signals. The components of the vector in each cell give the optimal thresholds for ρ =
0, 0.2, 0.4, 0.6 and 0.8, sequentially

n = 20 n = 50 n = 100 n = 200

σ = 1/5 (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) (2, 2, 2, 2, 2)

σ = 1/3 (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) (2, 2, 2, 2, 2)

σ = 1 (3, 3, 3, 2, 2) (3, 3, 3, 3, 2) (4, 3, 3, 3, 3) (4, 3, 3, 3, 3)

σ = 3 (4, 4, 3, 3, 3) (5, 4, 4, 3, 3) (5, 4, 4, 3, 3) (5, 5, 4, 4, 3)

σ = 5 (5, 4, 4, 3, 3) (5, 5, 4, 3, 3) (5, 4, 4, 4, 3) (5, 5, 4, 4, 3)

These assumptions are made so that changes in the optimal length of the shortlist
when σ increases and c0 is fixed reflect the amount of information contained in the
second signal relative to the information contained in the first signal (as σ increases,
the importance of the second signal compared to the first signal increases).

The optimal lengths of shortlists described in Table 1 were derived empirically
on the basis of 100,000 simulations, based on a program written in R, of the
search procedure for each possible length of shortlist (2 ≤ k ≤ n − 1) for each
combination of parameters: n ∈ {20, 50, 100, 200}, σ ∈ {1/5, 1/3, 1, 3, 5} and
ρ ∈ {0, 0.2, 0.4, 0.6, 0.8}. The relative costs of closer inspection are c0 = 0.1.

The results from these simulations lead to the following conclusions:

1. The optimal length of the shortlist is positively associated with the amount of
information given by the second signal, and the residual variance is σ 2.

2. The optimal length of the shortlist is negatively associated with the relative costs
of search in the second round.

3. Fixing the residual variance of the second signal, the optimal length of the
shortlist is non-increasing in the level of correlation between the two signals,
ρ.

4. The optimal length of the shortlist is almost unaffected by changes in the total
number of offers, n.

5. When the two signals contain a similar amount of information, σ ≈ 1, shortlists
of moderate size (4 or 5) are optimal or close to optimal over a wide range of
parameters describing the search costs.

The final two comments above indicate that strategies based on shortlists that are
used in practice (e.g., when looking for an employee) are very robust.

3 Extensions to the Basic Model

In this section, we consider three extensions to the basic model. The first extension
describes a model for constructing a shortlist based on pairwise comparisons. By
assuming that pairwise comparisons in round i have cost ci , i ∈ {1, 2}, this model
can be used to derive the overall search costs. The second extension concerns
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another aspect of limits on the cognitive abilities of DMs. It is assumed that DMs
cannot perfectly compare signals of the value of an offer. These two extensions are
described more fully in Ramsey [14]. The third extension considers the formation
of a shortlist based on quantitative, multivariate data. This extension is described in
detail in [10].

3.1 A Model of Shortlist Formation

Note that the DM does not need to construct a full ranking of the offers on the
basis of the first signal, in order to construct a shortlist. Assume that the costs
of constructing a shortlist are proportional to the number of pairwise comparisons
carried out and the DM applies a two-step heuristic procedure that ensures that the
number of pairwise comparisons implemented is close to the minimum required.
By assumption, the offers appear in random order in the first round of observations.
A complete ranking of the first k offers is created using the optimal procedure for
ordering a set of values (as described below). This forms an initial shortlist. From
the k + 1-th offer onwards, the DM first decides whether the current offer should
be placed on the present shortlist. If not, then the DM proceeds to the next offer.
Otherwise, the current offer replaces the offer ranked k on the present shortlist and is
then ranked with respect to the remaining k− 1 offers on the present shortlist. Once
the initial signals have been observed for each of the offers, the present shortlist
becomes the official shortlist.

First, consider the procedure for ordering the first k offers. This ordering is
formed iteratively by ranking the i-th offer to appear relative to the previous
i − 1 offers, for i = 2, 3, . . . , k. Let Ti denote the expected number of pairwise
comparisons necessary to create a full ranking of i offers and Ei the expected
number of pairwise comparisons necessary to rank the i-th offer with respect to
the previous i − 1 offers. Thus, Tk = ∑k

i=2 Ek . When k = 2, just one pairwise
comparison is needed to form the initial shortlist, thus E2 = T2 = 1. Using the
optimal procedure for ordering offers, the current offer is first compared with a
median ranked item from the previous i−1 offers. After this comparison, the current
offer is successively compared to a median offer from the subset of offers it should
be compared with, until its position in the ordering has been uniquely defined (see
Knuth [6]).

When i is odd, the i-th offer may be initially compared to the presently i−1
2 -th

ranked offer (a median from the previous i− 1 offers). When comparison is perfect,
the i-th offer is ranked more highly than this median offer with probability i−1

2i , and
it now suffices to compare the current offer with i−3

2 others. Otherwise, it suffices
to compare the current offer with i−1

2 others. Thus, for odd i,

Ei = 1 + i − 1

2i
E(i−1)/2 + i + 1

2i
E(i+1)/2. (2)
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When i is even, independently of whether the i-th offer is better or worse than
the median from the previous i − 1 offers (ranked i

2 ), after the initial comparison, it
suffices to compare the current offer with i

2 − 1 previous offers. Hence, for even i,

Ei = 1 + Ei/2. (3)

After forming the initial shortlist, each new offer is firstly compared with the
offer currently ranked k (this offer is labelled Dk). If the new offer is ranked more
highly than Dk , then Dk is replaced by the new offer, which is then ranked with
respect to the remaining k − 1 offers currently on the shortlist (using the approach
adopted when forming the initial shortlist). Given that comparisons are perfect, for
i = k + 1, k + 2, . . . , N , the initial comparison is always carried out, and with
probability k/i, the mean number of additional comparisons made is Ek . It follows
that the expected number of comparisons from offer k + 1 onwards is Uk,n, where

Uk,n = n− k +
n∑

i=k+1

kEk

i
. (4)

The expected number of pairwise comparisons overall is Wk,n = Tk + Uk,n.
Suppose that each pairwise comparison during the initial inspection costs c1. It
follows that the expected search costs during the first round of inspection are c1Wk,n.

It should be noted that for i slightly greater than k, it may be more efficient to
apply a similar procedure to the one used for the first k offers. That is to say, the
DM compares the present offer with the median ranked offer from the appropriate
set of offers until either it is decided that the current offer should not be placed on
the present shortlist or the current offer occupies the appropriate position on the
present shortlist. Such a procedure could reduce the expected number of pairwise
comparisons implemented. However, this comes at the cost of making the procedure
much less intuitive (or difficult to formulate/program).

When the shortlist has been finalized, the offers placed on it are then inspected
more closely. By assumption, after this second round of inspection, the DM accepts
the offer ranked most highly on the basis of both signals. Hence, after observing the
first offer on the shortlist, it suffices to compare each new offer with the presently
highest ranked offer. Hence, k−1 pairwise comparisons are necessary in the second
round of inspection. It follows that the search costs incurred in the second round are
(k − 1)c2.

Inspection of the form of the overall search costs, c(k, n) = c1Wk,n + (k − 1)c2
indicates that the function c is not always convex in c. For example, numerical
calculations give W2,100 ≈ 106.4142, W3,100 ≈ 116.5840, and W4,100 ≈ 125.8113.
Hence, c(3, 100)−c(2, 100) > c(4, 100)−c(3, 100). This is due to the fact that the
procedure for forming a shortlist is relatively efficient when k is an integer power
of 2. However, for a large, fixed value of n, numerical calculations indicate that the
inequality c(k, n)−c(k−1, n) ≤ c(k+1, n)−c(k, n) is satisfied for a large majority
of the possible values of k. This indicates that any length of shortlist satisfying
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the condition given in Theorem 2 (the smallest k such that marginal gain from
increasing k does not exceed the marginal increase in search costs from increasing
k) will be at least close to optimal.

Note that in practical problems of this type, the costs of gathering the information
required to compare two offers may be much greater than the effort required then
to decide which is the better of two offers. For example, if someone is searching
for a new flat, the time required to travel to a flat and then observe it will be much
greater than the time required to then mentally compare two flats. Hence, one might
instead assume that, in addition to the costs of comparison, a cost is incurred for
observing each signal. Suppose the costs of observing a signal in round i are bi ,
i ∈ {1, 2}. We may thus define the overall search costs by b(k, n), where b(k, n) =
c(k, n)+b1n+b2k. Since the additional costs of search under this model are linear in
both n and k, this does not affect the convexity (or lack of convexity) of the function
determining the overall search costs. Hence, again any length of shortlist satisfying
the condition given in Theorem 2 will be close to optimal.

The optimal lengths of the shortlists based on this model show a very similar
pattern to those derived under the basic model.

3.2 Errors in Pairwise Comparisons

Since the basic model already assumes that the cognitive abilities of DMs are
limited, one natural way of extending the model is to assume that the DM cannot
perfectly compare options. This section briefly describes the approach taken in
Ramsey [14].

It is assumed that ranks are assigned to offers based on imperfect pairwise
comparisons according to the information available. Let p(x, y), where x ≥ y,
be the probability that the DM assesses x to be greater than y. It is assumed that

p(x, y) = 1 − exp(−r[x − y]/σ)
2

, (5)

where r > 0 and σ is the standard deviation of the distribution of the signal
(or sum of signals, as appropriate). Thus, when x and y have the same value,
then the result of the comparison is completely random. When x − y → ∞, the
probability of correct comparison tends to 1. The parameter r is a measure of the
accuracy of perception. One might alternatively give the probability, p, of correct
comparison when the difference between the realizations x and y is equal to the
standard deviation of the distribution they come from. Hence, p = 1 − 0.5e−r , or
equivalently, r = − ln(2 − 2p). It is assumed that the probability of an error in
a pairwise comparison does not depend on the results of other comparisons. Apart
from the accuracy of perception, the parameters in this model are the same as those
used in the original model. It is assumed that the two signals of the value of an offer
are independent, i.e., ρ = 0.
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In the original model, the order in which the offers on the shortlist are observed
has no effect on the expected reward from a given strategy. This is due to the fact
that the number of pairwise comparisons in the second round is always k and the
offer accepted does not depend on the order in which the offers on the shortlist
are observed. However, this is not true when pairwise comparisons are not perfect.
Intuitively, given the initial rank of an offer on the shortlist, the later it is observed
in the second round of observation, the greater the probability that it is accepted.
This implies that the DM should observe the offers on the shortlist in reverse order
from the k-th ranked to the highest ranked. This is confirmed by simulations using
two protocols. According to one protocol, the offers on the shortlist are observed
in reverse order. Based on the other protocol, the i-th ranked offer according to the
initial ranking is the i-th to be observed. Table 2 presents the empirically derived
optimal lengths of the shortlist based on the reverse order protocol. The components
in each vector give the optimal length of the shortlist in order of increasing accuracy
of perception (the final entry corresponds to the original model).

The results from these simulations lead to the following conclusions:

1. When search costs in the second round are relatively small and the first signal
is at least as important as the second signal, i.e., σ ≤ 1, then the optimal length
of the shortlist tends to increase as the probability of error increases. Shortlists
of greater length ensure that the probability of potentially attractive offers being
omitted from the official shortlist by mistake is significantly reduced.

2. Apart from the cases described immediately above, the optimal length of the
shortlist is robust to changes in the accuracy of perception.

3. Low error rates do not have a large impact on the expected reward from search.

It should be noted that when the optimal length of the shortlist is relatively small
compared to the number of offers available, then the expected number of pairwise
comparisons required in the first round is increasing in the error rate. This results
from the fact that the likelihood of placing the current offer on the present shortlist
tends to increase with the error rate (this is associated with having to make additional
comparisons).

Table 2 Empirically derived optimal lengths of the shortlist for the “in reverse order” protocol.
The five results given in each cell correspond to increasing levels of accuracy of perception p =
0.9, 0.99, 0.999, 0.9999, 1, respectively

c = 0.02 c = 0.05 c = 0.10

σ = 1/5 (5, 4, 4, 4, 2) (4, 2, 2, 2, 2) (2, 2, 2, 2, 2)

σ = 1/3 (5, 4, 4, 4, 3) (4, 4, 2, 2, 2) (2, 2, 2, 2, 2)

σ = 1 (8, 7, 7, 7, 6) (4, 4, 4, 5, 4) (3, 3, 3, 3, 3)

σ = 3 (10, 12, 13, 12, 11) (6, 7, 7, 7, 7) (4, 4, 4, 4, 4)

σ = 5 (12, 14, 14, 14, 14) (7, 8, 8, 8, 8) (4, 5, 5, 5, 5)
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3.3 Forming a Shortlist Based on Multiple Criteria

According to the basic model, the information about the initial offers is reduced
to a single variable that indicates the potential attractiveness of an offer. In reality,
the initial signal will generally include a number of variables. For example, when
searching for a flat, information on the price, size, and location of a flat can be
obtained from the Internet. This information can be used to derive a shortlist of
offers to be physically viewed according to the preferences of the DM. Instead of
forming a shortlist of length k simply by choosing the k offers assessed to be the
most attractive according to procedure for multiple criteria decision making, we
form an optimal shortlist based on the following two criteria: A shortlist should
contain offers that (a) are potentially very attractive to the DM and (b) show
diversity in their characteristics. The second criterion can be useful when a DM
has little knowledge about a given market. Suppose somebody is looking for a flat
when moving to a new city. The benefits obtained from viewing flats with various
locations/characteristics may be often greater than those from viewing offers that
are all very close to the assumed ideal in terms of location and size. Giving some
weight to variation in the offers viewed will probably lead to a more informed final
decision.

Here, we briefly describe an algorithm for constructing a shortlist of length k

from N offers based on n numeric traits, denoted as x1, x2, . . . , xn. The goal is to
construct a list that maximizes a weighted sum of the mean attractiveness scores of
the offers on the list and the mean distance between them. Hence, we should define
(1) a measure of an offer’s attractiveness, (2) a measure of the variety of offers on
a shortlist, and (3) a measure of a shortlist’s attractiveness [based on (1) and (2)].
For example, suppose a DM wishes to construct a shortlist of flats to view based
on: price, floor space, and distance from the city center. It should be noted that
distance from the city center is a specific variable, since, e.g., two flats that are the
same distance from the city center might be a large distance away from each other.
In order to define both the distance of an offer to the city center and the physical
distance between offers, we need to have two coordinates specifying the physical
location of an offer. For example, we may specify the distance of a flat both to the
north and the east of the city center. Negative values of these coordinates indicate
that the flat lies to the south and west, respectively, of the city center. An example
of such data is given in Table 3.

Denote price, size, location north, and location east by x1, x2, x3, and x4,
respectively. The three traits required to define the attractiveness of an offer are
denoted by y1, y2, and y3, where y1 = x1 is the price, y2 = x2 is the size, and

y3 =
√
x2

3 + x2
4 is the distance from the city center. The variables y1, y2, y3 may

be standardized using a linear transformation that maps the minimum value of a
variable to zero and the maximum value of a variable to one (see Table 3). Various
methods are available for measuring the attractiveness of an offer based on the vector
(y1, y2, y3). For example, TOPSIS (see Yoon and Hwang [21]), which is based on
the relative distance of an offer from an ideal offer and an “anti-ideal” offer based on
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Table 3 Raw data and standardized data (in brackets) describing flats for sale

Number Price (Euro) Size (m2) Location north (km) Location east (km)

1 450,000 (0.60) 84 (0.84) 2.5 (0.70) −1.4(0.00)

2 390,000 (0.00) 68 (0.20) 1.4 (0.48) −0.9(0.10)

3 440,000 (0.50) 63 (0.00) −0.8(0.04) 0.6 (0.40)

4 420,000 (0.30) 76 (0.52) 3.1 (0.82) 1.4 (0.56)

5 410,000 (0.20) 88 (1.00) 4.0 (1.00) 3.6 (1.00)

6 490,000 (1.00) 72 (0.36) −1.00(0.00) 1.2 (0.52)

standardized data. Mariański et al. (2020) adopt simple additive weighting (SAW).
Using this approach, each trait describing an offer is assigned an attractiveness
score between zero and one. The overall attractiveness score for an offer is given
by a weighted average of these individual attractiveness scores, where the weights
correspond to the importance ascribed to a particular trait. Using either TOPSIS
or SAW, we can obtain an overall attractiveness score for each offer that can vary
between zero and one.

Due to the differences in the scales of the variables observed, the distance
between offers should be based on standardized values of the observations. Let x̃i,j
be the standardized observation of xi for offer j . The measure of the variety of offers
on shortlist S, w(S), is given by the mean of the distances, d, between the offers on
the list. The distance between offer j and m is given by

d(j,m) =
[

n∑

i=1

(x̃i,j − x̃i,m)
2

]0.5

. (6)

This is the standard Euclidean measure of distance in an n-dimensional space.
The overall attractiveness of a shortlist is assumed to be a weighted average of

the mean score of the measures of overall attractiveness (given a weight 1 − v) and
the mean distance between the offers (given a weight v). It should be noted that the
maximum distance between offers is

√
n, while the attractiveness score is defined to

be in the interval [0, 1]. Hence, when defining an algorithm that is robust to changes
in the number of variables observed, one might, e.g., scale the attractiveness scores
(multiply them by

√
n).

When no weight is ascribed to the variety of the offers on the shortlist, the optimal
shortlist simply includes the k offers with the highest attractiveness scores. The
number of possible shortlists is given by

(
N

k

)
= N !
k!(N − k)! . (7)

When v > 0 and k is small, it is reasonable to find the optimal shortlist by exhaustive
calculation. However, since such an algorithm should be able to work online, for
larger values of k, one might use the following greedy algorithm:
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1. Let i = 1. Place the most attractive offer on the current shortlist.
2. Add the offer that maximizes the weighted average of the mean attractiveness

and the mean distance between offers.
3. Let i = i + 1. If i = k, then STOP, otherwise return to 2.

This algorithm is based on the concept of dynamic programming. However, when
v > 0, the objective function cannot be written as a sum of the values of component
parts. Hence, in this case, the shortlist formed is not necessarily optimal according
to the given criterion.

This algorithm was tested using a database of nearly 10,000 properties on offer
in the city of Wrocław, Poland, to form a shortlist of six offers (data accessed on
14/4/2020 from otodom.pl). Based on SAW, the DM enters minimum and maximum
values for each trait. Properties that do not satisfy these criteria are eliminated
from consideration. By also entering the ideal value of each trait and the weights
of the traits, the algorithm calculates a measure of the attractiveness of each offer.
When the weight ascribed to variety, v, was less than 0.5, the algorithm constructed
shortlists of properties that were all very highly ranked (in the top 20, where 195
properties satisfied the basic criteria). Future research will concentrate on what
values of v should be used over a range of problems and given the DM’s level of
knowledge regarding a market.

4 Models Involving Multiple Decision Makers

In practice, the search for a valuable resource may involve a number of DMs, e.g.,
a family looking for a flat. In such situations, two approaches to decision making
are often used: game theoretic and procedures for group decision making. As in the
basic model, it is assumed that there are two decision points: (a) selecting a shortlist
based on initial information and (b) choosing an offer from the shortlist.

Using a game theoretic approach, at each decision point, one or more DMs
choose an action and the outcome out of each stage of the game (interpreted as
a decision making process) depends on the set of decisions made. In classical game
theory, it is assumed that the players choose their actions independently. On the
other hand, when a married couple is looking for a flat, they will consult with each
other before making a final decision. In a game theoretic framework, this could,
however, be interpreted as the couple agreeing on the rules of the game before the
search process begins. A Nash equilibrium of such a game is defined by a set of
strategies for each DM, such that no DM expects to gain by changing their strategy
given that the other DMs do not change their strategy.

Using a procedure for group decision making, at each decision point, each DM
either gives an attractiveness score to each offer or ranks the offers. These scores
or rankings are then used to define an overall attractiveness score to each offer
according to a procedure that is agreed upon before search begins. The k offers with
the highest overall attractiveness scores based on the initial round are placed on a
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shortlist. After the second round of observation, the offer with the highest overall
attractiveness score based on all the information available is chosen.

The game theoretic approach described below is described more fully in Ramsey
[15], while a group decision procedure is considered in Ramsey [16]. It should be
noted that DMs may have different preferences (modelled by allowing the ratios
between the variances of the signals as observed by the DMs to differ) and different
search costs. For simplicity, here we consider a symmetric model in which the
relative importance of the signals to two DMs is the same. For a more general model
of the DM’s preferences and their search costs, see Ramsey [15].

4.1 A Game Theoretic Model

Assume that two DMs, DM1 and DM2, must choose one of the n offers to be used
as a commonly held good. They agree to use a procedure based on constructing a
shortlist. For convenience, DM1 will be referred to as “he” and DM2 as “she.” We
consider the following approach to such a problem: DM1 observes the initial signal
for each of the offers. Based on these signals, he chooses a shortlist of offers. After
closer inspection of the offers on the shortlist, DM2 then selects an offer. Thus, DM1
may be treated as a Stackelberg leader (see Leitmann [7]). The strategy of Player 1
is his choice of the length of the shortlist.

In such problems, the common interest of the DMs needs to be taken into
account. This might come from two sources: (a) the two DMs might have correlated
(i.e., similar) preferences and (b) one DM might show altruism toward the other DM.
Assume that DM1 may show altruism toward DM2, while DM2 only considers her
own payoff. It follows that the optimal response of DM2 is to choose the offer on the
shortlist that she ranks most highly. By assumption, in the first round of inspection,
only DM1 incurs search costs (e.g., DM1 searches via the Internet). Both players
incur the same search costs in the second round of inspection. In the first round of
search, the cost of a pairwise comparison is assumed to be 0.001. In round two, the
cost of a pairwise comparison is assumed to be 0.05.

The relation between the preferences of DMs may lead to a complex correlation
structure existing between the signals observed by the DMs. To keep this structure
relatively simple, the following assumptions are made:

1. The coefficient of correlation between the two signals describing an offer
observed by a single DM is ρ1 (independently of the DM).

2. The coefficient of correlation between the value of a signal according to the two
DMs is ρ2 (independently of the signal). This is a measure of the coherence of
the DMs’ preferences.

3. For a given value of the initial signal as observed by a DM, the value of the
second signal as observed by this DM is conditionally independent of the value
of the initial signal as observed by the other DM.
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Signal2: X2,1

Signal 1: X1,1

Decision Maker 1 1

2

2

1 Decision Maker 2

Signal 1: X1,2

Signal 2: X2,2

Fig. 1 Structure of the correlations between the signals observed by the decision makers

4. Analogously, for a given value of the second signal as observed by a DM, the
value of the initial signal as observed by this DM is conditionally independent of
the value of the second signal as observed by the other DM.

Let Xi,j denote the value of the i-th signal as observed by the j -th DM, and
let X = (X1,1, X2,1, X1,2, X2,2) be the set of signals of the value of an offer as
observed by the two DMs. The correlation structure for these signals is illustrated
in Fig. 1.

The correlation matrix describing the associations between these signals is

ρ =

⎛

⎜⎜⎝

1 ρ1 ρ2 ρ1ρ2

ρ1 1 ρ1ρ2 ρ2

ρ2 ρ1ρ2 1 ρ1

ρ1ρ2 ρ2 ρ1 1.

⎞

⎟⎟⎠ (8)

As in the original model, the variance of the initial signal is assumed to be equal
to one and the residual variance of the second signal is equal to σ . The overall
value of an offer to a DM is assumed to be the sum of the two signals observed
(independently of the DM).

The level of altruism shown by DM1 toward to DM2 is denoted by α. When DM1
obtains a payoff of y and DM2 obtains a payoff of z, the utility of DM1 is given by
u1 = (1 − α)y + αz. By assumption, 0 ≤ α ≤ 0.5. Here, α = 0 corresponds
to DM1 being economically rational (i.e., he is only interested in his own payoff).
On the other hand, α = 0.5 corresponds to DM1 assigning the same weight on the
payoff of DM2 as on his own. By assumption, DM1 chooses the length of shortlist
that maximizes his utility given that in the second round DM2 chooses the offer that
is most attractive to her (the best response to DM2’s decision).
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Table 4 Effect of the level of good will shown by DM1 and the coherence of player’s preferences
on the efficiency and equilibrium length of the shortlist in games where σ = 1 and ρ1 = 0 (the first
value in each cell gives the efficiency and the second the empirically derived equilibrium length of
the shortlist)

ρ2 = 0 ρ2 = 1/3 ρ2 = 2/3

α = 0 (0.4002, 1) (0.5433, 1) (0.7996, 2)

α = 0.25 (0.4895, 2) (0.6457, 2) (0.8360, 3)

α = 0.5 (0.5257, 4) (0.6904, 5) (0.8501, 6)

The results from simulations indicate that the altruism shown by DM1 is implicit
in his choice of the length of the shortlist. Intuitively, the equilibrium length of
the shortlist is non-decreasing in α, i.e., DM1 shows good will by giving DM2 a
range of choices. The equilibrium length of the shortlist also tends to increase as ρ2
(a measure of the coherence of the player’s choices). For the model of symmetric
preferences presented here, when ρ2 = 1, the problem reduces to one in which
DM1 is a single decision maker, since the players give the same assessments of
the attractiveness of the offers. On the other hand, when ρ2 = α = 0, there is no
common interest between the DMs. In this case, DM1 acts as a form of dictator,
since the length of the shortlist at equilibrium is one (i.e., DM1 chooses an offer on
the basis of the initial signal).

In order to state when such a search procedure might be effective, one should
look at the relative efficiency of the search procedure at equilibrium compared to
the optimization problem with a single DM. One may define this efficiency as the
mean of the payoffs obtained by the DMs divided by the optimal expected payoff of
a single DM in the corresponding optimization problem (Table 4).

The results from the simulations indicate that such a procedure is effective when
the preferences of the DMs are coherent, particularly when DM1 shows altruism
toward DM2. Allowing the relative importance of signals to vary according to the
DM, such procedures are particularly effective when the DM1 places more weight
on the initial signal and DM2 places more weight on the second signal. However,
in order to assess when such a search procedure is likely to be used, one should
consider other procedures for first choosing a shortlist and then making the final
selection. For example, in the first round, both DMs could place a number of offers
on the shortlist and then some procedure is used to make the final selection given
the rankings of the offers on the shortlist constructed by the DMs.

The assumption that DM1 shows altruism toward DM2, but DM2 does not show
altruism toward DM1 might seem problematic. However, within the framework
of the model, the level of altruism shown by DM1 is naturally reflected in the
equilibrium length of the shortlist. On the other hand, in order to show DM1’s good
will, DM2 must have information about how DM1 assesses the offers. This would
require an extension of the model.
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4.2 Group Decision Procedures

Ramsey [16] considers a problem in which a group of m DMs must together choose
one offer from N . On the basis of an initial signal, the DMs construct a shortlist of k
offers to investigate more closely. After closely observing the offers on the shortlist,
the DMs make their final selection. It is assumed that the overall attractiveness of
an offer to the group is measured by a function of the ranks ascribed to that offer
by the DMs individually. To adapt the concept of a group decision procedure to
the shortlist heuristic, the following components of an appropriate decision rule are
required:

1. the assessment function g1(r1, r2, . . . , rm) measuring the overall attractiveness
of an offer based on initial information, where ri is the rank ascribed to the offer
by the i-th decision maker in the first round of inspection;

2. the length of the shortlist to be used, k;
3. the assessment function g2(s1, s2, . . . , sm) measuring the overall attractiveness

of an offer on the shortlist based on all the information gained in both rounds,
where si is the rank ascribed to the offer by the i-th decision maker in the second
round of inspection.

In addition, the overall goal of the group should be defined. Here, we consider
two possibilities. By definition, the functions g1 and g2 are non-increasing in each
of their arguments. The k offers with the largest values of g1 are selected to be on
the shortlist. After close inspection of the offers on the shortlist, the group selects
the offer with the largest value of g2. The simplest to use assessment functions are
symmetric and additive, as defined below.

Definition An assessment function g(r1, r2, . . . , rm) is symmetric and additive
when there exists a function gc such that

g(r1, r2, . . . , rm) =
m∑

i=1

gc(ri).

Thus, the overall measure of attractiveness may be interpreted as a sum of the
attractiveness measures ascribed by the individual DMs (based on the function gc).
This overall measure is independent of the labelling of the DMs (i.e., switching the
assessments of any two players never has any effect on the decisions made at any
stage). The function gc is called the inducing function.

The three types of inducing functions described below are natural within this
framework:

1. Linear: gc(r) = N0 − r , where N0 is the number of offers currently under
consideration.

2. Exponential: gc(r) = αr−1, where 0 < α < 1.
3. Hyperbolic: gc(r) = 1

1+β(r−1) , where β > 0.
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Note that a wide range of linear inducing functions are admissible for the problems
considered here (the only requirement is that an inducing function is decreasing in
r). However, it can be easily shown that all of these functions are equivalent, since
maximization of the assessment function always reduces to minimizing the sum of
the ranks ascribed by the DMs.

The choice of the inducing function should take into account whether it is
assumed to be better that at least some of the DMs are very happy or that all the
DMs are relatively happy.

In the first case, it would be more natural to use a convex inducing function (the
overall attractiveness is larger when the ranks ascribed to an offer by two DMs are 1
and r − 1 than when both DMs ascribe a rank of r

2 , where r is an even number such
that r ≥ 4). In the second case, it would be more natural to use a concave inducing
function (the overall attractiveness is lower when the ranks ascribed to an offer by
two DMs are 1 and r−1 than when both DMs ascribe a rank of r

2 ). The exponential
and hyperbolic functions given above are both convex.

The linear inducing function can be generalized to the following family of
inducing functions: gc(r) = (N0 − r)γ , where γ > 0. When γ > 1, this function is
convex and when γ < 1, this function is concave.

Simulations of decision making procedures with two DMs were used to see what
types of decision rule based on this family of inducing functions are best adapted
to the following goals (as defined by the DMs). For a given inducing function, the
optimal length of the shortlist was found empirically by simulation when 100 offers
were available (the length of the shortlist was allowed to vary from one to twenty).

1. To maximize the sum of the payoffs of the DMs.
2. To maximize the minimum of the payoffs of the DMs.

The structure of the correlations between the signals as observed by the DMs
is the same as that used for the game theoretic model. These simulations confirm
the intuition given above that concave inducing functions are best adopted to
maximizing the minimum payoff of the two DMs. However, the form of the inducing
rule had only a very small effect on either the expected value of the sum of the
payoffs obtained or the minimum of the payoffs obtained. In addition, given the
inducing function used, the optimal lengths of the shortlist according to these
two criteria are always very similar (most often, they are equal or the length of
the shortlist that maximizes the minimum is one greater than the length of the
shortlist maximizing the sum of the payoffs). Based on these results, the use of
linear inducing functions can be recommended, since such a rule is both simple to
implement and intuitive.

Table 5 gives results regarding the optimal length of the shortlist in a problem
with two DMs using a linear inducing function (γ = 1) according to the correlation
between the two signals associated with an offer (ρ1) and the coherence of the
DMs’ preferences (ρ2). As for the game theoretic model, the efficiency measures
give the ratio of the mean payoff of the DMs to the payoff of an individual DM in
the corresponding optimization problem. Again, the efficiency of such procedures
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Table 5 Empirically derived optimal expected sum of rewards to two DMs (first entry), optimal
length of shortlist (second entry), and efficiency of the group decision procedure (third entry) for
search procedures with two DMs when 100 offers are available

ρ2 = 0 ρ2 = 1/3 ρ2 = 2/3

ρ1 = 0 (4.7435, 6, 0.6040) (5.8393, 6, 0.7436) (6.8445, 7, 0.8716)

ρ2 = 1/3 (6.7938, 5, 0.6296) (8.2035, 5, 0.7603) (9.4978, 6, 0.8802)

ρ3 = 2/3 (10.0625, 4, 0.6460) (12.0068, 4, 0.7709) (13.7753, 4, 0.8844)

is clearly increasing in the coherence of the DMs preferences and also positively
associated with the correlation between the two signals of an offer’s value.

5 Conclusion

This paper has given an overview on recent work regarding models of decision
making using the shortlist heuristic. The shortlist heuristic can be a valuable tool
when some information about the large number of offers available is available at
very little cost, while extra information is required to make an informed decision.

In the basic model, there are a fixed number of offers and the search costs are
convex in the length of the shortlist. Under these assumptions, the optimal length of
the shortlist is the smallest value for which the marginal gain from increasing the
length of the shortlist (in terms of the increase in the expected value of the offer
finally accepted by increasing the length of the shortlist) is greater than the marginal
increase in the search costs from increasing the length of the shortlist. Empirical
results show that the optimal length of the shortlist is very robust to changes in the
total number of offers available. Also, when the amount of information gained from
both signals is very similar, shortlists of moderate length (four to six) are close to
optimal over a wide range of parameters determining the search costs.

Several extensions of the original model were considered in which there is a
single DM. The first extension is based on a model for controlling the shortlist via
pairwise comparisons. Under this procedure, the expected number of comparisons
needed is of order n ln(n), i.e., this procedure does not carry out all the n(n−1)

2 pair-
wise comparisons. Under this model, the search costs are not convex in the length of
the shortlist. However, numerical calculations show that the marginal search costs
[c(k, n) − c(k − 1, n)] have, at least, a tendency to increase in k. Thus, under this
model, any length of shortlist that satisfies the optimality condition in the basic
model will be at least close to optimal.

The second extension considers the possibility that the pairwise comparisons
used to control the shortlist may be imperfect. In the second round of inspection,
the DM may choose the order in which the offers on the shortlist are inspected.
Also, each successive offer is compared with the one assessed to be best of the
previous offer. Under such a regime, it is natural to view the offers on the shortlist
from the least attractive (according to the initial signal). Simulations indicate that
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when the error rate is low, such a procedure is effective and the optimal length of
the shortlist tends to increase slightly (compared to when there are no errors in
comparisons). When pairwise comparisons are cheap, but somewhat inaccurate, it
may well be more effective to carry out a full set of pairwise comparisons. This will
be considered in future research.

The third extension considers the problem of selecting a shortlist when the initial
signal gives multivariant quantitative information. This may prove very useful in
practical problems, e.g., suggesting a shortlist of flats for sale that should be viewed
using information from the Internet. Given such information, a shortlist should
contain potentially attractive offers that show variety. An algorithm constructing
such a shortlist by maximizing a weighted average of the mean attractiveness of
offers and a measure of their variety (mean distance between them) is described. In
practice, constructing such a shortlist may well be used as a first step in a three
stage procedure. Firstly, quantitative information can be used to form an initial
shortlist. Secondly, descriptions of offers often include qualitative information, e.g.,
photographs. Such information could then be used to form a second shortlist of
offers to view in real life. The final choice is made after a close inspection of the
offers on this shortlist. Future research will aim to study what weight should be
placed on variety (depending on a DM’s knowledge of the market) and implement a
practical version of the algorithm.

In addition, models of decision process with multiple DMs were also presented.
These models can be generally classified into game theoretic approaches and models
of group decision making. A game theoretic model was presented in which one DM
selects the shortlist and the second DM makes the final decision. Such an approach
is practical when the DMs have common interests (i.e., show altruism toward each
other and/or have coherent preferences) and one DM places a lot of weight on the
initial information, while the other places more weight on the second signal. Future
research will consider game theoretic models in which both players are active in
both stages of the search process. In many ways, models of group decision making
processes may be more realistic, since at each stage of the decision process the
expressed preferences of the DMs are combined to define the appropriate decision.
The model presented here assumes symmetry between the DMs (i.e., they all weight
the signals in the same way and incur the same search costs). Future research will
consider processes in which the DMs have different priorities and the possibility of
collusion between DMs.
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Optimality Conditions for Vector
Equilibrium Problems

Ali Farajzadeh and Sahar Ranjbar

Abstract Several optimality conditions for solutions of vector equilibrium prob-
lems are presented. Some examples in order to clear the main achievements are
provided.

Keywords Separation theorem · Optimality conditions · Equilibrium problem

1 Introduction and Preliminaries

Inspired by the pioneer work of Giannessi [13], the theory of vector equilibrium
problems was started during the last decade of the last century. The vector equilib-
rium problems (for short, VEPs) are among the most interesting and intensively
studied classes of nonlinear problems. They include fundamental mathematical
problems, namely, vector optimization problems, vector variational inequality
problems, the Nash equilibrium problem for vector-valued mappings, and fixed
point problems as special cases. A large number of research papers have been
published on different aspects of vector equilibrium problems; see, for example,
[1–10] and the references therein. There are several possible ways to generalize
vector equilibrium problems for set-valued mappings; see, for example, [11, 15, 17]
and the references therein. Such generalizations are based on the concepts, namely,
weak efficient solutions, efficient solutions, strong efficient solutions, etc., of vector
optimization problems. Some of the generalizations of vector equilibrium problems
are listed below.

Find x ∈ K such that F(x, y) ⊆ Y\(−intC), ∀y ∈ K, (1)

Find x ∈ K such that F(x, y) �⊆ −intC, ∀y ∈ K, (2)
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Find x ∈ K such that F(x, y) ∩ Y\(−intC) �= ∅ ∀y ∈ K, (3)

Find x ∈ K such that F(x, y) ⊆ C, ∀y ∈ K, (4)

whereK is a nonempty set, F : K×K → Y is a set-valued mapping with nonempty
values, and C is a convex cone in a topological vector space Y with nonempty
interior, denoted by intC.

These problems are called generalized vector equilibrium problems (in short,
GVEPs).

Let X, Y , and Z be ordered vector spaces and P ⊆ Y and Q ⊆ Z be pointed
convex cones. We denote by Y ∗ and Z∗ the algebraic dual spaces of Y and Z,
respectively. If A is a nonempty subset of Y , then the generated cone of A is defined
as coneA = ⋃

λ≥0 λA = {λa : λ ≥ 0, a ∈ A}. The algebraic dual cone P ∗ and
strictly dual cone P # of P are defined as

P ∗ = {y∗ ∈ Y ∗ : 〈y∗, p〉 ≥ 0 for all p ∈ P },

and

P # = {y∗ ∈ Y ∗ : 〈y∗, p〉 > 0,∀p ∈ P \ {0}},

where 〈y∗, p〉 denotes the value of the linear functional y∗ at the point p, and 0
denotes the zero vector of the corresponding vector space.

The algebraic interior of A, denoted by corA, is defined as

corA = {a ∈ A : ∀y ∈ Y, ∃ δ0 > 0,∀δ ∈ [0, δ0], a + δy ∈ A}.

Let Y be a topological vector space and A be a nonempty subset of Y . Then, the
topological interior of A, denoted by intA, is a subset of corA.

The following lemma provides the equivalence between the topological interior
and the algebraic interior of a set under certain conditions.

Lemma 1 ([16]) Let A be a nonempty convex subset of a topological vector space
X such that intA �= ∅. Then, the following assertions hold:

(a) intA = corA.
(b) clA = cl(intA) and intA = int (clA), where clA denotes the closure of the set

A.

The following lemma plays a key role in the sequel.
The following result is the main motivation of considering algebraic interior

instead of topological interior.

Proposition 1 ([12]) Let X be a topological vector space. For every discontinuous
linear functional f on X, there exists a convex pointed cone Cf in X whose
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topological interior is empty, but its algebraic interior is nonempty, that is, intCf =
∅ and corCf �= ∅.
Remark 1 If X is a topological vector space whose topology is not Hausdorff, then
there is a discontinuous linear functional on X, see [12].

Also note that if f is a discontinuous linear functional on X, then αf is a
discontinuous linear function for each nonzero real number α. Then, the set of
discontinuous linear functionals on X is an uncountable set, and so the set of convex
cone with empty interior and nonempty algebraic interior is uncountable.

Theorem 1 ([16]) Let A and B be nonempty convex subsets of a vector space X
such that corA �= ∅. Then, (corA) ∩ B = ∅ if and only if there exist a nonzero
linear functional l ∈ X∗ and a real number α such that

l(s) ≤ α ≤ l(t), for all s ∈ A, t ∈ B,

and

l(s) < α, for all s ∈ corA.

The next fact is a direct consequence of the previous theorem.

Corollary 1 Let A be a nonempty convex subset of a vector space X. Then, x /∈
corA if and only if there exist a nonzero linear functional l and a real number α
such that

l(s) ≤ α ≤ l(x), for all s ∈ A

and

l(s) < α, for all s ∈ corA.

Definition 1 Let B be a nonempty convex subset of a vector space Y and P be a
cone in Y . The set B is called a base of P if P = coneB and there exists a balanced,
absorbent, and convex set V in X such that 0 /∈ B + V .

Let X and Y be vector spaces, K be a nonempty subset of X, P be a pointed convex
cone in Y , and F : K × K → Y be a set-valued mapping with nonempty values.
We consider the following generalized vector equilibrium problems.

Definition 2 (GWVEP) A vector x ∈ K satisfying

F(x, y) �⊆ −corP

for all y ∈ K is called a weakly efficient solution to the VEP.
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Definition 3 (GVEP) A vector x ∈ K is called a globally efficient solution to the
VEP if there exists a pointed convex cone H ⊂ Y with P \ {0} ⊂ corH such that

F(x,K) ∩ ((−H) \ {0}) = ∅,

where F(x,K) = ⋃
y∈K F(x, y).

Definition 4 (HGVEP) A vector x ∈ K is called a Henig efficient solution to the
VEP if there exists an algebraically open setU containing 0 withU ⊂ VB satisfying

coneF (x,K) ∩ (−corPU(B)) = ∅.

Definition 5 (SGVEP) A vector x ∈ K is called a superefficient solution to the
VEP if for each algebraically open set V of 0, there exists an algebraic open set U
of 0 satisfying

coneF (x,K) ∩ (U − P) ⊂ V.

Clearly,

coneF (x,K) ∩ (−corPU(B)) ⊂ coneF (x,K) ∩ (U − P).

2 Optimality Conditions

Let X be a vector space, Y and Z be ordered vector spaces, P ⊆ Y and Q ⊆ Z be
pointed convex cones, K ⊆ X be a nonempty set, and F : K → Y and G : K → Z

be set-valued mappings with nonempty values. Define

〈F(x), y∗〉 = {〈y, y∗〉 : y ∈ F(x)} and 〈F(K), y∗〉 =
⋃

x∈K

〈
F(x), y∗〉 .

We write

F(x) <P y0 if and only if y <P y0, ∀y ∈ F(x),

F (x) ≤P y0 if and only if y ≤P y0, ∀y ∈ F(x).

Let K be a nonempty convex subset of X. A set-valued mapping F : K → Y is said
to be

(a) P -convex if for all x1, x2 ∈ K and all t ∈ [0, 1],

tF (x1)+ (1 − t)F (x2) ⊂ F(tx1 + (1 − t)x2)+ P ;
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(b) P -concave if for all x1, x2 ∈ K and all t ∈ [0, 1],

tF (x1)+ (1 − t)F (x2) ⊂ F(tx1 + (1 − t)x2)− P.

Remark 2 A set-valued mapping F : K → Y is P -convex if and only if F(K)+P

is convex.

Theorem 2 Let K be a nonempty convex subset of X. If F : K → Y is P -convex,
G : K → Z isQ-convex, and the system

{
F(x) <P 0,
G(x) <Q 0

has no solution in K , then there exists a nonzero element (y∗, z∗) ∈ P ∗ ×Q∗ such
that for all x ∈ K ,

〈
y∗, F (x)

〉+ 〈z∗,G(x)〉 ≥ 0,

that is,
〈
y∗, y

〉+ 〈z∗, z〉 ≥ 0, for all y ∈ F(x), z ∈ G(x),

where F(x) <P 0 andG(x) <Q 0 mean that F(x) ⊂ −corP andG(x) ⊂ −corQ,
respectively.

Proof By Remark 2, the sets F(K) + P and G(K) + Q are convex in Y and Z,
respectively. Define a set-valued mapping H : K ×K → Y × Z by

H(e,w) = (F (e)+ P)× (G(w)+Q), for all (e, w) ∈ K ×K.

Then,H(K×K) = (F (K)+P)×(G(K)+Q) is convex, and also by the hypothesis,
we have cor(H(K × K)) ∩ ((−P) × (−Q)) = ∅. By the separation Theorem 1,
there exist a nonzero element (y∗, z∗) ∈ (Y ∗ × Z∗) and a real number α such that

(y∗, z∗)(p, q) ≤ α ≤ (y∗, z∗)(e, w),

for all (p, q) ∈ (−P)× (−Q), (e,w) ∈ H(K ×K).

Since P and Q are convex pointed cones, 0Y ∈ P and 0Z ∈ Q. Hence, by
applying the last inequalities, we get (y∗, z∗)(0, 0) = 0 ≤ α ≤ (y∗, z∗)(e + 0, w +
0), where (e, w) ∈ F(K)×G(K). Consequently,

〈
y∗, F (x)

〉+ 〈z∗,G(x)〉 ≥ 0.

This completes the proof. 	

Remark 3 When X, Y , and Z are topological vector spaces, int P �= ∅, and
int Q �= ∅, then it follows from Lemma 1 that int P = corP , int Q = corQ,
and so Theorem 2 collapses to Theorem 3.3 in [18] with a new proof. Consequently,
Theorem 2 generalizes Theorem 3.3 in [18].
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(Assumption C) For all x ∈ K , F(x, x) = {0} and F(x, y) is P -convex in y; G is
Q-concave, and there exists x0 ∈ K such that G(x0) ⊂ corQ.

By using Theorem 2, we present the following result which is a set-valued
version of Theorem 3.1 in [14].

Theorem 3 Suppose that the Condition C is satisfied and corP �= ∅. If x ∈ K is
a solution of (GWVEP), then there exists (p∗, q∗) ∈ P ∗ \ {0} × (−Q)∗) such that
〈q∗,G(x)〉 = {0} and

〈p∗, F (x, x)〉 + 〈q∗,G(x)〉 = {0} ≡ 0 = min
y∈K

[〈p∗, F (x, y)〉 + 〈q∗,G(y)〉] .

The converse is true when the range of G is a subset ofQ, that is, G(K) ⊆ Q.

Proof Assume that x ∈ K is a solution of GWVEP. Then, for any y ∈ K , we have
F(x, y) �⊆ −corP . Therefore, the system

{
F(x, y) <P 0,
−G(y) <Q 0

has no solution inK . Then, by Theorem 2, there exists a nonzero element (p∗, q∗) ∈
(P × (−Q))∗ = P ∗ × (−Q)∗ such that

〈
p∗, F (x, y)

〉+ 〈q∗,G(y)
〉 ≥ 0. (5)

We claim that p∗ �= 0. Otherwise, if p∗ = 0 in the last inequality, then 〈q∗,G(y)〉 ≥
0 for all y ∈ N . It follows from the hypothesis that there exists k ∈ N such that
G(k) ⊂ corQ. Since −q∗ ∈ Q∗\{0}, we have 〈−q∗,G(k)〉 > 0, which implies that
〈q∗,G(k)〉 < 0. This is contradicted by 〈q∗,G(y)〉 ≥ 0 for all y ∈ N. Thus, p∗ �=
0. Consequently, by setting y = x, for all x ∈ K, in (5), we obtain 〈q∗,G(x)〉 ≥ 0.
Since x ∈ K and q∗ ∈ (−Q)∗, 〈−q∗,G(x)〉 ≥ 0. Thus,

〈q∗,G(x)〉 = 0. (6)

It follows from (5) and (6) and F(x, x) = {0} that

〈p∗, F (x, x)〉 + 〈q∗,G(x)〉 = {0} ≡ 0 = min
y∈K

[〈p∗, F (x, y)〉 + 〈q∗,G(y)〉] .

Conversely, assume that x ∈ K , p∗ ∈ P ∗ \{0} and q∗ ∈ −Q∗ with 〈q∗,G(x)〉 =
0 and

〈p∗, F (x, x)〉 + 〈q∗,G(x)〉 = {0} ≡ 0 = min
y∈K

[〈p∗, F (x, y)〉 + 〈q∗,G(y)〉] . (7)

We now show that x ∈ K is a solution of GWVEP. Suppose, on the contrary, that
x ∈ K is not a solution of GWVEP. Then, there exists y0 ∈ K such that F(x, y0) ⊆
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−corP . Hence, it follows from (7) that 〈q∗,G(y0)〉 ≤ 0, which is contradicted to
G(K) ⊆ Q. This completes the proof. 	

Theorem 4 Assume that the Condition C is satisfied and that P has a baseB. Then,
x ∈ N is a solution of HGVEP if and only if there exists (p∗, q∗) ∈ PΔ(B)× −Q∗
such that 〈q∗,G(x)〉 = 0 and

〈p∗, F (x, x)〉 + 〈q∗,G(x)〉 = min
y∈K

[〈p∗, F (x, y)〉 + 〈q∗,G(y)〉] .

Proof Assume that x ∈ N be a solution of HGVEP. Then, there exists an alge-
braically open set U containing 0 with U ⊂ VB such that F(x, y)∩ −corPU(B) =
∅. We replace the cone PU(B) = cone(U + B) by the cone P in Theorem 2. Then,
F(x, y) is PU(B)-convex, and also the following system:

{
F(x, y) ⊂ −corPU(B),
−G(y) ⊂ −corQ

has no solution in K .
By the similar argument as in the proof of Theorem 3, we obtain that there exists

(0, 0) �= (p∗, q∗) ∈ P ∗
U(B)× (−Q)∗ ⊂ P�(B)× (−Q)∗ such that

〈
p∗ , F (x, y)〉 + 〈q∗ , G(y)〉 ≥ 0, for all y ∈ K. (8)

Taking y = x in (8), we obtain 〈q∗ , G(x)〉 ≥ 0. Since x ∈ N , q∗ ∈ (−Q)∗, we
have 〈q∗ , G(x)〉 = 0. From this and (8) and F(x, x) = {0}, we have

〈p∗, F (x, x)〉 + 〈q∗,G(x)〉 = {0} ≡ 0 = min
y∈K

[〈p∗, F (x, y)〉 + 〈q∗,G(y)〉] .

Conversely, let x ∈ N , and suppose that there exists (p∗, q∗) ∈ P�(B)× −Q∗
such that 〈q∗,G(x)〉 = 0 and

〈p∗, F (x, x)〉 + 〈q∗,G(x)〉 = {0} ≡ 0 = min
y∈K

[〈p∗, F (x, y)〉 + 〈q∗,G(y)〉] .

We show that x is a solution of HGVEP, that is, there exists some algebraically
open set U containing {0} with U ⊂ VB such that F(x,N) ∩ (−corPU(B)) = ∅.
Suppose on the contrary that this does not hold; that is, for all algebraically open set
U containing 0 with U ⊂ VB , we have

F(x,N) ∩ (−corPU(B)) �= ∅. (9)

Since p∗ ∈ P�(B), by Lemma 1, there exists an algebraically open set W ⊂ VB
such that p∗ ∈ (PW (B))

∗ \ {0}, and by (9), there exist yU ∈ N, yW ∈ F(x, yU ),

and yW ∈ −corPW (B). Therefore, 〈p∗, yW 〉 < 0. Since yU ∈ N, q∗ ∈ −Q∗, we
have 〈q∗,G(yU )〉 ≤ 0. Hence, we have
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〈p∗, F (x, x)〉 + 〈q∗,G(x)〉 = {0} ≡ 0

= min
y∈K[〈p∗, F (x, y)〉 + 〈q∗,G(y)〉]

≤ 〈p∗, yW 〉 + 〈q∗,G(yU )〉 < 0,

a contradiction. Hence, x is a solution of HGVEP. 	

Theorem 5 Assume that the Condition C is satisfied and that P has a base B.
Then, x ∈ N is a globally efficient solution of GVEP if and only if there exists
(p∗, q∗) ∈ P # × −Q∗ such that 〈q∗,G(x)〉 = 0 and

〈p∗, F (x, x)〉 + 〈q∗,G(x)〉 = {0} ≡ 0 = min
y∈K

[〈p∗, F (x, y)〉 + 〈q∗,G(y)〉] .

Proof Suppose that x ∈ N is a globally efficient solution of VEP. Then, there exists
a pointed convex cone H ⊂ Y such that P \ {0} ⊂ corH and F(x,N) ∩ ((−H) \
{0}) = ∅. We replace the cone H by the cone P in Theorem 2. We have that F(x, y)
is H -convex in Y and that the system

{
F(x, y) ⊂ −corH,
−G(y) ⊂ −corQ

has no solution in K . By similar argument as in the proof of Theorem 3, there exists
(p∗, q∗) ∈ P # × −Q∗ such that

〈
p∗ , F (x, y)〉 + 〈q∗ , G(y)〉 ≥ 0, for all y ∈ K. (10)

Taking y = x in (10), then 〈q∗ , G(x)〉 ≥ 0. Since x ∈ N and q∗ ∈ −Q∗, we obtain
〈q∗,G(x)〉 ≤ 0 together with 〈q∗,G(x)〉 = 0. From F(x, x) = {0}, 〈q∗,G(x)〉 =
{0}, and (10), we get

〈p∗, F (x, x)〉 + 〈q∗,G(x)〉 = {0} ≡ 0 = min
y∈K

[〈p∗, F (x, y)〉 + 〈q∗,G(y)〉] .

Conversely, let x ∈ N , and suppose that there exists p∗ ∈ P #, q∗ ∈ −Q∗
such that 〈q∗,G(x)〉 = {0} and

〈p∗, F (x, x)〉 + 〈q∗,G(x)〉 = min
y∈K

[〈p∗, F (x, y)〉 + 〈q∗,G(y)〉] . (11)

We show that x is a globally efficient solution of VEP, that is, there exists a pointed
convex cone H such that P \ {0} ⊂ corH and

F(x,N) ∩ ((−H) \ {0}) = ∅. (12)

We give
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H0 = {y ∈ Y : 〈y∗, y〉 > 0} ∪ {0}.

Then, we have P \ {0} ⊂ corH0, and H0 is a pointed convex cone. By (12), there
exists yN ∈ N , yH0 ∈ F(x, yN), yH0 ∈ −H0.

By the definition of H0, we have

〈p∗, yH0〉 < 0. (13)

Notice that yN ∈ N,G(yN) ⊂ Q, we have

〈q∗,G(yN)〉 ≤ 0. (14)

From (13) and (14), we obtain

〈p∗, yH0〉 + 〈q∗,G(yN)〉 < 0.

By (11), we have

〈p∗, F (x, x)〉 + 〈q∗,G(x)〉 = {0} ≡ 0

= min
y∈K[〈p∗, F (x, y)〉 + 〈q∗,G(y)〉]

≤ 〈p∗, yH0〉 + 〈q∗,G(yN)〉 < 0,

a contradiction. Hence, x is a globally efficient solution of VEP.
	


We remark that all above results remain valid when the mappings P and Q are
vector-valued.
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Strong Pseudoconvexity and Strong
Quasiconvexity of Non-differentiable
Functions
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Abstract In this chapter, we introduce the concept of strong pseudomonotonicity
and strong quasimonotonicity of set-valued maps of higher order. Non-differentiable
strong pseudoconvex/quasiconvex functions of higher order are characterized by
the strong pseudomonotonicity/quasimonotonicity of their corresponding set-valued
maps. As a by-product, we solve the open problem (converse part of Proposition 6.2)
of Karamardian and Schaible (J. Optim. Theory Appl. 66:37–46, 1990) for the
more general case as strong pseudoconvexity for non-smooth, locally Lipschitz
continuous functions.
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1 Introduction

The concept of monotone maps was introduced by Minty [10] in 1964. Karamardian
[5] extended the concept of monotonicity to strict and strongly monotone maps and
also established the relationship between the strongly convex functions and strongly
monotone maps. Furthermore, Karamardian and Schaible [6] discussed about seven
kinds of monotone maps and established their relationships with corresponding
convex functions.

Besides some penalty results for nonlinear programs, Lin and Fukushima [8]
introduced the concept of strongly convex functions of order σ > 0 and established
their relationship with strongly monotone maps of order σ > 0.
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It is very natural to see that a function is convex, and then its generalized
subgradients are monotone (see [12]). The class of non-differentiable functions
plays a very crucial role in the study of generalized convexity and generalized
monotonicity. The theory of generalized gradients of non-smooth functions was
given by Clarke [1], Rockaffelar [13], and Hiriart-Urruty [4].

Komlósi [7] proposed the relationship of quasi (pseudo, strict pseudo) convexity
of lower semicontinuous bifunctions and multifunctions with quasi (pseudo, strict
pseudo) monotonicity of its generalized derivatives. In 2003, Fan et al. [3] estab-
lished the relationships between (strict, strong) convexity and quasiconvexity of
non-differentiable functions and (strict, strong) monotonicity and quasimonotonic-
ity of set-valued mappings. In addition to that, Fan et al. [3] also investigated the
relationships between (strict, strong, and sharp) pseudoconvexity of non-smooth
functions and (strict, strong, and sharp) pseudomonotonicity of set-valued map-
pings. Recently, Singh et al. [14] presented the first-order characterizations of strong
pseudoconvex/quasiconvex functions of higher order. In addition to that, Mishra
et al. [11] established the relationships between generalized convex functions and
generalized monotone maps in case of semidifferentiability.

Motivated by the work of Karamardian and Schaible [6], Lin and Fukushima
[8], and Fan et al. [3], we generalize the concepts of strong convex-
ity/pseudoconvexity/quasiconvexity to strong convexity/pseudoconvexity/
quasiconvexity of order σ > 0 for non-differentiable, locally Lipschitz
continuous functions and establish their relationships with strong monotonic-
ity/pseudomonotonicity/quasimonotonicity of order σ > 0 of set-valued mappings.

2 Preliminaries

Let X be a real Banach space with a norm ‖.‖ and X∗ be its dual space with a norm
‖.‖∗. Let U be a non-empty open convex subset of X, F : X → 2X

∗
be a set-valued

mapping from a real Banach space to the family of non-empty subsets of X∗, and
f : X → R be a non-differentiable real-valued function.

Definition 2.1 ([1, 9]) Let f be locally Lipschitz continuous at a given point x ∈ X

and v be any other vector in X. The Clarke generalized directional derivative of f
at x in the direction of v, denoted by f 0(x; v), is defined by

f 0(x; v) = lim sup
y→x, t↓0

f (y + tv)− f (y)

t
.

Definition 2.2 ([1, 9]) Let f be locally Lipschitz continuous at a given point x ∈ X

and v be any other vector in X. The Clarke generalized subdifferential of f at x,
denoted by ∂cf (x), is defined by

∂cf (x) = {ξ ∈ X∗ : f 0(x; v) ≥ 〈ξ, v〉,∀v ∈ X}.
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Lemma 2.1 ([1, 9]) Let f be locally Lipschitz continuous with a constant L at
x ∈ X. Then,

(a) ∂cf (x) is a non-empty convex weak*-compact subset of X∗ and ‖ξ‖∗ ≤ L for
every ξ ∈ ∂cf (x).

(b) For every v ∈ X, f 0(x; v) = max{〈ξ, v〉 : ξ ∈ ∂cf (x)}.
Lemma 2.2 ([1, 9]) If f is convex on X and locally Lipschitz continuous at x ∈ X,
then ∂cf (x) coincides with the subdifferential ∂f (x) of f at x in the sense of convex
analysis and f 0(x; v) coincides with the directional derivative f ′(x; v) for each
v ∈ X, where

∂f (x) = {ξ ∈ X∗ : f (y)− f (x) ≥ 〈ξ, y − x〉,∀y ∈ X},

f ′(x; v) = lim
t↓0

f (x + tv)− f (x)

t
.

Lemma 2.3 ([1] (Mean Value Theorem)) Let x and y be points inX, and suppose
that f is Lipschitz on an open set X containing the line segment [x, y]. Then, ∃ a
point u ∈ (x, y) such that

f (x)− f (y) ∈ 〈∂cf (u), x − y〉.

Definition 2.3 ([2]) A function f is quasiconvex on a convex set X of R
n if

∀x, y ∈ X, λ ∈ [0, 1], we have

f (x) ≤ f (y) ⇒ f (λx + (1 − λ)y) ≤ f (y).

Proposition 2.1 ([2]) Let f be a locally Lipschitz continuous function on X. Then,
f is said to be quasiconvex if and only if for any x, y ∈ X and any η ∈ ∂cf (y), we
have

f (x) ≤ f (y) ⇒ 〈η, x − y〉 ≤ 0.

3 Strong Convexity and Monotonicity of Order σ

We collect some definitions related to strong convexity and strong monotonicity of
order σ, where σ > 0 be any positive integer, that is, strong convexity and strong
monotonicity of integer order σ ≥ 1 [8].

Definition 3.1 ([8]) A function f : X → R is said to be strongly convex of order
σ > 0 on a non-empty open convex subset X ⊆ R

n if ∃ c > 0 such that for any
x, y ∈ X and any λ ∈ [0, 1], we have
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f (λx + (1 − λ)y) ≤ λf (x)+ (1 − λ)f (y)− cλ(1 − λ)‖x − y‖σ .

Definition 3.2 ([8]) F is said to be strongly monotone of order σ > 0 on X if ∃ a
constant α > 0 such that for any x, y ∈ X and any u ∈ F(x), v ∈ F(y), we have

〈u− v, x − y〉 ≥ α‖x − y‖σ .

Proposition 3.1 Let f be a locally Lipschitz continuous function on an open convex
subset X. Then, f is strongly convex of order σ > 0 on X if and only if ∃ c > 0 and
η ∈ ∂cf (y) such that

f (x)− f (y) ≥ 〈η, x − y〉 + c‖x − y‖σ .

Proof Let f be strongly convex function of order σ > 0 on X. Then, for any
x, y ∈ X and any λ ∈ [0, 1], we have

f (λx + (1 − λ)y) ≤ λf (x)+ (1 − λ)f (y)− cλ(1 − λ)‖x − y‖σ , (1)

f (y + λ(x − y))− f (y)

λ
≤ f (x)− f (y)− c(1 − λ)‖x − y‖σ .

Taking lim sup
λ↓0

, we have

f 0(y, x − y) ≤ f (x)− f (y)− c(1 − λ)‖x − y‖σ . (2)

Again, ∃ η ∈ ∂cf (y) such that 〈η, x − y〉 ≤ f 0(y, x − y), and then

〈η, x − y〉 ≤ f (x)− f (y)− c(1 − λ)‖x − y‖σ ,

f (x)− f (y) ≥ 〈η, x − y〉 + c′‖x − y‖σ , c′ = c(1 − λ).

Conversely, suppose that f (x)− f (y) ≥ 〈η, x − y〉 + c‖x − y‖σ .
Let x �= y ∈ X, λ ∈ [0, 1], xλ = y + λ(x − y) ∈ X as X is convex.
In particular, ∃ η0 ∈ ∂cf (xλ) such that

f (x)− f (xλ) ≥ 〈η0, x − xλ〉 + c‖x − xλ‖σ , (3)

and

f (y)− f (xλ) ≥ 〈η0, y − xλ〉 + c‖y − xλ‖σ . (4)

Multiplying inequality (3) by λ and (4) by (1 − λ) and adding them, we obtain

λf (x)+ (1 − λ)f (y)− f (xλ) ≥ cλ(1 − λ)σ‖x − y‖σ + cλσ (1 − λ)‖x − y‖σ .
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Consider [(1−λ)σ−1 +λσ−1] for 0 < λ ≤ 2, [(1−λ)σ−1 +λσ−1] ≥ (1−λ)+λ =
1, and for λ > 2, since the real function φ(λ) = λσ−1 is convex on (0,1), then
[(1 − λ)σ−1 + λσ−1] ≥ ( 1

2 )
σ−2.

It follows from the above argument that ∃ some constant c
′
> 0 independent of

x, y, and λ such that

f (λx + (1 − λ)y) ≤ λf (x)+ (1 − λ)f (y)− c
′
λ(1 − λ)‖x − y‖σ .

Therefore, f is strongly convex of order σ > 0 on X. 	

Theorem 3.1 Let f be a locally Lipschitz continuous function on X. Then, f is
strongly convex of order σ > 0 on X if and only if ∂cf is strongly monotone of
order σ > 0 on X.

Proof Let f be strongly convex of order σ > 0, then for any x, y ∈ X and η ∈
∂cf (y), we have

f (x)− f (y) ≥ 〈η, x − y〉 + c‖x − y‖σ . (5)

Interchanging the role of x and y and for any ξ ∈ ∂cf (x), we have

f (y)− f (x) ≥ 〈ξ, y − x〉 + c‖y − x‖σ . (6)

Adding inequalities (5) and (6), we get

0 ≥ 〈η − ξ, x − y〉 + 2c‖x − y‖σ ,

〈ξ − η, x − y〉 ≥ β‖x − y‖σ .

Therefore, ∂cf is strongly monotone of order σ on X.
Conversely, suppose that ∂cf is strongly monotone of order σ > 0 on X; that is,

for any x, y ∈ X, ∃ ξ ∈ ∂cf (x) and η ∈ ∂cf (y) such that

〈ξ − η, x − y〉 ≥ α‖x − y‖σ .

By the mean value theorem, for any x �= y ∈ X, ∃ z = λx + (1 − λ)y for some
λ ∈ (0, 1) and ∃ η0 ∈ ∂cf (z) such that

f (x)− f (y) = 〈η0, x − y〉 = 1

λ
〈η0, z− y〉. (7)

Since ∂cf is strongly monotone of order σ > 0 on X,

〈η0 − η, z− y〉 ≥ α‖z− y‖σ ,

for any z �= y ∈ X.
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〈η0, z− y〉 ≥ 〈η, z− y〉 + α‖z− y‖σ . (8)

Using inequality (8) in inequality (7), we have

f (x)− f (y) ≥ 1

λ
[〈η, z− y〉 + α‖z− y‖σ ],

f (x)− f (y) ≥ 〈η, x − y〉 + αλσ−1‖x − y‖σ .

Therefore,

f (x)− f (y) ≥ 〈η, x − y〉 + c‖x − y‖σ .

Hence, f is strongly convex of order σ > 0. 	

Remark 3.1 Proposition 3.1 and Theorem 3.1 generalize Proposition 3.1 and
Theorem 3.4 of Fan et al. [3], respectively, which was given for σ = 2.

4 Strong Pseudoconvexity and Pseudomonotonicity
of Order σ

We introduce the concept of strongly pseudoconvex functions of order σ > 0 for
non-smooth locally Lipschitz continuous functions.

Definition 4.1 Let f be a locally Lipschitz continuous function on X. Then, f is
said to be strongly pseudoconvex of order σ > 0 on X if for any x, y ∈ X and for
any η ∈ ∂cf (y) ∃ α > 0, we have

〈η, x − y〉 + α‖x − y‖σ ≥ 0 ⇒ f (x)− f (y) ≥ 0.

Remark 4.1 For σ = 2, the definition was given by Fan et al. [3].

We introduce the concept of strongly pseudomonotone of set-valued mappings of
order σ > 0 for non-smooth locally Lipschitz continuous functions.

Definition 4.2 F is said to be strongly pseudomonotone of order σ > 0 on X if for
any x, y ∈ X and any u ∈ F(x), v ∈ F(y), ∃ a constant α > 0, and we have

〈v, x − y〉 + α‖x − y‖σ ≥ 0 ⇒ 〈u, x − y〉 ≥ 0.

Remark 4.2 For σ = 2, the definition was given by Karamardian and Schaible [6]
for real-valued mappings.
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We establish the relationship between strong pseudoconvexity of locally Lips-
chitz continuous functions and strong pseudomonotonicity of set-valued mappings
of order σ > 0, which is the natural generalization of the locally Lipschitz strong
pseudoconvex functions given by Fan et al. [3].

Remark 4.3 Fan et al. [3] have left an open problem as the converse of Theorem 4.3,
and we prove necessary and sufficient both part for more general class as locally
Lipschitz strong pseudoconvex functions of order σ > 0.

Theorem 4.1 Let f be a locally Lipschitz continuous function on X. Then, f
is strongly pseudoconvex of order σ > 0 on X if and only if ∂cf is strongly
pseudomonotone of order σ > 0 on X.

Proof Let f be strongly pseudoconvex of order σ > 0 on X, then for any x, y ∈ X

and η ∈ ∂cf (y) ∃ a constant α > 0, such that

〈η, x − y〉 + α‖x − y‖σ ≥ 0 ⇒ f (x) ≥ f (y).

Since we know that every strongly pseudoconvex function of order σ > 0 is
quasiconvex,

f (λx + (1 − λ)y) ≤ f (x). (9)

Also, by the definition of non-smooth quasiconvex function if for any x, y ∈ X and
any ξ ∈ ∂cf (x), we have

f (λx + (1 − λ)y) ≤ f (x) ⇒ 〈ξ, (λx + (1 − λ)y)− x〉 ≤ 0,

⇒ 〈ξ, x − y〉 ≥ 0.

Therefore, we have

〈η, x − y〉 + α‖x − y‖σ ≥ 0 ⇒ 〈ξ, x − y〉 ≥ 0.

Thus, ∂cf is strongly pseudomonotone of order σ on X.
Conversely, suppose that ∂cf is strongly pseudomonotone of order σ > 0, then

for any x, y ∈ X and ξ ∈ ∂cf (x), η ∈ ∂cf (y), ∃ a constant β > 0, such that

〈η, x − y〉 + β‖x − y‖σ ≥ 0 ⇒ 〈ξ, x − y〉 ≥ 0.

Equivalently,

〈ξ, x − y〉 < 0 ⇒ 〈η, x − y〉 + β‖x − y‖σ < 0. (10)
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We want to show that f is strongly pseudoconvex of order σ > 0; that is, for any
x, y ∈ X and η ∈ ∂cf (y), ∃ a constant α > 0, and we have

〈η, x − y〉 + α‖x − y‖σ ≥ 0 ⇒ f (x) ≥ f (y). (11)

Suppose, on contrary, f (x) < f (y).

By the mean value theorem, ∃ z = λx + (1 − λ)y for some λ ∈ (0, 1) and
η0 ∈ ∂cf (z), such that

f (x)− f (y) = 〈η0, x − y〉 = 1

λ
〈η0, z− y〉 < 0.

Since ∂cf is strongly pseudomonotone of order σ,

〈η0, z− y〉 < 0 ⇒ 〈η, z− y〉 + β‖z− y‖σ < 0,

〈η0, z− y〉 < 0 ⇒ 〈η, x − y〉 + βλσ−1‖x − y‖σ < 0,

which contradicts to the left-side inequality of (11).
Hence, f (x) ≥ f (y), and f is strongly pseudoconvex of order σ > 0. 	


Remark 4.4 Every strongly monotone map of order σ > 0 is strongly pseudomono-
tone of order σ > 0, but the converse is not necessarily true.

Example 4.1 Let F : X → R, where X = [0, 4] defined by

F(x) =
{

2 − x for 0 ≤ x < 1,
1 for 1 ≤ x ≤ 4.

This is an example of strongly pseudomonotone map of order σ > 0, but not
strongly monotone map of order σ > 0.

5 Strong Quasiconvexity and Quasimonotonicity of Order σ

Definition 5.1 Let f be a locally Lipschitz continuous function on an open convex
subset X. Then, f is said to be strongly quasiconvex of order σ > 0 on X if for any
x, y ∈ X and any η ∈ ∂cf (y) ∃ α > 0, we have

f (x) ≤ f (y) ⇒ 〈η, x − y〉 + α‖x − y‖σ ≤ 0.

Definition 5.2 F is said to be strongly quasimonotone of order σ > 0 on X if for
any x, y ∈ X and any u ∈ F(x), v ∈ F(y) ∃ β > 0, we have

〈v, x − y〉 > 0 ⇒ 〈u, x − y〉 ≥ β‖x − y‖σ .
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Theorem 5.1 Let f be a locally Lipschitz continuous function on X. Then, f
is strongly quasiconvex of order σ > 0 on X if and only if ∂cf is strongly
quasimonotone of order σ > 0 on X.

Proof Let f be strongly quasiconvex of order σ > 0 on X, then for any x �= y ∈ X

and η ∈ ∂cf (y), ∃ a constant α > 0, such that

f (x) ≤ f (y) ⇒ 〈η, x − y〉 + α‖x − y‖σ ≤ 0. (12)

We have to show that ∂cf is strongly quasimonotone on X; that is, for any ξ ∈
∂cf (x) and η ∈ ∂cf (y), ∃ a constant β > 0, such that

〈η, x − y〉 > 0 ⇒ 〈ξ, x − y〉 ≥ β‖x − y‖σ .

As f is strongly quasiconvex, then it is also quasiconvex; that is, for any η ∈
∂cf (y), we have

〈η, x − y〉 > 0 ⇒ f (x) > f (y).

By the definition of strongly quasiconvex function of order σ > 0, we have

f (y) < f (x) ⇒ 〈ξ, y − x〉 + α‖y − x‖σ ≤ 0,

f (y) < f (x) ⇒ 〈ξ, x − y〉 ≥ α‖x − y‖σ .

Therefore, we have 〈η, x − y〉 > 0 ⇒ 〈ξ, x − y〉 ≥ α‖x − y‖σ .
Thus, ∂cf is strongly quasimonotone of order σ.
Conversely, suppose that ∂cf is strongly quasimonotone of order σ > 0, then

for any ξ ∈ ∂cf (x) and η ∈ ∂cf (y), ∃ a constant β > 0, such that

〈η, x − y〉 > 0 ⇒ 〈ξ, x − y〉 ≥ β‖x − y‖σ .

We want to show that f is strongly quasiconvex of order σ > 0; that is, f (x) ≤
f (y) ⇒ 〈η, x − y〉 + α‖x − y‖σ ≤ 0.

Suppose that f (x) ≤ f (y).

By the mean value theorem, ∃ z = λx + (1 − λ)y for some λ ∈ (0, 1) and
η0 ∈ ∂cf (z), such that

f (x)− f (y) = 〈η0, x − y〉 = 1

λ
〈η0, z− y〉 ≤ 0.

By the use of strongly quasimonotone map, we have

〈η0, y − z〉 > 0 ⇒ 〈η, y − z〉 ≥ β‖y − z‖σ ,

〈η0, y − z〉 > 0 ⇒ 〈η, y − x〉 ≥ βλσ−1‖y − x‖σ ,



204 S. K. Singh et al.

〈η0, y − z〉 > 0 ⇒ 〈η, x − y〉 + α‖x − y‖σ ≤ 0,

Hence, f is strongly quasiconvex of order σ > 0. 	

Remark 5.1 Every strongly quasiconvex function of order σ > 0 is quasiconvex,
but the converse is not always true.

Remark 5.2 The class of quasi-functions is the largest class, so every strongly
pseudomonotone map of order σ > 0 is strongly quasimonotone of order σ > 0,
but it is not always true in the converse case.

Example 5.1 Let F : X → R, where X = [−2, 2] defined by

F(x) =
⎧
⎨

⎩

0 for −2 ≤ x < 0,
x for 0 ≤ x < 1,
2x − 1 for 1 ≤ x ≤ 2.

This is an example of strongly quasimonotone map of order σ > 0, but not strongly
pseudomonotone map of order σ > 0.
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Optimality and Duality of Pseudolinear
Multiobjective Mathematical Programs
with Vanishing Constraints

Jitendra Kumar Maurya, Avanish Shahi, and Shashi Kant Mishra

Abstract In this chapter, we establish necessary and sufficient optimality con-
ditions for a special class of optimization problems called multiobjective mathe-
matical programs with vanishing constraints under pseudolinear assumption. We
propose Mond–Weir type dual model for the considered problem and establish usual
duality results. Furthermore, we present some examples to validate our results.

Keywords Pseudolinear multiobjective programming · Optimality conditions ·
Duality · Vanishing constraints

Mathematics Subject Classification (2010) 90C29, 90C33, 90C46

1 Introduction

Mathematical programs with vanishing constraints (MPVCs) are an interesting sub-
class of nonlinear programming problems. It has many applications in truss topology
optimization [1], robot pathfinding problem with logic communication constraints
in robot motion planning [11], mixed-integer nonlinear optimal control problems
[9], scheduling problems with disjoint feasible regions in power generation dispatch
[8], etc.

In most of the cases, feasible region of the MPVC is nonconvex due to
natural formation of the constraints. In general, the majority of basic constraint
qualifications do not hold for the MPVC, this is why MPVCs are considered as
a difficult class of optimization problems. Therefore, the traditional and most basic
optimality conditions, that is, Karush–Kuhn–Tucker conditions, are not satisfied.
Achtziger and Kanzow [1] proposed some constraint qualifications for the MPVC
and obtained first-order stationary conditions. Hoheisel and Kanzow [5] established
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first-order sufficient optimality conditions as well as second-order necessary and
sufficient optimality conditions. Furthermore, Hoheisel and Kanzow [6] derived
various stationary conditions under weak constraint qualifications. Hoheisel and
Kanzow [7] investigated the Abadie and Guignard type constraint qualifications and
obtained necessary and sufficient optimality conditions.

We have to optimize several objectives simultaneously in real-life situations, the
so-called multiobjective optimization problems. This chapter focuses on the study of
the multiobjective mathematical programs with vanishing constraints for a particular
class of functions known as pseudolinear. Pseudolinear functions contain several
useful classes of functions. We establish necessary optimality conditions without
any constraints qualifications, which is an additional merit of this class. Initially,
Kortanek and Evans [12] noticed the existence of some functions that are both
pseudoconvex and pseudoconcave. Furthermore, these functions called pseudolinear
by Chew and Choo [3] characterize its behavior in optimality sense. For more
details on pseudolinearity and its applications, see the monograph by Mishra and
Upadhyay [15].

Recently, Mishra et al. [16] formulated Wolfe and Mond–Weir type dual models
for MPVC and established many duality results, Benko and Gfrerer [2] proposed
an algorithm for solving MPVC, Dussault et al. [4] introduced a new scheme for
solving the MPVC, Khare and Nath [10] established an enhanced Fritz John type
stationary condition for MPVC, which leads to enhanced M-stationarity under a
new and weaker constraint qualification and also local error bound result estab-
lished under MPVC-generalized quasinormality, and strong efficient S-stationary
conditions for multiobjective mathematical programs with equilibrium constraints
(MMPECs) have been studied by Zhang et al. [17]. Since MPVCs are closely related
to mathematical programs with equilibrium constraints (MPECs), all of the above
researches motivate us to think about strong efficient S-stationary conditions for
pseudolinear multiobjective MPVC.

We consider the pseudolinear multiobjective mathematical programs with van-
ishing constraints (MMPVCs) as follows:

min (f1(z), . . . , fp(z))

subject to gi(z) � 0, ∀i = 1, . . . , q,

hi(z) = 0, ∀i = 1, . . . , r, (1)

Hi(z) � 0, ∀i = 1, . . . , m,

Gi(z)Hi(z) � 0, ∀i = 1, . . . , m,

where the functions fi, gi, hi, Hi, Gi : Rn → R are continuously differentiable
on R

n.
The organization of this chapter is as follows: in Sect. 2, we recall the needful

definitions and results. In Sect. 3, we establish necessary and sufficient optimality
conditions, and in Sect. 4, the Mond–Weir type dual model and basic duality results
are given.
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2 Preliminaries

Throughout this chapter, we use the following notations, definitions, and some
well-known results. Let the vectors y, z ∈ R

n, then we shall use the following
conventions of inequalities:

y � z ⇐⇒ yi � zi, i = 1, . . . , n,

y ≤ z ⇐⇒ y � z and y �= z,

y < z ⇐⇒ yi < zi, i = 1, . . . , n.

Let

S := {z ∈ R
n | gi(z) � 0, ∀i = 1, . . . , q,

hi(z) = 0, ∀i = 1, . . . , r,

Hi(z) � 0, ∀i = 1, . . . , m,

Gi(z)Hi(z) � 0, ∀i = 1, . . . , m}

be the feasible region of the MMPVC (1), and let z∗ ∈ S be a feasible solution of
the MMPVC (1). Then, the following index sets will be used in the sequel:

If := {1, 2, . . . , p},
Set of active constraints Ig(z

∗) := {i ∈ {1, 2, . . . , q}|gi(z∗) = 0},
Ih := {1, 2, . . . , r}, (2)

I+(z∗) := {i ∈ {1, 2, . . . , m}|Hi(z
∗) > 0},

I0(z
∗) := {i ∈ {1, 2, . . . , m}|Hi(z

∗) = 0}.

We classify the index set I+(z∗) into the following subsets:

I+0(z
∗) := {i|Hi(z

∗) > 0, Gi(z
∗) = 0},

I+−(z∗) := {i|Hi(z
∗) > 0, Gi(z

∗) < 0}. (3)

Similarly, we classify the set I0 in the following subsets:

I0+(z∗) := {i|Hi(z
∗) = 0, Gi(z

∗) > 0},
I00(z

∗) := {i|Hi(z
∗) = 0, Gi(z

∗) = 0}, (4)

I0−(z∗) := {i|Hi(z
∗) = 0, Gi(z

∗) < 0}.
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Definition 1 ([14])

1. A point z∗ ∈ S is said to be a weak efficient solution of the multiobjective
optimization problem, if there is no z ∈ S, such that

f (z) < f (z∗).

2. A point z∗ ∈ S is said to be an efficient solution of the multiobjective
optimization problem, if there is no z ∈ S, such that

f (z) ≤ f (z∗) .

3. A point z∗ ∈ S is said to be a locally efficient solution of the multiobjective
optimization problem, if there exists a neighborhood U of z∗ and there is no
z ∈ S ∩ U , such that

f (z) ≤ f (z∗) .

Definition 2 ([15]) Let f : S ⊆ R
n → R be a differentiable function on an open

convex set S. The function f is said to be

1. pseudoconvex at z∗ ∈ S, if ∀z ∈ S,

〈∇f (z∗), z− z∗〉 � 0 ⇒ f (z) � f (z∗),

2. pseudoconcave at z∗ ∈ S, if ∀z ∈ S,

〈∇f (z∗), z− z∗〉 � 0 ⇒ f (z) � f (z∗).

The function is said to be pseudoconvex (pseudoconcave) on S if it is pseudoconvex
(pseudoconcave) at every z ∈ S. Moreover, the function is said to be pseudolinear
on X if it is both pseudoconvex and pseudoconcave on S. More precisely, a
differentiable function f : S → R on an open convex subset S ⊆ R

n is said to
be pseudolinear if ∀z1, z2 ∈ S, one has

〈∇f (z1), z2 − z1〉 � 0 ⇒ f (z2) � f (z1),

and

〈∇f (z1), z2 − z1〉 � 0 ⇒ f (z2) � f (z1).

Theorem 1 ([3]) Let f : S ⊆ R
n → R be an open convex set. Then, f is a

differentiable pseudolinear function on X if and only if ∀z1, z2 ∈ S, there exists a
function p : S × S → R+, where R+ denotes positive real number, such that
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f (z2) = f (z1)+ p(z1, z2)〈∇f (z1), z2 − z1〉.

The function p is called proportional function.

3 Optimality Conditions for the MMPVC

We define strong efficient S-stationary conditions for a feasible point of pseudolin-
ear MMPVC (1) motivated by strong Pareto S-stationary point introduced by Zhang
et al. [17].

Definition 3 A feasible point z∗ is called strong efficient S-stationary point of the
pseudolinear MMPVC (1) if there exist multipliers (ηf , ηg, ηh, ηH , ηG) ∈ R

p
+ ×

R
q × R

r × R
m × R

m satisfying the following conditions:

∇f (z∗)ηf + ∇g(z∗)ηg + ∇h(z∗)ηh − ∇H(z∗)ηH + ∇G(z∗)ηG = 0,

ηf > 0, g(z∗) � 0, ηg � 0, g(z∗)T ηg = 0,

ηHi = 0 (i ∈ I+(z∗)), ηHi � 0 (i ∈ I00(z
∗) ∪ I0−(z∗)), ηHi � 0 (i ∈ I0+(z∗)), (5)

ηGi = 0 (i ∈ I0+(z∗) ∪ I0−(z∗) ∪ I+−(z∗) ∪ I00(z
∗)), ηGi � 0 (i ∈ I+0(z

∗)).

Now, we establish the main result as follows.

Theorem 2 A feasible point z∗ is an efficient solution of the pseudolinear MMPVC
(1) if and only if z∗ is a strong efficient S-stationary point of the MMPVC (1).

Proof Let z∗ be a strong efficient S-stationary point, then there exist multipliers
(ηf , ηg, ηh, ηH , ηG) ∈ R

p
+ × R

q × R
r × R

m × R
m such that

∇f (z∗)ηf + ∇g(z∗)ηg + ∇h(z∗)ηh − ∇H(z∗)ηH + ∇G(z∗)ηG = 0,

ηf > 0, g(z∗) � 0, ηg � 0, g(z∗)T ηg = 0,

ηHi = 0 (i ∈ I+(z∗)), ηHi � 0 (i ∈ I00(z
∗) ∪ I0−(z∗)), ηHi � 0 (i ∈ I0+(z∗)), (6)

ηGi = 0 (i ∈ I0+(z∗) ∪ I0−(z∗) ∪ I+−(z∗) ∪ I00(z
∗)), ηGi � 0 (i ∈ I+0(z

∗)).

Suppose that z∗ is not an efficient solution. Then, there exists a feasible point z �= z∗
such that fi(z) � fi(z

∗) for all i except at least one k such that fk(z) < fk(z
∗).

Now, from pseudolinearity, we have

fi(z)− fi(z
∗) = p

f
i (z, z

∗)〈∇fi(z∗), z− z∗〉 � 0 ∀ i ∈ {1, . . . , p} \ {k} (7)

fk(z)− fk(z
∗) = p

f
k (z, z

∗)〈∇fk(z∗), z− z∗〉 < 0, (8)

gi(z)− gi(z
∗) = p

g
i (z, z

∗)〈∇gi(z∗), z− z∗〉 � 0, i ∈ Ig(z
∗), (9)
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hi(z)− hi(z
∗) = phi (z, z

∗)〈∇hi(z∗), z− z∗〉 = 0, i ∈ Ih, (10)

−Hi(z)+Hi(z
∗) = pHi (z, z

∗)〈−∇Hi(z
∗), z− z∗〉 � 0, i ∈ I0+(z∗), (11)

−Hi(z)+Hi(z
∗) = pHi (z, z

∗)〈−∇Hi(z
∗), z− z∗〉 � 0, i ∈ I00(z

∗) ∪ I0−(z∗),
(12)

Gi(z)−Gi(z
∗) = pGi (z, z

∗)〈∇Gi(z
∗), z− z∗〉 � 0, i ∈ I+0(z

∗). (13)

Multiplying (7)–(12) by ηfi > 0 (i ∈ If ), η
g
i � 0 (i ∈ Ig(z

∗)), ηhi (i ∈ Ih), η
H
i �

0 (i ∈ I00(z
∗) ∪ I0−(z∗)), ηHi � 0 (i ∈ I0+(z∗)), and ηGi � 0 (i ∈ I+0(z

∗)) ,
respectively, and using the fact that each pi > 0, we get

〈 p∑

i=1

η
f
i ∇fi(z∗)+

q∑

i=1

η
g
i ∇gi(z∗)+

r∑

i=1

ηhi ∇hi(z∗)

−
m∑

i=1

ηHi ∇Hi(z
∗)+

m∑

i=1

ηGi ∇Gi(z
∗), z− z∗

〉
< 0,

which contradicts the stationarity of z∗. Hence, the result.
Conversely, suppose that z∗ is an efficient solution of pseudolinear MMPVC (1),

then from pseudolinearity of all the functions, there does not exist any feasible point
z different from z∗ such that the following system has solution:

〈∇fi(z∗), z− z∗〉 < 0, i = k,

〈∇fi(z∗), z− z∗〉 � 0, i = {1, . . . , p} \ {k},
〈∇gi(z∗), z− z∗〉 � 0, i ∈ Ig(z

∗),

〈∇hi(z∗), z− z∗〉 = 0, (14)

〈−∇Hi(z
∗), z− z∗〉 � 0 (i ∈ I00(z

∗) ∪ I0−(z∗)),

〈−∇Hi(z
∗), z− z∗〉 � 0 (i ∈ I0+(z∗)),

〈∇Gi(z
∗), z− z∗〉 � 0 (i ∈ I+0(z

∗)).

That is, the system of inequalities (14) has no solution. Therefore, from Tucker
theorem [13, pp. 29], there exist η = (ηf , ηg, ηh, ηH , ηG) ∈ R

p
+ × R

q × R
r ×

R
m × R

m , and setting multipliers zero for inactive constraints as follows:

η
f
i > 0 (i ∈ I = {1, . . . , p}), ηgi � 0, g(z∗)T ηg = 0,

ηHi = 0 (i ∈ I+(z∗)), ηHi � 0 (i ∈ I00(z
∗) ∪ I0−(z∗)), ηH � 0 (i ∈ I0+),

ηGi = 0 (i ∈ I0+(z∗) ∪ I0−(z∗) ∪ I+−(z∗) ∪ I00(z
∗)), ηGi � 0 (i ∈ I+0(z

∗)),
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we get

p∑

i=1

η
f
i ∇fi(z∗)+

q∑

i=1

η
g
i ∇gi(z∗)+

r∑

i=1

ηhi ∇hi(z∗)

−
m∑

i=1

ηHi ∇Hi(z
∗)+

m∑

i=1

ηGi ∇Gi(z
∗) = 0.

Hence, we get the required results. 	

Example 3.1 Consider the problem

min f (z) = (f1(z), f2(z)),

s. t. g(z) � 0, H(z) � 0, G(z)H(z) � 0,

where f1(z) = exp z1, f2(z) = z2, g(z) = −z1 − z2 � 0, H(z) = z1,

G(z) = −z2, z = (z1, z2) ∈ R
2,

feasible set S = {z ∈ R
2 : z1 � 0, z2 � 0},

at a feasible point z∗ = (0, 0) ∈ S. Then, for η
f

1 > 0, ηf2 > 0, ηg � 0, ηH � 0,
and ηG � 0, the expression:

η
f

1 ∇f1(z
∗)+ η

f

2 ∇f2(z
∗)+ ηg∇g(z∗)− ηH∇H(z∗)+ ηG∇G(z∗)

= η
f

1

[
exp z1

0

]
+ η

f

2

[
0
1

]
+ ηg

[−1
−1

]
− ηH

[
1
0

]
+ ηG

[
0

−1

]
=
[

0
0

]
,

at point z∗ = (0, 0) for choosing ηf1 = ηg + ηH , η
f

2 = ηg, ηG = 0. Thus, from
Theorem 2, the point z∗ = (0, 0) is a strong efficient S-stationary point. Since no
other feasible point can dominate z∗ = (0, 0), the point z∗ = (0, 0) is an efficient
solution of the given problem by simple observation.

Remark 3.2 Strong efficient S-stationary conditions and efficiency can be satisfied
without satisfying pseudolinearity. See the following example.

Example 3.3 Consider the problem

min f (z) = (f1(z), f2(z))

s.t. g(z) � 0, H(z) � 0, G(z)H(z) � 0,

where f1(z) = z2 + tan−1(z2), f2(z) = z1, H(z) = z2,

g(z) = −z1 − z2 − 1, G(z) = −z1 and z = (z1, z2) ∈ R
2,
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at point z∗ = (−1, 0). Then, z∗ = (−1, 0) is a strong efficient S-stationary point as
follows:

η
f

1 ∇f1(z
∗)+ η

f

2 ∇f2(z
∗)+ ηg∇g(z∗)− ηH∇H(z∗)+ ηG∇G(z∗)

= η
f

1

[
0

1 + 1
1+z2

1

]
+ η

f

2

[
1
0

]
+ ηg

[−1
−1

]
− ηH

[
0
1

]
+ ηG

[−1
0

]
=
[

0
0

]
,

if ηg + ηG = η
f

2 , η
g + ηH = η

f

1 (1 + 1
1+z2

1
), and ηG = 0. Also, z∗ = (−1, 0) is an

efficient point, but all functions at feasible point z∗ = (−1, 0) are not pseudolinear.

4 Duality

In this section, we propose Mond–Weir type dual model to the MMPVC (1) and
establish weak and strong duality results under pseudolinear assumptions. The
Mond–Weir type dual model to the pseudolinear MMPVC (1) is defined as follows:

max f (u)

subject to (u, ηf , ηg, ηh, ηH , ηG) ∈ P = {(u, ηf , ηg, ηh, ηH , ηG) :
p∑

i=1

η
f
i ∇fi(u)+

q∑

i=1

η
g
i ∇gi(u)+

r∑

i=1

ηhi ∇hi(u)−
m∑

i=1

ηHi ∇Hi(u)

+
m∑

i=1

ηGi ∇Gi(u) = 0

η
f
i > 0 (i ∈ I = {1, . . . , p}), ηgi � 0, g(u)T ηg � 0, G(u)T ηG � 0,

H(u)T ηH � 0,

h(u) = 0, ηHi = 0 (i ∈ I+(u)), ηHi � 0 (i ∈ I00(u) ∪ I0−(u)), ηH � 0 (i ∈ I0+),

ηGi = 0 (i ∈ I0+(u) ∪ I0−(u) ∪ I+−(u) ∪ I00(u)), η
G
i � 0 (i ∈ I+0(u))}.

Consider the following set:

Pu = {u : (u, ηf , ηg, ηh, ηH , ηG) ∈ P }.

Theorem 3 (Weak Duality) Let z be a feasible point of the pseudolinear MMPVC
(1) and (u, ηf , ηg, ηh, ηH , ηG) be a feasible point of the Mond–Weir dual problem.
Suppose that the given functions gT ηg, hi − Hi (i ∈ I00(u) ∪ I0+(u) ∪ I0−(u)),
and Gi (i ∈ I+0(u)) are pseudolinear at u. If any of the following holds:
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(a) η
f
i > 0 and fi(·)(∀i ∈ If ) are pseudolinear at u;

(b) η
f
i > 0 (∀i ∈ If ) and

p∑

i=1

η
f
i fi(·) is pseudolinear at u,

then

f (z) � f (u).

Proof Assume that

f (z) ≤ f (u).

Then,

fi(z) � fi(u), ∀ i ∈ If , except at least one k, such that

fk(z) < fk(u).

Multiplying by ηfi > 0 and adding, we get

(ηf )T f (z) < (ηf )T f (u).

Using the feasibility and pseudolinearity assumptions, we get

〈
p∑

i=1

η
f
i ∇fi(u), z− u

〉
< 0, (15)

q∑

i=1

η
g
i gi(z) �

q∑

i=1

η
g
i gi(u) �⇒

〈
q∑

i=1

η
g
i ∇gi(u), z− u

〉
� 0, (16)

∑
ηhi hi(z) =

∑
ηhi hi(u) �⇒

〈∑
ηhi ∇hi(u), z− u

〉
= 0, i ∈ Ih, (17)

−
∑

ηHi Hi(z) � −
∑

ηHi Hi(u) �⇒
〈
−
∑

ηHi ∇Hi(u), z− u
〉
� 0, (18)

i ∈ I00(u) ∪ I0+(u) ∪ I0−(u),
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∑
ηGi Gi(z) �

∑
ηGi Gi(u) �⇒

〈∑
ηGi ∇Gi(u), z− u

〉
� 0, (19)

i ∈ I+0(u).

Adding (15)–(19), we get

〈
p∑

i=1

η
f
i ∇fi(u)+

q∑

i=1

η
g
i ∇gj (u)+

r∑

i=1

ηhi ∇hi(u)−
m∑

i=1

ηHi ∇Hi(u)

+
m∑

i=1

ηGi ∇Gi(u), z− u

〉
< 0.

which contradicts the feasibility of u. Hence, we get the required result. 	

Theorem 4 (Strong Duality) Let z∗ be an efficient solution of the pseu-
dolinear MMPVC (1). If weak duality Theorem 3 holds, then there exist
(η̄f , η̄g, η̄h, η̄H , η̄G) ∈ R

p
+×R

q×R
r×R

m×R
m such that (z∗, η̄f , η̄g, η̄h, η̄H , η̄G)

is an efficient solution of the Mond–Weir dual problem, and the corresponding
values of objective functions are same.

Proof As z∗ is an efficient solution of pseudolinear MMPVC (1), then from
Theorem 2, there exist (η̄f , η̄g, η̄h, η̄H , η̄G) ∈ R

p
+ ×R

q ×R
r ×R

m×R
m such that

z∗ is a strong efficient S-stationary point. That is,

p∑

i=1

η̄
f
i ∇fi(z∗)+

q∑

i=1

η̄
g
i ∇gi(z∗)+

r∑

i=1

η̄hi ∇hi(z∗)−
m∑

i=1

η̄Hi ∇Hi(z
∗)

+
m∑

i=1

η̄Gi ∇Gi(z
∗) = 0,

η̄
f
i > 0, η̄gi � 0, g(z∗)T η̄g = 0, η̄Hi = 0 (i ∈ I+(z∗)) η̄Hi � 0 (i ∈ I00(z

∗)

∪ I0−(z∗)),

η̄H � 0 (i ∈ I0+(z∗)), η̄Gi =0 (i ∈ I+−(z∗) ∪ I0+(z∗) ∪ I0−(z∗) ∪ I00(z
∗)), h(z∗)=0,

η̄Gi � 0 (i ∈ I+0(z
∗)).

Therefore, (z∗, η̄f , η̄g, η̄h, η̄H , η̄G) is a feasible solution of the Mond–Weir dual
problem, and from feasibility of weak duality Theorem 3, we have

f (z∗) � f (u),

for any feasible solution (u, ηf , ηg, ηh, ηH , ηG) ∈ R
n × R

p
+ × R

q × R
r × R

m ×
R
m of the Mond–Weir dual problem. Hence, (z∗, η̄f , η̄g, η̄h, η̄H , η̄G) is an efficient

solution of the Mond–Weir dual problem, and their values are equal. 	
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The following example verifies the Mond–Weir dual model and duality results as
follows.

Example 4.1 Consider the following pseudolinear MMPVC problem:

min f (z) = (f1(z), f2(z)), where f1(z) = tan−1(z1), f2(z) = tan−1(z2),

subject to g1(z) = −z1 � 0, g2(z) = −z2 � 0, H(z) = z1 + z2 � 0,

G(z)T H(z) = (z1 + z2)(z1 − z2) � 0 at feasible point z∗ = (0, 0).

Feasible set S = {(z1, z2) ∈ R
2 : z1 � 0, z2 � 0, z1+z2 � 0, (z1+z2)(z1−z2) �

0}. The Mond–Weir dual model is

max f (u) = (tan−1(u1), tan−1(u2)),

s. t. ηf1 ∇f1(u)+ η
f

2 ∇f2(u)+ η
g

1∇g1(u)+ η
g

2∇g2(u)− ηH∇H(u)+ ηG∇G(u)

= η
f

1

[
1

1+u2
1

0

]
+ η

f

2

[
0
1

1+u2
2

]
+ η

g

1

[−1
0

]
+ η

g

2

[
0

−1

]
− ηH

[
1
1

]
+ ηG

[
1

−1

]
=
[

0
0

]
,

for ηf1 > 0, ηf2 > 0, ηg1 + ηH = η
f

1

1 + u2
1

+ ηG,
η
f

2

1 + u2
2

= η
g

2 + ηH + ηG,

and ηg1g1(u) = −ηg1u1 � 0, ηg1 � 0, ηg2g2(u) = −ηg2u2 � 0, ηg2 � 0, ηH � 0,

ηG�0, ηHH(u)=ηH (u1 + u2)�0, ηGG(u)=ηG(u1 − u2)�0, u=(u1, u2) ∈ R
2.

Solving above, we get

Pu = {u ∈ R
2 : u2 � 0, u1 � 0, u1 − u2 � 0, u1 + u2 � 0}.

It is clear from the feasibility that

f (z) � f (u).

Hence, the weak duality Theorem 3 is verified, and the strong duality theorem is
obviously satisfied at point z∗.

5 Conclusions

In this chapter, we have established Karush–Kuhn–Tucker type optimality con-
ditions for pseudolinear multiobjective mathematical programs with vanishing
constraints under smooth assumptions. Moreover, we formulated Mond–Weir type
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dual models and established duality results for pseudolinear multiobjective math-
ematical programs with vanishing constraints. We verify our results through some
examples. In future, this chapter can be extended to nonsmooth case.
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The Solvability and Optimality for
Semilinear Stochastic Equations with
Unbounded Delay

Yadav Shobha and Surendra Kumar

Abstract The objective of this chapter is to study the standard optimal control
problem for a new class of semilinear stochastic system with unbounded delay. We
use the fundamental solution technique to write an expression for the mild solution.
We then derive sufficient conditions that ensure the existence and uniqueness of
mild solution. Under natural assumptions, the existence of an optimal state–control
pair for the standard Lagrangian problem is also examined. Finally, the developed
theory is validated with an example.

Keywords Stochastic differential equations · Unbounded delay · Fundamental
solution · Mild solution · Optimal control

2010 Mathematics Subject Classification 34A12, 34K30, 34K35, 34K50,
47H10

1 Introduction

It is well known that deterministic model often fluctuates due to noise, so there is
a need to switch from deterministic systems to stochastic systems. Stochastic dif-
ferential equations having bounded or unbounded delay have attracted considerable
attention due to their importance in areas such as economics, finance, population
dynamics, and many more [9, 10]. Particularly, qualitative and quantitative attributes
for delayed systems (bounded or unbounded) have been examined rather broadly
since delayed dynamical systems are aplenty in nature; for instance, dynamical
systems in biology [11, 31] and optics [17, 18] among others can be displayed as
the first-order delayed differential equations. Stochastic partial differential equations
(SPDEs) with unbounded delay can be seen in modeling of several phenomena of
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natural and social sciences (see [12, 38] and the references therein). That is why,
recently, more investigation is going on existence and uniqueness, optimality, and
invariant measures among others of SPDEs with delays [2, 6, 16, 24, 27, 29, 33, 40,
41, 43].

In general, the control issue involves the minimization or maximization of
performance index of the state and control variables of the system over a set of
acceptable control functions. Mostly, we deal with the problems of finding an
optimal state–control pair, time optimal controls for a given target set, and time
optimal control to a point target set. The optimality of both deterministic and
stochastic systems has attracted appreciable attention of researchers. Chen et al.
[7] and Tanabe [39] studied the optimality of linear systems in finite-dimensional
spaces. Lasiecka and Triggiani [22], Li and Yong [23], Ahmed and Teo [1], and
Curtain and Pritchard [8] among others focused on the optimality of linear systems
in infinite-dimensional spaces. And, for the stochastic case, we refer [6, 46] and
references cited therein. Liu [26] and Nakagiri [35] used the fundamental solution
theory and discussed the optimal control problems of delayed linear systems.
Li et al. [25] examined an indefinite stochastic linear quadratic optimal control
problem with delay and related forward–backward stochastic differential equations.
Recently, the optimal control problem of semilinear systems becomes a vital area of
research; see [13, 20, 28] for systems without delay and [44] for systems with finite
delay. Jeong et al. [19] considered semilinear evolution equation and examined the
existence of optimal control as well as maximal principles under the hypothesis that
the nonlinear term is Lipschitz continuous. Furthermore, Buckdahn and Răscanu
[5] discussed the existence of optimal control for parabolic semilinear stochastic
differential equation by utilizing Ekeland’s principle. Papageorgiou [36] obtained
necessary conditions for the optimality of a system governed by nonlinear evolution
equations with the help of penalty function. The existence of optimal controls for
framework representing a semilinear parabolic equation with boundary conditions
contained control variable has been studied by Wang et al. [42].

The optimal control issues of unbounded delayed systems are also an interesting
area of research. Xiaoling and Huawu [45] generalized the Gronwall lemma with
time lags and used them to examine nonlinear control systems with delay. Mokke-
dem and Fu [34] proved the existence of state–control pair for the semilinear system
with unbounded delay by using the theory of fundamental solutions associated
with the corresponding linear part. The main objective of this chapter is to extend
the results of Mokkedem and Fu for delayed semilinear stochastic systems in a
Hilbert space. This fact is the motivation for this chapter. We utilize the technique
of stochastic calculus, fundamental solution, and successive approximation for the
existence of solution of the system (2.2). We also show the existence of optimal
state–control pair for the Lagrange problem subject to the semilinear stochastic
functional differential equation with unbounded delay. The obtained results can be
considered as a contribution to the literature of stochastic optimal control.

The rest of the chapter is prepared as follows: we introduce notations, definitions,
and the phase space G in Sect. 2, which will be used throughout the chapter. Next,
we give the fundamental solution for the unbounded delayed linear system with
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B ≡ f ≡ g = 0 in system (2.2). In Sect. 3, we show the existence and uniqueness
results for the mild solution of differential equation (2.2). Section 4 is devoted
for the existence of optimal state–control pair of the system (2.1). An example is
constructed in Sect. 5 to validate the developed theory.

2 Preliminaries

Let (Y, ‖ · ‖) be a real separable Hilbert space and (H, ‖ · ‖H ) another separable
Hilbert space. Suppose that the space of all bounded linear operators from H to Y
is denoted by (Lb(H ;Y ), ‖ · ‖), and Lb(Y ) denotes the space Lb(Y ;Y ). For more
details concerning the theory of semigroups, one can refer to Pazy [37].

Consider the integral cost functional given by

I(y, v) = E

{∫ a

0
J (r, yv(r), yvr , v(r))dr

}
, (2.1)

subject to the equations

{
dy(r)=[Ay(r)+ L(yr)+ B(r)v(r)+ f (r, yr)] dr + g(r, yr )dW(r), 0 < r ≤ a

y0 = φ ∈ LF
p (*;G ),

(2.2)
where functional J in (2.1) is specified later. Here, the state y(·) is Y -valued
stochastic process, and its histories yr : (−∞, 0] → Y given by yr(η) = y(r + η),
for η ≤ 0, belong to G , which is an abstract phase space; the control v(·) takes values
in another separable reflexive Hilbert space V , and the operatorA : D(A) ⊂ Y → Y

is the infinitesimal generator of a strongly continuous semigroup {S(r)}r≥0 on Y .
Let L ∈ Lb(G ;Y ), and for r ≥ 0, B(r) ∈ Lb(V ;Y ). Furthermore, the functions
f (·, ·) and g(·, ·) are nonlinear, and W(r) denotes the Q-Wiener process.

Motivated by Hale and Kato [14] and Hino et al. [15], we consider the phase
space G , which is the collection of functions from (−∞, 0] to Y . It is a linear space
with seminorm ‖ · ‖G . Moreover, it satisfies the following axioms:

(H1) Let ρ ≥ 0 and d > 0. If function y from (−∞, ρ + d] to Y is continuous on
[ρ, ρ + d] and yρ ∈ G , then for ρ ≤ r ≤ ρ + d, we have the following:

(i) yr ∈ G ;
(ii) ‖y(r)‖ ≤ K‖yr‖G , where K > 0 is a constant and is independent of

y(·); and
(iii) ‖yr‖G ≤ N(r − ρ) sup {‖y(l)‖ : ρ ≤ l ≤ r} + +(r − ρ)‖yρ‖G ,

where function N : [0,∞) → [0,∞) is continuous and + : [0,∞) →
[0,∞) is locally bounded. Also, N(·) and +(·) are independent of y(·).

(H2) For y(r) in (H1), yr ∈ G is a continuous function on the interval [ρ, ρ + d].
(H3) G is complete.
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To write an expression for the fundamental solution and to list some of its
properties, we assume that the following assumptions hold in G :

(b1) For any z ∈ Y , define

φ0
z (η) =

{
z, η = 0,
0, η < 0,

(2.3)

which is in G and ‖φ0
z‖G ≤ ‖z‖.

(b2) The functions N(·) and +(·) in Axiom (H1(iii)) are bounded. That is, there
exist constants Na and +a such that

Na = max
r∈[0,a]N(r) and +a = sup

r∈[0,a]
+(r).

Let * = (*,F , {Fr }r≥0,P) be a filtered complete probability space. Also,
assume that Fr is the σ -algebra generated by the Wiener process W with Fa = F
and that W(r) in H is the Wiener process defined on * with nuclear covariance
operator Q such that tr(Q) < ∞. Let {ξk}k∈N be a complete orthonormal basis for
H and {αk(r)}k∈N be a sequence of independent Brownian motions such that

W(r) =
∞∑

k=1

√
�kξkαk(r), r ≥ 0,

where �k ≥ 0 for all k ∈ N, and let Q ∈ Lb(H) given by Qξk = �kξk for all k ∈ N

with trace tr(Q) =
∞∑
k=1

�k < ∞.

The norm of the operator χ ∈ Lb(H ;Y ) is defined by

‖χ‖2
Q = tr(χQχ∗) =

∞∑

k=1

‖√�kχξk‖2.

If ‖χ‖Q < ∞, then χ is called a Q-Hilbert–Schmidt operator, and the space of all
Q-Hilbert–Schmidt operators χ : H → Y is denoted by L0

2(H ;Y ). If for r ≥ 0,
y(r) : * → Y is a continuous Fr -adapted stochastic process, then the process
yr : * → G generated by y(r) is defined by yr(l)(ω) = y(r + l)(ω), l ∈ (−∞, 0].

Let LF
p (*;Y ) be the closed subspace of Lp([0, a] × *;Y ) which consists of

Fr -adapted process, and the Banach space of all continuous functions from interval
[0, a] to LF

p (*;Y ) is denoted by C([0, a];LF
p (*;Y ))with sup

r∈[0,a]
E‖y(r)‖p < ∞.
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Now, introduce the set of admissible controls

Aad =
{
v : [0, a] ×* → V is Fr−adapted proces with E

∫ a

0
‖v(r)‖pdr < ∞

}
.

Thus, our main problem can be expressed as follows:
Find a state–control pair (ỹ, ṽ), where ỹ is the mild solution (Definition 2.2) of

system (2.2) with a control ṽ ∈ Aad , such that

I(ỹ, ṽ) ≤ I(yv, v), for all (yv, v) ∈ C([0, a];LF
p (*;Y ))× Aad .

We impose the following restrictions on the system parameters:

(P1) The operator A generates a strongly continuous semigroup {S(r)}r≥0 on the
Hilbert space Y . Suppose there are constants θ ∈ R and Rθ ≥ 1 such that for
all r ≥ 0,

‖S(r)‖ ≤ Rθe
θr .

(P2) The operator B is in L∞([0, a];Lb(V ;Y )), and let MB = sup
0≤r≤a

‖B(r)‖.

(P3) The operator L ∈ Lb(G ;Y ) and ‖L‖ = l0 for some l0 > 0.
(P4) Suppose that for measurable functions f : [0, a] × G → Y and g : [0, a] ×

G → L0
2(H ;Y ), there exists a constant N1 > 0 such that

‖f (r, ξ1)− f (r, ξ2)‖p + ‖g(r, ξ1)− g(r, ξ2)‖pQ ≤ N1‖ξ1 − ξ2‖pG ,
‖f (r, ξ)‖p + ‖g(r, ξ)‖pQ ≤ N1(1 + ‖ξ‖pG ),

for all 0 ≤ r ≤ a and ξ, ξ1, ξ2 ∈ G .

For B ≡ f ≡ g = 0, the system (2.2) becomes

{
d
dr
y(r) = Ay(r)+ L(yr), r > 0,

y0 = φ ∈ G .
(2.4)

Let y(r, φ) be the mild solution of the system (2.4). Then, Mokkedem and Fu [32]
proved that under the hypotheses (P1) and (P3), the fundamental solution D(·) ∈
Lb(Y ) is given by

D(r)z =
{
y(r, φ0

z ), r ≥ 0,
0, r < 0,

for any z ∈ Y . Moreover, D(r) satisfies the following:
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D(r) =
{
S(r)+ ∫ r0 S(r − l)L(Dl )dl, r ≥ 0,
0, r < 0,

(2.5)

where Dr (η) = D(r + η), η ≤ 0, and the solution of (2.5) is unique (see [32]).

Remark 2.1 ([32, Theorem 3.2]) For r ≥ 0, D(r) is a strongly continuous bounded
linear operator on Y and

‖D(r)‖ ≤ Ceμr, where C > 0, μ ∈ R are constants.

Also, for all 0 ≤ r ≤ a,

‖D(r)‖ ≤ M, for some M ≥ 1.

Now, define the mild solution of the system (2.2) as follows:

Definition 2.2 A stochastic process y(·) : (−∞, a] × * → Y is said to be a mild
solution of the system (2.2) if

(i) y(r, ω) is measurable and y(r) is Fr -adapted;
(ii) for each 0 ≤ r ≤ a, E‖y(r)‖p < ∞ and yr is G -valued stochastic process;

(iii) for each v(·) ∈ Lp([0, a];V ), the following is satisfied:

y(r) =

⎧
⎪⎨

⎪⎩

D(r)φ(0)+ ∫ r0 D(r − l)
[
L(φ̃l)+ f (l, yl)+ B(l)v(l)

]
dl

+ ∫ r0 D(r − l)g(l, yl)dW(l), r ∈ [0, a],
φ(r) ∈ LF

p (*;G ), r ∈ (−∞, 0],
(2.6)

where φ̃(·) is defined by

φ̃(r) =
{
φ(r), r ≤ 0,
0, r > 0.

We end the section by stating the following well-known lemma.

Lemma 2.3 ([9, Lemma 7.2]) For any p ≥ 2, r ∈ [0, a], and ψ ∈
LF
p (*;L2([0, a];L0

2(H ;Y ))), we have

E

(
sup
s∈[0,r]

∥∥∥∥
∫ s

0
ψ(l)dW(l)

∥∥∥∥
p )

≤ CpE
( ∫ r

0
‖ψ(l)‖2

Qdl
) p

2
,

where Cp = (p
2 (p − 1)

) p
2
(

p
p−1

) p2

2
.
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3 Existence and Uniqueness of Solution

This section is devoted to the study of existence results of mild solution of the system
(2.2). We use the method discussed by Luo [30] with appropriate modifications.

Theorem 3.1 Suppose that v ∈ Lp([0, a];V ) and φ ∈ G . If (P1)-(P4) are
satisfied, then there is a unique mild solution for system (2.2).

Proof Consider the iteration technique to construct the sequence {y(m)(·)}m∈N.
Now, define for m = 1, 2, . . .

y(m)(r)

=

⎧
⎪⎨

⎪⎩

D(r)φ(0)+ ∫ r0 D(r − l)
[
L(φ̃l)+ B(l)v(l)+ f (l, y

(m−1)
l )

]
dl

+ ∫ r0 D(r − l)g(l, y
(m−1)
l )dW(l), r ∈ (0, a],

φ(r) ∈ LF
p (*;G ), r ∈ (−∞, 0],

and

y(0)(r) =
{
D(r)φ(0)+ ∫ r0 D(r − l)

[
L(φ̃l)+ B(l)v(l)

]
dl, r ∈ (0, a],

φ(r) ∈ LF
p (*;G ), r ∈ (−∞, 0].

For 0 ≤ l ≤ r ≤ a,

y(m)(l) = D(l)φ(0)+
∫ l

0
D(l − ζ )

[
L(φ̃ζ )+ B(ζ )v(ζ )+ f (ζ, y

(m−1)
ζ )

]
dζ

+
∫ l

0
D(l − ζ )g(ζ, y

(m−1)
ζ )dW(ζ ).

Remark 2.1 yields that

E‖y(m)(l)‖p

≤ 5p−1
[
Kp‖D(l)‖p‖φ‖pG + E

∥∥∥∥
∫ l

0
D(l − ζ )L(φ̃ζ )dζ

∥∥∥∥
p

+ E

∥∥∥∥
∫ l

0
D(l − ζ )B(ζ )v(ζ )dζ

∥∥∥∥
p

+ E

∥∥∥∥
∫ l

0
D(l − ζ )f (ζ, y

(m−1)
ζ )dζ

∥∥∥∥
p

+ E

∥∥∥∥
∫ l

0
D(l − ζ )g(ζ, y

(m−1)
ζ )dW(ζ )

∥∥∥∥
p ]
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≤ 5p−1
[
Kp‖D(l)‖p‖φ‖pG + E

(∫ l

0
‖D(l − ζ )L(φ̃ζ )‖dζ

)p

+ E

(∫ l

0
‖D(l − ζ )B(ζ )v(ζ )‖dζ

)p

+ E

(∫ l

0
‖D(l − ζ )f (ζ, y

(m−1)
ζ )‖dζ

)p

+ E

∥∥∥∥
∫ l

0
D(l − ζ )g(ζ, y

(m−1)
ζ )dW(ζ )

∥∥∥∥
p ]

≤ 5p−1
[
KpMp‖φ‖pG +Mp sup

0≤l≤r
E

(∫ l

0
‖L(φ̃ζ )‖dζ

)p

+Mp sup
0≤l≤r

E

(∫ l

0
‖B(ζ )v(ζ )‖dζ

)p

+Mp sup
0≤l≤r

E

(∫ l

0
‖f (ζ, y(m−1)

ζ )‖dζ
)p

+ sup
0≤l≤r

E

∥∥∥∥
∫ l

0
D(l − ζ )g(ζ, y

(m−1)
ζ )dW(ζ )

∥∥∥∥
p ]

.

Now, Lemma 2.3, Hölder’s inequality, and assumptions (P2)–(P3) imply that

E‖y(m)(l)‖p

≤ 5p−1
[
KpMp‖φ‖pG +Mp sup

0≤l≤r

(∫ l

0
1q
) p

q

E

(∫ l

0
‖L(φ̃ζ )‖pdζ

)

+Mp sup
0≤l≤r

(∫ l

0
1q
) p

q

E

(∫ l

0
‖B(ζ )v(ζ )‖pdζ

)
+Mp sup

0≤l≤r

(∫ l

0
1q
) p

q

× E

(∫ l

0
‖f (ζ, y(m−1)

ζ )‖pdζ
)

+ CpE

(∫ r

0
‖D(l − ζ )g(ζ, y

(m−1)
ζ )‖2

Qdζ

) p
2
]

≤ 5p−1
[
KpMp‖φ‖pG +Mpa

p
q l
p

0 sup
0≤l≤r

E

(∫ l

0
‖φ̃ζ‖pG dζ

)

+Mpa
p
q N1 sup

0≤l≤r

(∫ l

0

(
1 + ‖y(m−1)

ζ ‖pG
)
dζ

)

+Mpa
p
q M

p
B sup

0≤l≤r
E

(∫ l

0
‖v(ζ )‖pdζ

)
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+MpCpN1

(∫ r

0
1

p
p−2

) p−2
2

E

(∫ r

0

(
1 + ‖y(m−1)

ζ ‖pG
)
dζ

)]

≤ 5p−1Mp

[
Kp‖φ‖pG + a

p
q
+1
l
p

0 +
p
a ‖φ‖pG +M

p
Ba

p
q ‖v‖p

Lp([0,a];V ) + a
p
q
+1
N1

+ a
p
q N1E

{∫ r

0

(
Na sup

0≤τ≤ζ
‖y(m−1)(τ )‖ + +a‖φ‖G

)p
dζ

}
+ CpN1a

p
2

+ CpN1a
p−2

2 E

{∫ r

0

(
Na sup

0≤τ≤ζ
‖y(m−1)(τ )‖ + +a‖φ‖G

)p
dζ

}]

≤ R1 + R2

∫ r

0
sup

0≤τ≤ζ
E‖y(m−1)(τ )‖pdζ. (3.1)

whereR1 = 5p−1Mp
[
Kp+a p

q
+1
l
p

0 +
p
a+2p−1a

p
q
+1
N1+

p
a+2p−1a

p
2 CpN1+

p
a

]
‖φ‖pG

+ 5p−1Mp
[
a
p
q
+1
N1 +Cpa

p
2 N1 +M

p
Ba

p
q ‖v‖p

Lp([0,a];V )
]

and R2 = 5p−1Mp
(
a
p
q +

Cpa
p−2

2
)
N1.

For any k ≥ 1, we have the following inequality:

max
1≤m≤kE sup

0≤l≤r
‖y(m−1)(l)‖p ≤ E sup

0≤l≤r
‖y(0)(l)‖p + max

1≤m≤kE sup
0≤l≤r

‖y(m)(l)‖p.

Substitution of above inequality in (3.1) yields that

max
1≤m≤kE sup

0≤l≤r
‖y(m)(l)‖p ≤ R1 + R23p−1Mpa

[
Kp‖φ‖pG + a

p
q
+1
l
p

0 +
p
a ‖φ‖pG

+Mp
Ba

p
q ‖v‖p

Lp([0,a];V )
]

+R2

∫ r

0
max

1≤m≤kE sup
0≤τ≤ζ

‖y(m)(τ )‖pdζ.

Gronwall inequality and arbitrariness of k imply that

E sup
0≤l≤r

‖y(m)(l)‖p ≤R3e
R2a,

whereR3 = R1+R23p−1Mpa
[
Kp‖φ‖pG +a p

q
+1
l
p

0 +
p
a ‖φ‖pG +Mp

Ba
p
q ‖v‖p

Lp([0,a];V )
]
.

Since ‖v‖p
Lp([0,a];V ) < ∞, we deduce that

sup
0≤l≤r

E‖y(m)(l)‖p < ∞, m ∈ N.
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Thus, we assert that the sequence {y(m)(r)}m∈N is bounded. Next, we claim that the
sequence {y(m)(r)}m∈N is Cauchy. For any 0 ≤ l ≤ a,

y(1)(l)− y(0)(l) =
∫ l

0
D(l − ζ )f (ζ, y

(0)
ζ )dζ +

∫ l

0
D(l − ζ )g(ζ, y

(0)
ζ )dW(ζ ).

Applying the same procedure as we did to get (3.1), we infer that

sup
0≤l≤r

E‖y(1)(l)− y(0)(l)‖p

≤ 2p−1Mp
(
a
p
q
+1 + Cpa

p
2
)+ 4p−1Mpa

(
a
p
q + Cpa

p−2
2
)
+
p
a ‖φ‖pG

+ 12p−1N
p
a M

2pa2(a
p
q + Cpa

p−2
2
)[
Kp‖φ‖pG + a

p
q
+1
l
p

0 +
p
a ‖φ‖pG

+M
p
Ba

p
q ‖v‖p

Lp([0,a];V )
]
.

Also, for any 0 ≤ l ≤ a,

y(m)(l)− y(m−1)(l) =
∫ l

0
D(l − ζ )

[
f (ζ, y

(m−1)
ζ )− f (ζ, y

(m−2)
ζ )

]
dζ

+
∫ l

0
D(l − ζ )

[
g(ζ, y

(m−1)
ζ )− g(ζ, y

(m−2)
ζ )

]
dW(ζ ).

Then, it follows that

sup
0≤l≤r

E‖y(m)(l)− y(m−1)(l)‖p

≤ 2p−1 sup
0≤l≤r

E

(∥∥∥∥
∫ l

0
D(l − ζ )

[
f (ζ, y

(m−1)
ζ )− f (ζ, y

(m−2)
ζ )

]
dζ

∥∥∥∥
p )

+ 2p−1 sup
0≤l≤r

E

(∥∥∥∥
∫ l

0
D(l − ζ )

[
g(ζ, y

(m−1)
ζ )− g(ζ, y

(m−2)
ζ )

]
dW(ζ )

∥∥∥∥
p )

≤ 2p−1 sup
0≤l≤r

E

(∫ l

0

∥∥∥D(l − ζ )
[
f (ζ, y

(m−1)
ζ )− f (ζ, y

(m−2)
ζ )

]∥∥∥ dζ
)p

+ 2p−1 Cp E

(∫ r

0

∥∥∥D(l − ζ )
[
g(ζ, y

(m−1)
ζ )− g(ζ, y

(m−2)
ζ )

]∥∥∥
2

Q
dζ

)p/2

≤ 2p−1Mp sup
0≤l≤r

(∫ l

0
1q
)p/q

E

(∫ l

0

∥∥∥f (ζ, y(m−1)
ζ )− f (ζ, y

(m−2)
ζ )

∥∥∥
p

dζ

)

+2p−1Mp Cp

(∫ r

0
1p/p−2

)p−2/2

E

(∫ r

0

∥∥∥g(ζ, y(m−1)
ζ )−g(ζ, y(m−2)

ζ )

∥∥∥
p

Q
dζ

)
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≤ 2p−1Mp a
p
q N1

∫ r

0
E‖y(m−1)

ζ − y
(m−2)
ζ ‖pG dζ

+ 2p−1Mp Cp a
p−2

2 N1

∫ r

0
E‖y(m−1)

ζ − y
(m−2)
ζ ‖pG dζ

= b̄(p, a)

∫ r

0
E‖y(m−1)

ζ − y
(m−2)
ζ ‖pG dζ.

On repeating the above process successively, we get

sup
0≤l≤r

E‖y(m)(l)− y(m−1)(l)‖p

≤
(
a b̄(p, a)

)m−1
(N

p
a )

m−1

(m− 1)! sup
0≤l≤r

E‖y(1)(l)− y(0)(l)‖p.

Thus, {y(m)(·)}m∈N is a Cauchy sequence in Y . Hence, by the standard Borel–
Cantelli lemma, y(m)(·) → y(·) uniformly on [0, a] as m → ∞, and y(·) is the
unique mild solution of (2.2). 	


4 Existence of Optimal Control

This section deals with the existence of an optimal pair of the state and control
functions. We also need the following assumption:

(P5) For the functional J : [0, a]×Y ×G ×V → R∪{∞}, the following hold:

(i) J is Fr -measurable.
(ii) For almost all 0 ≤ r ≤ a, J (r, ·, ·, ·) is sequentially lower semicontinu-

ous on Y × G × V .
(iii) For almost all 0 ≤ r ≤ a and for each z ∈ Y , ϕ ∈ G , J (r, z, ϕ, ·) is

convex on V .
(iv) Let σ ∈ L1([0, a];R) be a nonnegative function such that

σ(r)+ b1‖z‖ + b2‖ϕ‖G + d1‖v‖pV ≤ J (r, z, ϕ, v),

where b1, b2 ≥ 0 and d1 > 0 are constants.

Theorem 4.1 Suppose that all assumptions in Theorem 3.1 and (P5) hold. If B is
strongly continuous, then the problem (2.1) admits at least one optimal pair.
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Proof The proof is motivated by the research of Balasubramaniam and Tamilalagan
[3] and Kumar [21]. Consider the set

Pad = {(y, v) : y satisfies (2.6) with control function v ∈ Aad}.

Now, without loss of all inclusive statements, we can accept that

inf{I(y, v) : (y, v) ∈ C([0, a];LF
p (*;Y ))× Aad} = ρ < ∞.

Then, assumption (P5) implies that ρ > −∞. Clearly, there is a minimizing
sequence of feasible pairs {(yk, vk)} ⊂ Pad , which converges to ρ as k → ∞. Since
the set {vk}k∈N ⊆ Aad is bounded in Lp([0, a];V ), there exists a subsequence, still
represented by {vk} and some ṽ ∈ Lp([0, a];V ) such that vk weakly converges to

ṽ (vk
w−→ ṽ) in Lp([0, a];V ). It is readily verified that the set Aad is closed and

convex. Therefore, by the Marzur lemma, we assert that ṽ ∈ Aad . Suppose that yk

and ỹ satisfy (2.6) with controls vk and ṽ, respectively. That is,

yk(r) = D(r)φ(0)+
∫ r

0
D(r − l)

[
L(φ̃l)+ f (l, ykl )+ B(l)vk(l)

]
dl

+
∫ r

0
D(r − l)g(l, ykl )dW(l),

ỹ(r) = D(r)φ(0)+
∫ r

0
D(r − l)

[
L(φ̃l)+ f (l, ỹl)+ B(l)ṽ(l)

]
dl

+
∫ r

0
D(r − l)g(l, ỹl)dW(l).

If r ≤ 0, then E‖yk(r) − ỹ(r)‖p = 0. For r ∈ [0, a], by (P2) and (P4), Hölder’s
inequality, Remark 2.1, and Lemma 2.3, we obtain

E‖yk(r)− ỹ(r)‖p

≤ 3p−1 sup
0≤r≤a

E

∥∥∥∥
∫ r

0
D(r − l)

[
f (l, ykl )− f (l, ỹl)

]
dl

∥∥∥∥
p

+ 3p−1 sup
0≤r≤a

E

∥∥∥∥
∫ r

0
D(r − l)

[
B(l)vk(l)− B(l)ṽ(l)

]
dl

∥∥∥∥
p

+ 3p−1 sup
0≤r≤a

E

∥∥∥∥
∫ r

0
D(r − l)

[
g(l, ykl )− g(l, ỹl)

]
dW(l)

∥∥∥∥
p
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≤ 3p−1
[

sup
0≤r≤a

E

(∫ r

0
‖D(r − l)

[
f (l, ykl )− f (l, ỹl)

]
‖dl
)p

+ sup
0≤r≤a

E

(∫ r

0
‖D(r − l)

[
B(l)vk(l)− B(l)ṽ(l)

]
‖dl
)p

+ sup
0≤r≤a

E

∥∥∥∥
∫ r

0
D(r − l)

[
g(l, ykl )− g(l, ỹl)

]
dW(l)

∥∥∥∥
p ]

≤ 3p−1Mp

[
ap/qN1 sup

0≤r≤a

∫ r

0

∥∥∥ykl − ỹl

∥∥∥
p

G
dl + ap/q

∥∥∥Bvk − Bṽ

∥∥∥
p

Lp([0,a];V )

+ Cp

(∫ r

0
1

p
p−2 dl

) p−2
2

E

(∫ a

0

∥∥∥g(l, ykl )− g(l, ỹl)

∥∥∥
p

Q
dl

)]

≤ 3p−1Mp

[
ap/qN1

∫ a

0

∥∥∥ykl − ỹl

∥∥∥
p

G
dl + ap/q

∥∥∥Bvk − Bṽ

∥∥∥
p

Lp([0,a];V )

+ Cpa
p−2/2N1

∫ a

0

∥∥∥ykl − ỹl

∥∥∥
p

G
dl

]

≤ 3p−1Mpap/q
∥∥∥Bvk − Bṽ

∥∥∥
p

Lp([0,a];V )

+ 3p−1MpN1

(
ap/q + Cpa

p−2/2)N
p
a

∫ a

0
sup

0≤z≤l

∥∥∥yk(z)− ỹ(z)

∥∥∥
p

dl.

Now, Gronwall’s lemma yields that

sup
0≤r≤a

E‖yk(r)− ỹ(r)‖p ≤ M∗
∥∥∥Bvk − Bṽ

∥∥∥
p

Lp([0,a];V )
, (4.1)

where M∗ is independent of v, k, and r .
By the strong continuity of B, we infer that

∥∥Bvk − Bṽ
∥∥p
Lp([0,a];V )

w−→ 0 as
k → ∞.

From (4.1), E‖yk(r)− ỹ(r)‖p w−→ 0 as k → ∞, and hence

yk
w−→ ỹ in C([0, a];LF

p (*;Y )) as k → ∞.

Assumptions of Balder [4, Theorem 2.1] hold due to hypothesis (P5), and hence

we conclude that (yv, v) −→ E

{ ∫ a
0 J (r, yv(r), yvr , v(r))dr

}
is sequentially

lower semicontinuous in the weak topology of Lp([0, a];V ) ⊂ L1([0, a];V ) and
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strong topology of L1([0, a];Y ). Therefore, I is weakly lower semicontinuous on
Lp([0, a];V ), and by P5(iv), I attains its infimum at ṽ ∈ Aad . Thus,

ρ = lim
k→∞E

{∫ a

0
J (r, yk(r), ykr , vk(r))dr

}

≥ E

{∫ a

0
J (r, ỹ(r), ỹr , ṽ(r))dr

}
= I(ỹ, ṽ) ≥ ρ.

The proof is complete. 	


5 Example

Consider the following infinite-dimensional semilinear stochastic system with
unbounded delay:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

du(r, y) =
(
∂2

∂y2 u(r, y)+
∫ r−1
−∞

∫ π
0 w(l − r, y, z)u(l, z)dz dl

+ ∫ r−∞ P(r, l)F1(l, u(l, y))dl +
∫ π

0 E(y, l)v(l, r)dl
)
dr

+ ∫ r
−∞ R(r, l)G1(l, u(l, y))dl dβ(r), 0 < r ≤ 2, 0 ≤ y ≤ π,

u(r, 0) = u(r, π) = 0, 0 ≤ r ≤ 2,
u(η, y) = φ0(η, y), η ≤ 0, 0 ≤ y ≤ π,

(5.1)

where φ0(·, ·) is F0-measurable, w(·, ·, ·), P(·, ·), E(·, ·), R(·, ·), F1(·, ·), and
G1(·, ·) are functions to be defined later, and β(r) is one-dimensional standard
Brownian motion in Y on (*,F , {Ft },P). The system (5.1) represents a Volterra
stochastic integro-differential equation. Let Y = L2([0, π ]), H = R, and V =
L2([0, 2]). Then, define operator A : D(A) ⊂ Y → Y by Aυ = −υ ′′, where

D(A) =
{
υ ∈ Y : ∂υ

∂y
, ∂2υ
∂y2 ∈ Y, and υ(0) = υ(π) = 0

}
.

Clearly, A generates an analytic C0-semigroup {S(r)}r≥0, which is compact
and self-adjoint. Furthermore, A has the eigenvalues m2, m ∈ N, and em(y) =√

2
π

sin(my), m ∈ N, are the corresponding normalized eigenvectors. Now, the
following properties hold:

(i) For ζ ∈ D(A),

Aζ =
∞∑

m=1

m2〈ζ, em〉em.
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(ii) For every ζ ∈ Y ,

S(r)ζ =
∞∑

m=1

e−m2r 〈ζ, em〉em.

Thus, (P1) is satisfied for the operator A.
Consider the phase space G = C0 × Lp(g1 : Y ), 1 < p < ∞, with the norm

‖ϕ‖G = ‖ϕ(0)‖ +
( ∫ 0

−∞
g1(η)‖ϕ(η)‖pdη

) 1
p
,

where g1 and g1‖ϕ(η)‖p are real-valued Lebesgue integrable functions on (−∞, 0)
and ϕ is continuous at 0.

It is notable that G satisfies the axioms (H1), (H2), and (H3) for a properly chosen
function g1. The assumptions (b1) and (b2) in Sect. 2 also hold (see [15]).

Now, suppose that for the system (5.1), the following hold:

(i) For η ≤ 0, (η, ·, ·) ∈ C([0, π ] × [0, π ]) is measurable and w(η, 0, ·) =
w(η, π, ·) = 0, η ≤ 0. Moreover, l0 = ∫ π

0

(∫ −1
−∞

1

(g1(η))
q
p

∫ π
0 |w(η, y, z)|q

dz dη

) 2
q

dy < ∞, with 1
p

+ 1
q

= 1.

(ii) The functions F1,G1 : R × Y → R are continuous, uniformly bounded, and
Lipschitz continuous in the second variable with Lipschitz constant say C1 and
D1, respectively.

(iii) The functions P,R : R × R → R are continuous and satisfy the inequality

|P(r, r+η)|∨|R(r, r+η)| < h1(η)with

( ∫ 0

−∞
1

(g1(η))
q′
p′

|h1(η)|q ′
dη

) 2
q′
<

∞, 1
p′ + 1

q ′ = 1.

(iv) The function φ0(η, y) ∈ LF
p (*;G ).

(v) The function E : [0, π ] × [0, π ] → R is continuous.

Let v : T y([0, π ]) → R be such that the map r → v(·, r) is measurable and
v ∈ L2(T y([0, π ])) as the controls. Let A = {v ∈ V : ‖v‖V ≤ μ1}, where μ1 ∈
L2([0, 2];R+), and Aad = {v ∈ L2(T y([0, π ])) : ‖v(·, r)‖L2[(0,2)] ≤ μ1(r) a.e.
r ∈ [0, 2]}. To represent the system (5.1) as the abstract form given by (2.2), set
Y (r)(·) = u(r, ·) and φ(r)(·) = φ0(r, ·). Define L : G → Y , B(r) : V → Y ,
f (·, ·) : [0, 2] × G → Y and g(·, ·) : [0, 2] × G → R by

L(ϕ)(y) = L(ϕ(·, y)) =
∫ −1

−∞

∫ π

0
w(η, y, z) ϕ(η, z)dz dη,
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B(r)v(r)(y) =
∫ π

0
E(y, l)v(l, r)dl,

f (r, ϕ)(y) = f (r, ϕ(·, y)) =
∫ 0

−∞
P(r, r + η)F1(r + η, ϕ(η, y)) dη,

g(r, ϕ)(y) = g(r, ϕ(·, y)) =
∫ 0

−∞
R(r, r + η)G1(r + η, ϕ(η, y)) dη.

For any r ∈ [0, 2] and ϕ1, ϕ2 ∈ G , assumptions (ii) and (iii) yield that

|f (r, ϕ1)(y)− f (r, ϕ2)(y)|2

≤
(∫ 0

−∞
|P(r, r + η)| |F1(r + η, ϕ1(η, y))− F1(r + η, ϕ2(η, y))| dη

)2

≤
(∫ 0

−∞
|h1(η)| C1‖ϕ1(η)− ϕ2(η)‖ dη

)2

≤ C2
1

(∫ 0

−∞
1

g1(η)
1
p

g1(η)
1
p |h1(η)| ‖ϕ1(η)− ϕ2(η)‖ dη

)2

≤ C2
1

(∫ 0

−∞
1

g1(η)
q
p

|h1(η)|q dη
) 2

q
(∫ 0

−∞
g1(η) ‖ϕ1(η)− ϕ2(η)‖p dη

) 2
p

≤ C2‖ϕ1 − ϕ2‖2
G .

Therefore,

‖f (r, ϕ1)− f (r, ϕ2)‖p =
(∫ π

0
|f (r, ϕ1)(y)− f (r, ϕ2)(y)|2dy

) p
2

≤
(∫ π

0
C2‖φ1 − φ2‖2

G dy

) p
2

≤ C3‖ϕ1 − ϕ2‖pG ,

for some constant C3 > 0. Similarly, there exists a constant C4 > 0 such that

‖g(r, ϕ1)− g(r, ϕ2)‖p ≤ C4‖ϕ1 − ϕ2‖pG .
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The uniform boundedness of P(·, ·), R(·, ·), F1(·, ·), and G1(·, ·) implies that f
and g are also uniformly bounded, and hence the hypothesis (P4) is satisfied. Next,
for any ϕ ∈ G , by assumption (i),

‖L(ϕ)‖2

=
∫ π

0

∣∣∣∣
∫ −1

−∞

∫ π

0
w(η, y, z) ϕ(η, z)dz dη

∣∣∣∣
2

dy

≤
∫ π

0

(∫ −1

−∞

∫ π

0
|w(η, y, z) ϕ(η, z)| dz dη

)2

dy

≤
∫ π

0

[ ∫ −1

−∞

(∫ π

0
|w(η, y, z)|qdz

) 1
q
(∫ π

0
|ϕ(η, z)|pdz

) 1
p

dη

]2

dy

≤
∫ π

0

[(∫ −1

−∞
1

(g1(η))
q
p

∫ π

0
|w(η, y, z)|qdz dη

) 2
q

×
(∫ −1

−∞
g1(η)

∫ π

0
|ϕ(η, z)|pdz dη

) 2
p
]
dy

≤
∫ π

0

(∫ −1

−∞
1

(g1(η))
q
p

∫ π

0
|w(η, y, z)|qdz dη

) 2
q

dy ‖ϕ‖2
G ,

where 1
p

+ 1
q

= 1. This shows that (P3) is satisfied.

Now, consider the cost function I(v) = E

{ ∫ 2
0 J (r, uv(r), uvr , v(r))dr

}
, where

J (r, uv(r), uvr , v(r)) =
∫ π

0

(
‖u(r, y)‖2 + ‖v(r, y)‖2

)
dy

+
∫ π

0

∫ 0

−∞
‖u(r + l, y)‖2dl dy,

with respect to the system (5.1). Since all the hypotheses of Theorem 4.1 are
satisfied, the system (5.1) has at least one optimal state–control pair.

6 Conclusion

The existence of solutions to a given system is a fundamental need to study the
optimal control. Some of the suitable and effectively confirmed conditions to ensure
the solvability of a nonlinear differential system are linear growth and Lipschitz
condition. So, it is interesting to study the optimality results under these conditions.
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The existence and uniqueness of mild solution of the system (2.2) are studied
by using the theory of fundamental solution and the successive approximation
method. It is additionally demonstrated that the Lagrangian problem has at least
an optimal state–control pair under some natural hypotheses. Studies exhibit that in
the modeling of several dynamical systems, it is essential to include both standard
and fractional Brownian motions. Therefore, in future, we might want to tackle the
above issue for mixed fractional Brownian motion.
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The Role of Machine Learning
and Artificial Intelligence for
High-Performance Computing

Michael M. Resch

Abstract High-performance computing has recently been challenged by the advent
of data analytics, machine learning and artificial intelligence. In this chapter, we
explore the role that these technologies can play when coming together. We will look
into the situation of HPC and into how DA, ML and AI can change the scientific and
industrial usage of simulation on high-performance computers.

Keywords High-performance computing · Data analytics · Machine learning ·
Artificial intelligence · Simulation

1 Introduction

Machine learning (ML) and artificial intelligence (AI) have become more visible
over the last years and have developed into fields that show a huge potential for
using computers in a variety of applications. Areas of usage range from improving
and speeding up medical image processing to optimizing urban planning processes
and to a standardized and high-speed handling of banking processes even in the
usually heavily personalized consumer market. Some economists assume that ML
and AI will change the world so dramatically that millions of jobs will be lost and
we need to speak of a “second machine age” [1]. But this is not the scope of a
scientific investigation.

In this chapter, we have a look at the merger of high-performance computing
(HPC) with ML and AI. The situation of HPC has been described before [2, 3] and
is considered to be interesting but also limited by the technical problems that we
face with the end of Moore’s law. We will argue that ML and AI have to be seen as
two different technologies that are part of a chain of technologies that naturally lead
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us from HPC to AI. We will also argue that HPC is both a facilitating technology for
ML and AI and a heavy user of ML and AI technologies. In this chapter, we will not
address ethical issues that come with ML and especially AI. This is an important
topic but should not be part of a technical overview chapter.

Finally, we give an outlook of how HPC, ML and AI will be merged into a new
world of technologies. This merger will allow to tackle new research questions and
will help to substantially improve our way of doing simulation on supercomputers.

2 The Status of High-Performance Computing

The future of HPC is widely discussed in the scientific community and has also
attracted substantial political interest in the last years. The topic around which these
discussions evolve is the race for the first Exaflop system. The US has announced to
build such systems in the coming years [4]. Japan has announced to build a system as
a follow-on national project for the current RIKEN K-Computer system [5]. China
has started a program to build such a system and is planning to have up to eight
systems, each capable of Exaflop performance [6]. Europe has started an initiative
called EuroHPC [7] which has decided to fund three European pre-Exaflop systems
in 2021 and plans to fund two Exaflop systems later on. All in all, the world of HPC
seems to be set for moving from the era of Petaflops computing to the new era of
Exaflops computing.

Having a look at the list of fastest supercomputer in the world [8], we see that
in November 2019, three systems can be considered to be in the pre-Exaflop range.
The fastest system in the world (Summit) shows a peak performance of 200 PF
and a Linpack performance of 143 PF. Assuming a growth rate as expected by
Moore’s law [9], we should see a performance increase of two every 18 months.
That would be a 400 PF system in June 2020 and an 800 PF system in November
2021. Assuming that Moore’s law still holds and that the budget of 500 million US$
is an increase in system cost of about 50% compared to the Summit system, an
Exaflop system seems to be feasible in 2021.

It becomes obvious in this calculation that the main commonality of all interna-
tional projects aiming at Exaflop systems is a substantial increase in budget. One
reason is that the energy costs are still increasing. For an Exaflop system, we expect
to see a power consumption in the range of 30 to 50 MW. Costs for electricity vary
from country to country but such a high-power consumption substantially increases
total cost of ownership. On the other hand, the increase in investment is necessary
to make up for the slowdown in Moore’s law as computers gain speed mainly by
increasing the number of processors used.
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3 Slowing Down the Speedup

Even though the question of architecture is perhaps no longer the most pressing
one, the first problem that HPC will have to handle in the future is a hardware
problem: the end of Moore’s law [9]. The prediction of Moore in 1965 that we
would be able to cram ever more transistors on the same surface, with the numbers
doubling every 12—later Moore shifted this to 18—months, did hold for about
50 years. As of today, it is unclear how far we still can get with miniaturization.
Seven nanometres are already claimed to be used. Five nanometres and finally three
nanometres might be achievable in the foreseeable future. However, it is unclear
whether this is economically feasible. As a consequence, we need to assume that
by the mid-2020s increase in performance for supercomputers will be difficult to
achieve through a further increase in transistors on a chip [10].

This triggers the need for new solutions. Quantum computing has started to
carry the hopes of funding agencies to the point that departments and divisions are
renamed to be responsible for “Quantum Computing and HPC”. Given that there
are no real quantum computers available yet, this chapter will not cover the topic
of quantum computing in detail. What we see when we look at first systems that
are similar to quantum computers is that these systems will most likely not provide
higher performance in the sense of more floating point operations but will rather
open up a new field of simulation.

Two key questions seem to be important from the point of view of HPC for
quantum computing as of today.

– Is there a simple way to transform classical HPC simulation problems into
equivalent problems to be solved by quantum computers?

– Will users accept the fact that with quantum computing the notion of a determin-
istic solution is lost or at least weakened?

Quantum computing will remain a field of research for the coming decades. It
will take some time before they can be made available for scientific usage and still
more time to turn them into a widely spread device to be used in science and industry
alike.

With traditional hardware making it much more difficult to squeeze more
performance from a given HPC architecture, the focus of attention will have to be
shifted towards software and towards mathematical methods for HPC simulation.
Over the last decades, various investigations show that mathematical methods—at
least for the solution of systems of equations—have contributed substantially to the
overall increase in simulation performance [11]. The focus of attention for future
algorithms will have to be on speed and on power consumption. What we find is
that for both targets, optimum usage of memory is the key as access to memory both
slows down computation and increases power consumption.

Another trend that has a huge impact on HPC is what can best be described as the
transition from “big data” through machine learning towards artificial intelligence.
Even though usage of data goes way beyond the original idea of handling large
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amount of data, the term “big data” still in a sense is useful as it describes well how
HPC may be overwhelmed by the data problem in the coming years. HPC may well
become a smaller part of a larger digital infrastructure that is focusing around data
rather than around compute power. We will address, how this will impact HPC.

4 From Big Data to Artificial Intelligence

Over the last years, a number of new paradigms and one old paradigm have grown
in importance. All of these are based on data. Big data was already introduced
more than a decade ago and for a while was considered to bring a new paradigm
to science [12]. Some even went further to claim that with big data science would
reach the “end of theory” [13]. However, correlation and causality are two different
things, and hence the simple analysis of data will always show correlation but never
causality. Big data was soon further developed into a concept that brings together
data and insight and which is usually called machine learning. But at the same
time, a new wave of artificial intelligence projects has hit the high-performance
computing community. From an HPC expert point of view, there is a logical path
from big data to artificial intelligence that can be seen as a new chance for simulation
on HPC. In the following, we will describe how we can find a continuous spectrum
of applications ranging from classical simulation to artificial intelligence.

Classical Simulation In the classical simulation approach, the simulation expert
goes through a series of steps which are handled sequentially. The results of a
simulation are analyzed post-mortem in a visualization environment. So, data are
created and each data set is considered individually. Visualization provides the
necessary techniques for analysis. Usually, all simulation runs are independent. The
simulation expert has a clear understanding of the job she is running and also knows
which features or values to look for in the computed results. For a Computational
Fluid Dynamics (CFD) simulation, this usually means to look for velocities
and pressure and to visually identify spots where special flow phenomena—like
turbulence, recirculation, stagnation—appear [14]. A global view of all simulation
runs or a deep dive into the data is usually not undertaken.

Big Data The concept of big data evolves from traditional data analytics and looks
at data from the point of view of harvesting information that may be buried and
hidden in too many data for human beings to analyze. HPC simulation is currently
moving from traditional simulation to big data in the sense that simulations create
huge amounts of data. These data can still be visualized but the human eye is
unable to grasp all details and to identify interesting spots. The promise of the
“end of theory” [13] will most probably not materialize in HPC simulation as
analyzing simulated data requires a deep understanding of the overall simulation
process. However, concepts of big data may help to create awareness in the HPC
community that classical visualization methods may not be enough to fully exploit
the knowledge created by an HPC simulation. For our CFD example, big data may
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lead the simulation expert to explore several simulation results at a time. It may also
make the user want to start to search for features (stagnation, turbulence, vortices,
etc) automatically based on improved evaluation methods.

Machine Learning Machine learning is a technology that not necessarily evolves
from big data. However, it can be seen as a logical continuation of the idea to
extract information from large amounts of data. If we assume that we still need
some theory to extract knowledge from data, we need to be able to use the data
we have to improve the theory. The learning process, however, now goes beyond
the pure analysis of data. It makes use of the data to improve our understanding
and leads us to improved or new theories. When we now look at our example from
flow simulation, machine learning can help to use existing simulation data to learn
how to design future simulation runs or to learn how to interpret a large number of
simulation results in a coherent view.

Artificial Intelligence The notion of artificial intelligence (AI) is said to have been
first introduced by Alan Turing back in 1950 [15]. Intelligence is a concept that is
basically not a technical one. Over the last decades, it has seen a change in meaning
and understanding. It is hence a bit difficult to clearly judge the technical merits
of AI. While Alan Turing was referring to AI as a computer system that is able to
fully imitate the logical behaviour of a human being modern interpretation of AI is
looking at two main features. On the one hand, AI is considered to be a way to create
humanoid robots. The focus of this approach is to create an artificial human being
including the physical body. On the other hand, AI is considered to be able to replace
human beings in the decision-making process. During the 1970s and the 1980s,
there was substantial investment in AI research, and expectations to achieve both
goals were high. The most recent wave of enthusiasm about AI has a more realistic
focus. It usually aims at integrating software and hardware solutions with enough
data to create a system that is able to unburden the human being from complex but
standardized decisions. Typical examples are decision-making in medical treatment
and in the analysis of human faces. This is certainly far away from the original
human-like machine. However, the potential for this technology is high. When we
come back to our CFD example, AI can help to learn from previous simulations
to make decisions about the future simulations that have to be done to solve a
given problem. The decision-making in the simulation would practically entirely
be offloaded to an AI system.

What we see when looking at these technologies are two things:

– There is no clear distinction to be made between HPC, big data, ML and AI.
These technologies are a gradual advance from a process purely controlled by
the human being towards a process nearly entirely controlled by what we might
call machine intelligence.

– HPC is not a technology separate from big data, ML and AI but all these tech-
nologies rely heavily on the availability of both compute power and theoretical
knowledge.
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4.1 What Does This Mean for HPC?

Even though a traditional look at HPC already shows some dramatic change, there is
something that might be even more important for HPC. Considering current trends,
we find that HPC is going to be part of something bigger—which is driven by data
but not only data. It is meanwhile well accepted that there is value in the data.
However, there is much more value in the right learning processes and algorithms.

HPC simulations might be one source for such data. Sources of data can however
be manifold:

– The traces each person is generating each day using systems in the internet, when
shopping, when communicating, when watching movies, when visiting other
webpages.

– The data of business operations which are digitally available and stored for years.
– The increasing amount of sensors everywhere especially powered by the Internet

of Things, going from production lines to personal homes—smart meters are a
good example for that.

Two main scenarios for HPC in such a data-driven world evolve.

HPC Needs Data HPC simulation will increasingly make use of modern methods
to handle, explore, interpret and turn data into decision. The simulation community
will move from classical batch processing or co-simulation with visualization and
simulation running in parallel towards a setup that is driven by data. Simulations
will bring in more data from fields other than simulation. Meteorology is an example
where measured data combine with simulation data in order to improve the quality
of the picture. Simulations will bring in data analytics methods in order to better
understand computed results. This will take away control of visualization from
the human being and put it more in the “hands” of the computer system. But the
change will go even further. AI systems will help to analyze simulation runs and
learn from the results in order to make suggestions for future simulations. In a
mid-term perspective, simulations could even be entirely taken off the hands of
human beings and be done by AI systems that access simulation data and theory
repositories automatically responding to user questions through simulation and their
interpretation. As strange as this may sound to traditional simulation experts, it
would only be a continuation of a process in which the behaviour of computers is
hidden from the user. And it would be the logical evolvement of all technology that
is supposed to replace human beings in order to improve and/or speedup a process
that can be standardized.

Data Needs HPC When looking carefully at the requirements and the potential of
data analytics, ML and AI, it is obvious that these technologies will not replace HPC
but will rather give a new boost to HPC. One of the key aspects in ML and AI is the
learning phase. While it is obvious that data are required to learn, it is less obvious
that compute power is a must for this learning phase. It is hence not surprising that
the fastest Japanese supercomputing system in November 2018 [16] was exclusively
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devoted to artificial intelligence. The AI Bridging Cloud Infrastructure (ABCI)
has a focus on applications from AI and will serve the Japanese research and
industrial community for the coming years. In that sense, HPC will have a new
user community that will increase the need for large-scale systems and Exaflop
performance.

4.2 Who Might Benefit?

We can find a number of interesting cases that will benefit from a merger of HPC
with data technologies. Some of them are rather obvious. Others do not seem to be
good candidates in the first place.

Banks are one potential group of customers that may move even further into
the field of HPC. They already have a history of analyzing data when it comes to
stock exchange analysis. There are further topics that might be interesting. Fraud
detection is one field that might benefit both by increasing the speed of a detection
and by increasing the level of accuracy. Permanent and individualized portfolio
analysis both for institutional and private customers is a field that will need HPC
performance.

In many of these business cases where the analytics is done in large in-memory
data bases, not many are thinking about HPC. However, after the analysis of
business data, a next step would be to change and improve the situation. In several
cases, this could lead to the requirement of large simulations and parameter studies
which will naturally require HPC systems. A good example for this is railroad
companies. In case of delays, simulations are used to decide between different
options to improve the difficult traffic situation.

The increasing use and number of linked sensors is another area where data
volumes are exploding. This leads to the idea of in-time analytics to detect events
before they actually occur, for example, with machine learning technologies. This
may lead to new insights and better understanding of existing dependencies. In
order to extract such information, inverse problems will have to be solved. This
will require HPC to a much bigger extent than today.

Another example with even higher impact on HPC is the usage of sensors to
detect major natural disasters which might lead to damage and loss of lives. In case
of a marine earthquake, Japan has set up a system to automatically analyze data,
simulate the impact of a tsunami and take measures to protect its people. This is
an example where data simulation and AI have to work together to come up with a
solution that could never be achieved with classical simulation approaches. Given
the time-critical situation and at the same time the financial impact and the risk
for human lives, only such an integrated approach can help to come to acceptable
solutions.
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4.3 What Does This Mean for HPC Environments
and Architectures?

The development described above already has an impact on architectures and overall
HPC environments. I/O and the handling of large data sets are considered to be a
critical topic in HPC procurements and in systems offered. Specialized I/O nodes
are part of any HPC system already today. They will become more important in the
future. Large memory nodes to be able to handle larger data sets have become a
standard component. The size of the memory is continuously increasing.

In several cases, a direct connection to include up-to-date input data into the
ongoing simulations will require a change in the HPC environment setup and will
require to solve new security issues. Additionally, there is the upcoming requirement
for “urgent” computing which needs to be solved administratively as well as
technically as many HPC systems are not prepared for such a requirement. The
main problem for HPC operation in urgent computing is the fact that jobs will have
to be interrupted such that users may lose their jobs or results.

5 Conclusion

Summarizing our findings, we see a number of trends which will have an impact on
HPC and AI in the coming years. It is getting ever more clear that the main driving
force of HPC in the last decades will go away. Moore’s law is coming to an end and
will not help us increase HPC performance in the future. Improved algorithms and
mathematical methods will still have the potential to increase sustained performance
but will only extend the race in HPC without being able to overcome the stagnation
in peak performance to be expected.

At the same time, we see a shift away from pure HPC to an integration of
technologies. Big data, machine learning and artificial intelligence are added to the
set of tools that help to solve many of the traditional problems much better and to
tackle new problems. For the coming 10 years, this convergence of technology will
be the most important aspect in high-performance computing.
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Slip Effect on an Unsteady
Ferromagnetic Fluid Flow Toward
Stagnation Point Over a Stretching Sheet

Kaushik Preeti, Mishra Upendra, and Vinai Kumar Singh

Abstract In this paper the heat transfer characteristics of ferromagnetic fluid flow
towards stagnation point has been investigated numerically. In this study we deal
with the slip boundary condition in the presence of electromagnetic field over a
stretching sheet considering the Brownian motion impacts on ferrofluid viscosity.
The mathematical model is presented in the form of partial differential equations.
The governing equations determine the flow conditions, and these equations are
reduced by similarity transformations. Finite difference method is implemented
to acquire the solution of the problem. The effect of various physical parameters
on the flow is also investigated. Graphs are plotted to examine the influence of
pertinent flow parameters involved, such as velocity profile, temperature profile.
The important physical quantities of skin friction coefficient and the local Nusselt
number are also studied. It is observed that increasing value of ferromagnetic
interaction parameter enhances the velocity field and reverse observation holds for
temperature field.

Keywords Magnetic dipole · Ferromagnetic fluid · Stagnation point flow ·
Viscoelastic parameter · Stretching sheet

1 Introduction

A ferrofluid is a liquid that becomes strongly magnetized in the presence of
a magnetic field. These fluids are liquids such as kerosene, heptane, or water.
Mechanics of ferrofluid motions is influenced by strong forces of magnetization.
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Ferrohydrodynamics usually deals the nonconducting liquids with magnetic prop-
erties. Ferrofluids are used to image magnetic domain structures on the surface of
ferromagnetic materials. Many researchers analyze heat transfer through boundary
layers over a stretching surface. This field has received a significant attention due
to its useful engineering applications such as solar collectors, designing building,
and thermal insulation and cooling of electronic components. Pioneer works have
been done by Crane et al. [14] on the boundary layer flow of an electrically
conducting viscous incompressible fluid over a stretching sheet. Elbashbeshy et
al. [16] analyzed the laminar flow and heat transfer over an unsteady stretching
surface when the surface temperature is constant. In the presence of variable surface
temperature, Chakrabarti et al. [11] studied the magnetohydrodynamic MHD flow
with uniform suction over a stretching sheet at different temperatures. Grubka et al.
[21] studied the heat transfer analysis over a stretching surface in the presence of
heat flux. Ellahi et al. [18] studied the influence of temperature-dependent viscosity
on MHD flow of non-Newtonian fluid. The fact that velocity of pseudoplastic
fluids decreases with decrease in Hartmann number was found by Khan et al.
[32]. Hayat et al. [23] investigated the heat transfer effect of Eyring–Powell fluid
considering exponentially stretching sheet. Narayana et al. [42] studied the influence
of unsteadiness parameter on the flow of thin film over an unsteady stretching
sheet. Abdel-Wahed and Emam [3] studied the MHD flow of nanofluid over a
moving surface in a nanofluid under thermal radiation and convective boundary
layer conditions. Abdelwahed et al. [2] and [4] inspected the variation of the thermal
conductivity and viscosity on the MHD flow. Heat transfer in a Newtonian fluid in
the presence of thermal conductivity was analyzed by Chiam et al. [13]. Khan and
Pop et al. [30] studied the behavior of laminar flow of nanofluid over a stretching
surface and investigated the influence of Brownian motion and thermophoresis
parameters have inclination to the fluid temperature. Raju et al. [44] analyzed the
heat and mass transfer on MHD flow over a permeable stretching sheet. Similar type
of study of unsteady flow through a stretching sheet was performed by Mustafa et al.
[41]. Aziz et al. [7] investigated the problem of mixed convective fluid flow along a
stretching sheet with variable viscosity. Dutta et al. [15] determined the temperature
distribution of heat flux over a stretching surface. Khan M. et al. [34] studied the
Brownian motion and thermophoresis effect on heat and mass transfer. Hayat et al.
[22] studied the boundary layer flow at stagnation point through a porous medium
in the presence of thermal radiation over a stretching vertical plate. Ishak et al.
[27] presented the concept of unsteadiness in mixed convection boundary layer flow
and heat transfer through vertical stretching surface. Ibrahim and Bhandari et al.
[25] analyzed the heat transfer on a permeable stretching surface due to a nanofluid
with the influence of magnetic field and slip boundary conditions. Andersson et al.
[5] examined impact of magnetic field on the flow of viscoelastic fluid over the
stretching surface. Elbashbeshy et al. [17] obtained an analytical solution for the
boundary layer flow over a moving plate. Khan M. et al. [33] studied the two-
dimensional incompressible Casson nanofluid in the presence of magnetic field.
Bachok et al. [9] inspected the flow of a nanofluid at stagnation point over a
stretching or shrinking sheet. Effects of heat transfer in the presence of magnetic
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field on ferrofluid flow was reported by Sheikholeslami et al. [46]. Chen et al.
[12] studied the effect of continuous surface on heat transform in laminar flow.
Viscoelastic fluid characteristics were investigated in the presence of temperature
viscosity by Faraz et al. [20]. Abbas et al. [1] investigated the flow of a viscous
fluid at stagnation point over an unsteady surface. Stagnation point flow of Maxwell
nanofluid was investigated by Khan et al. [35]. Mukhopadhyay and Battacharyya et
al. [40] studied the influence of Maxwell fluid in the heat transfer across a stretching
sheet. Bachok et al. [8] studied the two-dimensional stagnation point flow of a
nanofluid over a stretching or shrinking sheet. Partha et al. [43] tackled the heat
transfer over an exponential stretching vertical sheet with dissipation effect. Khan
et al. [31] discussed the heat transform reactions of nanofluid with the effect of
viscous dissipation and thermal radiation along a stretching sheet under the action
of thermophoresis with the help of finite difference scheme. Maxwell fluid is one
of the examples of non-Newtonian fluid. Mukhopadhyay and Bhattacharyya et
al. [39] determined the influence of Maxwell parameters on the unsteady flow of
Maxwell fluid with chemical reaction. Heat transfer analysis on boundary layer flow
with specific entropy generation was studied by Ellahi et al. [19]. Khan M. et al.
[36] developed a Cattaneo–Christov model by using Fourier’s and Fick’s laws and
solved by numerical method. Bovand et al. [10] investigated the two-dimensional
MHD flow in the porous medium in different laminar flows. The study showed
that the steady flow depends on magnetic fields. The heat transfer and fluid flow
investigation of different kinds of base fluids on a stretching sheet was performed
by Makarem et al. [38]. Numerical investigation of heat transfer enhancement by
utilizing the properties of nanofluids was conducted by Sheri and Thuma et al.
[47]. Numerical solution of Maxwell fluid with the condition of viscous dissipation
was obtained by Khan M. et al. [37]. Unsteady magnetohydrodynamics mixed
convection flow in a rotating medium with double diffusion was studied by Jian
and Ismail et al. [29]. Computation and physical aspects of MHD Prandtl–Eyring
fluid flow analysis over a stretching sheet were investigated by Hussain and Malik
et al. [24]. Jafer et al. [28] studied the effects of external magnetic field, viscous
dissipation, and Joule heating on MHD flow and heat transfer over a stretching
or shrinking sheet. Analysis of modified Fourier law in the flow of ferromagnetic,
Powell-Eyring fluid considering two equal magnetic dipoles was performed by Ijaz
and Zubair et al. [26]. The characteristic of dust particles in a ferromagnetic fluid
with thermal convection in a porous medium was analyzed by Sharma et al. [45].

Most of the studies depict that properties of ferromagnetic fluid such as higher
thermal conductivity and strong influence of magnetic field are useful in the analysis
of numerous fluid problems. The ferromagnetic fluids have the properties of both
liquid and magnetized solid particles. Ferromagnetic fluids flow toward magnetic
field if the external magnetic field is applied, and the flow resistance increases using
ferrofluids under an applied magnetic field for enhancement of heat transfer, and
hence ferrofluids are more useful compared with conventional nanofluids.
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2 Mathematical Formulation

In this study we consider a two-dimensional unsteady ferromagnetic fluid flow
over a stretching sheet in the presence of magnetic field with the dipole effects.
Existence of magnetic field develops the higher intensity of the ferrofluid particles.
Heat produced by the internal friction of the fluid, which is caused by the increase
in temperature, affects the viscosity of the fluid, and so the viscosity of the fluid
cannot be taken as constant. The rise of temperature leads to a local increase in the
transport phenomenon by reducing the viscosity across the momentum boundary
layer and so the heat transfer rate at the wall is also affected significantly. The study
also characterized the phenomena of stagnation point. Coordinate X is taken along
the stretching surface where the sheet is placed at y = 0. The velocity of the sheet
uw = cpx, where cp > 0 is stretching rate presented in Fig. 1. Y is normal to
the stretching surface where the fluid flow is restricted by y > 0. Flow takes place
by the two equal and opposite forces in the direction of X-axis. A magnetic dipole
is placed in the center with distance “a” from the surface. The temperature of the
surface is Tw and Curie temperature is taken as Tc, and the temperature of ferrofluid
from the surface of the sheet is T∞ = Tc; when the ferrofluid reaches the curie
temperature,
magnetization ends at this point. The obtained boundary layer equations that govern
the flow and heat transfer of ferrofluid are written as

∂u

∂x
= ∂v

∂y
(1)

Fig. 1 Geometry of the flow

b
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bTw<Tc
u1=d1x1

Magnetic Dipole
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y1

Tc
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(4)

In the above set of equations (u, v) are velocity components along x- and y-axis,
respectively. Tf is the fluid temperature, μ represents the dynamic viscosity, p̂
signifies the fluid density, μe denotes the magnetic permeability, cp signifies the
specific heat, H represents the magnetic field, and M denotes the magnetization.
The terms μeM ∂H

∂x
and μeM ∂H

∂y
given in Eqs. (2) and (3) represent the magnetic

force and magnetic gradient corresponding to x- and y-coordinates, respectively.
The corresponding boundary conditions expressed as

u = uw + S
∂u

∂y
, v = −vw, Tf = Tw + d1aty = 0 (5)

u = 0, Tf = Tc + d2x, P + 1

2
p̂(u2 + v2) = Caty ⇒ ∞ (6)

where uw and vw are surface velocity along x- and y-direction, S represents
the velocity slip factor, C is positive constant, and d1 and d2 are dimensionless
constants.

3 Mathematical Analysis

ζ = λ

2π

(
x

x2 + (y + d)2

)
(7)

where λ represents the magnetic field strength. We know that body force is directly
proportionate to gradient of the magnitude, and the magnitude H of the magnetic
strength is represented as
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H =
√(

∂ζ

∂x

)2

+
(
∂ζ

∂y

)2

(8)

Components of magnetic field H are

∂H

∂x
= − λ

2π

(
2x

(y + d)4

)
(9)

∂H

∂x
= λ

2π

( −2

(y + d)3
+ 4x2

(y + d)5

)
(10)

Magnetization M leads to the expression of temperature given by Anderson et al.
[6]

M = Kc(Tc − Tf ). (11)

4 Solution Procedure

It is pertinent to introduce the dimensionless variables and transformation consid-
ered by [6]

ψ(τ, η) = μ

p̂
τf (η) (12)

α(τ, η) = Tc − Tf

Tc − Tw
= θ(η)+ τ 2	(η) (13)

where ψ(τ, η) and α(τ, η) are dimensionless steam function and temperature,
respectively, and dimensionless coordinates τ and η are as follows:

τ =
√
cp̂

μ
x, η =

√
cp̂

μ
y (14)

u = ∂ψ

∂y
= cx · f ′(η) (15)

v = −∂ψ

∂x
= −(cv) 1

2 · f (η) (16)

Substituting Eqs. (12)–(16) into Eqs. (2)–(4) and comparing coefficients up to n2,
we get the reduced nonlinear ordinary differential equations:
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f ′′′ + ff ′′ − f ′2 + 2βθ

(η + δ1)4
N [2ff ′′′′ − (f ′′)2] = 0 (17)

θ ′′ + Pr(f θ ′ − 2f ′θ)+ 2Nβ(θ − w)f

(η + δ1)3
− 4N(f ′)2 + 2(w2 − 1) = 0 (18)

φ′′ + 2Nβf θ2

(η + δ1)3
− Pr(4f ′φ′ − f φ)−Nβ(θ − w)

[
4f

(η + δ1)5
+ 2f ′

(η + δ1)4

]

−N(f ′′)2 = 0 (19)

Also boundary conditions (5) and (6) are converted as

f = S, f ′ = 1, θ = 1 + αf ′′(0), φ = 0, at η = 0 (20)

f ′ → 0, θ → 0, φ → 0 at η → ∞ (21)

In the above system of nonlinear equations, β (ferromagnetic interaction parameter),
N (viscoelastic parameter), Pr (Prandtl number), w (dimensionless curie tempera-
ture ratio), λ (dimensionless distance), and γ (viscous dissipation) are defined as

β = λp̂Kc

2πμ2
e

μe(Tc − Tw),N = cμ2

p̂(Tc − Tw)
,Pr = μcp

k
,

w = Tc

Tc − Tw
, λ =

√
kp̂d2

μ
, γ = cμ2

p̂k(Tc − Tw)

The skin friction coefficient and Nusselt number are defined as

Cfx = − 2τw
ρ(cx)2

(22)

Nux = x

−k(Tc − Tw)

∂T

∂y
y=o (23)
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2
x = −2(1 −N∗)f ′′(0)



258 K. Preeti et al.

Nux = −[(θ ′(0)+ ξ2φ′(0)]Re
1
2
x

We first transformed differential equations (12)–(16) together with boundary condi-
tions into a system of set of first-order ODE, which must be solved numerically
by finite difference method. The step size is taken as ∇η = 0.01. We choose
η(max) = 15 with simulation error chosen as 105 in order to assure asymptotic
convergence criteria. Trial values of f ′′′(0), f ′′(0), θ ′(0), and 	′(0) were adjusted
iteratively in order to satisfy the far-field boundary condition.

5 Results and Discussion

The Influence of Ferromagnetic Interaction Parameter (β)
The fixed values of these physical parameters are taken as Pr = 7, N =
0.01, ε = 2.0, andδ1 = 0. Figures 2 and 3 are plotted to examine the influence
of ferromagnetic parameter β on velocity profile f (η) and temperature profile θ(η),
respectively. As we increase the value of ferromagnetic parameter β, viscosity of
the ferrofluid rises up and as a result velocity profile shows the decreasing behavior.
This behavior occurs due to microsized particles in ferrofluid. It is observed
that temperature profile increases significantly as β (ferromagnetic interaction
parameter) increases. This phenomenon happened due to the interaction between
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Fig. 2 Impact of β on f ′(η)
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Fig. 3 Impact of β on θ(η)

ferrofluid particles. Thus velocity profile f ′(η) reduces due to contact of ferrofluid
particles and magnetic field, but the reverse condition is observed in temperature
profile θ(η).

The Influence of Viscoelastic Parameter (N )
Figure 4 shows the impact of viscoelastic parameter (N ) on velocity profile, as the
increasing value of N enhances the velocity profile gradually. From this graph, it
is confirmed that rising the values of viscoelastic parameter N restricts the fluid
motion near the stretching sheet, while it assists the fluid motion far away from
the stretching sheet. Increasing values of N permit the fluid to flow at a faster rate,
because there is a decrease in the heat transfer. So by enlarging the values of N , the
dimensionless stream function and velocity increase. Figure 5 illustrates the effect
of viscoelastic parameter N on temperature profile θ(η) against η and thickness of
temperature profile decreases with increase in viscoelastic parameter.

Analysis of Skin Friction Coefficient and Local Nusselt Number (Effect of
Ratio ε)
Figure 6 designated the impact of ε on skin friction coefficient. The enhancement in
the value ε reduces the skin friction coefficient. For upper values of ε, the velocity
of ferrofluid controls the velocity of plate, and due to this, skin friction coefficient
decreases. We can observe in Fig. 7 that the local Nusselt number reduces with the
increasing value of β.
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Fig. 8 Impact of α on Skin friction coefficient

Effect of Velocity Slip Parameter
Figure 8 shows that skin friction coefficient increases with variation of β; however,
the reverse is true for slip parameter α. Skin friction coefficient decreases with the
increase in slip parameter. The maximum surface sheer stress occurs in no slip
condition (α = 0). The local Nusselt number presented in Fig. 9 decreases for
both slip parameter α and ferromagnetic field β with the increasing value of slip
parameter.

6 Concluding Remarks

The two-dimensional ferrofluid problem towards stagnation point with slip bound-
ary condition has been studied in this paper. Using similarity transformations, the
governing equations were converted into nonlinear ordinary differential equations
and the equations were solved numerically. The major findings of this study are as
follows:

1. Velocity profilef ′(η) decreases with the effect of ferromagnetic interaction
parameter β. Thus temperature profile increases with the increase in β.

2. Velocity profile increases with the increase in viscoelastic parameter N . Temper-
ature profile decreases with the increase in N .
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Fig. 9 Impact of α on Local Nusselt number

3. The skin friction coefficient reduces with the increase in ratio (ε). Similar impact
of ferromagnetic parameter β is observed on local Nusselt number.

4. The skin friction coefficient and local Nusselt number both decrease with the
increase in slip parameter α.
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Parallelization of Local Diagonal
Extrema Pattern Using a Graphical
Processing Unit and Its Optimization

B. Ashwath Rao and N. Gopalakrishna Kini

Abstract The incorporation of medical imaging devices in diagnosis has resulted
in huge collection of medical images in hospitals and health centres. A search for a
similar image from this image collection corresponding to a new medical image is a
much needed help for junior doctors or students. This task involves describing each
image in the image collection and also new image. After this, a similarity measure is
applied between the image in the image collection and new image. Texture features
have been found to be efficient in describing medical images owing to their high
discerning capability. Various texture features have been introduced by researchers.
Local Diagonal Extrema Pattern (LDEP) is a texture feature that uses only local
diagonal neighbours, and hence the dimensionality of resulting feature vector is
reduced. In this chapter we discuss parallel LDEP extractor on a GPU using CUDA.
A constant kernel execution time for medical images of various sizes has been
obtained on a GeForce GTX 1050 GPU.

1 Introduction

A new and efficient feature descriptor named Local Diagonal Extrema Pattern
(LDEP) is introduced in [1]. In this descriptor, only diagonal neighbours are
considered, as the diagonal neighbours contain most of the local information [2].
LDEP is a non-parametric visual descriptor and is useful in many applications.
LDEP can be used in real-time applications due to its computational efficiency and
simplicity. LDEP can be used in many domains, namely medical image analysis
and understanding, object recognition, biometrics, content-based image retrieval,
remote sensing, industrial inspection and document classification.
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The LDEP has been defined in terms of first-order local diagonal derivative. The
detailed steps of computing LDEP feature are described in the following subsection.

1.1 First-Order Local Diagonal Derivative

Let us consider an imageM havingm1 rows andm2 columns. Let P i,j be any centre
pixel. The t th diagonal neighbour of P i,j at a distance R be P i,j

t , where t ∈ [1, 4].
Let I i,jt and Ii,j be pixel intensities of pixels at P i,j

t and P i,j , respectively. For each
neighbour t ∈ [1, 4], we define α and β as follows:

α, β =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−R,+R t = 1

−R,+R t = 2

+R,−R t = 3

+R,+R t = 4

(1.1)

The first-order diagonal derivative for γ = 0, 1, 2 is

I
i,j
t,γ = I

i,j

(1+mod(t,4)) − I
i,j
t (1.2)

where mod(x, y) is the remainder when x is divided by y.
A function sign is defined as follows:

sign(λ) =
{

0 λ < 0

1 λ >= 0
(1.3)

Two variables τmax and τmin are defined as follows:

τmax = argmint

(
sign(I

i,j
t,γ = 0,∀ ∈ [0, 2]

)
(1.4)

τmin = argmaxt

(
sign(I

i,j
t,γ = 1,∀ ∈ [0, 2]

)
(1.5)

1.1.1 Local Diagonal Extrema Pattern

The Local Diagonal Extrema Pattern for the pixel Pi,j is defined as follows:

LDEP i,j = (LDEP1, LDEP2 . . . LDEPdim) (1.6)

where dim is the length of the pattern. The kth element of LDEP is defined as
follows:

LDEP
i,j
k =

{
1 if k = τmax + 8δ or k = τmin + 4 + 8δ

0 otherwise
(1.7)
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We define local extrema difference factor �i,j
max and �i,j

min as follows:

�
i,j
max = I i,jτmax − Ii,j (1.8)

�
i,j
min = I i,jτmin − Ii,j (1.9)

We define δ as follows:

δ =

⎧
⎪⎪⎨

⎪⎪⎩

0 if
(
sign(�

i,j
max) = 0 and sign(�i,j

min) = 0
)

1 if
(
sign(�

i,j
max) = 1 and sign(�i,j

min) = 1
)

2 else

(1.10)

The steps involved in computing LDEP pattern are shown in Fig. 1.

1.1.2 Few Sample Images and Corresponding LDEP Images

LDEP pattern can be obtained for any image. In this study, we have considered
medical images. The amount of computational work involved in determining LDEP
for an image is proportional to the size of image. We have considered medical
images of size 256 x 256, 512 x 512 and 1024 x 1024. The set of medical images
and their LDEP pattern is shown in Fig. 2.
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Fig. 1 An example showing LDEP feature computation
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Fig. 2 Original medical images and their corresponding LDEP image

1.2 GPU Programming Using CUDA

A lot of general-purpose or compute-intensive scientific computations can be
performed on a GPU after the release of general-purpose programmable GPUs.
Prior to this, only graphical computations can be performed on a GPU. NVIDIA
released CUDA programming for GPUs in 2007.

Ever since the release of CUDA, many general-purpose and scientific or indus-
trial applications have been solved using it. CUDA applications when run, generate
threads on the GPU. The developer can control the timing of threads, number of
threads and what subtask will be performed by each thread.

GPUs contain multiple streaming multiprocessors (SMs). Each SM contains
streaming processors (SPs). Threads are executed within SPs. Threads are organized
in hierarchy. Each thread belongs to a thread block. A collection of thread blocks
are organized into grids. A three-dimensional block structure and a two-dimensional
grid structure can be specified during running. Each thread will execute a function
called kernel.

The input data need to be loaded into GPU memory first. A kernel function will
read input from this memory. Similarly an output from kernel will be written to
global memory. The time for running kernel and loading or unloading data from or
to global memory can be computed with the help of CUDA events.

The organization of this chapter is as follows. In Sect. 2, we present literature
review. In Sect. 3 we discuss methodology. The results of experiments are discussed
in Sect. 4. Conclusion and future scope is discussed in Sect. 5.

2 Literature Review

LDEP feature has been found useful in medical diagnosis. Emphysema medical
image classification has been carried out by utilizing LDEP features [3]. LDEP
features are found to be useful in distinguishing intra-class and inter-class regions
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in a fingerprint. A fingerprint classification using LDEP features has been proposed
in [4].

Subsequent to the introduction of LDEP, several variants of LDEP has been
proposed. Few variants are Local Directional Extrema Number Pattern [5] and
Local Ternary Quantized Extrema Pattern [6]. Another feature Local Diagonal
Laplacian Pattern [7] has been devised in the similar manner as LDEP.

3 Methodology

In this section a description to parallel extraction of Local Diagonal Extrema feature
is provided. The image is placed in the memory after decoding. We have considered
medical images in our experiments. The DCM Toolkit [8] is used for reading
DICOM images. The sequential algorithm for computing LDEP feature for an image
is provided in Algorithm 1.

3.1 Algorithms

As shown in Algorithm 1, we take diagonal neighbours around a pixel. Then we
compute first-order local diagonal derivative. From this, we derive the feature vector.

We have used CUDA for our implementation, as CUDA implementation has
shown better results than OpenCL [9, 10]. The parallel algorithm using CUDA on a
GPU is provided in Algorithm 2.

The parallel version of LDEP feature extraction in Algorithm 2 is similar to its
sequential counterpart. However, since it is run parallel, the loop for navigating in
the x and y directions is not present. Each CUDA thread will handle computation
of feature corresponding to a centre pixel.

3.2 System Configuration

The host configuration and device configuration are provided in the following sub-
sections.

3.2.1 Host Configuration

The host configuration is detailed as follows in Table 1.
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Algorithm 1 Sequential Local Diagonal Extrema Pattern algorithm
1: procedure GETLDEP(pdata, w, h, out)
2: for ty ←1, h− 1 do
3: for tx ← 1, w − 1 do
4: centrePx ← pdata[ty ∗ w + tx]
5: diagNeigh[0] ← pdata[(ty − 1) ∗ w + tx + 1]
6: diagNeigh[1] ← pdata[(ty − 1) ∗ w + tx − 1]
7: diagNeigh[2] ← pdata[(ty + 1) ∗ w + tx − 1]
8: diagNeigh[3] ← pdata[(ty + 1) ∗ w + tx + 1]
9: maxNegDiff ← ∞

10: minPosDiff ← ∞
11: for g ← 0, 2 do
12: for t ← 0, 3 do
13: diff ← diagNeigh[(t + g + 1)mod4] − diagNeigh[t]
14: if diff < 0 and diff < maxNegDiff then
15: maxNegDiff ← diff

16: tauMax ← t + 1
17: end if
18: if diff >= 0 and diff < minPosDiff then
19: minPosDiff ← diff

20: tauMin ← t + 1
21: end if
22: end for
23: end for
24: itaumax ← diagNeigh[tauMax − 1]
25: itaumin ← diagNeigh[tauMin− 1]
26: if itaumax − centrePx >= 0 and itaumin− centrePx >= 0 then
27: delta ← 1
28: else if itaumax − centrePx < 0 and itaumin− centrePx < 0 then
29: delta ← 0
30: else
31: delta ← 2
32: end if
33: out[(ty − 1) ∗w+ tx − 1] ← 1 << (tauMax + 8 ∗ delta)+ 1 << (tauMin+

4 + 8 ∗ delta)
34: end for
35: end for
36: end procedure

3.2.2 Device Configuration

The device configuration is detailed as follows in Table 2.

3.3 Optimizations on the Algorithm

As stated in [11], memory access involving a data in global memory will take a
considerable amount of time. Hence one must reduce accessing global memory.
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Algorithm 2 Parallel Local Diagonal Extrema Pattern algorithm on a GPU using
CUDA
1: procedure GETLDEPPARALLEL(pdata, w, h, out)
2: tx ← blockIdx.x*blockDim.x+threadIdx.x
3: ty ← blockIdx.y*blockDim.y+threadIdx.y
4: if ty=0 or ty=h-1 or tx=0 or tx=w-1 then
5: return
6: end if
7: centrePx ← pdata[ty ∗ w + tx]
8: diagNeigh[0] ← pdata[(ty − 1) ∗ w + tx + 1]
9: diagNeigh[1] ← pdata[(ty − 1) ∗ w + tx − 1]

10: diagNeigh[2] ← pdata[(ty + 1) ∗ w + tx − 1]
11: diagNeigh[3] ← pdata[(ty + 1) ∗ w + tx + 1]
12: maxNegDiff ← ∞
13: minPosDiff ← ∞
14: for g ← 0, 2 do
15: for t ← 0, 3 do
16: diff ← diagNeigh[(t + g + 1)mod4] − diagNeigh[t]
17: if diff < 0 and diff < maxNegDiff then
18: maxNegDiff ← diff

19: tauMax ← t + 1
20: end if
21: if diff >= 0 and diff < minPosDiff then
22: minPosDiff ← diff

23: tauMin ← t + 1
24: end if
25: end for
26: end for
27: itaumax ← diagNeigh[tauMax − 1]
28: itaumin ← diagNeigh[tauMin− 1]
29: if itaumax − centrePx >= 0 and itaumin− centrePx >= 0 then
30: delta ← 1
31: else if itaumax − centrePx < 0 and itaumin− centrePx < 0 then
32: delta ← 0
33: else
34: delta ← 2
35: end if
36: out[(ty−1)∗w+tx−1] ← 1 << (tauMax+8∗delta)+1 << (tauMin+4+8∗delta)
37: end procedure

A GPU provides shared memory that has considerably less access time. Shared
memory is shared by all threads in a thread block. In each thread the pixel intensities
around a centre pixel are accessed. All the pixel intensities are stored in global
memory. A shared memory copy of pixel intensities is maintained to reduce the
memory access time. In the experiments the kernel execution time is reduced when
pixel intensities are accessed from shared memory rather than global memory.

However, for all block sizes the shared memory cannot be set up due to the
limited shared memory. We have utilized shared memory when block size is 16×16.
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Table 1 Host configuration CPU Intel Xeon X5550 2.67 GHz × 16

Main memory 47.2 GB

Table 2 Device
configuration

GPU GeForce GTX 1050 Ti

Global memory size 4 GB

GPU clock rate 1.62 GHz

Constant memory size 64 KB

Maximum threads per block 1024

Table 3 Sequential LDEP feature extraction time

Size (in pixels)

Function time for
non-optimized
(ms)

Program time for
non-optimized
(ms)

Function time for
optimized (ms)

Program time for
optimized (ms)

256 × 256 14.656512 28.268448 3.934208 23.712831

512 × 512 47.779839 63.436897 12.325888 27.480064

1024 × 1024 209.745926 231.110748 53.884930 73.078781

4 Experimental Results

In this section, the results of experiments are presented.

4.1 Sequential LDEP Feature Extraction Results

The sequential feature extraction time is shown in Table 3. We present the time for
images of various sizes and with, without compiler optimization.

4.2 Parallel LDEP Feature Extraction Time

The parallel feature extraction time is shown in Table 4. We present the time for
images of various sizes and with varying thread block sizes.

4.3 Performance Analysis

In this section analysis of performance is discussed. In Tables 3 and 4 the
sequential and parallel time for LDEP feature extraction is shown. The efficiency
of parallelization is measured using speedup. Speedup is the ratio of sequential time
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Table 4 Parallel LDEP feature extraction time

Size (in pixels) Thread block size Using shared memory Kernel time (ms) Program time (ms)

256 × 256 16 × 16 No 0.049472 14.982080

256 × 256 16 × 16 Yes 0.039072 15.138848

256 × 256 256 × 256 No 0.001984 16.839680

512 × 512 16 × 16 No 0.171072 17.307360

512 × 512 16 × 16 Yes 0.126880 20.827040

512 × 512 256 × 256 No 0.002080 15.524512

512 × 512 512 × 512 No 0.001952 17.130079

1024 × 1024 16 × 16 No 0.739840 23.474913

1024 × 1024 16 × 16 Yes 0.499616 23.178207

1024 × 1024 256 × 256 No 0.008448 22.589567

1024 × 1024 512 × 512 No 0.007680 25.194176

1024 × 1024 1024 × 1024 No 0.007744 26.014751

Table 5 Performance improvement measure (Speedup)

Size (in pixels)

Function speedup
with
non-optimized

Program speedup
with
non-optimized

Function speedup
with optimized

Program speedup
with optimized

256 × 256 7387.35 1.67 1982.96 1.40

512 × 512 24477.37 3.70 6314.49 1.60

1024 × 1024 27084.95 8.88 6958.28 2.80

and parallel time. Since parallel time is in the denominator, very low parallel time
will increase the speedup.

It is a practice to present the speedup considering compiler-optimized sequential
code running time. Apart from this, we have also shown speedup measured
with regular compilation (non-optimized). The speedup obtained in our study is
presented in Table 5. We have also shown overall program speedup and kernel
speedup for images of different sizes. The size of an image has a direct impact
on the amount of computation and hence directly on the time.

Graphically, the kernel speedup is shown in Fig. 3.
The overall program speedup is shown in Fig. 4.
We have obtained near constant kernel time for extracting LDEP feature.

Fig. 5 shows the relative amount of work involved in extracting LDEP feature for
256×256, 512×512 and 1024×1024 size images relative to 256×256 size image.
The relative kernel execution time for the same image sizes is shown on the right.
Hence using a Graphical Processing Unit, the kernel execution time is reduced
significantly, and we are able to achieve constant kernel execution time.
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5 Conclusion

Local Diagonal Extrema Pattern feature extraction has been parallelized and run
using a GPU. The feature extraction time is directly proportional to the size of
the image. The highest speedup of 27084.95 is obtained when measured with non-
optimized sequential function code and a speedup of 6958.28 when measured with
compiler-optimized sequential code for an image size of 1024×1024. We have
obtained near constant kernel execution time. Usage of shared memory improved
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the speed of execution. However, since shared memory within a thread block is
limited, its usage is not possible for every thread block size. By setting appropriate
grid size and thread block size, it is possible to obtain constant feature extraction
time for Local Diagonal Extrema Pattern.
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On the Recommendations for Reducing
CPU Time of Multigrid Preconditioned
Gauss–Seidel Method

Abdul Hannan Faruqi, M. Hamid Siddique, Abdus Samad, and Syed
Fahad Anwer

Abstract Gauss–Seidel method is one of the simplest available iterative methods
for solving systems of linearized equations. It can effectively reduce high-frequency
errors but performs poorly with errors of low frequency. Multigrid (MG) utilizes
this quality of the point-wise methods by successively coarsening the grid, so that
the lowest frequency errors appear as high frequency and can be easily reduced.
In this work, optimization study was performed to lower the CPU time of the
Multigrid method. We have considered several parameters, such as the number of
grid levels used, the number of inner iterations (iterations at each intermediate grid),
the overall coarsening and interpolation cycle (V and W), and the number of these
cycles in each iteration. A surrogate model is used to predict optimum value for
these parameters. In this chapter, MG is used with a Gauss–Seidel solver for a 2D
conduction problem with Dirichlet boundary condition on a 256 × 256 structured
grid. The results suggest that a W cycle is more efficient than a V cycle and should
be executed to the penultimate grid level during both restriction (coarsening) and
prolongation.

1 Introduction

Mathematical modelling of dynamic systems forms an essential part of modern
engineering design. However, the governing differential equations are often com-
plex and difficult to solve analytically. Therefore, they are discretized on a finite
number of grid points, and the resultant algebraic equations are solved using
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iterative solvers. Starting from an initial or guessed solution, these solvers are able
to quickly drop the residuals (a measure of error) to a few orders of magnitude
below zero. However, once the high-frequency errors have been smoothed out, they
become ineffective. This is because the low-frequency errors, whose wavelength
spans across almost the entire solution domain, are not felt by the point-wise solvers.
This inadequacy may be overcome by using Multigrid methods.

The Multigrid method stemmed from the pioneering work of Brandt [1] for
elliptic partial differential equations and was later applied to Euler equations by
Jameson [2]. A comprehensive review of Multigrid Schemes (particularly, Algebraic
Multigrid) can be found in the paper by Stüben [3]. It is a smart technique that
utilizes the effectiveness of the point-wise solvers for high-frequency errors, by
successively coarsening the grid and smoothing the residuals at each intermediate
grid level. In this way, even the errors of the lowest frequency can be made to appear
as high frequency and are easily reduced by the simple iterative solvers.

However, to utilize the full potential of this technique, it needs to be optimized
with respect to several inherent parameters. Vakili and Darbandi [4] have carried
out optimization study on Algebraic Multigrid used as a preconditioner to GMRES.
Suero et al. [5] have carried out extensive study of various AMG parameters for
2D steady-state heat diffusion equations. The same test problem has been taken
up in this chapter, and the results are compared with the analytical solution for
validation. We have used the CPU time as the objective of optimization as against
iteration count used in other studies and have included crucial factors like V and W
cycles and inner iterations. Unlike the manual optimization carried out in previous
studies, we have developed surrogate models to approximate the data collected from
test runs of the original code for carrying out multi-parametric optimization. The
surrogate model is then used to identify the reason of feasible solution known as
Pareto-optimal front (POF). These feasible solutions are again validated at clustered
points until the approximate POF points converge with the program results.

2 The Test Problem and Its Modelling

The two-dimensional heat conduction problem with Dirichlet boundary condition
has been taken as the test problem for this work. The governing differential equation
in Cartesian coordinates is given as

∂2T

∂x2
+ ∂2T

∂y2
= S, (1)

which is Poisson’s equation with source term

S = −2
(

1 − 6x2
)
y2
(

1 − y2
)

+
(

1 − 6y2
)
x2
(

1 − x2
)
. (2)
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Table 1 Problem specifications

Governing Equation Boundary Conditions Analytical Solution

Two-Dimensional Poisson’s equation
T(0,y) = T(x,0) = 0

T(1,y) = T(x,1) = 0
T(x,y) = (x2 − x4)(y4 − x2)∂2T

∂x2 + ∂2T
∂y2 = S

where

S = −2
(
1 − 6x2

)
y2
(
1 − y2

)+(
1 − 6y2

)
x2
(
1 − x2

)

The equation is solved over a unitary square solution domain using a 256 × 256
structured grid and discretized using the finite difference (FD) method. The derivates
are approximated by second-order accurate central differencing scheme resulting in
a system of linear equations of the form AT=b. The system is solved explicitly
using Gauss–Seidel iterative solver with Multigrid as a preconditioner. Table 1
summarizes the problem along with the boundary conditions.

3 The Multigrid Methodology

The Multigrid cycle essentially serves the purpose of reducing the low-frequency
errors that persist in the solutions obtained by using basic iterative solvers. The
computational effort required to directly reduce these errors is extremely high. The
use of Multigrid however drastically reduces the effort required to achieve the same
level of residual tolerance. This reduction is achieved by utilizing the effectiveness
of the solver in reducing high-frequency errors by successive coarsening of the
original fine grid. The complete cycle is illustrated using an example. Figure 1 shows
a hypothetical error distribution on the original fine grid.

Restriction The strategy is to carry out a few iterations on the fine grid, then
calculate the residuals, and transfer it to successively coarser grids. The low-
frequency residuals on the original grid appear as high frequency on the coarser grid
(Fig. 2). A few sweeps of the smoother at each coarser grid level (inner iterations)
effectively bring down these residuals.

Prolongation The error estimate from the coarse grid is interpolated back onto
the finer grid and added to the previous iteration’s solution. This cycle rapidly
brings down the low-frequency component of the error, thereby, greatly reducing
the computational effort.

Figure 3 shows an alternative way of looking at the effect of the Multigrid
algorithm. Using normal Gauss–Seidel solver, the solution reaches its final value in a
bounded manner. The use of Multigrid, however, relaxes the bound (by smoothening
errors on coarser grids), allowing for oscillations about the final value which get
damped with every successive iteration.
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The overall performance of this method depends on the value chosen for the
various parameters, which include

• the number of grid levels,
• the number of inner iterations,
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Multigrid preconditioned Gauss–Seidel

• the cycle (V or W), and
• the number of cycles in each iteration.

To evaluate the effect of these parameters on the performance of the Multigrid
method, we solved the test problem using an indigenously developed Multigrid code
on an 8-core i7-6th generation machine with 8 GB of RAM. The results of the code
were first validated using the analytical solution, then the computational time was
recorded for different test runs, and the optimum value was sought using surrogate-
based analysis.

4 Code Validation

We have used a 256 × 256 structured grid for solving the discretized system of
equations. The results are validated by comparing with the analytical solution.
Figure 4 shows the plot of the results for comparison.

The two plots are almost identical. For a more quantitative analysis, the values
from the two solutions are compared at a set of discrete points along the central line,
y = 0.5. The results are tabulated in Table 2.

As can be seen from the table, the maximum relative error between the actual
and the calculated values is of the order of 10−4, which is about 0.01%. Figure 5
shows the entire error distribution along the central line with a maximum near the
left boundary (x ∼= 0), where the actual solution is the smallest in magnitude. This
leads to a large relative error (∼0.4%), which drops steeply towards the right.

Hence, the numerical solution is considered sufficiently accurate to proceed for
further analysis.
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Fig. 4 Comparison of results. (a) Analytical solution. (b) Numerical solution

Table 2 Comparison of numerical and analytical results

x Tact Tcalc Error Relative error

Error distribution at y= 0.5

0 0 0 0 0

0.125 −0.00288391 −0.00288363 −2.80E−07 9.71E−05

0.25 −0.0109863 −-0.0109858 −5.00E−07 4.55E−05

0.375 −0.0226593 −0.0226587 −6.00E−07 2.65E−05

0.5 −0.0351563 −0.0351555 −8.00E−07 2.28E−05

0.625 −0.044632 −0.0446312 −8.00E−07 1.79E−05

0.75 −0.0461426 −0.0461419 −7.00E−07 1.52E−05

0.875 −0.0336456 −0.0336453 −3.00E−07 8.92E−06

1 0 0 0 0

4.1 Results

The data collected in the test runs shows some identifiable trends which shall be
discussed next. We will consider each parameter one by one.

Figures 6, 7, and 8 give an idea of what each parameter means.

1. Effect of the number of grid levels: the number of grid levels refers to the number
of restriction and prolongation operations done in a cycle. Given below is the plot
of CPU time with the number of levels along a single line in the multidimensional
design space.

It can be seen that the minimum value is reached by going up to the 7th
(penultimate) grid level.

2. Effect of the number of inner iterations: the smoothing iterations performed at
each intermediate grid level are termed as inner iterations. Their effect can be
studied by fixing the other parameters and varying the number of inner iterations.
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Fig. 5 Error distribution along the central line

Fig. 6 Graphical description of the parameters. (a) V cycle. (b) W cycle

Fig. 7 Effect of number of
grid levels
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Fig. 8 Effect of number of
inner iterations

The trend suggests that the CPU time decreases with an increase in the number
of inner iterations up to a certain point after which increasing the iterations does
not have any effect. If we go on increasing the iterations further, the CPU time
even begins to increase.

3. Effect of the cycle: the V and W cycles were considered for comparison. Table 3
gives the mean CPU time and the standard deviation of all test runs of both the
cycles (with varying values of other parameters).

Clearly, the W cycle gives better performance than the V cycle, as shall be
made clearer from the following plots.

4. Effect of the number of cycles: effect of the number of cycles is a parameter that
cannot be directly quantified. It needs to be assessed with various combinations
of the other parameters. The plots in Fig. 9 provide some useful information in
this regard and sum up the effects of the different parameters.

5 Surrogate Modelling and Analysis

To optimize a design influenced by multiple parameters, each point in the multidi-
mensional design space needs to be explored. This process is time-consuming and
computationally expensive. An efficient way to solve this issue is to develop low-
fidelity surrogate models that mimic the actual experiment. A thorough discussion
on surrogate-based analysis and optimization (SBAO) is provided in the paper by
Queipo et al. [6]. An excellent review of surrogate-based optimization of centrifugal
pumps is given by Siddique et al. [7].

Surrogate models are low-fidelity regression models constructed using data
drawn from high-fidelity models. These models can generate thousands of approx-
imate results from a few samples, thereby simplifying the process of finding the
optimal solution.
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Table 3 Comparison of V
and W cycles

CPU time (in s) V cycle W cycle

Mean 47.537804 39.17872

Standard deviation 19.362992 15.52617

5.1 Methodology

Design of Experiment The first step in surrogate modelling is the Design of
Experiment, which consists of selecting sample points from the design space for
the purpose of determining the relationship between the objectives and the design
variables. This step is the most crucial as it effects the overall output of the model.

Surrogate-Based Modelling The objective function is then evaluated at these sam-
ple points, and this database is used to train the surrogates. Various surrogate models
have been used by researchers, and each of them is problem-dependent. Some
important examples are Response Surface Approximation (RSA), Kriging Model
(KRG), and Radial Basis Neural Network (RBNN). A multiple surrogate technique
introduced by Goel et al. [8] is used to improve the reliability and robustness of
the surrogate approximation. This technique, termed as weighted-average surrogate,
assigns a weight ( ω ) to each surrogate model and then determines the approximate
model based on the weights assigned to the individual models. The most commonly
used weighing method is based on the magnitude of the errors. This scheme can be
expressed as

ωi =
∑m

j=1,j �=i ej∑m
j=1 ej

, (3)

where ej is the global database error measured for the j th surrogate model and m is
the number of models.

5.2 Optimization

To create the surrogate models, we evaluated our objective function (CPU time)
at a set of carefully selected data points. Using this as the design space, full-
factorial sampling was carried out, and the surrogate models were trained. A sample
response surface (for single V cycle) is shown in Fig. 10. Then, from the feasible
solution region of each model, the Pareto-optimal front (POF) was generated using
a weighted-average surrogate method. This POF was validated by carrying out new
tests runs at the suggested points, and the process was repeated by including the
values of the new test points, until the solution converged.
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Fig. 10 Response surface for the two-dimensional design space (for single V cycle)

6 Results and Discussion

The results obtained from surrogate modelling are summarized in Table 4. For the
same problem solved by Suero et al. [5], the CPU time of the optimized AMG
(algebraic Multigrid) algorithm on a 4097×4097 grid was 69.7 s. Due to computing
resource constraints, we were not able to use such fine grids, and hence, direct
quantitative comparisons could not be made. Nevertheless, our objective was to
perform a parametric optimization of the Multigrid algorithm that is independent
of the implementation, and the same has been achieved in the form of the optimized
values for each parameter.

The table clearly indicates that a W cycle performs better than a V cycle and
should be carried out to the penultimate grid level for best performance. It is also
observed that repeating the cycle over without transferring the error corrections
does not cause any improvement, which signifies that all existing errors have
been smoothed out in the first sweep itself. New errors will emerge only after
recalculating the solution field, and the solution will continue to oscillate about its
exact value in each sweep, but with decreasing amplitude. This can be thought to
emerge directly from the principle of stationarity of total potential [9].
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Table 4 Optimization results

Parameters

Cycle Levels Inner iterations W point CPU time (s)
from surrogate
model

Actual CPU time

Single V cycle 7 47 – 30.9 32.44

Double V cycle 5 38 – 32.7 36

Single W cycle 7 36 2 26.3 25.68

Double W cycle 7 28 2 27 27

The governing Poisson’s equation defines the gradient of heat flux (a conservative
field) and enforces a continuity over the potential function (temperature) under
the action of the source. For equilibrium, the potential of the system should be
minimum, and therefore, any deviation from the exact function would cause a rise
in potential. This causes the system to fall back to a state of lower potential. We
can think of it as the classical example of dropping a ball inside a bowl. The ball
moves up and down the bowl until it dissipates all its kinetic energy and settles at
the bottom. In a similar fashion, when using Multigrid, the solution shoots up and
down as new error values are obtained from the coarser grids. But, upon enforcing
the fine grid continuity (energy dissipation of the ball), a fall in the total potential
of the system occurs, and the amplitude of the deviations comes down. This process
is repeated in every iteration until the deviations become small enough. It can be
understood that this process is much faster than the ball dissipating all its kinetic
energy in the first half-cycle itself. It would lose a large amount of velocity on its
way and would therefore take a very long time to reach the bottom of the bowl.

7 Future Work

Based on the analogy discussed in this chapter, we hope to model the Multigrid
algorithm as a control system whose response is governed by the equivalent of
inertia, stiffness, and damping forces. Then, using the principles of control theory,
we would like to deduce the exact set of parameters for optimum performance of the
algorithm and also derive a general method to optimize the algorithm for any given
governing equation.
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Fragment Production and Its Dynamics
Using Spatial Correlations and
Monte-Carlo Based Analysis Code

Rohit Kumar and Ishita Puri

Abstract A study is carried out to see the influence of using spatial-based
clusterization algorithm and the one based on the Monte-Carlo technique coupled
with simulated annealing procedure on the fragment–fragment correlations for the
reactions of 40Ca + 40Ca at an incident energy of 35 MeV/nucleon. The phase space
of the nucleons is generated using the quantum molecular dynamics (QMD) model.
We checked and found a significant difference in the results of the multiplicity
probability of the fragments, fragment’s radii in coordinate and momentum space
from the center-of-mass of the system, relative difference between radii of the
fragments in coordinate and momentum space within the events, and correlations
between the largest fragment charge and the charge bound in the fragments per
event. A comparison of our calculations with the experimental data is also presented.

1 Introduction

The Monte-Carlo based techniques are extensively used to solve complex problems
in various different fields including physics, mathematics, and engineering. One
generally solves the problems via repeated random sampling and statistically
analyzing the results. Among various fields, the field of physics has enjoyed a
tremendous gain in understanding the vast range of phenomena ranging from
cosmological events such as supernovae explosions and formation of neutron stars
to sub-atomic phenomena such as fragment formation and quark–gluon plasma.

In theoretical nuclear physics, the Monte-Carlo simulations are used to model
various phenomena in heavy-ion collisions. These phenomena include the fission
and fusion of nuclei, multifragmentation (i.e., breaking of nuclei into many chunks),
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flow of particles/fragments, etc. [1–4]. Among these, the phenomenon of multi-
fragmentation, considered to provide vital information of nuclear matter away from
normal conditions, has been studied extensively using Monte-Carlo based computer
models. The most widely used models are quantum molecular dynamics (QMD)
model and Boltzmann–Uheling–Uhelenbeck (BUU) model [5, 6]. These models
are generally termed as primary models as they provide us the information of
each nucleon at various stages of the heavy-ion collision. It is well understood
now that as soon as the compressed phase of the system is over, the system
expands and cools down; thereafter, the phase space information of nucleons is
used to construct fragments. The obtained fragment information is compared with
experimental observations to testify the reliability of the theoretical approach.

Over the time, one realizes that to develop a computer program that constructs the
realistic fragments is very tedious task. In the last few decades, the list of fragment
recognition algorithms goes on increasing [5, 7–17]. This list includes simple
computer programs based on the spatial correlations and/or momentum correlations
among nucleons and binding energy cuts on fragments as well as the complex
ones based on the binding energy minimization of the fragments using metropolis
procedure. The use of one or the other algorithm helps to improve the consistency of
theoretical calculations with the experimental observations. Among all the cluster-
ization algorithms discussed above, the most widely accepted and successful ones
are based on spatial correlations, i.e., minimum spanning tree (MST) method [5, 10]
and energy minimization of the fragmenting System, i.e., simulated annealing
clusterization algorithm (SACA) [16]. Though the results on fragmentation using
these two algorithms are frequently compared with experimental observation in a
wide range of entrance channels [11, 18], how the fragment–fragment correlations
differ in the two remains untouched. The success of these clusterization algorithms
to reproduce the experimental data motivates us to look for fragment–fragment
correlations on an event-by-event basis. Therefore, this chapter will be dedicated
to understand the change in fragment correlations if one uses the simple spatial
correlations (i.e., MST method) or correlations among all nucleons at the same time
(i.e., SACA method). We plan to shed light on the sensitivity of event-by-event
constructed exclusive observables like the multiplicity probability of fragments,
correlation between the largest fragment charge (Zmax) and the bound charge in
fragments (Zbound ), Z ≥ 3, fragment’s correlations with respect to the center-of-
mass and fragment–fragment correlation in coordinate and momentum space toward
the MST and SACA methods.

The chapter is organized as follows: in the next section, we will give brief details
of the primary model QMD along with the clusterization algorithms used in the
study, i.e., MST and SACA methods. In Sect. 3, we discuss the results obtained
using the MST and SACA methods. Lastly, in Sect. 4, we will give a summary of
our work.
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2 Methodology

The quantum molecular dynamics (QMD) model is a Monte-Carlo based many-
body simulation program, in which each individual nucleon is represented by a
Gaussian wave packet in coordinate and momentum space [5]. In this model, the
centroid of each nucleon propagates in phase space using classical Hamilton’s
equations of motion:

ṙi = ∂H

∂pi
; ṗi = − ∂H

∂ri
, (1)

where H consists of kinetic energy and potential terms. During the propagation,
the nucleons follow curved trajectories under the combined effect of mean field and
collisions. This model is found to explain experimental results in a wide entrance
channel domain. As far as the energy of projectile is concerned, this model is
applicable starting from approximately 10 MeV/nucleon to 2 GeV/nucleon. For fine
details of the model, the reader is referred to Ref. [5].

As mentioned earlier, the QMD model, being a many-body model, generates
the collision information in the form of phase space of individual nucleons only.
Depending on the problem in hand, this phase space information of nucleons is
stored at various different time steps in the course of a reaction. This information
acts as a raw information to form fragments utilizing the clusterization algorithms.
In this chapter, we will be constructing fragments using the spatial correlations
among the centroids of the nucleons and simultaneously using spatial+momentum
correlations among the nucleons. The former one is known as the minimum
spanning tree (MST) method [5], and the latter mentioned is dubbed as simulating
annealing clusterization algorithm (SACA) [16]. In the MST method, only local
correlations are considered and a nucleon is part of a fragment, if it is closer to
any other nucleon by at least 4 fm in coordinate space. On the other hand, in
the SACA method, the correlations among nucleons in coordinate and momentum
space are considered on the global level, and the fragments are constructed using
simulated annealing technique coupled with the metropolis procedure. Within the
SACA method, the total binding energy of the fragments is calculated at each step
by aiming to obtain the fragment distribution with minimum sum of the binding
energies of the fragment or the most stable fragment configuration.

Although the MST method is suitable for certain entrance channels to explain
the experimental results, its simple structure leads to a wide acceptability and
utility [5, 10, 11]. On the other hand, the SACA method is more complex and used
only in limited studies but helps to explain the physics of heavy-ion collisions in
the projectile incident energy ranging from 10 MeV/nucleon to 25 GeV/nucleon
[4, 17, 18]. Very recently, this model has also been extended in the direction of
isotopes and hyperons in the clusters at the HypHI energies and is named as
fragment recognition in general application (FRIGA) [17]. We will be utilizing the
MST and SACA methods to understand correlations among the fragments and for
the comparison with the experimental data.
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3 Results and Discussion

For the present study, we have simulated the reactions of 40Ca+40Ca at an incident
energy of 35 MeV/nucleon for all geometries (b) using soft equation of state.
The energy-dependent nucleon–nucleon cross section is used in the present work.
Throughout the chapter, the discussion of fragments is done at the freeze-out times
only. Generally, the freeze-out time refers to the time after which the fragment
structures do not change significantly. For the SACA and MST methods, the freeze-
out times are 60 and 300 fm/c, respectively.

In many previous studies, the results of the MST and SACA methods are
compared with the experimental observations and succeed partially or fully to
explain the experimental results [4, 10, 11, 18]. This motivates us to look for the radii
of the fragments in the coordinate (r) and momentum space (p) from the center-of-
mass of the system as a function of their charge and the relative difference among
their radii in coordinate (rij ) and momentum space (pij ) as a function of product
of the corresponding charges of the fragments. In Fig. 1, we display the results of
fragments for the 40Ca+40Ca reactions at an impact parameter b = 3 fm and at an
incident energy of 35 MeV/nucleon. The left (right) panels correspond to the results
of the MST (SACA) method. From the figure, we see that the spatial radius (r)
of fragments from the center-of-mass of the system is larger for the MST method
compared to the SACA method. The results can be understood as follows: the MST
method is based on the spatial correlations among nucleons and therefore can be
applicable at the moment when nucleons are well separated from each other. The
definition of the MST method also makes it inappropriate for the earlier reaction
times. On the other hand, the SACA method that uses the global spatial+momentum
correlations among nucleons, therefore, identifies the fragments much earlier in
reaction times. The smaller spatial radii for the SACA method compared to the MST
method reflect this aspect. The difference in the freeze-out time remains the major
reason for the observed behavior. At the same time, the values of momentum radii
(p) of the fragments identified using the MST and SACA methods have opposite
behavior. Here, again the difference in freeze-out times of the MST and SACA
methods explains the results. One can see larger momentum values for the fragments
of the SACA method pointing toward the fact that the fragments are very close to
the compressed phase and expanding rapidly. Thus, the SACA method has more
capability compared to the MST method to give answers regarding the origin of
fragments and the involved dynamics. Interestingly, the trends of radii (both in
coordinate space and in momentum space) for the SACA method and MST method
are quite similar to each other when plotted against the charges of the fragments
(although very different in magnitude). With the increase in the size of the fragment,
the radii have comparatively lesser values (larger values) in coordinate (momentum)
space. At the moment, it looks like that the fragments have same nature for both the
algorithms!

In Fig. 1e–h, we display the results of the relative difference between the radii
of the fragments within each event in coordinate (rij ) (Fig. 1e, g) and momentum
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Fig. 1 (Top four panels) The radii of the fragments from the center-of-mass of the system in
coordinate space (r-fm) and momentum space (p-MeV/c) as a function of the fragment charges
and (bottom four panels) relative radii among fragments in coordinate (rij ) and momentum space
(pij ) as a function of the product of their charges for the reactions of 40Ca+40Ca (b = 3 fm) at an
incident energy of 35 MeV/nucleon. The results of fragments with the MST and SACA methods
are displayed in left and right panels, respectively

space (pij ) (Fig. 1f, h) as a function of the product of their corresponding charges.
The small and large values of relative radii correspond to the closest neighbors and
fragments originated from the target or projectile remnant, respectively. We see that
the trends of the distributions are horizontal, showing that irrespective of the size of
the fragments, the average relative distances (in coordinate space) between them are
almost same. We also note that the minimum values of relative spatial radii are more
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in case of the MST method compared to the SACA method. Again showing that the
SACA fragments are identified much earlier in coordinate space. Interestingly, the
relative momentum radii have same distribution for the MST and SACA methods.
The results of SACA method are simple to understand and are just the outcome of
the momentum radii (p) of the fragments (see Fig. 1d). Unexpectedly, the values of
the relative momentum radii (pij ) of fragments in the MST method are larger and
comparable to the SACA method. These results may look surprising but reflect the
formation of fragments from a non-equilibrated source. Earlier, this kind of non-
equilibrium condition is also observed by Furuta and Ono for the same reactions by
studying the kinetic energy and radial size of the reaction system [19]. Now, let us
understand the correlation among the charge of the largest fragment (Zmax) and the
bound charge in the fragments (Zbound ) on an event-by-event basis.

In Fig. 2, the higher order correlations among the largest fragment charge and the
total charge bound in the fragments (Z ≥ 3) are displayed for the semi-central (b
= 3 fm) reactions of 40Ca+40Ca at an incident energy of 35 MeV/nucleon. We see
that the range of Zmax varies between 4 and 17 in the case of MST method and 3
and 22 in the case of SACA method. At the same time, the values of Zbound vary
from 13 to 30 and from 5 to 35 for the MST and SACA methods, respectively. We
see the largest cross section of (Zmax , Zbound ) for the MST and SACA methods at
values of (10, 20) and (10, 21), respectively. Though the largest values are appeared
at almost the same values of Zmax and Zbound , their probability differs by more
than a factor of 2. We also find that the probability is more uniform for all values
of Zmax and Zbound in the case of SACA method compared to the MST method.
Thus, the SACA method isolates the overlapping fragments (or free nucleons and
light charged particles). The larger values of the Zbound in SACA method appear
due to the reason that at earlier times, the nucleons are close to each other; thus, if
any structured effect exists (as in the present case, 40Ca is magic nuclei), its effect
will be reduced. This is not the case in the MST method that identifies the fragments
at later times. Next, we will look for the multiplicity probability of fragments and
the total charge distribution of fragment charges.

In Fig. 3 (top panels), the results of the multiplicity probability of the light
charged particles (LCPs) [2≤ A≤4] and intermediate mass fragments (IMFs) [5≤
A ≤13] obtained using the MST and SACA methods are displayed for the semi-
central (b = 3 fm) reactions of 40Ca+40Ca at an incident energy of 35 MeV/nucleon.
The solid lines and dash-dotted lines represent the results obtained using the SACA
and MST methods, respectively. From the figure, we see that, one obtains peak
in the multiplicity probability at lower values with the MST approach compared
to the SACA method. Also, with the MST algorithm, one cannot obtain higher
multiplicity events due to the reason that many different fragments are counted
part of one fragment due to overlapping. For example, if we have two fragments
(or free nucleons or light charged fragments near a fragment) that have different
identities but due to low excitation energy lie closer to each other in space, the
MST method by definition will identify these fragments as one fragment, therefore,
giving more number of events with lower multiplicity values. On the other hand,
the SACA method minimizes binding energy of the total system and therefore can
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Fig. 2 Correlation between the largest fragment charge and the charge bound in the fragments
(Z ≥ 3) using the MST (top) and SACA (bottom) methods for the reactions of 40Ca + 40Ca at
semi-central geometries (b = 3 fm) and at an incident energy of 35 MeV/nucleon
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Fig. 3 (Upper panels) The multiplicity distribution of LCPs [2 ≤ A ≤ 4] and IMFs [5 ≤ A ≤ 13]
for the reactions of 40Ca + 40Ca at semi-central geometries (b = 3 fm) and at incident energy of
35 MeV/nucleon, and (lower panel) comparison of our theoretical calculations with experimental
data (lower panel) for b = 0–7 fm; other reaction conditions are same as in Fig. 3a, b. The meaning
of different lines and symbols is described in the text

even separate out the fragments that lie closer to one another in space. This ability
of the SACA method leads to shift the peaks of multiplicity probabilities to higher
multiplicity values compared to the MST algorithm.

In Fig. 3 (lower panel), we compare our theoretical results obtained using the
MST and SACA approaches with the experimental data in the impact parameter
range of b=0–7 fm for the reactions of 40Ca+40Ca at an incident energy of 35
MeV/nucleon. The stars represent the experimental data from Ref. [20]. The
comparison shows that the results obtained with SACA method are more consistent
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with the experimental data compared to MST calculations. We observe a slight
discrepancy with the measurements at higher fragment charge (Z) values using
MST method. On the other hand, the results obtained using SACA method are in
agreement with the experimental data. The discrepancy for fragments with charge
values of 3-5 is due to the uncertainty in the measurement of these fragments in
experiments. Lastly, the results from Figs. 1, 2, and 3 signify that the fragments
obtained by the MST and SACA methods have originated from different phase space
regions and effect the fragment correlations to a great extent.

4 Summary

We studied the influence of secondary algorithms, namely the MST and SACA
methods on fragment–fragment correlations. The collisions of 40Ca + 40Ca at an
incident energy of 35 MeV/nucleon at semi-central geometries are studied. We
found a significant difference on the results of the multiplicity probability of the
fragments, fragment radii in coordinate and momentum space from the center-of-
mass of the system, relative difference between the radii of fragments in coordinate
and momentum space within the events, and correlations among the largest fragment
charge and the charge bound in the fragments. A comparison of our calculations
with the experimental data for complete impact parameter range predicts that SACA
method can give more realistic picture of reaction dynamics compared to MST
method.
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Effect of Halo Structure in Nuclear
Reactions Using Monte-Carlo
Simulations

Sucheta, Rohit Kumar, and Rajeev K. Puri

Abstract In the present study, we have shown the effect of halo structure of nuclei
on the fragment production at projectile energy of 100 MeV/nucleon. The present
study is carried out using an n-body dynamical model that simulates the reactions
on an event-by-event basis, and fragments are constructed using spatial correlations
among nucleons. We show the quantities averaged over events and the correlation
function of fragments constructed on an event-by-event basis for halo and stable
nuclei induced reactions. Both average quantities and correlation function have
slight variation toward halo structure of nuclei at this incident energy. Therefore,
one should study the fragmentation at lower incident energies to understand the
effect of halo structure of nuclei.

1 Introduction

With the tremendous progress of the radioactive ion beam facilities, it becomes
possible to understand the exotic phenomena in the field of nuclear physics. Here,
the topic of our interest is to study the nuclei toward the drip-line physics, i.e., halo
nuclei, which has received a great attention in recent years. One defines halo nuclei
as the weakly bound nuclei having outer one or two nucleons spatially decoupled
from a tightly bound nuclear core. These fascinating nuclei were first found in 1985
in Berkely experiments by Tanihata et al. [1]. In their experiment, they observed
enormous value of root mean square (rms) radii for 11Li and 9Be nuclei as estimated
by standard A1/3 dependence while measuring the interaction cross section. Thus
far, the community of the nuclear physicists showed curiosity in the nuclear structure
and reactions followed by halo nuclei. In later studies, the halo structure is also
observed for the nuclei of 9He, 14Be, 17B, 19C, 22C, 22N, 23O, 24F, 29Ne, 31Ne, and
37Mg [2–6].
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In many previous studies, the structure of halo nuclei is included to look for
the behavior change in various phenomena such as fusion, fission at low incident
energies, and multifragmentation at intermediate incident energies. To mention a
few, in Ref. [7], the fusion cross section is studied for various stable and halo
induced reactions using different proximity-based potentials. The study revealed
that for the halo nuclei, the barrier heights are reduced effectively, and the fusion
cross section is enhanced compared to stable nuclei. In another study, Sharma et
al. [8] have examined the reactions of 24−40Mg + 12C at a projectile energy of
240 MeV/nucleon to explore the role of halo structure on cross section and various
other properties. They have used Glauber model with the conjunction of densities
from the mean field formulation. The obtained results were also compared with
the experimental observations. They were able to reproduce experimental results
via using extended radius instead of actual halo structure of nucleus. In another
study, Liu et al. [9] studied the breaking of colliding nuclei into many fragments,
i.e., multifragmentation that occurs at intermediate energies. The study was done
using the Isospin-dependent Quantum Molecular Dynamics (IQMD) model. They
have used stable nucleus of 19F and halo structured nucleus of 19B in the incident
energy range of 20 to 150 MeV/nucleon. They showed that the halo structured
nuclei increases the fragment multiplicity at low incident energies and that the halo
structure effect gradually disappears with the increase in incident energy. Opposite
behavior was reported for the momentum dissipation. Interestingly, no other study
has been reported on this topic which makes halo induced reactions a potential
candidate to provide a new physics of multifragmentation phenomenon. In the
present work, we will emphasize the role of halo structured nuclei on fragment
production in nuclear reactions using the n-body dynamical model, i.e., Quantum
Molecular Dynamics (QMD) model [10]. We will also compare the results with the
outcomes of the reactions induced by stable mass nuclei.

Our paper is organized as follows: we briefly discuss the model in Sect. 2. We
will discuss the results in Sect. 3. The summary of our work will be given in Sect. 4.

2 Quantum Molecular Dynamics (QMD) Model

The Quantum Molecular Dynamics (QMD) [10] model is an event generator that
provides the information of the reaction in the form of phase space information of
individual nucleon. Here, each nucleon is represented by a Gaussian wave function
of the form:

φi(r, ri (t),pi (t)) = 1

(2πL)3/4 e

[
i
h̄
pi (t)·r− (r−ri (t))2

4L

]

. (1)

The centroid of each nucleon is followed using Hamilton’s equations of motion.
The information of phase space of nucleons is stored on an event-by-event basis
at various time steps during an event. This information is converted into fragments
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using spatial correlations among nucleons at freeze-out times [10, 11]. Generally,
the freeze-out time of a reaction is 300 fm/c.

3 Results and Discussions

In the present study, we have generated a sample of thousands of independent events
for both halo nuclei induced reactions, i.e., 37Mg + 27Al and stable nuclei induced
reactions, i.e., 36Mg + 27Al at an incident energy of 100 MeV/nucleon. The sample
of events is generated for central geometries. The model parameters are fixed to soft
equation of state (EoS) along with the energy-based nucleon–nucleon cross section.
The sample of events has varying multiplicities, bound charges, and momentum
distribution. As it is well known that the structure of halo nuclei itself is an open
question till date, and therefore, in many previous studies, the extended radius is
used instead of actual halo structure [7, 8]. In the present study, we also followed
these studies, and therefore, the present study will only give us the upper limit of
the behavior change if one introduces the actual halo structure.

In Fig. 1, the time evolution of the largest fragment (< Amax >) and multi-
plicities of free nucleons (< NFNs >) [1 ≤ Af ≤ 1], light charged particles
(< NLCPs >) [2 ≤ Af ≤ 4], and intermediate mass fragments (< NIMFs >)
[5≤ Af ≤ Atot /3] are displayed. Here, we use two projectiles, i.e., halo (37Mg) and
stable (36Mg) on a target of 27Al. Note that the radius of (37Mg) is considered much
larger than (36Mg) due to which the nucleus has lower value of Fermi momentum
at initial stages. When the reaction happens, the different values of radii and Fermi
momentum imply to different expansion rate. The same can be seen from the figure.
The expansion of 36Mg + 27Al (solid lines) happens much faster compared to 37Mg
+ 27Al (dash-dotted lines), and this behavior is clearly seen for the size of the largest
fragment and other fragment multiplicities. Though the expansion rate is different
but up to freeze-out time, we do not see much difference in fragment structures.
To depict this behavior much clearly, in Fig. 2, we have displayed the position and
momentum space of nucleons in the reaction plane (i.e., x–z and px–pz plane). For
clarity of the figure, only ten isolated events are superimposed on one another at
freeze-out time. From the figure, we see that the nucleons expand to almost same
distance in coordinate and momentum space. There are slightly more number of
nucleons at higher position and momentum values in case of halo induced reactions
compared to stable nuclei induced reactions. By looking at this figure, one may say
that the role of halo structure is minimal on reaction dynamics at freeze-out time for
the present entrance channel. But it may happen that the fragments have originated
from different phase space regions. Therefore, in Fig. 3, we display the centroids
of fragments (LCPs and IMFs) for the same ten events. We see that the LCPs are
distributed all over the space in coordinate and momentum space for 36Mg + 27Al
compared to 37Mg + 27Al, where LCPs have slightly larger contribution from the
projectile regions due to the loose structure of halo nuclei. We also see few LCPs for
37Mg + 27Al reactions at larger position and momentum values. These fragments
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Fig. 1 The time evolution of the largest fragment (< Amax >) and multiplicities of free
nucleons (< NFNs >), light charged particles (< NLCPs >), and intermediate mass fragments
(< NIMFs >) for the central collisions of 36Mg + 27Al (solid lines) and 37Mg + 27Al (dash-
dotted lines) at an incident energy of 100 MeV/nucleon

are due to the structural change of nucleus. But, on an average, the picture is quite
similar for IMFs. Now, if we combine the results of Figs. 1, 2, and 3, we can see
that the halo structure affects the expansion rate to a great extent at initial stages of
a reaction, but due to large energy pumped to the system, it has no significant role
at final stages for the entrance channel considered in the present work. It is worth
mentioning here that the above results combined with our earlier results [12] are in
accordance with the results reported by Liu et al. [9].
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Fig. 2 The centroids of the nucleons are presented for ten events in coordinate (x–z) (top panels)
and momentum (px -pz) (bottom) reaction plane for the reactions of 36Mg + 27Al (left panels) and
37Mg + 27Al (right panels).

In the last two decades, both experimental and theoretical studies have also
shown that the multiplicity of IMFs shows a rise and fall behavior with increase
in incident energy of projectile and has a connection with the observation of liquid–
gas-like behavior of nuclear matter [13–15]. Now, if we look at Figs. 1, 2, and 3,
we may say that the multiplicity of IMFs at freeze-out stage is not much altered at
this energy. In the next paragraph of this chapter, we plan to understand the event-
by-event correlations among the intermediate mass fragments (i.e., IMFs). It may
happen that the size of the fragments differs from one another in case of stable
and halo induced reactions, but due to averaging over events, the final multiplicity
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Fig. 3 Same as Fig. 2, but for the centroids of the fragments

values came out to be same. For this, we have constructed a sample of five thousand
events with different multiplicities of IMFs and the nucleons bound in the IMFs and
calculated the yield of the events where fragments are correlated with one another. If
Y(A1, A2) is the total yield of the correlated and uncorrelated events and Y ′(A1, A2)

is the yield of the correlated events, then the normalized yield is

σ(A1, A2) = Y ′(A1, A2)

Y (A1, A2)
; (2)

here,A1 andA2 are the masses of the fragments (existing in IMFs range). This helps
to understand what is happening within the events instead of what is happening on
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Fig. 4 The correlation among the fragments’ mass on event-by-event is shown for the reactions of
36Mg + 27Al (top panel) and 37Mg + 27Al (bottom panel). Here, only intermediate mass fragments
(IMFs) are used to construct the correlation function

an average. The results are plotted in Fig. 4. From the figure, we see that the event-
by-event distribution of fragments has more cross sections of fragments in 36Mg
induced reactions compared to 37Mg. These cross sections have link with the liquid–
gas phase transition in nuclear matter. Here, the results reflect that the signals of
liquid–gas phase transition or criticality are more pronounced for 36Mg compared
to 7Mg induced reactions. As the energy considered in the present work is large,
therefore, the difference is less significant here. We expect larger differences in cross
sections at lower incident energies for stable and halo induced reactions. Lastly, if
we combine the results of Figs. 1, 2, 3, and 4, the fragmentation results have only
slight variation. If one is looking for the structure effect of halo nuclei on fragments,
one should look for quantities at lower incident energies (≤ 100 MeV/nucleon).
Therefore, it will be very interesting to study peak fragment energies and signals of
phase transition in nuclear matter which occur at lower incident energies than the
energies studied in the present work. This will be presented in future studies.

4 Summary

In the present study, we have analyzed the average quantities related to fragment
production and the ones that are based on an event-by-event basis for halo and stable
nuclei induced reactions. The work is done using the Quantum Molecular Dynamics
model, and fragments are obtained using the spatial correlations among nucleons.
Our present study showed that the free nucleons and lighter charged particles
show change in their multiplicities at freeze-out times, whereas intermediate mass
fragments have almost same values. The correlation function constructed on an
event-by-event basis showed slightly weaker signals for halo induced reactions than
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the stable ones. We found that one should study reactions at lower incident energies
to find the role of structural effects.
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Performance Analysis
of a Two-Dimensional State Multiserver
Markovian Queueing Model
with Reneging Customers

Neelam Singla and Sonia Kalra

Abstract In this chapter, a multiserver Markovian retrial queueing system with
reneging customers is studied. If all or some of the servers are idle, then entering
customer is admitted to join the system and receives his service immediately.
Primary calls arrive according to a Poisson process. On the other hand, if all,
some, or none of servers are busy, then all the admitted customers join the orbit.
Upon retrial, the customer immediately receives his service if the servers are idle;
otherwise, he may enter the orbit again or leave the system because of impatience.
The repeating calls also follow the same fashion (Poisson process). Service times
for all servers are same which follow exponential distribution. Recursive approach
is followed to derive the system’s time-dependent probabilities of exact number of
arrivals and departures from the system at when all, some, or none servers are busy.
Various measures of effectiveness are discussed, and some special cases are also
deduced.

Keywords Multiserver · Probability · Queueing · Reneging · Retrial · System

1 Introduction

Retrial queues are pervasive among most of the real-life practical situations. In
general, the retrial queueing systems are characterized by the fact that upon arrival,
a customer on finding all servers busy must leave the system, but some time later
the customer will come back to reinitiate his demand. In the process of making
retrials, a customer is said to be in orbit and is called a retrial customer. Such
queueing models with retrials can be considered as the most important tool for
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the analysis of transportation networks, operating system, communication system,
etc. One application of this model can be found in ticket booking service using
telephone facility, where multiple employees are available to process the request of
ticket booking. If a busy signal is received, the caller makes repeated attempts until
the connection is made and when the caller makes a successful phone call, then he
demands for booking tickets. A good account of retrial queues is given in Falin [1],
Falin and Templeton [2], Kulkarni and Liang [3], Artalejo [4], and Choi and Chang
[5].

The investigation of a retrial queueing systems with many servers is essentially
more difficult than single-server queueing systems. Explicit results are available
only in a few special cases. A customer will be said to have reneged if after
joining the orbit, he gets impatient and leaves without receiving service. The
concept of reneging was first studied by Haight [6]. Al-Seedy et al. [7] studied
M/M/c queue with balking and reneging and derived its transient-state solution by
using probability generating function techniques and properties of Bessel function.
Shin [8] studied M/M/c/K retrial queues with impatient customers, retrial queue
with two parallel service facilities, and retrial queue with two types of customers
which can be modeled by a level-dependent quasi-birth-death process (LDQBD)
with linear transition rates of the form λk = α + βk. Parthasarathy and Sudhesh
[9] considered a time-dependent single-server retrial system with state-dependent
arrival rate λn, service rate μn, and retrial rate θn. They found time-dependent
system size probabilities using continued fraction and presented some numerical
illustrations. Nathaniel Grier, William A. Massey, Tyrone McKoy, and Ward Whitt
[10] studied the time-dependent erlang loss model with retrials.

Pegden and Rosenshine [11] gave an initial idea about two-state for a classical
queueing model M/M/1/∞. They obtained the probability of exact number of
arrivals in the system and exact number of departures from the system by a given
time t. This measure supplies better insight into the behavior of a queueing system
than the probability of the exact number of units in the system at a given time. Indra
and Ruchi [12] obtained two-dimensional state time-dependent probabilities along
with some interesting particular cases for a single-server Markovian queueing sys-
tem where the service mechanism was non-exhaustive. Kumar et al. [13] described
some new results for a two-state batch departure multiple vacation queueing
model. Garg and Kumar [14] obtained explicit time-dependent probabilities of exact
number of arrivals and departures from the orbit of a single-server retrial queue with
impatient customers.

In this chapter, we obtain explicit time-dependent probabilities for the exact
number of arrivals and departures from the system by a given time t when all, some,
or none servers are busy for a multiserver retrial queueing system with reneging
customers.

To examine this model, the remaining work is explained in the following manner.
Section 2 presents the difference-differential equation of our queueing model with
a description of the model. The time-dependent solution of our model is obtained
in Sect. 3. Section 4 consists of the performance measures of the model along with
some special cases. In Sect. 5, the analytical results are validated numerically on
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the system performance and plotted graphically also. Finally, the chapter ends with
Sect. 6, which presents a suitable conclusion.

2 System Model

An initial model description at Markovian level is as follows—Customers arrive in
a multiserver system according to a Poisson process with rate λ. The service facility
consists of “c” identical servers. An arriving customer, who finds all the servers
busy, is blocked and temporarily leaves the service area. Such customers join a group
of unattended customers called orbit. A customer in the orbit repeats his request for
service with Poisson retrial rate θ . The service times follow exponential distribution
with rate μ both for primary customers and successful repeated attempts. When
the service is not available for a long time, the customers in a queue may become
impatient and decide to abandon the orbit with probability (1 − α) or to remain in
the orbit with probability α. The input flows, intervals between repeated attempts,
and service times are assumed to be mutually independent.

Laplace transformation f (s) of f (t) is given by:

f (s) =
∞∫

0

e−st f (t)dt, Re(s) > 0.

The Laplace inverse of Q(p)
P (p)

is:

n∑

k=1

mk∑

l=1

tmk−leakt

(mk − l)! (l − 1)!

× dl−1

dpl−1

(
Q(p)

P (p)

)
(p − ak)

mk , ∀p = ak, ai �= ak, for i �= k.

where, P(p) = (p − a1)
m1(p − a2)

m2 . . . . . . . . . (p − an)
mn .

Q(p) is a polynomial of degree <m1 + m2 + m3 + . . . . . . . . . mn − 1.

The Laplace inverse of N
a,b,c

n1,n2,n3
(s) = 1

(s+a)n1 (s+b)n2 (s+c)n3 is:
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N
a,b,c
n1,n2,n3(t) =

n3∑
l=1

l∑
m=1

e−at tn3−l (−1)m+1

(
l − 1
m− 1

)(∏l−m−1
g1=0 (n1+g1)

)(∏m−2
g2=0(n2+g2)

)

(n3−l)!(m−1)!(b−a)n2+m−1 (c−a)n1+l−m

+
n2∑
l=1

l∑
m=1

e−bt tn2−l (−1)m+1

(
l − 1
m− 1

)(∏l−m−1
g1=0 (n1+g1)

)(∏m−2
g2=0(n3+g2)

)

(n2−l)!(m−1)!(a−b)n3+m−1 (c−b)n1+l−m

+
n1∑
l=1

l∑
m=1

e−ct tn1−l (−1)m+1

(
l − 1
m− 1

)(∏l−m−1
g1=0 (n2+g1)

)(∏m−2
g2=0(n3+g2)

)

(n1−l)!(m−1)!(a−c)n3+m−1 (b−c)n2+l−m

.

If L−1{f (s)} = F(t) and L−1{g(s)} = G(t), then L−1 {f (s) g(s)} =
t∫

0
F(u)G (t − u) du = F ∗G,F ∗G is called the convolution of F and G.

2.1 The Two-Dimensional State Model

Definitions Pi,j,0(t) = Probability that there are exactly i arrivals in the system and
j departures from the system by time t when server is idle.

Pi,j,m(t) = Probability that there are exactly i arrivals in the system and j
departures from the system by time t when m servers are busy. 1 ≤ m ≤ c − 1.

Pi,j,c(t) = Probability that there are exactly i arrivals in the system and j
departures from the system by time t when all the c servers are busy.

Pi,j(t) = Probability that there are exactly i arrivals in the system and j departures
from the system by time t.

Pi,j (t) = Pi,j,0(t)+
c−1∑

m=1

Pi,j,m(t)+ Pi,j,c(t) ∀i, j i ≥ j

also

Pi,j,c(t)=0 and Pi,j,m(t)=0 for i ≤ j, 1 ≤ m ≤ c − 1; Pi,j,0(t)=0, i < j.

Initially

P0,0,0(0) = 1; Pi,j,0(0) = 0, Pi,j,c(0) = 0 and Pi,j,m(t) = 0, ∀i, j �= 0

and 1 ≤ m ≤ c − 1.
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2.2 The Difference-Differential Equations Governing
the System Are

d

dt
Pi,j,0(t) = − (λ+ (i − j) θ) Pi,j,0(t)+ μ Pi,j−1,1(t) i ≥ j ≥ 0 (1)

d
dt Pi,j,m(t) = − (λ+mμ+ (i − j −m) θ) Pi,j,m(t)+ λPi−1,j,m−1(t)

+ (i − j − (m− 1)) θPi,j,m−1(t)+ (m+ 1) μPi,j−1,m+1(t)

i > j ≥ 0, 1 ≤ m < c

(2)

d
dt Pi,j,c(t) = − (λ+ cμ+ (i − j − c) θ (1 − α)) Pi,j,c(t)+ λPi−1,j,c−1(t)

+λ (1 − δi−c,j
)
Pi−1,j,c(t)+ (i − j − (c − 1)) θPi,j,c−1(t)

+ (i − j − (c − 1)) θ (1 − α) Pi,j−1,c(t) i > 1, i > j ≥ 0
(3)

where δi−c,j =
{

1, when i − c = j

0, otherwise
.

Using the Laplace transformation f (s) of f (t) given by:

f (s) =
∞∫

0

e−st f (t)dt, Re(s) > 0

in Eqs. (1)–(3) along with the initial conditions, we have:

(s + λ+ (i − j) θ) P i,j,0(s) = μP i,j−1,1(s) i ≥ j ≥ 0 (4)

(s + λ+mμ+ (i − j −m) θ) P i,j,m(s)

= λ P i−1,j,m−1(s)+ (i − j (m− 1)) θP i,j,m−1(s)

+ (m+ 1) μP i,j−1,m+1(s) i > j ≥ 0, 1 ≤ m < c

(5)



318 N. Singla and S. Kalra

(s + λ+ cμ+ (i − j − c) θ (1 − α)) P i,j,c(s)

= λ P i−1,j,c−1(s)+ λ
(
1 − δi−c,j

)
P i−1,j,c(s)

+ (i − j − (c − 1)) θP i,j,c−1(s)

+ (i − j − (c − 1)) θ (1 − α) P i,j−1,c(s) i > j ≥ 0
(6)

where δi−c,j =
{

1, when i − c = j

0, otherwise
.

3 Transient Solution of the Model

To obtain time-dependent probabilities of our model, we solved Eqs. (4)–(6)
recursively.

P 0,0,0(s) = 1

s + λ
(7)

P i,i,0(s) = μ

(s + λ)
P i,i−1,1 i ≥ 1 (8)

Pm,0,m(s) = λ

s + λ+mμ
Pm−1,0,m−1 1 ≤ m ≤ c − 1 (9)

P i,i−m,m(s) = λ

s+λ+mμ P i−1,i−m,m−1(s)

+ (m+ 1) μ

s+λ+mμ P i,i−m−1,m+1(s) m=1 to c − 2, i=m+1 to c − 1

(10)

P c,1,c−1(s) = λ

(s + λ+ (c − 1) μ )
P c−1,1,c−2(s)+ cμ

(s + λ+ (c − 1) μ )
P c,0,c(s)

(11)
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P i,1,c−1(s) = cμ(
s + λ+ (c − 1) μ+ (i − j − (c − 1)) θ

×
i−c∏

p=0

λi−(c−1)

(s + λ+ cμ+ pθ (1 − α))
P c−1,0,c−1(s) i > c

(12)

P i,0,c(s) =
i−c∏

p=0

λi−(c−1)

(s + λ+ cμ+ pθ (1 − α))
P c−1,0,c−1(s) i ≥ c (13)

P i,j,c(s) =
⎡

⎣
i−j−(c−2)∑

k=1

⎧
⎨

⎩
i−j−c∏
p=k−1

⎛

⎝ λi−j−(c−2)−k(
s+λ+cμ+pθ(1−α)

⎞

⎠

⎫
⎬

⎭ η
′
k(s)P j+k+(c−2),j,c−1(s)

⎤

⎦

+
⎡

⎣
i−j−(c−1)∑

k=1

⎧
⎨

⎩
i−j−c∏
p=k−1

⎛

⎝ (λ)i−j−(c−1)−k kθ(1−α)(
s+λ+cμ+pθ(1−α)

⎞

⎠

⎫
⎬

⎭ P j+k+(c−1),j−1,c(s)

⎤

⎦

i ≥ j + c, j ≥ 1
(14)

where η′
k(s) =

⎧
⎪⎨

⎪⎩

1 for k = 1(
1 + (k−1)θ

(s+λ+cμ+(k−2)θ(1−α))
)

for k = 2 to i − j − (c − 1)
(k−1)θ

(s+λ+cμ+(k−2)θ(1−α)) for k = i − j − (c − 2)

.

P i,j,c−1(s) = λ
s+λ+(c−1)μ+(i−j−(c−1))θ P i−1,j,c−2(s)

+ (i−j−(c−2))θ(
s+λ+(c−1)μ+(i−j−(c−1))θ

P i,j,c−2(s)

+ cμ(
s+λ+(c−1)μ+(i−j−(c−1))θ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧
⎪⎪⎨

⎪⎪⎩

i−j−(c−3)∑
k=1

⎛

⎝
i−j−(c−1)∏
p=k−1

λi−j−(c−3)−k(
s+λ+cμ+pθ(1−α)

⎞

⎠

η′
k(s)P j+(k+1),j−1,c−1(s)

⎫
⎪⎪⎬

⎪⎪⎭

+

⎧
⎪⎪⎨

⎪⎪⎩

i−j−(c−2)∑
k=1

⎛

⎝
i−j−(c−1)∏
p=k−1

λi−j−(c−2)−k kθ(1−α)(
s+λ+cμ+pθ(1−α)

⎞

⎠

P j+k+(c−2),j−2,c(s)

⎫
⎪⎪⎬

⎪⎪⎭

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i ≥ c − 1 + j, j > 1
(15)



320 N. Singla and S. Kalra

where η′
k (s) =

⎧
⎪⎨

⎪⎩

1 for k = 1(
1 + (k−1)θ

(s+λ+cμ+(k−2)θ(1−α))
)

for k = 2 to i − j − (c − 2)
(k−1)θ

(s+λ+cμ+(k−2)θ(1−α)) for k = i − j − (c − 3)

.

P i,j,m(s) = λ(
s+λ+m μ+(i−j−m)θ

P i−1,j,m−1(s)

+ (i−j−(m−1))θ(
s+λ+mμ+(i−j−m)θ

P i,j,m−1(s)

+ (m+1)μ(
s+λ+mμ+(i−j−m)θ⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λ(
s+λ+(m+1)μ+(i−j−m)θ

P i−1,j−1,m

+ (i−j−(m−1))θ(
s+λ+(m+1)μ+(i−j−m)θ

P i,j−1,m(s)

+ (m+2)μ(
s+λ+(m+1)μ+(i−j−m)θ

P i,j−2,m+2(s)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

1 ≤ m ≤ c − 2, i ≥ j +m, j > c −m

(16)

P i,j,0(s)= (m+ 1) μ

s + λ+ (i−j) θ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
s+λ+μ+(i−j)θ P i−1,j−1,0(s)

+ (i−j+1)θ
s+λ+μ+(i−j)θ P i,j−1,0(s)

+ (m+2)μ
s+λ+μ+(i−j)θ⎡

⎢⎢⎢⎣

λ
s+λ+2μ+(i−j)θ P i−1,j−2,m+1(s)

+ (i−j+1)
s+λ+2μ+(i−j)θ P i,j−1,m+1(s)

+ (m+3)μ(
s+λ+2+(i−j)

P i,j−3,m+3(s)

⎤

⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i > j ≥ c

(17)

Taking the Inverse Laplace transform of Eqs. (7)–(17), we have:

P0,0,0(t) = e−λt (18)

Pi,i,0(t) = μe−λt ∗ Pi,i−1,1(t) i ≥ 1 (19)

Pm,0,m(t) = λe−(λ+mμ)t ∗ Pm−1,0,m−1(t) 1 ≤ m ≤ c − 1 (20)
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Pi,i−m,m(t) =λe−(λ+mμ)t ∗ Pi−1,i−m,m−1(t)+ (m+ 1) μ e−(λ+mμ)t

∗ Pi,i−1−m,m+1(t) m = 1 to c − 2, i = m+ 1 to c − 1
(21)

Pc,1,c−1(t) = λe−(λ+(c−1)μ)t ∗ Pc−1,1,c−2(t)+ cμe−(λ+(c−1)μ)t ∗ Pc,0,c(t)
(22)

Pi,1,c−1(t) =cμλi−(c−1) e−(λ+(c−1)μ+(i−j−(c−1))θ)t

×
⎧
⎨

⎩

i−c∏

p=0

1

(cμ+pθ (1−α))−
e−(cμ+pθ(1−α))t

(cμ+pθ (1−α))

⎫
⎬

⎭∗ Pc−1,0,c−1(t) i > c

(23)

Pi,0,c(t) = λi−(c−1)

⎧
⎨

⎩

i−c∏

p=0

e−(λ+cμ+pθ(1−α))
⎫
⎬

⎭ ∗ Pc−1,0,c−1(t) i ≥ c (24)

Pi,j,c(t) = λi−j−(c−1)

{
i−j−c∏
p=0

e−(λ+cμ+pθ(1−α))t
}

∗ Pj+c−1,j,c−1(t)

+
i−j−(c−1)∑

k=2
λi−j−(c−2)−k

{
i−j−c∏
p=k−1

e−(λ+cμ+pθ(1−α))t
}
∗Pj+k+c−2,j,c−1(t)

+
i−j−(c−1)∑

k=2
λi−j−(c−2)−k (k − 1) θ e−(λ+cμ+(k−2)θ(1−α))t

×
{
i−j−c∏
p=k−1

1
(cμ+pθ(1−α)) − e−(cμ+pθ(1−α))t

(cμ+pθ(1−α))

}
∗ Pj+k+c−2,j,c−1(t)

+ (i − j − c + 1) θe−(λ+cμ+(i−j−c)θ(1−α))t ∗ Pi,j,c−1(t)

+
i−j−(c−1)∑

k=1
(λ)i−j−(c−1)−kkθ (1 − α)

×
{
i−j−c∏
p=k−1

e−(λ+cμ+pθ(1−α))t
}

∗ Pj+k+c−1,j−1,c

i ≥ j + c, j ≥ 1
(25)
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Pi,j,c−1(t) =
(
λe−(λ+(c−1)μ+(i−j−(c−1))θ)t

)
∗ Pi−1,j,c−2(t)+ (i − j − (c − 2)) θ(

e−(λ+(c−1)μ+(i−j−(c−1))θ)t
)

∗ Pi,j,c−2(t)+ (cμ) λi−j−(c−2)

e−(λ+(c−1)μ+(i−j−(c−1))θ)t

{
i−j−(c−1)∏

p=0

1
(cμ+pθ(1−α)) − e−(cμ+pθ(1−α))t

(cμ+pθ(1−α))

}

∗Pj+2,j−1,c−1(t)+ (cμ) e−(λ+(c−1)μ+(i−j−(c−1))θ)t
i−j−c+2∑

k=2
λi−j−(c−3)−k

{
i−j−(c−1)∏

p=k−1

1
(cμ+pθ(1−α)) − e−(cμ+pθ(1−α))t

(cμ+pθ(1−α))

}
∗ Pj+k+1,j−1,c−1(t)

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(cμ)
i−j−(c−2)∑

k=2
(k − 1) θλi−j−(c−3)−k

{
i−j−(c−1)∏

p=k−1

e−(λ+(c−1)μ+(i−j−(c−1))θ)t

{ μ+θ{p(1−α)−(i−j−(c−1))}} { μ+θ{(k−2)(1−α)−(i−j−(c−1))}}

}

+
{
i−j−(c−1)∏

p=k−1

e−(λ+cμ+(k−2)θ(1−α))t
{−μ+θ{(i−j−(c−1))−(k−2)(1−α)}} {θ(1−α) {p−(k−2)} }

}

+
{
i−j−(c−1)∏

p=k−1

e−(λ+cμ+pθ(1−α))t
{θ(1−α) {(k−2)−p} } {θ{(i−j−(c−1))−p(1−α)}−μ }

}

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗Pj+k+1,j−1,c−1(t)+ cμ (i − j − c + 2) e−(λ+(c−1)μ+(i−j−(c−1))θ)t
{

1
(cμ+(i−j−c+1)θ(1−α)) − e−(cμ+(i−j−c+1)(1−α))t

(cμ+(i−j−c+1)θ(1−α))
}

∗Pi−c+4,j−1,c−1(t)+ cμe−(λ+(c−1)μ+(i−j−(c−1))θ)t
i−j−c+2∑

k=2
(λ)i−j−(c−2)−kkθ (1 − α){

i−j−(c−1)∏

p=k−1

1
(cμ+pθ(1−α)) − e−(cμ+pθ(1−α))t

(cμ+pθ(1−α))

}
∗ Pj+k+c−2,j−2,c(t)

i ≥ j + (c − 1) , j ≥ 1
(26)

Pi,j,m(t) = λe−{λ+mμ+(i−j−m)θ}t ∗ Pi−1,j,m−1(t)+ (i − j − (m− 1)) θ

e−{λ+mμ+(i−j−m)θ}t ∗ Pi,j,m−1(t)+ λ ((m+ 1) μ)
)
e−{λ+mμ+(i−j−m)θ}t

{
1

{(m+1)μ+(i−j−m)θ} − e−{(m+1)μ+(i−j−m)θ}t
{(m+1)μ+(i−j−m)θ}

}
∗ Pi−1,j−1,m(t)

+ (m+ 1) μ (i − j − (m− 1)) θe−{λ+mμ+(i−j−m)θ}t
{

1
{(m+1)μ+(i−j−m)θ} − e−{(m+1)μ+(i−j−m)θ}t

{(m+1)μ+(i−j−m)θ}
}

∗ Pi,j−1,m(t)+
(m+ 1) (m+ 2) μe−{λ+mμ+(i−j−m)θ}t
{

1
{(m+1)μ+(i−j−m)θ} − e−{(m+1)μ+(i−j−m)θ}t

{(m+1)μ+(i−j−m)θ}
}

∗ Pi,j−2,m+2(t)

1 ≤ m ≤ c − 2, i ≥ j +m, j > c −m

(27)
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Pi,j,0(t) =
⎡

⎣λ (m+ 1) μe−(λ+(i−j)θ}t
⎧
⎨

⎩
1

μ+(i−j)θ
} − e−{μ+(i−j)θ}t

{μ+(i−j)θ}

⎫
⎬

⎭

⎤

⎦

∗Pi−1,j−1,0(t)

+
⎡

⎣((i − j + 1) θ) (m+ 1) μe−(λ+(i−j)θ}t
⎧
⎨

⎩
1

μ+(i−j)θ
} − e−{μ+(i−j)θ}t

{μ+(i−j)θ}

⎫
⎬

⎭

⎤

⎦

∗Pi,j−1,0(t)

+
[
(m+ 1) (m+ 2) μ2λ

{
e−{λ+(i−j)θ}t

2μ2λ
+ e−{λ+μ+(i−j)θ}t

μ2 − e−{λ+(i−j)θ+2μ}t
2μ2

}]

∗Pi−1,j−2,m+1(t)

+
[
(m+ 1) (m+ 2) μ2 ((i − j + 1) θ)

{
e−{λ+(i−j)θ}t

2μ2 + e−{λ+μ+(i−j)θ}t
μ2 – e

−{λ+(i−j)θ+2μ}t
2μ2

}]

∗Pi,j−1,m+1(t)

+
[
(m+ 1) (m+ 2) (m+ 3) μ3

{
e−{λ+(i−j)θ}t

2μ2 + e−{λ+μ+(i−j)θ}t
μ2 − e−{λ+(i−j)θ+2μ}t

2μ2

}]

∗Pi,j−3,m+3(t)

i > j ≥ c

(28)

4 Performance Indices

1. The Laplace transform of the probability Pi.(t) that exactly i units arrive by time
t is:

P i.(s) =
i∑

j=0

P i,j (s) = λi

(s + λ)i+1 i > 0; (29)

And its inverse Laplace transform is:

Pi.(t) = e−λt (λt)i

i! . (30)

The basic assumption on primary arrivals is that it forms a Poisson process
and above analysis of abstract solution also verifies the same.

2. The probability that exactly j customers have been served by time t, P.j(t) in terms
of Pi,j(t) is given by:

P.j (t) =
∞∑

i=j
Pi,j (t).

3. From the abstract solution of our model, we verified that the sum of all possible
probabilities is one, i.e., taking summation over i and j on Eqs. (7)–(17) and
adding, we get:
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∞∑

i=0

i∑

j=0

{
P i,j,0(s)+ P i,j,m(s)+ P i,j,c(s)

} = 1

s
.

After taking the inverse Laplace transformation, we get (m = 1, 2, . . . c − 1):

∞∑

i=0

i∑

j=0

{
Pi,j,0(t)+ Pi,j,m(t)+ Pi,j,c(t)

} = 1.

which is a verification of our results.
4. Define Qn,m(t) as the probability that there are n customers in the system at time

t and m (m = 1, 2, . . . c) servers are busy.
When m servers are busy, it is defined by probability Qn,m(t):

Qn,m(t) =
∞∑

j=0

Pj+n+m,j,m(t) (m = 1, 2, . . . c) .

The number of customers, i.e., “n” in the orbit is obtained by using the
relation:

n = (number of arrivals − number of departures −m) .

Using the above relation and letting μ = 1 from the Eqs. (1)–(3), the sets of
equations in statistical equilibrium are:

(λ+m+ nθ)Qn,m = λ Qn,m−1 + (n+ 1) θ Qn+1,m−1 + (m+ 1) Qn,m+1

0 ≤ m ≤ c − 1, n ≥ 0 (31)

(λ+ nθ (1 − α)+ c)Qn,c = λ Qn,c−1 + (n+ 1) θ Qn+1,c−1

+λ Qn−1,c
(
1 − δn,0

)+ (n+ 1) θ (1 − α) Qn+1,c

(case m = c) , n ≥ 0
(32)

where δn,0 =
{

1, when n = 0
0, when n ≥ 1

.

5. Special Cases:

(a) Put α = 1 in Eqs. (31) and (32) for getting following equations:

(λ+m+ nθ)Qn,m = λ Qn,m−1 + (n+ 1) θ Qn+1,m−1 + (m+ 1) Qn,m+1

0 ≤ m ≤ c − 1, n ≥ 0
(33)
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(λ+ c)Qn,c = λ Qn,c−1 + (n+ 1) θ Qn+1,c−1 + λ Qn−1,c
(
1 − δn,0

)

(case m = c) , n ≥ 0
(34)

and these equations coincide with the Equations of (2.17) and (2.18) of Falin
and Templeton [2].

(b) Considering the units are singly served, i.e., c = 1 and service times of all
the units are exponentially distributed for Eqs. (18)–(28), then we get various
probabilities and these results matches with Singla and Kalra [15].

P0,0,0(t) = e−λt (35)

Pi,1,0(t) = μe−(λ+(i−1)θ)t ∗ Pi,0,1(t) i ≥ 1 (36)

Pi,i,0 =
⎡

⎣ (λμ) e
−λt { 1

μ − e−μt
μ

}
∗ Pi−1,i−1,0(t)+ (μθ) e−λt

{
1
μ − e−μt

μ

}
∗ Pi,i−1,0(t)

+ (μθ) (1 − α) e−λt
{

1
μ − e−μt

μ

}
∗ Pi,i−2,1(t)

⎤

⎦ i > 1

(37)

P1,0,1(t) = λe−λt
{

1

μ
− e−μt

μ

}
(38)

Pi,0,1(t) = (λ)i−1

{
i−1∏

m=1

e−(λ+μ+mθ(1−α))t
}

∗ P1,0,1(t) i > 1 (39)

Pi,i−1,1 =
(
λe−(λ+μ)t ∗ Pi−1,i−1,0 + θe−(λ+μ)t ∗ Pi,i−1,0 + θ (1 − α)

e−(λ+μ)t ∗ Pi,i−2,1

)
i > 1

(40)
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Pi,j,1(t) = λi−j−1

{
i−j−1∏
m=1

e−(λ+μ+mθ(1−α))t
}

tm−1

(m−1)! ∗ Pj+1,j,0(t)

i−j−1∑
k=2

[
λi−j−k

{
i−j−1∏
m=k

e−(λ+μ+mθ(1−α))t
}

tm−k
(m−k)! ∗ Pj+k,j,0(t)

]

+
i−j−1∑
k=2

[
λi−j−k (kθ)

{
i−j−1∏
m=k−1

e−(λ+μ+mθ(1−α))t
}

tm−k
(m−k)!

∗Pj+k,j,0(t)
]

+ (i − j) θe−(λ+μ+(i−j−1)θ(1−α))t ∗ Pi,j,0(t)
+

i−j−1∑
k=1

[
(λ)i−j−k−1 (k + 1) θ (1 − α)

{
i−j−1∏
m=k

e−(λ+μ+mθ(1−α))t
}

tm−k
(m−k)! ∗ Pj+k+1,j−1,1(t)

]

+
[
(λ)i−j−1

{
i−j−1∏
p=1

e−(λ+μ+pθ(1−α))t
}

tp−1

(p−1)! ∗ Pj+1,j,1(t)

]

i ≥ j + 2, j ≥ 1
(41)

Pi,j,0(t) = μλi−j e−(λ+(i−j)θ)t
{
i−j∏
m=1

1
(μ+mθ(1−α))m

−e−(μ+mθ(1−α))t m−1∑

r=0

tr

r!
1

(μ+mθ(1−α))m−r

}
∗ Pj,j−1,0(t)

+λμe−(λ+(i−j)θ)t
[
i−j∑
k=2

(λ)i−j−k
{
i−j∏
m=k

1
(μ+mθ(1−α))m−k+1

− e−(μ+mθ(1−α))t m−k∑
r=0

tr

r!
1

(μ+mθ(1−α))m−k+1−r

}
∗ Pj+k−1,j−1,0(t)

]

+λμe−(λ+(i−j)θ)t
[
i−j∑
k=2

(λ)i−j−k (kθ)
{

i−j∏
m=k−1

1
(μ+mθ(1−α))m−k+2

−e−(μ+mθ(1−α))t m−k+1∑

r=0

tr

r!
1

(μ+mθ(1−α))m−k+2−r

}
∗ Pj+k−1,j−1,0(t)

]

+μ (i − j + 1) θe−(λ+(i−j)θ)t
{

1
μ+(i−j)θ(1−α) − e−(μ+(i−j)θ(1−α))t

μ+(i−j)θ(1−α)
}

∗ Pi,j−1,0(t)

+μe−(λ+(i−j)θ)t
[
i−j∑
k=1

(λ)i−j−k (k + 1 )θ( 1 − α)

{
i−j∏
m=k

1
(μ+mθ(1−α))m−k+1

−e−(μ+mθ(1−α))t m−k∑
r=0

tr

r!
1

(μ+mθ(1−α))m−k+1−r

}
∗ Pj+k,j−2,1(t)

]

+μ(λ)i−j e−(λ+(i−j)θ)t
{
i−j∏
p=1

1
(μ+pθ(1−α))p

− e−(μ+pθ(1−α))t p−1∑

r=0

tr

r!
1

(μ+pθ(1−α))p−r

}
∗ Pj,j−1,1(t) i > j > 1

(42)
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(c) Letting c = 1 and α = 1 in Eqs. (18)–(28), we get following results and these
results coincide with that of Singla and Kalra [16].

P0,0,0(t) = e−λt (43)

Pi,1,0(t) = μe−(λ+(i−1)θ)t ∗ Pi,0,1(t) i ≥ 1 (44)

Pi,i,0(t) =
[
(λμ) e−λt

{
1

μ
−e−μt

μ

}
∗ Pi−1,i−1,0(t)+

(μθ) e−λt
{

1

μ
−e−μt

μ

}
∗ Pi,i−1,0(t)

]
i > 1

(45)

Pi,0,1(t) = λie−λt
{

1

(μ)i
−e−μ t

i−1∑

r=0

(t)r

r!
1

(μ)i−r

}
i ≥ 1 (46)

Pi,i−1,1(t) =
(
λe−(λ+μ)t ∗ Pi−1,i−1,0(t)+ θe−(λ+μ)t ∗ Pi,i−1,0(t)

)
i > 1

(47)

Pi,j,0(t) = μλi−j e−(λ+(i−j)θ)t
{

1
(μ)i−j − e−μt

i−j−1∑

r=0

(t)r

r!
1

(μ)i−j−r

}
∗ Pj,j−1,0(t)

+e−(λ+(i−j)θ)t
i−j∑
k=2

μλi−j−k+1
{

1
(μ)i−j−k+1

−e−μt
i−j−k∑

r=0

(t)r

r!
1

(μ)i−j−k−r+1

}
∗ Pj+k−1,j−1,0(t)

+e−(λ+(i−j)θ)t
i−j∑
k=2

(μkθ) λi−j−k+1
{

1
(μ)i−j−k+2

−e−μt
i−j−k+1∑

r=0

(t)r

r!
1

(μ)i−j−k−r+2

}
∗ Pj+k−1,j−1,0(t)

+e−(λ+(i−j)θ)t
{

1
μ − e−μ t

μ

}
((i − j + 1) μθ) ∗ Pi,j−1,0(t)+ μλi−j

e−(λ+(i−j)θ)t
{

1
(μ)i−j − e−μ t

i−j−1∑

r=0

(t)r

r!
1

(μ)i−j−r

}
∗ Pj,j−1,1(t)

i > j > 1
(48)
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Pi,j,1(t) = λi−j−1e−(λ+μ)t (t)
i−j−2

(i−j−2)! ∗ Pj+1,j,0(t)

e−(λ+μ)t
i−j−1∑
k=2

λi−j−k (t)i−j−k−1

(i−j−k−1)! ∗ Pj+k,j,0(t)

+e−(λ+μ)t
i−j−1∑
k=2

kθλi−j−k (t)i−j−k
(i−j−k)! ∗ Pj+k,j,0(t)+ (i − j) θ

e−(λ+μ)t ∗ Pi,j,0(t)+ λi−j−1

e−(λ+μ)t (t)i−j−2

(i−j−2)! ∗ Pj+1,j,1(t)

i ≥ j + 2, j ≥ 1
(49)

5 Numerical Solution and Graphical Representation

Using MATLAB programming, numerical results have been generated to demon-
strate how various parameters of the model influence the behavior of the system.

The numerical results are generated for the case ρ =
(
λ
μ

)
= 0.3, η =

(
θ
μ

)
= 0.6.

The probabilities against time are graphically represented through Figs. 1, 2, and 3.
To study the effect of an increasing number of servers on probability P5,5,0 of

the model, the data are generated. Figure 1 shows a plot of the probability P5,5,0
against time t for c = 2, 3, 4. From the initial condition, it is seen that with time the
probability P5,5,0 start increasing from the initial value at t = 0 and finally attained
maximum value, i.e., 1. The behavior of the probability P5,5,0 is the same for all the
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Fig. 3 Effect of servers on P5,3,2 against time

values of c. From the figure, it is concluded that as the number of servers increases,
the probability P5,5,0 increases. So we can interpret that with increase in the number
of servers, the probability of exactly the same number of arrivals and departures
attain probability at smaller values of t.

In Figs. 2 and 3, the probabilities P5,4,1 and P5,3,2 are plotted against time t for
the number of servers c = 2, 3, 4. From both the figures, it is concluded that due
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to their particular behavior, the probabilities P5,4,1 and P5,3,2 increase in the starting
times and then start decreasing for higher values of time. From these figures, it is
concluded that as the number of servers increases the highest value attained by the
probability decreases.

6 Conclusion

This system (multiserver retrial queueing system with reneging customers) can be
considered as a generalized form of many existing queueing systems provided with
many more features and related to many practical situations. The time-dependent
probabilities of exact number of arrivals and departures at when all, some, or
none servers are busy are obtained and expression for some important performance
measures gives an exhaustive picture of various systems.
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Performance Modelling
of a Discrete-Time Retrial Queue
with Preferred and Impatient Customers,
Bernoulli Vacation and Second Optional
Service

Geetika Malik and Shweta Upadhyaya

Abstract This study deals with analyzing a discrete-time retrial queue with
Bernoulli vacation. We have concentrated on analyzing a Geo/G/1 retrial queueing
model wherein server provides optional service in addition to compulsory service
to fulfil customer’s satisfaction and to improve the grade of service. On arrival of
a customer, if the server is unavailable then either that customer enters the orbit
to retry for the same service after a certain period of time or it leaves the system
without being served. Once the first essential service is completed, it is up to the
customer to opt for the second optional service or not. Also, after the completion of
each service, the server may wait for another customer or it may leave for a vacation
of random length. The steady state probabilities for different server states and queue
size of the considered model are established. Further, some numerical experiments
and results are presented.

Keywords Discrete-time queue · Preferred and impatient customers · Bernoulli
vacation · Second optional service

1 Introduction

We are all aware that retrial queues have been one of the favourite topics for
researchers from more than two decades. It has been widely explored and studied
by them but in continuous time frame. In case of discrete-time retrial queue, still
a lot of work needs to be done. In areas like call centres, mobile communication,
packet switching networks and ATMs, the transfer of units is in the form of bits
or packets of some specified length which are more suitable to model and analyze
via discrete-time systems. Yang and Li [1] were the one to explore retrial queue
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in discrete environment. They have calculated the distribution of queue size for
Geo/G/1 discrete-time retrial queue. Atencia and Moreno [2], Wang and Zhao [3],
Wang and Zhang [4] and Upadhyaya [5] are few other authors who are responsible
to generalize the same model. Atencia and Moreno [2] calculated the steady state
distribution of orbit and system sizes for a Geo/G/1 retrial model under discrete-time
scenario. Thereafter, Wang and Zhao [3] examined this model with starting failures
and general retrial time. Also, a Geo/G/1 retrial queue with negative customers as
well as an unreliable server was investigated by Wang and Zhang [4]. Upadhyaya
[5] was the one who gave various performance measures and a numerical analysis
for discrete-time queuing system wherein the server follows J-vacation policy and
may face breakdown.

It is not always necessary that an arriving customer leaves the system after
completion of its service. In real life, there are a lot of cases that customer leaves
without being served. For instance, if we make a call in a call centre and wait for
the executive to come online then we often hang up before they serve us. This type
of behaviour is very common in queueing analysis and such types of customers
are impatient customers. Another case may happen that a customer has a sort of
urgent demand on arrival and it interrupts the ongoing service to initiate its own
service. Such situation arises because of prioritized customer. Hassan et al. [6] have
investigated a single-server discrete-time queue wherein the inter-retrial times are
generally distributed and customer may balk on arrival. Rabia [7] applied direct
truncation technique and derived some very important performance measures for
discrete-time system under the condition of phase-type service. Due to the fast pace
of advancement in communication and network sector in this twenty-first century, it
is very common that that server offers an additional service which is not mandatory
and totally depends upon the customer to choose it or not. We must mention the
work done by Jain and Agarwal [8], Zhang and Zhu [9] and Chen et al. [10] for
incorporating this concept in discrete-time environment. They all have considered
service in two parts viz first essential service and second optional service. While
Zhang and Zhu [9] and Chen et al. [10] studied the Geom/G/1 model, Jain and
Agarwal included geometric batch arrival process.

As per the literature survey conducted, we can conclude that there is no
work done on retrial queue under Bernoulli vacation and second optional service
with priority and impatient customers in discrete-time environment. This is what
motivated us to analyze this model. The rest of the chapter is organized as follows:
The next section describes model details and all the suitable notations. There after
Sect. 3 gives the probability generating functions of the steady state probabilities.
Further, the performance characteristics are derived in Sect. 4 by using the results
obtained in Sect. 3. Section 5 explores some numerical examples and the effect of
some parameters on the performance measures. Finally, future scope and conclusion
is discussed in Sect. 6.
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2 Model Description

In queueing model under discrete-time phenomenon, time is presumed to be a
discrete random variable which is uniformly segmented in slot. Also, all the
exercises like arrival, retrial, departure or vacation take place at these slot boundaries
only. The assumptions made to examine this model are:

• We follow an early arrival system (EAS) according to which the arrival or retrials
occur at an epoch just after a slot boundary, say (n, n+) whereas the departures
or ending of vacation take place at an epoch just prior to a slot boundary, say
(n−, n).

• The arrival process is geometrically distributed with arrival rate γ .
• If an arriving customer finds the server idle, it immediately receives the service

with first come first serve discipline (FCFS), else if the server is busy or on
vacation then either it waits with probability η or it exits the system completely
with probability η = 1 − η (impatient behaviour).

• Server may willingly stop the ongoing service on demand of the customer just
arrived and rather provide service to it with probability β (prioritized customer).

• Once essential service is finished, it completely relies on the customer whether
to go for the second optional service (SOS) or not. The probability of choosing
this option is s where as the customer leaves the system after receiving the first
essential service (FES) with probability s = 1 − s.

• Once all the customers present in the system have completely received their
service, the server may hold back for next customer with probability v or heads
towards vacation with probability v = 1 − v.

• The two service times, i.e. first essential service and second optional service
are independent and identically distributed and follows a general distribution

{b1,i} and {b2,i} with corresponding generating functions B1(x) =
∞∑
i=1

b1,ix
i and

B2(x) =
∞∑
i=1

b2,ix
i .

• Vacation time is also assumed to be generally distributed with parameter {b3,i}
and generating function B3(x) =

∞∑
i=1

b3,ix
i .

• It may happen that on arriving when the customer finds the server busy or on
vacation and observe that there is no waiting space available in the system. In
such cases, the former enters the ‘orbit’ (pool of blocked customers) where they
can wait and retry for their service for a random period of time. Retrial process
can occur only after service completion or once the vacation is over. Retrial time

too follows general distribution {ri} with generating function R(x) =
∞∑
i=0

rix
i .

• The inter-arrival time, retrial time, service time and vacation time are all mutually
independent.
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3 Probability Generating Functions

In this section of our work, we have calculated the probability generating functions
of different server states and for the system size as well. Firstly, the state governing
equations are formed and thereafter the expressions are obtained by applying
generating function technique.

Let the model under study be represented by Zn = (Cn, ti,n, Nn), where

Cn

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if server is idle

1, if server is busy with FES.

2, if server is busy with SOS.

3, if server is on Vacation.
and Nn denotes the number of repeated customers.
If Cn = 0 and Nn > 0, t0,n denotes the remaining retrial time. When Cn = 1, 2 or 3

then t1,n, t2,n and t3,n denote remaining time during FES, SOS and vacation period,
respectively.

Thus {Zn, n ≥ 1} forms a Markov chain with state space {(0,0); (0,i,k): i ≥ 1,
k ≥ 1; (1,i,k): i ≥ 1, k ≥ 0; (2,i,k): i ≥ 1, k ≥ 0; (3,i,k): i ≥ 1, k ≥ 0}.

Next, we define the stationary probabilities as:

ξ0,0 = limn→∞ Pr {Cn = 0, Nn = 0} ,
ξ0,i,k = limn→∞ Pr

{
Cn = 0, tj,n = i, Nn = k

} ; i, k ≥ 1
ξj,i,k = limn→∞ Pr

{
Cn = j, tj,n = i, Nn = k

} ; i ≥ 1, k ≥ 0, j = 1, 2, 3

The Kolmogorov equations thus formed from above are as follows:

ξ0,0 = γ ξ0,0 + γ svξ1,1,0 + vγ ξ2,1,0 + γ ξ3,1,0 (1)

ξ0,i,k = γ ξ0,i+1,k + γ risvξ1,1,k + γ rivξ2,1,k + γ riξ3,1,k; i, k ≥ 1 (2)

ξ1,i,k = δ0,kγ b1,iξ0,0 + γ b1,iξ0,1,k+1 + (1 − δ0,k
)
γ b1,i

∞∑
j=1

ξ0,j,k + sγ vb1,iξ1,1,k

+sγ vr0b1,iξ1,1,k+1 + (γ + γ η) ξ1,i+1,k + (1 − δ0,k
)
γ ηβξ1,i+1,k−1

+ (1 − δ0,k
) ∞∑
j=2

γ ηβb1,iξ1,j,k−1 + γ vb1,iξ2,1,k

+γ vr0b1,iξ2,1,k+1 + γ b1,iξ3,1,k + γ r0b1,iξ3,1,k+1; i ≥ 1, k ≥ 0
(3)



Performance Modelling of a Discrete-Time Retrial Queue with Preferred. . . 335

ξ2,1,k = (
1 − δ0,k

)
γ sηβb2,iξ1,1,k−1 + s (γ + γ η) b2,1ξ1,1,k + (γ + γ η) ξ2,i+1,k

+ (1 − δ0,k
)
γ ηβξ2,i+1,k−1 + (1 − δ0,k

) ∞∑
j=2

γ ηβb2,iξ2,j,k−1;
i ≥ 1, k ≥ 0

(4)

ξ3,1,k = (
1 − δ0,k

)
γ svηβb3,iξ1,1,k−1 + s (γ + γ η) vb3,iξ1,1,k

+ (1 − δ0,k
)
γ sηβb3,iξ2,1,k−1 + (γ + γ η) vb3,iξ2,1,k

+ (1 − δ0,k
)
γ ηβξ3,i+1,k−1 + (γ + γ η) ξ3,i+1,k;

i ≥ 1, k ≥ 0
(5)

where δij =
{

1; i = j

0; i �= j

The normalizing condition is given by:

ξ0,0 +
∞∑

i=1

∞∑

k=1

ξ0,i,k +
∞∑

j=1

∞∑

i=1

∞∑

k=0

ξj,i,k = 1

For solving the above equations, we define the following auxiliary functions and
generating functions:

χ0,i (z) =
∞∑
k=1

ξ0,i,kz
k; χ1,i (z) =

∞∑
k=0

ξ1,i,kz
k

χ2,i (z) =
∞∑
k=0

ξ2,i,kz
k; χ3,i (z) =

∞∑
k=0

ξ3,i,kz
k; i ≥ 1

χ0 (x, z) =
∞∑
i=1

∞∑
k=1

ξ0,i,kz
kxi; χ1 (x, z) =

∞∑
i=1

∞∑
k=0

ξ1,i,kz
kxi

χ2 (x, z) =
∞∑
i=1

∞∑
k=0

ξ2,i,kz
kxi; χ3 (x, z) =

∞∑
i=1

∞∑
k=0

ξ3,i,kz
kxi; i ≥ 1

We can rewrite Eq. (1) as:

γ ξ0,0 = γ svξ1,1,0 + vγ ξ2,1,0 + γ ξ3,1,0 (6)

Multiply Eqs. (2)–(5) by zk and summing over k, we have:

χ0,i (z) = γχ0,i+1(z)+ γ svriχ1,1(z)+ γ vriχ2,1(z)+ γ riχ3,1(z)− γ riξ0,0
(7)
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χ1,i (z) =
(
z−r0
z

)
γ b1,i ξ0,0 + γ

z
b1,iχ0,1(z)+ γ b1,iχ0 (1, z)+ zγ ηβb1,i

(
χ1 (1, z)− χ1,1(z)

)

+ (γ + γ η + zγ ηβ
)
χ1,i+1(z)+

(
γ z+γ r0

z

)
b1,i

(
svχ1,1(z)+ vχ2,1(z)+ χ3,1(z)

)

(8)

χ2,i (z) = s
(
γ + γ η + zγ ηβ

)
b2,iχ1,1(z)+

(
γ + γ η + zγ ηβ

)
χ2,i+1(z)

+zγ ηβb2,i
(
χ2 (1, z)− χ2,1(z)

) (9)

χ3,i (z) = sv
(
γ + γ η + zγ ηβ

)
b3,iχ1,1(z)+ v

(
γ + γ η + zγ ηβ

)
b3,iχ2,1(z)

+ (γ + γ η + zγ ηβ
)
χ3,1(z)

(10)

Now multiplying both sides of Eqs. (7)–(10) by xi and summing over i, we get:

(
x−γ
x

)
χ0 (x, z) = γ svχ1,1(z) (R(x)− r0)+ γ vχ2,1(z) (R(x)− r0)

+γχ3,1(z) (R(x)− r0)− γ ξ0,0 (R(x)− r0)− γ ξ0,1(z)
(11)

Put x = 1 in above Equation.

γχ0 (1, z) = γ svχ1,1(z) (1 − r0)+ γ vχ2,1(z) (1 − r0)

+γχ3,1(z) (1 − r0)− γ (1 − r0) ξ0,0 − γχ0,1(z)
(12)

Let A(z) = (
γ + γ η + zγ ηβ

)
. Then we have:

(
x−A(z)

x

)
χ1 (x, z) =

(
z−r0
z

)
γB1(x)ξ0,0 + γ

z
B1(x)χ0,1(z)+ γB1(x)χ0 (1, z)

+ zγ ηβB1(x)χ1 (1, z)+
(
γ z+γ r0

z
svB1(x)− zγ ηβB1(x)− A(z)

)
χ1,1(z)

+
(
γ z+γ r0

z

)
B1(x)

(
vχ2,1(z)+ χ3,1(z)

)

(13)

(
x − A(z)

x

)
χ2 (x, z) = sA(z)B2(x)χ1,1(z)− A(z)χ2,1(z)

+ zγ ηβB2(x)
(
χ2 (1, z)− χ2,1(z)

)
(14)

(
x − A(z)

x

)
χ3 (x, z) = svA(z)B3(x)χ1,1(z)+ vA(z)B3(x)χ2,1(z)− A(z)χ3,1(z)

(15)

Putting x = γ in Eq. (11), we obtain:
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γ ξ0,0 (R (γ )− r0) = γ sv (R (γ )− r0) χ1,1(z)+ γ v (R (γ )− r0) χ2,1(z)

+γ (R (γ )− r0) χ3,1(z)− γχ0,1(z)

(16)

Now, we put x = A(z) in Eqs. (13)–(15).

−
(
z−r0
z

)
γB1 (A(z)) ξ0,0 = γ

z
B1 (A(z)) χ0,1(z)+ γB1 (A(z)) χ0 (1, z)

+zγ ηβB1 (A(z)) χ1 (1, z)

+
(
γ z+γ r0

z
svB1 (A(z))−zγ ηβB1 (A(z))−A(z)

)
χ1,1(z)

+
(
γ z+γ r0

z

)
B1 (A(z))

(
vχ2,1(z)+ χ3,1(z)

)

(17)

χ2,1(z) = sA(z)B2 (A(z))

λ(z)
χ1,1(z)+ zγ ηβB2 (A(z))

λ(z)
χ2 (1, z) (18)

where λ(z) = A(z) + zγ ηβB2(A(z))

χ3,1(z) = svB3 (A(z)) χ1,1(z)+ vB3 (A(z)) χ2,1(z) (18a)

Using Eqs. (14) and (18) we can write:

χ2,1(z) = sλ1(z)A(z)B2 (A(z))

λ2(z)

(
1 − zβ

1 − z

)
χ1,1(z) (19)

Put above equation in Eq. (18a).

χ3,1(z) = sB3 (A(z))

[
s + sλ1(z)A(z)B2 (A(z))

λ2(z)

(
1 − zβ

1 − z

)]
χ1,1(z) (19a)

where
λ1(z) = 1 − A(z)− zγ ηβ

λ2(z) = λ(z)λ1(z)+ zγ ηβB2 (A(z)) (A(z)+ zγ ηβ)

Performing some algebraic calculations in the above equations, we have the
following two equations:

γ r0B1 (A(z))
(

1−zβ
z

)
ξ0,0 = γB1 (A(z))

(
1−zβ
z

)
χ0,1(z)

+
[
B1 (A(z))G(z)

(
1−zβ
1−z

) (
z+γ r0(1−z)

z

)
− zβB1(A(z))

1−z − A(z)
]
χ1,1(z)

(20)

γ ξ0,0 (R (γ )− r0) = −γχ0,1(z)+ γG(z) (R (γ )− r0) χ1,1(z) (20a)
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where G(z) =
[
s + sλ1(z)A(z)B2(A(z))

λ2(z)

(
1−zβ
1−z

)]
(v + vB3 (A(z)))

Solving Eqs. (20) and (20a), we get:

χ0,1(z) =
zγ
(
R

(
γ
)

− r0

)
Nr1(z)

Dr(z)
ξ0,0 (21)

χ1,1(z) = Nr(z)

Dr(z)
ξ0,0 (22)

where Nr1(z) = zβB1 (A(z)) + (1 − z)A(z) − G(z)
(
1 − zβ

)
B1 (A(z)), Nr(z) =

γB1 (A(z))
(
1 − zβ

)
(1 − z)R (γ ), and Dr(z) = B1 (A(z))G(z)

(
1 − zβ

)

(z+ γR (γ ) (1 − z))− z2βB1 (A(z))− z (1 − z)A(z)

From Eqs. (19) and (19a), we have:

χ2,1(z) =
[
sλ1(z)A(z)B2 (A(z))

λ2(z)

(
1 − zβ

1 − z

)]
Nr(z)

Dr(z)
ξ0,0 (23)

χ3,1(z) = vB3 (A(z))

[
s + sλ1(z)A(z)B2 (A(z))

λ2(z)

(
1 − zβ

1 − z

)]
Nr(z)

Dr(z)
ξ0,0 (24)

Theorem 1 The Markov chain {Zn: n ≥ 1} has stationary distribution with
probability generating function given by:

χ0 (x, z) = γ xz (R(x)− R (γ ))Nr1(z)

(x − γ )Dr(z)
ξ0,0;

χ1 (x, z) = γ x
(
1 − zβ

)
(1 − z)R (γ )A(z) (B1(x)− B1 (A(z)))

(x − A(z))Dr(z)
ξ0,0

χ2 (x, z) = xsA(z)Nr2(z)Nr(z)

(x − A(z))Dr(z)
ξ0,0

χ3 (x, z)= (B3(x)−B3 (A(z)))

(x − A(z))

vxA(z)
[
sλ2(z)+sγ ηA(z)B2 (A(z))

(
1−zβ)]Nr(z)

λ2(z)Dr(z)
ξ0,0



Performance Modelling of a Discrete-Time Retrial Queue with Preferred. . . 339

where, Nr2(z)=
{
B2(x)

(
1−zβ
1−z

)
(1+zγ ηβ)−sγ ηB2(A(z))

λ2(z)

(
1−zβ)A(z)

(
1+ zβB2(x)

1−z
)}

,

ρ2 = ηβB1
(
γ + γ η + γ ηβ

)+ η
(
γ + γ η + γ ηβ

)

−ηβB1
(
γ + γ η + γ ηβ

) (
s + s

(
γ + γ η + γ ηβ

)) (
v + vB3

(
γ + γ η + γ ηβ

)) ,

ξ0,0 = ρ2
R(γ )ρ1

, and ρ1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

η
(
β
(
B1
(
γ + γ η + γ ηβ

))+ (γ + γ η + γ ηβ
))

−βB1
(
γ + γ η + γ ηβ

) [
η
(
s + s

(
γ + γ η + γ ηβ

))
(
v + vB3

(
γ + γ η + γ ηβ

))+ ss
(
γ + γ η + γ ηβ

)
]

−2
(
γ + γ η + γ ηβ

)[ (
1 − B1

(
γ + γ η + γ ηβ

))

+ vB1
(
γ + γ η + γ ηβ

) (
s + s

(
γ + γ η + γ ηβ

))
(
1 − B3

(
γ + γ η + γ ηβ

)) ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Proof Using Eqs. (11)–(15) and (21)–(24) together, we get the values of χ0(x,
z), χ1(x, z), χ2(x, z) and χ3(x, z). By applying the normalizing condition
ξ0, 0 + χ0(1, 1) + χ1(1, 1) + χ2(1, 1) + χ3(1, 1) = 1, we obtain the desired
value of ξ0.0. This completes the proof of Theorem 1.

Corollary 1 The probability generating functions of the number of customers
present in the orbit according to different states of the server are:

Idle state: χ0 (1, z) = z(1−R(γ ))Nr1(z)
Dr(z) ξ0,0

Busy with essential service: χ1 (1, z) = (1−z)R(γ )A(z)(1−B1(A(z)))
ηDr(z) ξ0,0

Busy with second optional service:

χ2 (1, z) = sA(z)
(
1−zβ)[λ2(z)−γ ηsB2(A(z))

(
1−zβ)(zγ ηβ+A(z))]Nr(z)

(1−A(z))Dr(z)λ2(z)(1−z) ξ0,0

Vacation state: χ3 (1, z) = (1−B3(A(z)))vA(z)(sλ2(z)+sγ ηA(z)B2(A(z))
(
1−zβ)Nr(z)

(1−A(z))λ2(z)Dr(z) ξ0,0

4 Performance Measures

In the following section, we have provided the probabilities of the server in different
states along with queue size and system size. This will help the user to predict an
approximate waiting time and to create a hustle free system.

• The system is empty with probability:

ξ0,0 = ρ2

R (γ ) ρ1

• The server is in idle state with probability:

χ0 (1, 1) = (R (γ )− 1)
ρ2

R (γ ) ρ1
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• The probability that server is busy with first essential service is given by:

χ1 (1, 1) = −2
(
γ + γ η + γ ηβ

) (
1 − B1

(
γ + γ η + γ ηβ

))

ρ1

• The probability that server is busy with optional service is given by:

χ2 (1, 1) = −βss (γ + γ η + γ ηβ
)
B1
(
γ + γ η + γ ηβ

)

ρ1

• The probability that the server is on vacation is found to be:

χ3 (1, 1)= −2v
(
γ + γ η + γ ηβ

)
B1
(
γ + γ η + γ ηβ

) (
1−B3

(
γ + γ η + γ ηβ

))

ρ1

• The average number of customers in the retrial orbit is given by:

Lo =
(
χ ′

0 (1, z)+ χ ′
1

(
1, z

)+χ ′
2

(
1, z

)+χ ′
3

(
1, z
))

z=1

where χ ′
0 (1, z)

∣∣
z=1 = (R (γ )− 1) ρ2

R(γ )ρ1

{
num1′′dem1′−num1′dem1′′

2dem1′′′
}

, χ ′
1 (1, z)

∣∣
z=1 =

ρ2
ηR(γ )ρ1

{
num2′′dem1′−num2′dem1′′

2dem1′′′
}

,

χ ′
2 (1, z)

∣∣
z=1 = sρ2

R(γ )ρ1

{
num3′dem2′−num3′dem2′′

2dem2′′′
}

, and χ ′
3 (1, z)

∣∣
z=1 =

vρ2
R(γ )ρ1

{
num4′dem2′−num4′dem2′′

2dem2′′′
}

• The average number of customers in the system is given by:

Ls = Lo + χ1 (1, 1)+ χ2 (1, 1)

(All the necessary symbols are given in Appendix).

5 Numerical Results

This section provides some of the very useful results obtained via performing
a programme in MATLAB software. These are basically the effect of various
parameters on the average queue length. We have also calculated the values of
different probabilities given in Sect. 4. The default parameters taken are γ = 0.95,
β = 0.9, η = 0.02, s = 0.05, v = 0.1 and r = 0.85. Further, we have assumed
that retrial time, service times (FES and SOS) and vacation time follow geometric
distribution. The respective distribution functions are taken as R(x) = r

1−rx ;

B1(x) = B2(x) = 7x
10−3x and B3(x) = v

(1−vx) . The values of the probabilities thus
obtained are ξ0,0 = 0.2464, χ0(1,1) = 0.0354, χ1(1,1) = 0.5053, χ2(1,1) = 0.2346
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Fig. 1 (a) L vs. v with varying β. (b) L vs. v with varying η
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Fig. 2 (a) L vs. s with varying η. (b) L vs. s with varying β

and χ3(1,1) = 0.2712. The average queue length is 3.0997. Moreover, we have
represented the results in the following four figures:

In Fig. 1a, b, the trend of average queue length, ‘L’, is observed against v by
varying the impatient (η) and priority (β) parameter, respectively. It can be seen that
‘L’ decreases linearly if the probability of going on vacation (v) is decreasing which
is as expected. The average queue size further decreases while we increase η and β.
Then, in Fig. 2a, b, average queue size ‘L’ is studied against the probability of going
on optional service s by varying η and β, respectively. We observe that the average
queue length first decreases sharply then gradually it is almost attaining a constant
value with an increase in η and β. Thus, we conclude that priority and impatient
behaviour can change the average queue size and therefore we can model a better
system by varying these parameters.
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6 Conclusion

We have worked on Geo/G/1 retrial queue with second optional service plus
preferred and impatient customers. Firstly, probability generating function method
is applied to analyze the underlying Markov’s process. We have then provided
the various useful results including steady state probabilities and system size. Few
numerical examples performed on MATLAB software are also given which will
help the system designers to work more efficiently. Our model is applicable in
digital and communication field wherein the data is transferred in discrete format.
The efficiency of the model can be increased by including the concepts like bulk
arrival or state-dependent server. There is also a scope of doing cost optimization
of the considered model to develop a cost-effective system under techno-economic
constraints.

A.1 Appendix

λ = (
γ + γ η + γ ηβ

)+ γ ηβB2
(
γ + γ η + γ ηβ

)

λ′ = γ ηβ + γ 2η2ββB ′
2

(
γ + γ η + γ ηβ

)+ γ ηβB2
(
γ + γ η + γ ηβ

)

λ′
1 = −γ η

λ′
2 = −γ ηλ+ γ ηβB2

(
γ + γ η + γ ηβ

)
(1 + γ η)+ γ 2η2ββB ′

2

(
γ + γ η + γ ηβ

)

λ′′
2 = 2λ′λ′

1 + 2γ 2η2ββB ′
2

(
γ + γ η + γ ηβ

)
(1 + γ η)

+2γ 2η2βB2
(
γ + γ η + γ ηβ

)+ γ 3η3ββ
2
B ′′

2

(
γ + γ η + γ ηβ

)

N ′
1 = −sγ ηβB2

(
γ + γ η + γ ηβ

)

N ′′
1 = −2sλ′

2

N ′′′
1 = −3sλ′′

2

N ′
2 = −γ ηβs (γ + γ η + γ ηβ

)
B2
(
γ + γ η + γ ηβ

)

N ′′
2 = −2sγ 2η2ββB2

(
γ+γ η + γ ηβ

)− 2sγ 2η2ββ
(
γ + γ η + γ ηβ

)
B ′

2

(
γ + γ η + γ ηβ

)

+2sγ ηβ
(
γ + γ η + γ ηβ

)
B2
(
γ + γ η + γ ηβ

)

N ′′′
2 = 6sγ 2η2ββ

2
B ′

2

(
γ + γ η + γ ηβ

)
λ′

1 − 6sγ ηββ
2
B2
(
γ + γ η + γ ηβ

)
λ′

1
−6sγ ηββ

2 (
γ + γ η + γ ηβ

)
B ′

2

(
γ + γ η + γ ηβ

)
λ′

1 + sγ 2η2ββ
2 (
γ + γ η + γ ηβ

)

B ′′
2

(
γ + γ η + γ ηβ

)
λ′

1
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N3 = v + vB3
(
γ + γ η + γ ηβ

)

N ′
3 = vγ ηβB ′

3

(
γ + γ η + γ ηβ

)

N ′′
3 = vγ 2η2β

2
B ′′

3

(
γ + γ η + γ ηβ

)

ς ′ = (
N ′

1 +N ′
2

)
N3

ς ′′ = 2N ′
1N

′
3 + 2N ′′

1N3 + 2N ′
2N

′
3 + 2N ′′

2N3

ς ′′′ = 3N ′
1N

′′
3 + 3N ′′

1N
′
3 +N ′′′

1 N3 + 3N ′
2N

′′
3 + 3N ′′

2N
′
3 +N ′′′

2 N3

E′ = −γ ηβ2B1
(
γ + γ η + γ ηβ

)
B2
(
γ + γ η + γ ηβ

)

E′′ = −2γ ηβ2B1
(
γ + γ η + γ ηβ

)
B2
(
γ + γ η + γ ηβ

)

−2γ 2η2β2βB ′
1

(
γ + γ η + γ ηβ

)
B2
(
γ + γ η + γ ηβ

)

−2βB1
(
γ + γ η + γ ηβ

)
λ′

2

F ′ = −γ 2ηββB2
(
γ + γ η + γ ηβ

)

F ′′ = −3γ ηβλ′
2 − γ 2η2ββB2

(
γ + γ η + γ ηβ

)

H ′
1 = −βB2

(
γ + γ η + γ ηβ

)
ς ′

H ′
2 = βB1

(
γ + γ η + γ ηβ

)
ς ′

H ′′
1 =2βB1

(
γ+γ η+γ ηβ) ς ′−2γ ηββB ′

1

(
γ+γ η+γ ηβ)−βB1

(
γ+γ η+γ ηβ) ς ′′

H ′′
2 = 2γ ηββB ′

1

(
γ + γ η + γ ηβ

)
ς ′ + βB1

(
γ + γ η + γ ηβ

)
ς ′′

−2βB1
(
γ + γ η + γ ηβ

)
ς ′ + 2βB1

(
γ + γ η + γ ηβ

)
ς ′ (1 − γR (γ ))

H ′′′
2 = 3γ 2η2β

2
βB ′′

1

(
γ + γ η + γ ηβ

)
ς ′ + 3γ ηββB ′

1

(
γ + γ η + γ ηβ

)
ς ′′

−6γ ηβ
2
B ′

1

(
γ + γ η + γ ηβ

)
ς ′

+6γ ηββB ′
1

(
γ + γ η + γ ηβ

)
ς ′ (1 − γR (γ ))+ βB1

(
γ + γ η + γ ηβ

)
ς ′′′

−3βB1
(
γ + γ η + γ ηβ

)
ς ′′

+3βB1
(
γ + γ η + γ ηβ

)
ς ′′ (1 − γR (γ ))− 5βB1

(
γ + γ η + γ ηβ

)
ς ′

(1 − γR (γ ))

E′
1 = −E′

E′′
1 = −2E′ − E′′

F ′
1 = −F ′

F ′′
1 = −2F ′ − F ′′
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E′′′
1 = −6βB1

(
γ+γ η+γ ηβ) λ2 − 12γ ηββB ′

1

(
γ+γ η + γ ηβ

)
λ2 − 12βB1

(
γ + γ η + γ ηβ

)
λ′

2
−3
(
γ ηβ

)2
βB ′′

1

(
γ+γ η+γ ηβ) λ2 − 6γ ηββB ′

1

(
γ + γ η + γ ηβ

)
λ′

2 − 3βB1
(
γ + γ η+γ ηβ) λ′′

2

F ′′′
1 = −7

(
γ + γ η + γ ηβ

)
λ′

2 − 6γ ηβλ2 − 6γ ηβλ′
2 − 2

(
γ + γ η + γ ηβ

)
λ′′

2

W ′
1 = −γβR (γ )B1

(
γ + γ η + γ ηβ

)

W ′′
1 = γR (γ )

(−2γ ηββB ′
1

(
γ + γ η + γ ηβ

)+ 2βB1
(
γ + γ η + γ ηβ

))

W ′
2 = −β (γ + γ η + γ ηβ

)+ γ ηββ

W ′
3 =λ′

2 − sγ η
{
γ ηββB ′

2

(
γ + γ η + γ ηβ

)− βB2
(
γ + γ η + γ ηβ

)

+γ ηβB2
(
γ + γ η + γ ηβ

)}

W ′
4 = −γ ηβB ′

3

(
γ + γ η + γ ηβ

)

W ′
5 = sλ′

2+s
{
γ ηββB2

(
γ+γ η + γ ηβ

)− (γ + γ η + γ ηβ
)
βB2

(
γ + γ η + γ ηβ

)

+γ ηβ (γ + γ η + γ ηβ
)
βB ′

2

(
γ + γ η + γ ηβ

)

num1′ = E′ + F ′ +H ′
1

num1′′ = E′′ + F ′′ +H ′′
1

dem1′ = H ′
2 + E′

1 + F ′
1

dem1′′ = H ′′
2 + E′′

1 + F ′′
1

dem1′′′ = H ′′′
2 + E′′′

1 + F ′′′
1

num2′ = −R (γ ) (γ + γ η + γ ηβ
) (

1 − B1
(
γ + γ η + γ ηβ

))

num2′′ = − 2R (γ ) γ ηβ
(
1 − B1

(
γ + γ η + γ ηβ

))

+ 2γ ηβR (γ )
(
γ + γ η + γ ηβ

)
B ′

1

(
γ + γ η + γ ηβ

)

num3′ = W ′
1W2W3

num3′′ = W ′′
1 W2W3 + 2W ′

1W
′
2W3 + 2W ′

1W2W
′
3

num4′ = W ′
1W4W5

num4′ = W ′′
1 W4W5 + 2W ′

1W
′
4W5 + 2W ′

1W4W
′
5

dem2′ = (
1 − (γ + γ η + γ ηβ

))
dem1′
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dem2′′ = −2γ ηβdem1′ + (1 − (γ + γ η + γ ηβ
))

dem1′′

dem2′′′ = −3γ ηβdem1′′ + (1 − (γ + γ η + γ ηβ
))

dem1′′′
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On the Product and Ratio of Pareto and
Maxwell Random Variables

Noura Obeid and Seifedine Kadry

Abstract The distribution of product and ratio of random variables is widely
used in many areas of biological and physical sciences, econometric, classification,
ranking, and selection and has been extensively studied by many researchers. In this
chapter, the analytical distributions of the product XY and ratio X/Y are derived
when X and Y are Pareto and Maxwell random variables, respectively, distributed
independently of each other.

Keywords Product Distribution · Ratio Distribution · Pareto Distribution ·
Maxwell Distribution · cumulative distribution function · probability density
function · Moment of order r · variance · Survival function · Hazard function.

1 Introduction

Engineering, physics, economics, order statistics, classification, ranking, selection,
number theory, genetics, biology, medicine, hydrology, and psychology, all these
applied problems depend on the distribution of product and ratio of random variables
[15, 25].

As an example of the use of the product of random variables in physics, Sornette
[26] mentions that

“. . . To mimic system size limitation, Takayasu, Sato, and Takayasu introduced
a threshold xc . . . and found a stretched exponential truncating the power-law pdf
beyond xc . Frisch and Sornette recently developed a theory of extreme deviations
generalizing the central limit theorem which, when applied to multiplication of
random variables, predicts the generic presence of stretched exponential pdfs. The
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problem thus boils down to determining the tail of the pdf for a product of random
variables . . . ”

Several authors have studied that the product distributions for independent
random variables come from the same family or different families; see [13] for t
and Rayleigh families, [9] for Pareto and Kumaraswamy families, [18] for the t and
Bessel families, and [6] for the independent generalized gamma-ratio family.

Examples of the use of the ratio of random variables include Mendelian
inheritance ratios in genetics, mass-to-energy ratios in nuclear physics, target-to-
control precipitation in meteorology, and inventory ratios in economics.

Several authors have studied that the ratio distributions for independent random
variables come from the same family or different families. For the historical review,
see [11, 12] for the normal family, [22] for Student’s t family, [3] for the Weibull
family, [8] for the noncentral chi-squared family, [23] for the gamma family, [20]
for the beta family, [16] for the logistic family, [17] for the Frechet family, [1] for
the inverted gamma family, [14] for the Laplace family, [21] for the generalized-
F family, [27] for the hypoexponential family, [25] for the gamma and Rayleigh
families, and [10] for gamma and exponential families.

In this chapter, the analytical probability distributions of XY and X/Y are
derived, where X and Y are two independent Pareto and Maxwell distributions,
respectively, with probability density functions (pdfs)

fX(x) = cac

xc+1 (1.1)

fY (y) =
√

2

π

y2e
−y2

2b2

b3 , (1.2)

respectively, for a ≤ x < ∞ , a > 0, c > 0, 0 < y < ∞, and b > 0.

2 Distribution of the Product X Y

Theorem 2.1 Suppose X and Y are independent and distributed according to (1.1)
and (1.2), respectively. Then, the cumulative distribution function (cdf ) of Z = XY

can be expressed as

FZ(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if z ≤ 0

1 − (ab)c

zc

√
2

π
2
c+1

2 +(
c + 3

2
)

−
√

2

π

ze−z2/(2a2b2)

ab
− 1√

π
+(1/2, z2/(2a2b2))

+ 2
c+1

2
(ab)c

zc

√
2

π
+(
c + 3

2
, z2/(2a2b2))

if z > 0.
(2.1)
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Proof The cumulative distribution function ofX (1.1) is FX(x) = 1−( a
x
)c. Thence,

the cumulative distribution function (cdf) of XY can be written as

FZ(z) =
∫ z/a

0
(1 −

(
ay

z

)c
)fY (y))dy. (2.2)

We can write FZ(z) as

FZ(z) =
∫ +∞

0

(
1 −

(
ay

z

)c)
fY (y)dy

−
∫ +∞

z/a

(
1 −

(
ay

z

)c)
fY (y)dy.

(2.3)

Let I1 = ∫ +∞
0 (1 − (

ay
z
)c)fY (y), and I2 = ∫ +∞

z/a
(1 − (

ay
z
))cfY (y)dy

FZ(z) = I1 − I2

Calculus of I1

I1 =
∫ +∞

0

(
1 −

(
ay

z

)c)
fY (y)

=
∫ +∞

0
fY (y)dy −

∫ +∞

0

acyc

zc
fY (y)dy

= 1 − ac

zcb3

√
2

π

∫ +∞

0
yc+2e−y2/(2b2)dy.

Let u = y2

2b2 . Then, we get

I1 = 1 − ac

zcb3

√
2

π
2
c+1

2 bc+3
∫ +∞

0
u
c+1

2 e−udu

= 1 − acbc

zc

√
2

π
2
c+1

2 +(
c + 3

2
).

Calculus of I2

I2 =
∫ +∞

z/a

(
1 −

(
ay

z

)c)
fY (y)dy

=
∫ +∞

z/a

fY (y)dy −
∫ +∞

z/a

(ay)c

zc
fY (y)dy.
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Let I = ∫ +∞
z/a

fY (y)dy and I4 = ∫ +∞
z/a

(ay)c

zc
fY (y)dy

I2 = I − I4.

Substituting u = y2

2b2 and using +(1/2, x) = √
π erfc(

√
x) for x > 0 in I , we get

I =
√

2

π

1

b3

∫ +∞

z/a

y2e−y2/(2b2)dy

= 2√
π

∫ ∞

z2/(2a2b2)

u1/2e−udu

= 2√
π

[
ze

−z2
2a2b2

ab
√

2
+

√
π

2
erfc

(
z√
2ab

)]

=
√

2

π

ze
−z2

2a2b2

ab
+ 1√

π
+

(
1

2
,

z2

2a2b2

)
.

If we substitute u = y2

2b2 in I4, we get

I4 = acbc

zc
2
c+1

2

√
2

π

∫ ∞

z2/(2a2b2)

u
c+1

2 e−udu = 2
c+1

2
acbc

zc

√
2

π
+

(
c + 3

2
,

z2

2a2b2

)
.

Then,

I2 =
√

2

π

ze
−z2

2a2b2

ab
+ 1√

π
+(

1

2
,

z2

2a2b2 )− 2
c+1

2
acbc

zc

√
2

π
+

(
c + 3

2
,

z2

2a2b2

)
.

And finally, we obtain for z > 0

FZ(z) = I1 − I2

= 1 − (ab)c

zc

√
2

π
2
c+1

2 +

(
c + 3

2

)

−
√

2

π

ze−z2/(2a2b2)

ab
− 1√

π
+
(

1/2, z2/(2a2b2)
)

+ 2
c+1

2
(ab)c

zc

√
2

π
+

(
c + 3

2
, z2/(2a2b2)

)
.
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Corollary 2.2 Assume that X and Y are independent Pareto (1.1) and Maxwell
(1.2) random variables, respectively. A representation for the probability density
function of Z = XY , when z > 0, can be written as

fZ(z) =

⎧
⎪⎨

⎪⎩

0 if z ≤ 0

c2
c+1

2 (ab)c

zc+1

√
2
π

[
+(c+3

2 )− +(c+3
2 , z2/2(ab)2)

]
if z > 0.

(2.4)

Proof The probability density function fZ(z) follows by differentiation using

d

dz

[
ze

−z2
2a2b2

]
= e

−z2
2a2b2

(
1 − z2

a2b2

)

d

dz

[
+

(
1/2,

z2

2a2b2

)]
= −√

2e
−z2

2a2b2

ab

d

dz

[
+

(
c + 3

2
,

z2

2a2b2

)]
= −zc+2e

−z2
2a2b2

2
c+1

2 (ab)c+3

d

dz

[+
(
c+3

2 , z2

2a2b2

)

zc

]
= −z2e

−z2
2a2b2

2
c+1

2 (ab)c+3
−
c+
(
c+3

2 , z2

2a2b2

)

zc+1 .

	

Corollary 2.3 Assume that X and Y are independent Pareto (1.1) and Maxwell
(1.2) random variables, respectively. A representation for the moment of order r of
Z = XY , when c > r , can be written as

E[Zr ] = c(ab)c2
c+1

2

√
2

π

αr−c

(c − r)
+

(
c + 3

2

)

− c(ab)cαr−c
√

2

π

2
c+1

2

(c − r)
+

(
c + 3

2
,

α2

2a2b2

)

− c(ab)r

√
2

π

2
r+1

2

(r − c)
+

(
r + 3

2
,

α2

2a2b2

)
.
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Proof

E[Zr ] =
∫ +∞

0
zrfZ(z)

=
∫ +∞

α

c2
c+1

2 (ab)c

zc+1−r

√
2

π
+

(
c + 3

2

)
dz

− c2
c+1

2 (ab)c

√
2

π

∫ +∞

α

+
(
c+3

2 , z2

2a2b2

)

zc+1−r dz

= c2
c+1

2 (ab)c

√
2

π

αr−c

(c − r)
+

(
c + 3

2

)

− c2
c+1

2 (ab)c

√
2

π

∫ +∞

α

+
(
c+3

2 , z2

2a2b2

)

zc+1−r dz.

Let

I
′ =

∫ +∞

α

+
(
c+3

2 , z2

2a2b2

)

zc+1−r dz,

and substituting u = z2

2a2b2 in I
′
, we obtain

I
′ = 1

2
c+2−r

2 (ab)c−r

∫ ∞
α2

2a2b2

+(c+3
2 , u)

u
c+2−r

2

du.

Integration by parts implies

I
′ = 1

2
c+2−r

2 (ab)c−r

[
21− r−c

2 αr−c

(ab)r−c(c − r)
+

(
c + 3

2
,

α2

2a2b2

)

+ 2

(r − c)
+

(
r + 1

2
+ 1,

α2

2a2b2

)]
.

And finally, we obtain

E[Zr ] = c(ab)c2
c+1

2

√
2

π

αr−c

(c − r)
+

(
c + 3

2

)

− c(ab)cαr−c
√

2

π

2
c+1

2

(c − r)
+

(
c + 3

2
,

α2

2a2b2

)

− c(ab)r

√
2

π

2
r+1

2

(r − c)
+

(
r + 3

2
,

α2

2a2b2

)
.
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Corollary 2.4 Assume that X and Y are independent Pareto (1.1) and Maxwell
(1.2) random variables, respectively. A representation for the expected value of Z =
XY , when c > 1 and r = 1, can be written as

E[Z] = c(ab)c2
c+1

2

√
2

π

α1−c

(c − 1)
+

(
c + 3

2

)

− c(ab)cα1−c
√

2

π

2
c+1

2

(c − 1)
+

(
c + 3

2
,

α2

2a2b2

)

− c(ab)

√
2

π

2

(1 − c)
+

(
2,

α2

2a2b2

)
.

Corollary 2.5 Assume that X and Y are independent Pareto (1.1) and Maxwell
(1.2) random variables, respectively. A representation for the variance of Z = XY ,
when c > 2, can be written as

σ 2 = c(ab)c2
c+1

2

√
2

π

α2−c

(c − 2)
+

(
c + 3

2

)

− c(ab)cα2−c
√

2

π

2
c+1

2

(c − 2)
+

(
c + 3

2
,

α2

2a2b2

)

− c(ab)2

√
2

π

2
3
2

(2 − c)
+

(
5

2
,

α2

2a2b2

)

−
[
c(ab)c2

c+1
2

√
2

π

α1−c

(c − 1)
+

(
c + 3

2

)

− c(ab)cα1−c
√

2

π

2
c+1

2

(c − 1)
+

(
c + 3

2
,

α2

2a2b2

)

− c(ab)

√
2

π

2

(1 − c)
+

(
2,

α2

2a2b2

)]2

.

Proof By definition of variance,

σ 2 = E[Z2] − (E[Z])2.

	

Corollary 2.6 Assume that X and Y are independent Pareto (1.1) and Maxwell
(1.2) random variables, respectively. A representation for the survival function of
Z = XY can be written as
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SZ(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if z ≤ 0

(ab)c

zc

√
2

π
2
c+1

2 +

(
c + 3

2

)

+
√

2

π

ze−z2/(2a2b2)

ab
+ 1√

π
+
(

1/2, z2/(2a2b2)
)

− 2
c+1

2
(ab)c

zc

√
2

π
+

(
c + 3

2
, z2/(2a2b2)

)

if z > 0.
(2.5)

Corollary 2.7 Assume that X and Y are independent Pareto (1.1) and Maxwell
(1.2) random variables, respectively. A representation for the Hazard function of
Z = XY for z > 0 can be written as

hZ(z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if z ≤ 0

c2
c+1

2 (ab)c

zc+1

√
2
π

[
+
(
c+3

2

)
− +

(
c+3

2 , z2

2(ab)2

) ]

(ab)c

zc

√
2
π

2
c+1

2 +
(
c+3

2

)
+
√

2
π
ze

− z2

2(ab)2

ab
+ 1√

π
+
(

1/2, z2

2(ab)2

)
− 2

c+1
2

(ab)c

zc

√
2
π
+
(
c+3

2 , z2

2(ab)2

)
if z > 0.

(2.6)

3 Distribution of the Ratio X/Y

Theorem 3.1 Assume that X and Y are independent Pareto (1.1) and Maxwell
(1.2) random variables, respectively. A representation for the cumulative distribution
function of Z = X/Y can be written as (Fig. 1)
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a=3,c=1,b=2
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0.10
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0 20 40 60 80 100
z

Fig. 1 Plots of the pdf (2.4) for a = 1, 2, 3, c = 1, and b = 2
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FZ(z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if z ≤ 0

√
2a√
πbz

e
− a2

2b2z2 + 1√
π
+

(
1/2, a2

2b2z2

)
− ac

zcbc
√
π2c/2−1 +

(
3−c

2 , a2

2b2z2

)
if z > 0, c < 3

√
2a√
πbz

e
− a2

2b2z2 + 1√
π
+

(
1/2, a2

2b2z2

)
− a3

z3b3√
2π
E c−1

2

(
a2

2b2z2

)
if z > 0, ( 3

2 − c
2 ) ∈ Z

−.

(3.1)

Proof The cumulative distribution function ofX (1.1) is FX(x) = 1−( a
x
)c. Thence,

the cumulative distribution function (cdf) of X/Y can be written as

FZ(z) = Pr(
X

Y
≤ z)

=
∫ ∞

0
FX(zy)fY (y)dy

=
∫ ∞

a/z

[
1 −

(
a

yz

)c]
fY (y)dy

=
∫ ∞

a/z

fY (y)dy −
∫ ∞

a/z

ac

yczc
fY (y)dy.

(3.2)

Let I1 = ∫∞
a/z

fY (y)dy, and I2 = ∫∞
a/z

ac

yczc
fY (y)dy

FZ(z) = I1 − I2.

Calculus of I1

I1 =
∫ ∞

a/z

√
2

π

y2

b3 e
− y2

2b2 dy.

Let u = y2

2b2 , then

I1 = 2√
π

∫ ∞
a2

2z2b2

√
ue−udu

= 2√
π

[
ae

− a2

2b2z2

bz
√

2
+

√
π

2
erfc

⎛

⎝
√

a2

2b2z2

⎞

⎠
]

= 2√
π

[
ae

− a2

2b2z2

bz
√

2
+ 1

2
+

(
1/2,

a2

2b2z2

)]

=
√

2ae
− a2

2b2z2√
πbz

+ 1√
π
+

(
1/2,

a2

2b2z2

)
.
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Calculus of I2

I2 =
∫ ∞

a/z

ac

yczc
fY (y)dy

=
∫ ∞

a/z

ac

(yz)c

√
2

π

y2

b3
e
− y2

2b2 dy

= ac

zcb3

√
2

π

∫ ∞

a/z

e
− y2

2b2

yc−2
dy.

Substituting u = y2

2b2 , we obtain

I2 = ac

zcbc
√
π2c/2−1

∫ ∞
a2

2b2z2

u−c/2+1/2e−udu

= ac

zcbc
√
π2c/2−1

+

(
3 − c

2
,

a2

2b2z2

)
.

Finally, for z > 0, we get

FZ(z) = I1 − I2

=
√

2a√
πbz

e
− a2

2b2z2 + 1√
π
+

(
1/2,

a2

2b2z2

)

− ac

zcbc
√
π2c/2−1

+

(
3 − c

2
,

a2

2b2z2

)
.

	

For ( 3

2 − c
2 ) ∈ Z

−, using Lemma 4, we have

+(
3

2
− c

2
, a2/2z2b2) =

[ a2

2z2b2

] 3
2 − c

2
Ec−1

2

(
a2

2z2b2

)
,

and

FZ(z) =
√

2a√
πbz

e
− a2

2b2z2 + 1√
π
+

(
1/2,

a2

2b2z2

)
− a3

z3b3
√

2π
Ec−1

2

(
a2

2b2z2

)
.

(3.3)

Corollary 3.2 Assume that X and Y are independent Pareto (1.1) and Maxwell
(1.2) random variables, respectively. A representation for the probability density
function of Z = X/Y , for c < 3, can be written as
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fZ(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if z ≤ 0

a3e
− a2

2b2z2√
πb3z4

(
√

2 − 1)+
cac+( 3−c

2 , a2

2b2z2
)

bc
√
π2

c
2 −1

zc+1
if z > 0, c < 3

√
2
π

a3

b3z4
e
− a2

2b2z2 − a5

b5z6
√

2π
E c−3

2
( a2

2b2z2
)+ 3a3

b3√
2πz4

E c−1
2
( a2

2b2z2
) if z > 0, ( 3

2 − c
2 ) ∈ Z

−.

(3.4)

Proof The probability density function fZ(z) in (3.5) follows by differentiation
using

d

dz

⎛

⎝e
− a2

2b2z2

z

⎞

⎠ = a2e
− a2

2b2z2

b2z4 − e
− a2

2b2z2

z2

d

dz

(
+(1/2,

a2

2b2z2 )

)
= a

√
2e

− a2

2b2z2

bz2

d

dz

⎛

⎝
+( 3−c

2 , a2

2b2z2 )

zc

⎞

⎠ = a3−ce−
a2

2b2z2

21− c
2 b3−cz4

− c+( 3−c
2 , a2

2b2z2 )
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d

dz

⎛

⎝
Ec−1

2
( a2

2b2z2 )

z3

⎞

⎠ = Ec−3
2
(
a2

2b2z2 )
a2

b2z6 − 3

z4Ec−1
2
(
a2

2b2z2 ).

	

Corollary 3.3 Assume that X and Y are independent Pareto (1.1) and Maxwell
(1.2) random variables, respectively. A representation for the moment of order r of
Z = X/Y , for α > 0, can be written as

E[Zr ] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(
√

2−1)ar

√
πbr 2

r−1
2
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(r−c)2

r−c
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][
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2 )− +( 3−r
2 , a2

2b2α2 )

]

+ cacαr−c
bc
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π2
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2 −1

(c−r)
+( 3−c

2 , a2

2b2α2 ) if c < 3

√
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2
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2
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)
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)i
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2 −i (
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−(2i+5)+r

∏i+2
j=2

[
(2j + 1)− r

]
]

+ 3a3
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√

2π
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)i
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2 −i (
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j=1

[
(2j + 1)− r
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if ( 3
2 − c

2 ) ∈ Z
−, r < 3.

(3.5)
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Proof For c < 3,

E[Zr ] =
∫ +∞

−∞
zrfZ(z)dz

=
∫ +∞

α

a3(
√

2 − 1)√
πb3

zr−4e
− a2

2b2z2 dz

+
∫ +∞

α

caczr−c−1

bc
√
π2c/2−1

+(
3 − c

2
,

a2

2b2z2
)dz.

(3.6)

Let I1 = ∫ +∞
α

a3(
√

2−1)√
πb3 zr−4e

− a2

2b2z2 dz and I2 = ∫ +∞
α

caczr−c−1

bc
√
π2c/2−1+(

3−c
2 , a2

2b2z2 )dz

E[Zr ] = I1 + I2.

Calculus of I1

Let u = a2

2b2z2 , we obtain

I1 =
∫ +∞

α

a3(
√

2 − 1)√
πb3

zr−4e
− a2

2b2z2 dz
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√
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√
πbr2
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2
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2 e−udu
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√
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√
πbr2
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2

[
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2
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2
,
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2b2α2
)

]
.

Calculus of I2
Integration by parts implies

I2 =
∫ +∞

α

caczr−c−1

bc
√
π2c/2−1

+

(
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2
,

a2

2b2z2
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bc
√
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+

(
3 − c

2
,
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2b2α2

)
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(r − c)2
−c+1

2 b−c+3

∫ ∞

α

zr−4e−a2/2b2z2
dz.

Substituting u = a2

2b2z2 in the integral above, we get
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I2 = cac

bc
√
π2c/2−1

αr−c

(c − r)
+

(
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2
,
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2b2α2
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[
+

(
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2
,
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2b2α2

)
+ +

(
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2

)]
.

And finally, we get E[Zr ] = I1 + I2.
For ( 3

2 − c
2 ) ∈ Z

−,
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∫ ∞
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dz. Then,
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Calculus of I1
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√
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Calculus of I2

I2 = a5

b5
√

2π

∫ ∞

α

z−6+rE c−3
2

(
a2

2b2z2

)
dz.

Integration by parts implies

I2 = a5

b5
√

2π

[
α−5+r

5 − r
Ec−3

2

(
a2

2b2α2

)
+
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α
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Ec−3
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(
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)
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]
.

Integration by parts of the integral above implies

I2 = a5

b5
√

2π

[
α−5+r
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Ec−3

2

(
a2

2b2α2

)

+ a2α−7+r
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(
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α
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7 − r
Ec−3

2 −2

(
a2

2b2z2

)
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]
.

By recurrence, we get I2, where E0(u) = e−u
u

.
Same proof for the calculation of I3. 	

Corollary 3.4 Assume that X and Y are independent Pareto (1.1) and Maxwell
(1.2) random variables, respectively. A representation for the survival function of
Z = X/Y can be written as

SZ(z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 ifz ≤ 0

1 −
√

2a√
πbz

e
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2b2z2 − 1√
π
+(1/2, a2

2b2z2
)+ ac

zcbc
√
π2c/2−1 +(

3−c
2 , a2

2b2z2
) if z > 0, c < 3

1 −
√

2a√
πbz

e
− a2

2b2z2 − 1√
π
+(1/2, a2

2b2z2
)+ a3

z3b3√
2π
E c−1

2
( a2

2b2z2
) if z > 0, ( 3

2 − c
2 ) ∈ Z

−.

(3.7)

Proof By definition of the survival function,

SZ(z) = 1 − FZ(z).

	

Corollary 3.5 Assume that X and Y are independent Pareto (1.1) and Maxwell
(1.2) random variables, respectively. A representation for the Hazard function of
Z = X/Y can be written as (Fig. 2)
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Fig. 2 Plots of the pdf (3.5) for a = 1, c = 1, and b = 1, 2, 3
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)
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(3.8)

Proof By definition of the hazard function,

hZ(z) = fZ(z)

SZ(z)
. (3.9)

	


4 Applications

If x is the random variable describing the amplification of the ith amplifier, then the
total amplification x = x1x2 . . . xn is also a random variable, and it is important to
know the distribution of this product. For example, suppose an electric circuit with
two amplifiers in series, X1 is a random variable that follows Pareto distribution
with parameter c = 1 and a = 2, and X2 is a random variable that follows Maxwell

3.5
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distribution with parameter b = 2, then the total amplification gain is Z = X1.X2,
and by using our result, their pdf is

fZ(z) = 8

z2

√
2

π

[
+(2)− +(2,

z2

32
)

]
.

Another example involves the distribution of ratio of two independent variables.
Let us consider the below PERT network. A PERT chart, sometimes called a PERT
diagram, is a project management tool used to schedule, organize, and coordinate
tasks within a project. It provides a graphical representation of a project’s time line
that allows project managers to break down each individual task in the project for
analysis (Figs. 3 and 4).

In the above network, we are interesting of the feasibility of starting the series
of activities, say A and B, on the same date may be investigated by considering
the random variable Z = A

B
. This idea suggests that through examination of such

probabilities as Pr(A
B
> k) and Pr(k

′
< A

B
< k), the need for rescheduling A or

B may be determined. For instance, if the time to accomplish task A is a random
variable that follows Pareto distribution with parameter c = 1 and a = 1 and task B
is a random variable that follows Maxwell distribution with parameter b = 1, then
by using our result, their pdf is

Fig. 3 An electric circuit with two amplifiers in series

Fig. 4 PERT network
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fZ(z) = (
√

2 − 1)e
− 1

2z2√
πz4

+
√

2

π

+(1, 1
2z2 )

z2 .

5 Conclusion

Determining distributions of the functions of random variables is a very crucial
task, and this problem has been attracted a number of researchers because there
are numerous applications in risk management, finance, economics, science, and
many other areas. In this chapter, we have found analytically the expressions of the
pdf, the cdf, the moment of order r , the survival function, and the Hazard function,
for the product and ratio distributions of Pareto and Maxwell random variables. Our
results have been illustrated in two figures of the probability density function (pdf)
for the distributions of XY and X/Y .
Finally, we have discussed two examples of engineering applications for the
distribution of the product and ratio.
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Performance Analysis of a Discrete-Time
Retrial Queue with Bernoulli Feedback,
Starting Failure and Single Vacation
Policy

Shweta Upadhyaya

Abstract In this study, we consider an unreliable discrete-time Geo/G/1 retrial
queue with Bernoulli feedback. During the idle time, server may leave for a
vacation of random length according to which at any time instant, when the
system becomes empty and no new customer arrives, the server may leave for
a vacation of random length and will immediately return from the vacation if
at least one customer arrives in the system. The arrival stream is composed of
repeated customers, priority customers, and impatient customers. The service time,
retrial time, and vacation time are defined by general distribution. The probability
generating function (PGF) method and supplementary variable technique (SVT) are
employed to derive expressions for system size, orbit size, and other performance
measures. A numerical illustration is provided to validate our results with the real-
life systems.

Keywords Discrete-time queue · Retrial customers · Priority customers ·
Impatient customers · Starting failure · Bernoulli feedback · Single vacation ·
System size

1 Introduction

Discrete-time retrial queueing models are most suitable for the performance eval-
uation of asynchronous transfer mode (ATM) multiplexers and switches. In these
models, the time axis is divided into fixed-length slots and the service of a customer
must start and end at slot boundaries. In computer networks, if a packet is lost, the
packet may be retransmitted at a later time by a retransmission mechanism such as
the TCP (Transmission Control Protocol). In this study, an attempt has been made
to provide a remedy for modeling some discrete-time (digital) systems of day-to-
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day life viz. Broadband Integrated Services Digital Network (BISDN) and related
computer communication technologies, wherein the models for continuous-time
queues fail. As discrete-time systems are more appropriate than their continuous-
time equivalent, these have been applied in modeling and solving many congestion
problems of real world viz. cellular communication networks in which the service
area is divided into cells. Users (mobile stations) in each cell are served by a base
station with a limited number of channels. Therefore, only a limited number of users
can communicate at the same time.

These category of queues answers many practical problems that arise in these
areas and further contribute in the advancement of telecommunication and computer
network. In the past years, lot of researchers got interested towards this field and
has done worth mentioning work. Atencia and Moreno [1] studied the Geo/G/1
model with discrete parameters and general retrial times and provided the generating
functions of the system size as well as the orbit size. Wang and Zhao [2] extensively
studied the same model with the condition of starting failures and an optional
service. Later on, Jain and Agarwal [3] got motivated from their work and worked
on the batch arrival of this model under same conditions. Aboul-Hassan et al.
[4] have discussed Geo/G/1 queue with geometric retrial time under discrete
scenario and have derived all the interesting performance measures. They have
further provided numerical results showcasing the effect of impatience on different
parameters. Gao and Liu [5] too examined GeoX/G/1 but their work included the
concept of Bernoulli feedback and impatient customers. Moreover, Lan and Tang
[6] investigated discrete-time queueing system where server may undergo working
breakdowns.

Our study on queueing models with vacation is basically motivated by its abun-
dant applications with the advancement of technology in the area of communication
systems and computer networks. The various computers, routers, and switches in
such a network may be modeled as individual queues. One of the best real-life
examples of different types of vacation is given here. In order to reduce the energy
consumption of the mobile cellular network, the base station can be switched off
while there is no call in the retrial orbit. During the period that the base station
is switched off, the new arrival fresh calls are deposited in the orbit and the base
station will seek to serve the calls from the retrial orbit after the channel is switched
on. The period when the base station is switched off may be considered as vacation
in queueing terminology. Now a days there is a tremendous increase in application
of vacation queues with discrete and retrial phenomenon. Their impact can be found
in production or inventory system and cellular network areas. A few impactful work
includes that of Gao and Wang [7], Zhang and Zhu [8], and Upadhyaya [9]. Gao
and Wang [7] described a batch arrival discrete-time queue with repeated attempts,
working vacation, and vacation interruption as well. They have obtained the desired
results by applying supplementary variable method. Zhang and Zhu [8] combined
urgent and normal vacations in a single queueing model and have further explored
the relationship between the discrete-time queue and the corresponding continuous-
time queue. Upadhyaya [9] used the generating function method and provided
performance measures for retrial queue in discrete-time parameter wherein server
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can opt at most J number of vacations. Recently, mean queue length of Geo/G/1
discrete retrial system with second optional service and vacation circumstances has
been obtained by Gunasekaran and Jeyakumar [10].

This study is motivated by modeling discrete-time Geo/G/1 unreliable retrial
queue with priority and impatient customers under Bernoulli feedback and vacation.
This work proves to be useful in solving congestion problems in analyzing discrete-
time retrial queues with priority in different frameworks. Up to the best of our
knowledge, no such type of work has been done on discrete-time retrial queues
till now.

The rest of the work done is as follows. Section 2 describes the system by stating
requisite assumptions and notations. The system size distribution has been explored
in Sect. 3 via probability generating function (PGF) method and supplementary
variable technique (SVT). We have explored various useful performance measures
of our model in Sect. 4. Numerical results including sensitivity analysis is provided
in Sect. 5. Finally, Sect. 6 includes some concluding remarks and future scope of
our work for the researchers working in this field.

2 System Description

In this study, we consider a discrete-time retrial queueing system where in server
may leave for vacation of random length when the queue becomes empty. Here,
time acts as a discrete random variable (called slot) and arrivals and departure can
only occur at boundary epochs of these time slots. Following assumptions have been
made to formulate the discrete-time Geo/G/1 retrial queueing model with Bernoulli
feedback and starting failure under single vacation policy:

We consider an early arrival system (EAS) (cf. [11]) according to which
departure occurs in the interval (n−, n) whereas arrivals and retrials occur in the
interval (n, n+), where n− is the instant immediately before the epoch n and n+ is
the instant immediately after the epoch n. The customers reach the system according
to a geometric arrival process with parameter λ (0 < λ < 1). During the busy state of
the server, the arriving customer has three choices; it enters the orbit with probability
pη = p (1 − η) (0 < p ≤ 1, 0 ≤ η ≤ 1) to retry for service (the customer is called
repeated customer) or interrupts the customer under service to start his own service
with probability pη (the customer is called priority customer) or departs from the
system with probability p = 1 − p without being served (the customer is called
impatient customer). During the free time of the server, the customer at the head of
the retrial queue initiates its service immediately and the interrupted customer joins
the orbit. The interrupted customer may start the service from the beginning. The
retrial time begins only after service completion or repair completion or vacation
completion. It is assumed that the time between successive retrials follow general

distribution {ςi}∞0 with generating function 	(x) =
∞∑
i=0

ςix
i .
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When an arbitrary customer finds that the server is free, it forces the server to
activate and start its service immediately with probability “ϑ”; otherwise, when the
server is not activated successfully with probability “ϑ = 1−ϑ” due to some faults,
it is sent to repair by the repairman. The server may go for a vacation of random
length when the queue becomes empty. During vacation, the server may undergo
various maintenance activities such as virus scan, disk cleaning, formatting or
simply leaves the system for recreation. The service times, repair times, and vacation
times are assumed to be independent and identically distributed with arbitrary

distribution
{
g1,i

}∞
0 ,
{
g2,i

}∞
0 , and {vi}∞0 ; generating function G1(x) =

∞∑
i=0

g1,ix
i ,

G2(x) =
∞∑
i=0

g2,ix
i , and W(x) =

∞∑
i=0

vix
i and the rth factorial moments μr, γ r, and

θ r, r ≥ 1, respectively.
In this study, we have incorporated real-life phenomenon in which after service

completion if the customer is not fully satisfied with its service, then it may either
join the head of the retrial queue again for another service with probability “�”
or depart from the system with complementary probability “� = 1 − �,” where
0 ≤ � < 1; this queueing situation is called Bernoulli feedback. The queue discipline
is FCFS (first come first served) and the inter-arrival time, retrial times, service time,
repair times, and vacation times are assumed to be mutually independent.

3 Queue Size Distribution

The queueing system under consideration can be described by means of the process
+n = (Yn,χ0, n,χ1, n,χ2, n,χ3, n,Nn) at time epoch n+ (the instant immediately after
time slot n), where Yn represents the state of the server. Yn = 0, 1, 2, or 3 according
to whether the server is idle, busy, breakdown, or under vacation, and Nn represents
the number of customers in the retrial queue. If Yn = 0 and Nn > 0, χ0,n represents
the remaining retrial time; if Yn = 1, χ1,n represents the remaining service time; if
Yn = 2, χ2,n represents the remaining repair time; and if Yn = 3, χ3,n represents the
remaining vacation time. Thus {Xn, n ≥ 0} forms a Markov chain with the following
state space:

E={(0, 0)} ∪ {(j, i, k) : j = 0, 2, i≥1, k≥1} ∪ {(j, i, k) : j=1, 3, i ≥ 1, k ≥ 0}

We define the following stationary probabilities:

π0,0 = lim
n→∞ Pr {Yn = 0, Nn = 0}

π0,i,k = lim
n→∞ Pr

{
Yn = 0, χ0,n = i, Nn = k

} ; i ≥ 1, k ≥ 1
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π1,i,k = lim
n→∞ Pr

{
Yn = 1, χ1,n = i, Nn = k

} ; i ≥ 1, k ≥ 0

π2,i,k = lim
n→∞ Pr

{
Yn = 2, χ2,n = i, Nn = k

} ; i ≥ 1, k ≥ 1

π3,i,k = lim
n→∞ Pr

{
Yn = 3, χ3,n = i, Nn = k

} ; i ≥ 1, k ≥ 0

In this work, we put forward our efforts in finding the above stationary
probabilities of defined Markov chain. The Kolmogorov equations for the stationary
distribution of the system are constructed as follows:

π0,0 = λ π0,0 + λ v1,1,0 (1)

π0,i,k = λ π0,i+1,k +-λ ςiπ1,1,k−1 +- λ ςiπ1,1,k + λ ςiπ2,1,k + λ ςiv1,1,k;
i ≥ 1, k ≥ 1

(2)

π1,i,k = δ0kλϑg1,iπ0.0 + (1 − δ0,k
)
λϑg1,i

∞∑
j=1

π0,j,k + λϑg1,iπ0,1,k+1

+ (1 − δ0,k
)
λϑ-g1,iπ1,1,k−1 + (-λ+-λς0

)
ϑg1,iπ1,1,k

+ (λ+ λ p
)
π1,i+1,k + (1 − δ0,k

)
pληπ1,i+1,k−l +-λς0ϑg1,iπ1,1,k+1

+ (1 − δ0,k
)
pηλg1,i

∞∑
j=2

π1,j,k−1 + (1 − δ0k) λϑg1,iπ2,1,k

+λς0ϑg1,iπ2,1,k+1 + λϑg1,iv1,k + λϑς0g1,iv1,k+1;
i ≥ 1, k ≥ 0

(3)

π2,i,k = δ1kλϑg2,iπ0.0 + (1 − δ1,k
)
λϑg2,i

∞∑
j=1

π0,j,k−1 + λϑg2,iπ0,1,k

+ (1 − δ1,k
)
-λϑg2,iπ1,1,k−2 +-λς0ϑg2,iπ1,1,k + (1 − δ1,k

)
pηλg2,i

×
∞∑
j=2

π2,j,k−1 + (1 − δ1k) λϑg2,iπ2,1,k−1 + λς0ϑg2,iπ2,1,k

+λϑg2,iv1,k−1 + λϑς0g2,iv1,k; i ≥ 1, k ≥ 1
(4)
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vi,k = λvi+1,k + (1 − δ0,k
)
λvi+1,k−1 +-λδ0,kviπ1,1,0; i ≥ 1, k ≥ 0 (5)

where δij =
{

1, if i = j

0, otherwise
is the Kronecker’s symbol.

Let us define the following generating functions and auxiliary generating func-
tions for solving the above equations:

*m (x, z) =
∞∑

i=1

∞∑

k=d
πm,i,kx

i zk; m = 0, 2, d = 1; m = 1, d = 0;

W (x, z) =
∞∑

i=1

∞∑

k=1

vi,kx
i zk.

*m,i(z) =
∞∑

k=d
πm,i,k z

k; m = 0, 2, d = 1; m = 1, d = 0; i ≥ 1;

Wi(z) =
∞∑

k=1

vi,k z
k; i ≥ 1.

The normalizing condition is given by:

π0,0 +*0 (1, 1)+*1 (1, 1)+*2 (1, 1)+*2 (1, 1) = 1 (6)

Multiply Eq. (5) by zk and summing over k and on doing some algebraic
manipulations, we result in:

Wi(z) = χ(z)Wi+1(z)+-λviπ1,1,0; i ≥ 1 (7)

Multiplying Eq. (7) by xi and then summing over i, we get:

[
x − χ(z)

x

]
W (x, z) = −χ(z)W1(z)+-λW(x)π1,1,0; i ≥ 1 (8)

Putting x = χ (z) in Eq. (8), we get:

W1(z) = -λW (χ(z)) π1,1,0

χ(z)
(9)

Use of Eq. (9) in Eq. (8) results in:

W (x, z) = -λx [W(x)−W (χ(z))]π1,1,0

[x − χ(z)]
(10)
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Taking derivatives of Eq. (10) with respect to x and letting x = z = 0, we get:

π1,1,0 = λπ0,0

-λW
(
λ
) and v1,0 = λ

λ
π0,0 (11)

Multiplying Eqs. (1)–(4) by zk and summing over k and then doing some
algebraic manipulations and using results from Eq. (11), we get the auxiliary
generating functions for the stationary distribution of the Markov chain {+n, n ≥ 0}
when 0 ≤ z ≤ 1 as:

*0,i (z) = λ*0,i+1(z)+ κ(z)λςi*1,1(z)+ λςi*2,1(z)

− λςi
[
χ(z)

{
1+W (λ)}−λW(χ(z))

]
π0,0

χ(z)W
(
λ
) ; i ≥ 1

(12)

*1,i (z)= λϑg1,i*0 (1, z)+
(
λ+ λ p + λpηz

)
*1,i+1(z)+ λpηg1,iz*1 (1, z)

+λϑg1,i
z

*0,1(z)+
[
κ(z)

(
λz+λς0

)
ϑ

z
−pληz

]
g1,i*1,1(z)+

(
λz+λς0

)
ϑg1,i

z
*2,1(z)

+
(
λz+λς0

)
ϑg1,i

z
v1,1(z)− λς0ϑg1,i

[
χ(z)

{
1+W (λ)}−λW(χ(z))

]
π0,0

zχ(z)W
(
λ
)

(13)

*2,i (z) = λz
⇀

ϑg2,i*0 (1, z)+γ (z)*2,i+1(z)+ λpηzg2,i*2 (1, z)+λϑg2,i*0,1(z)

+κ(z) (λz+ λς0
)
ϑg2,i*1,1(z)+

(
λzϑ+λϑς0 − pληz

)
g2,i*2,1(z)

+ (λz+ λς0
)
ϑg2,iv1,1(z)− λς0ϑg2,i+(z)π0,0

χ(z)W
(
λ
) ; i ≥ 1

(14)

where κ(z) = - + -z, γ (z) = λ + λp + λpηz, χ(z) = λ + λz, and +(z) =
χ(z)

{
1 +W

(
λ
)}− λW (χ(z)).

Now, multiplying Eqs. (12)–(14) by xi and summing over “i” and then doing
some algebraic manipulations, we get the stationary distribution of the Markov
chain {Xn, n ≥ 0} for 0 ≤ z ≤ 1:

[
x−λ
x

]
*0 (x, z) = −λ*0,1(z)+ λ [	(x)− ς0]

[
κ(z)*1,1(z)+*2,1(z)

]

−λ[	(x)−ς0]+(z)π0,0

χ(z)W
(
λ
)

(15)
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[
x−γ (z)

x

]
*1 (x, z) = λϑ[1−ηz]G1(x)*0,1(z)

z +
{
ϑ[1−ηz][z+λς0(1−z)

]

z[1−z]
}
G1(x)*2,1(z)

+
[{

ϑκ(z)[1−ηz][z+λς0(1−z)
]

z[1−z]
}
G1(x)− η zG1(x)

[1−z] −γ (z)
]
*1,1(z)

−λϑ[1−ηz][z{χ(z)−W(χ(z))}+ς0(1−z)+(z)]G1(x) π0,0

z[1−z]χ(z)W (λ)
(16)

[
x−γ (z)

x

]
*2 (x, z) = λϑ [1 − ηz]G2(x)*0,1(z)

+
{
ϑκ(z)[1−ηz][z+λς0(1−z)

]

[1−z]

}
G2(x)*1,1(z)

+
[{

ϑ[1−ηz][z+λς0(1−z)
]

[1−z]

}
G2(x)− η zG2(x)

[1−z] − γ (z)

]
*2,1(z)

−λϑ[1−ηz][z{χ(z)−W(χ(z))}+ς0(1−z)+(z)]G2(x) π0,0

[1−z]χ(z)W (λ)

(17)

Letting x = λ in Eq. (15) and x = γ (z) in Eqs. (16) and (17), we get three
simultaneous equations in terms of *0,1(z), *1,1(z), and *2,1(z) as follows:

⇒ λ
[
	
(
λ
)− ς0

] [
κ(z)*1,1(z)+*2,1(z)

]− λ*0,1(z) = λ
[
	
(
λ
)− ς0

]
+(z)π0,0

χ(z)W
(
λ
)

(18)

⇒ υ
[
1 − βz

] [
λζ0 (1 − z)+ z

]
G1 (γ (z))

[
κ(z)*1,1(z)+*2,1(z)

]

− [z (1 − z) γ (z)+ βz2G1 (γ (z))
]
*1,1(z)

+λϑ [1 − z] [1 − ηz]G1 (γ (z)) +0,1(z)

= −λϑ[1−ηz][z{χ(z)−W(χ(z))}+ς0(1−z)+(z)]G1(γ (z)) π0,0

zχ(z)W
(
λ
)

(19)

⇒ ϑ [1 − ηz]
[
λς0 (1 − z)+ z

]
G2 (γ (z))

[
κ(z)*1,1(z)+*2,1(z)

]

− [(1 − z) γ (z)+ βzG2 (γ (z))]*2,1(z)

+λυ [1 − z] [1 − ηz]G2 (γ (z))*0,1(z)

= −λϑ[1−ηz][z{χ(z)−W(χ(z))}+ς0(1−z)+(z)]G1(γ (z))π0,0

χ(z)W
(
λ
)

(20)

Solving Eqs. (18)–(20) for *0,1(z), *1,1(z) and *2,1(z), we obtain:

*0,1(z)=λz
[
	
(
λ
)−ς0

][
+(z)+1(z)+2(z)−(1−ηz)

(
λ+W (

λ
))

B(z)G1(γ (z))
]
π00

λχ(z)W
(
λ
)
�(z)

(21)
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*1,1(z)=λϑ (1−ηz) +2(z)G1 (γ (z))
[
(1−z)	 (λ)+(z)+z {γ (z)−W (γ (z))}]π00

χ(z)W
(
λ
)
�(z)

(22)

*2,1(z) = λϑz+1(z)G2 (γ (z))
[
(1 − z)	

(
λ
)
+(z)+ z {γ (z)−W (γ (z))}]π00

χ(z)W
(
λ
)
�(z)

(23)

where +i(z) = (1 − z)γ (z) + ηzGi(γ (z)), i = 1, 2;�(z) = [1 − ηz]
[
z+ λ (1 − z)

	
(
λ
)]

B(z) − z+1(z)+2(z), B(z) = ϑG1 (γ (z)) κ(z)+2(z) + ϑzG2 (γ (z)) +1(z);
α = λ+ λp + λpη.

Further, substituting the expressions for*0,1(z),*1,1(z) and*2,1(z) in Eqs. (15)–
(17), we can obtain the expressions for *0(x, z), *1(x, z), and *2(x, z).

4 Performance Measures

To predict the performance of our developed queueing system, we compute some
useful performance measures and then visualize the effects of various critical
parameters on these measures. In this section, we obtain various useful performance
measures of interests for the developed model as given below:

4.1 Steady State Probabilities

• The probability that the system is empty is given by:

π0,0 = σ2

	
(
λ
)
σ1

where σ 1 = p{α + ηG1(α)} − η2G1(α)W(α) − 2α{1 − G1(α)W(α)},
σ 2 = p[ηG1(α) + α{1 − G1(α)W(α)}].

• The probability that the server is idle is given by:

P [I ] = *0 (1, 1) =
[
	
(
λ
)− 1

]
σ2

	
(
λ
)
σ1

• The probability that the server is busy is given by:
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P [B] = *1 (1, 1) = 2αϑ [G1 (α)− 1]

σ1

• The probability that the server is under repair is given by:

P [R] = *2 (1, 1) = 2αϑ [G2 (α)− 1]

σ1

• The probability that the server is on vacation is given by:

P [V ] = W (1, 1) = 2αG1 (α) [W (α)− 1]

σ1

• The probability that a customer is lost is given by:

P [L] = pλ*1 (1, 1) = 2αpλ [G1 (α)− 1]

σ1

4.2 Average Number and Mean Waiting Time of Customers
in the System

The mean number of customers in the orbit (or retrial queue) and the mean waiting
time of customers in the queue are denoted by E[L] and E[W], respectively, and are
given by:

E [L] = *′(1) = *′
0 (1, 1)+*′

1 (1, 1)+*′
2 (1, 1)+W ′ (1, 1)

E [WT ] = E [L]

λ

where W ′ (1, 1) =
[
λ2θ2+2λλ(θ1−1)

{
1−	(λ)}]

2
[
	
(
λ
){
λ+W (λ)}−λ(1−θ1)

] , *′
0 (1, 1) = ϑ	

(
λ
)
[Num′′

0*
′−Num′

0*
′′]π00

2(*′)2 ,

*′
1 (1, 1) = ϑ	

(
λ
)
[Num′′

1*
′−Num′

1*
′′]π00

2(*′)2 , and *′
2 (1, 1) = ϑ	

(
λ
)
[Num′′

2*
′−Num′

2*
′′]π00

2p(*′)2 .

X = ηb1 (β) b2 (β)

Y = ηb1 (β)

η = 1 − pλβ
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X′ =pληη {G′
1 (β)G2 (β)+G1 (β)G

′
2 (β)

}+ η
(
1 +-ϑ + ϑ

)
G1 (β)G2 (β)

− β
{
ϑG1 (β)+ ϑG2 (β)

}

Y ′ = −β + ηG1 (β)+ pληηG′
1 (β)

T ′
i = −β + ηGi (β)+ pληηG′

i (β) ; i = 1, 2

T ′′
i = −2pλη + pληηG′

i (β)+ η(pλη)2G′′
i (β) , i = 1, 2

x1 = ϑG′
1 (β) T

′
2 + ϑG′

2 (β) T
′
1

x2 = -ϑG′
1 (β)G2 (β)+ ϑG1 (β)G

′
2 (β)

x3 = -ϑG1 (β) T
′
2 + ϑG2 (β) T

′
1

x4 = ϑG1 (β) T
′′
2 + ϑG2 (β) T

′′
1

x5 = ϑG′′
1 (β)G2 (β)+ ϑG1 (β)G

′′
2 (β)

X′′ = 2 (pληx1 + pληηx2 + x3)+ x4 + (pλη)2ηx5

Num′
0 = βη

[
ϑG2 (β)+ ϑG1 (β)

]− η (1 + ηϑ- − λη)G1 (β)G2 (β)

Num′′
0=ηX′′−T2T

′′
1 −T1T

′′
2 − 2

{
(η − λη)X′}+ ληX − 2

{
T2T

′
1 + T ′

1T
′
2 + T ′

2T1
}

Num′
1 = −ϑβ [1 −G1 (β)]

Num′′
1 = 2ϑpλη

[
βG′

1 (β)− {1 −G1 (β)}
]
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Num′
2 = −ϑβ [1 −G2 (β)]

Num′′
2 = 2υ

[
pληβG′

2 (β)− (pλη + β) {1 −G2 (β)}
]

W = T1

T2

W ′ = T2T
′
1 − T1T

′
2

(T2)
2

W ′′ = (T2)
2 [T2T

′′
1 − T1T

′′
2

]− 2T2T
′
2

[
T2T

′
1 − T1T

′
2

]

(T2)
4

*′ = p�′(1)

*′′ = p�′′(1)

/1 = ϑG1 (β)+ ϑG2 (β)W

/′
1=
[
η2 (-ϑ+ϑ)G1 (β) (G2 (β))

2+pλη2ηG′
1 (β) (G2 (β))

2−βϑη (G2 (β)−G1 (β))G2 (β)
]

η2(G2 (β))
2

/′′
1 = 2

[
-ϑpληG′

1 (β)+ ϑW ′(1)G2 (β)+ ϑpληWG′
2 (β)+ ϑpληW ′G′

2 (β)
]

+ϑ(pλη)2G′′
1 (β)+ ϑ

(
pλβ

)2
WG′′

2 (β)+ ϑW ′′G2 (β)

�′′(1) = 2
[
1 − λ	

(
λ
)] [

η/′
1 − η/1

]− 2η/′
1 + η/′′

1 − T ′′
1 − 2T ′

1

5 Numerical Results

In this section, we provide some numerical examples exploring the effects of
some sensitive system parameters on mean orbit size. For computation purpose,



Performance Analysis of a Discrete-Time Retrial Queue with Bernoulli. . . 377

Fig. 1 Effect of (a) ς0 and
(b) ϑ on mean orbit size for
different values of η and p

we assume retrial time distribution, service time distribution, and vacation time
distribution to be geometric distributed with generating functions 	(x) = (1−r)

1−rx ,

G1(x) = 7x
10−3x , andW(x) = (1−v)

1−vx , respectively. We coded a program in MATLAB
software and plotted Fig. 1a, b showing the trend in mean orbit size vs. ς0 and ϑ

for different values of η and p. The default parameters for these figures are taken as
λ = 0.95, η = 0.9, p = 0.02, r = 0.15, and v = 0.9.

From these figures, it is clear that mean orbit size tends to decrease linearly by
increasing either retrial probability ς0 or probability η. On the other hand, mean
orbit size increases first slowly then sharply and afterwards becomes almost constant
with the increase in either the probability of successful activation of server ϑ or
balking probability p. This feature matches with many real-life service systems
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such as observed generally in AIIMS hospital in Delhi wherein if high priority
patients arrive to the doctor then queue length (number of patients waiting in queue)
tends to increase as server is busy in serving those customers first then it starts
service of non-priority customers. Moreover, patient calls arrive at telephone in the
doctor’s room for appointment start accumulating in the virtual queue or buffer if
the server or telephone system at doctor’s room is activated successfully with high
probability ϑ. We observe some queueing situations in the hospital that on seeing
a long queue in the hospital, some patients become impatient and may balk with
higher probability (1 − p) which in turn decreases the queue length. We also observe
that when patients retry for service with more probability, then queue length tends to
decrease linearly. Doctor may also leave the system for some urgent work or simply
recreation (vacation). Overall, we conclude that we can control the queue length in
most of service centers such as hospitals, banks, post offices, super markets, airports
by controlling some sensitive system parameters such as ς0, ϑ, η, and p.

6 Conclusion

In this chapter, we have studied a discrete-time Geo/G/1 retrial queue subject to
single vacation with both Bernoulli feedback and starting failure. Many immense
works have been done on the vacation policy retrial queueing systems in continuous
time but according to our study, this combination has not been done in discrete
environment. Here, by using the probability generating function method and supple-
mentary variable technique, we have derived the expressions for some performance
measures of the system such viz. long run probabilities, orbit size, and system size.
This proposed model validates with the real-life systems and illustrated by some
numerical results. In future, one may generalize this model by assuming arrivals
in batches and/or by including more realistic feature of optional service along with
essential service.
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Monofractal and Multifractal Analysis of
Indian Agricultural Commodity Prices

Neha Sam, Vidhi Vashishth, and Yukti

Abstract The Indian commodity market is characterized by high volatility. When
considering the agro-based commodity market, the prices may sometimes vary on
a daily basis and regional basis. For the purpose of our research, we have restricted
our region of study to the Indian national capital New Delhi. This paper aims to
find out whether commodity markets follow a pattern with respect to prices, and
if they do, then whether this could be determined by using basic fractal theory
and determination of Hurst exponent. We have followed a suitable algorithm to
find the Hurst exponent using statistical methods, specifically linear regression
and time series analysis, wherein time is the independent variable and price of
the commodity considered is dependent. The reason why time series analysis is
chosen is because of the tendency of a time series to regress strongly to its mean. A
statistical measure chosen to classify time series is the Hurst exponent. Initially,
we have focused on onion prices for the years 2013 to 2017. The data set has
been derived from the official website of the Consumer Affairs Department of the
Government of India. The daily retail prices for Delhi for the month of June were
observed and analyzed. We eventually aim to investigate if the market for onions
has a long-term memory and will it be suitable to extend this conclusion to all
other agro-based commodities. Our study has been motivated by the Fractal Market
Hypothesis (FMH) that analyses the daily randomness of the market. We seek to
find out whether the commodity market follows such a pattern provided that external
factors remain constant. By external factors, we mean the variations that occur in the
market with time, which include the demand, inflation, global price change, changes
in the economy, etc. Keeping this in mind, we have attempted a time series analysis,
using the monofractal analysis, at the end of which we would be estimating the
Hurst exponent. The determination of Hurst exponent will help us to classify the
time series as persistent or anti-persistent, i.e., how strong is the tendency of the
time series to revert to its long-term mean value. Further, the multifractal analysis
has been used to detect small as well as large fluctuations within the time series
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taken into consideration. This result would thus lead us to understand if prices in
the commodity market could be remotely predicted, and what is the strength of the
time series to return to its long-term mean value. Hence, this fractal analysis can be
used to determine the characteristics of the prices in an agro-based economy.

Keywords Fractal theory · Prices · Monofractal · Pattern · Multifractal

1 Introduction

The concept of memory cannot be ruled out, when one comes across patterns in
economic variables. It is defined from the point of view of economic models, backed
by continuous time approach (as per the Concept of Dynamic Memory in Economics
by Valentina V. Tarasova and Vasily E. Tarasov). With this realization, we attempt
to find if prices in the Indian agro-based commodity market have a tendency of
exhibiting a long-term memory. The analysis in this paper considers the market for
onions in the National capital Delhi region of India [1].

The volatility of the price levels in the Indian commodity market forms a
sizable portion of the overall price fluctuations seen in the economy, in the past
few years. Because the Indian economy is agro-based, it is highly sensitive to
even the smallest of changes in the agro-based commodity market. Interestingly,
onions show a high degree of variability in prices, among all agro-based products.
Thus, a closer examination of onion prices in the Indian economy may give us
an insight of whether the market, in general, can be remotely predicted. Fractal
Market Hypothesis (FMH) forms the basis for studying the daily randomness of
the market [2–5]. The Hurst exponent approach has been used for quantifying the
results obtained.

From among the multiple statistical methods known, we find linear regression
and time series analysis the most suitable for the algorithm proposed in this
paper. The statistical measure chosen to classify time series is the Hurst exponent.
The calculation of the Hurst exponent has been done, considering time as the
independent variable and price of the commodity considered (onions) as dependent.
The reason for choosing time series analysis is its tendency to regress strongly to its
mean [6–9].

Further, in the course of this research, it was observed that the value of the Hurst
exponent (H), as found, indicates that the time series for the chosen commodity is a
long-range dependent process or persistent. Henceforth, the multifractal detrended
fluctuation analysis (MF-DFA) was employed. It involves calculating the q-order
Hurst exponent Hq, using the root-mean-square (RMS) approach to observe short-
term and long-term fluctuations in the time series. The q-dependent RMS values
obtained were converging to the overall RMS value of the time series, which was
evident for the time series being multifractal. Another advantage of MF-DFA lies
in the ability of the analysis to identify fluctuations even in dynamic time series.
The analysis has been extensively used in medical science, and stock markets, all
over the world. Being used in agro-based commodity markets is a first-of-its-kind
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application. This highlights a promising scope of this analysis for policymaking in
the country [10–12].

2 Background

Commodities have been traded in India, since time immemorial. If the trade takes
place in bulk, it is greatly influenced by weather conditions. Soft commodities, such
as agricultural products, are greatly impacted by external factors. Farming patterns
are one such factor, which are largely profit-driven.

Importance of Agriculture in Indian Economy Since independence, the primary
sectors (Agriculture and Allied Activities) have contributed a major portion to
India’s GDP, which bears testimony to the fact that India is an agriculturally driven
economy. It is only natural then that emphasis be laid on welfare of the people
employed in the primary sector, while drafting national policies. It has been seen
time and again that such policy decisions affect the course of political governance
in the nation. In such a scenario, if we are able to detect a pattern, then there could
be incorporation of exemplary and innovative methods in the process of policy
formulation [3].

Fractals and Fractal Market Hypothesis A fractal is a never-ending, self-similar
pattern. Earlier researches have shown that financial markets have a fractal-like
property. Fractal Market Hypothesis (FMH) is based on the assumption that history
repeats itself, and hence finds application in estimating asset prices. The ambit of
using FMH could be widened if this research successfully establishes a similar
fractal-like pattern in commodity markets too [13, 14].

Finally, in India, besides being a staple diet food, onion is also hoarders’
favourite, in times of tight supply and rising prices. India is second only to China in
onion production. Due to the reason of it being produced on such a large scale, onion
often tends to act as an effective indicator of inflation, through its prices. Another
mysterious aspect about this vegetable is that its prices have been continuously
rising despite increased production. Hence, our research draws legitimacy from the
fact that, to some extent, onion prices are independent of external factors [15].

3 Methodology

3.1 Monofractal Analysis (Hurst Exponent Approach)

The Hurst exponent approach has been used to perform monofractal analysis to
find the existence of fractal patterns in the prices of an agricultural commodity. The
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Hurst exponent (H) can be used to quantify the character of randomness exhibited
in a time series via an autocorrelation measurement [16, 17].

Value of Hurst exponent lying between 0 and 0.5 represents variables that show
anti-correlated behaviour.

Value of Hurst exponent equal to 0.5 represents the process that is purely random.
Value of Hurst exponent lying between 0.5 and 1 represents that behaviour is

positively correlated and there is persistence of definite patterns.
Autocorrelation function C, given by,

C = 2(2H−1)−1,

, where H is the Hurst exponent, can illustrate the effect of influence by the present
on the future. A simple relationD = 2−H , whereH is the Hurst exponent, gives the
fractal dimension of the time series. Dimension for fractals is essentially a statistical
quantity of a fractal. Fractal dimension provides an idea of how a fractal is taking
up space, if zoomed down to finer and finer scales [6, 18].

3.2 Data Collection

Onion prices for the years 2013–2017 are considered. The data has been extracted
from the official website of the Consumer Affairs Department of the Government of
India.

The daily retail prices of onion in Delhi for the month of July, August, and
September were considered. Observation and suitable analysis were performed on
the data [18, 20].

3.3 Method: Determination of Hurst Exponent

Finding the Hurst exponent is the major part of applying monofractal analysis using
(R/S) analysis [18, 21, 22].

The algorithm of finding Hurst exponent using R/S analysis is as follows:

1. Split the time series of size M into disjoint subsets of time intervals Dj(j =
1, . . . , J ) of size m.

2. ȳj denotes the mean of values in each of the subsets. xk,j , k = 1, . . . , m
represents the value to each corresponding time value.

3. The cumulative deviation ˆyi,j (i = 1, . . . , m) is calculated for each Dj .
4. RangeRj = max( ˆyi,j , i = 1, . . . , m)−min( ˆyi,j , i = 1, . . . , m).

Sj= standard deviation for each Dj .
(R/S)(m)= average of Rj/Sj for j=1,. . . ,J.

The relation between the Hurst exponent and above calculated values is
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log(R/S)m = logc +Hlogm,

where c = constant and H = Hurst exponent.
Linear regression is applied to the above equation to obtain the Hurst exponent

H [18].

3.4 Monofractal Detrended Fluctuation Analysis (DFA)

Monofractal DFA is performed to analyse monofractal fluctuations in a time series.
Monofractal DFA involves the following steps [10]:

1. Convert a noise-like time series into a random walk-like time series.
2. Compute root-mean-square (RMS) variation of a time series including compu-

tation of local fluctuation in the time series as RMS of the time series within
non-overlapping segments. RMS is defined to be, as the name suggests, the
square root of arithmetic mean of squares of values.

3. The amplitudes of the local RMS are summarized into an overall RMS. The
overall RMS of the segments with small sample sizes is dominated by the fast
fluctuations in the time series, whereas the overall RMS for segments with large
sample sizes is dominated by slow fluctuations. The power law relation between
the overall RMS for multiple segment sample sizes (i.e., scales) is defined
by a monofractal detrended fluctuation analysis (DFA) and is called the Hurst
exponent [10].

4. First divide time series into non-overlapping segments of size t . The detrending
procedure is done by estimating a polynomial trend xnw,t , within each segment
w by least-square fitting and subtracting this trend from the original profile
(“detrending”), Xt(i) = X(i) − xnw,t (i). The degree of the polynomial can
be varied in order to eliminate constant (m = 0), linear (m = 1), etc. The
variance of the detrended profileXt(i) in each segmentw yields the mean-square
fluctuations, F 2

DFAm(w, t) = 1/t
∑t

i=1[X2
t (i)].

F 2
DFAm(w, t) are averaged over all segmentsw to obtain the mean fluctuations

F2(t). Slope of regression line of log F2(t) versus log(t) gives an approximation
of Hurst exponent [10, 23].

Next, we can compare this Hurst exponent with as calculated using rescaled
range analysis or (R/S) analysis in Sect. 3.3.

3.5 Multifractal Analysis

A method to observe and investigate the multifractal spectrum of the time series
is q-order fluctuation analysis or detrended fluctuation analysis. It was originally
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introduced by Peng et al. [24] and is used to reliably detect long-range (auto-)
correlations.

In a multifractal time series, local fluctuation will be of extreme large magnitude
for segmentsw within the time periods of large fluctuations and extreme small mag-
nitude for segments w within the time periods of small fluctuations. Consequently,
the multifractal time series are not normally distributed, and all q-order statistical
moments should to be considered [10].

Therefore, q-order Hurst exponent is calculated for different values of q.
Algorithm [25] :
For time series Y = yi

n
i=1 and n the length of the data:

1. calculate the Z = zi
n
i=1,

zi =
i∑

m=1

(ym − ȳ)

, where ȳ is the mean value of Y ;
2. divide the profile time series Z into non-overlapping segments of equal length r;
3. calculate the trend of each segment, and the detrended time series xt (i) can be

obtained by the following equation:

xt (i) = wt(i)− pt (i), (1 < i < r)

, where wt(i): segment time series and pt (i): trend time series, at each segment
t ;

4. determine the variance by the following:

F 2(r, t) = 1

r

r∑

i=1

x2
t (i)

.

Then, the q-order function fluctuation is given by

{
Fq(r) = p

√√√√ 1

2Ir

2Ir∑

i=1

F 2(r, t)
q
2 , if q �= 0

{
Fq(r) = exp { 1

4Ir

2Ir∑

i=1

ln(F 2(r, t))}, if q = 0

Plot Fq for different values of q [25].
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4 Results

4.1 Data

Figure 1 is the graphical representation of daily retail prices of onions in New Delhi,
India quantified in Rs. per kg, and the data has been recorded from July to September
for each year from 2013 to 2017.

Here, the time period is scaled along the X-axis, and the price per kg of onions
in the corresponding time period in INR is marked along the Y -axis. The graph has
been plotted on R software.

4.2 Results Derived from the Hurst Exponent Approach

Table 1 displays the values of autocorrelation function, fractal dimension, and Hurst
exponent values for each year in Columns 1, 2, and 3, respectively. The value of the
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Fig. 1 Graphical representation of daily retail prices of onions in New Delhi in Rs. per kg from
2013–17. (Source: Data used to plot the graph has been taken from the website of the Consumer
Affairs Department of the Government of India, consumeraffairs.nic.in)

Table 1 Values of autocorrelation function, fractal dimension, and Hurst expo-
nent for 2013–17
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Fig. 2 V-statistic v/s log(n) graph for 2013. . (Source: Authors’ calculations)

autocorrelation function describes the influence of present (present price variations
in this case) on the future. Fractal dimension values reflect how completely a fractal
appears to fill up space as one zooms down to finer and finer scales. It is notable
from Table I that fractal dimensions are fractional in nature unlike dimensions of
shapes in classical geometry.

The Hurst exponent values represented in Column 3 have been calculated on R
software. Clearly, the Hurst exponent for each year from 2013 to 2017 is greater
than 0.5; therefore, the variations are not completely random and can be predicted
in the short run. This also implies that the variations show fractal characteristics.

4.3 Test to Establish the Persistence of the Time Series

In order to test the stability of the Hurst exponent, the Vn versus log(n) graph is
plotted. V statistic is given by

Vn = (R/S)n√
n

.

Figures 2, 3, 4, 5, and 6 represent Vn versus log(n) graphs for the years 2013–2017.
The graphs clearly represent that the Vn versus log(n) graphs for all the years are

upward sloping, and it was claimed that the process is persistent, and thus, stability
of the Hurst exponent is established [18].
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Fig. 3 V-statistic v/s log(n) graph for 2014. (Source: Authors’ calculations)

Fig. 4 V-statistic v/s log(n) graph for 2015. (Source: Authors’ calculations)

Fig. 5 V-statistic v/s log(n) graph for 2016. (Source: Authors’ calculations)
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Fig. 6 V-statistic v/s log(n) graph for 2017. (Source: Authors’ calculations)

4.4 Calculation of Hurst Exponent for Compiled Data from
2013 to 2017

The Hurst exponent is now calculated for the entire time series using a suitable
algorithm on R software. The value of the Hurst exponent thus calculated comes out
to be 0.7137.

4.5 Monofractal Detrended Fluctuation Analysis (DFA)

In order to perform the analysis, MATLAB (computer programming language) has
been used. A stepwise process shall be employed to graphically analyze variations
and fluctuations in the time series corresponding to the data. Note that the data taken
here shall be compiled data for all years from 2013 to 2017. The compiled data is
converted into a 460 × 1 array.

4.5.1 Random Walk-Like Time Series

As a preliminary step for DFA, the time series should be first converted into random
walk-like time series using a suitable code on MATLAB. The graph thus obtained
is different from Fig. 1, thus displaying that the time series has been converted into
a random walk. This is illustrated in Fig. 7.
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4.5.2 Local Root-Mean-Square Variation of the Time Series (RMS)

The root mean square of a time series is the square root of the mean of the squared
data entries. Using MATLAB, it was determined that the value of RMS for the time
series is 36.6833.

4.5.3 Graphical Representation of the Overall Root Mean Square of Time
Series

The continually changing fluctuation would influence the overall RMS. Using a
suitable algorithm in MATLAB, the overall RMS denoted by F is plotted such that
it is represented in log coordinates. Figure 8 illustrates the overall RMS where theX-
axis represents logged values of the overall RMS and the Y -axis represents segments
of the sample size.
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4.5.4 Graphical Representation of the Regression Line and Verification of
Hurst Exponent

As the concluding step in the detrended fluctuation analysis, the best fit regression
line is plotted. The slope of the regression line is the Hurst exponent. Figure 9
represents the regression line. The slope of the line as calculated on MATLAB is
equal to 0.7509.
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Fig. 9

4.6 Multifractal Detrended Fluctuation Analysis (MFDFA)

MFDFA is performed to determine whether the time series displays multifractal-like
characteristics. In order to establish this, the q-order Hurst exponents are defined
as the slopes of the regression line, and the computation is done using looping
commands on MATLAB. The graph thus obtained is given in Fig. 10. It can be
observed that the regression lines thus plotted with q = −10, 0, 10 converge.
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5 Analysis

First and foremost, the Hurst exponent value derived from the Hurst exponent
approach for the compiled data for the years 2013–2017 is found to be approxi-
mately equal to the value computed by the detrended fluctuation analysis approach.
It can also be inferred from Fig. 7 that the time series that has been converted into a
random walk-like structure has distinct periods with large and small fluctuations,
which is a characteristic of multifractals. Additionally from Fig. 10, it can be
observed that the slopes of the regression lines are q-dependent and the q-order
Hurst exponent are the slopes, and the lines thus plotted are seen to converge at
larger segments, which is another characteristic of time series exhibiting multifractal
patterns.
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Conclusions

The Hurst exponent values calculated by both the Hurst exponent approach and
the detrended fluctuation analysis make it evident that the prices of onions from
2013–2017 exhibit fractal characteristics. Therefore, the retail onion prices series
is monofractal. By the multifractal detrended fluctuation analysis results mentioned
in Sect. 4.5 and the analysis in Sect. 5, it can be inferred that the onion retail price
series also displays certain multifractal-like characteristics.

Hence, we can conclude that the time series of the onion prices is persistent in
nature displaying monofractal and multifractal-like characteristics. Since the study
has been restricted to a single commodity, this result may or may not be generalized
to the other agro-based commodities of the Indian market. The scope of this research
is extensive as fractal-like properties exhibited by a time series imply it could be
remotely predicted. Multifractal-like properties displayed by the time series imply
promising results towards future prediction of price fluctuations in the market, and
hence, knowledge of these fluctuations could benefit the policymakers in drafting
policies that can prepare the economy to tackle major price variations.
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Empirical Orthogonal Function Analysis
of Subdivisional Rainfall over India

K. C. Tripathi and M. L. Sharma

Abstract The Indian Summer Monsoon Rainfall (ISMR) that takes place during
May, June, July, and August each year is a factor that contributes significantly to
the socio-economical growth of the Indian subcontinent. ISMR accounts for about
70–75% of the annual rainfall over the region. However, the distribution of the
precipitation over the spatial domain is not uniform, and there may be simultaneous
flood and draught. The spatial and temporal distribution of the precipitation can
lead to a better forecasting model with lesser number of unknown parameters. In
the present study, the 142-year monthly data set of 19 subdivisions of India from
the Indian Institute of Tropical Meteorology is analyzed to decode the precipitation
signals and redistribute the dimensions based on variance and co-variance matrices.
This is known as Empirical Orthogonal Functions Analysis. It is observed that the
entire data set of 19 dimensions can be redistributed in 3 dimensions with a relatively
less information being lost. The five eigenvectors of the co-variance matrix are
discussed. The paper is concluded with discussion on the employment of intelligent
system algorithms for the extraction of further lower dimensions in the data so as to
further reduction in the data.

Keywords Subdivisional rainfall · Correlation · Empirical orthogonal functions ·
Variance · Pattern recognition

1 Introduction

The Asian Monsoon system at macro- and microlevels is a matter of interest among
meteorologists [1]. It remains a vital component of the global monsoon system.
The monsoon affects a large part of the world population and is predominantly
responsible for the precipitation over the globe [2]. Indian Summer Monsoon
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Rainfall (ISMR), the total precipitation occurring during June, July, August, and
September (JJAS), accounts for about 75–80% of the annual rainfall over the Indian
subcontinent. At the regional level, the western and central India receives more
than 90% of the total precipitation during the JJAS period, while the southern and
north western India receives about 50% of the total precipitation during the JJAS
period [3]. It is claimed that more than 50% of the total earth population is affected
by the Asian monsoon [4]. A small delay in the arrival of Monsoon may bring
catastrophe in the entire subcontinent. Further, the droughts and floods associated
with the Indian monsoon have a significant effect on the socio-political aspects of
India [5–8]. Hence, the analysis of variation of the ISMR is important not only for
scientific understanding but also for a better socio-economical development of the
subcontinent. There are two factors about the ISMR that is of significant interest: the
interannual variability and the intraseasonal variability [9]. Researchers have always
been interested in analyzing the variability of the ISMR. These variations result
from global climatic conditions as well as local weather effects. The distribution
of the spatial and temporal precipitation over India is highly unpredictable, and
hence, this remains a topic of study in all times. Further, the variability of the
rainfall is reflected at three scales: the All India scale, the regional scale, and
the subdivisional scale. In the present study, interest lies in the redistribution of
the subdivisional rainfall. The All India and the regional scales are macrolevel
manifestation of this microlevel distribution. The temporal variances, i.e., the
interannual and intraseasonal variations, have also been kept out of scope of the
study so as to avoid digressing from the topic of interest. The Empirical Orthogonal
Function Analysis or the Principal Components Analysis [10] refers to the reduction
in dimension of a data set by rotating the original space of the data observations
so as to redistribute the variances along orthogonal axes. It is a mathematical tool
that is more commonly used in pattern recognition, but of late it has been freely
used by meteorologists across the globe for the analysis of meteorological data such
as precipitation [11–14] and sea surface temperature [15]–[16]. The present study
aims to study the correlations in the amount of precipitation recorded at substation
level across the Indian climatic region. The information contained in the hidden
dimensions can then be used for better model development for rainfall forecasting
at the microlevel.

2 Methodology

2.1 Data

We have used the data set of the Indian Institute of Tropical Meteorology (IITM)
obtained from the official website http://www.tropmet.res.in/Data. The data set
comprises monthly rainfall with a resolution of upto 1 decimal in mm. It is a
142 year all-India rainfall as well rainfall of 30 subdivisions of India during

http://www.tropmet.res.in/Data
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the period 1871–2012. We have taken into consideration 19 of the subdivisions
based on regions and homogeneity. These subdivisions are: Assam and Meghalaya,
Gangetic West Bengal, Jharkhand, Bihar, East UP, West UP, Haryana, Punjab,
West Rajasthan, East Rajasthan, West MP, East MP, Gujarat, Saurashtra, Madhya
Maharashtra, Chhattisgarh, Coastal Andhra Pradesh, Tamil Nadu, and Kerala.
Figure 1 shows the map of India and the substations therein.

2.2 Empirical Orthogonal Functions (EOFs)

A meteorological data set usually consists of a large number of attributes. The
original space of attributes of the data set makes the “attribute space” or the original
space of the data. Each attribute may be considered as an axis in terms of the
coordinate system. A brief description of EOF analysis is presented here. Consider

Fig. 1 Meteorological subdivisions of India (Indian Institute of Tropical Meteorology, Pune)
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a data set D in n dimensions of the Euclidian space. Each observation can then
be considered as an n-dimensional vector or a single point in the n-dimensional
space. The objective of EOF analysis is to find a new set of orthogonal axes such
that when the original cloud of n-dimensional data is manifested in the new space,
called the “feature space,” the variances are redistributed so that a few axes retain
the maximum variance of the data. The total variance of the data in the feature space
is the same as the total variance of the data in the original attribute space.
Let Rn be the original space of D and Sn be the transformed (feature space). Then,
EOF analysis is the discovery of a function:

f : Rn → Sn. (1)

If the total variance (standard deviation) of D in Rn is φ(D), then the total variance
of D in Sn is also φ(D). The variance is written as a scalar here to emphasis the
fact that it is the total variance and not the attributewise variance. We shall call D
in Sn as DS. It can be shown that the optimum choice for Sn is the system in which
the axes are the eigenvectors of the co-variance (correlation) matrix of D [10]. Let
{ei |1 ≤ i ≤ n} be the set of eigenvectors of the correlation matrix of D. Then, each
ei is an n-dimensional vector in Rn. Each ei is mathematically viewed as a column
vector of n dimensions. We have

Sn = {ei |1 ≤ i ≤ n}. (2)

As pointed out above, we have φ(D) = φ(DS) but with two differences: (i) the
features (axes) in Sn are uncorrelated and (ii) the variances of ei are such that a few
ei explain, or account for, maximum amount of DS. This enables us to discard those
dimensions in Sn, or those ei , which explain insignificant ratio of DS, thus reducing
the dimension of the data. It can be shown that the amount of variance explained
by a vector er of Sn is the eigenvalue of er . Thus, those eigenvectors from Sn are
retained that explain maximum variance and the rest are discarded. We thus have
the reduced feature space given by

Un = {ei |1 ≤ i ≤ m : m < n}. (3)

The set Un is the set of EOFs. The analysis can be continued by representing the
data D in Un, called DU. The method incorporates two steps, i.e., (i) transform the
set D from Rn to Sn calling it DS and (ii) retain the subset DU of DS in Un. Step (i)
is achieved by first evaluating Sn as discussed and projecting D on Sn. Un is then
obtained by discarding those ei that explain insignificant proportion ofDS. DU is the
subset of DS along Un.
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3 Results and Discussion

The data set is the monthly rainfall data of 142 years arranged in 12 columns. Total
19 such data sets are considered. The time series of each substation is obtained.
The length of each of the 19 time series is 142 × 12 = 1704. Arranging the time
series of 19 substations, each comprising 1704 points, as a 1704 × 19 matrix gives
D. Figure 2 shows the contour plot of the correlation matrix of D. The numbers
indicate a significantly high level of correlation. The eigenvectors of the co-variance
matrix of D and the corresponding eigenvalues were calculated. The eigenvalues
thus calculated are shown in Fig. 3 in ascending order. The percentage of correlation
of D, i.e., percentage of φ(D), explained by an eigenvector ei is

PVE(ej ) = EV (ej )∑
j EV (ej )

, (4)

where

PVE(ej ): percentage variance explained by eigenvector ej and
EV (ej ): eigenvalue of the eigenvector ej .

Fig. 2 Contour plot of the correlation matrix of time series, D, of rainfall recorded at 19
substations
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Fig. 3 Eigenvalues of the 19 eigenvectors that make Sn

It can be seen that the last 4 eigenvalues are significantly higher than the
remaining ones. The percentage of variance explained by 19th eigenvector is 68.3
%, by 18th vector is 8.9%, by 17th vector is 5.7%, and by 16th vector is 4.1%.
The percentage of variance explained by eigenvectors corresponding to 4 largest
eigenvalues is 87%. This is a significantly higher percentage. This simply means that
the information contained in the observations of 19 subdivisions can be condensed
down in 4 sets of observations. The transformed space, Sn, or the eigenspace is
embedded in the original space Rn as discussed; hence, all the unit vectors in Un

are represented in terms of axes of Rn.
The eigenvectors corresponding to 4 largest eigenvalues make Un and have been

plotted in Fig. 4. The x-axis represents the subdivision no in Rn, and the y-axis
represents the coefficient of each subdivision in Un. The graph is partitioned into
two regions: (1) subdivisions of maximum contribution and (2) subdivisions of
minimum contributions. The maximum coefficients (absolute value) are circled. It
can be seen that stations 14–19 are the major contributors to Un, the reduced or the
EOF space. These subdivisions are: Saurashtra, Madhya Maharashtra, Chhattisgarh,
Coastal Andhra Pradesh, Tamil Nadu, and Kerala. These are predominantly the
regions in the south. The patterns in these regions can thus be said to be the major
contributors in the overall variation of rainfall in the discussed 19 subdivisions.
Although not desired and not of interest, the eigenvectors corresponding to 4
smallest eigenvalues have been plotted in Fig. 5. As in the previous case, the
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Fig. 4 Eigenvectors corresponding to 4 largest eigenvalues that make Un
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Fig. 5 Eigenvectors corresponding to 4 smallest eigenvalues of Un

maximum contributors (absolute values) to these unit vectors are highlighted. These
subdivisions are the ones numbered 12 or less. These are: Assam and Meghalaya,
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Gangetic West Bengal, Jharkhand, Bihar, East UP, West UP, Haryana, Punjab, West
Rajasthan, East Rajasthan, West MP, and East MP. It can be said that these regions
have comparatively less impact on the overall pattern of the rainfall distributions.

4 Conclusion and Future Scope

Empirical Orthogonal Function Analysis of the 19 subdivisions of a total of 30 of
homogenous Indian rainfall was done. The 19 subdivisions made the original data
space for the analysis. The eigenvectors of the correlation matrix were obtained and
their eigenvalues were analyzed. It was observed that 4 leading eigenvectors (vectors
corresponding to 4 largest eigenvalues) or the EOFs account for about 87% of the
total variance. This is a significant number and tells us that enormous information is
contained in these 4 leading EOFs. The EOFs are the dimensions embedded in the
original data space, and hence, the coefficients of the EOFs in the original data space
give us information about the contribution of each subdivision in making of those
EOFs. It was revealed that the major subdivisions that contributed to these EOFs
are the Saurashtra, Madhya Maharashtra, Chhattisgarh, Coastal Andhra Pradesh,
Tamil Nadu, and Kerala. These are predominantly the regions in the south. Thus, the
rainfall pattern in these regions determines the EOFs that account for the maximum
variation in the overall data set. It would be interesting to observe how these EOFs
varied over interannual and intraseasonal scales. For this, the EOFs have to be
worked out in span of 30 years as this is the duration taken by the IMD to define one
climate period. This would make about 5 such analyses. Further, the EOFs during
the Indian Summer Monsoon Rainfall (ISMR) period may vary considerably with
climatic periods. Such studies shall have to be undertaken in future in order to better
model the subdivisional level rain patterns over the Indian region. The fact that 4
leading EOFs account for about 87% of the total variance in the precipitation of
19 subdivisions also compels us to look forward to design prediction models based
on these EOFs rather than the 19 subdivisions considered in isolation. In particular,
statistical models such as the artificial neural networks are kept in sight.
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Forecast of Flow Characteristics in
Time-Dependent Artery Having Mild
Stenosis

A. K. Singh and S. P. Pandey

Abstract In this part, we have considered the blood stream, however, time-
subordinate supply route with gentle stenosis. The impact of time on protection
from stream (λ̄), volumetric stream rate(Q), pivotal speed and shear pressure is
demonstrated scientifically and graphically. Articulations for dimensionless release
variable and dimensionless shear pressure variable are gotten. We have additionally
thought about the trademark speed for projection. Basic estimation of Reynolds
number at which partition happens has been found under this thought.

1 Introduction

The vehicle of liquids in funnels, cylinders and diverts is significant in numerous
organic and biomedical frameworks, especially, in the human cardiovascular frame-
works. Normally development of greasy material, for example, calcium on their
inward dividers, is known as blood vessel stenosis. The affidavit of atherosclerotic
plaque relies upon the geometry of the veins. The most well-known areas to
deal stenosis are the arches, intersections and bifurcations of huge and medium
class. It is imperative to think about the bio-liquid dynamical parts of the human
cardiovascular framework, which have increased more consideration in the ongoing
decades regarding the determination and the genesis of atherosclerosis.

Numerous scientists have considered the blood stream in stenosed supply
routes of various geometries. An investigation of the influence of a pivotally
symmetric time-subordinate development of mellow steno-sister in the lumen of
a cylinder whose cross segment is consistent through which a Newtonian liquid is
streaming relentlessly has been portrayed by Young [1]. Sahu et al. [2] presented
a mathematical analysis of the influence of a mild stenosis on blood flow (couple
stress fluid) characteristics (Fig. 1). Srinivasacharya and Srikanth [3] investigated
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Fig. 1 Geometry of mild
stenosis

δ

R0
R

–z0 z0

the consistent spilling impact on the pulsatile nature of couple pressure liquid.
Expansion of the speed and the stream rate altogether for a little addition in the
couple pressure parameter has been portrayed by Adhikary and Misra [4]. The
insecure laminar incompressible progression of Eyring–Powell liquid between two
parallel permeable plates with variable suction or infusion speed with the thought
of couples tresses and a uniform attractive field has been talked about by Rana and
Khan [5]. Reddy et al. [6] added to the mathematical model for couple pressure
liquid course through the stenotic annular locale and examined that the impedance
has been expanding with progression in the stature and length of stenosis. Hayat
et al. [7] studied the Hall consequences for the peristaltic movement of couple
pressure liquid in a slanted asymmetric channel with warmth and mass exchange.
Adesanya and Makinde [8] researched the impact of couple pressure liquid stream
on the enduring dainty stream down warmed slanted plate and examined the impact
of couple pressure parameter to chop down the stream velocity and temperature
appropriation. Prakash et al. [9] reported that the size of the stenoses diminishes
the volumetric stream rate and expands the divider shear worry just as impedance.
Prakash and Makinde [10] observed that the impedance is diminished because of the
attractive field impact, when patients experienced thermal radiation therapy. Tiwari
and Chauhan [11] discussed the effect of plasma layer thickness, varying viscosity,
yield stress, permeability and viscosity ratio parameter on the flow variables. Bhatti
et al. [12] proposed slip impacts and endoscopy investigation on blood stream of
molecule liquid suspension. They explored that weight rise diminishes because
of the impact of molecule volume division and friction powers likewise decrease
because of the effect of molecule volume part.

2 Mathematical Formulation

The time pace of the sweep of corridor R(z) can be characterized as
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R = R0 − τβ0(1 − e−
t
τ )
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)
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The fundamental condition of movement in barrel-shaped polar directions
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Equation (2) can be written as

−G = μ
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∂

∂r

(
r
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(5)

where G = − ∂p
∂z

. No slip conditions on the stenosis surface are

w = 0 at r = R(z)− z0 ≤ z ≤ z0 (6)

w = 0 at r = R0 |z| ≥ z0 (7)

Integrating Eq. (5), one obtains

r
∂w

∂r
= −G r2

2μ
+ c1 (8)

Since

∂w

∂r
= 0 (9)

on the axis implies that c1 = 0

⇒ r
∂w

∂r
= −G r2

2μ
(10)

Integrating (8) and using (6), we get

w = − G

4μ

(
r2 − R2

)
(11)
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Volumetric flow rate through the artery is

Q =
∫ R

0
2πrwdr = πG

8μ
R4 (12)

From Eq. (9),

G(z) = −∂p

∂z
= 8μQ

πR4
(13)

Integrating (11) along length of the artery and p = p1 at z = −L and p = p2 at
z = L, we obtain

�p = 8μQ

π

∫ L

−L
1

R4 dz = 8μQ

πR4
0

∫ L

−L
1

(
R
R0

)4 dz (14)

Resistance to flow can be defined as

λ = �p

Q
= 8μ

πR4
0
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)4 dz (15)
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λ = �p

Q
= 16μ

πR4
0
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L− z0 +

∫ z0

0

1

(R/R0)4
dz

]
(17)

In the normal condition,

λN = 16μL

πR4
0

(18)

Resistance to flow ratio can be written as

λ̄ = λ

λN
=
[

1 − z0

L
+ 1

L

∫ z0

0

1

(R/R0)4
dz

]
(19)

where R/R0 can be taken from Eq. (1). Wall shear stress (τw) is given by the
relation:

τw = −R

2

∂p

∂z
(20)

Using Eq. (11) in Eq. (18), we get
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τw = 4μQ

πR3 (21)

In normal situation,

τN = 4μQ

πR3
0

(22)

Wall shear stress ratio is given as

τ̄w = τw

τN
=
(
R

R0

)−3

(23)

The vein having the stenosis supplies blood to a specific vascular bed, and it is
assumed that the all out weight drop over the course and the vascular bed (p1 −p3)

are consistent. The all out weight drop can be communicated as

p1 − p3 = p1 − p2 + p2 − p3

⇒
(
p1 − p3

Q

)
=
(
p1 − p2

Q

)
+
(
p2 − p3

Q

)

⇒ λ13 = λ12 + λ23 (24)

It is assumed that

λ23 = M(λ12)p (25)

where (λ12)pis the resistance to flow of the artery supplying the vascular bed based
on Poiseuille flow and M is a constant.
From Eqs. (22) and (23), the expression for dimensionless discharge parameter is
given by

(λ12)pQ

p1 − p3
=
[

λ12

(λ12)p
+M

]−1

(26)

Suppose a stenosis be specified for maximum stenosis height δm
R0

= 0.2.
Then,

δ

R0
= 0.2(1 − e−t/τ ) (27)

The expression for the maximum wall shear stress in the stenosis can be written as
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(λ12)pπR
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3
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=
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)−3

(29)

Prediction of Separation
The previous analysis is based on the condition that viscous forces are much larger
than inertial forces. Inertial impacts are because of the convective speeding-up
terms in the Navier–Stokes condition. Clearly as the size of stenosis increments
or Reynolds number builds, the significance of inertial terms cannot be ignored.
Two significant impacts because of inertial powers are (i) lower weight at limited
area of stenosis because of Bernoulli impact and (ii) separation. The improvement
of stenosis happens because of division.
The previous analysis is based on the condition that viscous forces are much larger
than inertial forces. Inertial effects are due to the convective acceleration terms in
the Navier–Stokes equation. It is obvious that as the size of stenosis increases or
Reynolds number increases, the importance of inertial terms cannot be neglected.
Two important effects due to inertial forces are (i) lower pressure at narrowed
section of stenosis due to Bernoulli effect and (ii) separation. The development of
stenosis occurs due to separation.

Characteristic velocity for the bulge is assumed to be given by the equation:

vδ = 2U

{
1 −

(
1 − δ

R0

)2
}

(30)

As δ
R0

<< 1,

⇒ vδ ∼= 4U

(
δ

R0

)
(31)

The Reynolds number is

(Re)δ = δvδ

v
= 4

(
δ

R0

)2
UR0

v
(32)

In Eq. (29), it is assumed that when Reynolds number reaches some critical value
Rcrit , separation will occur. Thus the condition for separation is

Rcrit

4
=
(
δ

R0

)2

R0 (33)
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3 Results and Discussion

The impact of stenosis stature on protection from stream has appeared in charts
(Graph 1 and Graph 2). The outcomes demonstrate that protection from stream
increments as stenosis stature increments. The bend marked z0/l = 1 shows
transparently the impact of the stenosis on the protection from stream. The point
to be noticed is that for δ/R0 = .1, the protection from stream increments for a
perpetual-width tube by about 25%. The bend named z0/l = .1 is explaining the
way that if the protection from stream over a long section of vein is considered,
the impact of the stenosis is little until a specific estimation of δ/R0 is surpassed.
Past this basic estimation of δ/R0, the nearness of the stenosis quickly ends up
huge. It ought to be stressed that for a gentle stenosis, the adjustment in the genuine
weight at a point in the supply route because of the stenosis will in any case be little
in contrast with the mean blood vessel weight. Diagram (Graph 2) delineates that
this protection from stream increments as the dimensionless time t/τ increments.
The variety of volumetric stream rate (Q) with hub separation (z) for various
estimations of dimensionless time t/τ is introduced in chart (Graph 3). As the
time t/τ expands, the stream rate diminishes. The variety of hub speed profile
with the spiral arrangement have appeared in diagram (Graph 4). It is seen that
the pivotal speed accomplishing the most extreme extents at the hub (r = 0)
and least at the limit (r = R). The variety in divider shear worry all through
the pivotal separation with time has appeared in chart (Graph 5). It is observed
that wall shear stress steeply increases in the upstream from its approached value
to the peak value at the throat, and decreases in the downstream of the throat.
Further those dividers’ shear pressure increments as time increments. Restricting
conditions for δ/R0 and Reynolds number (Re) for different estimations of Rcrit
are introduced in chart (Graph 6). The inexact idea of this examination ought to
be perceived and worth got from chart (Graph 6) must be utilized as unpleasant
assessments for anticipating partition. It is evident from the chart that, in any event,
for mellow stenosis, detachment may happen at a generally little Reynolds number.
For instance, for δ/R0 = .1, the constraining estimation of the corridor Reynolds
number (Re) is around 125, which depends on Rcrit = 5. There will be no division
anticipated for the focuses falling beneath the bend (Graph 6). For z0/l = 1 and
M = 10, the variety in the release parameter and the most extreme divider shearing
worry in stenosis have been plotted versus dimensionless time in charts (Graph 7
and Graph 8) separately. It is seen that release is diminishing gradually with the time
despite the fact that shear pressure increments quickly. For t/τ = 1, the discharge
has decreased by about 2% and the shear has increased approximately 50%.
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Graph 1 Variation in resistance to flow with stenosis height for different values of z0/l

Graph 2 Variation in resistance to flow with stenosis height for different values of time
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Graph 3 Variation in volumetric flow rate with axial distance for different time

Graph 4 Variation in axial velocity with radial distance for different time
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Graph 5 Variation in shear stress with axial distance for different time

Graph 6 Variation in stenosis height with Reynolds number for different values of Rcrit
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Graph 7 Variation in dimensionless discharge variable with time

Graph 8 Variation in dimensionless shear stress with time
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4 Closing Comments

The arrangement of a stenosis in a vein may cause numerous serious issues like
atherosclerosis and upset the normal capacity of circulatory framework. Expectation
of the stream normal for such sort of issue is troublesome, and different rearranging
propositions are required to build up a tractable model. In this chapter, Flow of blood
through a time dependent artery with axially symmetric stenosis is considered. A
surmised arrangement with time subordinate geometric design for a mellow stenosis
is obtained.
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Applicability of Measure of
Noncompactness for the Boundary Value
Problems in �p Spaces

Tanweer Jalal and Ishfaq Ahmad Malik

Abstract In this paper, we prove the existence of solution for the boundary value
problem for an infinite system of second-order differential equations in �p space of
the form:

d2vj

dt2
+ vj = fj (t, v(t)),

where vj (0) = vj (T ) = 0, t ∈ [0, T ], v(t) = (
vj (t)

)∞
j=1, and j = 1, 2, . . ..

By applying the concept of measures of non-compactness this boundary value
problem is first changed into an equivalent system of integral equations, then the
result is obtained for the system of integral equations by using Darbo’s fixed point
theorem. The result is applied to an example to illustrate the concept.

1 Introduction and Preliminaries

Measures of noncompactness are very important concept widely used in fixed point
theory, differential equations, functional equations, integral and integro-differential
equations, etc. The fixed point arguments have been used in the study of existence of
solutions to functional equations, for instance, the Banach contraction [1, 14, 29, 30]
and Schauder’s fixed point theorem [12, 15, 16, 18]. These theorems cannot be used
in case the compacity and the Lipschitz condition are not satisfied. The measure of
noncompactness argument appears as most convenient and useful in such cases.

It was Kuratowski [17], who introduced the idea of measure of noncompactness,
and then Banas̀ and Goebel [5] gave an axiomatic approach to it, in general, a
Banach space. Darbo [9] first used the idea of measure of noncompactness to
come up with a fixed point theorem for condensing operators, which generalized
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the classical Schauder’s fixed point theorem and a special type of the Banach
contraction principle. In [2–4, 6–8, 20, 21, 25, 26, 28], an infinite system of
differential equations has been studied using the idea of measure of noncompactness
in a different Banach space.

Let (X, ‖ · ‖) be a Banach space, for any E ⊂ X, Ē denotes closure of E and
conv(E) denotes the closed convex hull of E. We denote the family of non-empty
bounded subsets of X by MX and family of non-empty and relatively compact
subsets of X by NX. Let N denote the set of natural numbers and R the set
of real numbers for R+ = [0,∞), and the axiomatic definition of measure of
noncompactness is defined below.

Definition 1 ([7]) A mapping χ : MX → R+ is said to be the measure of
noncompactness in X if the following conditions hold:

(i) The family Kerχ = {E ∈ MX : χ(E) = 0} is non-empty and Kerχ ⊂ NX;
(ii) E1 ⊂ E2 ⇒ χ(E1) ≤ χ(E2);

(iii) χ(Ē) = χ(E);
(iv) χ(convE) = χ(E);
(v) χ [λE1 + (1 − λ)E2] ≤ λχ(E1)+ (1 − λ)χ(E2) for 0 ≤ λ ≤ 1;

(vi) If (En) is a sequence of closed sets from MX such that En+1 ⊂ En and

lim
n→∞χ(En) = 0, then the intersection set E∞ =

∞⋂

n=1

En is non-empty.

Further properties of Hausdorff measure of noncompactness χ can be found in [5,
7].

The following Darbo’s fixed point theorem will be utilized in our further
consideration.

Lemma 1 ([9]) Let E be a non-empty, bounded, closed and convex subset of
Banach space X, with χ as measure of noncompactness, and let T : E → E

be a continuous mapping. Assume that there exists a constant k ∈ [0, 1) such that
χ (T (E)) ≤ kχ(E) for any non-empty subset E of X. Then, T has a fixed point in
the set E.

The idea of equicontinuous sets is defined as follows:

Definition 2 (Equicontinuous) Let (*1, d) and (*2, d) be two metric spaces and
T the family of functions from *1 to *2. The family T is equicontinuous at a point
m0 ∈ *1 if for every ε > 0, there exists δ > 0 such that d(f (m), f (m0)) < ε

for all f ∈ T and all m ∈ *1 such that d(m,m0) < δ. The family is pointwise
equicontinuous if it is equicontinuous at each point of *1.

For fixed p , p ≥ 1, we denote by �p the Banach sequence space with ‖ · ‖p norm
defined as

‖x‖p = ‖(xn)‖p =
( ∞∑

n=1

|xn|p
) 1

p
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for x = (xn) ∈ �p. In order to apply Lemma 1 in a given Banach space X, we need
a formula expressing the measure of noncompactness by a simple formula. Such
formulas are known only in a few spaces [5, 7].

For the Banach sequence space
(
�p, ‖ · ‖p

)
, Hausdorff measure of noncompact-

ness is given by

χ(E) = lim
n→∞

⎧
⎪⎨

⎪⎩
sup
(ek)∈E

⎛

⎝
∑

k≥n
|ek|p

⎞

⎠

1
p

⎫
⎪⎬

⎪⎭
, (1)

where E ∈ M�p . The above formulas will be used in the sequel of the chapter.
In [3, 8, 27], an infinite system of second-order differential equations of the form

d2ui

dt2
= −fi(t, u1, u2, . . .) , ui(0) = ui(T ) = 0 , i ∈ N , t ∈ [0, T ],

is studied in different Banach spaces.
In this chapter, our consideration is

d2vj

dt2
+ vj = fj (t, v(t)), (2)

where t ∈ [0, T ], v(t) = (
vj (t)

)∞
j=1 and j = 1, 2, . . ., in �p Banach space.

The above system will be studied together with the boundary problem

vj (0) = vj (T ) = 0. (3)

The solution is investigated using the infinite system of integral equations and
Green’s function [13]. Such systems appear in the study of theory of neural sets,
theory of branching process and theory of dissociation of polymers [10, 11, 23].

In this chapter, we find the conditions under which the system given in (2) under
the boundary condition (3) has solution in the Banach sequence space �p, and to
do so, we define an equivalent infinite system of integral equations. The result is
supported by an example.

2 Main Results

By C(I,R) we denote the space of continuously differentiable functions on I =
[a, b] and by C2(I,R) the space of twice continuously differentiable functions on
I = [a, b]. A function v ∈ C2(I,R) is a solution of (2) if and only if v is a solution
of the infinite system of integral equations
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vj (t) =
∫ T

0
R(s, t)fj (s, v(s))ds , t ∈ I, (4)

where Green’s function R(s, t) defined on the square I 2 as

R(s, t) =
{

sin(t) sin(T−s)
sin(T ) : 0 ≤ s < t ≤ T ,

sin(s) sin(T−t)
sin(T ) : 0 ≤ t < s ≤ T .

(5)

This function satisfies the inequality

R(s, t) ≤ 1

2
tan (0.5T ) (6)

for all (t, s) ∈ I 2.

From (4) and (5), we obtain

vj (t) =
∫ t

0

sin(t) sin(T − s)

sin(T )
fj (s, v(s))ds +

∫ T

t

sin(s) sin(T − t)

sin(T )
fj (s, v(s))ds.

Differentiation gives

dvj
dt

=
∫ t

0

cos(t) sin(T − s)

sin(T )
fj (s, v(s))ds +

∫ T

t

− sin(s) cos(T − t)

sin(T )
fj (s, v(s))ds.

Again, differentiating gives

d2vj

dt2
=
∫ t

0

− sin(t) sin(T − s)

sin(T )
fj (s, v(s))ds + cos(t) sin(T − t)

sin(T )
fj (t, v(t))

+
∫ T

t

− sin(s) sin(T − t)

sin(T )
fj (s, v(s))ds + sin(t) cos(T − t)

sin(T )
fj (t, v(t))

= −
∫ T

0
R(s, t)fj (s, v(s))ds

+ 1

sin(T )
[sin(t) cos(T − t)+ cos(t) sin(T − t)] fj (t, v(t))

= −vj (t)+ fj (t, v(t)).

Thus, vj (t) given in (4) satisfies (2). Hence, finding the existence of solution for
the system (2) with boundary conditions (3) is equivalent to finding the existence of
solution for the infinite system of integral equations (4).

Remark 1 If X is a Banach space and χX denotes its Hausdorff measure of
noncompactness, then the Hausdorff measure of noncompactness of a subset E of
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C(I,X), the Banach space of continuous functions is given by [5, 19, 22, 24]

χ(E) = sup {χX(X(t)) : t ∈ I } .

where E is equicontinuous on the interval I = [0, T ],
In order to find the condition under which the system (4) has a solution in �p, we

need the following assumptions:

(A1) The functions fj are real-valued, defined on the set I×R
∞, (j = 1, 2, 3, . . .).

(A2) An operator f defined on the space I × �p as

(t, v) 0→ (f v) (t) = (
fj (t, v)

) = (f1(t, v), f2(t, v), f3(t, v), . . .)

transforms the space I × �p into �p.
The class of all functions {(f v) (t)}t∈I is equicontinuous at each point of

the space �p. That is, for each v ∈ �p, fixed arbitrarily and given ε > 0, there
exists δ > 0 such that whenever ‖u− v‖p < δ

‖(f u)(t)− (f v)(t)‖p < ε. (7)

(A3) For each fixed t ∈ I, v = (
vj
) ∈ �p, the following inequality holds:

∣∣fj (t, v(t))
∣∣p ≤ gj (t)+ hj (t)|vj |p n ∈ N, (8)

where hj (t) and gj (t) are real-valued continuous functions on I . The function

gj (j = 1, 2, . . .) is continuous on I , and the function series
∑

b≥1

gb(t) is

uniformly convergent. Also, the function sequence
(
hj (t)

)
j∈N is equibounded

on I .

To prove the general result, we set the following constants:

g(t) =
∞∑

j=1

gj (t),

G = max {g(t) : t ∈ I } ,
H = sup

{
hj (t) : t ∈ I, j ∈ N

}
.

Theorem 1 Under the assumptions (A1)− (A3), with (HT )
1
p tan(0.5T ) < 2, T �=

(2n−1)π, n = 1, 2, . . ., the infinite system of integral equations (4) has at least one
solution v(t) = (vj (t)) in �p space p ≥ 1, for each fixed t ∈ I.

Proof We consider the space C(I, �p) of all continuous functions on I = [0, T ]
with supremum norm given as
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‖v‖ = sup
t∈I
{‖v(t)‖p

}
.

Define the operator F on the space C(I, �p) by

(Fv) (t) = (
(Fv)j (t)

)

=
(∫ T

0
R(s, t)fj (s, v(s))ds

)

=
(∫ T

0
R(s, t)f1(s, v(s))ds,

∫ T

0
R(s, t)f2(s, v(s))ds, . . .

)
.

(9)

The operator F as defined in (9) transforms the space C(I, �p) into itself, which
we will show. Fix v = v(t) = (

vj (t)
)

in C(I, �p); then, for arbitrary t ∈ I using
assumption (A3), inequality (6) and Hölder’s inequality, we have

(‖(Fv)(t)‖p
)p =

∞∑

j=1

∣∣R(s, t)fj (s, v(s))ds
∣∣p

≤
∞∑

j=1

{∫ T

0
|R(s, t)|p|fj (s, v(s))|pds

}(∫ T

0
ds

) p
q

≤ (T )
p
q

∞∑

j=1

{∫ T

0
|R(s, t)|p [gj (s)+ hj (s)|vj (s)|p

]
ds

}

≤
(

1

2
tan(0.5T )

)p
(T )

p
q

∞∑

j=1

[∫ T

0
gj (s)ds +

∫ T

0
hj (s)|vj (s)|pds

]
.

Now, using Lebesgue’s dominated convergence theorem, we get

(‖(F(v)(t)‖p
)p ≤

⎛

⎝T
1
q

2
tan(0.5T )

⎞

⎠
p⎛

⎝
∫ T

0
g(s)ds +H

∫ T

0

∞∑

j=1

|vj (s)|pds
⎞

⎠

≤
⎛

⎝T
1
q

2
tan(0.5T )

⎞

⎠
p

(
GT +HT

(‖v‖p
)p)

=
(
T

2
tan(0.5T )

)p (
G+H

(‖v‖p
)p)

.

Therefore,
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(‖(F(v)(t)‖p
)p ≤

(
T

2
tan(0.5T )

)p (
G+H

(‖v‖p
)p)

. (10)

Hence, Fv is bounded on the interval I . Thus, F transforms the space C(I, �p) into
itself. From (10), we get

‖(F(v)(t)‖p ≤ T

2
tan(0.5T )

(
G+H

(‖v‖p
)p) 1

p . (11)

Now, using (4) and following the procedure as above, we get

(‖v‖p
)p ≤

(
T

2
tan(0.5T )

)p (
G+H

(‖v‖p
)p)

⇒ (‖v‖p
)p ≤ G(T tan(0.5T ))p

2p −H(T tan(0.5T ))p

⇒ ‖v‖p ≤ G
1
p (T tan(0.5T ))

[2p −H(T tan(0.5T ))p]
1
p

.

Thus, the positive number

r = G
1
p (T tan(0.5T ))

[2p −H(T tan(0.5T ))p]
1
p

is the optimal solution of the inequality T
2 tan(0.5T ) (G+HRp)

1
p ≤ R.

Hence, by (11), the operator F transforms the ball Br ⊂ C(I, �p) into itself.
Further, we show that F is continuous on Br . Let ε > 0 be arbitrarily fixed and

v = (v(t)) ∈ Br be any arbitrarily fixed function, and then if u = (u(t)) ∈ Br is
any function such that ‖u− v‖ < ε, then for any t ∈ I , we have

(‖(Fu)(t)− (Fv)(t)‖p
)p =

∞∑

j=1

∣∣∣∣
∫ T

0
R(s, t)

[
fj (s, u(s))− fj (s, v(s))

]
ds

∣∣∣∣
p

≤
∞∑

j=1

∫ T

0
|R(s, t)|p ∣∣fj (s, u(s))− fj (s, v(s))

∣∣p ds
(∫ T

0
ds

) p
q

≤ (T )
p
q

∞∑

j=1

∫ T

0
|R(s, t)|p ∣∣fj (s, u(s))− fj (s, v(s))

∣∣p ds.

Now, by using (6) and the assumption (A2) of equicontinuity, we get
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(‖(Fu)(t)− (Fv)(t)‖p
)p

≤ (T )
p
q

(
1

2
tan(0.5T )

)p ∞∑

j=1

∫ T

0

∣∣fj (s, u(s))− fj (s, v(s))
∣∣p ds

=
⎛

⎝T
1
q

2
tan(0.5T )

⎞

⎠
p

lim
m→∞

m∑

j=1

∫ T

0

∣∣fj (s, u(s))− fj (s, v(s))
∣∣p ds

=
⎛

⎝T
1
q

2
tan(0.5T )

⎞

⎠
p

lim
m→∞

∫ T

0

⎛

⎝
m∑

j=1

∣∣fj (s, u(s))− fj (s, v(s))
∣∣p
⎞

⎠ ds.

(12)

Define the function δ(ε) as

δ(ε) = sup
{|fj (s, u(s))− fj (s, v(s))| : u, v ∈ �p, ‖u− v‖ ≤ εt ∈ I, j ∈ N

}
.

Then, clearly δ(ε) → 0 as ε → 0 since the family {(f v)(t) : t ∈ I } is equicontinu-
ous at every point v ∈ �p.

Therefore, by (12) and using Lebesgue’s dominant convergence theorem, we
have

(‖(Fu)(t)− (Fv)(t)‖p
)p ≤

⎛

⎝T
1
q

2
tan(0.5T )

⎞

⎠
p ∫ T

0
[δ(ε)]p ds

=
(
T

2
tan(0.5T )

)p
[δ(ε)]p .

This implies that the operator F is continuous on the ball Br , since T �= (2n −
1)π , n = 1, 2, . . . .

SinceR(s, t) as defined in (5) is uniformly continuous on I 2, and so by definition
of operator F , it is easy to show that {Fu : u ∈ Br} is equicontinuous on I .
Let Br1 = conv(FBr), then Br1 ⊂ Br and the functions from the set Br1 are
equicontinuous on I .

Let E ⊂ Br1 , then E is equicontinuous on I . If v ∈ E is a function, then for
arbitrarily fixed t ∈ I , we have by assumption (A3)

∞∑

j=b

∣∣(Fv)j (t)
∣∣p =

∞∑

j=b

∣∣∣∣
∫ T

0
R(s, t)fj (s, v(s))ds

∣∣∣∣
p

≤
∞∑

j=b

(∫ T

0
|R(s, t)||fj (s, v(s))|

)p
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Using Hölder’s inequality and (6), we get

∞∑

j=b

∣∣(Fv)j (t)
∣∣p ≤

∞∑

j=b

(∫ T

0
|R(s, t)|p|fj (s, v(s))|pds

)(∫ T

0
ds

) p
q

≤ T
p
q

(
1

2
tan(0.5T )

)p ∞∑

j=b

(∫ T

0
|fj (s, v(s))|pds

)
.

Using Lebesgue’s dominant convergence theorem and the assumption (A3) gives

∞∑

j=b

∣∣(Fv)j (t)
∣∣p

≤
⎛

⎝T
1
q

2
tan(0.5T )

⎞

⎠
p ∫ T

0

⎧
⎨

⎩

∞∑

j=b
[gj (s)+ hj (s)|vj (s)|p]

⎫
⎬

⎭ ds

=
⎛

⎝T
1
q

2
tan(0.5T )

⎞

⎠
p ⎧⎨

⎩

∫ T

0

⎛

⎝
∞∑

j=b
gj (s)

⎞

⎠ ds +
∫ T

0

⎛

⎝
∞∑

j=b
hj (s)|vj (s)|p

⎞

⎠ ds

⎫
⎬

⎭

≤
⎛

⎝T
1
q

2
tan(0.5T )

⎞

⎠
p ⎧⎨

⎩

∫ T

0

⎛

⎝
∞∑

j=b
gj (s)

⎞

⎠ ds +H

∫ T

0

∞∑

j=b
|vj (s)|pds

⎫
⎬

⎭ .

Taking supremum over all v ∈ E, we obtain

sup
v∈E

∞∑

j=b

∣∣(Fv)j (t)
∣∣p

≤
⎛

⎝T
1
q

2
tan(0.5T )

⎞

⎠
p ⎧⎨

⎩

∫ T

0

⎛

⎝
∞∑

j=b
gj (s)

⎞

⎠ ds +H sup
v∈E

∫ T

0

∞∑

j=b
|vj (s)|pds

⎫
⎬

⎭ .

Using the definition of Hausdorff measure of noncompactness in �p space and
noting that E is the set of equicontinuous functions on I , then by using Remark 1
we get

(χ(FE))p ≤ HT

(
1

2
tan(0.5T )

)p
(χ(E))p

⇒ χ(FE) ≤ (HT )
1
p

(
1

2
tan(0.5T )

)
χ(E).
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Therefore, if (HT )
1
p

(
1

2
tan(0.5T )

)
< 1, that is, (HT )

1
p tan(0.5T ) < 2, then by

Lemma 1, the operator F on the set Br1 has a fixed point, which completes the proof
of the theorem. 	

Now, the system of integral equations (4) is equivalent to the boundary value
problem (2), and we conclude that the infinite system of second-order differential
equations (2) satisfying the boundary conditions (3) has at least one solution
v(t) = (v1(t), v2(t), . . .) ∈ �p such that vj (t) ∈ C2(I, �p) , (j = 1, 2, . . .) for
any t ∈ I , if the assumptions of Theorem 1 are satisfied.

Note The value of T is chosen such that the condition (HT )
1
p tan(0.5T ) < 2 is

satisfied.

The above result is illustrated by the following example.

Example 1 Consider the infinite system of second-order differential equations in �2

d2vn

dt2
+ vn = t3−nt

n
+

∞∑

b=n

cos t

(1 + 2n)
√
(b − 1)! · vb(t)[1 − (b − n)vb(t)]

(b − n+ 1)
, (13)

for n = 1, 2, . . . .

Solution Comparing (13) with (2), we have

fn(t, v) = t3−nt

n
+

∞∑

b=n

cos t

(1 + 2n)
√
(b − 1)! · vb(t)[1 − (b − n)vb(t)]

(b − n+ 1)
. (14)

Assumption (A1) of Theorem 1 is clearly satisfied. We now show that assumption
(A2) of Theorem 1 is also satisfied, that is,

|fn(t, v)|2 ≤ gn(t)+ hn(t)|vn|2. (15)

Using the Cauchy–Schwarz inequality and Eq. (13), we have

|fn(t, v)|2

=
∣∣∣∣∣
t3−nt

n
+

∞∑

b=n

cos t

(1 + 2n)
√
(b − 1)! · vb(t)[1 − (b − n)vb(t)]

(b − n+ 1)

∣∣∣∣∣

2

≤ 2

{
t23−2nt

n2 +
{ ∞∑

b=n

cos t

(1 + 2n)
√
(b − 1)! · vb(t)[1 − (b − n)vb(t)]

(b − n+ 1)

]}2

≤ 2
t23−2nt

n2 + 2

( ∞∑

b=n

cos2 t

(1 + 2n)2(b − 1)!

)
·

∞∑

b=n

(
vb(t)[1 − (b − n)vb(t)]

(b − n+ 1)

)2

.
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Now, using the fact that
1 − αβ

β
≤ 1

(2β)2
for any real α, β, β �= 0, we have

|fn(t, v)|2 ≤ 2
t23−2nt

n2 + 2
cos2 t

(1 + 2n)2
× e ×

(
v2
n +

∞∑

b=n+1

vb(t)[1 − (b − n)vb(t)]
(b − n+ 1)

)

≤ 2
t23−2nt

n2
+ 2

e[cos2 t]
(1 + 2n)2

(v2
n)+ 2

e[cos2 t]
(1 + 2n)2

×
∞∑

b=n+1

(
1

2(b − n)

)2

≤ 2
t23−2nt

n2
+ 1

2

e[cos2 t]
(1 + 2n)2

× π2

6
+ 2

e[cos2 t]
(1 + 2n)2

(v2
n).

Hence, by taking

gn(t) = 2
t23−2nt

n2
+ π2

12

e[cos2 t]
(1 + 2n)2

, hn(t) = 2
e[cos2 t]
(1 + 2n)2

,

it is clear that gn(t) and hn(t) are real-valued continuous functions on I . Also,

|gn(t)| ≤ 2
T 2

n2 + π2

12

e

(1 + 2n)2

≤
(

2T 2 + π2e

12

)
1

n2

for all t ∈ I . Thus, by the Weierstrass test for uniform convergence of the function
series, we see that

∑

b≥1

gb(t) is uniformly convergent on I .

Furthermore, we have

|hj (t)| ≤ 2e

(1 + 2n)2

for all t ∈ I .
Thus, the function sequence

(
hj (t)

)
is equibounded on I . Thus, (14) is satisfied,

and hence the assumption (A3) is satisfied.
Also,

G = sup

⎧
⎨

⎩
∑

b≥1

gb(t) : t ∈ I

⎫
⎬

⎭ =
(

2T 2 + π2e

12

)
π2

6
,

and
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H = sup
{
hj (t) : t ∈ I

} = 2e

9
.

The assumption (A2) is also satisfied as for fixed t ∈ T and (vj (t)) =
(v1(t), v2(t), . . .) ∈ �2, we have

∞∑

j=1

∣∣fj (t, v)
∣∣2 =

∞∑

j=1

gj (t)+
∞∑

j=1

hj (t)|vj (t)|2

≤ G+H

∞∑

j=1

|vj (t)|2.

Hence, the operator f = (fj ) transforms the space (I, �2) into �2.
Also, for ε > 0 and u = (uj ), v = (vj ) in �2 with ‖u− v‖2 < ε, we have

(
‖ (f u) (t)− (f v) (t)‖2

)2

=
∞∑

n=1

|fn(t, u(t))− fn(t, v(t))|2

=
∞∑

n=1

⎧
⎨

⎩

∣∣∣∣∣

∞∑

b=n

(cos t)ub(t)[1 − (b − n)ub(t)]
(1 + 2n)(b − n+ 1)

√
(b − 1)! − (cos t)vb(t)[1 − (b − n)vb(t)]

(1 + 2n)(b − n+ 1)
√
(b − 1)!

∣∣∣∣∣

2
⎫
⎬

⎭

≤
∞∑

n=1

⎧
⎨

⎩

(
1

(1 + 2n)2

) ∣∣∣∣∣

∞∑

b=n

ub(t)[1 − (b − n)ub(t)] − vb(t)[1 − (b − n)vb(t)]
(b − n+ 1)

√
(b − 1)!

∣∣∣∣∣

2
⎫
⎬

⎭

≤
∞∑

n=1

⎧
⎨

⎩

(
1

(1 + 2n)2

)[ ∞∑

b=n

∣∣∣∣
(ub(t)− vb(t))[1 − (b − n)(ub(t)+ vb(t))]√

(b − 1)!(b − n+ 1)

∣∣∣∣

]2
⎫
⎬

⎭

Using Holder’s inequality, we get [31]

(
‖ (f u) (t)− (f v) (t)‖2

)2

≤
∞∑

n=1

⎧
⎨

⎩
1

(1+2n)2

⎛

⎝
∞∑

b=n

1

(b−1)!

⎞

⎠

⎡

⎣
∞∑

b=n

∣∣∣∣
(ub(t)−vb(t))[1−(b−n)(ub(t)+vb(t))]

(b−n+1)

∣∣∣∣
2
⎤

⎦

⎫
⎬

⎭

≤ e

∞∑

n=1

⎧
⎨

⎩
1

(1 + 2n)2

⎡

⎣
∞∑

b=n
|ub(t)− vb(t)|2

∣∣∣∣
1 − (b − n)(ub(t)+ vb(t))

(b − n+ 1)

∣∣∣∣
2
⎤

⎦

⎫
⎬

⎭

≤ e

∞∑

n=1

⎧
⎨

⎩
1

(1 + 2n)2

⎡

⎣
∞∑

b=n
|ub(t)− vb(t)|2

⎤

⎦

⎫
⎬

⎭
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< eε2
∞∑

n=1

{
1

(1 + 2n)2

}

≤ e

(
π2

8

)
ε2.

Thus, for any t ∈ I , we have

‖ (f u) (t)− (f v) (t)‖2 <
πε

√
e

2
√

2
.

Therefore, the family {(f v)(t) : t ∈ I } is equicontinuous.

Finally, we see that the condition (HT )
1
p tan(0.5T ) < 2 is satisfied for all T ≤ 2.

So, by Theorem 1, there exists at least one solution to given infinite system of
differential equations (13) in C(I, �2).
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Differential Equations Involving Theta
Functions and h-Functions

H. C. Vidya and B. Ashwath Rao

Abstract Ramanujan in his notebook recorded elegant continued fraction identities
and mentioned some of the appealing formulas involving it. The purpose of this
chapter is to acquire the connection among the continued fraction of order 12 with
h-functions. In this chapter, we additionally construct certain beautiful differential
identities containing h-functions by utilizing explicit relations recorded by Shaun
Cooper.

1 Introduction

The continued fraction of order 12 was established by M. S. M. Naika et al. [1]
as a special case of fascinating continued fraction identity noted by Ramanujan in
his second notebook [2, p.74]. Shaun Cooper [3] in his book recorded some basic
properties of h-functions and also established relations involving Eisenstein series
of various levels and h-functions. Furthermore, they have established the relation
among cubic continued fraction and Rogers–Ramanujan’s continued fraction with
h-functions. Recently, B. C. Berndt et al. [4] formed certain differential equations
to prove the identities of orders 14 and 35 in Section 8, 9 and 10. They have
systematically derived several new differential equations for eta function quotients
in Section 10. Recently, H. C. Vidya and B. R. Srivatsa Kumar [5] constructed
certain differential equations involving theta functions.

This chapter involves identities that relate continued fraction of order 12 with h-
functions. Furthermore, we construct certain differential equations involving theta
functions and h-functions, which are achieved by adopting some of the Eisenstein
series relations recorded by S. Cooper. In Sect. 3, we express continued fraction
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of order 12 in terms of h-functions. In Sect. 4, we construct certain differential
equations involving h-functions. Section 2 is dedicated to record some preliminary
results.

2 Preliminaries

For |q| < 1, the h-function is defined by

h = h(q) = q

∞∏

k=1

(1 − q12k−1)(1 − q12k−11)

(1 − q12k−5)(1 − q12k−7)
.

For any complex a and q with |q| < 1, the q-series is defined by

(a; q)∞ :=
∞∏

n=0

(1 − aqn).

For |ab| < 1, Ramanujan’s general theta function [6, p.35] is given by

f (a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2 = (−a,−b, ab; ab)∞.

The special cases of theta functions are

f (−q) := f (−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞,

ϕ(q) := f (q, q) =
∞∑

n=−∞
qn

2 = (−q; q2)2∞(q2; q2)∞ = (−q;−q)∞
(q;−q)∞ .

Ramanujan’s cubic continued fraction G(q) is defined as

G(q) := q1/3f (−q,−q5)

f (−q3,−q3)
= q1/3

1 +
q + q2

1 +
q2 + q4

1 +
q3 + q6

1 +...
.

The continued fraction of order 12 is defined by

U(q) := qf (−q,−q11)

f (−q5,−q7)
= q(1 − q)

(1 − q3) +
q3(1 − q2)(1 − q4)

(1 − q3)(1 + q6) +
q3(1 − q8)(1 − q10)

(1 − q3)(1 + q12) +...
.
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The cubic continued fraction in terms of h-function as recorded by S. Cooper [3] is

G3(q) = h
(1 − h)2

(1 + h2)2
. (1)

The weight two modular form y12 in terms of h-function is defined by

y12 = q
d

dq
logh = 1 −

∞∑

s=1

χ12(s)
sqs

1 − qs
,

where

χ12(s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ifs = 1or11(mod12),

−1 ifs = 5or7(mod12),

0 otherwise.

The Ramanujan-type Eisenstein series is defined by

P(q) := 1 − 24
∞∑

k=1

kqk

1 − qk
.

Lemma The following relation among cubic continued fraction and theta functions
hold:

8G3(q) = 1 − ϕ4(−q)
ϕ4(−q3)

. (2)

Proof For a proof, see Chapter 20 [6, p. 345]. 	

Lemma The following identity holds:

ϕ(q)

ϕ(q3)
= 1 + U(q)

1 − U(q)
. (3)

Proof For a proof, see [7]. 	

Lemma We have

G(q)+G(−q)+ 2G2(−q)G2(q) = 0. (4)
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Proof For a proof, see [8]. 	

Lemma ([3]) The following equality holds:

1

24
(P (q)− 9P(q3)− 4P(q4)+ 36P(q12)) = (1 − h2)

(1 + h2)
y12, (5)

1

24
(4P(q2)− 16P(q4)− 12P(q6)+ 48P(q12)) = (1 − h2)

(1 − h+ h2)
y12, (6)

1

24
(P (q)+ 3P(q3)+ 8P(q4)+ 12P(q6)− 24P(q12)) = h

dy12

dh
, (7)

1

24
(−3P(q)− 4P(q4)− 12P(q6)+ 4P(q2)+ 3P(q3)+ 36P(q12))

= (1 − h2)

(1 − 4h+ h2)
y12, (8)

1

24
(−P(q)+ 6P(q2)+ 9P(q3)− 8P(q4)− 54P(q6)+ 72P(q12))

= (1 − h2)

(1 − 2h+ h2)
y12, (9)

1

24
(3P(q)− 14P(q2)− 3P(q3)+ 8P(q4)+ 6P(q6)+ 24P(q12))

= (1 − h2)

(1 + 2h+ h2)
y12. (10)

Proof For a proof, see [3]. 	


3 Expression of Continued Fraction of Order 12 in Terms of
h-Function

In his book, S. Cooper [3] documented an expression involving cubic continued
fraction with h-functions. Using these quadratic transformation formulas, interest-
ingly, we are able to discover relations including continued fraction of order 12 with
h-functions.

Theorem 1.1 We have

(i) U(−q) =
√

1 − 4h+ h2 − √
1 + h2

√
1 − 4h+ h2 + √

1 + h2
,
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(ii) U(q) =
(1 + h2)

(
1 − (1 − h)

√
1 − 6h+ h2

)3 − 8h2(1 − h)4 + 1

(1 + h2)
(

1 − (1 − h)
√

1 − 6h+ h2
)3 − 8h2(1 − h)4 − 1

.

Proof (i) Replacing q with −q in (3) and raising to the power 4, we see that

ϕ4(−q)
ϕ4(−q3)

=
(

1 + U(−q)
1 − U(−q)

)4

.

On comparing the above equation with (2) and then equating the resulting expres-
sion with (1), we deduce

8h
(1 − h)2

(1 + h2)2
=
(

1 + U(−q)
1 − U(−q)

)4

.

Rearranging the above equation for U(−q) using maple, we obtain (i) and (ii).
Solving (4) for G(−q), we deduce

G(−q) = −1 ±√1 − 8G3(q)

4G2(q)
.

Using (1), on the right of the above equation, we note that the first factor becomes

G(−q) = (1 + h2)1/3[1 − (1 − h)
√

1 − 6h+ h2]
4h2/3(1 − h)4/3 ,

and the second factor becomes

G(−q) = (1 + h2)1/3[1 + (1 − h)
√

1 − 6h+ h2]
4h2/3(1 − h)4/3

.

Now, applying L’Hospital’s rule, the first factor tends to zero in some neighbourhood
of q = 0, and the second factor does not vanish. Thus, by analytic continuation in
|q| < 1, we have

G(−q) = (1 + h2)1/3[1 − (1 − h)
√

1 − 6h+ h2]
4h2/3(1 − h)4/3 .

Replacing q with −q in (2), comparing with (3) and further using the above identity,
we arrive at (ii). 	
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4 Construction of Differential Equations

S. Cooper [3] supplied certain identities involving Eisenstein series of numerous
levels with h-functions. We have framed differential equations with the aid of these
identities that contain theta functions and h-functions.

Theorem 1.2 If

v = q
f (−q)f 3(−q12)

f 3(−q3)f (−q4)
,

then

q

v

dv

dq
− (1 − h2)

(1 + h2)
y12 = 0.

Proof Employing the definition of theta function, we achieve

v = q
(q; q)∞(q12; q12)3∞
(q3; q3)3∞(q4; q4)∞

.

Logarithmically differentiating v with respect to q and then simplifying, we deduce
that

1

v

dv

dq
= 1

q
− 1

q

[ ∞∑

s=1

kqs

1 − qs
− 3

∞∑

s=1

3sq3s

1 − q3s −
∞∑

s=1

4sq4s

1 − q4s + 3
∞∑

s=1

12sq12s

1 − q12s

]
.

Expressing the above sum in terms of the known Eisenstein series, we arrive at

q

v

dv

dq
= 1

24
[P(q)− 9P(q3)− 4P(q4)+ 36P(q12)].

Employing (5) in the above equation, we get the required result. 	

Theorem 1.3 If

v = q
f 2(−q2)f 4(−q12)

f 4(−q4)f 2(−q6)
,

then

q

v

dv

dq
− (1 − h2)

(1 − h+ h2)
y12 = 0.

Proof Utilizing the definition of theta function and further logarithmically differen-
tiating v with respect to q, we deduce
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1

v

dv

dq
= 1

q
− 1

q

[
2

∞∑

s=1

2sq2s

1 − q2s −4
∞∑

s=1

4sq4s

1 − q4s −2
∞∑

s=1

6sq6s

1 − q6s +4
∞∑

n=1

12sq12s

1 − q12s

]
.

Using the definition of Eisenstein series, we obtain

q

v

dv

dq
= 1

24
[4P(q2)− 16P(q4)− 12P(q6)+ 48P(q12)].

Now, upon using (6), we obtain the desired result. 	

Theorem 1.4 If

v = f (−q)f (−q3)f 2(−q4)f 2(−q6)

f 2(−q12)
,

then

q

v

dv

dq
− h

dy12

dh
= 0.

Proof Utilizing the definition of theta function and further logarithmically differen-
tiating v with respect to q, we arrive at

1

v

dv

dq
=− 1

q

[ ∞∑

s=1

sq2s

1 − q2s
+

∞∑

s=1

3sq3s

1 − q3s
+2

∞∑

s=1

4sq4s

1 − q4s

+2
∞∑

s=1

6sq6s

1−q6s
−2

∞∑

s=1

12sq12s

1 − q12s

]
.

Furthermore, upon using the definition of Eisenstein series, we obtain

q

v

dv

dq
= 1

24
[P(q)+ 3P(q3)+ 8P(q4)+ 12P(q6)− 24P(q12)].

Using (7), we arrive at the desired result. 	

Theorem 1.5 If

v = q
f 3(−q)f (−q4)f 2(−q6)

f 2(−q2)f (−q3)f 3(−q12)
,

then

q

v

dv

dq
+ (1 − h2)

(1 − 4h+ h2)
y12 = 0.
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Proof Applying the definition of theta function and then logarithmically differenti-
ating v, we arrive at

1

v

dv

dq
= 1

q
− 1

q

[
−3

∞∑

s=1

sqs

1 − qs
+ 2

∞∑

s=1

2sq2s

1 − q2s +
∞∑

s=1

3sq3s

1 − q3s

−
∞∑

s=1

4sq4s

1 − q4s − 2
∞∑

s=1

6sq6s

1 − q6s + 3
∞∑

s=1

12sq12s

1 − q12s

]
.

Using the definition of Eisenstein series, we obtain

q

v

dv

dq
= − 1

24

[
−3P(q)+ 4P(q2)+ 3P(q3)− 4P(q4)− 12P(q6)+ 36P(q12)

]
.

Using (8), we get the required result. 	

Theorem 1.6 If

v = 1

q

f (−q)f 2(−q4)f 9(−q6)

f 3(−q2)f 3(−q3)f 6(−q12)
,

then

q

v

dv

dq
+ (1 − h2)

(1 − 2h+ h2)
y12 = 0.

Proof Using the definition of theta function, logarithmically differentiating v and
then simplifying, we deduce

1

v

dv

dq
= − 1

q
+ 1

q

[
−

∞∑

s=1

sqs

1 − qs
+ 3

∞∑

s=1

2sq2s

1 − q2s
+ 3

∞∑

s=1

3sq3s

1 − q3s

−2
∞∑

n=1

4sq4s

1 − q4s − 9
∞∑

s=1

6sq6s

1 − q6s + 6
∞∑

s=1

12sq12s

1 − q12s

]
.

Furthermore, using the definition of Eisenstein series, we obtain

q

v

dv

dq
= 1

24
[P(q)− 6P(q2)− 9P(q3)+ 8P(q4)+ 4P(q6)− 72P(q12)].

Using (9), we obtain the required result. 	
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Theorem 1.7 If

v = q
f 3(−q)f 2(−q4)f (−q6)f 2(−q12)

f 7(−q2)f (−q3)
,

then

q

v

dv

dq
− (1 − h2)

(1 + 2h+ h2)
y12 = 0.

Proof Applying the definition of theta function, logarithmically differentiating v

and then simplifying, we deduce

1

v

dv

dq
= 1

q
+ 1

q

[
− 3

∞∑

s=1

sqs

1 − qs
+ 7

∞∑

s=1

2sq2s

1 − q2s +
∞∑

s=1

3sq3s

1 − q3s − 2
∞∑

s=1

4sq4s

1 − q4s

−
∞∑

s=1

6sq6s

1 − q6s − 2
∞∑

s=1

12sq12s

1 − q12s

]
.

Furthermore, using the definition of Eisenstein series and relation (10), we obtain
the required result. 	
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