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Abstract. Despite the achievements of recent binarization meth-
ods on reducing the performance degradation of Binary Neural Net-
works (BNNs), gradient mismatching caused by the Straight-Through-
Estimator (STE) still dominates quantized networks. This paper pro-
poses a meta-based quantizer named QuantNet, which utilizes a differen-
tiable sub-network to directly binarize the full-precision weights without
resorting to STE and any learnable gradient estimators. Our method not
only solves the problem of gradient mismatching, but also reduces the
impact of discretization errors, caused by the binarizing operation in the
deployment, on performance. Generally, the proposed algorithm is imple-
mented within a fully differentiable framework, and is easily extended to
the general network quantization with any bits. The quantitative experi-
ments on CIFAR-100 and ImageNet demonstrate that QuantNet achieves
the significant improvements comparing with previous binarization meth-
ods, and even bridges gaps of accuracies between binarized models and
full-precision models.
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1 Introduction

Deep neural networks (DNNs) have achieved remarkable success in several fields
in recent years. In particular, convolutional neural networks (CNNs) have shown
state-of-the-art performance in various computer vision tasks such as image clas-
sification, object detection, trajectory tracking, etc. However, an increasing num-
ber of parameters in these networks also lead to the larger model size and higher
computation cost, which gradually becomes great hurdles for many applications,
especially on some resource-constrained devices with limited memory space and
low computation ability.

To reduce the model size of DNNs, representative techniques such as net-
work quantization [7,18,20,25,42], filters pruning [14,30,31], knowledge distilla-
tion [16,17,27] and deliberate architecture design [6,26] are proposed. As one of
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typical solutions, the quantization based method quantizes floating-point values
into discrete values in order to generate the quantized neural networks (QNNs)
as compact as possible. In the most extreme case, if both network weights and
network activations are binarized (BNNs) [8], the computation can be efficiently
implemented via bitwise operations, which enables about 32× memory saving
and 58× speeding up [33] on CPUs in inference.

Despite the advantages we mentioned above, how to alleviate performance
degradation of quantized networks is still under research, especially for binarized
networks. In general, BNNs involve a sign function to obtain signs of parameters.
The non-differentiable sign function leads to gradient vanishing almost anywhere.
To address this issue, some works [28,44] propose low-bit training algorithms to
relieve the impact of gradients quantization errors, and another works focus on
estimating the vanishing gradients. The Straight-Through Estimator (STE) [3] is
commonly used to estimate the vanishing gradients during the back-propagation,
while the well-known gradient mismatching problem [15,19,39] is introduced.

As the number of quantized bits decrease, the gradients estimated by STE
depart further from the real gradients. Thus, the gradient mismatching is consid-
ered as the main bottleneck of performance improvements of binarized models.
As one of promising solutions, estimating more accurate gradients is suggested
by recent methods. Some of these methods [29,37,38,40] try to refine the gra-
dients estimated by STE with extra parameters, and others [2,5] address the
problem by replacing STE with learnable gradient estimators. Different from
these efforts on estimating more accurate gradients, the individual method [25]
employs a differentiable function tanh as a soft binarizing operation, in order to
replace the non-differentiable function sign. Thus, it will no longer require STE
to estimate gradients.

In this paper, we follow the idea of soft binarization, but we focus on solving
two important issues that are left out. Firstly, although the soft binarization
solves the problem of gradient mismatching, another issue of gradient vanishing
from the function tanh arises. It not only causes the less ideal convergence behav-
ior, but makes the solution highly suboptimal. Moreover, as the soft binarization
involves a post-processing step, how to reduce the impact of the discretization
errors on performance is very important. With these motivations, we propose a
meta-based quantizer named QuantNet for directly generating binarized weights
with an additional neural network. The said network is referred to as a meta-
based quantizer and optimized with the binarized model jointly. In details, it not
only generates the higher dimensional manifolds of weights for easily finding
the global optimal solution, but also penalizes the binarized weights into sparse
values with a task-driven priority for minimizing the discretization error. For
demonstrating the effectiveness of our claims, we present the mathematical def-
inition of two basic hypotheses in our binarization method, and design a joint
optimization scheme for the QuantNet.

We evaluate the performance of our proposed QuantNet by comparing it
with the existing binarization methods on the standard benchmarks of classi-
fication task with CIFAR-100 [23] and ImageNet [9]. As for the baseline with
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different network architectures, AlexNet [24], ResNet [13], MobileNet [36] and
DenseNet [11] are validated. The extensive experiments demonstrate that our
method achieves remarkable improvements than state-of-the-arts across various
datasets and network architectures.

In the following, we briefly review previous works related to network quanti-
zation in Sect. 2. In Sect. 3, we define the notations and present the mathemati-
cal definition of existing binarization methods. For Sect. 4, we present two basic
hypotheses of our binarization method and exhibit the implementation details.
Finally, we demonstrate the effectiveness and efficiency of our method in Sect. 5,
and make the conclusions in Sect. 6.

2 Related Work

In this section, we briefly review existing methods on neural network quantiza-
tion. As the most typical strategy to achieve the purpose of network compression,
the network quantization has two major benefits - reducing the model size while
improving the inference efficiency. Comparing with the strategies of network fil-
ters pruning [14,30,31] and compact architecture design [6,26], how to alleviate
the performance degradation in quantized model [19] is still unsolved, especially
for the binarized model [1,15,39].

Deterministic Weight Quantization. Through introducing a deterministic
function, traditional methods quantize network weights (or activations) by min-
imizing quantization errors. For examples, BinaryConnect [8] uses a stochastic
function for binarizing weights to the binary set {+1, −1}, which achieves better
performance than two-step approachs [12,21] on several tasks. Besides, XNOR-
net [33] scales the binarized weights with extra scaling factors and obtains better
results. Furthermore, Half-Wave-Gaussian-Quantization (HWGQ) [4] observes
the distribution of activations, and suggests some non-uniform quantization func-
tions for constraining unbounded values of activations. Instead of binarizing the
model, the ternary-connect network [43] and DoReFa-Net [42] perform the quan-
tization with multiple-bits via various functions to bound the range of parame-
ters.

These methods purely focus on minimizing quantization errors between full-
precision weights and quantized weights, however less quantization errors do not
necessarily mean better performance of a quantized model.

Loss-Aware Weight Quantization. As less quantization errors do not nec-
essarily mean better performance of a quantized model, several recent works
propose the loss-aware weight quantization in terms of minimizing the task loss
rather than quantization errors. The loss-aware binarization (LAB) [18] proposes
a proximal Newton algorithm with diagonal Hessian approximation that mini-
mizes the loss with respect to the binarized weights during optimization. Similar
to LAB, LQ-Net [41] allows floating-point values to represent the basis of quan-
tized values during the quantization. Besides, PACT [7] and SYQ [10] suggest
parameterized functions to clip the weights or activation value during training.
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In the latest works, QIL [20] parameterizes the non-linear quantization intervals
and obtains the optimal solution by minimizing with the constraint from task
loss. And self binarization [25] employs a soft-binarization function to evolve
weights and activations during training to become binary.

In brief, through introducing learnable constraints or scaling factors, these
methods alleviate the performance degradation in their quantized models, but the
gradient mismatching problem caused by the sign function and STE [1] is still
unconsidered.

Meta-based Weight Quantization. As the quantization operator in training
process is non-differentiable, which leads to either infinite gradients or zero gra-
dients, MixedQuant [37] addresses a gradient refiner by introducing the assistant
variable for approximating the more accurate gradients. Similar to MixedQuant,
ProxQuant [2] proposes an alternative approach that formulates quantized net-
work training as a regularized learning problem and optimizes it by the proximal
gradients. Furthermore, Meta-Quant [5] proposes a gradient estimator to directly
learn the gradients of quantized weights by a neural network, in order to remove
STE commonly used in back-propagation.

Although such methods have noticed that refining the gradients computed by
STE or directly estimating the gradients by meta-learner is helpful to alleviate the
problem of gradient mismatching, the increasing complexity of learning gradients
introduces a new bottleneck.

3 Preliminaries

Notations. For a vector x, where xi; i ≤ n is the element of x, we use
√

x to
denote the element-wise square root, |x| denotes the element-wise absolute value,
and ‖x‖p is the p-norm of x. sign(x) is an element-wise function denoting that
sign(xi) = 1;∀i ≤ n if xi ≥ 0 and −1 otherwise. We use diag(X) to return the
diagonal elements of matrix X, and Diag(x) to generate a diagonal matrix with
vector x. For two vectors x and y, x� y denotes the element-wise multiplication
and x � y denotes the element-wise division. For a matrix X, vec(X) denotes to
return a vector by stacking all the columns of X. In general, � is used to denote
the objective loss, and both ∂�/∂x and ∇�(x) denote the derivative of � with
respect to x.

Background of Network Binarization. The main operation in network bina-
rization is the linear (or non-linear) discretization. Taking a multilayer per-
ception (MLP) neural network as an example, one of its hidden layers can be
expressed as

wq = f(w)r � binarize(w) (1)

where w ∈ R
m·n is the full-precision weights, and m,n are the number of

input filter channels, the number of output filter channels1, respectively. Based

1 In this paper, the kernels on full connected layer are regarded as a special type of
the convolutional kernels.
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on the full-precision (floating-point) weights, the corresponding binarized weights
wq is computed by two separate functions f(w)r and binarize(w), and the goal
is to represent the floating-point elements in w with one bit.

In BinaryConnect [8], f(w)r is defined as the constant 1, and binarize(w) is
defined by sign(w), which means each element of w will be binarized to {-1,+1}.
For XNOR-Net [33], it follows the definition of BinaryConnect on binarize(w),
but further defines f(wt)r = ‖wt‖1/(m × n) and r is defined as the constant 1,
where t is the current number of training iterations. Different from the deter-
mining function on f(w), the Loss-Aware Binarization (LAB) [18] suggests a
task-driven f(wt) with the definition of ‖dt−1 � wt‖1/‖dt−1‖1, where dt−1 is a
vector containing the diagonal diag(Dt−1) of an approximate Hessian Dt−1 of the
task loss. Furthermore, QIL [20] extends f(wt)rt into a nonlinear projection by
setting rt to be learnable and rt > 1 for all t. Considering the back-propagation,
as STE [39] with sign function introduces the major performance bottleneck
for BNNs, Self-Binarization [25] defines binarize(w) as tanh(w). In the training
of BNNs, the tanh function transforms the full-precision weights w to obtain
weights wq that are bounded in the range [−1, +1], and these weights are closer
to binary values as the training converges. After the training, wq are very close
to the exact set of {+1, −1}, and the fixed point values will be obtained by
taking the sign of the wq.

4 Methodology

In this section, we firstly present the mathematical definition of two basic
hypotheses in our binarization method. Then we propose a meta-based quan-
tizer named QuantNet for directly generating binarized weights within a fully
differentiable framework. Moreover, a joint optimization scheme implemented in
a standard neural network training is designed to solve the proposal.

4.1 Assumptions

As can be seen, the work [25] replaces the hard constraint sign with the soft
penalization tanh, and penalizes the output of tanh to be the closest binary
values. However, there are two important issues which are ignored.

In the case of binarizing weights with tanh, as most of the elements in bina-
rized weights are close to {+1, −1} at the early stage of training, these elements
will reach saturation simultaneously, and then cause the phenomenon of gradi-
ents vanishing. In brief, if the element is saturated on +1, it will not be able to
get close to −1 again. On the contrary, the case of the element saturated on −1
is the same. It means that flipping values of these elements is impossible. As a
result, only a few unsaturated elements will oscillate around zero, which causes
the less ideal convergence behavior and makes the solution highly suboptimal.

Moreover, different from the hard constraint methods, the soft penaliza-
tion method contains a post-processing step with rounding functionality, and
it rounds the binarized weights for further obtaining the fixed point (discrete)
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Fig. 1. The architecture of our binarization method. The solid and dashed (blue color)
lines represent the feed-forward process and the gradient flow of back-propagation
separately, and the dashed line with red color means the meta-gradient flow from the
meta regularization (Best viewed in color). (Color figure online)

values. With the increasing number of the network parameters, the discretiza-
tion error caused by the rounding function will be the major factor to limit
performances. To propose our method for solving above issues, we make two
fundamental hypotheses in the following.

Assumption 1: We assume that there exists the functional F to form
tanh(F(w)), and lim

w→∞ ∇F(w) · (1 − tanh2(F(w)) �= 0, then the derivative of

tanh() with respect to w is expressed as

lim
w→∞

∂tanh(F(w))
∂w

�= 0

w.r.t. ∇tanh(F(w)) =
∂F(w)

∂w

(
1 − tanh2(F(w))

) (2)

Assumption 1 derives a corollary that if w is out of a small range like [−1,+1],
the gradient of tanh(F ()) for w will not severely vanish. Through generating the
higher dimensional manifolds of full-precision weights w, the gradient vanishing
during optimization is relieved, which allows optimizers to solve the globally
optimal.

Assumption 2: We assume for a vector v ∈ R
n that is k-sparse, there exists an

extremely small ε ∈ (0, 1) with optimal w∗
q , in the optimization of �(wq) with

the objective function �, it has the property that

lim
wq→w∗

q

‖�(wq) − �(sign(wq))‖22 = 0

s.t. (1 − ε) ≤ �(w∗
qv)

�(w∗
q)

≤ (1 + ε)
(3)

Assumption 2 derives a conclusion that if the said constraint of �(w∗
qv)

�(w∗
q)

with ε is
satisfied, it represents the top-k elements in w∗

q dominate the objective function
�, while the remaining elements do not affect the output seriously. In this case,
the discretization error caused by the post-processing step is minimized, as the
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sign of top-k elements are equal to themselves. In brief, the optimization no
longer requires all elements in wq to converge to {+1, −1} strictly, but penalizes
it to satisfy the top-k sparse with the task-driven priority.

4.2 Binarization with the QuantNet

Based on above two fundamental hypotheses, we propose a meta-based quantizer
named QuantNet for directly generating the binarized weights. Our proposal is
to form the functional F for transforming w into higher dimensional mainfold
F(w), and optimizing the dominant elements wq to satisfy the sparse constraint.

As for implementation details of QuantNet, we design an encoding module
accompanied by a decoding module, and further construct an extra compressing
module. Specially, suppose full-precision weights come from a convolution layer
with 4D shape R

k×k×m×n, where k, m and n denote the kernel size, the number
of input channels and the number of output channels, respectively.

The input weights will be firstly reshaped into the 2D shape R
m·n×k2

. It
means that QuantNet is a kernel-wise quantizer and process each kernel of
weights independently, where the batch size is the number of total filters of
full-precision weights. In the encoding and decoding process, it firstly expands
the reshaped weights into higher dimensional mainfold, which is achieved with
the dimensional guarantee that makes the output shape of encoding module to
satisfy R

m·n×d2
, s.t. d � k. And then, the compressing module is to transform

the higher dimensional manifolds into low-dimensional spaces. If the manifold of
interest remains non-zero volume after the compressing process, it corresponds
to a higher priority to improve the performance of binarized model on the specific
task. Finally, the decoding module generates the binarized weights with the out-
put of the compressing module and the soft binarization function, while restoring
the original shape of full-precision weights for main network optimization.

The Fig. 1 provides visualization of QuantNet in the architecture.

Fig. 2. The architecture of QuantNet. QuantNet QΘ takes the full-precision weights
W as the input, and directly outputs the binarized weights Wq for the network. With
the loss of �(Wq, x), Wq will be directly updated in the back-propagation, and ∇Wq

will be used to update Θ in QuantNet Q. Finally, a new W is computed during this
training step.
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Feed-Forward Step. Given a full-precision weights2 W , the proposed Quant-
Net QΘ incorporates the parameters Θ to generate the binarized weights Wq

with tanh(QΘ(W )). After W is quantized as Wq, the loss � is generated by
�(Wq, {x, y}) with the training set {x, y} (Fig. 2).

Back-Propagation Step. The gradient of � with regard to Wq in each layer
is computed by the back-propagation. For example, the gradient of weights gWq

in last layer is computed by ∇�(Wq). Then, the QuantNet QΘ receives the gWq

from the corresponding Wq, and updates its parameters Θ by

gΘ =
∂�

∂Wq

∂Wq

∂Θ
= gWq

∂Wq

∂Θ
(4)

and the gradients of gΘ is further used to update the full-precision weights
W by,

W t+1 = W t − η · gΘ (5)

where t denotes the t-th training iteration and η is the learning rates defined
for QuantNet.

In practice, QuantNet is applied layer-wise. However, as the number of extra
parameters introduced by QuanNet is much less than the network weights, so
the computation cost caused by our proposal is acceptable during the network
training as shown in the Table 5.

4.3 Optimization

As for the optimization of QuantNet, it is included in the target network that
will be binarized. Given the full-precision weights, QuantNet generates the bina-
rized weights to apply on objective tasks, and it is optimized with the back-
propagation algorithm to update all variables. In brief, our binarization frame-
work is fully differentiable without any gradient estimators, so there is no infor-
mation loss during the binarization. We now present the optimization details.

QuantNet Optimization. For satisfying the constraint in Assumption 2, we
propose an objective function inspired by the idea of sparse coding. It constrains
the compressing process in QuantNet during the binarization. Let wq be the
binarized weights and introduce a reference tensor b, we aim to find an optimal
w∗

q that satisfies

w∗
q = arg min

wq

‖b −
√

w2
q‖2 + ‖wq‖1, s.t. b ∈ {1}m·n (6)

where, tensor b is chosen to be all ones to make elements in wq to get close to -1
or +1. As Eq. 6 is independent of the task optimization of binarized models, we
alternately solve it with an extra optimizer during the standard network training.
At each iteration of optimization, there is adversarial relationship between Eq. 4
and Eq. 6, and the optimization tries to find the balance between minimizing

2 We omit the notation of layers l in Wl for simplification.
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Algorithm 1: Generating the binarized weights with QuantNet
Input: the full-precision weights W , the QuantNet Q with parameters Θ, and

the training set {X, Y}, training iteration t, ε = 1e − 5
Output: the optimally binarized weights W ∗

q

Training for each layer
for t = 0; t ≤ T do

Feed-Forward;
Compute W t

q with tanh(QΘt(W t));
Compute �(W t

q , {xt, yt}) with W t
q and {xt, yt};

Back-Propagation;
Compute ∇W t

q with �(W t
q , {xt, yt});

Compute ∇Θt with Eq. 4 and Eq. 6;
Update the W t with Eq. 5;

end
Discretization Step
W ∗

q = sign(W T
q );

the binarization error while penalizing the sparsity of binarized weights based
on the task priority.

Binarized Model Optimization. As for the optimization of binarized model,
we use the standard mini-batch based gradient descent method. After the Quant-
Net QΘ is constructed and initialized, the QuantNet optimization is accompa-
nied with the training process of the binarized model, and the objective function
of binarized model optimization depends on the specific task. With the spe-
cific objective function, the task-driven optimizer is employed to compute the
gradients for each binarized layer. The operations for whole optimization are
summarized in Algorithm 1.

5 Experiments

In this section, we firstly show the implementation details of our method and
experiment settings. Secondly, the performance comparison between our method
and STE-based or Non STE-based methods is generated, which further includes
the analysis of convergence behaviour.

5.1 Implementation Details

As for the implementation details in experiments, we run each experiment five
times with the same initialization function from different starting points. Besides,
we fix the number of epoches for training and use the same decay strategy of
learning rate in all control groups. At the end, we exhibit the average case of
training loss and corresponding prediction accuracy. We show the implementa-
tion details as follows.
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Network Architecture. We apply the unit with structure of “FC-BN-Leaky
ReLU” to construct QuantNet, and each processing module in QuantNet con-
tains at least one unit. For reducing the complexity of network training, Quant-
Net used in experiments contains only one unit for each processing module, and
we still observe a satisfied performance during evaluation. Similar to the exist-
ing methods [33,37,41], we leave the first and last layers and then binarizing
the remaining layers. For comparison, a fully binarized model by binarizing all
layers is also generated. Considering that the bitwise operations can speedup the
inference of network significantly, we analyze the balance between the compu-
tation cost saving and model performance boosting by these two models. The
experiment result exhibits only 0.6% accuracy drop (more than 1% in previ-
ous methods) in CIFAR-10 [23] with ResNet-20, in the case that all layers are
binairzed.

Initialization. In experiments, all compared methods including our method use
the truncated Gaussian initialization if there is not specified in their papers, and
all binarized model from experiments are trained from scratch without leveraging
any pre-trained model. As for the initialization of QuantNet, we employ the
normal Gaussian initialization for each layer. Furthermore, we also evaluate the
random initialization, which initialize the variable with the different settings of
the mean and variance, but there is not significant difference on the results.

Hyper-parameters and Tuning. We follow the hyper-parameter settings such
as the learning rate, batch size, training epoch and weight decay of their original
paper. For fair comparison, we use the default hyper-parameters in Meta-Quant
[5] and Self-Binarizing [25] to generate the fully binarized network. As for the
hyper-parameters of our QuantNet, we set the learning rate as 1e − 3 and the
moving decay factor as 0.9. We also evaluate different optimization methods
including SGD(M) [35], Adam [22] and AMSGrad [34]. Although we observe
that the soft binarization in AMSGrad has a faster convergence behaviour than
the others, we still use the SGD(M) with average performance for all methods to
implement the final comparison. In future, we plan to analyze the relationship
between the soft binarization and different optimizers (Table 1).

Table 1. Comparison with different optimizer on ResNet-20 for CIFAR10.

Optimizer Accuracy (%) Training time

SGD(M) 90.04 1.0×
Adam 89.98 ˜1.2×
AMSGrad 90.12 ˜0.9×

5.2 Performance Comparison

QuantNet aims at generating the binarized weights without STE and other
estimators. Hence, we compare it with both STE-based binarization methods
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[8,18,20,41,42] and Non STE-based binarization methods [2,5,25,37] with the
idea of avoiding the discrete quantization. In details, the evaluation is based on
the standard benchmark of classification task with CIFAR-100 [23] and Ima-
geNet [9], and the base network architectures are based on the AlexNet [24],
ResNet [13] and MobileNet [36].

Evaluation of the Discretization Error. As the soft binarization method
[25] always involves a post-processing step, which aims at transforming the float-
point weights into the fixed-point weights, we name this step the discretization
step which is shown in Algorithm 1. For comparing the discretization error caused
by the step between the self-binarizing [25] and the proposed QuantNet, we gen-
erate both two binarized models for self-binarizing and QuantNet, and use the
notation (D) to denote the prediction accuracy of binarized model after the
discretization step, which means the weights in the binarized model is trans-
formed into the integer exactly. As shown in the Table 2, QuantNet achieves the
best performance even better than the FP, the major reason is that the sparse
constraint encourages a better generalization ability. Moreover, since the dis-
cretization error is considered in our algorithm during the binarizing process,
comparing to the accuracy drop 1.85% in self-binarizing [25], QuantNet only
reduces 0.59%.

Table 2. Prediction accuracy of binarized AlexNet on CIFAR-10. The FP represents
the full-precision model with 32-bits for both weights and activations.

Methods Bit-width (W/A) Acc.(%) Acc.(%) (after discretization)

FP 32/32 86.55 –

Self-Binar. [25] 1/1 86.91% 84.31%

Ours 1/1 87.08% 86.49%

Comparison with STE-Based Binarization. We evaluate our QuantNet
with the STE-based binarization methods, and report the top-1 accuracy in
Table 3. Besides, we use PACT [7] to quantize the activation into 2 bits if the
compared method does not support the activation quantization. For the com-
pared prediction accuracy used in this table, we use the results from the original
paper if it is specified. Overall, QuantNet achieves the best performance com-
pared to existing STE-based methods, which surpasses QIL [20] more than 2%
before the discretization step, and even obtain a comparable performance with
the full-precision model. It demonstrates the advantage of directly binarizing
the weights within a fully differentiable framework. Although the discretization
(rounding operation) introduces a post-processing step, the experiment results
still prove the effectiveness of our binarization method, and the degradation of
prediction accuracy caused by rounding is negligible.

Comparison with Non STE-Based Binarization. As for the Non STE-
based binarization methods, it mainly includes two categories: learning better
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Table 3. Top-1 accuracy (%) on CIFAR-100. Comparison with the existing methods
on ResNet-56 and ResNet-110.

Method Bit-width ResNet-56 ResNet-110

FP 32W32A 71.22% 72.54%

BWN [8] 1W2A 64.29% 66.26%

DoReFa-Net [42] 1W2A 66.42% 66.83%

LAB [18] 1W2A 66.73% 67.01%

LQ-Nets [41] 1W2A 66.55% 67.09%

QIL [20] 1W2A 67.23% 68.35%

Ours 1W2A 69.38% 70.17%

Ours(D) 1W2A 68.79% 69.48%

gradients for non-differentiable binarization function, and replacing the non-
differentiable function with the differentiable one. We compare the QuantNet
with the representative works in these two categories - ProxQuant [2] and Meta-
Quant [5] in the first and Self-Binarizing [25] in the second. With the increasing
number of parameters in larger architecture [13], although the methods [2,5]
related gradient refinement have improved the performance effectively, the bot-
tleneck caused by the gradient estimation appears obviously, and our method
have achieved the significant improvement than these methods (Table 4). More-
over, as the discretization error caused by the rounding operation is well consid-
ered by our method, QuantNet is affected less than Self-Binarizing [25].

Table 4. Top-1 accuracy (%) on ImageNet. Comparison with the existing methods on
AlexNet (left), ResNet-34 (right).

Method Bit-width AlexNet

FP 32W32A 55.07%

Self-Binar. [25] 1W32A 52.89%

Self-Binar.(D) [25] 1W32A 50.51%

Ours 1W32A 54.06%

Ours(D) 1W32A 53.59%

Method Bit-width ResNet-34

FP [32] 32W32A 73.30%

ProxQuant [2] 1W32A 70.42%

Meta-Quant [5] 1W32A 70.84%

Ours 1W32A 71.97%

Ours(D) 1W32A 71.35%

Convergence Analysis. We analyze the convergence behaviour of our Quant-
Net and other binarization methods during the training process. In details, we
use ResNet-34 as the base architecture, and compare with the STE-based meth-
ods and non-STE based methods separately. For the first case, QuantNet exhibits
a significantly smooth loss curve over STE, including much faster convergence
speed and lower loss values, and it also achieves the best prediction accuracy in
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the test reported in Table 3. The main reason of the better convergence of our
method is that QuantNet is totally differentiable during the optimization. Fur-
thermore, we analyze the proposed method in the second case, and we observe
that all the non-STE based methods can smooth the loss curve effectively, but
our method achieve the lowest loss value as there is not estimation of gradients.

Table 5. Training time on ResNet-34

Bit-width (1W/2A) Training time(iter./s)

FP(32W/32A) 1.0×
MixedQuant [37] 1.5×
Meta-Quant [5] 2.8×
Self-Binar. [25] 1.2×
Ours 1.7×

Complexity of Models. As our
QuantNet involves the extra computa-
tion cost and parameters during the
optimization, we analyze its efficiency
comparing to the traditional STE-based
methods and other Meta-based meth-
ods. For QuantNet, it is independent of
the scale of input resource, and its time
complexity is related to the amount of
its parameters. In the Table 5, the total
training time cost is exhibited, and we leave the inference step since the Quant-
Net is removed in this step. For the setting of experiment in this table, the base
architecture ResNet-34 is used, and the bitwise operation is not implemented for
all cases.

6 Conclusions

In the paper, we present a meta-based quantizer QuantNet to binarize the neu-
ral network, which directly binarize the full-precision weights without STE and
any learnable gradient estimators. In contrast to the previous soft binarizing
method, the proposed QuantNet not only solves the problem of gradient vanish-
ing during the optimization, but also alleviates the discretization errors caused
by the post-processing step for obtaining the fixed-point weights. The core idea
of our algorithm is to transform the high dimensional manifolds of weights,
while penalize the dominant elements in weights into sparse according to the
task-driven priority. In conclusion, the QuantNet outperforms the existing bina-
rization methods on the standard benchmarks, which not only can be applied
on weights, but also can be extended to activations (or quantization with other
bits) easily.
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