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Abstract. Visual object tracking is among the hardest problems in
computer vision, as trackers have to deal with many challenging cir-
cumstances such as illumination changes, fast motion, occlusion, among
others. A tracker is assessed to be good or not based on its performance
on the recent tracking datasets, e.g., VOT2019, and LaSOT. We argue
that while the recent datasets contain large sets of annotated videos that
to some extent provide a large bandwidth for training data, the hard sce-
narios such as occlusion and in-plane rotation are still underrepresented.
For trackers to be brought closer to the real-world scenarios and deployed
in safety-critical devices, even the rarest hard scenarios must be prop-
erly addressed. In this paper, we particularly focus on hard occlusion
cases and benchmark the performance of recent state-of-the-art track-
ers (SOTA) on them. We created a small-scale dataset (Dataset can be
accessed at https://github.com/ThijsKuipers1995/HTB2020) containing
different categories within hard occlusions, on which the selected trackers
are evaluated. Results show that hard occlusions remain a very challeng-
ing problem for SOTA trackers. Furthermore, it is observed that tracker
performance varies wildly between different categories of hard occlusions,
where a top-performing tracker on one category performs significantly
worse on a different category. The varying nature of tracker perfor-
mance based on specific categories suggests that the common tracker
rankings using averaged single performance scores are not adequate to
gauge tracker performance in real-world scenarios.

Keywords: Visual object tracking · Occlusion · Benchmarks ·
Metrics · Dataset

1 Introduction

Visual object tracking remains a challenging problem, even though it has been
studied for several decades. A visual object tracker has to account for many
different and varying circumstances. For instance, changes in the illumination
may alter the appearance of the target object. The object could also blend in with
the background environment, or it might get occluded, resulting in the object,
or part of the object, being obstructed from view. Because of all the possible
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different circumstances, visual object trackers have to account for, visual tracking
is considered a hard problem [1].

Commonly, a tracker is assessed to be good or not based on its performance on
established benchmarking datasets such as OTB100 [2], UAV123 [3], VOT2019
[4], GOT-10k [5], LaSOT [6], and TrackingNet [7]. These datasets comprise large
sets of video sequences spanning across different challenges of tracking. For every
dataset, the performance of a tracker is averaged over all sequences.

For a tracker to be used in real-world scenarios and embedded in safety-
critical equipment, it should be able to handle even the rarest and hardest
instances of tracking. Therefore, the evaluation datasets should also contain
such instances. We argue that this is not yet the case, and scenarios such as
occlusion, in-plane rotation, and out-of-plane rotation are still underrepresented
in these datasets. Moreover, most performance metrics compute an average score
across all sequences, thereby overshadowing the poor performance of the sub-
jected tracker on a certain specific challenge. For a deeper study on these aspects,
we tailor the focus of this paper to only hard occlusions.

Occlusion refers to the phenomenon where parts of the target object are
blocked from the field of view. For instance, an object can be occluded when it
either moves partially or fully out of frame. Occlusion also occurs when another
object fully or partially blocks the target object. When the target object is par-
tially blocked, either certain specific features of the target object can disappear,
or part of the entire target object appearance will disappear. Unlike other chal-
lenges of tracking, learning a distribution for occlusion is hard - no distribution
exists in parts of the object that are occluded. This makes occlusion a hard prob-
lem. Some methods for handling occlusion do exist, but they are often focused on
very specific aspects of tracking such as solely tracking pedestrians [8]. A major
problem in evaluating visual object trackers on occlusion is the lack of data con-
taining hard occlusions in current datasets. While the above-mentioned datasets
do contain samples of occlusion, they often do not represent the challenging
cases of occlusion that can occur when tracking in the wild [2,6,7]. Therefore,
the available benchmarks might not accurately evaluate tracker performance on
hard occlusions.

This work aims to evaluate a set of current state-of-the-art (SOTA) visual
object trackers on the occurrences of hard occlusions. To perform this evalua-
tion, a small dataset containing various samples of hard occlusions is compiled.
Our preliminary results show that the performance of the SOTA trackers is, in
general, lower on the hard occlusion scenarios. Further, we analyze whether the
leading tracker among the ones chosen in this study performs superior on dif-
ferent scenarios of occlusion. Our results reveal interesting insights on whether
even the best tracker, decided based on the existing evaluation strategies, could
be considered a safe choice for deployment in real-world scenarios, especially
for safety-critical devices. Further, it raises the question of whether the current
performance metrics, averaging the score over all the sequences, are the right
choice to assess the performance of trackers.
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2 Related Work

In the following, we present an overview of some previous works that are relevant
to this study. First, we present an overview of the recent visual object tracking
algorithms, followed by works related to tackling occlusion in tracking. Finally,
an overview of different tracking benchmarks is presented.

2.1 Object Tracking

The task of object tracking can refer to tracking multiple objects simultaneously
(multi-object tracking) or tracking a single instance of an object (single-object
tracking) [7]. This work will only consider generic single-object trackers. To
perform successful tracking, trackers must be able to create a strong appearance
model for the target object and be capable of reliable and fast localization of
the target object.

To address the above-mentioned challenge, various methods have been pro-
posed. One such category is Correlation Filters (CF), which forms the basis
of several SOTA single-object trackers [7]. CF uses circular correlation, which
results in all shifted variants of input samples being implicitly included. This
enables the construction of a powerful appearance model with very limited data
[9]. Furthermore, CF allows for fast run-times as computations are performed
in the Fourier domain [10]. The MOSSE [11] tracker paved the way for more
advanced CF-based approaches such as the use of multi-dimensional features
[12–14], improved robustness to variations in scale and deformations [15,16], mit-
igating boundary effects [9,17], and the use of deep convolutional filters [18,19].
The advancements made in CF trackers resulted in large and complex models,
which significantly increases the computational cost. ECO [20] improves upon
the CF-framework by reducing the model complexity by proposing a factorized
convolution operation to increase running speeds.

Another category is deep learning-based trackers. Recurrent Neural Networks
have been proposed for tracking [21,22], but do not yield competitive perfor-
mance compared to the SOTA trackers. MDNet [23] implements a deep convolu-
tional network that is trained offline, and performs Stochastic Gradient Descent
during tracking but is not able to operate in real-time. GOTURN [24] utilizes
a convolutional network to learn a function between image pairs. SiamFC [25]
introduces a fully-connected Siamese architecture to perform general similarity
learning. The goal is to learn a similarity function offline, which can then be
evaluated during tracking to locate an exemplar image within a larger candidate
image. SiamRPN [26] implements a Siamese network that is extended with a
Region Proposal Network (RPN) which allows for improved bounding-box pre-
dictions. SiamRPN++ [27] improves upon the Siamese architecture by enabling
the use of deep networks in Siamese trackers. ATOM [28] improves upon the
Siamese trackers by introducing an approach that consists of a target estima-
tion module that is learned offline, and a target classification module that is
learned online. DiMP [29] consists of a discriminative model prediction archi-
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tecture derived from a discriminative learning loss for visual tracking which can
fully exploit background information.

2.2 Occlusion in Tracking

Occlusion remains largely unexplored in generic single-target object tracking.
Some tracking architectures that do explicitly handle occlusion have been pro-
posed. ROT [30] utilizes occlusion-aware real-time object tracking by overcoming
target model decay which can occur when the target object is being occluded. In
[31] SiamRPN++ and SiamFC are equipped with structured dropouts to handle
occlusion. Other methods include more experimental strategies such as analyz-
ing the occurrence of occlusion by utilizing spatiotemporal context information
[32]. By further analyzing motion constraints and the target reference the strat-
egy allows for better discrimination between the target object and background
distractors causing occlusion. Another experimental strategy uses layer-based
strategies, extending it by specific background occluding layers [33]. Strategies
that focus on handling occlusion have also been proposed in more specific object
tracking tasks, such as tracking pedestrians [8] and cars [34]. In [13] a multi-
object tracker approach that handles occlusion is proposed, which is built on
the idea of object permanence, using a region-level association and object-level
localization process to handle long periods of occlusion. In [35] alternative SOTA
methods for handling occlusion are presented such as depth-analysis [36,37] and
fusion methods such as a Kalman filter for predicting target object motion and
location [38,39].

2.3 Tracking Datasets

To evaluate the robustness of single-target visual object trackers, many datasets
have been proposed. ALOV300 [1] contains 314 short sequences. ALOV300 does
include 14 different attributes, including occlusion. However, it does not dif-
ferentiate between different kinds of occlusion. OTB [2] is another well-known
dataset. The full dataset (OTB100) contains 98 sequences, while OTB50 is a
subset of OTB100 containing 51 of the most challenging sequences. OTB offers
11 attributes, including both partial and full occlusion. Since the rise of deep
trackers, the demand for large-scale datasets has increased. TrackingNet [7] is
introduced to accommodate these demands. TrackingNet consists of over 30
thousand sequences with varying frame rates, resolutions, and lengths. Track-
ingNet includes 15 attributes, including both partial and full occlusion, as well
as out-of-frame occlusion. GOT-10k [5] consists of over 10 thousand sequences.
GOT-10k offers an impressive 563 different object classes, and offers a train
and test-set with zero overlaps between classes, resulting in more accurate eval-
uations. GOT-10k offers several attributes, including occlusion. Many of the
sequences contained in the above-mentioned datasets are of relatively short
duration. However, when tracking in the wild, tracking often occurs for sus-
tained periods. LaSOT [6] introduces a dataset consisting of 1400 longer duration
sequences with an average sequence length of over 2500 frames. Similarly to the
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previously mentioned datasets, LaSOT includes a variety of attributes, including
both partial and full occlusion, and out-of-frame occlusion. UAV123 [3] contains
123 videos captured from a UAV, as well as artificial sequences generated by a
flight-simulator.

3 Benchmarking on Hard Occlusions

While most datasets described in Sect. 2.3 contain cases of occlusion, the chosen
instances are still very simple and do not account for the hard scenarios. These
datasets do not take specific sub-categories within occlusion into account, as
often solely general cases of occlusion, such as partial or full, are considered.
Furthermore, many of the sequences contained in the datasets are of relatively
short duration. As a result, occlusion often occurs for only short amounts of time.
These short durations are not enough to accurately assess tracker performance on
occlusion. Another issue is that often the occlusions that do occur involve simple
cases. The occluded target object often possesses barely any movement relative
to the camera, or the target object remains stationary throughout the sequence
(see Fig. 1a). The challenging LaSOT [6] dataset does contain more challenging
cases of occlusion, including longer durations and more extreme movement of
the target object (see Fig. 1b). However, the set of sequences containing these
hard occlusions remains very limited.

Occlusion examples in OTB. Occlusion examples in LaSOT.

Fig. 1. Examples of occlusion from the OTB and LaSOT datasets.

Here, we present our Hard Occlusion Benchmark1 (HOB), a small-scale
dataset containing 20 long-duration sequences that encompass a variety of dif-
ferent hard occlusion scenarios. For the sake of demonstration, Fig. 2 shows the
first frame of some of the sequences with the corresponding ground-truth. Each
sequence is of similar length, with an average of 2760 frames per sequence. Each
sequence in HOB is annotated every 15th frame. Despite the lack of fully anno-
tated sequences, with an average of 185 annotated frames per sequence, there
exist ample ground-truths to perform an accurate evaluation. Naturally, HOB
contains the general cases of hard occlusion, such as partial occlusion, full occlu-
sion, and out-of-frame occlusion. The cases of occlusion occur for long periods
and are combined with strong movement and scale-variations of the target object
1 The dataset can be accessed at https://github.com/ThijsKuipers1995/HTB2020.

https://github.com/ThijsKuipers1995/HTB2020
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relative to the camera. Also, these general cases are complemented with more
specific attributes, to obtain a more precise evaluation of the SOTA tracker
implementations on hard occlusions.

Fig. 2. First frame of the sequences in HOB with ground-truth.

In its current form, HOB dataset comprises the following occlusion types.

– Full out of frame occlusion (FOC). The target object moves fully out of
the frame for extended periods. The target object may enter the frame at
a different location compared to where it exited the frame.

– Feature occlusion (FO). Some specific features of the target are omitted from
view. It is still possible for the entire target object to be in view in this case.

– Occlusion by transparent object (OCT). The target object is being occluded
by a transparent object. This means the target object can still be visible
through the occluding object, although the occluding object does alter the
appearance of the target object.

– Occlusion by similar object (OCS). The target object is being occluded by a
similar-looking object.

4 Experiments and Evaluations

The current section introduces the set of trackers that are evaluated. Next, an
overview of the metrics used for evaluation is given. Finally, the performance of
the selected set of trackers is evaluated. The selected set of trackers aims to cover
a variety of common state-of-the-art (SOTA) tracking principles. The following
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trackers are chosen for the evaluation: ECO [20], SiamFC [25], SiamRPN++ [27],
ATOM [28], DiMP [29]. ECO proposes a general framework to improve upon the
discriminant correlation filter tracking. SiamFC proposed similarity matching by
using a fully connected Siamese network. SiamRPN++ uses a deep network for
more sophisticated features, as well as a region proposal network. Three variants
of SiamRPN++ are evaluated: the original version using the ResNet50 (r50)
[40] (r50) backbone, a version using the shallow AlexNet [41] backbone, and the
long-term version which uses the long-term update strategy as described in [42].
ATOM proposes a tracking architecture consisting of dedicated target estimation
and target classification components. DiMP [29] proposes a tracking architecture
that can utilize both target and background information. Both ATOM and DiMP
utilize a memory model to update the appearance model to take into account
the change of appearance over time. Solely trackers with publicly available code
are used in this work.

4.1 Evaluation Methodology

We perform a One Pass Evaluation (OPE) measuring precision, success rate,
area-under-curve, and the least-subsequence-metric [43] on the 20 hard occlusion
sequences in HOB. A brief overview of these metrics is presented below.

Precision. When tracking precision, the center localization error is calculated.
The center localization error is defined as the Euclidean distance between the
center of the ground-truth bounding box and the prediction bounding box. A
frame is deemed successfully tracked if the calculated distance is below a certain
threshold, say t. While precision does not take the predicted bounding box size
into account, it does correctly measure how close the position of the prediction
is to the ground truth, which is not always the case when using success rates, as
only the overlap between prediction and ground truth is considered. In the case
of occlusion, where the target object is not entirely visible, precision can depict to
what extend the tracker manages to correctly predict the location of the occluded
target object. The issue with using precision as a metric is its sensitiveness to
resolution, which in the case of HOB is avoided since every sequence is of the
same resolution. The final precision score for each tracker is evaluated using a
threshold of 20 pixels such as in [44].

Success Rate. The success rate makes use of the average bounding box overlap,
which measures performance by calculating the overlap between ground-truth
bounding boxes and prediction bounding boxes. It takes both position accu-
racy and accuracy of the predicted bounding box size and shape into account.
Therefore, the success rate can offer a solid measurement of tracker performance.
Bounding box overlap is calculated using the intersection-over-union (IoU) score.
Similar to precision, a frame is deemed successfully tracked when the calculated
IoU meets a certain threshold, say t. By calculating the success rate at a range
of different thresholds, a success plot can be formed. A threshold of t > 0.5 is
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often used to measure success. However, this does not necessarily represent a
successfully tracked frame [2]. Because of this, the area-under-curve (AuC) of
the success plot is calculated instead, which takes the entire range of thresholds
into account. Furthermore, frames in which the absence of the target object is
correctly predicted are given an IoU score of 1.

Least Subsequence Metric. The least-subsequence-metric (LSM) quantifies
long term tracking behavior by computing the ratio between the length of the
longest continuously “successfully” tracked sequence of frames and the full length
of the sequence. A sequence of frames is deemed as successfully tracked if at
least a certain percentage p of frames within this is successfully tracked [43].
The representative LSM score is calculated at a threshold of p = 95% as in [43].
A frame is considered correctly tracked when the IoU of that frame is greater
than 0.5. Because LSM calculates the ratio between the longest continuously
tracked subsequence and the length of the entire sequence, it can introduce a
bias towards extremely long and short sequences. However, all sequences used
in this work are of similar length, therefore this is not an issue for accurate
evaluation.

4.2 Baseline Dataset

For the sake of comparison with HOB, we use LaSOT as the baseline dataset.
LaSOT is a large benchmark that focuses on long-term tracking, and it includes
many sequences containing occlusions and out-of-frame occlusions. Due to this
reason, it is one of the more difficult tracking benchmarks. Evaluating the
selected visual object trackers on LaSOT will, therefore, offer a great baseline
for comparing to HOB. HOB is a relatively small dataset containing only 20
sequences. To keep the comparison between HOB and LaSOT fair, only the
top 20 occlusion heavy sequences from LaSOT are selected. Furthermore, while
LaSOT offers per-frame annotations of ground-truths, HOB contains a ground-
truth annotation every 15th frame. Therefore only every 15th frame of LaSOT
will be used during the evaluation procedure.

4.3 Overall Performance

Figure 4 and Fig. 5 depicts the predictions for each of the evaluated trackers on
four sequences corresponding to the mentioned attributes.

Figure 3 shows the precision, success rate, and LSM of each evaluated tracker
on both HOB and LaSOT. In Table 1, the representative scores of each of the
metrics are shown. The results show that on average, the performance of the
evaluated trackers is worse on HOB compared to LaSOT. SiamRPN++(r50)
is the top-performing tracker on HOB on all metrics. SiamRPN++(r50) out-
performs SiamRPN++(lt) by a small margin on the AuC metric, and similar
observations can be made for the other two metrics as well. This is an interesting
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Table 1. Representative scores for precision (t = 20), area under curve (AuC) and
LSM (x = 0.95) scores for each of the evaluated trackers on HOB and LaSOT. Best
scores are shown in bold.

Dataset Precision AuC LSM

HOB LaSOT HOB LaSOT HOB LaSOT

ATOM 0.142 0.342 0.243 0.317 0.122 0.228

DiMP 0.173 0.421 0.324 0.391 0.126 0.292

ECO 0.070 0.191 0.149 0.199 0.098 0.166

SiamFC 0.093 0.225 0.205 0.191 0.090 0.135

SiamRPN++ (alex) 0.154 0.320 0.300 0.300 0.125 0.185

SiamRPN++ (lt) 0.192 0.437 0.343 0.383 0.127 0.248

SiamRPN++ (r50) 0.195 0.318 0.359 0.278 0.133 0.245

Fig. 3. Overall results on HOB (top) and LaSOT (bottom) on the precision rate,
success rate, and LSM (left, middle, and right respectively).

result, as SiamRPN++(lt) is specifically tailored to handling long-term track-
ing which includes occlusion of the target object. These results imply that even
the re-detection module of SiamRPN++(lt) can occasionally drift the tracker
model to false targets. This could be attributed to SiamRPN++(lt) re-detecting
the wrong target object and sticking to it during long and heavy stretches of
occlusion, which would result in lower overall performance. Contrary to the
results obtained on HOB, performance on LaSOT seems significantly different.
On LaSOT, DiMP is the top-performing tracker on the AuC and LSM metrics,
and second-best on precision. Only SiamRPN++(lt) shows comparative perfor-
mance, and as shown in Table 1. The performance of the remaining trackers is
significantly lower.

It is interesting to note that DiMP consistently underperforms compared
to both SiamRPN++(r50) and SiamRPN++(lt) on HOB. While HOB dataset
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contains only 20 sequences, the sequences of HOB have been chosen with no
intended bias towards Siamese and SiamRPN-type trackers. Thus, we would
ideally expect DiMP to perform the best, as has been seen on LaSOT. One
possible reason for the reduced performance on HOB could be attributed to the
fact that the training set of DiMP comprised the training set of LaSOT sequences
as well. This could mean that DiMP tends to overfit on objects similar to those
observed in the LaSOT training set. Since most other datasets contain similar
tracking instances, DiMP performs well on them. On the contrary, the scenarios
observed in HOB are quite different, and that leads to reduced performance
on this dataset. Another possible reason for the performance decay of DiMP
on HOB could be attributed to the bias added to the tracking model due to
frequent model updates happening even under the scenarios of occlusion [45].
This is not the case for the SiamRPN++ variants, as they do not perform any
model update. Note that Table 1 shows a relatively large difference in precision
scores between HOB and LaSOT compared to the AuC scores. This is partly
caused by the lower resolution sequences of LaSOT, as precision is sensitive to
resolution.

On HOB, ECO is the worst performing tracker in terms of, precision and
AuC. On LaSOT, ECO and SiamFC are the worst-performing trackers, with
ECO obtaining a slightly higher AuC score. It seems that the discriminative
correlation filter approach utilized in ECO is not very well suited for occlusions
and long-term tracking in general, as it may not be able to generalize compared
to the Siamese based trackers. In the case of SiamFC, its lack of accurate target
classification and localization capabilities seems to hamper performance during
cases of hard occlusion. This becomes more apparent in the LSM score, where
SiamFC and ECO are the lowest-performing trackers, as a low LSM score indi-
cates frequent loss of the target object. ATOM performs consistently worse on
HOB compared to the three SiamRPN++ variants. On LaSOT, ATOM performs
very similarly to SiamRPN++(r50) and SiamRPN++(alex), generally outper-
forming them by a slight margin. ATOM also utilizes a model update strategy,
which could result in the decay of the appearance model during cases of hard
occlusion.

4.4 Attribute Evaluation

While the results from the previous section have shown that most trackers strug-
gle in the presence of hard occlusions, it is of interest to analyze further how
different occlusion types affect the overall performance. In this section, we study
the trackers for the different categories of occlusion that we have defined earlier.
The success plots for each of the categories are shown in Fig. 4. Figure 5 depicts
the predictions for each of the evaluated trackers on sequences corresponding to
each of the categories.

Full Out-of-Frame Occlusion (FOC). FOC seems to be a very challenging
problem for the visual object trackers, with SiamRPN++(lt) being the top-
performing tracker in this category. This is most likely attributed to its re-
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Fig. 4. Success plots for full out of frame occlusion (top left), occlusion by similar
object (top right), occlusion by transparent object (bottom left), and feature occlusion
(bottom right).

initialization strategy when detecting target object loss. The second-best per-
forming tracker on FOC is SiamRPN++(r50), performing considerably better
compared to the rest. Having access to rich features at different scales seems to
aid its re-detection capabilities when the target object moves within the local-
ization area. When observing the predictions, only SiamRPN++(lt) seems to
consistently be able to re-detect the target object (see Fig. 5a). Overall, the
SiamRPN++ variants outperform the other evaluated trackers. DiMP performs
considerably worse during FOC. Interestingly, even trackers with weak discrimi-
native power, such as SiamFC and ECO, perform on par with DiMP and ATOM
for cases of FOC. ATOM, DiMP, and ECO update their appearance model dur-
ing tracking. In the case of FOC, this could result in the appearance updating on
samples that do not contain the target object causing strong appearance model
decay. This is not the case for the Siamese trackers, as their appearance model
remains fixed during tracking.

Occlusion by Similar Object (OCS). In the case of OCS, SiamRPN++(alex) has
the highest overall performance, while SiamRPN++(r50) performs the worst
of the SiamRPN++ trackers. Interestingly, the use of the shallow AlexNet as a
backbone results in better performance compared to using the deep ResNet, even
outperforming the long-term SiamRPN++ variant. Re-initialising on target loss
does not offer an advantage during OCS, as the performance of SiamRPN++(lt)
is similar to the performance of SiamRPN++(alex). DiMP is the second-best
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Full out of frame occlusion.

Occlusion by similar object.

Feature occlusion.

Occlusion by transparent object.

Fig. 5. Depiction of four frames including prediction and groundtruth bounding-boxes
for each the categories full out-of-frame occlusion, occlusion by similar object, feature
occlusion, and occlusion by transparent object.

performing tracker, with ATOM, SiamFC and, ECO being the lowest-performing
trackers. ECO performs considerably lower compared to the other trackers.
When observing the predictions during OCS, trackers struggle to accurately
keep track of the target object (see Fig. 5b).

Feature Occlusion (FO). During FO, SiamRPN++(r50) and SiamRPN++(lt)
are the top performing trackers, with near-identical performance. As objects
tend to stay at least partially visible in this category, the re-initialization strat-
egy of SiamRPN++(lt) does not offer much benefit in tracking performance.
SiamRPN++(lt) and SiamRPN++(r50) are closely followed by SiamRPN++-
(alex) and DiMP. Once again, ECO is the worst performing tracker. The results
of the FO category are very similar to the overall performance on occlusion as
shown in Fig. 3, although on average the trackers seem to perform slightly worse
on feature occlusion specifically at higher thresholds.
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Occlusion by Transparent Object (OCT). DiMP is the best performing tracker
on OCT, SiamRPN++(alex) being a very close second. Both DiMP and Siam-
RPN++(alex) perform considerably better than to the other SiamRPN++ vari-
ants, similar to the OCS category. SiamRPN++(r50) and SiamRPN++(lt) have
very similar performance. In the cases of OCS and OCT, it seems that the ability
to generalize for objects that are not seen during training could play an impor-
tant role. The appearance model predictor implemented in DiMP contains few
parameters, leading to better generalization as less overfitting to observed classes
occurs during the offline training phase [29]. Likewise, SiamRPN++(alex) using
AlexNet contains less parameters compared to SiamRPN++(r50) [27]. The per-
formance of ATOM is considerably lower compared to DiMP, while both use the
same IoU maximization based architecture for updating the appearance model,
suggesting the appearance model update is of less importance during OCT and
OCS. It is interesting to note that when observing the predictions on OCT and
FE, DiMP and ATOM tend to strongly focus on striking target object features,
as can be observed in Fig. 5c and Fig. 5d.

5 Conclusion

In this work, we presented an evaluation of the current state-of-the-art (SOTA)
visual object trackers on hard occlusions. We compiled a small dataset contain-
ing sequences that encompass several samples of hard occlusions to assess the
performance of these trackers in such occluded scenarios. Furthermore, we eval-
uated the trackers on a subset of the most occlusion-heavy LaSOT sequences.
From the results, we show that on average the trackers perform worse on hard
occlusion scenarios, suggesting that occlusion is still a relatively unsolved prob-
lem in tracking. While DiMP is the best performing tracker on the LaSOT
benchmark, it is consistently outperformed by SiamRPN++ using the ResNet
backbone architecture (r50) and its long-term tracking variant (lt) on instances
of hard occlusions. Furthermore, we show that the top-performing tracker can
vary drastically between specific scenarios of hard occlusions. For example, while
DiMP seems the best for handling occlusions caused by semi-transparent objects,
it performs the worst for full out-of-frame occlusion scenarios.

The set of results presented in this paper hint towards the fact that even the
best performing tracker based on the current benchmark datasets might not be
suited for real-world deployment, especially in safety-critical applications, such
as self-driving cars. Real-world problems do not promise the presence of a uni-
form set of challenges, and at any random instance, a different tracking challenge
could be the most important. Correspondingly, we focused on the challenge of
hard occlusions in this paper, and trackers behaved differently than they did on
LaSOT. This implies two important things for future research. First, tracking
datasets need to incorporate more instances of difficult tracking challenges. Sec-
ond, evaluation methodologies need to be designed that give more importance
to instances where a certain tracker performs the worst. To summarize on a
high-level, a model that handles even the most difficult challenges of tracking
sufficiently well should be considered a better visual object tracker.
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