
Chapter 10
Neuromorphic Silicon Photonics for
Artificial Intelligence

Bicky A. Marquez, Chaoran Huang, Paul R. Prucnal, and Bhavin J. Shastri

Abstract Recent investigations in neuromorphic photonics, i.e. neuromorphic archi-
tectures on photonics platforms, have garnered much interest to enable high-
bandwidth, low-latency, low-energy applications of neural networks in machine
learning and neuromorphic computing. Although electronics can match biological
time scales and exceed them, they eventually reach bandwidth limitations.Neuromor-
phic photonics exploits the advantages of optical electronics, including the ease of
analog processing, and fully parallelism achieved by busingmultiple signals on a sin-
glewaveguide at the speed of light. In this chapter, we summarize silicon photonic on-
chip neural network architectures that have been widely investigated from different
approaches that can be grouped into three categories: (1) reservoir computing; recon-
figurable architectures based on (2) Mach-Zehnder interferometers, and (3) ring-
resonators. Our scope is limited to their forward propagation, and includes potential
on-chipmachine learning tasks and efficiency analyses of the proposed architectures.

10.1 Introduction

In the past few years, analog computing has gained important attention due to hard-
ware acceleration-related milestones. Analog hardware has been known as a way to
perform efficient operations—since those operations are embedded in the hardware
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itself. Each analog system can only implement operations for which it has been built.
Therefore, the design of analog machines for specialized task acceleration can be
achieved if the task can be broken down into a physical model.

In the field of artificial intelligence (AI), analog computing has been considered
as a potential venue to decrease energy and time requirements to run algorithms
such as deep neural networks. Analog special-purpose hardware for artificial neural
networks (ANNs) would require the construction of a machine that will physically
model every single individual component of such networks. This expensive demand
should be fulfilled if all neurons are expected to be used in parallel—which is indeed
what is required. Considering that current deep networks sizes scale up to thousands
or even billions of neurons to solve complexAI related tasks, such a requisite becomes
a challenge. For instance, AlexNet requires 650,000 neurons to solve ImagNet [1].

Electronics and photonic platforms are currently the most promising technologies
to tackle the expensive calculations performed by deep networks. The analog elec-
tronics approach is based on space-efficient topologies such as the resistive crossbar
arrays [2]. Despite the fact that passive resistive arrays have been associated with
low power consumption, crossbar arrays show fundamental performance flaws when
used to model large neural networks. Large crossbar arrays are associated with high
energy costs and low bandwidth. Overall, the power consumption, scalability and
speed can be greatly affected when working with large networks [3].

The optical platform based on silicon photonics offers high scalability, great band-
width and less energy consumption for longer distances than its electrical counterpart.
This recent expanse in the demonstration of silicon photonic structures for photonic
processing belongs to the second wave of optical computing. The first wave occurred
in the early 1990s, where photonic processing of optical neural networks were con-
sider slow and bulky. In fact, optical computing never reached the market due to the
bulky size of free-space optical systems and to the intensive, low-bandwidth opto-
electronic processing of the time. The rejuvenation of the field was possible due to
the many advances in optical processing, higher bandwidth achieved and accessible
fabrication facilities. As the second wave of analog optical computing comes with
important advances for hardware acceleration, this chapter will be focused on the
most relevant photonic processing demonstrations. Due to their speed and energy
efficiency, photonic neural networks have been widely investigated from different
approaches that can be grouped into three categories: (1) reservoir computing [4–7];
reconfigurable architectures based on (2) Mach-Zehnder interferometers [8, 9], and
(3) ring-resonators [10–13].

Reservoir computing successfully implements neural networks for fast informa-
tion processing. Such an advantageous concept is found to be simple and imple-
mentable in hardware, however the predefined randomweights of their hidden layers
cannot be modified [7]. We will describe how to build and utilize a silicon photonic
reservoir computer for machine learning applications. This on-chip reservoir will be
trained off-line to solve an on-line classification task of isolated spoken digits based
on the TI46 corpus [14].

The first reconfigurable architecture that we explore is based onmeshes of tunable
silicon Mach-Zehnder interferometers (MZIs) that can implement fully connected
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neural networks. Such architectures are known to demonstrate their versatility to
perform unitary matrix operations. In particular, some arrangements of MZIs can be
used to implement singular value decomposition on a given layer of an ANN. Such
a process is known as a method to reduce the dimensionality of data. Therefore, if
applied on each layer of any given ANN, the most computationally expensive parts
of AI processing would be alleviated. Here, we will show how to use a 4 × 4 MZI-
based network to recognize 11 vowel phonemes spoken by 90 different speakers.
The training of the network will be performed off-line via backpropagation and the
inference stage on-line [15].

Finally, we present an architecture that can implement photonic convolutional
neural networks (CNN) for image recognition. The competitive MNIST handwriting
dataset [16] is used as a benchmark test for our photonic CNN. We will describe a
scalable photonic architecture for parallel processing that can be achieved by using
on-chipwavelength divisionmultiplexed (WDM) techniques [11, 17], in conjunction
with banks of tunable filters, i.e. photonic synapses, that implement weights on
signals encoded onto multiple wavelengths. Silicon microring resonators (MRRs)
cascaded in series have demonstrated fan-in and indefinite cascadability [18, 19]
which make them ideal as on-chip synaptic weights with small footprint. At first,
we train a standard two-layer CNN off-line, after which network parameters are
uploaded to the photonic CNN. Then, the on-line inference stage is set to recognize
handwritten numbers.

10.2 Background: Neuroscience and Computation

Digital computers are typically computing systems that perform logical and math-
ematical operations with high accuracy. Nowadays, such complex systems signifi-
cantly outweigh human capabilities for calculation and memory. However, no-one
could have imagined the extent that computers were going to reach when they were
first envisioned. In 1822, the British mathematician Charles Babbage created the
first mechanical computer that could work as an automatic computing machine. At
the time, this architecture was known as an analytic engine which could compute
several sets of numbers and made hard copies of the results. The core of this first
general-purpose computer contained an arithmetic logic unit (ALU), a flow control,
punch cards and integrated memory. Unfortunately, many adverse events occurred
before the machine could be physically built.

It was not until mid 1930s that a general-purpose computer reached its physical
form. Between 1936 and 1938, the German civil engineer Konrad Zuse created the
first electromechanical binary programmable computer named Z1. Z1 was capable
of executing instructions that were inputted through a punched tape that it could read.
This computer also contained a control unit, integrated memory and an ALU that
used floating-point logic.

During the same period of time, the BritishmathematicianAlan Turing envisioned
an architecture which followed similar principles. However, Turing went further and
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laid the groundwork for computational science. He defined a computing system
as a machine for matching human computing capabilities. He proposed a machine
that emulated a human agent following a series of logical instructions. The Turing
machine manipulates symbols much as a person manipulates pencil marks on paper
during arithmetical operations [20]. Turing motivated his approach by reflecting on
how an ideal human computer agent would process information. He argues that
human being’s information processing principles can be replicated as they are based
on symbolic algorithms that are being executed by the brain. Symbolic configurations
are executable mechanical procedures that can be mimicked.

In fact, when Turing posed the question “can machines think?” [21], he stated
that at least digital computers can follow the same fixed rules that we find in human
agents. Digital computers are intended to carry out any operations which could be
done by a human computer. Such rules are supplied in a book written following a
well defined finite alphabet that consists in discrete strings of elements (digits), see
Fig. 10.1. Although the alphabet is fixed, the book is not. The supplied book can be
altered whenever it is put on to a new job. As for the previous models of computers,
the Turing’s digital computer was composed of: a memory component, an executive
unit that carries out all the operations involved in calculations, and a control unit to
see that those instructions are obeyed correctly in the right order.

Ifwe are to compare a human agentwith a Turingmachine,wewould see that there
are many abstractions that should be made to perform one-to-one comparisons. Such
abstractions disclose that human cognitive processes are completely procedural and
follow any standard logic. Assumptions of this kind attempted to be human-inspired,
but in fact they ended up influencing our previous understanding of human cognitive
processes. In psychology, the computational theory of intelligence was mainly based

Fig. 10.1 Turing machine
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on the procedural type of abstraction introduced below. The logic theorists Newell
and Simon defined intelligence as the process of specifying a goal, assessing the
current situation to see how it differs from the goal, and applying a set of operations
that reduce the difference [22, 23]. However, this theory has important flaws. The
cognitive scientist Steven Pinker pointed out that the vast majority of human acts
may not need to crank through a mathematical model or a set of well defined instruc-
tions. For instance, cognitive phenomena that include intuition and beliefs cannot
be explained and these are frequently used by human agents to forecast and classify
[24]. Therefore, a one-to-one mapping between human and digital computers might
be a delusion. If so, what can be done from our side to match them?

10.2.1 Digital Versus Analog

Neuromorphic computing approaches that do not use alphabets might be more suited
to mimic brain processes. The human brain is one of the most fascinating organic
machines in our body composition. The human brain contains around 100 billion
neurons, which interact with each other to analyze data coming from an external
stimulus. Its 100 trillion set of synaptic interconnections makes the processing of
large amounts of information a task that turns out to be fast and well performed. A
biological neuron is a cell composed of dendrites, body, axon and synaptic terminals,
see the schematic illustration in Fig. 10.2a. The dendrites carry input signals into the
cell body, where this incoming information is summed to produce a single reaction.
In most cases, the transmission of signals between neurons are represented by action

Fig. 10.2 a Illustration of a brain and a biological neuron model, b action potential and c spiking
waveform
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potentials at the axon of the cell, which are changes of polarization potential of the cell
membrane. The anatomic structure where the neurons communicate with each other
is known as a synapse [25]. The cell membrane has a polarization potential of −70
mV at resting state, produced by an imbalanced concentration inside and outside of
its charged molecules. This change of the polarization happens when several pulses
arrive almost simultaneously at the cell. Then, the potential increases from −70 mV
to approximately +40 mV. Some time after the perturbation, the membrane potential
becomes negative again but it falls to −80 mV [2, 3]. The cell recovers gradually,
and at some point the cell membrane returns to its initial potential (−70 mV), as
schematically illustrated in Fig. 10.2b.

The binary nature of digital computers can also be used tomimic neural processes.
The digital logic can be compared with the all-or-nothing (“1” or “0”) process of
the action potential transmission. Nevertheless, the whole story is not being said.
This model does not include information about the times between action potential
transmissions. The frequency at which neurons spike have functional significance
that cannot be dismissed. Therefore, a complete model of neural dynamics would
specify the waveform that a series of spikes perform in time (see Fig. 10.2c). This
phenomenon has an impact in neural information encoding. For example, the strength
of a given stimulus is coded as a frequency value. The stronger the stimulus (infor-
mation) to the neuron, the smaller the time between spikes [26].

If our nervous system encodes information in such a way, then a digital only
representation of the neural functions is inherently incomplete. If we were forced to
use it, we would find out that a waveform could be described as well using a binary
alphabet, where each spike is a “1”, and each resting state is a “0” in time. For this
to work, each of the waveforms constituted by a series of spikes and resting states
should be identifiable and separable. This will ensure that they can be standardized
and used in a “reference book” of operations that describe human cognition. A task
of this kind would need an extremely large book which includes each waveform
that we detect. Then, each waveform has to be connected to others in a meaningful
manner in order to describe different human cognitive processes. This method could
be difficult and inefficient to follow if we take into account that some neurons can
also spike randomly and create random waveforms that have no meaning.

A more realistic interpretation incorporates a continuous-type model that is typi-
cally described by analog systems. This processwill create a one-to-onemap between
the neural systemand the analogmachine. For this to come true, each biological quan-
tity would be modeled by an analog quantity, i.e. a biological neuron would have its
equivalent analog artificial model. For an architecture such as the brain this could
be a demanding requirement. As previously introduced, the human brain contains
around 100 billion neurons and 100 trillion synaptic interconnections that need to be
represented in an artificial machine.

An equivalent analog machine to the brain can possibly be achieved, but we
wonder at what cost. The average human brain burns 1300 calories per day in the
resting state (54.16 kcal/h = 62.94 watts), which accounts for 20% of the body’s
energy use. For all the incommensurable amount of operations that the brain needs to
perform per day, this amount of energy looks really low. Interestingly, when the brain
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is thinking, it can burn around 300 calories (12.5 kcal/h = 14.527 watts). As human
thoughts can be used for training purposes, a brain that has training activity during
e.g. four days can burn around 120 watts in total—for training only. In contrast, a
digital machine playing Go such as AlphaGo (which simulates brain training process
using binary logic and alphabet) can do the same while burning 50,000 times more
energy in one task only [27]. A dedicated (special-purpose) analog machine per task
should resolve this problem.

10.2.2 Artificial Neural Networks

Towards the utilization of analog machines to map some of the brain circuitry, we
need to define how to model the biological neurons and synapses. Among many
others, the most commonly used neural models are spiking artificial neurons and
perceptrons.While spiking artificial neurons are significantly more biologically real-
istic, the field of artificial intelligence (AI) is currently perceptron-based. Nowadays,
most significant advances in AI have been achieved using a perceptron as an artificial
model of the neuron, therefore in this chapter we will assume that all our artificial
neuron models are perceptron-based. A perceptron is shown in its general model by
Fig. 10.3a. The output y of the neuron represents the signals coming from the axon
of a biological neuron, and it is mathematically described by

y = f (W · x + b). (10.1)

The xi inputs transmit the information to the neuron through theweightsWi, which
correspond to the strength of the synapses. The summation of all weighted inputs, and
their transformation via activation function f , are associated with the physiological
role of the neuron’s cell body. The bias b represents an extra variable that remains
in the system even if the rest of the inputs are absent. The activation function can be
linear or nonlinear, and it mimics the firing feature of biological neurons. A nonlinear
activation function can be used to set a threshold from which to define activated and

Fig. 10.3 a Schematic diagram of a perceptron and b ReLU function
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deactivated behaviors in artificial neurons. For instance, a ReLU function f (see
Fig. 10.3b) mimics a spiking neuron when its weighted addition (W · x + b) > 0,
otherwise the neuron is considered to be in a resting state.

Indeed, a perceptron can be seen as a compact model of a spiking neuron when
data is injected in its input terminals, as the neural response has a one-to-one corre-
spondence with the provided input. It means that different inputs will have different
and unique (identifiable and separable) neural responses. Such compact responses
have the same functionality of waveforms in biological neural responses.

ANNsare built usingperceptrons as neural primitives and the synaptic connections
are typically defined as real-valued numbers. Such numbers can be either positive
or negative to mimic excitatory and inhibitory neural behavior. Among many other
categorization, ANNs can be categorized in the following two main branches: feed
forward and recurrent neural networks. Recurrent neural networks (RNNs) are made
up of three layers of neurons: input, hidden and output. A RNN has a particular
architecture inwhich outputs of its individual neurons serve as inputs to other neurons
on the samehidden layer, see Fig. 10.4a. These feedback connections allownetworks’
input information to be recycled, transformed and reused. Consequently, RNNs are
able to generate internal dynamics that could be advantageous for the development
and maintenance of patterns in the networks’ high dimensional space (defined by the
neurons) [28].

The second branch is led by feed forward neural networks (FFNNs) that represent
a conceptually similar configuration to RNNs. FFNNs are also composed from input,
internal and output layers. But, different fromRNNs, they do not involve any internal
feedback between neurons as part of their architectures, see Fig. 10.4b. These net-
works usually build models that perform smooth function fits to input information.
In many cases, FFNNs are designed with more than one layer of neurons to enhance

Fig. 10.4 Schematic
diagrams of a a recurrent
neural network, b one layer
feedforward neural network
and c deep network or
multilayer neural network
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their information processing competencies. Such larger architectures are known as
deep networks (Fig. 10.4c), and they are used to solve highly complex problems
previously deemed unsolvable by classical methods in an efficient manner, such as
pattern classification [1] or human-level control [29].

10.3 Electronics and Photonic Platforms

Attempts to build efficient perceptron-based neural networks have been reported
throughout recent years. Efficiency is expected on anymachine that attempts tomatch
or outweigh human computing capabilities. An interesting computing acceleration
technique consists in the use of hardware units that perform multiply-accumulate
(MAC) operations very fast. AMAC unit performsmultiplications and accumulation
processes: a + (w × x). Multiple MAC operations can be run in parallel to perform
complex operations such as convolutions and digital filters. By comparing a MAC
unit with the concept of a perceptron, we realize that they have a similarmathematical
model. A neuron made of M inputs and synapses, one output and a bias term can
be therefore written as an array of M MAC operations (ai = ai−1 + wixi) [3]. For
instance, the weighted addition (w1x1 + w2x2 + · · · + wM xM + b) of the neuron:

y = f (w1x1 + w2x2 + · · · + wM xM + b), (10.2)

can be performed in M blocks as follows: if a0 = b, then the first MAC operation
is a1 = a0 + w1x1. The second MAC operation would be a2 = a1 + w2x2; and the
last one aM = aM−1 + wM xM . The activation function f can be applied to all the
weighted summations at the end of the process. Consequently, a neural network of
size N requiresM × N MAC operations per time step. In a fully connected network
where M = N , the number of MAC operations per time step is N 2. MAC opera-
tions are typically used in implementations of neural networks in digital electronics.
Nevertheless, the serialization of the summands to perform weighted addition makes
this process inefficient. As such operations follow a serial processing, the overall
computation efficiency will depend on the clock speed of the digital machine. Since
2014, clock rates have saturated at around 8 GHz, and chip designers are looking for
alternative solutions such as full parallelism. The most promising technologies used
for this purpose are based on specialized analog electronic and photonic platforms.

10.3.1 Electronics

The analog electronics approach is based on space-efficient topologies such as resis-
tive crossbar arrays. In Fig. 10.5a we show the layout of these devices, that consists
of tunable resistive elements at each junction that could represent a synaptic weight
element. They are typically built as a metal-insulator-metal sandwich, where the
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insulator can be made of SiOx, with x < 2. Tuning is typically performed through
the application of input voltages (or currents) to the device in order to change its resis-
tance value. In this case, each column from such a mesh can represent the weighted
addition of any neuron. Input values that are injected through voltages Vi are dis-
tributed through all the N synaptic weights, which are represented by resistors of
conductance Gj. The output of the neuron is represented by the resultant current Ii at
each column of N elements. Such currents are obtained by the Kirchhoff’s current
law, where the multiplications and summations (Ij = ∑

i Vi · Gi,j) are performed.
This architecture is advantageous as the N 2 MAC operations can be executed

in parallel. If we are to use passive arrays of resistive elements to perform MAC
operations, we need to determine howmany analog weight values can be represented
per resistive device. This decision should be taken for the sake of the entire machine
efficiency. It has been shown in [3] that for a maximum of 16 analog values (4
bits) such devices consume fairly low energy. The total energy consumption of an
electronic crossbar array is 4.0 aJ/MAC. This number stays almost unchangeable for
8 bits. However, crossbar arrays show fundamental performance flaws when used to
model large neural networks. Large crossbar arrays (L > 100µm) are associatedwith
high energy costs and low bandwidth. Overall, the power consumption, scalability
and speed can be greatly affected when working with large networks. Nowadays,
ANNs have been doubling in size every 3.5 months, therefore platforms with strong
limitations to model large neural networks will add to the problem. Accordingly, we
continue exploring different platforms in the following.

10.3.2 Photonics

The photonic platform comes as an ideal candidate due to its high scalability,
great bandwidth and less energy consumption for longer distances than its elec-
trical counterpart. In particular, silicon photonics can offer analog processing on
integrated circuits with high-speed and low power consumption. The silicon mate-

Fig. 10.5 a Electronic crossbar array and b schematic diagram of the cross-section of a rib waveg-
uide
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rial for integrated photonics offers a manufacturable, low-cost and versatile platform
for photonics. In fact, silicon photonic devices can be manufactured with standard
silicon foundries and some modified versions of their processing capabilities [30,
31]. Additionally, silicon is well-known for its high refractive index contrast, which
allows for submicrometer waveguide dimensions and dense packing of optical func-
tions on the surface of the chip, i.e. small footprint.

In order to make the light propagate in a small micrometer area, a slab waveguide
made of three layers can be designed. As shown in Fig. 10.5b, the core layer of the
slab waveguide is made of a high index material (silicon, index = 3.48) and the two
cladding layers with lower index (air, index = 1.0). In particular, the photonic waveg-
uide illustrated in the same figure is also known as a rib waveguide, which allows for
electrical connections to be made to the waveguide [32]. Such a waveguide typically
sits on silicon dioxide SiO2 whose refractive index is 1.54. Each on-chip waveguide
is designed with a width of 500 nm and a thickness of 220 nm—associated with
single mode operation. An outstanding feature of rib waveguides is their capability
for signal parallelization, in which hundreds of high speed, multiplexed channels can
be independently modulated and detected. Optical channels are defined by different
wavelengths, and can be used to transmit independent information with small optical
crosstalk.

We introduce afirst photonic devicewhich implementsweights on signals encoded
onto multiple wavelengths. Tuning a given filter on and off resonance changes the
transmission of each signal through that filter, effectivelymultiplying the signalwith a
desired weight in parallel. Silicon microring resonators (MRRs) have demonstrated
to be ideal as on-chip synaptic weights with small footprint [10], see Fig. 10.6a.
MRRs can be designed with a ring and one (all-pass) or two (add-drop) adjacent
bus waveguides. MRRs are devices capable of trapping light at certain frequencies
at which they resonate, according to their physical characteristics. The resonance
frequency can be obtained from the wavelength equation λR = 2πRneff/m, where R
is the radius of the ring and neff is the effective refractive index. A wide variety of
synaptic weights can be represented by anMRR through the tuning of the waveguide
refractive index or (aswewill see later) by tuning the amount of light that gets trapped
in the waveguide. An array ofN MRRs can emulate the weighted addition of a single
neuron if add-drop MRRs and a photodetector are added to the model as shown in
Fig. 10.6b. Each MRR implements a weight value wi, the input values xi are injected
into the neuron through a modulator (a microring [33] or a Mach-Zehnder [34]), and
the photodetector adds up all optical signals [

∑
i wi · xi].

A second design implements weights encoded onto different phases of Mach
Zehnder interferometers (MZI). As shown by Fig. 10.6c, a MZI is designed with a
splitter that splits the incoming light into two branches (the upper and lower waveg-
uide), and then a coupler recombines them again. Splitters and couplers are designed
with Y-branches or directional couplers [10, 32]. By tuning the amount of phase
delay on one of a MZI’s arms, a specific weight value can be set. This causes an
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Fig. 10.6 a all-pass and add-drop MRRs, b add-drop MRR weightbank with a balance photode-
tector, c the model of a MZI and d 2 × 2-MZIs with phase shifters and directional couplers

array of input optical signals x to be multiplied by a weight matrixW, asW · x, see
Fig. 10.6d. Therefore, each row of the matrix W represents the weighted addition
part of a neuron.

Meshes composed of N 2 MRRs (plus N photodetectors) or N 2 MZIs can accom-
plish N 2 MAC operations of the kind [wi,j · xi] each. Furthermore, both methods can
be tuned via the thermo-optic effect, where a voltage (or current) is applied to opti-
mize their weight values. For a maximum of 16 values (4 bits), such devices consume
way less energy than their electronic counterparts. The total energy consumption of
optical meshes is estimated to be around 2.0 aJ/MAC. However, as reported in [3],
the energy required to represent 256 values (8 bits) is 40 times bigger than the 4-bits
case. Thankfully, many ANNs still work well when computational precision is low
[35, 36].

The total energy consumption estimated in this section does not take into account
the amount of energy required to tune these devices to specific weight values. These
passive calculations are agnostic to the tuning technology that is used to set the
weights, the type of activation function, the control unit and the memory unit used
to build a system capable of modeling ANNs. Each of those modules will add to
the overall power consumption and speed constrains. Nevertheless, MAC operations
have been found to be the most burdensome hardware bottlenecks in ANNs as N
grows large [3]. Therefore, such afore mentioned modules should be optimized for
the sake of the machine efficiency maintenance. In the following sections, we will
describe how to build potentially efficient analog photonic ANNs.

10.4 Silicon Photonic Neural Networks

As introduced above, the high speed and parallelism property of the light allows for
optical information processing at a high data rate [37]. Furthermore, the high scal-
ability, submicrometer and dense packing of optical functions of silicon integrated
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photonics makes this a promising technology not only for accelerating AI, but also
for ultra fast special-purpose computing. In silicon photonic platforms, there are
two main approaches that leverage some (or all) of those afore mentioned features.
The first approach harnesses the coherent properties of the light. Under the coherent
approach, we present two different experiments. The first experiment is based on
MZI-based silicon integrated circuits. This circuit has the property of being fully
reconfigurable through thermo-optic tuning. The second coherent experiment dif-
feres from the MZI-based circuit in that it consists of a passive non-reconfigurable
(non-tunable) circuit for reservoir computing applications only. Finally, we introduce
an experiment under the incoherent approach that harnesses the parallelism feature
of light and is fully-reconfigurable.

10.4.1 MZI-based Processing Unit

As commented in the previous section, weighted additions (MAC operations) are
one of the most computationally expensive parts of AI processing. In order to accel-
erate these operations, a dimensionality reduction method can be applied on any
ANN weight matrix W . One of the most used methods for this purpose is known
as singular value decomposition (SVD). SVD could automatically decompose W as
W = U�V †, whereU is a unitary matrix,� is a rectangular diagonal matrix and V †

is the complex conjugate of the unitary matrix V . Additionally, if we also leverage
the high speed property of optical integrated circuits, we can accomplish ultra fast
accelerators for AI. Nevertheless, we would need to know how to implement unitary
and diagonal matrices in optics.

In fact, theoretical and experimental models have shown that certain arrangements
of beam splitter devices can be used to represent unitary matrices [38]. For silicon
integrated photonics, MZI have been tested to be equivalent replacements of beam
splitters [39]. In Fig. 10.7, we illustrate a MZI-based mesh that can implement W
decomposed in U, � and V † [15]. Each 2 × 2-MZI (Fig. 10.6(d)) is built with two
phase shifters that can be tuned to program the nanophotonic circuit to solve a task.
In this case, the Phase term 1, defined as θ , controls the power at the MZI outputs,
and the Phase term 2, defined as φ, determines the relative phases of those outputs
[40].

A 2 × 2-MZI implements the following transformation [40]:

R(θ, φ)MZI = ej(
θ+π
2 )

(
ejφ sin θ

2 ejφ cos θ
2

cos θ
2 − sin θ

2

)

. (10.3)

Such a transformation is associated with the SU(2) rotation group. Unitary matri-
ces U and V are therefore represented by sets of SU(2) transformations that can
perform all rotations on the two MZI input signals. For this purpose, the implemen-
tation of U and V matrices requires the MZIs’ phases θ and φ to be tuned. The
diagonal matrix � can be implemented as the change of power to the input signals,
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Fig. 10.7 Illustration of a MZI mesh that performs singular value decomposition

then only θ should be optimized. The resulting chip will apply a weight matrixW to
the amplitude of the input signals [15].

To program the chip, anN × N unitary matrixU (N ) is multiplied by a succession
of unitary matrices R(θ, φ)i of the same dimensionality until all its off-diagonal
elements are set to zero. This process can be viewed as the result of a rotation of each
column of the matrix U (N ). In total, m = N (N − 1)/2 rotations will be performed
with 2 × 2-MZIs. The resultant diagonal matrix is equal to the identity:

U (N )R(θ1, φ1)1R(θ2, φ2)2 . . .R(θm, φm)m = I , (10.4)

such that U (N ) can be expressed as a succession of multiplications of the R(θ, φ)i
inverses:

U (N ) = R(θm, φm)−1
m . . .R(θ2, φ2)

−1
2 R(θ1, φ1)

−1
1 . (10.5)

This representation ofU (N ) allows for its implementation as a set of phases θ ’s and
φ’s that will be determined by adjusting the voltage on each internal thermo-optic
phase shifter of MZIs from m = 1 to m = N (N − 1)/2. This process is repeated for
the unitary matrix V †. The diagonal matrix � contains the effects of photodetection
on the uncertainty of the system output [15], and it is implemented by tuning the
voltage on each internal thermo-optic phase shifter of a different set of N MZIs.

10.4.1.1 MZI-based Deep Neural Networks

This method can be extended to model large deep neural networks where each layer
will be represented by an optical inference unit, followed by a non-linear function that
can also be implemented with MZI-based circuits [41], see Fig. 10.8a. As a proof of
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concept, a 4 × 4weightmatrixW (also 4 × 4MACoperations)was implemented on-
chip [15], see Fig. 10.8b. This circuit represents matricesU and�. The matricesU is
composed ofm = 6 sets of 2 × 2-MZIs, and the matrix� is composed ofN = 4 sets
of 2 × 2-MZIs.U and � are implemented on a single pass through the chip, and V †

is implemented separately in this experiment. The authors of this work suggest that a
larger circuit would be required to perform the full matrix decomposition on a single
pass. As the unitary matricesU and V are represented by SU(2) transformations that
basically perform all rotations of the two MZI input signals, the phases θ and φ have
to be tuned on MZIs from (1) to (6). The diagonal matrix � can be implemented as
the change of power to the input signals, then only θ should be optimized on MZIs
from (7) to (10).

The first step of this experiment consists in the determination of the weight matrix
W for a specific task. The proposed task is called vowel recognition, where 11 vowel
phonemes spoken by 90 different speakers have to be recognized. The training of the
network was perform via backpropagation off-line (not on-chip but on a computer),
and the inference stage was perform on-line (on-chip). Once W is obtained, this
matrix is decomposed in U, � and V †. The unitary matrix U could be programmed
by successively multiplying it by the following array of rotation matrices until all
off-diagonal elements are set to zero [40]:

U (4)R(θ, φ)1R(θ, φ)2R(θ, φ)4R(θ, φ)3R(θ, φ)5R(θ, φ)6 = I(4), (10.6)

Fig. 10.8 a The model of a deep network with four hidden layers, and b a 4 × 4 weight matrix
represented with sets of 2 × 2-MZIs
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where,

U (4) =

⎛

⎜
⎜
⎝

U1,1 U1,2 U1,3 U1,4

U2,1 U2,2 U2,3 U2,4

U3,1 U3,2 U3,3 U3,4

U4,1 U4,2 U4,3 U4,4

⎞

⎟
⎟
⎠ ; (10.7)

and

R(θi, φi)i = e
j
(

θi+π

2

)

⎛

⎜
⎜
⎝

ejφi sin θi
2 ejφi cos θi

2 0 0
cos θi

2 − sin θi
2 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ . (10.8)

For instance, when the operation U (4)R(θ1, φ1)1 = A(θ1, φ1) is performed, the
element A4,1 resultant matrix can be set to zero. Therefore, θ1 is calculated from:

θ1 = 2 tan−1

(

−U4,2

U4,1

)

. (10.9)

We incorporate A4,1 = 0 to the resultant matrix A(θ1, φ1), and multiply it by the
second rotation R(θ, φ)2 to obtain a new matrix B(θ2, φ2). If the element B4,2 is set
to zero, then θ2 can be obtained as well. After we incorporate the element B4,2 = 0 to
the resultant matrix B, we proceed to multiply it by R(θ, φ)4. This operation allows
us to obtain θ4 once the element C4,3 of the resultant matrix C(θ4, φ4) is set to zero.
Once all elements of the last row except the one on the diagonal in C(θ4, φ4) are set
to zero, the next step consists in setting all the elements of its last column to zero—
except the diagonal. Since all applied transformations are unitary, the last column
will contain only zeros, and the diagonal element will be set to one:

C(θ4, φ4) = U (4)R(θ, φ)1R(θ, φ)2R(θ, φ)4 =
(
U (3) 0
0 1

)

, (10.10)

where the last step already reduced the effective dimension of U to 3.
We repeat this process with the rest of the rotation matrices until the resultant

matrix is equal to the identity. This process will provide the remaining phases to
fully program the chip that implement W . The inference stage of this experiment
was successfully performed on-chip and the recognition task achieved an accuracy of
76.7%. According to the energy calculations performed by the authors of this exper-
iment, a four neuron system would dissipate approximately 8 mW. In the inference
stage, this system can perform such calculations quite efficiently, but the heaters used
to program each individual MZI burns an important amount of power.



10 Neuromorphic Silicon Photonics for Artificial Intelligence 433

10.4.2 Photonic Reservoir Computing

Reservoir computing is a term that encompasses some types of RNNs that can solve
complex tasks with a simplified training methodology. This trend started with echo
state networks (ESNs) [42] and Liquid State Machines (LSMs) [43]. These two
network architectures come from the fields of machine learning and computational
neuroscience, respectively. More recently, a delay echo state network appeared as a
novel computational machine. Such an advantageous concept is found to be simple
and implementable in hardware [7].

Reservoir computers can also be seen as a random RNN, where the synaptic
weights areGaussian or uniformly [44] distributed. Although the brain’s connectivity
cannot be assumed to be fully random, there is experimental evidence supporting the
assumption that some parts of the brain are described by stochastic architectures. For
example, in insects’ olfactory systems the odour recognition process is performed
by olfactory receptor neurons with structureless (random) synaptic connections [45,
46]. Therefore, reservoir computers might be useful to model a few random (non-
trainable) neural dynamics, but it is limited to that.

Reservoirs consist of reservoirs of m neurons in state xn, internally connected in
this case through uniformly randomly distributed internal weights that are defined
in a matrix W of dimensionality m × m. The resulting randomly connected network
is injected with input data {b, yinn+1} according to random offset and teacher/input
weights Woff and Win, respectively. We normalize the largest eigenvalue of W to
one. The time-discrete equation that governs the network is [42]

xn+1 = fNL(W · xn + W off · b + Win · yinn+1), (10.11)

youtn+1 = W out · xn+1 (10.12)

where fNL(·) is a nonlinear sigmoid-like activation function and b a constant value
which has the role of an offset. The network is trained via a supervised learning rule,
where we estimate the output weights Wout through which we obtain the network’s
output yout, see Fig. 10.9a.

The supervised learning rule used to estimate the output weights Wout is based
on regression. The ridge regression is commonly employed to train reservoirs, and
it is executed according to

W out
op = MyT · M †

x (Mx · M †
x − λIm)−1, (10.13)

where MyT and Mx are matrices containing information about target and node
responses, respectively. λ is the regression parameter.
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Fig. 10.9 a A schematic diagram of a reservoir computer, and b a swirl on chip silicon reservoir

10.4.2.1 Swirl On-Chip Silicon Reservoir Computer

A 6 × 6 reservoir computer that can perform speech recognition is shown by
Fig. 10.9b [14]. The interconnections between neurons follow a swirl topology,
because the connections are oriented as if they were in a whirling motion. Each
neuron was designed with 2cm long waveguides with a square roll shape. The 36
neurons are arranged in a rectangular grid, allowing for nearest neighbor intercon-
nections only. Coupling and splitting between the nodes is done by multimode inter-
ferometers with low insertion loss. In order to leverage the full advantages of the
maturity of silicon processing technology, this reservoir design does not contain any
active element.

The classification task of isolated spoken digits (from 0 to 9) was based on the
TI46 speech corpus. This dataset contains 500 samples, where each digit is spoken
10 times by five female speakers. The ridge regression was used to train the network
using 75% of the TI46 dataset. Each trained output returns the value +1 whenever
the corresponding digit is spoken and −1 otherwise. The testing stage used the
remaining 25% set of digits. This circuit was simulated only with all the parameters
of the designed chip and it achieved near 100% performance.

Reservoir computing has demonstrated to be a simple and powerful tool for ana-
log AI. Reservoirs are well suited for hardware implementations as the synaptic
weights of each neuron can be set as random—they do not need to be configured
to specific values. Nevertheless, its lack of full reconfigurability makes it unable to
tackle complex machine learning problems that are being solved by reconfigurable
deep feedforward architectures.
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10.4.3 Broadcast-and-Weight Architecture

A scalable photonic architecture for parallel processing can be achieved by using
on-chip wavelength division multiplexed (WDM) techniques (see Fig. 10.10), in
conjunction with MRRs, i.e. photonic synapses, that implement weights on sig-
nals encoded onto multiple wavelengths. Tuning a given MRR on and off resonance
changes the transmission of each signal through that filter, effectively multiplying
the signal with a desired weight in parallel. Silicon microring resonators (MRRs)
cascaded in series have demonstrated fan-in and indefinite cascadability which make
them ideal as on-chip synaptic weights with small footprint.

The big advantage of using MRRs to represent weights is that they can be tuned
with a wide variety of methods: thermally, electro-optically or through light absorp-
tion (phase-change [18] or graphene [47] materials). Those tuning methods can be
categorized into two different groups: index and absorption-tuning. In order to illus-
trate the action of each tuning method, we introduce a simple experiment shown
in Fig. 10.11a. In this experiment, an add-drop MRR is fed by a laser at certain

Fig. 10.10 Illustration of the wave division multiplexing process

Fig. 10.11 a Illustration of an experiment showing how to test add-drop MRRs that have index
or absorption tuners that can be optimized through the application of a voltage. A laser feeds the
MRRs and an OSA receives the transmission at the drop port. b Transmissions at the drop (dashed
line) and the through port (solid curve)
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wavelength λ at which this MRR resonates. Under this condition, the MRR begins
trapping the incoming light that eventually partially escapes through the drop port
via evanescent waves. The output light is captured by an optical spectrum analyzer
(OSA). The MRR can perform index or absorption tuning when a certain voltage
value is applied. In Fig. 10.11b we show the transmissions at the drop port (dashed
curve) and at the through port (solid curve) without any tuning, where the MRR is on
resonance at wavelength λR. The transfer function of the through port light intensity
with respect to the input light is:

Tp(φ) = (ar)2 − 2r2 cosφ + r2

1 − 2r2 cosφ + (r2a)2
; (10.14)

and the transfer function of the drop port light intensity with respect to the input
light is:

Td (φ) = (1 − r)2a

1 − 2r2 cosφ + (r2a)2
. (10.15)

The parameter r is the self-coupling coefficient, and a defines the propagation loss
from the ring and the directional coupler. The phase φ depends on the wavelength λ

of the light and radius R of the MRR [48]:

φ = 4π2Rneff
λ

. (10.16)

In the case where the coupling losses are negligible, a ≈ 1, the relationship between
the add-drop through and drop transfer functions is Tp = 1 − Td .

In Fig. 10.12 we show the behavior of optical signals detected by the OSA when
the voltage is varied. By applying a positive voltage to the index-tuning device, we
tune the refractive index of the waveguide, leading to drifts of the natural resonance

Fig. 10.12 Transmission versus wavelength for the graphene-based MRR (a) and the n-doped
MRR, b collected from their drop port when different voltage values are applied
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frequency. As shown in Fig. 10.12a, we define this type of behavior as a photonic
synaptic weight that can be tuned horizontally on the transmission profile, since the
drive voltage causes λR to shift from 1.6250 to 1.6350µ m and beyond. A different
weighting-type of methodology is shown in Fig. 10.12b, where we show how weight
values can be defined as transmission values that decreasewith incrementing negative
voltage. We define this type of behavior as a photonic synaptic weight that can be
tuned vertically on the transmission profile. The index-tuning approach is so far the
most employed tuningmethod due to the fabrication of index-tuning devices (heaters
or NP-modulators) being compatible with standard silicon foundries. Absorption-
tuning devices based on graphene have to be manufactured with isolated processes
that are not yet standardized by any nanophotonic foundry.

10.4.3.1 Multiwavelength Weighted Additions

The broadcast and weight architecture can perform weighed additions based on
WDMtechniques as shown by Fig. 10.13. In this illustrationwe showhow tomultiply
in parallel four vectors contained in set A:

A =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(A11,A12,A13,A14),

(A21,A22,A23,A24),

(A31,A32,A33,A34),

(A41,A42,A43,A44);
(10.17)

with four vectors contained in set set B:

B =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(B11,B12,B13,B14),

(B21,B22,B23,B24),

(B31,B32,B33,B34),

(B41,B42,B43,B44).

(10.18)

All vectors are composed of positive real-valued numbers. Vectors from sets A and
B are implemented as arrays of 8 MRRs cascaded in series. For this implementation
we use input and through ports only of add-drop MRRs.

The elements of a given setA can be mapped to voltage values Vaij that tune each
individual MRR(Aij). Each voltage value has a one-to-one correspondence with a
MRR transmission profile Tij. The same principle holds for matrix B with voltage
values Vbij. The experimental implementation of this method requires the use of
four lasers with different wavelengths λi (with i = 1, 2, 3, 4) that represent four
channels. Each channel will represent a vector element from each set through an on
resonance MRR. For instance, channel λ1 represents A11 from A and B11 from B at
the same time. This property allows for optical interactions between the two MRRs
that result in the product of the two of them. In Fig. 10.14 we show an illustration
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Fig. 10.13 Photonic architecture for 4 × 4 vector-to-vector multiplications between sets of vectors
A and B, containing 4 vectors each

(a) (b)

Fig. 10.14 a Transmission versus wavelength curves of two differentMRRs [RR(A11), MRR(B11)]
performing element-to-element optical multiplications, and b the product of such multiplication

of the multiplication between two vector elements A11 and B11, and how the result
R is obtained. Let’s suppose that the element A11 was tuned to have the maximum
optical transmission whereas B11 was tuned to have half of it. In order to implement
A11, we leave the MRR(A11) on-resonance with λ1, and we tune MRR(B11) to be
half off-resonance with the same wavelength. They represent real-valued numbers
1 and 0.5, respectively. The result of such multiplication is R = 0.5. Two MRRs
with different on and off resonance configurations at the same wavelength λi will
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therefore perform element-to-element multiplications. A similar process is followed
with all other vector elements of sets A and B.

Furthermore, to perform a full vector-to-vector multiplication of the form:

C1 = (
A11 A12 A13 A14

) ·

⎛

⎜
⎜
⎝

B11

B12

B13

B14

⎞

⎟
⎟
⎠ , (10.19)

all the sets of multiplications AijBij, performed per array of eight MRRs, are all
summed up by a photodetector located in the end of the array. The photonic cir-
cuit shown in Fig. 10.13 performs four weighted additions in parallel by leveraging
the signal parallelization property of the light in which hundreds of high speed,
multiplexed channels can be independently modulated and detected. Therefore, this
architecture can perform four MAC operations in parallel consuming 23.956 Watts
of energy—taking into account the tuning process.

10.4.3.2 Convolutions and Convolutional Neural Networks

The efficient parallelism of broadcast and weight architectures for matrix multipli-
cation can be leveraged to perform operatons such as convolutions. A convolution is
a weighted summation of two discrete domain functions f and g:

(f ∗ g)[t] =
∞∑

t=−∞
f [τ ]g[t − τ ], (10.20)

where (f ∗ g) represents a weighted average of the function f [τ ]when it is weighting
by g[−τ ] shifted by t. The weighting function g[−τ ] emphasizes different parts of
the input function f [τ ] as t changes.

In this subsection we will learn how to utilize convolutions to do operations on
images. Convolutions arewell known to perform a highly efficient and parallelmatrix
multiplication using kernels [49]. Let us introduce the convolution of an image A

with a kernel B that produces a convolved image O, see Fig. 10.15(a). An image is
represented as a matrix of numbers with dimensionality H × W × D, where H and
W are the height and width of the image, respectively; and D refers to the number of
channels within the input image. Each element of a matrixA represents the intensity
of a pixel at that particular spatial location. A kernel is a matrix B of real numbers
with dimensionality R × R × D. The value of a particular convolved pixel is defined
by:

Oi,j =
D∑

h=1

iS+R∑

q=0

js+R∑

p=0

Bq,p,hAiS+q,jS+p,h. (10.21)
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Fig. 10.15 a Illustration of a convolution between and image A and B, that generates output O,
and b the block diagram that describes a typical CNN, which contains convolutions, activation
functions, pooling and fully connected layers

The additional parameter S is referred to as the “stride” of the convolution. The
dimensionality of the output feature is:

⌈
H − R

S
+ 1

⌉

×
⌈
W − R

S
+ 1

⌉

× K, (10.22)

where K is the number of different kernels of dimensionality R × R × D applied to
an image, and �·� is the ceiling function.

The efficiency of convolutions for image processing is based on the fact that they
lower the dimensions of the outputted convolved features. Since kernels are typically
smaller than the input images, the feature extraction operation allows efficient edge
detection, therefore reducing the amount of memory required to store those features.

As efficiency and parallelism are properties that can be expected from convolution
operations, let us incorporate such operations in ANNs for image processing. In
particular, wewill build convolutional neural networks (CNNs) for image recognition
tasks. A CNN consists of some combination of convolutional, nonlinear, pooling
and fully connected layers [50]. CNNs are networks suitable to be implemented in
photonic hardware since they demand fewer resources to do matrix multiplication
and memory usage. The linear operation performed by convolutions allows single
feature extraction per kernel. Hence, many kernels are required to extract as many
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features as possible. For this reason, kernels are usually applied in blocks, allowing
the network to extract many different features all at once and in parallel.

In feed-forward networks, it is typical to use a rectified linear unit (ReLU) acti-
vation function. Since ReLUs are linear piecewise functions that model an overall
nonlinearity, they allow CNNs to be easily optimized during training. The pooling
layer introduces a stage where a set of neighbor pixels are encompassed in a single
operation. Typically, such an operation consists of the application of a function that
determines themaximumvalue among neighboring values. An average operation can
be implemented likewise. Both approaches describe max and average pools, respec-
tively. This statistical operation allows for a direct down-sampling of the image, since
the dimensions of the object are reduced by a factor of two. From this step, we aim to
make our network invariant and robust to small translations of the detected features.

The triplet, convolution-activation-pooling, is usually repeated several times for
different kernels, keeping invariant the pooling and activation functions. Once all
possible features are detected, the addition of a fully connected layer is required for
the classification stage. This layer prepares and shows the solutions of the task.

CNNs are trained by changing the values of the kernels, analogous to how feed-
forward neural networks are trained by changing the weighted connections [51].
The estimated kernel weight values are required in the testing stage. In this work, we
trained theCNN to perform image recognition on theMNISTdataset, see Fig. 10.15b.
The training stage uses the ADAM optimizer and back-propagation algorithm to
compute the gradient function. The optimized parameters to solve MNIST can be
categorized in two groups: (i) two 5 × 5 × 8 different kernels and (ii) two fully
connected layers of dimensions 800 × 1 and 10 × 1; and their respective bias terms.
These kernels are then defined by eight 5 × 5 different filters. In the following we
use our photonic CNN simulator to recognize new input images, obtained from a
set of 500 images, which are intended to be used for the test step. Our simulator
only works at the transfer level and does not simulate noise or distortion from analog
components. As it can be seen in the illustration (Fig. 10.15b), a 28 × 28 input image
from the test dataset is filtered by a first 5 × 5 × 8 kernel, using stride one. The output
of this process is a 24 × 24 × 8 convolved feature, with a ReLU activation function
already applied. Following the same process, the second group of filters is applied
to the convolved feature to generate the second output, i.e. a 20 × 20 × 8 convolved
feature.

10.4.3.3 Photonic Deep Convolutional Neural Networks

In general, the elements of the kernel matrix are defined as real-valued numbers,
and the elements of the input matrix are typically integer positive numbers. In order
to map convolutions onto photonics we need to consider how to represent nega-
tive numbers in our photonic circuits. This can be done by using the through and
drop ports of the MRRs at once connected to a balance photodetector (BPD). In
Fig. 10.16a we show how to represent a single negative number in a photonic circuit.
The through and drop ports of the MRR(Bi) are connected to the BPD, and then
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Fig. 10.16 a Add-drop configuration and O/E conversion and amplification. b Transmissions of
the drop and though ports and c output of the balance photodiode

linked to a TIA with gain equal to one. The transmissions of those ports can be seen
in Fig. 10.16b, and the output of the BPD can be represented as a waveform shown by
Fig. 10.16c. The result of the subtraction of the two optical signals performed by the
BPD results in an electrical signal whose range is in [−1, 1]. Therefore, any weight
value among [−1, 1] can be represented on-chip. The addition of the TIA will allow
for the representation of numbers out of this range.

This stage can be performed by an on-chip photonic version of the simulated
CNN. Figure10.17 shows a high-level overview of the proposed testing on-chip
architecture. First, we consider an architecture that can produce one convolved pixel
at a time. To handle convolutions for kernels with dimensionality up to R × R × D,
we will require R2 lasers with unique wavelengths since a particular convolved pixel
can be represented as the dot product of two 1 × R2 vectors. To represent the values
of each pixel, we require DR2 add-drop modulators (one per kernel value) where
each modulator keeps the intensity of the corresponding carrier wave proportional
to the normalized input pixel value. The R2 lasers are multiplexed together using
WDM, which is then split intoD separate lines. On every line, there are R2 add-drop
MRRs (where only input and through ports are being used), resulting in DR2 MRRs
in total. Each WDM line will modulate the signals corresponding to a subset of R2

pixels on channel k, meaning that the modulated wavelengths on a particular line
correspond to the pixel inputs (Am,n,k)m∈[i,i+R]n∈[j,j+R] where k ∈ [1,D], and S = 1.

The D WDM lines will then be fed into an array of D photonic weight banks
(PWB). Each PWB will contain R2 MRRs with the weights corresponding to
the kernel values at a particular channel. Each MRR within a PWB should be
tuned to a unique wavelength within the multiplexed signal. The outputs of the
weight bank array are electrical signals, each proportional to the dot product
(Bm,n,k)m∈[1,R2]n∈[1,R2] · (Ap,q,k)p∈[i,i+R2]q∈[j,j+R2],where k ∈ [1,D], andS = 1. Finally,
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Fig. 10.17 Photonic architecture for producing a single convolved pixel. We use an array of R2

lasers with different wavelengths λi to feed the MRRs. The input and kernel values modulate the
MRRs via electrical currents proportional to those values. Once the matrix parallel multiplications
are performed, the voltage adder has the function to add all signals from weight banks. Here, R are
resistance values. Then the output is the convolved feature

the signals from the weight banks need to be added together. This can be achieved
using a passive voltage adder. The output from this adder will therefore be the value
of a single convolved pixel.

Here, the testing input images modulate the intensities of a group of lasers with
identical powers but unique wavelengths. These modulated inputs would be sent into
an array of PWBs, which would then perform the convolution for each channel. The
kernels obtained in the training step are used tomodulate these weight banks. Finally,
the outputs of the weight banks would be summed using a voltage adder, which
produces the convolved feature. This simulator works using the transfer function
of the MRRs, through port and drop port summing equations at the BPDs, and
the TIA gain term to simulate a convolution. The simulator assumes that MRRs
transfer functions design is based on the averaged transfer function behavior validated
experimentally in prior work [34]. The control accuracy of theMRRs is 6-bits as that
has been empirically observed [52]. The MRR self-coupling coefficient is equal to
the loss, r = a = 0.99 [53] in (10.14) and (10.15).

The interfacing of optical components with electronics would be facilitated by the
use of digital-to-analog converters (DACs) and analog-to-digital converters (ADCs).
The storage of output and retrieving of inputs would be achieved by using memories
GDDR SDRAM. The SDRAM is connected to a computer, where the information
is already in a digital representation. Then, the implementation of the ReLU non-
linearity and the reuse of the convolved feature to perform the next convolution
can be performed. The idea is to use the same architecture to implement the triplet
convolution-activation-pooling on hardware.
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The results of the MNIST task solved by our simulated photonic CNN, for a test
set of 500 images, obtained an overall accuracy of 97.6%. This result was found to
be 1% better than on-chip MZIs-based theoretical CNNs [54]. These results were
obtained with 7 bits of precision. As described in [33], assuming that a maximum
of 1024 MRRs can be manufactured in the modulator array, a convolutional unit
can support a large kernel size with a limited number of channels, R = 10, D =
12, or a small kernel size with a large number of channels, R = 3, D = 113. We will
consider both edge cases to get a range of energy consumption values. For the smaller
convolution size, we will have R2 lasers, R2 MRRs and DACs in the modulator array,
R2DMRRs and D TIAs in the weight bank array and one ADC to convert back into
digital signal. With 100 mW per laser, 19.5 mW per MRR, 26 mW per DAC, 17 mW
per TIA [55] and 76 mW per ADC, we get an energy usage of 112W for the large
kernel size and 95W for the smaller kernel size.

10.5 Summary and Concluding Remarks

We have outlined the architectures and motivations behind the use of three photonic
integrated circuits that can implement ANNs on-chip. Despite the fact that reservoir
computers are simple hardware solutions for machine learning problems that can-
not be efficiently solved with classical methods, reconfigurable approaches such as
MZI-based meshes and broadcast-and-weight circuits have demonstrated even more
versatility. Reconfigurable architectures can be used not only for special-purpose
analog tasks, but potentially for general-purpose analog computing as they can be
utilized formatrixmultiplications, SVDand convolutions. Therefore, it will not come
as a surprise if in the future we find a way to create a general-purpose analogmachine
that is highly optimized for machine learning and neuromorphic computing, but also
tackles other more simpler classical tasks.

The reconfigurability of such photonic processing units promise many exciting
developments in AI, but there are many challenges that remain with the future imple-
mentations of those machines. Such challenges are related to control of the whole
processing unit and efficient memory access to the data that needs to be processed.
Just like in digital computers, the control unit shall ensure that those data sets are
uploaded correctly and in the right order to the processing unit. Since we are work-
ing with analog machines, the control unit is particularly important because accurate
real-valued numbers only should be inputted to the photonic circuit. The first chal-
lenge would be focused on the accurate representation of analog values in photonic
processors.

The second critical element is thememory unit. The processes of reading from and
writing to memory should not constitute a bottleneck to the processing and control
units. This unit has to be optimized in order to receive and deliver information
accurately, fast and with low power consumption. Currently, the memory unit is
accessed through DACs and ADCs, which slow down the processor considerably.
Therefore, the development of analog memories is a crucial step that we need to
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pursue. For instance, crossbar arrays can be a good solution to this. Crossbar array
modules that do not exceed the length limit L = 100 μm should help to create an
optimized photonic processor. By adding a crossbar-based memory to our machine,
we could store analog voltage values on it and tune our MZIs or MRRs with them.
The only flaw of this solution is that the cost of transferring information through
electric paths has been considered as a bottleneck for power efficiency. In practice,
most of the system-energy is lost in data movement between the processor and the
memory [56]. However, photonics has been found to efficiently reduce such data
movement problems. In fact, optical loss is nearly negligible for intrachip distances
[3]. The development of optical memories [57] are a potential solution in the case
where analog optical information can be used to tune a device. Such a device should
be tuned with light instead of electrons. Unfortunately, this technology has not been
developed yet for neuromorphic computing.

In general, the overall system-speed and power remain as challenge points. Many
groups and companies have targeted research directions on some of the afore men-
tioned issues, but it is currently unknown how these problems will be overcome
and how a fully working special (or general) purpose photonic processor can be
successfully built.
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