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Abstract. This paper addresses the minmax regret 1-sink location
problem on dynamic flow path networks with parametric weights. We
are given a dynamic flow network consisting of an undirected path with
positive edge lengths, positive edge capacities, and nonnegative vertex
weights. A path can be considered as a road, an edge length as the dis-
tance along the road and a vertex weight as the number of people at the
site. An edge capacity limits the number of people that can enter the
edge per unit time. We consider the problem of locating a sink in the
network, to which all the people evacuate from the vertices as quickly as
possible. In our model, each weight is represented by a linear function
in a common parameter t, and the decision maker who determines the
location of a sink does not know the value of t. We formulate the sink
location problem under such uncertainty as the minmax regret problem.
Given t and a sink location x, the cost of x under t is the sum of arrival
times at x for all the people determined by t. The regret for x under t
is the gap between the cost of x under t and the optimal cost under t.
The task of the problem is formulated as the one to find a sink location
that minimizes the maximum regret over all t. For the problem, we pro-
pose an O(n42α(n)α(n) logn) time algorithm where n is the number of
vertices in the network and α(·) is the inverse Ackermann function. Also
for the special case in which every edge has the same capacity, we show
that the complexity can be reduced to O(n32α(n)α(n) logn).

1 Introduction

Recently, many disasters, such as earthquakes, nuclear plant accidents, volcanic
eruptions and flooding, have struck in many parts of the world, and it has been
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recognized that orderly evacuation planning is urgently needed. A powerful tool
for evacuation planning is the dynamic flow model introduced by Ford and Fulk-
erson [12], which represents movement of commodities over time in a network.
In this model, we are given a graph with source vertices and sink vertices. Each
source vertex is associated with a positive weight, called a supply, each sink
vertex is associated with a positive weight, called a demand, and each edge is
associated with positive length and capacity. An edge capacity limits the amount
of supply that can enter the edge per unit time. One variant of the dynamic flow
problem is the quickest transshipment problem, of which the objective is to send
exactly the right amount of supply out of sources into sinks with satisfying the
demand constraints in the minimum overall time. Hoppe and Tardos [22] pro-
vided a polynomial time algorithm for this problem in the case where the transit
times are integral. However, the complexity of their algorithm is very high. Find-
ing a practical polynomial time solution to this problem is still open. A reader
is referred to a recent survey by Skutella [27] on dynamic flows.

This paper discusses a related problem, called the sink location problem [5–
7,10,11,20,21,26], of which the objective is to find a location of sinks in a given
dynamic flow network so that all the supply is sent to the sinks as quickly as
possible. For the optimality of location, the following two criteria can be natu-
rally considered: the minimization of evacuation completion time and aggregate
evacuation time (i.e., sum of evacuation times). We call the sink location prob-
lem that requires finding a location of sinks on a dynamic flow network that
minimizes the evacuation completion time (resp. the aggregate evacuation time)
the CTSL problem (resp. the ATSL problem). Several papers have studied the
CTSL problems [7,10,11,20,21,26]. On the other hand, for the ATSL problems,
we have a few results only for path networks [5,6,21].

In order to model the evacuation behavior of people, it might be natural to
treat each supply as a discrete quantity as in [22,26]. Nevertheless, almost all the
previous papers on sink location problems [7,10,11,20,21] treat each supply as a
continuous quantity since it is easier for mathematically handling the problems
and the effect of such treatment is small enough to ignore when the number
of people is large. Throughout the paper, we adopt the model with continuous
supplies.

Although the above two criteria are reasonable, they may not be practical
since the population distribution is assumed to be fixed. In a real situation, the
number of people in an area may vary depending on the time, e.g., in an office
area in a big city, there are many people during the daytime on weekdays while
there are much less people on weekends or during the night time. In order to take
such the uncertainty into account, Kouvelis and Yu [23] introduced the minmax
regret model. In the minmax regret sink location problems, we are given a finite
or infinite set S of scenarios, where each scenario gives a particular assignment
of weights on all the vertices. Here, for a sink location x and a scenario s ∈ S, we
denote the evacuation completion time or aggregate evacuation time by F (x, s).
Then, the problem can be understood as a 2-person Stackelberg game as follows.
The first player picks a sink location x and the second player chooses a scenario
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s ∈ S that maximizes the regret defined as R(x, s) := F (x, s)−minx F (x, s). The
objective of the first player is to choose x that minimizes the maximum regret.
Throughout the paper, we call the minmax regret sink location problem, where
the regret is defined with the evacuation completion time (resp. the aggregate
evacuation time), the MMR-CTSL problem (resp. the MMR-ATSL problem). The
MMR-CTSL problems have been studied so far [3,9,14,18,20,24,25]. On the other
hand, for the MMR-ATSL problems, we have few results [8,19] although the
problems are also important theoretically and practically.

As for how to define a set of scenarios, all of the previous studies on the
minmax regret sink location problems adopt the model with interval weights, in
which each vertex is given the weight as a real interval, and a scenario is defined
by choosing an element of the Cartesian product of all the weight intervals over
the vertices. One drawback of the minmax regret model with interval weights is
that each weight can take an independent value, thus we consider some extreme
scenarios which may not happen in real situations, e.g, a scenario where all
the vertices have maximum weights or minimum weights. To incorporate the
dependency among weights of all the vertices into account, we adopt the model
with parametric weights (first introduced by Vairaktarakis and Kouvelis [28] for
the minmax regret median problem), in which each vertex is given the weight as
a linear function in a common parameter t on a real interval, and a scenario is
just determined by choosing t. Note that considering a real situation, each weight
function should be more complex, however, such a function can be approximated
by a piecewise linear function. Thus superimposing all such piecewise linear
functions, it turns out that for a sufficiently small subinterval of t, every weight
function can be regarded as linear, and by solving multiple subproblems with
linear weight functions, we can obtain the solution.

In this paper, we study the MMR-ATSL problem on dynamic flow path net-
works with parametric weights. Our main theorem is below.

Theorem 1 (Main Results). Suppose that we are given a dynamic flow path
network of n vertices with parametric weights.

(i) The MMR-ATSL problem can be solved in time O(n42α(n)α(n) log n), where
α(·) is the inverse Ackermann function.

(ii) When all the edge capacities are uniform, the MMR-ATSL problem can be
solved in time O(n32α(n)α(n) log n).

Note that the MMR-ATSL problem with interval weights is studied by [8,19],
and only for the case with the uniform edge capacity, Higashikawa et al. [19] pro-
vide an O(n3) time algorithm, which is improved to one running in O(n2 log2 n)
time by [8]. However, for the case with general edge capacities, no algorithm
has been known so far. Therefore, our result implies that the problem becomes
solvable in polynomial time by introducing parametric weights.

The rest of the paper is organized as follows. In Sect. 2, we give the notations
and the fundamental properties that are used throughout the paper. In Sect. 3,
we give the key lemmas and the algorithms that solves the problems, which
concludes the paper.
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2 Preliminaries

For two real values a, b with a < b, let [a, b] = {t ∈ R | a ≤ t ≤ b}, (a, b) = {t ∈
R | a < t < b}, and (a, b] = {t ∈ R | a < t ≤ b}.

In our problem, we are given a real interval T = [t−, t+] ⊂ R and a dynamic
flow path network P = (P,w(t), c, l, τ), which consists of five elements: P =
(V,E) is a path with vertex set V = {vi | 1 ≤ i ≤ n} and edge set E = {ei =
(vi, vi+1) | 1 ≤ i ≤ n−1}, w(t) is a vector 〈w1(t), . . . , wn(t)〉 of which component
wi(t) is a weight function wi : T → R≥0 which is linear in a parameter t and
nonnegative for any t ∈ T , a vector c = 〈c1, . . . , cn−1〉 consists of the capacity ci

of edge ei, a vector l = 〈�1, . . . , �n−1〉 consists of the length �i of edge ei, and τ
is the time which the supply takes to move a unit distance on any edge. Let us
explain how edge capacities and lengths affect the evacuation time. Consider an
evacuation under fixed t ∈ T . Suppose that at time 0, the amount w of supply
is at vertex vi+1 and going through edge ei towards vertex vi. The first fraction
of supply from vi+1 can arrive at vi at time τ�i. The edge capacity ci represents
the maximum amount of supply which can enter ei in a unit time interval, so all
the supply w can complete leaving vi+1 at time w/ci. Therefore, all the supply
w can complete arriving at vi at time τ�i + w/ci.

For any integers i, j with 1 ≤ i ≤ j ≤ n, we denote the sum of weights from
vi to vj by Wi,j(t) =

∑j
h=i wh(t). For the notation, we define Wi,j(t) = 0 for i, j

with i > j. For a vertex vi ∈ V , we abuse vi to denote the distance between v1
and vi, i.e., vi =

∑i−1
j=1 �j . For an edge ei ∈ E, we abuse ei to denote a real open

interval (vi, vi+1). We also abuse P to denote a real closed interval [0, vn]. If a
real value x satisfies x ∈ (vi, vi+1), x is said to be a point on edge ei to which
the distance from vi is value x − vi. Let Ci,j be the minimum capacity for all
the edges from ei to ej , i.e., Ci,j = min{ch | i ≤ h ≤ j}.

Note that we precompute values vi and W1,i(t) for all i in O(n) time, and
then, Wi,j(t) for any i, j can be obtained in O(1) time as Wi,j(t) = W1,j(t) −
W1,i−1(t). In addition, Ci,j for any i, j can be obtained in O(1) time with O(n)
preprocessing time, which is known as the range minimum query [2,4].

2.1 Evacuation Completion Time on a Dynamic Flow Path Network

In this section, we see the details of evacuation phenomenon using a simple
example, and eventually show the general formula of evacuation completion time
on a path, first provided by Higashikawa [17]. W.l.o.g., an evacuation to a sink
x follows the first-come first-served manner at each vertex, i.e., when a small
fraction of supply arrives at a vertex v on its way to x, it has to wait for the
departure if there already remains some supply waiting for leaving v.

Let us consider an example with |V | = 3 where V = {v1, v2, v3}, E = {e1 =
(v1, v2), e2 = (v2, v3)}. Assume that the sink x is located at v1, and under a fixed
parameter t ∈ T , the amount of supply at vi is wi for i = 2, 3.

All the supply w1 at v1 immediately completes its evacuation at time 0 and
we send all the supply w2 and w3 to v1 as quickly as possible. Let us focus on
how the supply of v3 moves to v1. First, the foremost fraction of supply from
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v3 arrives at v2 at time τ�2, and all the supply w3 completes leaving v3 at time
w3/c2, i.e., it completes arriving at v2 at time τ�2 +w3/c2. Suppose that at time
τ�2 + w3/c2, the amount w′(≥ 0) of supply remains at v2. From then on, the
time required to send all the supply w′ to v1 is τ�1+w′/c2. Thus, the evacuation
completion time is expressed as

τ(�1 + �2) +
w3

c2
+

w′

c1
. (1)

We observe what value w′ takes in the following cases.

Case 1: It Holds c1 ≥ c2. In this case, the amount of supply at v2 should be
non-increasing, because the amount c1 of supply leaves v2 and the amount at
most c2 of supply arrives at v2 per unit time. Let us consider the following two
situations at time τ�2 + w3/c2: When all the supply w3 completes arriving at
v2, there remains no supply at v2, that is, w′ = 0 holds or not. If w′ = 0 holds,
then substituting it into (1), the evacuation completion time is expressed as

τ(�1 + �2) +
w3

c2
. (2)

Otherwise, that is w′ > 0 holds, there remains a certain amount of supply at
v2 even at time τ�2 since the amount of supply at v2 is non-increasing. Thus at
time τ�2, the amount w2 − c1τ�2 of supply remains at v2. From time τ�2 to time
τ�2 + w3/c2, the amount of supply waiting at v2 decreases by c1 − c2 per unit
time. Then, we have

w′ = w2 − c1(τ�2) − (c1 − c2) · w3

c2
= w2 + w3 − c1τ�2 − c1w3

c2
.

Thus, the evacuation completion time is expressed as

τ(�1 + �2) +
w3

c2
+

w2 + w3 − c1τ�2 − c1w3/c2
c1

= τ�1 +
w2 + w3

c1
. (3)

Case 2: It Holds c1 < c2. In this case, the amount of supply waiting at v2
increases by c2 − c1 per unit time from time τ�2 (when the foremost supply from
v3 arrives at v2) to time τ�2 + w3/c2 (when the supply from v3 completes to
arrive at v2). Let us consider the following two situations at time τ�2. When the
foremost supply from v3 arrives at v2, there remains no supply at v2 or not.

If there remains no supply at v2 at time τ�2, then it holds w′ = (c2 −
c1)(w3/c2) = w3 − c1w3/c2 in (1). Thus, the evacuation completion time is
expressed as

τ(�1 + �2) +
w3

c2
+

w3 − c1w3/c2
c1

= τ(�1 + �2) +
w3

c1
. (4)

Otherwise, the situation is similar to the latter case of Case 1. The difference is
that the amount of supply waiting at v2 increases by c2−c1 per unit time during
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from time τ�2 to time τ�2 + w3/c2, while in Case 1, it decreases by c1 − c2 per
unit time. For this case, the evacuation completion time is given by formula (3).

In summary of formulae (2)–(4), the evacuation completion time for a
dynamic flow path network with three vertices is given by the following formula:

max
{

τ�1 +
w2 + w3

c1
, τ(�1 + �2) +

w3

min{c1, c2}
}

. (5)

Let us turn to the case with n vertices, that is, V = {vi | 1 ≤ i ≤ n}.
When the sink is located at v1 and a parameter t ∈ T is fixed, generalizing
formula (5), the evacuation completion time is given by the following formula,
which is provided by Higashikawa [17]:

max
2≤i≤n

⎧
⎨

⎩
τ

i−1∑

j=1

�j +

∑n
j=i wj(t)

min1≤j≤i−1 cj

⎫
⎬

⎭
= max

2≤i≤n

{

τvi +
Wi,n(t)

C1,i

}

. (6)

An interesting observation is that each τvi + Wi,n(t)/C1,i in (6) is equivalent
to the evacuation completion time for the transformed input so that only vi is
given supply Wi,n(t) and all the others are given zero supply.

Let us give explicit formula of the evacuation completion time for fixed x ∈ P
and parameter t ∈ T . Suppose that a sink x is on edge ei = (vi, vi+1). In this
case, all the supply on the right side (i.e., at vi+1, . . . , vn) will flow left to sink
x and all the supply on the left side (i.e., at v1, . . . , vi) will flow right to sink x.
First, we consider the evacuation for the supply on the right side of x. Supply on
the path is viewed as a continuous value, and we regard that all the supply on the
right side of x is mapped to the interval (0,Wi+1,n(t)]. The value z satisfying z ∈
(Wi+1,j−1(t),Wi+1,j(t)] with i + 1 ≤ j ≤ n represents all the supply at vertices
vi+1, vi+2, . . . , vj−1 plus partial supply of z − Wi+1,j−1(t) at vj . Let θei

R (x, t, z)
denote the time at which the first z amount of supply on the right side of x (i.e.,
vi+1, vi+2, . . . , vn) completes its evacuation to sink x. Modifying formula (6),
θei

R (x, t, z) is given by the following formula: For z ∈ (Wi+1,j−1(t),Wi+1,j(t)]
with i + 1 ≤ j ≤ n,

θei

R (x, t, z) = max
i+1≤h≤j

{

τ(vh − x) +
z − Wi+1,h−1(t)

Ci,h

}

. (7)

In a symmetric manner, we consider the evacuation for the supply on the left
side of x (i.e., v1, . . . , vi). The value z satisfying z ∈ (Wj+1,i(t),Wj,i(t)] with
1 ≤ j ≤ i represents all the supply at vertices vi, vi−1, . . . , vj+1 plus partial
supply of z −Wj+1,i(t) at vj . Let θei

L (x, t, z) denote the time at which the first z
amount of supply on the left side of x completes its evacuation to sink x, which
is given by the following formula: For z ∈ (Wj+1,i(t),Wj,i(t)] with 1 ≤ j ≤ i,

θei

L (x, t, z) = max
j≤h≤i

{

τ(x − vh) +
z − Wh+1,i(t)

Ch,i

}

. (8)

Let us turn to the case that sink x is at a vertex vi ∈ V . We confirm that the
evacuation times when the amount z of supply originating from the right side
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of and the left side of vi to sink vi are given by θei

R (vi, t, z) and θ
ei−1
L (vi, t, z),

respectively.

2.2 Aggregate Evacuation Time

Let Φ(x, t) be the aggregate evacuation time (i.e., sum of evacuation time) when
a sink is at a point x ∈ P and the weight functions are fixed by a parameter t ∈ T .
For a point x on edge ei and a parameter t ∈ T , the aggregate evacuation time
Φ(x, t) is defined by the integrals of the evacuation completion times θei

L (x, t, z)
over z ∈ [0,W1,i(t)] and θei

R (x, t, z) over z ∈ [0,Wi+1,n(t)], i.e.,

Φ(x, t) =
∫ W1,i(t)

0

θei

L (x, t, z)dz +
∫ Wi+1,n(t)

0

θei

R (x, t, z)dz. (9)

In a similar way, if a sink x is at vertex vi, then Φ(vi, t) is given by

Φ(vi, t) =
∫ W1,i−1(t)

0

θ
ei−1
L (vi, t, z)dz +

∫ Wi+1,n(t)

0

θei

R (vi, t, z)dz. (10)

2.3 Minmax Regret Formulation

We denote by Opt(t) the minimum aggregate evacuation time with respect to a
parameter t ∈ T . Higashikawa et al. [21] and Benkoczi et al. [6] showed that for
the minsum k-sink location problems, there exists an optimal k-sink such that
all the k sinks are at vertices. This implies that we have

Opt(t) = min
x∈V

Φ(x, t) (11)

for any t ∈ T . For a point x ∈ P and a value t ∈ T , a regret R(x, t) with regard
to x and t is a gap between Φ(x, t) and Opt(t) that is defined as

R(x, t) = Φ(x, t) − Opt(t). (12)

The maximum regret for a sink x ∈ P , denoted by MR(x), is the maximum
value of R(x, t) with respect to t ∈ T . Thus, MR(x) is defined as

MR(x) = max
t∈T

R(x, t). (13)

Given a dynamic flow path network P and a real interval T , the problem MMR-
ATSL is defined as follows:

minimize MR(x) subject to x ∈ P (14)

Let x∗ denote an optimal solution of (14).



Minmax Regret 1-Sink Location on Paths with Parametric Weights 59

2.4 Piecewise Functions and Upper/Lower Envelopes

A function f : X(⊂ R) → R is called a piecewise polynomial function if and only
if real interval X can be partitioned into subintervals X1,X2, . . . , Xm so that f
forms as a polynomial fi on each Xi. We denote such a piecewise polynomial
function f by f = 〈(f1,X1), . . . , (fm,Xm)〉, or simply f = 〈(fi,Xi)〉. We assume
that such a partition into subintervals are maximal in the sense that fi 	= fi+1

for any i. We call each pair (fi,Xi) a piece of f , and an endpoint of the closure
of Xi a breakpoint of f . A piecewise polynomial function f = 〈(fi,Xi)〉 is called
a piecewise polynomial function of degree at most two if and only if each fi is
quadratic or linear. We confirm the following property about the sum of piecewise
polynomial functions.

Proposition 1. Let m and m′ be positive integers, and f, g : X(⊂ R) → R

be piecewise polynomial functions of degree at most two with m and m′ pieces,
respectively. Then, a function h = f + g is a piecewise polynomial function of
degree at most two with at most m + m′ pieces. Moreover, given f = 〈(fi,Xi)〉
and g = 〈(gj ,X

′
j)〉, we can obtain h = f + g = 〈(hj ,X

′′
j )〉 in O(m + m′) time.

Let F = {f1(y), . . . , fm(y)} be a family of m polynomial functions where
fi : Yi(⊂ R) → R and Y denote the union of Yi, that is, Y = ∪m

i=1Yi. An upper
envelope UF (y) and a lower envelope LF (y) of F are functions from Y to R

defined as follows:

UF (y) = max
i=1,...,m

fi(y), LF (y) = min
i=1,...,m

fi(y), (15)

where the maximum and the minimum are taken over those functions that
are defined at y, respectively. For an upper envelope UF (y) of F , there exist
an integer sequence UF = 〈u1, . . . , uk〉 and subintervals I1, . . . , Ik of Y such
that UF (y) = 〈(fu1(y), I1), . . . , (fuk

(y), Ik)〉 holds. That is, an upper envelope
UF (y) can be represented as a piecewise polynomial function. We call the above
sequence UF the upper-envelope sequence of UF (y).

In our algorithm, we compute the upper/lower envelopes of partially defined,
univariate polynomial functions. The following result is useful for this operation.

Theorem 2 ([1,15,16]). Let F be a family of n partially defined, polynomial
functions of degree at most two. Then, UF and LF consist of O(n2α(n)) pieces
and one can obtain them in time O(nα(n) log n), where α(n) is the inverse Ack-
ermann function. Moreover, if F a family of n line segments, then UF and LF
consist of O(n) pieces and one can obtain them in time O(n log n).

Note that the number of pieces and the computation time for the upper/lower
envelopes are involved with the maximum length of Davenport–Schinzel
sequences. See [15] for the details. For a family F of functions, if we say that we
obtain envelopes UF (y) or LF (y), then we obtain the information of all pieces
(fui

(y), Ii).
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3 Algorithms

The main task of the algorithm is to compute the following O(n) values, MR(v)
for all v ∈ V and min{MR(x) | x ∈ e} for all e ∈ E. Once we compute these
values, we immediately obtain the solution of the problem by choosing the min-
imum one among them in O(n) time.

Let us focus on computing min{MR(x) | x ∈ e} for each e ∈ E. (Note that
we can compute MR(v) for v ∈ V in a similar manner.) Recall the definition of
the maximum regret for x, MR(x) = max{R(x, t) | t ∈ T}. A main difficulty
lies in evaluating R(x, t) over t ∈ T even for a fixed x since interval T is infinite.
Furthermore, we are also required to find an optimal location among an infinite
set e. To tackle with this issue, our key idea is to partition the problem into
a polynomial number of subproblems as follows: We partition interval T into a
polynomial number of subintervals T1, . . . , Tm so that R(x, t) is represented as
a (single) polynomial function in x and t on {x ∈ e} × Tj for each j = 1, . . . , m.
For each Tj , we compute the maximum regret for x ∈ e over Tj denoted by
Gj(x) = max{R(x, t) | t ∈ Tj}. An explicit form of Gj(x) is given in the full
paper [13]. We then obtain MR(x) for x ∈ e as the upper envelope of functions
G1(x), . . . , Gm(x) and find the minimum value of MR(x) for x ∈ e by elementary
calculation.

In the rest of the paper, we mainly show that for each e or v, there exists
a partition of T with a polynomial number of subintervals such that the regret
R(x, t) is a polynomial function of degree at most two on each subinterval.

3.1 Key Lemmas

To understand R(x, t), we observe function Φ(x, t). We give some other nota-
tions. Let fei,j

R (t, z) and fei,j
L (t, z) denote functions obtained by removing terms

containing x from formulae (7) and (8). Formally, for 1 ≤ i < j ≤ n, let function
fei,j
R (t, z) be defined on t ∈ T and z ∈ (Wi+1,j−1(t),Wi+1,n(t)] as

fei,j
R (t, z) = τvj +

z − Wi+1,j−1(t)
Ci,j

, (16)

and for 1 ≤ j < i ≤ n, let function fei,j
L (t, z) be defined on t ∈ T and z ∈

(Wj+1,i(t),W1,i(t)] as

fei,j
L (t, z) = −τvj +

z − Wj+1,i(t)
Cj,i

. (17)

In addition, let F ei

L (t) and F ei

R (t) denote univariate functions defined as

F ei

L (t) =
∫ W1,i(t)

0

fei

L (t, z)dz, F ei

R (t) =
∫ Wi+1,n(t)

0

fei

R (t, z)dz, (18)

where fei

L (t, z) and fei

R (t, z) denote functions defined as

fei

L (t, z) = max
1≤j≤i

{
fei,j
L (t, z)

}
, fei

R (t, z) = max
i+1≤j≤n

{
fei,j
R (t, z)

}
.
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Recall the definition of the aggregate evacuation time Φ(x, t) shown in (9). We
observe that for x ∈ ei, Φ(x, t) can be represented as

Φ(x, t) =
(
W1,i(t) − Wi+1,n(t)

)
τx +

∫ W1,i(t)

0

fei

L (t, z)dz +
∫ Wi+1,n(t)

0

fei

R (t, z)dz

=
(
W1,i(t) − Wi+1,n(t)

)
τx + F ei

L (t) + F ei

R (t). (19)

In a similar manner, by the definition of (10) and formula (18), we have

Φ(vi, t) =
(
W1,i−1(t) − Wi+1,n(t)

)
τvi + F

ei−1
L (t) + F ei

R (t). (20)

Let us focus on function F e
R(t). As t increases, while the upper-envelope

sequence of fe
R(t, z) w.r.t. z remains the same, function F e

R(t) is represented as
the same polynomial, whose degree is at most two by formulae (16), (17) and
(18). In other words, a breakpoint of F e

R(t) corresponds to the value t such that
the upper-envelope sequence of fe

R(t, z) w.r.t. z changes. We notice that such
a change happens only when three functions fe,h

R (t, z), fe,i
R (t, z) and fe,j

R (t, z)
intersect each other, which can happen at most once. This implies that F e

R(t)
consists of O(n3) breakpoints, that is, it is a piecewise polynomial function of
degree at most two with O(n3) pieces. The following lemma shows that the
number of pieces is actually O(n2). See [13] for details of the proof.

Lemma 1. For each e ∈ E, F e
L(t) and F e

R(t) are piecewise polynomial functions
of degree at most two with O(n2) pieces, and can be computed in O(n3 log n)
time. Especially, when all the edge capacities are uniform, the numbers of pieces
of them are O(n), and can be computed in O(n2 log n) time.

Let NF denote the maximum number of pieces of F e
L(t) and F e

R(t) over e ∈ E.
Then we have NF = O(n2), and for the case with uniform edge capacity, NF =
O(n). Next, we consider Opt(t) = min{Φ(x, t) | x ∈ V }, which is the lower
envelope of a family of n functions Φ(vi, t) in t. Theorem 2 and Lemma 1 imply
the following lemma. See [13] for the proof.

Lemma 2. Opt(t) is a piecewise polynomial function of degree at most two with
O(nNF 2α(n)) pieces, and can be obtained in O(nNF α(n) log n) time if functions
F e
L(t) and F e

R(t) for all e ∈ E are available.

Let NOpt denote the number of pieces of Opt(t). Then we have NOpt =
O(nNF 2α(n)).

Let us consider R(x, t) in the case that sink x is on an edge ei ∈ E. Substi-
tuting formula (19) for (12), we have

R(x, t) = Φ(x, t) − Opt(t) =
(
W1,i(t) − Wi+1,n(t)

)
τx + F ei

L (t) + F ei

R (t) − Opt(t).

By Proposition 1, F ei

L (t) + F ei

R (t) − Opt(t) is a piecewise polynomial function of
degree at most two with at most 2NF + NOpt = O(NOpt) pieces. Let Nei

be the
number of pieces of F ei

L (t) + F ei

R (t) − Opt(t) and T ei
j be the interval of the j-th

piece (from the left) of F ei

L (t) + F ei

R (t) − Opt(t). Thus, R(x, t) is represented as



62 T. Fujie et al.

a (single) polynomial function in x and t on {x ∈ e} × Tj for each Tj . For each
integer j with 1 ≤ j ≤ Nei

, let Gei
j (x) be a function defined as

Gei
j (x) = max{R(x, t) | t ∈ T ei

j }. (21)

We then have the following lemma. See [13] for the proof.

Lemma 3. For each ei ∈ E and j with 1 ≤ j ≤ Nei
, Gei

j (x) is a piecewise
polynomial function of degree at most two with at most three pieces, and can be
obtained in constant time if functions F ei

L (t), F ei

R (t) and Opt(t) are available.

Recalling the definition of MR(x), it holds that for x ∈ e,

MR(x) = max{R(x, t) | t ∈ T} = max{Ge
j(x) | 1 ≤ j ≤ Ne},

that is, MR(x) is the upper envelope of functions Ge
1(x), . . . , Ge

Ne
(x). Applying

Theorem 2, we have the following lemma. See [13] for the proof.

Lemma 4. For each e ∈ E, there exists an algorithm that finds a location that
minimizes MR(x) under the restriction with x ∈ e in O(NOptα(n) log n) time if
functions F e

L(t), F e
R(t) and Opt(t) are available.

3.2 Algorithms and Time Analyses

Let us give an algorithm that finds a sink location that minimizes the maximal
regret and the analysis of the running time of each step.

First, we obtain F e
L(t) and F e

R(t) for all e ∈ E, and function Opt(t) as a
preprocess. Applying Lemmas 1 and 2, we take O(n2NF log n) time for these
operations. Next, we compute x∗,e = arg min{MR(x) | x ∈ e} for all e ∈ E in
O(nNOptα(n) log n) time by applying Lemma4. Note that the small modification
for the algorithm of Lemma4 leads that we can also compute MR(v) for all
v ∈ V in O(nNOpt) time. (See Lemma 5 in [13].) Finally, we find an optimal
sink location x∗ in O(n) time by evaluating the values MR(x) for x ∈ {x∗,e}∪V .

Since we have NOpt = O(nNF 2α(n)), the bottleneck of our algorithm is
to compute x∗,e for all e ∈ E. Thus, we see that the algorithm runs in
O(n2NF 2α(n)α(n) log n) time, which completes the proof of our main theorem
because NF = O(n2), and for the case with uniform edge capacity, NF = O(n).
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